re PR ipa/60026 (ICE at -O3 on valid code (with the optimize pragma) on x86_64-linux...
[gcc.git] / gcc / sese.h
1 /* Single entry single exit control flow regions.
2 Copyright (C) 2008-2014 Free Software Foundation, Inc.
3 Contributed by Jan Sjodin <jan.sjodin@amd.com> and
4 Sebastian Pop <sebastian.pop@amd.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_SESE_H
23 #define GCC_SESE_H
24
25 /* A Single Entry, Single Exit region is a part of the CFG delimited
26 by two edges. */
27 typedef struct sese_s
28 {
29 /* Single ENTRY and single EXIT from the SESE region. */
30 edge entry, exit;
31
32 /* Parameters used within the SCOP. */
33 vec<tree> params;
34
35 /* Loops completely contained in the SCOP. */
36 bitmap loops;
37 vec<loop_p> loop_nest;
38
39 /* Are we allowed to add more params? This is for debugging purpose. We
40 can only add new params before generating the bb domains, otherwise they
41 become invalid. */
42 bool add_params;
43 } *sese;
44
45 #define SESE_ENTRY(S) (S->entry)
46 #define SESE_ENTRY_BB(S) (S->entry->dest)
47 #define SESE_EXIT(S) (S->exit)
48 #define SESE_EXIT_BB(S) (S->exit->dest)
49 #define SESE_PARAMS(S) (S->params)
50 #define SESE_LOOPS(S) (S->loops)
51 #define SESE_LOOP_NEST(S) (S->loop_nest)
52 #define SESE_ADD_PARAMS(S) (S->add_params)
53
54 extern sese new_sese (edge, edge);
55 extern void free_sese (sese);
56 extern void sese_insert_phis_for_liveouts (sese, basic_block, edge, edge);
57 extern void build_sese_loop_nests (sese);
58 extern edge copy_bb_and_scalar_dependences (basic_block, sese, edge,
59 vec<tree> , bool *);
60 extern struct loop *outermost_loop_in_sese (sese, basic_block);
61 extern tree scalar_evolution_in_region (sese, loop_p, tree);
62
63 /* Check that SESE contains LOOP. */
64
65 static inline bool
66 sese_contains_loop (sese sese, struct loop *loop)
67 {
68 return bitmap_bit_p (SESE_LOOPS (sese), loop->num);
69 }
70
71 /* The number of parameters in REGION. */
72
73 static inline unsigned
74 sese_nb_params (sese region)
75 {
76 return SESE_PARAMS (region).length ();
77 }
78
79 /* Checks whether BB is contained in the region delimited by ENTRY and
80 EXIT blocks. */
81
82 static inline bool
83 bb_in_region (basic_block bb, basic_block entry, basic_block exit)
84 {
85 #ifdef ENABLE_CHECKING
86 {
87 edge e;
88 edge_iterator ei;
89
90 /* Check that there are no edges coming in the region: all the
91 predecessors of EXIT are dominated by ENTRY. */
92 FOR_EACH_EDGE (e, ei, exit->preds)
93 dominated_by_p (CDI_DOMINATORS, e->src, entry);
94 }
95 #endif
96
97 return dominated_by_p (CDI_DOMINATORS, bb, entry)
98 && !(dominated_by_p (CDI_DOMINATORS, bb, exit)
99 && !dominated_by_p (CDI_DOMINATORS, entry, exit));
100 }
101
102 /* Checks whether BB is contained in the region delimited by ENTRY and
103 EXIT blocks. */
104
105 static inline bool
106 bb_in_sese_p (basic_block bb, sese region)
107 {
108 basic_block entry = SESE_ENTRY_BB (region);
109 basic_block exit = SESE_EXIT_BB (region);
110
111 return bb_in_region (bb, entry, exit);
112 }
113
114 /* Returns true when STMT is defined in REGION. */
115
116 static inline bool
117 stmt_in_sese_p (gimple stmt, sese region)
118 {
119 basic_block bb = gimple_bb (stmt);
120 return bb && bb_in_sese_p (bb, region);
121 }
122
123 /* Returns true when NAME is defined in REGION. */
124
125 static inline bool
126 defined_in_sese_p (tree name, sese region)
127 {
128 gimple stmt = SSA_NAME_DEF_STMT (name);
129 return stmt_in_sese_p (stmt, region);
130 }
131
132 /* Returns true when LOOP is in REGION. */
133
134 static inline bool
135 loop_in_sese_p (struct loop *loop, sese region)
136 {
137 return (bb_in_sese_p (loop->header, region)
138 && bb_in_sese_p (loop->latch, region));
139 }
140
141 /* Returns the loop depth of LOOP in REGION. The loop depth
142 is the same as the normal loop depth, but limited by a region.
143
144 Example:
145
146 loop_0
147 loop_1
148 {
149 S0
150 <- region start
151 S1
152
153 loop_2
154 S2
155
156 S3
157 <- region end
158 }
159
160 loop_0 does not exist in the region -> invalid
161 loop_1 exists, but is not completely contained in the region -> depth 0
162 loop_2 is completely contained -> depth 1 */
163
164 static inline unsigned int
165 sese_loop_depth (sese region, loop_p loop)
166 {
167 unsigned int depth = 0;
168
169 gcc_assert ((!loop_in_sese_p (loop, region)
170 && (SESE_ENTRY_BB (region)->loop_father == loop
171 || SESE_EXIT (region)->src->loop_father == loop))
172 || loop_in_sese_p (loop, region));
173
174 while (loop_in_sese_p (loop, region))
175 {
176 depth++;
177 loop = loop_outer (loop);
178 }
179
180 return depth;
181 }
182
183 /* Splits BB to make a single entry single exit region. */
184
185 static inline sese
186 split_region_for_bb (basic_block bb)
187 {
188 edge entry, exit;
189
190 if (single_pred_p (bb))
191 entry = single_pred_edge (bb);
192 else
193 {
194 entry = split_block_after_labels (bb);
195 bb = single_succ (bb);
196 }
197
198 if (single_succ_p (bb))
199 exit = single_succ_edge (bb);
200 else
201 {
202 gimple_stmt_iterator gsi = gsi_last_bb (bb);
203 gsi_prev (&gsi);
204 exit = split_block (bb, gsi_stmt (gsi));
205 }
206
207 return new_sese (entry, exit);
208 }
209
210 /* Returns the block preceding the entry of a SESE. */
211
212 static inline basic_block
213 block_before_sese (sese sese)
214 {
215 return SESE_ENTRY (sese)->src;
216 }
217
218 \f
219
220 /* A single entry single exit specialized for conditions. */
221
222 typedef struct ifsese_s {
223 sese region;
224 sese true_region;
225 sese false_region;
226 } *ifsese;
227
228 extern void if_region_set_false_region (ifsese, sese);
229 extern ifsese move_sese_in_condition (sese);
230 extern edge get_true_edge_from_guard_bb (basic_block);
231 extern edge get_false_edge_from_guard_bb (basic_block);
232 extern void set_ifsese_condition (ifsese, tree);
233
234 static inline edge
235 if_region_entry (ifsese if_region)
236 {
237 return SESE_ENTRY (if_region->region);
238 }
239
240 static inline edge
241 if_region_exit (ifsese if_region)
242 {
243 return SESE_EXIT (if_region->region);
244 }
245
246 static inline basic_block
247 if_region_get_condition_block (ifsese if_region)
248 {
249 return if_region_entry (if_region)->dest;
250 }
251
252 /* Structure containing the mapping between the old names and the new
253 names used after block copy in the new loop context. */
254 typedef struct rename_map_elt_s
255 {
256 tree old_name, expr;
257 } *rename_map_elt;
258
259
260 extern hashval_t rename_map_elt_info (const void *);
261 extern int eq_rename_map_elts (const void *, const void *);
262
263 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
264
265 static inline rename_map_elt
266 new_rename_map_elt (tree old_name, tree expr)
267 {
268 rename_map_elt res;
269
270 res = XNEW (struct rename_map_elt_s);
271 res->old_name = old_name;
272 res->expr = expr;
273
274 return res;
275 }
276
277 /* Free and compute again all the dominators information. */
278
279 static inline void
280 recompute_all_dominators (void)
281 {
282 mark_irreducible_loops ();
283 free_dominance_info (CDI_DOMINATORS);
284 calculate_dominance_info (CDI_DOMINATORS);
285 }
286
287 typedef struct gimple_bb
288 {
289 basic_block bb;
290 struct poly_bb *pbb;
291
292 /* Lists containing the restrictions of the conditional statements
293 dominating this bb. This bb can only be executed, if all conditions
294 are true.
295
296 Example:
297
298 for (i = 0; i <= 20; i++)
299 {
300 A
301
302 if (2i <= 8)
303 B
304 }
305
306 So for B there is an additional condition (2i <= 8).
307
308 List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the
309 corresponding element in CONDITION_CASES is not NULL_TREE. For a
310 SWITCH_EXPR the corresponding element in CONDITION_CASES is a
311 CASE_LABEL_EXPR. */
312 vec<gimple> conditions;
313 vec<gimple> condition_cases;
314 vec<data_reference_p> data_refs;
315 } *gimple_bb_p;
316
317 #define GBB_BB(GBB) (GBB)->bb
318 #define GBB_PBB(GBB) (GBB)->pbb
319 #define GBB_DATA_REFS(GBB) (GBB)->data_refs
320 #define GBB_CONDITIONS(GBB) (GBB)->conditions
321 #define GBB_CONDITION_CASES(GBB) (GBB)->condition_cases
322
323 /* Return the innermost loop that contains the basic block GBB. */
324
325 static inline struct loop *
326 gbb_loop (struct gimple_bb *gbb)
327 {
328 return GBB_BB (gbb)->loop_father;
329 }
330
331 /* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
332 If there is no corresponding gimple loop, we return NULL. */
333
334 static inline loop_p
335 gbb_loop_at_index (gimple_bb_p gbb, sese region, int index)
336 {
337 loop_p loop = gbb_loop (gbb);
338 int depth = sese_loop_depth (region, loop);
339
340 while (--depth > index)
341 loop = loop_outer (loop);
342
343 gcc_assert (sese_contains_loop (region, loop));
344
345 return loop;
346 }
347
348 /* The number of common loops in REGION for GBB1 and GBB2. */
349
350 static inline int
351 nb_common_loops (sese region, gimple_bb_p gbb1, gimple_bb_p gbb2)
352 {
353 loop_p l1 = gbb_loop (gbb1);
354 loop_p l2 = gbb_loop (gbb2);
355 loop_p common = find_common_loop (l1, l2);
356
357 return sese_loop_depth (region, common);
358 }
359
360 /* Return true when DEF can be analyzed in REGION by the scalar
361 evolution analyzer. */
362
363 static inline bool
364 scev_analyzable_p (tree def, sese region)
365 {
366 loop_p loop;
367 tree scev;
368 tree type = TREE_TYPE (def);
369
370 /* When Graphite generates code for a scev, the code generator
371 expresses the scev in function of a single induction variable.
372 This is unsafe for floating point computations, as it may replace
373 a floating point sum reduction with a multiplication. The
374 following test returns false for non integer types to avoid such
375 problems. */
376 if (!INTEGRAL_TYPE_P (type)
377 && !POINTER_TYPE_P (type))
378 return false;
379
380 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
381 scev = scalar_evolution_in_region (region, loop, def);
382
383 return !chrec_contains_undetermined (scev)
384 && (TREE_CODE (scev) != SSA_NAME
385 || !defined_in_sese_p (scev, region))
386 && (tree_does_not_contain_chrecs (scev)
387 || evolution_function_is_affine_p (scev));
388 }
389
390 #endif