Makefile.in (TARGET_H, [...]): New.
[gcc.git] / gcc / sibcall.c
1 /* Generic sibling call optimization support
2 Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23
24 #include "rtl.h"
25 #include "regs.h"
26 #include "function.h"
27 #include "hard-reg-set.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "except.h"
34
35 static int identify_call_return_value PARAMS ((rtx, rtx *, rtx *));
36 static rtx skip_copy_to_return_value PARAMS ((rtx));
37 static rtx skip_use_of_return_value PARAMS ((rtx, enum rtx_code));
38 static rtx skip_stack_adjustment PARAMS ((rtx));
39 static rtx skip_pic_restore PARAMS ((rtx));
40 static rtx skip_jump_insn PARAMS ((rtx));
41 static int call_ends_block_p PARAMS ((rtx, rtx));
42 static int uses_addressof PARAMS ((rtx));
43 static int sequence_uses_addressof PARAMS ((rtx));
44 static void purge_reg_equiv_notes PARAMS ((void));
45 static void purge_mem_unchanging_flag PARAMS ((rtx));
46 static rtx skip_unreturned_value PARAMS ((rtx));
47
48 /* Examine a CALL_PLACEHOLDER pattern and determine where the call's
49 return value is located. P_HARD_RETURN receives the hard register
50 that the function used; P_SOFT_RETURN receives the pseudo register
51 that the sequence used. Return non-zero if the values were located. */
52
53 static int
54 identify_call_return_value (cp, p_hard_return, p_soft_return)
55 rtx cp;
56 rtx *p_hard_return, *p_soft_return;
57 {
58 rtx insn, set, hard, soft;
59
60 insn = XEXP (cp, 0);
61 /* Search backward through the "normal" call sequence to the CALL insn. */
62 while (NEXT_INSN (insn))
63 insn = NEXT_INSN (insn);
64 while (GET_CODE (insn) != CALL_INSN)
65 insn = PREV_INSN (insn);
66
67 /* Assume the pattern is (set (dest) (call ...)), or that the first
68 member of a parallel is. This is the hard return register used
69 by the function. */
70 if (GET_CODE (PATTERN (insn)) == SET
71 && GET_CODE (SET_SRC (PATTERN (insn))) == CALL)
72 hard = SET_DEST (PATTERN (insn));
73 else if (GET_CODE (PATTERN (insn)) == PARALLEL
74 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
75 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == CALL)
76 hard = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
77 else
78 return 0;
79
80 /* If we didn't get a single hard register (e.g. a parallel), give up. */
81 if (GET_CODE (hard) != REG)
82 return 0;
83
84 /* Stack adjustment done after call may appear here. */
85 insn = skip_stack_adjustment (insn);
86 if (! insn)
87 return 0;
88
89 /* Restore of GP register may appear here. */
90 insn = skip_pic_restore (insn);
91 if (! insn)
92 return 0;
93
94 /* If there's nothing after, there's no soft return value. */
95 insn = NEXT_INSN (insn);
96 if (! insn)
97 return 0;
98
99 /* We're looking for a source of the hard return register. */
100 set = single_set (insn);
101 if (! set || SET_SRC (set) != hard)
102 return 0;
103
104 soft = SET_DEST (set);
105 insn = NEXT_INSN (insn);
106
107 /* Allow this first destination to be copied to a second register,
108 as might happen if the first register wasn't the particular pseudo
109 we'd been expecting. */
110 if (insn
111 && (set = single_set (insn)) != NULL_RTX
112 && SET_SRC (set) == soft)
113 {
114 soft = SET_DEST (set);
115 insn = NEXT_INSN (insn);
116 }
117
118 /* Don't fool with anything but pseudo registers. */
119 if (GET_CODE (soft) != REG || REGNO (soft) < FIRST_PSEUDO_REGISTER)
120 return 0;
121
122 /* This value must not be modified before the end of the sequence. */
123 if (reg_set_between_p (soft, insn, NULL_RTX))
124 return 0;
125
126 *p_hard_return = hard;
127 *p_soft_return = soft;
128
129 return 1;
130 }
131
132 /* If the first real insn after ORIG_INSN copies to this function's
133 return value from RETVAL, then return the insn which performs the
134 copy. Otherwise return ORIG_INSN. */
135
136 static rtx
137 skip_copy_to_return_value (orig_insn)
138 rtx orig_insn;
139 {
140 rtx insn, set = NULL_RTX;
141 rtx hardret, softret;
142
143 /* If there is no return value, we have nothing to do. */
144 if (! identify_call_return_value (PATTERN (orig_insn), &hardret, &softret))
145 return orig_insn;
146
147 insn = next_nonnote_insn (orig_insn);
148 if (! insn)
149 return orig_insn;
150
151 set = single_set (insn);
152 if (! set)
153 return orig_insn;
154
155 /* The destination must be the same as the called function's return
156 value to ensure that any return value is put in the same place by the
157 current function and the function we're calling.
158
159 Further, the source must be the same as the pseudo into which the
160 called function's return value was copied. Otherwise we're returning
161 some other value. */
162
163 #ifndef OUTGOING_REGNO
164 #define OUTGOING_REGNO(N) (N)
165 #endif
166
167 if (SET_DEST (set) == current_function_return_rtx
168 && REG_P (SET_DEST (set))
169 && OUTGOING_REGNO (REGNO (SET_DEST (set))) == REGNO (hardret)
170 && SET_SRC (set) == softret)
171 return insn;
172
173 /* Recognize the situation when the called function's return value
174 is copied in two steps: first into an intermediate pseudo, then
175 the into the calling functions return value register. */
176
177 if (REG_P (SET_DEST (set))
178 && SET_SRC (set) == softret)
179 {
180 rtx x = SET_DEST (set);
181
182 insn = next_nonnote_insn (insn);
183 if (! insn)
184 return orig_insn;
185
186 set = single_set (insn);
187 if (! set)
188 return orig_insn;
189
190 if (SET_DEST (set) == current_function_return_rtx
191 && REG_P (SET_DEST (set))
192 && OUTGOING_REGNO (REGNO (SET_DEST (set))) == REGNO (hardret)
193 && SET_SRC (set) == x)
194 return insn;
195 }
196
197 /* It did not look like a copy of the return value, so return the
198 same insn we were passed. */
199 return orig_insn;
200 }
201
202 /* If the first real insn after ORIG_INSN is a CODE of this function's return
203 value, return insn. Otherwise return ORIG_INSN. */
204
205 static rtx
206 skip_use_of_return_value (orig_insn, code)
207 rtx orig_insn;
208 enum rtx_code code;
209 {
210 rtx insn;
211
212 insn = next_nonnote_insn (orig_insn);
213
214 if (insn
215 && GET_CODE (insn) == INSN
216 && GET_CODE (PATTERN (insn)) == code
217 && (XEXP (PATTERN (insn), 0) == current_function_return_rtx
218 || XEXP (PATTERN (insn), 0) == const0_rtx))
219 return insn;
220
221 return orig_insn;
222 }
223
224 /* In case function does not return value, we get clobber of pseudo followed
225 by set to hard return value. */
226 static rtx
227 skip_unreturned_value (orig_insn)
228 rtx orig_insn;
229 {
230 rtx insn = next_nonnote_insn (orig_insn);
231
232 /* Skip possible clobber of pseudo return register. */
233 if (insn
234 && GET_CODE (insn) == INSN
235 && GET_CODE (PATTERN (insn)) == CLOBBER
236 && REG_P (XEXP (PATTERN (insn), 0))
237 && (REGNO (XEXP (PATTERN (insn), 0)) >= FIRST_PSEUDO_REGISTER))
238 {
239 rtx set_insn = next_nonnote_insn (insn);
240 rtx set;
241 if (!set_insn)
242 return insn;
243 set = single_set (set_insn);
244 if (!set
245 || SET_SRC (set) != XEXP (PATTERN (insn), 0)
246 || SET_DEST (set) != current_function_return_rtx)
247 return insn;
248 return set_insn;
249 }
250 return orig_insn;
251 }
252
253 /* If the first real insn after ORIG_INSN adjusts the stack pointer
254 by a constant, return the insn with the stack pointer adjustment.
255 Otherwise return ORIG_INSN. */
256
257 static rtx
258 skip_stack_adjustment (orig_insn)
259 rtx orig_insn;
260 {
261 rtx insn, set = NULL_RTX;
262
263 insn = next_nonnote_insn (orig_insn);
264
265 if (insn)
266 set = single_set (insn);
267
268 if (insn
269 && set
270 && GET_CODE (SET_SRC (set)) == PLUS
271 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
272 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
273 && SET_DEST (set) == stack_pointer_rtx)
274 return insn;
275
276 return orig_insn;
277 }
278
279 /* If the first real insn after ORIG_INSN sets the pic register,
280 return it. Otherwise return ORIG_INSN. */
281
282 static rtx
283 skip_pic_restore (orig_insn)
284 rtx orig_insn;
285 {
286 rtx insn, set = NULL_RTX;
287
288 insn = next_nonnote_insn (orig_insn);
289
290 if (insn)
291 set = single_set (insn);
292
293 if (insn && set && SET_DEST (set) == pic_offset_table_rtx)
294 return insn;
295
296 return orig_insn;
297 }
298
299 /* If the first real insn after ORIG_INSN is a jump, return the JUMP_INSN.
300 Otherwise return ORIG_INSN. */
301
302 static rtx
303 skip_jump_insn (orig_insn)
304 rtx orig_insn;
305 {
306 rtx insn;
307
308 insn = next_nonnote_insn (orig_insn);
309
310 if (insn
311 && GET_CODE (insn) == JUMP_INSN
312 && any_uncondjump_p (insn))
313 return insn;
314
315 return orig_insn;
316 }
317 \f
318 /* Using the above functions, see if INSN, skipping any of the above,
319 goes all the way to END, the end of a basic block. Return 1 if so. */
320
321 static int
322 call_ends_block_p (insn, end)
323 rtx insn;
324 rtx end;
325 {
326 /* END might be a note, so get the last nonnote insn of the block. */
327 end = next_nonnote_insn (PREV_INSN (end));
328
329 /* If the call was the end of the block, then we're OK. */
330 if (insn == end)
331 return 1;
332
333 /* Skip over copying from the call's return value pseudo into
334 this function's hard return register and if that's the end
335 of the block, we're OK. */
336 insn = skip_copy_to_return_value (insn);
337 if (insn == end)
338 return 1;
339
340 /* Skip any stack adjustment. */
341 insn = skip_stack_adjustment (insn);
342 if (insn == end)
343 return 1;
344
345 /* Skip over a CLOBBER of the return value as a hard reg. */
346 insn = skip_use_of_return_value (insn, CLOBBER);
347 if (insn == end)
348 return 1;
349
350 /* Skip over a CLOBBER of the return value as a hard reg. */
351 insn = skip_unreturned_value (insn);
352 if (insn == end)
353 return 1;
354
355 /* Skip over a USE of the return value (as a hard reg). */
356 insn = skip_use_of_return_value (insn, USE);
357 if (insn == end)
358 return 1;
359
360 /* Skip over a JUMP_INSN at the end of the block. If that doesn't end the
361 block, the original CALL_INSN didn't. */
362 insn = skip_jump_insn (insn);
363 return insn == end;
364 }
365
366 /* Scan the rtx X for ADDRESSOF expressions or
367 current_function_internal_arg_pointer registers.
368 Return nonzero if an ADDRESSOF or current_function_internal_arg_pointer
369 is found outside of some MEM expression, else return zero. */
370
371 static int
372 uses_addressof (x)
373 rtx x;
374 {
375 RTX_CODE code;
376 int i, j;
377 const char *fmt;
378
379 if (x == NULL_RTX)
380 return 0;
381
382 code = GET_CODE (x);
383
384 if (code == ADDRESSOF || x == current_function_internal_arg_pointer)
385 return 1;
386
387 if (code == MEM)
388 return 0;
389
390 /* Scan all subexpressions. */
391 fmt = GET_RTX_FORMAT (code);
392 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
393 {
394 if (*fmt == 'e')
395 {
396 if (uses_addressof (XEXP (x, i)))
397 return 1;
398 }
399 else if (*fmt == 'E')
400 {
401 for (j = 0; j < XVECLEN (x, i); j++)
402 if (uses_addressof (XVECEXP (x, i, j)))
403 return 1;
404 }
405 }
406 return 0;
407 }
408
409 /* Scan the sequence of insns in SEQ to see if any have an ADDRESSOF
410 rtl expression or current_function_internal_arg_pointer occurences
411 not enclosed within a MEM. If an ADDRESSOF expression or
412 current_function_internal_arg_pointer is found, return nonzero, otherwise
413 return zero.
414
415 This function handles CALL_PLACEHOLDERs which contain multiple sequences
416 of insns. */
417
418 static int
419 sequence_uses_addressof (seq)
420 rtx seq;
421 {
422 rtx insn;
423
424 for (insn = seq; insn; insn = NEXT_INSN (insn))
425 if (INSN_P (insn))
426 {
427 /* If this is a CALL_PLACEHOLDER, then recursively call ourselves
428 with each nonempty sequence attached to the CALL_PLACEHOLDER. */
429 if (GET_CODE (insn) == CALL_INSN
430 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
431 {
432 if (XEXP (PATTERN (insn), 0) != NULL_RTX
433 && sequence_uses_addressof (XEXP (PATTERN (insn), 0)))
434 return 1;
435 if (XEXP (PATTERN (insn), 1) != NULL_RTX
436 && sequence_uses_addressof (XEXP (PATTERN (insn), 1)))
437 return 1;
438 if (XEXP (PATTERN (insn), 2) != NULL_RTX
439 && sequence_uses_addressof (XEXP (PATTERN (insn), 2)))
440 return 1;
441 }
442 else if (uses_addressof (PATTERN (insn))
443 || (REG_NOTES (insn) && uses_addressof (REG_NOTES (insn))))
444 return 1;
445 }
446 return 0;
447 }
448
449 /* Remove all REG_EQUIV notes found in the insn chain. */
450
451 static void
452 purge_reg_equiv_notes ()
453 {
454 rtx insn;
455
456 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
457 {
458 while (1)
459 {
460 rtx note = find_reg_note (insn, REG_EQUIV, 0);
461 if (note)
462 {
463 /* Remove the note and keep looking at the notes for
464 this insn. */
465 remove_note (insn, note);
466 continue;
467 }
468 break;
469 }
470 }
471 }
472
473 /* Clear RTX_UNCHANGING_P flag of incoming argument MEMs. */
474
475 static void
476 purge_mem_unchanging_flag (x)
477 rtx x;
478 {
479 RTX_CODE code;
480 int i, j;
481 const char *fmt;
482
483 if (x == NULL_RTX)
484 return;
485
486 code = GET_CODE (x);
487
488 if (code == MEM)
489 {
490 if (RTX_UNCHANGING_P (x)
491 && (XEXP (x, 0) == current_function_internal_arg_pointer
492 || (GET_CODE (XEXP (x, 0)) == PLUS
493 && XEXP (XEXP (x, 0), 0) ==
494 current_function_internal_arg_pointer
495 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
496 RTX_UNCHANGING_P (x) = 0;
497 return;
498 }
499
500 /* Scan all subexpressions. */
501 fmt = GET_RTX_FORMAT (code);
502 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
503 {
504 if (*fmt == 'e')
505 purge_mem_unchanging_flag (XEXP (x, i));
506 else if (*fmt == 'E')
507 for (j = 0; j < XVECLEN (x, i); j++)
508 purge_mem_unchanging_flag (XVECEXP (x, i, j));
509 }
510 }
511
512 /* Replace the CALL_PLACEHOLDER with one of its children. INSN should be
513 the CALL_PLACEHOLDER insn; USE tells which child to use. */
514
515 void
516 replace_call_placeholder (insn, use)
517 rtx insn;
518 sibcall_use_t use;
519 {
520 if (use == sibcall_use_tail_recursion)
521 emit_insns_before (XEXP (PATTERN (insn), 2), insn);
522 else if (use == sibcall_use_sibcall)
523 emit_insns_before (XEXP (PATTERN (insn), 1), insn);
524 else if (use == sibcall_use_normal)
525 emit_insns_before (XEXP (PATTERN (insn), 0), insn);
526 else
527 abort();
528
529 /* Turn off LABEL_PRESERVE_P for the tail recursion label if it
530 exists. We only had to set it long enough to keep the jump
531 pass above from deleting it as unused. */
532 if (XEXP (PATTERN (insn), 3))
533 LABEL_PRESERVE_P (XEXP (PATTERN (insn), 3)) = 0;
534
535 /* "Delete" the placeholder insn. */
536 PUT_CODE (insn, NOTE);
537 NOTE_SOURCE_FILE (insn) = 0;
538 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
539 }
540
541 /* Given a (possibly empty) set of potential sibling or tail recursion call
542 sites, determine if optimization is possible.
543
544 Potential sibling or tail recursion calls are marked with CALL_PLACEHOLDER
545 insns. The CALL_PLACEHOLDER insn holds chains of insns to implement a
546 normal call, sibling call or tail recursive call.
547
548 Replace the CALL_PLACEHOLDER with an appropriate insn chain. */
549
550 void
551 optimize_sibling_and_tail_recursive_calls ()
552 {
553 rtx insn, insns;
554 basic_block alternate_exit = EXIT_BLOCK_PTR;
555 int current_function_uses_addressof;
556 int successful_sibling_call = 0;
557 int replaced_call_placeholder = 0;
558 edge e;
559
560 insns = get_insns ();
561
562 /* We do not perform these calls when flag_exceptions is true, so this
563 is probably a NOP at the current time. However, we may want to support
564 sibling and tail recursion optimizations in the future, so let's plan
565 ahead and find all the EH labels. */
566 find_exception_handler_labels ();
567
568 /* Run a jump optimization pass to clean up the CFG. We primarily want
569 this to thread jumps so that it is obvious which blocks jump to the
570 epilouge. */
571 jump_optimize_minimal (insns);
572
573 /* We need cfg information to determine which blocks are succeeded
574 only by the epilogue. */
575 find_basic_blocks (insns, max_reg_num (), 0);
576 cleanup_cfg ();
577
578 /* If there are no basic blocks, then there is nothing to do. */
579 if (n_basic_blocks == 0)
580 return;
581
582 /* Find the exit block.
583
584 It is possible that we have blocks which can reach the exit block
585 directly. However, most of the time a block will jump (or fall into)
586 N_BASIC_BLOCKS - 1, which in turn falls into the exit block. */
587 for (e = EXIT_BLOCK_PTR->pred;
588 e && alternate_exit == EXIT_BLOCK_PTR;
589 e = e->pred_next)
590 {
591 rtx insn;
592
593 if (e->dest != EXIT_BLOCK_PTR || e->succ_next != NULL)
594 continue;
595
596 /* Walk forwards through the last normal block and see if it
597 does nothing except fall into the exit block. */
598 for (insn = BLOCK_HEAD (n_basic_blocks - 1);
599 insn;
600 insn = NEXT_INSN (insn))
601 {
602 /* This should only happen once, at the start of this block. */
603 if (GET_CODE (insn) == CODE_LABEL)
604 continue;
605
606 if (GET_CODE (insn) == NOTE)
607 continue;
608
609 if (GET_CODE (insn) == INSN
610 && GET_CODE (PATTERN (insn)) == USE)
611 continue;
612
613 break;
614 }
615
616 /* If INSN is zero, then the search walked all the way through the
617 block without hitting anything interesting. This block is a
618 valid alternate exit block. */
619 if (insn == NULL)
620 alternate_exit = e->src;
621 }
622
623 /* If the function uses ADDRESSOF, we can't (easily) determine
624 at this point if the value will end up on the stack. */
625 current_function_uses_addressof = sequence_uses_addressof (insns);
626
627 /* Walk the insn chain and find any CALL_PLACEHOLDER insns. We need to
628 select one of the insn sequences attached to each CALL_PLACEHOLDER.
629
630 The different sequences represent different ways to implement the call,
631 ie, tail recursion, sibling call or normal call.
632
633 Since we do not create nested CALL_PLACEHOLDERs, the scan
634 continues with the insn that was after a replaced CALL_PLACEHOLDER;
635 we don't rescan the replacement insns. */
636 for (insn = insns; insn; insn = NEXT_INSN (insn))
637 {
638 if (GET_CODE (insn) == CALL_INSN
639 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
640 {
641 int sibcall = (XEXP (PATTERN (insn), 1) != NULL_RTX);
642 int tailrecursion = (XEXP (PATTERN (insn), 2) != NULL_RTX);
643 basic_block call_block = BLOCK_FOR_INSN (insn);
644
645 /* alloca (until we have stack slot life analysis) inhibits
646 sibling call optimizations, but not tail recursion.
647 Similarly if we use varargs or stdarg since they implicitly
648 may take the address of an argument. */
649 if (current_function_calls_alloca
650 || current_function_varargs || current_function_stdarg)
651 sibcall = 0;
652
653 /* See if there are any reasons we can't perform either sibling or
654 tail call optimizations. We must be careful with stack slots
655 which are live at potential optimization sites. ??? The first
656 test is overly conservative and should be replaced. */
657 if (frame_offset
658 /* Can't take address of local var if used by recursive call. */
659 || current_function_uses_addressof
660 /* Any function that calls setjmp might have longjmp called from
661 any called function. ??? We really should represent this
662 properly in the CFG so that this needn't be special cased. */
663 || current_function_calls_setjmp
664 /* Can't if more than one successor or single successor is not
665 exit block. These two tests prevent tail call optimization
666 in the presense of active exception handlers. */
667 || call_block->succ == NULL
668 || call_block->succ->succ_next != NULL
669 || (call_block->succ->dest != EXIT_BLOCK_PTR
670 && call_block->succ->dest != alternate_exit)
671 /* If this call doesn't end the block, there are operations at
672 the end of the block which we must execute after returning. */
673 || ! call_ends_block_p (insn, call_block->end))
674 sibcall = 0, tailrecursion = 0;
675
676 /* Select a set of insns to implement the call and emit them.
677 Tail recursion is the most efficient, so select it over
678 a tail/sibling call. */
679 if (sibcall)
680 successful_sibling_call = 1;
681
682 replaced_call_placeholder = 1;
683 replace_call_placeholder (insn,
684 tailrecursion != 0
685 ? sibcall_use_tail_recursion
686 : sibcall != 0
687 ? sibcall_use_sibcall
688 : sibcall_use_normal);
689 }
690 }
691
692 if (successful_sibling_call)
693 {
694 rtx insn;
695
696 /* A sibling call sequence invalidates any REG_EQUIV notes made for
697 this function's incoming arguments.
698
699 At the start of RTL generation we know the only REG_EQUIV notes
700 in the rtl chain are those for incoming arguments, so we can safely
701 flush any REG_EQUIV note.
702
703 This is (slight) overkill. We could keep track of the highest
704 argument we clobber and be more selective in removing notes, but it
705 does not seem to be worth the effort. */
706 purge_reg_equiv_notes ();
707
708 /* A sibling call sequence also may invalidate RTX_UNCHANGING_P
709 flag of some incoming arguments MEM RTLs, because it can write into
710 those slots. We clear all those bits now.
711
712 This is (slight) overkill, we could keep track of which arguments
713 we actually write into. */
714 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
715 {
716 if (GET_CODE (insn) == NOTE)
717 {
718 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
719 break;
720 }
721 else if (INSN_P (insn))
722 purge_mem_unchanging_flag (PATTERN (insn));
723 }
724 }
725
726 /* There may have been NOTE_INSN_BLOCK_{BEGIN,END} notes in the
727 CALL_PLACEHOLDER alternatives that we didn't emit. Rebuild the
728 lexical block tree to correspond to the notes that still exist. */
729 if (replaced_call_placeholder)
730 reorder_blocks ();
731
732 /* This information will be invalid after inline expansion. Kill it now. */
733 free_basic_block_vars (0);
734 }