simplify-rtx.c (simplify_unary_operation): When simplifying (neg (lt X 0)) into ...
[gcc.git] / gcc / simplify-rtx.c
1 /* RTL simplification functions for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "target.h"
42
43 /* Simplification and canonicalization of RTL. */
44
45 /* Much code operates on (low, high) pairs; the low value is an
46 unsigned wide int, the high value a signed wide int. We
47 occasionally need to sign extend from low to high as if low were a
48 signed wide int. */
49 #define HWI_SIGN_EXTEND(low) \
50 ((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
51
52 static rtx neg_const_int (enum machine_mode, rtx);
53 static bool plus_minus_operand_p (rtx);
54 static int simplify_plus_minus_op_data_cmp (const void *, const void *);
55 static rtx simplify_plus_minus (enum rtx_code, enum machine_mode, rtx, rtx);
56 static rtx simplify_immed_subreg (enum machine_mode, rtx, enum machine_mode,
57 unsigned int);
58 static rtx simplify_associative_operation (enum rtx_code, enum machine_mode,
59 rtx, rtx);
60 static rtx simplify_relational_operation_1 (enum rtx_code, enum machine_mode,
61 enum machine_mode, rtx, rtx);
62 static rtx simplify_unary_operation_1 (enum rtx_code, enum machine_mode, rtx);
63 static rtx simplify_binary_operation_1 (enum rtx_code, enum machine_mode,
64 rtx, rtx, rtx, rtx);
65 \f
66 /* Negate a CONST_INT rtx, truncating (because a conversion from a
67 maximally negative number can overflow). */
68 static rtx
69 neg_const_int (enum machine_mode mode, rtx i)
70 {
71 return gen_int_mode (- INTVAL (i), mode);
72 }
73
74 /* Test whether expression, X, is an immediate constant that represents
75 the most significant bit of machine mode MODE. */
76
77 bool
78 mode_signbit_p (enum machine_mode mode, rtx x)
79 {
80 unsigned HOST_WIDE_INT val;
81 unsigned int width;
82
83 if (GET_MODE_CLASS (mode) != MODE_INT)
84 return false;
85
86 width = GET_MODE_BITSIZE (mode);
87 if (width == 0)
88 return false;
89
90 if (width <= HOST_BITS_PER_WIDE_INT
91 && GET_CODE (x) == CONST_INT)
92 val = INTVAL (x);
93 else if (width <= 2 * HOST_BITS_PER_WIDE_INT
94 && GET_CODE (x) == CONST_DOUBLE
95 && CONST_DOUBLE_LOW (x) == 0)
96 {
97 val = CONST_DOUBLE_HIGH (x);
98 width -= HOST_BITS_PER_WIDE_INT;
99 }
100 else
101 return false;
102
103 if (width < HOST_BITS_PER_WIDE_INT)
104 val &= ((unsigned HOST_WIDE_INT) 1 << width) - 1;
105 return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
106 }
107 \f
108 /* Make a binary operation by properly ordering the operands and
109 seeing if the expression folds. */
110
111 rtx
112 simplify_gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0,
113 rtx op1)
114 {
115 rtx tem;
116
117 /* If this simplifies, do it. */
118 tem = simplify_binary_operation (code, mode, op0, op1);
119 if (tem)
120 return tem;
121
122 /* Put complex operands first and constants second if commutative. */
123 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
124 && swap_commutative_operands_p (op0, op1))
125 tem = op0, op0 = op1, op1 = tem;
126
127 return gen_rtx_fmt_ee (code, mode, op0, op1);
128 }
129 \f
130 /* If X is a MEM referencing the constant pool, return the real value.
131 Otherwise return X. */
132 rtx
133 avoid_constant_pool_reference (rtx x)
134 {
135 rtx c, tmp, addr;
136 enum machine_mode cmode;
137 HOST_WIDE_INT offset = 0;
138
139 switch (GET_CODE (x))
140 {
141 case MEM:
142 break;
143
144 case FLOAT_EXTEND:
145 /* Handle float extensions of constant pool references. */
146 tmp = XEXP (x, 0);
147 c = avoid_constant_pool_reference (tmp);
148 if (c != tmp && GET_CODE (c) == CONST_DOUBLE)
149 {
150 REAL_VALUE_TYPE d;
151
152 REAL_VALUE_FROM_CONST_DOUBLE (d, c);
153 return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x));
154 }
155 return x;
156
157 default:
158 return x;
159 }
160
161 addr = XEXP (x, 0);
162
163 /* Call target hook to avoid the effects of -fpic etc.... */
164 addr = targetm.delegitimize_address (addr);
165
166 /* Split the address into a base and integer offset. */
167 if (GET_CODE (addr) == CONST
168 && GET_CODE (XEXP (addr, 0)) == PLUS
169 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
170 {
171 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
172 addr = XEXP (XEXP (addr, 0), 0);
173 }
174
175 if (GET_CODE (addr) == LO_SUM)
176 addr = XEXP (addr, 1);
177
178 /* If this is a constant pool reference, we can turn it into its
179 constant and hope that simplifications happen. */
180 if (GET_CODE (addr) == SYMBOL_REF
181 && CONSTANT_POOL_ADDRESS_P (addr))
182 {
183 c = get_pool_constant (addr);
184 cmode = get_pool_mode (addr);
185
186 /* If we're accessing the constant in a different mode than it was
187 originally stored, attempt to fix that up via subreg simplifications.
188 If that fails we have no choice but to return the original memory. */
189 if (offset != 0 || cmode != GET_MODE (x))
190 {
191 rtx tem = simplify_subreg (GET_MODE (x), c, cmode, offset);
192 if (tem && CONSTANT_P (tem))
193 return tem;
194 }
195 else
196 return c;
197 }
198
199 return x;
200 }
201
202 /* Return true if X is a MEM referencing the constant pool. */
203
204 bool
205 constant_pool_reference_p (rtx x)
206 {
207 return avoid_constant_pool_reference (x) != x;
208 }
209 \f
210 /* Make a unary operation by first seeing if it folds and otherwise making
211 the specified operation. */
212
213 rtx
214 simplify_gen_unary (enum rtx_code code, enum machine_mode mode, rtx op,
215 enum machine_mode op_mode)
216 {
217 rtx tem;
218
219 /* If this simplifies, use it. */
220 if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
221 return tem;
222
223 return gen_rtx_fmt_e (code, mode, op);
224 }
225
226 /* Likewise for ternary operations. */
227
228 rtx
229 simplify_gen_ternary (enum rtx_code code, enum machine_mode mode,
230 enum machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
231 {
232 rtx tem;
233
234 /* If this simplifies, use it. */
235 if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
236 op0, op1, op2)))
237 return tem;
238
239 return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
240 }
241
242 /* Likewise, for relational operations.
243 CMP_MODE specifies mode comparison is done in. */
244
245 rtx
246 simplify_gen_relational (enum rtx_code code, enum machine_mode mode,
247 enum machine_mode cmp_mode, rtx op0, rtx op1)
248 {
249 rtx tem;
250
251 if (0 != (tem = simplify_relational_operation (code, mode, cmp_mode,
252 op0, op1)))
253 return tem;
254
255 return gen_rtx_fmt_ee (code, mode, op0, op1);
256 }
257 \f
258 /* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
259 resulting RTX. Return a new RTX which is as simplified as possible. */
260
261 rtx
262 simplify_replace_rtx (rtx x, rtx old_rtx, rtx new_rtx)
263 {
264 enum rtx_code code = GET_CODE (x);
265 enum machine_mode mode = GET_MODE (x);
266 enum machine_mode op_mode;
267 rtx op0, op1, op2;
268
269 /* If X is OLD_RTX, return NEW_RTX. Otherwise, if this is an expression, try
270 to build a new expression substituting recursively. If we can't do
271 anything, return our input. */
272
273 if (x == old_rtx)
274 return new_rtx;
275
276 switch (GET_RTX_CLASS (code))
277 {
278 case RTX_UNARY:
279 op0 = XEXP (x, 0);
280 op_mode = GET_MODE (op0);
281 op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
282 if (op0 == XEXP (x, 0))
283 return x;
284 return simplify_gen_unary (code, mode, op0, op_mode);
285
286 case RTX_BIN_ARITH:
287 case RTX_COMM_ARITH:
288 op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
289 op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
290 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
291 return x;
292 return simplify_gen_binary (code, mode, op0, op1);
293
294 case RTX_COMPARE:
295 case RTX_COMM_COMPARE:
296 op0 = XEXP (x, 0);
297 op1 = XEXP (x, 1);
298 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
299 op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
300 op1 = simplify_replace_rtx (op1, old_rtx, new_rtx);
301 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
302 return x;
303 return simplify_gen_relational (code, mode, op_mode, op0, op1);
304
305 case RTX_TERNARY:
306 case RTX_BITFIELD_OPS:
307 op0 = XEXP (x, 0);
308 op_mode = GET_MODE (op0);
309 op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
310 op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
311 op2 = simplify_replace_rtx (XEXP (x, 2), old_rtx, new_rtx);
312 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
313 return x;
314 if (op_mode == VOIDmode)
315 op_mode = GET_MODE (op0);
316 return simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
317
318 case RTX_EXTRA:
319 /* The only case we try to handle is a SUBREG. */
320 if (code == SUBREG)
321 {
322 op0 = simplify_replace_rtx (SUBREG_REG (x), old_rtx, new_rtx);
323 if (op0 == SUBREG_REG (x))
324 return x;
325 op0 = simplify_gen_subreg (GET_MODE (x), op0,
326 GET_MODE (SUBREG_REG (x)),
327 SUBREG_BYTE (x));
328 return op0 ? op0 : x;
329 }
330 break;
331
332 case RTX_OBJ:
333 if (code == MEM)
334 {
335 op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
336 if (op0 == XEXP (x, 0))
337 return x;
338 return replace_equiv_address_nv (x, op0);
339 }
340 else if (code == LO_SUM)
341 {
342 op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
343 op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
344
345 /* (lo_sum (high x) x) -> x */
346 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
347 return op1;
348
349 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
350 return x;
351 return gen_rtx_LO_SUM (mode, op0, op1);
352 }
353 else if (code == REG)
354 {
355 if (rtx_equal_p (x, old_rtx))
356 return new_rtx;
357 }
358 break;
359
360 default:
361 break;
362 }
363 return x;
364 }
365 \f
366 /* Try to simplify a unary operation CODE whose output mode is to be
367 MODE with input operand OP whose mode was originally OP_MODE.
368 Return zero if no simplification can be made. */
369 rtx
370 simplify_unary_operation (enum rtx_code code, enum machine_mode mode,
371 rtx op, enum machine_mode op_mode)
372 {
373 rtx trueop, tem;
374
375 if (GET_CODE (op) == CONST)
376 op = XEXP (op, 0);
377
378 trueop = avoid_constant_pool_reference (op);
379
380 tem = simplify_const_unary_operation (code, mode, trueop, op_mode);
381 if (tem)
382 return tem;
383
384 return simplify_unary_operation_1 (code, mode, op);
385 }
386
387 /* Perform some simplifications we can do even if the operands
388 aren't constant. */
389 static rtx
390 simplify_unary_operation_1 (enum rtx_code code, enum machine_mode mode, rtx op)
391 {
392 enum rtx_code reversed;
393 rtx temp;
394
395 switch (code)
396 {
397 case NOT:
398 /* (not (not X)) == X. */
399 if (GET_CODE (op) == NOT)
400 return XEXP (op, 0);
401
402 /* (not (eq X Y)) == (ne X Y), etc. if BImode or the result of the
403 comparison is all ones. */
404 if (COMPARISON_P (op)
405 && (mode == BImode || STORE_FLAG_VALUE == -1)
406 && ((reversed = reversed_comparison_code (op, NULL_RTX)) != UNKNOWN))
407 return simplify_gen_relational (reversed, mode, VOIDmode,
408 XEXP (op, 0), XEXP (op, 1));
409
410 /* (not (plus X -1)) can become (neg X). */
411 if (GET_CODE (op) == PLUS
412 && XEXP (op, 1) == constm1_rtx)
413 return simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
414
415 /* Similarly, (not (neg X)) is (plus X -1). */
416 if (GET_CODE (op) == NEG)
417 return plus_constant (XEXP (op, 0), -1);
418
419 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
420 if (GET_CODE (op) == XOR
421 && GET_CODE (XEXP (op, 1)) == CONST_INT
422 && (temp = simplify_unary_operation (NOT, mode,
423 XEXP (op, 1), mode)) != 0)
424 return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
425
426 /* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
427 if (GET_CODE (op) == PLUS
428 && GET_CODE (XEXP (op, 1)) == CONST_INT
429 && mode_signbit_p (mode, XEXP (op, 1))
430 && (temp = simplify_unary_operation (NOT, mode,
431 XEXP (op, 1), mode)) != 0)
432 return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
433
434
435 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
436 operands other than 1, but that is not valid. We could do a
437 similar simplification for (not (lshiftrt C X)) where C is
438 just the sign bit, but this doesn't seem common enough to
439 bother with. */
440 if (GET_CODE (op) == ASHIFT
441 && XEXP (op, 0) == const1_rtx)
442 {
443 temp = simplify_gen_unary (NOT, mode, const1_rtx, mode);
444 return simplify_gen_binary (ROTATE, mode, temp, XEXP (op, 1));
445 }
446
447 /* (not (ashiftrt foo C)) where C is the number of bits in FOO
448 minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
449 so we can perform the above simplification. */
450
451 if (STORE_FLAG_VALUE == -1
452 && GET_CODE (op) == ASHIFTRT
453 && GET_CODE (XEXP (op, 1)) == CONST_INT
454 && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
455 return simplify_gen_relational (GE, mode, VOIDmode,
456 XEXP (op, 0), const0_rtx);
457
458
459 if (GET_CODE (op) == SUBREG
460 && subreg_lowpart_p (op)
461 && (GET_MODE_SIZE (GET_MODE (op))
462 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
463 && GET_CODE (SUBREG_REG (op)) == ASHIFT
464 && XEXP (SUBREG_REG (op), 0) == const1_rtx)
465 {
466 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op));
467 rtx x;
468
469 x = gen_rtx_ROTATE (inner_mode,
470 simplify_gen_unary (NOT, inner_mode, const1_rtx,
471 inner_mode),
472 XEXP (SUBREG_REG (op), 1));
473 return rtl_hooks.gen_lowpart_no_emit (mode, x);
474 }
475
476 /* Apply De Morgan's laws to reduce number of patterns for machines
477 with negating logical insns (and-not, nand, etc.). If result has
478 only one NOT, put it first, since that is how the patterns are
479 coded. */
480
481 if (GET_CODE (op) == IOR || GET_CODE (op) == AND)
482 {
483 rtx in1 = XEXP (op, 0), in2 = XEXP (op, 1);
484 enum machine_mode op_mode;
485
486 op_mode = GET_MODE (in1);
487 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
488
489 op_mode = GET_MODE (in2);
490 if (op_mode == VOIDmode)
491 op_mode = mode;
492 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
493
494 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
495 {
496 rtx tem = in2;
497 in2 = in1; in1 = tem;
498 }
499
500 return gen_rtx_fmt_ee (GET_CODE (op) == IOR ? AND : IOR,
501 mode, in1, in2);
502 }
503 break;
504
505 case NEG:
506 /* (neg (neg X)) == X. */
507 if (GET_CODE (op) == NEG)
508 return XEXP (op, 0);
509
510 /* (neg (plus X 1)) can become (not X). */
511 if (GET_CODE (op) == PLUS
512 && XEXP (op, 1) == const1_rtx)
513 return simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
514
515 /* Similarly, (neg (not X)) is (plus X 1). */
516 if (GET_CODE (op) == NOT)
517 return plus_constant (XEXP (op, 0), 1);
518
519 /* (neg (minus X Y)) can become (minus Y X). This transformation
520 isn't safe for modes with signed zeros, since if X and Y are
521 both +0, (minus Y X) is the same as (minus X Y). If the
522 rounding mode is towards +infinity (or -infinity) then the two
523 expressions will be rounded differently. */
524 if (GET_CODE (op) == MINUS
525 && !HONOR_SIGNED_ZEROS (mode)
526 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
527 return simplify_gen_binary (MINUS, mode, XEXP (op, 1), XEXP (op, 0));
528
529 if (GET_CODE (op) == PLUS
530 && !HONOR_SIGNED_ZEROS (mode)
531 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
532 {
533 /* (neg (plus A C)) is simplified to (minus -C A). */
534 if (GET_CODE (XEXP (op, 1)) == CONST_INT
535 || GET_CODE (XEXP (op, 1)) == CONST_DOUBLE)
536 {
537 temp = simplify_unary_operation (NEG, mode, XEXP (op, 1), mode);
538 if (temp)
539 return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 0));
540 }
541
542 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
543 temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
544 return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 1));
545 }
546
547 /* (neg (mult A B)) becomes (mult (neg A) B).
548 This works even for floating-point values. */
549 if (GET_CODE (op) == MULT
550 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
551 {
552 temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
553 return simplify_gen_binary (MULT, mode, temp, XEXP (op, 1));
554 }
555
556 /* NEG commutes with ASHIFT since it is multiplication. Only do
557 this if we can then eliminate the NEG (e.g., if the operand
558 is a constant). */
559 if (GET_CODE (op) == ASHIFT)
560 {
561 temp = simplify_unary_operation (NEG, mode, XEXP (op, 0), mode);
562 if (temp)
563 return simplify_gen_binary (ASHIFT, mode, temp, XEXP (op, 1));
564 }
565
566 /* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
567 C is equal to the width of MODE minus 1. */
568 if (GET_CODE (op) == ASHIFTRT
569 && GET_CODE (XEXP (op, 1)) == CONST_INT
570 && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
571 return simplify_gen_binary (LSHIFTRT, mode,
572 XEXP (op, 0), XEXP (op, 1));
573
574 /* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
575 C is equal to the width of MODE minus 1. */
576 if (GET_CODE (op) == LSHIFTRT
577 && GET_CODE (XEXP (op, 1)) == CONST_INT
578 && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
579 return simplify_gen_binary (ASHIFTRT, mode,
580 XEXP (op, 0), XEXP (op, 1));
581
582 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
583 if (GET_CODE (op) == XOR
584 && XEXP (op, 1) == const1_rtx
585 && nonzero_bits (XEXP (op, 0), mode) == 1)
586 return plus_constant (XEXP (op, 0), -1);
587
588 /* (neg (lt x 0)) is (ashiftrt X C) if STORE_FLAG_VALUE is 1. */
589 /* (neg (lt x 0)) is (lshiftrt X C) if STORE_FLAG_VALUE is -1. */
590 if (GET_CODE (op) == LT
591 && XEXP (op, 1) == const0_rtx)
592 {
593 enum machine_mode inner = GET_MODE (XEXP (op, 0));
594 int isize = GET_MODE_BITSIZE (inner);
595 if (STORE_FLAG_VALUE == 1)
596 {
597 temp = simplify_gen_binary (ASHIFTRT, inner, XEXP (op, 0),
598 GEN_INT (isize - 1));
599 if (mode == inner)
600 return temp;
601 if (GET_MODE_BITSIZE (mode) > isize)
602 return simplify_gen_unary (SIGN_EXTEND, mode, temp, inner);
603 return simplify_gen_unary (TRUNCATE, mode, temp, inner);
604 }
605 else if (STORE_FLAG_VALUE == -1)
606 {
607 temp = simplify_gen_binary (LSHIFTRT, inner, XEXP (op, 0),
608 GEN_INT (isize - 1));
609 if (mode == inner)
610 return temp;
611 if (GET_MODE_BITSIZE (mode) > isize)
612 return simplify_gen_unary (ZERO_EXTEND, mode, temp, inner);
613 return simplify_gen_unary (TRUNCATE, mode, temp, inner);
614 }
615 }
616 break;
617
618 case TRUNCATE:
619 /* We can't handle truncation to a partial integer mode here
620 because we don't know the real bitsize of the partial
621 integer mode. */
622 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
623 break;
624
625 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
626 if ((GET_CODE (op) == SIGN_EXTEND
627 || GET_CODE (op) == ZERO_EXTEND)
628 && GET_MODE (XEXP (op, 0)) == mode)
629 return XEXP (op, 0);
630
631 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
632 (OP:SI foo:SI) if OP is NEG or ABS. */
633 if ((GET_CODE (op) == ABS
634 || GET_CODE (op) == NEG)
635 && (GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
636 || GET_CODE (XEXP (op, 0)) == ZERO_EXTEND)
637 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
638 return simplify_gen_unary (GET_CODE (op), mode,
639 XEXP (XEXP (op, 0), 0), mode);
640
641 /* (truncate:A (subreg:B (truncate:C X) 0)) is
642 (truncate:A X). */
643 if (GET_CODE (op) == SUBREG
644 && GET_CODE (SUBREG_REG (op)) == TRUNCATE
645 && subreg_lowpart_p (op))
646 return simplify_gen_unary (TRUNCATE, mode, XEXP (SUBREG_REG (op), 0),
647 GET_MODE (XEXP (SUBREG_REG (op), 0)));
648
649 /* If we know that the value is already truncated, we can
650 replace the TRUNCATE with a SUBREG. Note that this is also
651 valid if TRULY_NOOP_TRUNCATION is false for the corresponding
652 modes we just have to apply a different definition for
653 truncation. But don't do this for an (LSHIFTRT (MULT ...))
654 since this will cause problems with the umulXi3_highpart
655 patterns. */
656 if ((TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
657 GET_MODE_BITSIZE (GET_MODE (op)))
658 ? (num_sign_bit_copies (op, GET_MODE (op))
659 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1))
660 : truncated_to_mode (mode, op))
661 && ! (GET_CODE (op) == LSHIFTRT
662 && GET_CODE (XEXP (op, 0)) == MULT))
663 return rtl_hooks.gen_lowpart_no_emit (mode, op);
664
665 /* A truncate of a comparison can be replaced with a subreg if
666 STORE_FLAG_VALUE permits. This is like the previous test,
667 but it works even if the comparison is done in a mode larger
668 than HOST_BITS_PER_WIDE_INT. */
669 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
670 && COMPARISON_P (op)
671 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
672 return rtl_hooks.gen_lowpart_no_emit (mode, op);
673 break;
674
675 case FLOAT_TRUNCATE:
676 if (DECIMAL_FLOAT_MODE_P (mode))
677 break;
678
679 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
680 if (GET_CODE (op) == FLOAT_EXTEND
681 && GET_MODE (XEXP (op, 0)) == mode)
682 return XEXP (op, 0);
683
684 /* (float_truncate:SF (float_truncate:DF foo:XF))
685 = (float_truncate:SF foo:XF).
686 This may eliminate double rounding, so it is unsafe.
687
688 (float_truncate:SF (float_extend:XF foo:DF))
689 = (float_truncate:SF foo:DF).
690
691 (float_truncate:DF (float_extend:XF foo:SF))
692 = (float_extend:SF foo:DF). */
693 if ((GET_CODE (op) == FLOAT_TRUNCATE
694 && flag_unsafe_math_optimizations)
695 || GET_CODE (op) == FLOAT_EXTEND)
696 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (op,
697 0)))
698 > GET_MODE_SIZE (mode)
699 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
700 mode,
701 XEXP (op, 0), mode);
702
703 /* (float_truncate (float x)) is (float x) */
704 if (GET_CODE (op) == FLOAT
705 && (flag_unsafe_math_optimizations
706 || ((unsigned)significand_size (GET_MODE (op))
707 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0)))
708 - num_sign_bit_copies (XEXP (op, 0),
709 GET_MODE (XEXP (op, 0)))))))
710 return simplify_gen_unary (FLOAT, mode,
711 XEXP (op, 0),
712 GET_MODE (XEXP (op, 0)));
713
714 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
715 (OP:SF foo:SF) if OP is NEG or ABS. */
716 if ((GET_CODE (op) == ABS
717 || GET_CODE (op) == NEG)
718 && GET_CODE (XEXP (op, 0)) == FLOAT_EXTEND
719 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
720 return simplify_gen_unary (GET_CODE (op), mode,
721 XEXP (XEXP (op, 0), 0), mode);
722
723 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
724 is (float_truncate:SF x). */
725 if (GET_CODE (op) == SUBREG
726 && subreg_lowpart_p (op)
727 && GET_CODE (SUBREG_REG (op)) == FLOAT_TRUNCATE)
728 return SUBREG_REG (op);
729 break;
730
731 case FLOAT_EXTEND:
732 if (DECIMAL_FLOAT_MODE_P (mode))
733 break;
734
735 /* (float_extend (float_extend x)) is (float_extend x)
736
737 (float_extend (float x)) is (float x) assuming that double
738 rounding can't happen.
739 */
740 if (GET_CODE (op) == FLOAT_EXTEND
741 || (GET_CODE (op) == FLOAT
742 && ((unsigned)significand_size (GET_MODE (op))
743 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0)))
744 - num_sign_bit_copies (XEXP (op, 0),
745 GET_MODE (XEXP (op, 0)))))))
746 return simplify_gen_unary (GET_CODE (op), mode,
747 XEXP (op, 0),
748 GET_MODE (XEXP (op, 0)));
749
750 break;
751
752 case ABS:
753 /* (abs (neg <foo>)) -> (abs <foo>) */
754 if (GET_CODE (op) == NEG)
755 return simplify_gen_unary (ABS, mode, XEXP (op, 0),
756 GET_MODE (XEXP (op, 0)));
757
758 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
759 do nothing. */
760 if (GET_MODE (op) == VOIDmode)
761 break;
762
763 /* If operand is something known to be positive, ignore the ABS. */
764 if (GET_CODE (op) == FFS || GET_CODE (op) == ABS
765 || ((GET_MODE_BITSIZE (GET_MODE (op))
766 <= HOST_BITS_PER_WIDE_INT)
767 && ((nonzero_bits (op, GET_MODE (op))
768 & ((HOST_WIDE_INT) 1
769 << (GET_MODE_BITSIZE (GET_MODE (op)) - 1)))
770 == 0)))
771 return op;
772
773 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
774 if (num_sign_bit_copies (op, mode) == GET_MODE_BITSIZE (mode))
775 return gen_rtx_NEG (mode, op);
776
777 break;
778
779 case FFS:
780 /* (ffs (*_extend <X>)) = (ffs <X>) */
781 if (GET_CODE (op) == SIGN_EXTEND
782 || GET_CODE (op) == ZERO_EXTEND)
783 return simplify_gen_unary (FFS, mode, XEXP (op, 0),
784 GET_MODE (XEXP (op, 0)));
785 break;
786
787 case POPCOUNT:
788 case PARITY:
789 /* (pop* (zero_extend <X>)) = (pop* <X>) */
790 if (GET_CODE (op) == ZERO_EXTEND)
791 return simplify_gen_unary (code, mode, XEXP (op, 0),
792 GET_MODE (XEXP (op, 0)));
793 break;
794
795 case FLOAT:
796 /* (float (sign_extend <X>)) = (float <X>). */
797 if (GET_CODE (op) == SIGN_EXTEND)
798 return simplify_gen_unary (FLOAT, mode, XEXP (op, 0),
799 GET_MODE (XEXP (op, 0)));
800 break;
801
802 case SIGN_EXTEND:
803 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
804 becomes just the MINUS if its mode is MODE. This allows
805 folding switch statements on machines using casesi (such as
806 the VAX). */
807 if (GET_CODE (op) == TRUNCATE
808 && GET_MODE (XEXP (op, 0)) == mode
809 && GET_CODE (XEXP (op, 0)) == MINUS
810 && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
811 && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
812 return XEXP (op, 0);
813
814 /* Check for a sign extension of a subreg of a promoted
815 variable, where the promotion is sign-extended, and the
816 target mode is the same as the variable's promotion. */
817 if (GET_CODE (op) == SUBREG
818 && SUBREG_PROMOTED_VAR_P (op)
819 && ! SUBREG_PROMOTED_UNSIGNED_P (op)
820 && GET_MODE (XEXP (op, 0)) == mode)
821 return XEXP (op, 0);
822
823 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
824 if (! POINTERS_EXTEND_UNSIGNED
825 && mode == Pmode && GET_MODE (op) == ptr_mode
826 && (CONSTANT_P (op)
827 || (GET_CODE (op) == SUBREG
828 && REG_P (SUBREG_REG (op))
829 && REG_POINTER (SUBREG_REG (op))
830 && GET_MODE (SUBREG_REG (op)) == Pmode)))
831 return convert_memory_address (Pmode, op);
832 #endif
833 break;
834
835 case ZERO_EXTEND:
836 /* Check for a zero extension of a subreg of a promoted
837 variable, where the promotion is zero-extended, and the
838 target mode is the same as the variable's promotion. */
839 if (GET_CODE (op) == SUBREG
840 && SUBREG_PROMOTED_VAR_P (op)
841 && SUBREG_PROMOTED_UNSIGNED_P (op) > 0
842 && GET_MODE (XEXP (op, 0)) == mode)
843 return XEXP (op, 0);
844
845 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
846 if (POINTERS_EXTEND_UNSIGNED > 0
847 && mode == Pmode && GET_MODE (op) == ptr_mode
848 && (CONSTANT_P (op)
849 || (GET_CODE (op) == SUBREG
850 && REG_P (SUBREG_REG (op))
851 && REG_POINTER (SUBREG_REG (op))
852 && GET_MODE (SUBREG_REG (op)) == Pmode)))
853 return convert_memory_address (Pmode, op);
854 #endif
855 break;
856
857 default:
858 break;
859 }
860
861 return 0;
862 }
863
864 /* Try to compute the value of a unary operation CODE whose output mode is to
865 be MODE with input operand OP whose mode was originally OP_MODE.
866 Return zero if the value cannot be computed. */
867 rtx
868 simplify_const_unary_operation (enum rtx_code code, enum machine_mode mode,
869 rtx op, enum machine_mode op_mode)
870 {
871 unsigned int width = GET_MODE_BITSIZE (mode);
872
873 if (code == VEC_DUPLICATE)
874 {
875 gcc_assert (VECTOR_MODE_P (mode));
876 if (GET_MODE (op) != VOIDmode)
877 {
878 if (!VECTOR_MODE_P (GET_MODE (op)))
879 gcc_assert (GET_MODE_INNER (mode) == GET_MODE (op));
880 else
881 gcc_assert (GET_MODE_INNER (mode) == GET_MODE_INNER
882 (GET_MODE (op)));
883 }
884 if (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
885 || GET_CODE (op) == CONST_VECTOR)
886 {
887 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
888 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
889 rtvec v = rtvec_alloc (n_elts);
890 unsigned int i;
891
892 if (GET_CODE (op) != CONST_VECTOR)
893 for (i = 0; i < n_elts; i++)
894 RTVEC_ELT (v, i) = op;
895 else
896 {
897 enum machine_mode inmode = GET_MODE (op);
898 int in_elt_size = GET_MODE_SIZE (GET_MODE_INNER (inmode));
899 unsigned in_n_elts = (GET_MODE_SIZE (inmode) / in_elt_size);
900
901 gcc_assert (in_n_elts < n_elts);
902 gcc_assert ((n_elts % in_n_elts) == 0);
903 for (i = 0; i < n_elts; i++)
904 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (op, i % in_n_elts);
905 }
906 return gen_rtx_CONST_VECTOR (mode, v);
907 }
908 }
909
910 if (VECTOR_MODE_P (mode) && GET_CODE (op) == CONST_VECTOR)
911 {
912 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
913 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
914 enum machine_mode opmode = GET_MODE (op);
915 int op_elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
916 unsigned op_n_elts = (GET_MODE_SIZE (opmode) / op_elt_size);
917 rtvec v = rtvec_alloc (n_elts);
918 unsigned int i;
919
920 gcc_assert (op_n_elts == n_elts);
921 for (i = 0; i < n_elts; i++)
922 {
923 rtx x = simplify_unary_operation (code, GET_MODE_INNER (mode),
924 CONST_VECTOR_ELT (op, i),
925 GET_MODE_INNER (opmode));
926 if (!x)
927 return 0;
928 RTVEC_ELT (v, i) = x;
929 }
930 return gen_rtx_CONST_VECTOR (mode, v);
931 }
932
933 /* The order of these tests is critical so that, for example, we don't
934 check the wrong mode (input vs. output) for a conversion operation,
935 such as FIX. At some point, this should be simplified. */
936
937 if (code == FLOAT && GET_MODE (op) == VOIDmode
938 && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
939 {
940 HOST_WIDE_INT hv, lv;
941 REAL_VALUE_TYPE d;
942
943 if (GET_CODE (op) == CONST_INT)
944 lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
945 else
946 lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
947
948 REAL_VALUE_FROM_INT (d, lv, hv, mode);
949 d = real_value_truncate (mode, d);
950 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
951 }
952 else if (code == UNSIGNED_FLOAT && GET_MODE (op) == VOIDmode
953 && (GET_CODE (op) == CONST_DOUBLE
954 || GET_CODE (op) == CONST_INT))
955 {
956 HOST_WIDE_INT hv, lv;
957 REAL_VALUE_TYPE d;
958
959 if (GET_CODE (op) == CONST_INT)
960 lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
961 else
962 lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
963
964 if (op_mode == VOIDmode)
965 {
966 /* We don't know how to interpret negative-looking numbers in
967 this case, so don't try to fold those. */
968 if (hv < 0)
969 return 0;
970 }
971 else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
972 ;
973 else
974 hv = 0, lv &= GET_MODE_MASK (op_mode);
975
976 REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
977 d = real_value_truncate (mode, d);
978 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
979 }
980
981 if (GET_CODE (op) == CONST_INT
982 && width <= HOST_BITS_PER_WIDE_INT && width > 0)
983 {
984 HOST_WIDE_INT arg0 = INTVAL (op);
985 HOST_WIDE_INT val;
986
987 switch (code)
988 {
989 case NOT:
990 val = ~ arg0;
991 break;
992
993 case NEG:
994 val = - arg0;
995 break;
996
997 case ABS:
998 val = (arg0 >= 0 ? arg0 : - arg0);
999 break;
1000
1001 case FFS:
1002 /* Don't use ffs here. Instead, get low order bit and then its
1003 number. If arg0 is zero, this will return 0, as desired. */
1004 arg0 &= GET_MODE_MASK (mode);
1005 val = exact_log2 (arg0 & (- arg0)) + 1;
1006 break;
1007
1008 case CLZ:
1009 arg0 &= GET_MODE_MASK (mode);
1010 if (arg0 == 0 && CLZ_DEFINED_VALUE_AT_ZERO (mode, val))
1011 ;
1012 else
1013 val = GET_MODE_BITSIZE (mode) - floor_log2 (arg0) - 1;
1014 break;
1015
1016 case CTZ:
1017 arg0 &= GET_MODE_MASK (mode);
1018 if (arg0 == 0)
1019 {
1020 /* Even if the value at zero is undefined, we have to come
1021 up with some replacement. Seems good enough. */
1022 if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, val))
1023 val = GET_MODE_BITSIZE (mode);
1024 }
1025 else
1026 val = exact_log2 (arg0 & -arg0);
1027 break;
1028
1029 case POPCOUNT:
1030 arg0 &= GET_MODE_MASK (mode);
1031 val = 0;
1032 while (arg0)
1033 val++, arg0 &= arg0 - 1;
1034 break;
1035
1036 case PARITY:
1037 arg0 &= GET_MODE_MASK (mode);
1038 val = 0;
1039 while (arg0)
1040 val++, arg0 &= arg0 - 1;
1041 val &= 1;
1042 break;
1043
1044 case TRUNCATE:
1045 val = arg0;
1046 break;
1047
1048 case ZERO_EXTEND:
1049 /* When zero-extending a CONST_INT, we need to know its
1050 original mode. */
1051 gcc_assert (op_mode != VOIDmode);
1052 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
1053 {
1054 /* If we were really extending the mode,
1055 we would have to distinguish between zero-extension
1056 and sign-extension. */
1057 gcc_assert (width == GET_MODE_BITSIZE (op_mode));
1058 val = arg0;
1059 }
1060 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
1061 val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
1062 else
1063 return 0;
1064 break;
1065
1066 case SIGN_EXTEND:
1067 if (op_mode == VOIDmode)
1068 op_mode = mode;
1069 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
1070 {
1071 /* If we were really extending the mode,
1072 we would have to distinguish between zero-extension
1073 and sign-extension. */
1074 gcc_assert (width == GET_MODE_BITSIZE (op_mode));
1075 val = arg0;
1076 }
1077 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
1078 {
1079 val
1080 = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
1081 if (val
1082 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
1083 val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
1084 }
1085 else
1086 return 0;
1087 break;
1088
1089 case SQRT:
1090 case FLOAT_EXTEND:
1091 case FLOAT_TRUNCATE:
1092 case SS_TRUNCATE:
1093 case US_TRUNCATE:
1094 return 0;
1095
1096 default:
1097 gcc_unreachable ();
1098 }
1099
1100 return gen_int_mode (val, mode);
1101 }
1102
1103 /* We can do some operations on integer CONST_DOUBLEs. Also allow
1104 for a DImode operation on a CONST_INT. */
1105 else if (GET_MODE (op) == VOIDmode
1106 && width <= HOST_BITS_PER_WIDE_INT * 2
1107 && (GET_CODE (op) == CONST_DOUBLE
1108 || GET_CODE (op) == CONST_INT))
1109 {
1110 unsigned HOST_WIDE_INT l1, lv;
1111 HOST_WIDE_INT h1, hv;
1112
1113 if (GET_CODE (op) == CONST_DOUBLE)
1114 l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
1115 else
1116 l1 = INTVAL (op), h1 = HWI_SIGN_EXTEND (l1);
1117
1118 switch (code)
1119 {
1120 case NOT:
1121 lv = ~ l1;
1122 hv = ~ h1;
1123 break;
1124
1125 case NEG:
1126 neg_double (l1, h1, &lv, &hv);
1127 break;
1128
1129 case ABS:
1130 if (h1 < 0)
1131 neg_double (l1, h1, &lv, &hv);
1132 else
1133 lv = l1, hv = h1;
1134 break;
1135
1136 case FFS:
1137 hv = 0;
1138 if (l1 == 0)
1139 {
1140 if (h1 == 0)
1141 lv = 0;
1142 else
1143 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1) + 1;
1144 }
1145 else
1146 lv = exact_log2 (l1 & -l1) + 1;
1147 break;
1148
1149 case CLZ:
1150 hv = 0;
1151 if (h1 != 0)
1152 lv = GET_MODE_BITSIZE (mode) - floor_log2 (h1) - 1
1153 - HOST_BITS_PER_WIDE_INT;
1154 else if (l1 != 0)
1155 lv = GET_MODE_BITSIZE (mode) - floor_log2 (l1) - 1;
1156 else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode, lv))
1157 lv = GET_MODE_BITSIZE (mode);
1158 break;
1159
1160 case CTZ:
1161 hv = 0;
1162 if (l1 != 0)
1163 lv = exact_log2 (l1 & -l1);
1164 else if (h1 != 0)
1165 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1);
1166 else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, lv))
1167 lv = GET_MODE_BITSIZE (mode);
1168 break;
1169
1170 case POPCOUNT:
1171 hv = 0;
1172 lv = 0;
1173 while (l1)
1174 lv++, l1 &= l1 - 1;
1175 while (h1)
1176 lv++, h1 &= h1 - 1;
1177 break;
1178
1179 case PARITY:
1180 hv = 0;
1181 lv = 0;
1182 while (l1)
1183 lv++, l1 &= l1 - 1;
1184 while (h1)
1185 lv++, h1 &= h1 - 1;
1186 lv &= 1;
1187 break;
1188
1189 case TRUNCATE:
1190 /* This is just a change-of-mode, so do nothing. */
1191 lv = l1, hv = h1;
1192 break;
1193
1194 case ZERO_EXTEND:
1195 gcc_assert (op_mode != VOIDmode);
1196
1197 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
1198 return 0;
1199
1200 hv = 0;
1201 lv = l1 & GET_MODE_MASK (op_mode);
1202 break;
1203
1204 case SIGN_EXTEND:
1205 if (op_mode == VOIDmode
1206 || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
1207 return 0;
1208 else
1209 {
1210 lv = l1 & GET_MODE_MASK (op_mode);
1211 if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
1212 && (lv & ((HOST_WIDE_INT) 1
1213 << (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
1214 lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
1215
1216 hv = HWI_SIGN_EXTEND (lv);
1217 }
1218 break;
1219
1220 case SQRT:
1221 return 0;
1222
1223 default:
1224 return 0;
1225 }
1226
1227 return immed_double_const (lv, hv, mode);
1228 }
1229
1230 else if (GET_CODE (op) == CONST_DOUBLE
1231 && SCALAR_FLOAT_MODE_P (mode))
1232 {
1233 REAL_VALUE_TYPE d, t;
1234 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1235
1236 switch (code)
1237 {
1238 case SQRT:
1239 if (HONOR_SNANS (mode) && real_isnan (&d))
1240 return 0;
1241 real_sqrt (&t, mode, &d);
1242 d = t;
1243 break;
1244 case ABS:
1245 d = REAL_VALUE_ABS (d);
1246 break;
1247 case NEG:
1248 d = REAL_VALUE_NEGATE (d);
1249 break;
1250 case FLOAT_TRUNCATE:
1251 d = real_value_truncate (mode, d);
1252 break;
1253 case FLOAT_EXTEND:
1254 /* All this does is change the mode. */
1255 break;
1256 case FIX:
1257 real_arithmetic (&d, FIX_TRUNC_EXPR, &d, NULL);
1258 break;
1259 case NOT:
1260 {
1261 long tmp[4];
1262 int i;
1263
1264 real_to_target (tmp, &d, GET_MODE (op));
1265 for (i = 0; i < 4; i++)
1266 tmp[i] = ~tmp[i];
1267 real_from_target (&d, tmp, mode);
1268 break;
1269 }
1270 default:
1271 gcc_unreachable ();
1272 }
1273 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
1274 }
1275
1276 else if (GET_CODE (op) == CONST_DOUBLE
1277 && SCALAR_FLOAT_MODE_P (GET_MODE (op))
1278 && GET_MODE_CLASS (mode) == MODE_INT
1279 && width <= 2*HOST_BITS_PER_WIDE_INT && width > 0)
1280 {
1281 /* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
1282 operators are intentionally left unspecified (to ease implementation
1283 by target backends), for consistency, this routine implements the
1284 same semantics for constant folding as used by the middle-end. */
1285
1286 /* This was formerly used only for non-IEEE float.
1287 eggert@twinsun.com says it is safe for IEEE also. */
1288 HOST_WIDE_INT xh, xl, th, tl;
1289 REAL_VALUE_TYPE x, t;
1290 REAL_VALUE_FROM_CONST_DOUBLE (x, op);
1291 switch (code)
1292 {
1293 case FIX:
1294 if (REAL_VALUE_ISNAN (x))
1295 return const0_rtx;
1296
1297 /* Test against the signed upper bound. */
1298 if (width > HOST_BITS_PER_WIDE_INT)
1299 {
1300 th = ((unsigned HOST_WIDE_INT) 1
1301 << (width - HOST_BITS_PER_WIDE_INT - 1)) - 1;
1302 tl = -1;
1303 }
1304 else
1305 {
1306 th = 0;
1307 tl = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
1308 }
1309 real_from_integer (&t, VOIDmode, tl, th, 0);
1310 if (REAL_VALUES_LESS (t, x))
1311 {
1312 xh = th;
1313 xl = tl;
1314 break;
1315 }
1316
1317 /* Test against the signed lower bound. */
1318 if (width > HOST_BITS_PER_WIDE_INT)
1319 {
1320 th = (HOST_WIDE_INT) -1 << (width - HOST_BITS_PER_WIDE_INT - 1);
1321 tl = 0;
1322 }
1323 else
1324 {
1325 th = -1;
1326 tl = (HOST_WIDE_INT) -1 << (width - 1);
1327 }
1328 real_from_integer (&t, VOIDmode, tl, th, 0);
1329 if (REAL_VALUES_LESS (x, t))
1330 {
1331 xh = th;
1332 xl = tl;
1333 break;
1334 }
1335 REAL_VALUE_TO_INT (&xl, &xh, x);
1336 break;
1337
1338 case UNSIGNED_FIX:
1339 if (REAL_VALUE_ISNAN (x) || REAL_VALUE_NEGATIVE (x))
1340 return const0_rtx;
1341
1342 /* Test against the unsigned upper bound. */
1343 if (width == 2*HOST_BITS_PER_WIDE_INT)
1344 {
1345 th = -1;
1346 tl = -1;
1347 }
1348 else if (width >= HOST_BITS_PER_WIDE_INT)
1349 {
1350 th = ((unsigned HOST_WIDE_INT) 1
1351 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
1352 tl = -1;
1353 }
1354 else
1355 {
1356 th = 0;
1357 tl = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
1358 }
1359 real_from_integer (&t, VOIDmode, tl, th, 1);
1360 if (REAL_VALUES_LESS (t, x))
1361 {
1362 xh = th;
1363 xl = tl;
1364 break;
1365 }
1366
1367 REAL_VALUE_TO_INT (&xl, &xh, x);
1368 break;
1369
1370 default:
1371 gcc_unreachable ();
1372 }
1373 return immed_double_const (xl, xh, mode);
1374 }
1375
1376 return NULL_RTX;
1377 }
1378 \f
1379 /* Subroutine of simplify_binary_operation to simplify a commutative,
1380 associative binary operation CODE with result mode MODE, operating
1381 on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
1382 SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
1383 canonicalization is possible. */
1384
1385 static rtx
1386 simplify_associative_operation (enum rtx_code code, enum machine_mode mode,
1387 rtx op0, rtx op1)
1388 {
1389 rtx tem;
1390
1391 /* Linearize the operator to the left. */
1392 if (GET_CODE (op1) == code)
1393 {
1394 /* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
1395 if (GET_CODE (op0) == code)
1396 {
1397 tem = simplify_gen_binary (code, mode, op0, XEXP (op1, 0));
1398 return simplify_gen_binary (code, mode, tem, XEXP (op1, 1));
1399 }
1400
1401 /* "a op (b op c)" becomes "(b op c) op a". */
1402 if (! swap_commutative_operands_p (op1, op0))
1403 return simplify_gen_binary (code, mode, op1, op0);
1404
1405 tem = op0;
1406 op0 = op1;
1407 op1 = tem;
1408 }
1409
1410 if (GET_CODE (op0) == code)
1411 {
1412 /* Canonicalize "(x op c) op y" as "(x op y) op c". */
1413 if (swap_commutative_operands_p (XEXP (op0, 1), op1))
1414 {
1415 tem = simplify_gen_binary (code, mode, XEXP (op0, 0), op1);
1416 return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
1417 }
1418
1419 /* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
1420 tem = swap_commutative_operands_p (XEXP (op0, 1), op1)
1421 ? simplify_binary_operation (code, mode, op1, XEXP (op0, 1))
1422 : simplify_binary_operation (code, mode, XEXP (op0, 1), op1);
1423 if (tem != 0)
1424 return simplify_gen_binary (code, mode, XEXP (op0, 0), tem);
1425
1426 /* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
1427 tem = swap_commutative_operands_p (XEXP (op0, 0), op1)
1428 ? simplify_binary_operation (code, mode, op1, XEXP (op0, 0))
1429 : simplify_binary_operation (code, mode, XEXP (op0, 0), op1);
1430 if (tem != 0)
1431 return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
1432 }
1433
1434 return 0;
1435 }
1436
1437
1438 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
1439 and OP1. Return 0 if no simplification is possible.
1440
1441 Don't use this for relational operations such as EQ or LT.
1442 Use simplify_relational_operation instead. */
1443 rtx
1444 simplify_binary_operation (enum rtx_code code, enum machine_mode mode,
1445 rtx op0, rtx op1)
1446 {
1447 rtx trueop0, trueop1;
1448 rtx tem;
1449
1450 /* Relational operations don't work here. We must know the mode
1451 of the operands in order to do the comparison correctly.
1452 Assuming a full word can give incorrect results.
1453 Consider comparing 128 with -128 in QImode. */
1454 gcc_assert (GET_RTX_CLASS (code) != RTX_COMPARE);
1455 gcc_assert (GET_RTX_CLASS (code) != RTX_COMM_COMPARE);
1456
1457 /* Make sure the constant is second. */
1458 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
1459 && swap_commutative_operands_p (op0, op1))
1460 {
1461 tem = op0, op0 = op1, op1 = tem;
1462 }
1463
1464 trueop0 = avoid_constant_pool_reference (op0);
1465 trueop1 = avoid_constant_pool_reference (op1);
1466
1467 tem = simplify_const_binary_operation (code, mode, trueop0, trueop1);
1468 if (tem)
1469 return tem;
1470 return simplify_binary_operation_1 (code, mode, op0, op1, trueop0, trueop1);
1471 }
1472
1473 static rtx
1474 simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
1475 rtx op0, rtx op1, rtx trueop0, rtx trueop1)
1476 {
1477 rtx tem, reversed, opleft, opright;
1478 HOST_WIDE_INT val;
1479 unsigned int width = GET_MODE_BITSIZE (mode);
1480
1481 /* Even if we can't compute a constant result,
1482 there are some cases worth simplifying. */
1483
1484 switch (code)
1485 {
1486 case PLUS:
1487 /* Maybe simplify x + 0 to x. The two expressions are equivalent
1488 when x is NaN, infinite, or finite and nonzero. They aren't
1489 when x is -0 and the rounding mode is not towards -infinity,
1490 since (-0) + 0 is then 0. */
1491 if (!HONOR_SIGNED_ZEROS (mode) && trueop1 == CONST0_RTX (mode))
1492 return op0;
1493
1494 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
1495 transformations are safe even for IEEE. */
1496 if (GET_CODE (op0) == NEG)
1497 return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
1498 else if (GET_CODE (op1) == NEG)
1499 return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
1500
1501 /* (~a) + 1 -> -a */
1502 if (INTEGRAL_MODE_P (mode)
1503 && GET_CODE (op0) == NOT
1504 && trueop1 == const1_rtx)
1505 return simplify_gen_unary (NEG, mode, XEXP (op0, 0), mode);
1506
1507 /* Handle both-operands-constant cases. We can only add
1508 CONST_INTs to constants since the sum of relocatable symbols
1509 can't be handled by most assemblers. Don't add CONST_INT
1510 to CONST_INT since overflow won't be computed properly if wider
1511 than HOST_BITS_PER_WIDE_INT. */
1512
1513 if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
1514 && GET_CODE (op1) == CONST_INT)
1515 return plus_constant (op0, INTVAL (op1));
1516 else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
1517 && GET_CODE (op0) == CONST_INT)
1518 return plus_constant (op1, INTVAL (op0));
1519
1520 /* See if this is something like X * C - X or vice versa or
1521 if the multiplication is written as a shift. If so, we can
1522 distribute and make a new multiply, shift, or maybe just
1523 have X (if C is 2 in the example above). But don't make
1524 something more expensive than we had before. */
1525
1526 if (SCALAR_INT_MODE_P (mode))
1527 {
1528 HOST_WIDE_INT coeff0h = 0, coeff1h = 0;
1529 unsigned HOST_WIDE_INT coeff0l = 1, coeff1l = 1;
1530 rtx lhs = op0, rhs = op1;
1531
1532 if (GET_CODE (lhs) == NEG)
1533 {
1534 coeff0l = -1;
1535 coeff0h = -1;
1536 lhs = XEXP (lhs, 0);
1537 }
1538 else if (GET_CODE (lhs) == MULT
1539 && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
1540 {
1541 coeff0l = INTVAL (XEXP (lhs, 1));
1542 coeff0h = INTVAL (XEXP (lhs, 1)) < 0 ? -1 : 0;
1543 lhs = XEXP (lhs, 0);
1544 }
1545 else if (GET_CODE (lhs) == ASHIFT
1546 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
1547 && INTVAL (XEXP (lhs, 1)) >= 0
1548 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
1549 {
1550 coeff0l = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
1551 coeff0h = 0;
1552 lhs = XEXP (lhs, 0);
1553 }
1554
1555 if (GET_CODE (rhs) == NEG)
1556 {
1557 coeff1l = -1;
1558 coeff1h = -1;
1559 rhs = XEXP (rhs, 0);
1560 }
1561 else if (GET_CODE (rhs) == MULT
1562 && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
1563 {
1564 coeff1l = INTVAL (XEXP (rhs, 1));
1565 coeff1h = INTVAL (XEXP (rhs, 1)) < 0 ? -1 : 0;
1566 rhs = XEXP (rhs, 0);
1567 }
1568 else if (GET_CODE (rhs) == ASHIFT
1569 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
1570 && INTVAL (XEXP (rhs, 1)) >= 0
1571 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
1572 {
1573 coeff1l = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
1574 coeff1h = 0;
1575 rhs = XEXP (rhs, 0);
1576 }
1577
1578 if (rtx_equal_p (lhs, rhs))
1579 {
1580 rtx orig = gen_rtx_PLUS (mode, op0, op1);
1581 rtx coeff;
1582 unsigned HOST_WIDE_INT l;
1583 HOST_WIDE_INT h;
1584
1585 add_double (coeff0l, coeff0h, coeff1l, coeff1h, &l, &h);
1586 coeff = immed_double_const (l, h, mode);
1587
1588 tem = simplify_gen_binary (MULT, mode, lhs, coeff);
1589 return rtx_cost (tem, SET) <= rtx_cost (orig, SET)
1590 ? tem : 0;
1591 }
1592 }
1593
1594 /* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
1595 if ((GET_CODE (op1) == CONST_INT
1596 || GET_CODE (op1) == CONST_DOUBLE)
1597 && GET_CODE (op0) == XOR
1598 && (GET_CODE (XEXP (op0, 1)) == CONST_INT
1599 || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
1600 && mode_signbit_p (mode, op1))
1601 return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
1602 simplify_gen_binary (XOR, mode, op1,
1603 XEXP (op0, 1)));
1604
1605 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)). */
1606 if (GET_CODE (op0) == MULT
1607 && GET_CODE (XEXP (op0, 0)) == NEG)
1608 {
1609 rtx in1, in2;
1610
1611 in1 = XEXP (XEXP (op0, 0), 0);
1612 in2 = XEXP (op0, 1);
1613 return simplify_gen_binary (MINUS, mode, op1,
1614 simplify_gen_binary (MULT, mode,
1615 in1, in2));
1616 }
1617
1618 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
1619 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
1620 is 1. */
1621 if (COMPARISON_P (op0)
1622 && ((STORE_FLAG_VALUE == -1 && trueop1 == const1_rtx)
1623 || (STORE_FLAG_VALUE == 1 && trueop1 == constm1_rtx))
1624 && (reversed = reversed_comparison (op0, mode)))
1625 return
1626 simplify_gen_unary (NEG, mode, reversed, mode);
1627
1628 /* If one of the operands is a PLUS or a MINUS, see if we can
1629 simplify this by the associative law.
1630 Don't use the associative law for floating point.
1631 The inaccuracy makes it nonassociative,
1632 and subtle programs can break if operations are associated. */
1633
1634 if (INTEGRAL_MODE_P (mode)
1635 && (plus_minus_operand_p (op0)
1636 || plus_minus_operand_p (op1))
1637 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
1638 return tem;
1639
1640 /* Reassociate floating point addition only when the user
1641 specifies unsafe math optimizations. */
1642 if (FLOAT_MODE_P (mode)
1643 && flag_unsafe_math_optimizations)
1644 {
1645 tem = simplify_associative_operation (code, mode, op0, op1);
1646 if (tem)
1647 return tem;
1648 }
1649 break;
1650
1651 case COMPARE:
1652 #ifdef HAVE_cc0
1653 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
1654 using cc0, in which case we want to leave it as a COMPARE
1655 so we can distinguish it from a register-register-copy.
1656
1657 In IEEE floating point, x-0 is not the same as x. */
1658
1659 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
1660 || ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
1661 && trueop1 == CONST0_RTX (mode))
1662 return op0;
1663 #endif
1664
1665 /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
1666 if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
1667 || (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
1668 && XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
1669 {
1670 rtx xop00 = XEXP (op0, 0);
1671 rtx xop10 = XEXP (op1, 0);
1672
1673 #ifdef HAVE_cc0
1674 if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
1675 #else
1676 if (REG_P (xop00) && REG_P (xop10)
1677 && GET_MODE (xop00) == GET_MODE (xop10)
1678 && REGNO (xop00) == REGNO (xop10)
1679 && GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
1680 && GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
1681 #endif
1682 return xop00;
1683 }
1684 break;
1685
1686 case MINUS:
1687 /* We can't assume x-x is 0 even with non-IEEE floating point,
1688 but since it is zero except in very strange circumstances, we
1689 will treat it as zero with -funsafe-math-optimizations. */
1690 if (rtx_equal_p (trueop0, trueop1)
1691 && ! side_effects_p (op0)
1692 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations))
1693 return CONST0_RTX (mode);
1694
1695 /* Change subtraction from zero into negation. (0 - x) is the
1696 same as -x when x is NaN, infinite, or finite and nonzero.
1697 But if the mode has signed zeros, and does not round towards
1698 -infinity, then 0 - 0 is 0, not -0. */
1699 if (!HONOR_SIGNED_ZEROS (mode) && trueop0 == CONST0_RTX (mode))
1700 return simplify_gen_unary (NEG, mode, op1, mode);
1701
1702 /* (-1 - a) is ~a. */
1703 if (trueop0 == constm1_rtx)
1704 return simplify_gen_unary (NOT, mode, op1, mode);
1705
1706 /* Subtracting 0 has no effect unless the mode has signed zeros
1707 and supports rounding towards -infinity. In such a case,
1708 0 - 0 is -0. */
1709 if (!(HONOR_SIGNED_ZEROS (mode)
1710 && HONOR_SIGN_DEPENDENT_ROUNDING (mode))
1711 && trueop1 == CONST0_RTX (mode))
1712 return op0;
1713
1714 /* See if this is something like X * C - X or vice versa or
1715 if the multiplication is written as a shift. If so, we can
1716 distribute and make a new multiply, shift, or maybe just
1717 have X (if C is 2 in the example above). But don't make
1718 something more expensive than we had before. */
1719
1720 if (SCALAR_INT_MODE_P (mode))
1721 {
1722 HOST_WIDE_INT coeff0h = 0, negcoeff1h = -1;
1723 unsigned HOST_WIDE_INT coeff0l = 1, negcoeff1l = -1;
1724 rtx lhs = op0, rhs = op1;
1725
1726 if (GET_CODE (lhs) == NEG)
1727 {
1728 coeff0l = -1;
1729 coeff0h = -1;
1730 lhs = XEXP (lhs, 0);
1731 }
1732 else if (GET_CODE (lhs) == MULT
1733 && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
1734 {
1735 coeff0l = INTVAL (XEXP (lhs, 1));
1736 coeff0h = INTVAL (XEXP (lhs, 1)) < 0 ? -1 : 0;
1737 lhs = XEXP (lhs, 0);
1738 }
1739 else if (GET_CODE (lhs) == ASHIFT
1740 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
1741 && INTVAL (XEXP (lhs, 1)) >= 0
1742 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
1743 {
1744 coeff0l = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
1745 coeff0h = 0;
1746 lhs = XEXP (lhs, 0);
1747 }
1748
1749 if (GET_CODE (rhs) == NEG)
1750 {
1751 negcoeff1l = 1;
1752 negcoeff1h = 0;
1753 rhs = XEXP (rhs, 0);
1754 }
1755 else if (GET_CODE (rhs) == MULT
1756 && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
1757 {
1758 negcoeff1l = -INTVAL (XEXP (rhs, 1));
1759 negcoeff1h = INTVAL (XEXP (rhs, 1)) <= 0 ? 0 : -1;
1760 rhs = XEXP (rhs, 0);
1761 }
1762 else if (GET_CODE (rhs) == ASHIFT
1763 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
1764 && INTVAL (XEXP (rhs, 1)) >= 0
1765 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
1766 {
1767 negcoeff1l = -(((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1)));
1768 negcoeff1h = -1;
1769 rhs = XEXP (rhs, 0);
1770 }
1771
1772 if (rtx_equal_p (lhs, rhs))
1773 {
1774 rtx orig = gen_rtx_MINUS (mode, op0, op1);
1775 rtx coeff;
1776 unsigned HOST_WIDE_INT l;
1777 HOST_WIDE_INT h;
1778
1779 add_double (coeff0l, coeff0h, negcoeff1l, negcoeff1h, &l, &h);
1780 coeff = immed_double_const (l, h, mode);
1781
1782 tem = simplify_gen_binary (MULT, mode, lhs, coeff);
1783 return rtx_cost (tem, SET) <= rtx_cost (orig, SET)
1784 ? tem : 0;
1785 }
1786 }
1787
1788 /* (a - (-b)) -> (a + b). True even for IEEE. */
1789 if (GET_CODE (op1) == NEG)
1790 return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
1791
1792 /* (-x - c) may be simplified as (-c - x). */
1793 if (GET_CODE (op0) == NEG
1794 && (GET_CODE (op1) == CONST_INT
1795 || GET_CODE (op1) == CONST_DOUBLE))
1796 {
1797 tem = simplify_unary_operation (NEG, mode, op1, mode);
1798 if (tem)
1799 return simplify_gen_binary (MINUS, mode, tem, XEXP (op0, 0));
1800 }
1801
1802 /* Don't let a relocatable value get a negative coeff. */
1803 if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
1804 return simplify_gen_binary (PLUS, mode,
1805 op0,
1806 neg_const_int (mode, op1));
1807
1808 /* (x - (x & y)) -> (x & ~y) */
1809 if (GET_CODE (op1) == AND)
1810 {
1811 if (rtx_equal_p (op0, XEXP (op1, 0)))
1812 {
1813 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 1),
1814 GET_MODE (XEXP (op1, 1)));
1815 return simplify_gen_binary (AND, mode, op0, tem);
1816 }
1817 if (rtx_equal_p (op0, XEXP (op1, 1)))
1818 {
1819 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 0),
1820 GET_MODE (XEXP (op1, 0)));
1821 return simplify_gen_binary (AND, mode, op0, tem);
1822 }
1823 }
1824
1825 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
1826 by reversing the comparison code if valid. */
1827 if (STORE_FLAG_VALUE == 1
1828 && trueop0 == const1_rtx
1829 && COMPARISON_P (op1)
1830 && (reversed = reversed_comparison (op1, mode)))
1831 return reversed;
1832
1833 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A). */
1834 if (GET_CODE (op1) == MULT
1835 && GET_CODE (XEXP (op1, 0)) == NEG)
1836 {
1837 rtx in1, in2;
1838
1839 in1 = XEXP (XEXP (op1, 0), 0);
1840 in2 = XEXP (op1, 1);
1841 return simplify_gen_binary (PLUS, mode,
1842 simplify_gen_binary (MULT, mode,
1843 in1, in2),
1844 op0);
1845 }
1846
1847 /* Canonicalize (minus (neg A) (mult B C)) to
1848 (minus (mult (neg B) C) A). */
1849 if (GET_CODE (op1) == MULT
1850 && GET_CODE (op0) == NEG)
1851 {
1852 rtx in1, in2;
1853
1854 in1 = simplify_gen_unary (NEG, mode, XEXP (op1, 0), mode);
1855 in2 = XEXP (op1, 1);
1856 return simplify_gen_binary (MINUS, mode,
1857 simplify_gen_binary (MULT, mode,
1858 in1, in2),
1859 XEXP (op0, 0));
1860 }
1861
1862 /* If one of the operands is a PLUS or a MINUS, see if we can
1863 simplify this by the associative law. This will, for example,
1864 canonicalize (minus A (plus B C)) to (minus (minus A B) C).
1865 Don't use the associative law for floating point.
1866 The inaccuracy makes it nonassociative,
1867 and subtle programs can break if operations are associated. */
1868
1869 if (INTEGRAL_MODE_P (mode)
1870 && (plus_minus_operand_p (op0)
1871 || plus_minus_operand_p (op1))
1872 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
1873 return tem;
1874 break;
1875
1876 case MULT:
1877 if (trueop1 == constm1_rtx)
1878 return simplify_gen_unary (NEG, mode, op0, mode);
1879
1880 /* Maybe simplify x * 0 to 0. The reduction is not valid if
1881 x is NaN, since x * 0 is then also NaN. Nor is it valid
1882 when the mode has signed zeros, since multiplying a negative
1883 number by 0 will give -0, not 0. */
1884 if (!HONOR_NANS (mode)
1885 && !HONOR_SIGNED_ZEROS (mode)
1886 && trueop1 == CONST0_RTX (mode)
1887 && ! side_effects_p (op0))
1888 return op1;
1889
1890 /* In IEEE floating point, x*1 is not equivalent to x for
1891 signalling NaNs. */
1892 if (!HONOR_SNANS (mode)
1893 && trueop1 == CONST1_RTX (mode))
1894 return op0;
1895
1896 /* Convert multiply by constant power of two into shift unless
1897 we are still generating RTL. This test is a kludge. */
1898 if (GET_CODE (trueop1) == CONST_INT
1899 && (val = exact_log2 (INTVAL (trueop1))) >= 0
1900 /* If the mode is larger than the host word size, and the
1901 uppermost bit is set, then this isn't a power of two due
1902 to implicit sign extension. */
1903 && (width <= HOST_BITS_PER_WIDE_INT
1904 || val != HOST_BITS_PER_WIDE_INT - 1))
1905 return simplify_gen_binary (ASHIFT, mode, op0, GEN_INT (val));
1906
1907 /* Likewise for multipliers wider than a word. */
1908 else if (GET_CODE (trueop1) == CONST_DOUBLE
1909 && (GET_MODE (trueop1) == VOIDmode
1910 || GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_INT)
1911 && GET_MODE (op0) == mode
1912 && CONST_DOUBLE_LOW (trueop1) == 0
1913 && (val = exact_log2 (CONST_DOUBLE_HIGH (trueop1))) >= 0)
1914 return simplify_gen_binary (ASHIFT, mode, op0,
1915 GEN_INT (val + HOST_BITS_PER_WIDE_INT));
1916
1917 /* x*2 is x+x and x*(-1) is -x */
1918 if (GET_CODE (trueop1) == CONST_DOUBLE
1919 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop1))
1920 && GET_MODE (op0) == mode)
1921 {
1922 REAL_VALUE_TYPE d;
1923 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
1924
1925 if (REAL_VALUES_EQUAL (d, dconst2))
1926 return simplify_gen_binary (PLUS, mode, op0, copy_rtx (op0));
1927
1928 if (REAL_VALUES_EQUAL (d, dconstm1))
1929 return simplify_gen_unary (NEG, mode, op0, mode);
1930 }
1931
1932 /* Reassociate multiplication, but for floating point MULTs
1933 only when the user specifies unsafe math optimizations. */
1934 if (! FLOAT_MODE_P (mode)
1935 || flag_unsafe_math_optimizations)
1936 {
1937 tem = simplify_associative_operation (code, mode, op0, op1);
1938 if (tem)
1939 return tem;
1940 }
1941 break;
1942
1943 case IOR:
1944 if (trueop1 == const0_rtx)
1945 return op0;
1946 if (GET_CODE (trueop1) == CONST_INT
1947 && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
1948 == GET_MODE_MASK (mode)))
1949 return op1;
1950 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
1951 return op0;
1952 /* A | (~A) -> -1 */
1953 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
1954 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
1955 && ! side_effects_p (op0)
1956 && SCALAR_INT_MODE_P (mode))
1957 return constm1_rtx;
1958
1959 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
1960 if (GET_CODE (op1) == CONST_INT
1961 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
1962 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
1963 return op1;
1964
1965 /* Convert (A & B) | A to A. */
1966 if (GET_CODE (op0) == AND
1967 && (rtx_equal_p (XEXP (op0, 0), op1)
1968 || rtx_equal_p (XEXP (op0, 1), op1))
1969 && ! side_effects_p (XEXP (op0, 0))
1970 && ! side_effects_p (XEXP (op0, 1)))
1971 return op1;
1972
1973 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
1974 mode size to (rotate A CX). */
1975
1976 if (GET_CODE (op1) == ASHIFT
1977 || GET_CODE (op1) == SUBREG)
1978 {
1979 opleft = op1;
1980 opright = op0;
1981 }
1982 else
1983 {
1984 opright = op1;
1985 opleft = op0;
1986 }
1987
1988 if (GET_CODE (opleft) == ASHIFT && GET_CODE (opright) == LSHIFTRT
1989 && rtx_equal_p (XEXP (opleft, 0), XEXP (opright, 0))
1990 && GET_CODE (XEXP (opleft, 1)) == CONST_INT
1991 && GET_CODE (XEXP (opright, 1)) == CONST_INT
1992 && (INTVAL (XEXP (opleft, 1)) + INTVAL (XEXP (opright, 1))
1993 == GET_MODE_BITSIZE (mode)))
1994 return gen_rtx_ROTATE (mode, XEXP (opright, 0), XEXP (opleft, 1));
1995
1996 /* Same, but for ashift that has been "simplified" to a wider mode
1997 by simplify_shift_const. */
1998
1999 if (GET_CODE (opleft) == SUBREG
2000 && GET_CODE (SUBREG_REG (opleft)) == ASHIFT
2001 && GET_CODE (opright) == LSHIFTRT
2002 && GET_CODE (XEXP (opright, 0)) == SUBREG
2003 && GET_MODE (opleft) == GET_MODE (XEXP (opright, 0))
2004 && SUBREG_BYTE (opleft) == SUBREG_BYTE (XEXP (opright, 0))
2005 && (GET_MODE_SIZE (GET_MODE (opleft))
2006 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (opleft))))
2007 && rtx_equal_p (XEXP (SUBREG_REG (opleft), 0),
2008 SUBREG_REG (XEXP (opright, 0)))
2009 && GET_CODE (XEXP (SUBREG_REG (opleft), 1)) == CONST_INT
2010 && GET_CODE (XEXP (opright, 1)) == CONST_INT
2011 && (INTVAL (XEXP (SUBREG_REG (opleft), 1)) + INTVAL (XEXP (opright, 1))
2012 == GET_MODE_BITSIZE (mode)))
2013 return gen_rtx_ROTATE (mode, XEXP (opright, 0),
2014 XEXP (SUBREG_REG (opleft), 1));
2015
2016 /* If we have (ior (and (X C1) C2)), simplify this by making
2017 C1 as small as possible if C1 actually changes. */
2018 if (GET_CODE (op1) == CONST_INT
2019 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2020 || INTVAL (op1) > 0)
2021 && GET_CODE (op0) == AND
2022 && GET_CODE (XEXP (op0, 1)) == CONST_INT
2023 && GET_CODE (op1) == CONST_INT
2024 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
2025 return simplify_gen_binary (IOR, mode,
2026 simplify_gen_binary
2027 (AND, mode, XEXP (op0, 0),
2028 GEN_INT (INTVAL (XEXP (op0, 1))
2029 & ~INTVAL (op1))),
2030 op1);
2031
2032 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
2033 a (sign_extend (plus ...)). Then check if OP1 is a CONST_INT and
2034 the PLUS does not affect any of the bits in OP1: then we can do
2035 the IOR as a PLUS and we can associate. This is valid if OP1
2036 can be safely shifted left C bits. */
2037 if (GET_CODE (trueop1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
2038 && GET_CODE (XEXP (op0, 0)) == PLUS
2039 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
2040 && GET_CODE (XEXP (op0, 1)) == CONST_INT
2041 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
2042 {
2043 int count = INTVAL (XEXP (op0, 1));
2044 HOST_WIDE_INT mask = INTVAL (trueop1) << count;
2045
2046 if (mask >> count == INTVAL (trueop1)
2047 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
2048 return simplify_gen_binary (ASHIFTRT, mode,
2049 plus_constant (XEXP (op0, 0), mask),
2050 XEXP (op0, 1));
2051 }
2052
2053 tem = simplify_associative_operation (code, mode, op0, op1);
2054 if (tem)
2055 return tem;
2056 break;
2057
2058 case XOR:
2059 if (trueop1 == const0_rtx)
2060 return op0;
2061 if (GET_CODE (trueop1) == CONST_INT
2062 && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
2063 == GET_MODE_MASK (mode)))
2064 return simplify_gen_unary (NOT, mode, op0, mode);
2065 if (rtx_equal_p (trueop0, trueop1)
2066 && ! side_effects_p (op0)
2067 && GET_MODE_CLASS (mode) != MODE_CC)
2068 return CONST0_RTX (mode);
2069
2070 /* Canonicalize XOR of the most significant bit to PLUS. */
2071 if ((GET_CODE (op1) == CONST_INT
2072 || GET_CODE (op1) == CONST_DOUBLE)
2073 && mode_signbit_p (mode, op1))
2074 return simplify_gen_binary (PLUS, mode, op0, op1);
2075 /* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
2076 if ((GET_CODE (op1) == CONST_INT
2077 || GET_CODE (op1) == CONST_DOUBLE)
2078 && GET_CODE (op0) == PLUS
2079 && (GET_CODE (XEXP (op0, 1)) == CONST_INT
2080 || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
2081 && mode_signbit_p (mode, XEXP (op0, 1)))
2082 return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
2083 simplify_gen_binary (XOR, mode, op1,
2084 XEXP (op0, 1)));
2085
2086 /* If we are XORing two things that have no bits in common,
2087 convert them into an IOR. This helps to detect rotation encoded
2088 using those methods and possibly other simplifications. */
2089
2090 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2091 && (nonzero_bits (op0, mode)
2092 & nonzero_bits (op1, mode)) == 0)
2093 return (simplify_gen_binary (IOR, mode, op0, op1));
2094
2095 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
2096 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
2097 (NOT y). */
2098 {
2099 int num_negated = 0;
2100
2101 if (GET_CODE (op0) == NOT)
2102 num_negated++, op0 = XEXP (op0, 0);
2103 if (GET_CODE (op1) == NOT)
2104 num_negated++, op1 = XEXP (op1, 0);
2105
2106 if (num_negated == 2)
2107 return simplify_gen_binary (XOR, mode, op0, op1);
2108 else if (num_negated == 1)
2109 return simplify_gen_unary (NOT, mode,
2110 simplify_gen_binary (XOR, mode, op0, op1),
2111 mode);
2112 }
2113
2114 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
2115 correspond to a machine insn or result in further simplifications
2116 if B is a constant. */
2117
2118 if (GET_CODE (op0) == AND
2119 && rtx_equal_p (XEXP (op0, 1), op1)
2120 && ! side_effects_p (op1))
2121 return simplify_gen_binary (AND, mode,
2122 simplify_gen_unary (NOT, mode,
2123 XEXP (op0, 0), mode),
2124 op1);
2125
2126 else if (GET_CODE (op0) == AND
2127 && rtx_equal_p (XEXP (op0, 0), op1)
2128 && ! side_effects_p (op1))
2129 return simplify_gen_binary (AND, mode,
2130 simplify_gen_unary (NOT, mode,
2131 XEXP (op0, 1), mode),
2132 op1);
2133
2134 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
2135 comparison if STORE_FLAG_VALUE is 1. */
2136 if (STORE_FLAG_VALUE == 1
2137 && trueop1 == const1_rtx
2138 && COMPARISON_P (op0)
2139 && (reversed = reversed_comparison (op0, mode)))
2140 return reversed;
2141
2142 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
2143 is (lt foo (const_int 0)), so we can perform the above
2144 simplification if STORE_FLAG_VALUE is 1. */
2145
2146 if (STORE_FLAG_VALUE == 1
2147 && trueop1 == const1_rtx
2148 && GET_CODE (op0) == LSHIFTRT
2149 && GET_CODE (XEXP (op0, 1)) == CONST_INT
2150 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
2151 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
2152
2153 /* (xor (comparison foo bar) (const_int sign-bit))
2154 when STORE_FLAG_VALUE is the sign bit. */
2155 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2156 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
2157 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
2158 && trueop1 == const_true_rtx
2159 && COMPARISON_P (op0)
2160 && (reversed = reversed_comparison (op0, mode)))
2161 return reversed;
2162
2163 break;
2164
2165 tem = simplify_associative_operation (code, mode, op0, op1);
2166 if (tem)
2167 return tem;
2168 break;
2169
2170 case AND:
2171 if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
2172 return trueop1;
2173 /* If we are turning off bits already known off in OP0, we need
2174 not do an AND. */
2175 if (GET_CODE (trueop1) == CONST_INT
2176 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2177 && (nonzero_bits (trueop0, mode) & ~INTVAL (trueop1)) == 0)
2178 return op0;
2179 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0)
2180 && GET_MODE_CLASS (mode) != MODE_CC)
2181 return op0;
2182 /* A & (~A) -> 0 */
2183 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
2184 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
2185 && ! side_effects_p (op0)
2186 && GET_MODE_CLASS (mode) != MODE_CC)
2187 return CONST0_RTX (mode);
2188
2189 /* Transform (and (extend X) C) into (zero_extend (and X C)) if
2190 there are no nonzero bits of C outside of X's mode. */
2191 if ((GET_CODE (op0) == SIGN_EXTEND
2192 || GET_CODE (op0) == ZERO_EXTEND)
2193 && GET_CODE (trueop1) == CONST_INT
2194 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2195 && (~GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))
2196 & INTVAL (trueop1)) == 0)
2197 {
2198 enum machine_mode imode = GET_MODE (XEXP (op0, 0));
2199 tem = simplify_gen_binary (AND, imode, XEXP (op0, 0),
2200 gen_int_mode (INTVAL (trueop1),
2201 imode));
2202 return simplify_gen_unary (ZERO_EXTEND, mode, tem, imode);
2203 }
2204
2205 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
2206 insn (and may simplify more). */
2207 if (GET_CODE (op0) == XOR
2208 && rtx_equal_p (XEXP (op0, 0), op1)
2209 && ! side_effects_p (op1))
2210 return simplify_gen_binary (AND, mode,
2211 simplify_gen_unary (NOT, mode,
2212 XEXP (op0, 1), mode),
2213 op1);
2214
2215 if (GET_CODE (op0) == XOR
2216 && rtx_equal_p (XEXP (op0, 1), op1)
2217 && ! side_effects_p (op1))
2218 return simplify_gen_binary (AND, mode,
2219 simplify_gen_unary (NOT, mode,
2220 XEXP (op0, 0), mode),
2221 op1);
2222
2223 /* Similarly for (~(A ^ B)) & A. */
2224 if (GET_CODE (op0) == NOT
2225 && GET_CODE (XEXP (op0, 0)) == XOR
2226 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
2227 && ! side_effects_p (op1))
2228 return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
2229
2230 if (GET_CODE (op0) == NOT
2231 && GET_CODE (XEXP (op0, 0)) == XOR
2232 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
2233 && ! side_effects_p (op1))
2234 return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
2235
2236 /* Convert (A | B) & A to A. */
2237 if (GET_CODE (op0) == IOR
2238 && (rtx_equal_p (XEXP (op0, 0), op1)
2239 || rtx_equal_p (XEXP (op0, 1), op1))
2240 && ! side_effects_p (XEXP (op0, 0))
2241 && ! side_effects_p (XEXP (op0, 1)))
2242 return op1;
2243
2244 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
2245 ((A & N) + B) & M -> (A + B) & M
2246 Similarly if (N & M) == 0,
2247 ((A | N) + B) & M -> (A + B) & M
2248 and for - instead of + and/or ^ instead of |. */
2249 if (GET_CODE (trueop1) == CONST_INT
2250 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2251 && ~INTVAL (trueop1)
2252 && (INTVAL (trueop1) & (INTVAL (trueop1) + 1)) == 0
2253 && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS))
2254 {
2255 rtx pmop[2];
2256 int which;
2257
2258 pmop[0] = XEXP (op0, 0);
2259 pmop[1] = XEXP (op0, 1);
2260
2261 for (which = 0; which < 2; which++)
2262 {
2263 tem = pmop[which];
2264 switch (GET_CODE (tem))
2265 {
2266 case AND:
2267 if (GET_CODE (XEXP (tem, 1)) == CONST_INT
2268 && (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1))
2269 == INTVAL (trueop1))
2270 pmop[which] = XEXP (tem, 0);
2271 break;
2272 case IOR:
2273 case XOR:
2274 if (GET_CODE (XEXP (tem, 1)) == CONST_INT
2275 && (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1)) == 0)
2276 pmop[which] = XEXP (tem, 0);
2277 break;
2278 default:
2279 break;
2280 }
2281 }
2282
2283 if (pmop[0] != XEXP (op0, 0) || pmop[1] != XEXP (op0, 1))
2284 {
2285 tem = simplify_gen_binary (GET_CODE (op0), mode,
2286 pmop[0], pmop[1]);
2287 return simplify_gen_binary (code, mode, tem, op1);
2288 }
2289 }
2290 tem = simplify_associative_operation (code, mode, op0, op1);
2291 if (tem)
2292 return tem;
2293 break;
2294
2295 case UDIV:
2296 /* 0/x is 0 (or x&0 if x has side-effects). */
2297 if (trueop0 == CONST0_RTX (mode))
2298 {
2299 if (side_effects_p (op1))
2300 return simplify_gen_binary (AND, mode, op1, trueop0);
2301 return trueop0;
2302 }
2303 /* x/1 is x. */
2304 if (trueop1 == CONST1_RTX (mode))
2305 return rtl_hooks.gen_lowpart_no_emit (mode, op0);
2306 /* Convert divide by power of two into shift. */
2307 if (GET_CODE (trueop1) == CONST_INT
2308 && (val = exact_log2 (INTVAL (trueop1))) > 0)
2309 return simplify_gen_binary (LSHIFTRT, mode, op0, GEN_INT (val));
2310 break;
2311
2312 case DIV:
2313 /* Handle floating point and integers separately. */
2314 if (SCALAR_FLOAT_MODE_P (mode))
2315 {
2316 /* Maybe change 0.0 / x to 0.0. This transformation isn't
2317 safe for modes with NaNs, since 0.0 / 0.0 will then be
2318 NaN rather than 0.0. Nor is it safe for modes with signed
2319 zeros, since dividing 0 by a negative number gives -0.0 */
2320 if (trueop0 == CONST0_RTX (mode)
2321 && !HONOR_NANS (mode)
2322 && !HONOR_SIGNED_ZEROS (mode)
2323 && ! side_effects_p (op1))
2324 return op0;
2325 /* x/1.0 is x. */
2326 if (trueop1 == CONST1_RTX (mode)
2327 && !HONOR_SNANS (mode))
2328 return op0;
2329
2330 if (GET_CODE (trueop1) == CONST_DOUBLE
2331 && trueop1 != CONST0_RTX (mode))
2332 {
2333 REAL_VALUE_TYPE d;
2334 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
2335
2336 /* x/-1.0 is -x. */
2337 if (REAL_VALUES_EQUAL (d, dconstm1)
2338 && !HONOR_SNANS (mode))
2339 return simplify_gen_unary (NEG, mode, op0, mode);
2340
2341 /* Change FP division by a constant into multiplication.
2342 Only do this with -funsafe-math-optimizations. */
2343 if (flag_unsafe_math_optimizations
2344 && !REAL_VALUES_EQUAL (d, dconst0))
2345 {
2346 REAL_ARITHMETIC (d, RDIV_EXPR, dconst1, d);
2347 tem = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
2348 return simplify_gen_binary (MULT, mode, op0, tem);
2349 }
2350 }
2351 }
2352 else
2353 {
2354 /* 0/x is 0 (or x&0 if x has side-effects). */
2355 if (trueop0 == CONST0_RTX (mode))
2356 {
2357 if (side_effects_p (op1))
2358 return simplify_gen_binary (AND, mode, op1, trueop0);
2359 return trueop0;
2360 }
2361 /* x/1 is x. */
2362 if (trueop1 == CONST1_RTX (mode))
2363 return rtl_hooks.gen_lowpart_no_emit (mode, op0);
2364 /* x/-1 is -x. */
2365 if (trueop1 == constm1_rtx)
2366 {
2367 rtx x = rtl_hooks.gen_lowpart_no_emit (mode, op0);
2368 return simplify_gen_unary (NEG, mode, x, mode);
2369 }
2370 }
2371 break;
2372
2373 case UMOD:
2374 /* 0%x is 0 (or x&0 if x has side-effects). */
2375 if (trueop0 == CONST0_RTX (mode))
2376 {
2377 if (side_effects_p (op1))
2378 return simplify_gen_binary (AND, mode, op1, trueop0);
2379 return trueop0;
2380 }
2381 /* x%1 is 0 (of x&0 if x has side-effects). */
2382 if (trueop1 == CONST1_RTX (mode))
2383 {
2384 if (side_effects_p (op0))
2385 return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
2386 return CONST0_RTX (mode);
2387 }
2388 /* Implement modulus by power of two as AND. */
2389 if (GET_CODE (trueop1) == CONST_INT
2390 && exact_log2 (INTVAL (trueop1)) > 0)
2391 return simplify_gen_binary (AND, mode, op0,
2392 GEN_INT (INTVAL (op1) - 1));
2393 break;
2394
2395 case MOD:
2396 /* 0%x is 0 (or x&0 if x has side-effects). */
2397 if (trueop0 == CONST0_RTX (mode))
2398 {
2399 if (side_effects_p (op1))
2400 return simplify_gen_binary (AND, mode, op1, trueop0);
2401 return trueop0;
2402 }
2403 /* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
2404 if (trueop1 == CONST1_RTX (mode) || trueop1 == constm1_rtx)
2405 {
2406 if (side_effects_p (op0))
2407 return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
2408 return CONST0_RTX (mode);
2409 }
2410 break;
2411
2412 case ROTATERT:
2413 case ROTATE:
2414 case ASHIFTRT:
2415 /* Rotating ~0 always results in ~0. */
2416 if (GET_CODE (trueop0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
2417 && (unsigned HOST_WIDE_INT) INTVAL (trueop0) == GET_MODE_MASK (mode)
2418 && ! side_effects_p (op1))
2419 return op0;
2420
2421 /* Fall through.... */
2422
2423 case ASHIFT:
2424 case LSHIFTRT:
2425 if (trueop1 == CONST0_RTX (mode))
2426 return op0;
2427 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
2428 return op0;
2429 break;
2430
2431 case SMIN:
2432 if (width <= HOST_BITS_PER_WIDE_INT
2433 && GET_CODE (trueop1) == CONST_INT
2434 && INTVAL (trueop1) == (HOST_WIDE_INT) 1 << (width -1)
2435 && ! side_effects_p (op0))
2436 return op1;
2437 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2438 return op0;
2439 tem = simplify_associative_operation (code, mode, op0, op1);
2440 if (tem)
2441 return tem;
2442 break;
2443
2444 case SMAX:
2445 if (width <= HOST_BITS_PER_WIDE_INT
2446 && GET_CODE (trueop1) == CONST_INT
2447 && ((unsigned HOST_WIDE_INT) INTVAL (trueop1)
2448 == (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
2449 && ! side_effects_p (op0))
2450 return op1;
2451 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2452 return op0;
2453 tem = simplify_associative_operation (code, mode, op0, op1);
2454 if (tem)
2455 return tem;
2456 break;
2457
2458 case UMIN:
2459 if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
2460 return op1;
2461 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2462 return op0;
2463 tem = simplify_associative_operation (code, mode, op0, op1);
2464 if (tem)
2465 return tem;
2466 break;
2467
2468 case UMAX:
2469 if (trueop1 == constm1_rtx && ! side_effects_p (op0))
2470 return op1;
2471 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2472 return op0;
2473 tem = simplify_associative_operation (code, mode, op0, op1);
2474 if (tem)
2475 return tem;
2476 break;
2477
2478 case SS_PLUS:
2479 case US_PLUS:
2480 case SS_MINUS:
2481 case US_MINUS:
2482 /* ??? There are simplifications that can be done. */
2483 return 0;
2484
2485 case VEC_SELECT:
2486 if (!VECTOR_MODE_P (mode))
2487 {
2488 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
2489 gcc_assert (mode == GET_MODE_INNER (GET_MODE (trueop0)));
2490 gcc_assert (GET_CODE (trueop1) == PARALLEL);
2491 gcc_assert (XVECLEN (trueop1, 0) == 1);
2492 gcc_assert (GET_CODE (XVECEXP (trueop1, 0, 0)) == CONST_INT);
2493
2494 if (GET_CODE (trueop0) == CONST_VECTOR)
2495 return CONST_VECTOR_ELT (trueop0, INTVAL (XVECEXP
2496 (trueop1, 0, 0)));
2497 }
2498 else
2499 {
2500 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
2501 gcc_assert (GET_MODE_INNER (mode)
2502 == GET_MODE_INNER (GET_MODE (trueop0)));
2503 gcc_assert (GET_CODE (trueop1) == PARALLEL);
2504
2505 if (GET_CODE (trueop0) == CONST_VECTOR)
2506 {
2507 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
2508 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
2509 rtvec v = rtvec_alloc (n_elts);
2510 unsigned int i;
2511
2512 gcc_assert (XVECLEN (trueop1, 0) == (int) n_elts);
2513 for (i = 0; i < n_elts; i++)
2514 {
2515 rtx x = XVECEXP (trueop1, 0, i);
2516
2517 gcc_assert (GET_CODE (x) == CONST_INT);
2518 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0,
2519 INTVAL (x));
2520 }
2521
2522 return gen_rtx_CONST_VECTOR (mode, v);
2523 }
2524 }
2525
2526 if (XVECLEN (trueop1, 0) == 1
2527 && GET_CODE (XVECEXP (trueop1, 0, 0)) == CONST_INT
2528 && GET_CODE (trueop0) == VEC_CONCAT)
2529 {
2530 rtx vec = trueop0;
2531 int offset = INTVAL (XVECEXP (trueop1, 0, 0)) * GET_MODE_SIZE (mode);
2532
2533 /* Try to find the element in the VEC_CONCAT. */
2534 while (GET_MODE (vec) != mode
2535 && GET_CODE (vec) == VEC_CONCAT)
2536 {
2537 HOST_WIDE_INT vec_size = GET_MODE_SIZE (GET_MODE (XEXP (vec, 0)));
2538 if (offset < vec_size)
2539 vec = XEXP (vec, 0);
2540 else
2541 {
2542 offset -= vec_size;
2543 vec = XEXP (vec, 1);
2544 }
2545 vec = avoid_constant_pool_reference (vec);
2546 }
2547
2548 if (GET_MODE (vec) == mode)
2549 return vec;
2550 }
2551
2552 return 0;
2553 case VEC_CONCAT:
2554 {
2555 enum machine_mode op0_mode = (GET_MODE (trueop0) != VOIDmode
2556 ? GET_MODE (trueop0)
2557 : GET_MODE_INNER (mode));
2558 enum machine_mode op1_mode = (GET_MODE (trueop1) != VOIDmode
2559 ? GET_MODE (trueop1)
2560 : GET_MODE_INNER (mode));
2561
2562 gcc_assert (VECTOR_MODE_P (mode));
2563 gcc_assert (GET_MODE_SIZE (op0_mode) + GET_MODE_SIZE (op1_mode)
2564 == GET_MODE_SIZE (mode));
2565
2566 if (VECTOR_MODE_P (op0_mode))
2567 gcc_assert (GET_MODE_INNER (mode)
2568 == GET_MODE_INNER (op0_mode));
2569 else
2570 gcc_assert (GET_MODE_INNER (mode) == op0_mode);
2571
2572 if (VECTOR_MODE_P (op1_mode))
2573 gcc_assert (GET_MODE_INNER (mode)
2574 == GET_MODE_INNER (op1_mode));
2575 else
2576 gcc_assert (GET_MODE_INNER (mode) == op1_mode);
2577
2578 if ((GET_CODE (trueop0) == CONST_VECTOR
2579 || GET_CODE (trueop0) == CONST_INT
2580 || GET_CODE (trueop0) == CONST_DOUBLE)
2581 && (GET_CODE (trueop1) == CONST_VECTOR
2582 || GET_CODE (trueop1) == CONST_INT
2583 || GET_CODE (trueop1) == CONST_DOUBLE))
2584 {
2585 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
2586 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
2587 rtvec v = rtvec_alloc (n_elts);
2588 unsigned int i;
2589 unsigned in_n_elts = 1;
2590
2591 if (VECTOR_MODE_P (op0_mode))
2592 in_n_elts = (GET_MODE_SIZE (op0_mode) / elt_size);
2593 for (i = 0; i < n_elts; i++)
2594 {
2595 if (i < in_n_elts)
2596 {
2597 if (!VECTOR_MODE_P (op0_mode))
2598 RTVEC_ELT (v, i) = trueop0;
2599 else
2600 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0, i);
2601 }
2602 else
2603 {
2604 if (!VECTOR_MODE_P (op1_mode))
2605 RTVEC_ELT (v, i) = trueop1;
2606 else
2607 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop1,
2608 i - in_n_elts);
2609 }
2610 }
2611
2612 return gen_rtx_CONST_VECTOR (mode, v);
2613 }
2614 }
2615 return 0;
2616
2617 default:
2618 gcc_unreachable ();
2619 }
2620
2621 return 0;
2622 }
2623
2624 rtx
2625 simplify_const_binary_operation (enum rtx_code code, enum machine_mode mode,
2626 rtx op0, rtx op1)
2627 {
2628 HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
2629 HOST_WIDE_INT val;
2630 unsigned int width = GET_MODE_BITSIZE (mode);
2631
2632 if (VECTOR_MODE_P (mode)
2633 && code != VEC_CONCAT
2634 && GET_CODE (op0) == CONST_VECTOR
2635 && GET_CODE (op1) == CONST_VECTOR)
2636 {
2637 unsigned n_elts = GET_MODE_NUNITS (mode);
2638 enum machine_mode op0mode = GET_MODE (op0);
2639 unsigned op0_n_elts = GET_MODE_NUNITS (op0mode);
2640 enum machine_mode op1mode = GET_MODE (op1);
2641 unsigned op1_n_elts = GET_MODE_NUNITS (op1mode);
2642 rtvec v = rtvec_alloc (n_elts);
2643 unsigned int i;
2644
2645 gcc_assert (op0_n_elts == n_elts);
2646 gcc_assert (op1_n_elts == n_elts);
2647 for (i = 0; i < n_elts; i++)
2648 {
2649 rtx x = simplify_binary_operation (code, GET_MODE_INNER (mode),
2650 CONST_VECTOR_ELT (op0, i),
2651 CONST_VECTOR_ELT (op1, i));
2652 if (!x)
2653 return 0;
2654 RTVEC_ELT (v, i) = x;
2655 }
2656
2657 return gen_rtx_CONST_VECTOR (mode, v);
2658 }
2659
2660 if (VECTOR_MODE_P (mode)
2661 && code == VEC_CONCAT
2662 && CONSTANT_P (op0) && CONSTANT_P (op1))
2663 {
2664 unsigned n_elts = GET_MODE_NUNITS (mode);
2665 rtvec v = rtvec_alloc (n_elts);
2666
2667 gcc_assert (n_elts >= 2);
2668 if (n_elts == 2)
2669 {
2670 gcc_assert (GET_CODE (op0) != CONST_VECTOR);
2671 gcc_assert (GET_CODE (op1) != CONST_VECTOR);
2672
2673 RTVEC_ELT (v, 0) = op0;
2674 RTVEC_ELT (v, 1) = op1;
2675 }
2676 else
2677 {
2678 unsigned op0_n_elts = GET_MODE_NUNITS (GET_MODE (op0));
2679 unsigned op1_n_elts = GET_MODE_NUNITS (GET_MODE (op1));
2680 unsigned i;
2681
2682 gcc_assert (GET_CODE (op0) == CONST_VECTOR);
2683 gcc_assert (GET_CODE (op1) == CONST_VECTOR);
2684 gcc_assert (op0_n_elts + op1_n_elts == n_elts);
2685
2686 for (i = 0; i < op0_n_elts; ++i)
2687 RTVEC_ELT (v, i) = XVECEXP (op0, 0, i);
2688 for (i = 0; i < op1_n_elts; ++i)
2689 RTVEC_ELT (v, op0_n_elts+i) = XVECEXP (op1, 0, i);
2690 }
2691
2692 return gen_rtx_CONST_VECTOR (mode, v);
2693 }
2694
2695 if (SCALAR_FLOAT_MODE_P (mode)
2696 && GET_CODE (op0) == CONST_DOUBLE
2697 && GET_CODE (op1) == CONST_DOUBLE
2698 && mode == GET_MODE (op0) && mode == GET_MODE (op1))
2699 {
2700 if (code == AND
2701 || code == IOR
2702 || code == XOR)
2703 {
2704 long tmp0[4];
2705 long tmp1[4];
2706 REAL_VALUE_TYPE r;
2707 int i;
2708
2709 real_to_target (tmp0, CONST_DOUBLE_REAL_VALUE (op0),
2710 GET_MODE (op0));
2711 real_to_target (tmp1, CONST_DOUBLE_REAL_VALUE (op1),
2712 GET_MODE (op1));
2713 for (i = 0; i < 4; i++)
2714 {
2715 switch (code)
2716 {
2717 case AND:
2718 tmp0[i] &= tmp1[i];
2719 break;
2720 case IOR:
2721 tmp0[i] |= tmp1[i];
2722 break;
2723 case XOR:
2724 tmp0[i] ^= tmp1[i];
2725 break;
2726 default:
2727 gcc_unreachable ();
2728 }
2729 }
2730 real_from_target (&r, tmp0, mode);
2731 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
2732 }
2733 else
2734 {
2735 REAL_VALUE_TYPE f0, f1, value, result;
2736 bool inexact;
2737
2738 REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
2739 REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
2740 real_convert (&f0, mode, &f0);
2741 real_convert (&f1, mode, &f1);
2742
2743 if (HONOR_SNANS (mode)
2744 && (REAL_VALUE_ISNAN (f0) || REAL_VALUE_ISNAN (f1)))
2745 return 0;
2746
2747 if (code == DIV
2748 && REAL_VALUES_EQUAL (f1, dconst0)
2749 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
2750 return 0;
2751
2752 if (MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
2753 && flag_trapping_math
2754 && REAL_VALUE_ISINF (f0) && REAL_VALUE_ISINF (f1))
2755 {
2756 int s0 = REAL_VALUE_NEGATIVE (f0);
2757 int s1 = REAL_VALUE_NEGATIVE (f1);
2758
2759 switch (code)
2760 {
2761 case PLUS:
2762 /* Inf + -Inf = NaN plus exception. */
2763 if (s0 != s1)
2764 return 0;
2765 break;
2766 case MINUS:
2767 /* Inf - Inf = NaN plus exception. */
2768 if (s0 == s1)
2769 return 0;
2770 break;
2771 case DIV:
2772 /* Inf / Inf = NaN plus exception. */
2773 return 0;
2774 default:
2775 break;
2776 }
2777 }
2778
2779 if (code == MULT && MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
2780 && flag_trapping_math
2781 && ((REAL_VALUE_ISINF (f0) && REAL_VALUES_EQUAL (f1, dconst0))
2782 || (REAL_VALUE_ISINF (f1)
2783 && REAL_VALUES_EQUAL (f0, dconst0))))
2784 /* Inf * 0 = NaN plus exception. */
2785 return 0;
2786
2787 inexact = real_arithmetic (&value, rtx_to_tree_code (code),
2788 &f0, &f1);
2789 real_convert (&result, mode, &value);
2790
2791 /* Don't constant fold this floating point operation if
2792 the result has overflowed and flag_trapping_math. */
2793
2794 if (flag_trapping_math
2795 && MODE_HAS_INFINITIES (mode)
2796 && REAL_VALUE_ISINF (result)
2797 && !REAL_VALUE_ISINF (f0)
2798 && !REAL_VALUE_ISINF (f1))
2799 /* Overflow plus exception. */
2800 return 0;
2801
2802 /* Don't constant fold this floating point operation if the
2803 result may dependent upon the run-time rounding mode and
2804 flag_rounding_math is set, or if GCC's software emulation
2805 is unable to accurately represent the result. */
2806
2807 if ((flag_rounding_math
2808 || (REAL_MODE_FORMAT_COMPOSITE_P (mode)
2809 && !flag_unsafe_math_optimizations))
2810 && (inexact || !real_identical (&result, &value)))
2811 return NULL_RTX;
2812
2813 return CONST_DOUBLE_FROM_REAL_VALUE (result, mode);
2814 }
2815 }
2816
2817 /* We can fold some multi-word operations. */
2818 if (GET_MODE_CLASS (mode) == MODE_INT
2819 && width == HOST_BITS_PER_WIDE_INT * 2
2820 && (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
2821 && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
2822 {
2823 unsigned HOST_WIDE_INT l1, l2, lv, lt;
2824 HOST_WIDE_INT h1, h2, hv, ht;
2825
2826 if (GET_CODE (op0) == CONST_DOUBLE)
2827 l1 = CONST_DOUBLE_LOW (op0), h1 = CONST_DOUBLE_HIGH (op0);
2828 else
2829 l1 = INTVAL (op0), h1 = HWI_SIGN_EXTEND (l1);
2830
2831 if (GET_CODE (op1) == CONST_DOUBLE)
2832 l2 = CONST_DOUBLE_LOW (op1), h2 = CONST_DOUBLE_HIGH (op1);
2833 else
2834 l2 = INTVAL (op1), h2 = HWI_SIGN_EXTEND (l2);
2835
2836 switch (code)
2837 {
2838 case MINUS:
2839 /* A - B == A + (-B). */
2840 neg_double (l2, h2, &lv, &hv);
2841 l2 = lv, h2 = hv;
2842
2843 /* Fall through.... */
2844
2845 case PLUS:
2846 add_double (l1, h1, l2, h2, &lv, &hv);
2847 break;
2848
2849 case MULT:
2850 mul_double (l1, h1, l2, h2, &lv, &hv);
2851 break;
2852
2853 case DIV:
2854 if (div_and_round_double (TRUNC_DIV_EXPR, 0, l1, h1, l2, h2,
2855 &lv, &hv, &lt, &ht))
2856 return 0;
2857 break;
2858
2859 case MOD:
2860 if (div_and_round_double (TRUNC_DIV_EXPR, 0, l1, h1, l2, h2,
2861 &lt, &ht, &lv, &hv))
2862 return 0;
2863 break;
2864
2865 case UDIV:
2866 if (div_and_round_double (TRUNC_DIV_EXPR, 1, l1, h1, l2, h2,
2867 &lv, &hv, &lt, &ht))
2868 return 0;
2869 break;
2870
2871 case UMOD:
2872 if (div_and_round_double (TRUNC_DIV_EXPR, 1, l1, h1, l2, h2,
2873 &lt, &ht, &lv, &hv))
2874 return 0;
2875 break;
2876
2877 case AND:
2878 lv = l1 & l2, hv = h1 & h2;
2879 break;
2880
2881 case IOR:
2882 lv = l1 | l2, hv = h1 | h2;
2883 break;
2884
2885 case XOR:
2886 lv = l1 ^ l2, hv = h1 ^ h2;
2887 break;
2888
2889 case SMIN:
2890 if (h1 < h2
2891 || (h1 == h2
2892 && ((unsigned HOST_WIDE_INT) l1
2893 < (unsigned HOST_WIDE_INT) l2)))
2894 lv = l1, hv = h1;
2895 else
2896 lv = l2, hv = h2;
2897 break;
2898
2899 case SMAX:
2900 if (h1 > h2
2901 || (h1 == h2
2902 && ((unsigned HOST_WIDE_INT) l1
2903 > (unsigned HOST_WIDE_INT) l2)))
2904 lv = l1, hv = h1;
2905 else
2906 lv = l2, hv = h2;
2907 break;
2908
2909 case UMIN:
2910 if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
2911 || (h1 == h2
2912 && ((unsigned HOST_WIDE_INT) l1
2913 < (unsigned HOST_WIDE_INT) l2)))
2914 lv = l1, hv = h1;
2915 else
2916 lv = l2, hv = h2;
2917 break;
2918
2919 case UMAX:
2920 if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
2921 || (h1 == h2
2922 && ((unsigned HOST_WIDE_INT) l1
2923 > (unsigned HOST_WIDE_INT) l2)))
2924 lv = l1, hv = h1;
2925 else
2926 lv = l2, hv = h2;
2927 break;
2928
2929 case LSHIFTRT: case ASHIFTRT:
2930 case ASHIFT:
2931 case ROTATE: case ROTATERT:
2932 if (SHIFT_COUNT_TRUNCATED)
2933 l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
2934
2935 if (h2 != 0 || l2 >= GET_MODE_BITSIZE (mode))
2936 return 0;
2937
2938 if (code == LSHIFTRT || code == ASHIFTRT)
2939 rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
2940 code == ASHIFTRT);
2941 else if (code == ASHIFT)
2942 lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
2943 else if (code == ROTATE)
2944 lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
2945 else /* code == ROTATERT */
2946 rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
2947 break;
2948
2949 default:
2950 return 0;
2951 }
2952
2953 return immed_double_const (lv, hv, mode);
2954 }
2955
2956 if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
2957 && width <= HOST_BITS_PER_WIDE_INT && width != 0)
2958 {
2959 /* Get the integer argument values in two forms:
2960 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
2961
2962 arg0 = INTVAL (op0);
2963 arg1 = INTVAL (op1);
2964
2965 if (width < HOST_BITS_PER_WIDE_INT)
2966 {
2967 arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
2968 arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
2969
2970 arg0s = arg0;
2971 if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
2972 arg0s |= ((HOST_WIDE_INT) (-1) << width);
2973
2974 arg1s = arg1;
2975 if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
2976 arg1s |= ((HOST_WIDE_INT) (-1) << width);
2977 }
2978 else
2979 {
2980 arg0s = arg0;
2981 arg1s = arg1;
2982 }
2983
2984 /* Compute the value of the arithmetic. */
2985
2986 switch (code)
2987 {
2988 case PLUS:
2989 val = arg0s + arg1s;
2990 break;
2991
2992 case MINUS:
2993 val = arg0s - arg1s;
2994 break;
2995
2996 case MULT:
2997 val = arg0s * arg1s;
2998 break;
2999
3000 case DIV:
3001 if (arg1s == 0
3002 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3003 && arg1s == -1))
3004 return 0;
3005 val = arg0s / arg1s;
3006 break;
3007
3008 case MOD:
3009 if (arg1s == 0
3010 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3011 && arg1s == -1))
3012 return 0;
3013 val = arg0s % arg1s;
3014 break;
3015
3016 case UDIV:
3017 if (arg1 == 0
3018 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3019 && arg1s == -1))
3020 return 0;
3021 val = (unsigned HOST_WIDE_INT) arg0 / arg1;
3022 break;
3023
3024 case UMOD:
3025 if (arg1 == 0
3026 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3027 && arg1s == -1))
3028 return 0;
3029 val = (unsigned HOST_WIDE_INT) arg0 % arg1;
3030 break;
3031
3032 case AND:
3033 val = arg0 & arg1;
3034 break;
3035
3036 case IOR:
3037 val = arg0 | arg1;
3038 break;
3039
3040 case XOR:
3041 val = arg0 ^ arg1;
3042 break;
3043
3044 case LSHIFTRT:
3045 case ASHIFT:
3046 case ASHIFTRT:
3047 /* Truncate the shift if SHIFT_COUNT_TRUNCATED, otherwise make sure
3048 the value is in range. We can't return any old value for
3049 out-of-range arguments because either the middle-end (via
3050 shift_truncation_mask) or the back-end might be relying on
3051 target-specific knowledge. Nor can we rely on
3052 shift_truncation_mask, since the shift might not be part of an
3053 ashlM3, lshrM3 or ashrM3 instruction. */
3054 if (SHIFT_COUNT_TRUNCATED)
3055 arg1 = (unsigned HOST_WIDE_INT) arg1 % width;
3056 else if (arg1 < 0 || arg1 >= GET_MODE_BITSIZE (mode))
3057 return 0;
3058
3059 val = (code == ASHIFT
3060 ? ((unsigned HOST_WIDE_INT) arg0) << arg1
3061 : ((unsigned HOST_WIDE_INT) arg0) >> arg1);
3062
3063 /* Sign-extend the result for arithmetic right shifts. */
3064 if (code == ASHIFTRT && arg0s < 0 && arg1 > 0)
3065 val |= ((HOST_WIDE_INT) -1) << (width - arg1);
3066 break;
3067
3068 case ROTATERT:
3069 if (arg1 < 0)
3070 return 0;
3071
3072 arg1 %= width;
3073 val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
3074 | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
3075 break;
3076
3077 case ROTATE:
3078 if (arg1 < 0)
3079 return 0;
3080
3081 arg1 %= width;
3082 val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
3083 | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
3084 break;
3085
3086 case COMPARE:
3087 /* Do nothing here. */
3088 return 0;
3089
3090 case SMIN:
3091 val = arg0s <= arg1s ? arg0s : arg1s;
3092 break;
3093
3094 case UMIN:
3095 val = ((unsigned HOST_WIDE_INT) arg0
3096 <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
3097 break;
3098
3099 case SMAX:
3100 val = arg0s > arg1s ? arg0s : arg1s;
3101 break;
3102
3103 case UMAX:
3104 val = ((unsigned HOST_WIDE_INT) arg0
3105 > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
3106 break;
3107
3108 case SS_PLUS:
3109 case US_PLUS:
3110 case SS_MINUS:
3111 case US_MINUS:
3112 /* ??? There are simplifications that can be done. */
3113 return 0;
3114
3115 default:
3116 gcc_unreachable ();
3117 }
3118
3119 return gen_int_mode (val, mode);
3120 }
3121
3122 return NULL_RTX;
3123 }
3124
3125
3126 \f
3127 /* Simplify a PLUS or MINUS, at least one of whose operands may be another
3128 PLUS or MINUS.
3129
3130 Rather than test for specific case, we do this by a brute-force method
3131 and do all possible simplifications until no more changes occur. Then
3132 we rebuild the operation. */
3133
3134 struct simplify_plus_minus_op_data
3135 {
3136 rtx op;
3137 short neg;
3138 short ix;
3139 };
3140
3141 static int
3142 simplify_plus_minus_op_data_cmp (const void *p1, const void *p2)
3143 {
3144 const struct simplify_plus_minus_op_data *d1 = p1;
3145 const struct simplify_plus_minus_op_data *d2 = p2;
3146 int result;
3147
3148 result = (commutative_operand_precedence (d2->op)
3149 - commutative_operand_precedence (d1->op));
3150 if (result)
3151 return result;
3152 return d1->ix - d2->ix;
3153 }
3154
3155 static rtx
3156 simplify_plus_minus (enum rtx_code code, enum machine_mode mode, rtx op0,
3157 rtx op1)
3158 {
3159 struct simplify_plus_minus_op_data ops[8];
3160 rtx result, tem;
3161 int n_ops = 2, input_ops = 2;
3162 int first, changed, canonicalized = 0;
3163 int i, j;
3164
3165 memset (ops, 0, sizeof ops);
3166
3167 /* Set up the two operands and then expand them until nothing has been
3168 changed. If we run out of room in our array, give up; this should
3169 almost never happen. */
3170
3171 ops[0].op = op0;
3172 ops[0].neg = 0;
3173 ops[1].op = op1;
3174 ops[1].neg = (code == MINUS);
3175
3176 do
3177 {
3178 changed = 0;
3179
3180 for (i = 0; i < n_ops; i++)
3181 {
3182 rtx this_op = ops[i].op;
3183 int this_neg = ops[i].neg;
3184 enum rtx_code this_code = GET_CODE (this_op);
3185
3186 switch (this_code)
3187 {
3188 case PLUS:
3189 case MINUS:
3190 if (n_ops == 7)
3191 return NULL_RTX;
3192
3193 ops[n_ops].op = XEXP (this_op, 1);
3194 ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
3195 n_ops++;
3196
3197 ops[i].op = XEXP (this_op, 0);
3198 input_ops++;
3199 changed = 1;
3200 canonicalized |= this_neg;
3201 break;
3202
3203 case NEG:
3204 ops[i].op = XEXP (this_op, 0);
3205 ops[i].neg = ! this_neg;
3206 changed = 1;
3207 canonicalized = 1;
3208 break;
3209
3210 case CONST:
3211 if (n_ops < 7
3212 && GET_CODE (XEXP (this_op, 0)) == PLUS
3213 && CONSTANT_P (XEXP (XEXP (this_op, 0), 0))
3214 && CONSTANT_P (XEXP (XEXP (this_op, 0), 1)))
3215 {
3216 ops[i].op = XEXP (XEXP (this_op, 0), 0);
3217 ops[n_ops].op = XEXP (XEXP (this_op, 0), 1);
3218 ops[n_ops].neg = this_neg;
3219 n_ops++;
3220 changed = 1;
3221 canonicalized = 1;
3222 }
3223 break;
3224
3225 case NOT:
3226 /* ~a -> (-a - 1) */
3227 if (n_ops != 7)
3228 {
3229 ops[n_ops].op = constm1_rtx;
3230 ops[n_ops++].neg = this_neg;
3231 ops[i].op = XEXP (this_op, 0);
3232 ops[i].neg = !this_neg;
3233 changed = 1;
3234 canonicalized = 1;
3235 }
3236 break;
3237
3238 case CONST_INT:
3239 if (this_neg)
3240 {
3241 ops[i].op = neg_const_int (mode, this_op);
3242 ops[i].neg = 0;
3243 changed = 1;
3244 canonicalized = 1;
3245 }
3246 break;
3247
3248 default:
3249 break;
3250 }
3251 }
3252 }
3253 while (changed);
3254
3255 gcc_assert (n_ops >= 2);
3256 if (!canonicalized)
3257 {
3258 int n_constants = 0;
3259
3260 for (i = 0; i < n_ops; i++)
3261 if (GET_CODE (ops[i].op) == CONST_INT)
3262 n_constants++;
3263
3264 if (n_constants <= 1)
3265 return NULL_RTX;
3266 }
3267
3268 /* If we only have two operands, we can avoid the loops. */
3269 if (n_ops == 2)
3270 {
3271 enum rtx_code code = ops[0].neg || ops[1].neg ? MINUS : PLUS;
3272 rtx lhs, rhs;
3273
3274 /* Get the two operands. Be careful with the order, especially for
3275 the cases where code == MINUS. */
3276 if (ops[0].neg && ops[1].neg)
3277 {
3278 lhs = gen_rtx_NEG (mode, ops[0].op);
3279 rhs = ops[1].op;
3280 }
3281 else if (ops[0].neg)
3282 {
3283 lhs = ops[1].op;
3284 rhs = ops[0].op;
3285 }
3286 else
3287 {
3288 lhs = ops[0].op;
3289 rhs = ops[1].op;
3290 }
3291
3292 return simplify_const_binary_operation (code, mode, lhs, rhs);
3293 }
3294
3295 /* Now simplify each pair of operands until nothing changes. The first
3296 time through just simplify constants against each other. */
3297
3298 first = 1;
3299 do
3300 {
3301 changed = first;
3302
3303 for (i = 0; i < n_ops - 1; i++)
3304 for (j = i + 1; j < n_ops; j++)
3305 {
3306 rtx lhs = ops[i].op, rhs = ops[j].op;
3307 int lneg = ops[i].neg, rneg = ops[j].neg;
3308
3309 if (lhs != 0 && rhs != 0
3310 && (! first || (CONSTANT_P (lhs) && CONSTANT_P (rhs))))
3311 {
3312 enum rtx_code ncode = PLUS;
3313
3314 if (lneg != rneg)
3315 {
3316 ncode = MINUS;
3317 if (lneg)
3318 tem = lhs, lhs = rhs, rhs = tem;
3319 }
3320 else if (swap_commutative_operands_p (lhs, rhs))
3321 tem = lhs, lhs = rhs, rhs = tem;
3322
3323 tem = simplify_binary_operation (ncode, mode, lhs, rhs);
3324
3325 /* Reject "simplifications" that just wrap the two
3326 arguments in a CONST. Failure to do so can result
3327 in infinite recursion with simplify_binary_operation
3328 when it calls us to simplify CONST operations. */
3329 if (tem
3330 && ! (GET_CODE (tem) == CONST
3331 && GET_CODE (XEXP (tem, 0)) == ncode
3332 && XEXP (XEXP (tem, 0), 0) == lhs
3333 && XEXP (XEXP (tem, 0), 1) == rhs)
3334 /* Don't allow -x + -1 -> ~x simplifications in the
3335 first pass. This allows us the chance to combine
3336 the -1 with other constants. */
3337 && ! (first
3338 && GET_CODE (tem) == NOT
3339 && XEXP (tem, 0) == rhs))
3340 {
3341 lneg &= rneg;
3342 if (GET_CODE (tem) == NEG)
3343 tem = XEXP (tem, 0), lneg = !lneg;
3344 if (GET_CODE (tem) == CONST_INT && lneg)
3345 tem = neg_const_int (mode, tem), lneg = 0;
3346
3347 ops[i].op = tem;
3348 ops[i].neg = lneg;
3349 ops[j].op = NULL_RTX;
3350 changed = 1;
3351 }
3352 }
3353 }
3354
3355 first = 0;
3356 }
3357 while (changed);
3358
3359 /* Pack all the operands to the lower-numbered entries. */
3360 for (i = 0, j = 0; j < n_ops; j++)
3361 if (ops[j].op)
3362 {
3363 ops[i] = ops[j];
3364 /* Stabilize sort. */
3365 ops[i].ix = i;
3366 i++;
3367 }
3368 n_ops = i;
3369
3370 /* Sort the operations based on swap_commutative_operands_p. */
3371 qsort (ops, n_ops, sizeof (*ops), simplify_plus_minus_op_data_cmp);
3372
3373 /* Create (minus -C X) instead of (neg (const (plus X C))). */
3374 if (n_ops == 2
3375 && GET_CODE (ops[1].op) == CONST_INT
3376 && CONSTANT_P (ops[0].op)
3377 && ops[0].neg)
3378 return gen_rtx_fmt_ee (MINUS, mode, ops[1].op, ops[0].op);
3379
3380 /* We suppressed creation of trivial CONST expressions in the
3381 combination loop to avoid recursion. Create one manually now.
3382 The combination loop should have ensured that there is exactly
3383 one CONST_INT, and the sort will have ensured that it is last
3384 in the array and that any other constant will be next-to-last. */
3385
3386 if (n_ops > 1
3387 && GET_CODE (ops[n_ops - 1].op) == CONST_INT
3388 && CONSTANT_P (ops[n_ops - 2].op))
3389 {
3390 rtx value = ops[n_ops - 1].op;
3391 if (ops[n_ops - 1].neg ^ ops[n_ops - 2].neg)
3392 value = neg_const_int (mode, value);
3393 ops[n_ops - 2].op = plus_constant (ops[n_ops - 2].op, INTVAL (value));
3394 n_ops--;
3395 }
3396
3397 /* Put a non-negated operand first, if possible. */
3398
3399 for (i = 0; i < n_ops && ops[i].neg; i++)
3400 continue;
3401 if (i == n_ops)
3402 ops[0].op = gen_rtx_NEG (mode, ops[0].op);
3403 else if (i != 0)
3404 {
3405 tem = ops[0].op;
3406 ops[0] = ops[i];
3407 ops[i].op = tem;
3408 ops[i].neg = 1;
3409 }
3410
3411 /* Now make the result by performing the requested operations. */
3412 result = ops[0].op;
3413 for (i = 1; i < n_ops; i++)
3414 result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
3415 mode, result, ops[i].op);
3416
3417 return result;
3418 }
3419
3420 /* Check whether an operand is suitable for calling simplify_plus_minus. */
3421 static bool
3422 plus_minus_operand_p (rtx x)
3423 {
3424 return GET_CODE (x) == PLUS
3425 || GET_CODE (x) == MINUS
3426 || (GET_CODE (x) == CONST
3427 && GET_CODE (XEXP (x, 0)) == PLUS
3428 && CONSTANT_P (XEXP (XEXP (x, 0), 0))
3429 && CONSTANT_P (XEXP (XEXP (x, 0), 1)));
3430 }
3431
3432 /* Like simplify_binary_operation except used for relational operators.
3433 MODE is the mode of the result. If MODE is VOIDmode, both operands must
3434 not also be VOIDmode.
3435
3436 CMP_MODE specifies in which mode the comparison is done in, so it is
3437 the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
3438 the operands or, if both are VOIDmode, the operands are compared in
3439 "infinite precision". */
3440 rtx
3441 simplify_relational_operation (enum rtx_code code, enum machine_mode mode,
3442 enum machine_mode cmp_mode, rtx op0, rtx op1)
3443 {
3444 rtx tem, trueop0, trueop1;
3445
3446 if (cmp_mode == VOIDmode)
3447 cmp_mode = GET_MODE (op0);
3448 if (cmp_mode == VOIDmode)
3449 cmp_mode = GET_MODE (op1);
3450
3451 tem = simplify_const_relational_operation (code, cmp_mode, op0, op1);
3452 if (tem)
3453 {
3454 if (SCALAR_FLOAT_MODE_P (mode))
3455 {
3456 if (tem == const0_rtx)
3457 return CONST0_RTX (mode);
3458 #ifdef FLOAT_STORE_FLAG_VALUE
3459 {
3460 REAL_VALUE_TYPE val;
3461 val = FLOAT_STORE_FLAG_VALUE (mode);
3462 return CONST_DOUBLE_FROM_REAL_VALUE (val, mode);
3463 }
3464 #else
3465 return NULL_RTX;
3466 #endif
3467 }
3468 if (VECTOR_MODE_P (mode))
3469 {
3470 if (tem == const0_rtx)
3471 return CONST0_RTX (mode);
3472 #ifdef VECTOR_STORE_FLAG_VALUE
3473 {
3474 int i, units;
3475 rtvec v;
3476
3477 rtx val = VECTOR_STORE_FLAG_VALUE (mode);
3478 if (val == NULL_RTX)
3479 return NULL_RTX;
3480 if (val == const1_rtx)
3481 return CONST1_RTX (mode);
3482
3483 units = GET_MODE_NUNITS (mode);
3484 v = rtvec_alloc (units);
3485 for (i = 0; i < units; i++)
3486 RTVEC_ELT (v, i) = val;
3487 return gen_rtx_raw_CONST_VECTOR (mode, v);
3488 }
3489 #else
3490 return NULL_RTX;
3491 #endif
3492 }
3493
3494 return tem;
3495 }
3496
3497 /* For the following tests, ensure const0_rtx is op1. */
3498 if (swap_commutative_operands_p (op0, op1)
3499 || (op0 == const0_rtx && op1 != const0_rtx))
3500 tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
3501
3502 /* If op0 is a compare, extract the comparison arguments from it. */
3503 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
3504 return simplify_relational_operation (code, mode, VOIDmode,
3505 XEXP (op0, 0), XEXP (op0, 1));
3506
3507 if (mode == VOIDmode
3508 || GET_MODE_CLASS (cmp_mode) == MODE_CC
3509 || CC0_P (op0))
3510 return NULL_RTX;
3511
3512 trueop0 = avoid_constant_pool_reference (op0);
3513 trueop1 = avoid_constant_pool_reference (op1);
3514 return simplify_relational_operation_1 (code, mode, cmp_mode,
3515 trueop0, trueop1);
3516 }
3517
3518 /* This part of simplify_relational_operation is only used when CMP_MODE
3519 is not in class MODE_CC (i.e. it is a real comparison).
3520
3521 MODE is the mode of the result, while CMP_MODE specifies in which
3522 mode the comparison is done in, so it is the mode of the operands. */
3523
3524 static rtx
3525 simplify_relational_operation_1 (enum rtx_code code, enum machine_mode mode,
3526 enum machine_mode cmp_mode, rtx op0, rtx op1)
3527 {
3528 enum rtx_code op0code = GET_CODE (op0);
3529
3530 if (GET_CODE (op1) == CONST_INT)
3531 {
3532 if (INTVAL (op1) == 0 && COMPARISON_P (op0))
3533 {
3534 /* If op0 is a comparison, extract the comparison arguments
3535 from it. */
3536 if (code == NE)
3537 {
3538 if (GET_MODE (op0) == mode)
3539 return simplify_rtx (op0);
3540 else
3541 return simplify_gen_relational (GET_CODE (op0), mode, VOIDmode,
3542 XEXP (op0, 0), XEXP (op0, 1));
3543 }
3544 else if (code == EQ)
3545 {
3546 enum rtx_code new_code = reversed_comparison_code (op0, NULL_RTX);
3547 if (new_code != UNKNOWN)
3548 return simplify_gen_relational (new_code, mode, VOIDmode,
3549 XEXP (op0, 0), XEXP (op0, 1));
3550 }
3551 }
3552 }
3553
3554 /* (eq/ne (plus x cst1) cst2) simplifies to (eq/ne x (cst2 - cst1)) */
3555 if ((code == EQ || code == NE)
3556 && (op0code == PLUS || op0code == MINUS)
3557 && CONSTANT_P (op1)
3558 && CONSTANT_P (XEXP (op0, 1))
3559 && (INTEGRAL_MODE_P (cmp_mode) || flag_unsafe_math_optimizations))
3560 {
3561 rtx x = XEXP (op0, 0);
3562 rtx c = XEXP (op0, 1);
3563
3564 c = simplify_gen_binary (op0code == PLUS ? MINUS : PLUS,
3565 cmp_mode, op1, c);
3566 return simplify_gen_relational (code, mode, cmp_mode, x, c);
3567 }
3568
3569 /* (ne:SI (zero_extract:SI FOO (const_int 1) BAR) (const_int 0))) is
3570 the same as (zero_extract:SI FOO (const_int 1) BAR). */
3571 if (code == NE
3572 && op1 == const0_rtx
3573 && GET_MODE_CLASS (mode) == MODE_INT
3574 && cmp_mode != VOIDmode
3575 /* ??? Work-around BImode bugs in the ia64 backend. */
3576 && mode != BImode
3577 && cmp_mode != BImode
3578 && nonzero_bits (op0, cmp_mode) == 1
3579 && STORE_FLAG_VALUE == 1)
3580 return GET_MODE_SIZE (mode) > GET_MODE_SIZE (cmp_mode)
3581 ? simplify_gen_unary (ZERO_EXTEND, mode, op0, cmp_mode)
3582 : lowpart_subreg (mode, op0, cmp_mode);
3583
3584 /* (eq/ne (xor x y) 0) simplifies to (eq/ne x y). */
3585 if ((code == EQ || code == NE)
3586 && op1 == const0_rtx
3587 && op0code == XOR)
3588 return simplify_gen_relational (code, mode, cmp_mode,
3589 XEXP (op0, 0), XEXP (op0, 1));
3590
3591 /* (eq/ne (xor x y) x) simplifies to (eq/ne x 0). */
3592 if ((code == EQ || code == NE)
3593 && op0code == XOR
3594 && rtx_equal_p (XEXP (op0, 0), op1)
3595 && !side_effects_p (XEXP (op0, 1)))
3596 return simplify_gen_relational (code, mode, cmp_mode, op1, const0_rtx);
3597 /* Likewise (eq/ne (xor x y) y) simplifies to (eq/ne y 0). */
3598 if ((code == EQ || code == NE)
3599 && op0code == XOR
3600 && rtx_equal_p (XEXP (op0, 1), op1)
3601 && !side_effects_p (XEXP (op0, 0)))
3602 return simplify_gen_relational (code, mode, cmp_mode, op1, const0_rtx);
3603
3604 /* (eq/ne (xor x C1) C2) simplifies to (eq/ne x (C1^C2)). */
3605 if ((code == EQ || code == NE)
3606 && op0code == XOR
3607 && (GET_CODE (op1) == CONST_INT
3608 || GET_CODE (op1) == CONST_DOUBLE)
3609 && (GET_CODE (XEXP (op0, 1)) == CONST_INT
3610 || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE))
3611 return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 0),
3612 simplify_gen_binary (XOR, cmp_mode,
3613 XEXP (op0, 1), op1));
3614
3615 return NULL_RTX;
3616 }
3617
3618 /* Check if the given comparison (done in the given MODE) is actually a
3619 tautology or a contradiction.
3620 If no simplification is possible, this function returns zero.
3621 Otherwise, it returns either const_true_rtx or const0_rtx. */
3622
3623 rtx
3624 simplify_const_relational_operation (enum rtx_code code,
3625 enum machine_mode mode,
3626 rtx op0, rtx op1)
3627 {
3628 int equal, op0lt, op0ltu, op1lt, op1ltu;
3629 rtx tem;
3630 rtx trueop0;
3631 rtx trueop1;
3632
3633 gcc_assert (mode != VOIDmode
3634 || (GET_MODE (op0) == VOIDmode
3635 && GET_MODE (op1) == VOIDmode));
3636
3637 /* If op0 is a compare, extract the comparison arguments from it. */
3638 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
3639 {
3640 op1 = XEXP (op0, 1);
3641 op0 = XEXP (op0, 0);
3642
3643 if (GET_MODE (op0) != VOIDmode)
3644 mode = GET_MODE (op0);
3645 else if (GET_MODE (op1) != VOIDmode)
3646 mode = GET_MODE (op1);
3647 else
3648 return 0;
3649 }
3650
3651 /* We can't simplify MODE_CC values since we don't know what the
3652 actual comparison is. */
3653 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC || CC0_P (op0))
3654 return 0;
3655
3656 /* Make sure the constant is second. */
3657 if (swap_commutative_operands_p (op0, op1))
3658 {
3659 tem = op0, op0 = op1, op1 = tem;
3660 code = swap_condition (code);
3661 }
3662
3663 trueop0 = avoid_constant_pool_reference (op0);
3664 trueop1 = avoid_constant_pool_reference (op1);
3665
3666 /* For integer comparisons of A and B maybe we can simplify A - B and can
3667 then simplify a comparison of that with zero. If A and B are both either
3668 a register or a CONST_INT, this can't help; testing for these cases will
3669 prevent infinite recursion here and speed things up.
3670
3671 If CODE is an unsigned comparison, then we can never do this optimization,
3672 because it gives an incorrect result if the subtraction wraps around zero.
3673 ANSI C defines unsigned operations such that they never overflow, and
3674 thus such cases can not be ignored; but we cannot do it even for
3675 signed comparisons for languages such as Java, so test flag_wrapv. */
3676
3677 if (!flag_wrapv && INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
3678 && ! ((REG_P (op0) || GET_CODE (trueop0) == CONST_INT)
3679 && (REG_P (op1) || GET_CODE (trueop1) == CONST_INT))
3680 && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
3681 /* We cannot do this for == or != if tem is a nonzero address. */
3682 && ((code != EQ && code != NE) || ! nonzero_address_p (tem))
3683 && code != GTU && code != GEU && code != LTU && code != LEU)
3684 return simplify_const_relational_operation (signed_condition (code),
3685 mode, tem, const0_rtx);
3686
3687 if (flag_unsafe_math_optimizations && code == ORDERED)
3688 return const_true_rtx;
3689
3690 if (flag_unsafe_math_optimizations && code == UNORDERED)
3691 return const0_rtx;
3692
3693 /* For modes without NaNs, if the two operands are equal, we know the
3694 result except if they have side-effects. */
3695 if (! HONOR_NANS (GET_MODE (trueop0))
3696 && rtx_equal_p (trueop0, trueop1)
3697 && ! side_effects_p (trueop0))
3698 equal = 1, op0lt = 0, op0ltu = 0, op1lt = 0, op1ltu = 0;
3699
3700 /* If the operands are floating-point constants, see if we can fold
3701 the result. */
3702 else if (GET_CODE (trueop0) == CONST_DOUBLE
3703 && GET_CODE (trueop1) == CONST_DOUBLE
3704 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop0)))
3705 {
3706 REAL_VALUE_TYPE d0, d1;
3707
3708 REAL_VALUE_FROM_CONST_DOUBLE (d0, trueop0);
3709 REAL_VALUE_FROM_CONST_DOUBLE (d1, trueop1);
3710
3711 /* Comparisons are unordered iff at least one of the values is NaN. */
3712 if (REAL_VALUE_ISNAN (d0) || REAL_VALUE_ISNAN (d1))
3713 switch (code)
3714 {
3715 case UNEQ:
3716 case UNLT:
3717 case UNGT:
3718 case UNLE:
3719 case UNGE:
3720 case NE:
3721 case UNORDERED:
3722 return const_true_rtx;
3723 case EQ:
3724 case LT:
3725 case GT:
3726 case LE:
3727 case GE:
3728 case LTGT:
3729 case ORDERED:
3730 return const0_rtx;
3731 default:
3732 return 0;
3733 }
3734
3735 equal = REAL_VALUES_EQUAL (d0, d1);
3736 op0lt = op0ltu = REAL_VALUES_LESS (d0, d1);
3737 op1lt = op1ltu = REAL_VALUES_LESS (d1, d0);
3738 }
3739
3740 /* Otherwise, see if the operands are both integers. */
3741 else if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
3742 && (GET_CODE (trueop0) == CONST_DOUBLE
3743 || GET_CODE (trueop0) == CONST_INT)
3744 && (GET_CODE (trueop1) == CONST_DOUBLE
3745 || GET_CODE (trueop1) == CONST_INT))
3746 {
3747 int width = GET_MODE_BITSIZE (mode);
3748 HOST_WIDE_INT l0s, h0s, l1s, h1s;
3749 unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
3750
3751 /* Get the two words comprising each integer constant. */
3752 if (GET_CODE (trueop0) == CONST_DOUBLE)
3753 {
3754 l0u = l0s = CONST_DOUBLE_LOW (trueop0);
3755 h0u = h0s = CONST_DOUBLE_HIGH (trueop0);
3756 }
3757 else
3758 {
3759 l0u = l0s = INTVAL (trueop0);
3760 h0u = h0s = HWI_SIGN_EXTEND (l0s);
3761 }
3762
3763 if (GET_CODE (trueop1) == CONST_DOUBLE)
3764 {
3765 l1u = l1s = CONST_DOUBLE_LOW (trueop1);
3766 h1u = h1s = CONST_DOUBLE_HIGH (trueop1);
3767 }
3768 else
3769 {
3770 l1u = l1s = INTVAL (trueop1);
3771 h1u = h1s = HWI_SIGN_EXTEND (l1s);
3772 }
3773
3774 /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
3775 we have to sign or zero-extend the values. */
3776 if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
3777 {
3778 l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
3779 l1u &= ((HOST_WIDE_INT) 1 << width) - 1;
3780
3781 if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
3782 l0s |= ((HOST_WIDE_INT) (-1) << width);
3783
3784 if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
3785 l1s |= ((HOST_WIDE_INT) (-1) << width);
3786 }
3787 if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
3788 h0u = h1u = 0, h0s = HWI_SIGN_EXTEND (l0s), h1s = HWI_SIGN_EXTEND (l1s);
3789
3790 equal = (h0u == h1u && l0u == l1u);
3791 op0lt = (h0s < h1s || (h0s == h1s && l0u < l1u));
3792 op1lt = (h1s < h0s || (h1s == h0s && l1u < l0u));
3793 op0ltu = (h0u < h1u || (h0u == h1u && l0u < l1u));
3794 op1ltu = (h1u < h0u || (h1u == h0u && l1u < l0u));
3795 }
3796
3797 /* Otherwise, there are some code-specific tests we can make. */
3798 else
3799 {
3800 /* Optimize comparisons with upper and lower bounds. */
3801 if (SCALAR_INT_MODE_P (mode)
3802 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3803 {
3804 rtx mmin, mmax;
3805 int sign;
3806
3807 if (code == GEU
3808 || code == LEU
3809 || code == GTU
3810 || code == LTU)
3811 sign = 0;
3812 else
3813 sign = 1;
3814
3815 get_mode_bounds (mode, sign, mode, &mmin, &mmax);
3816
3817 tem = NULL_RTX;
3818 switch (code)
3819 {
3820 case GEU:
3821 case GE:
3822 /* x >= min is always true. */
3823 if (rtx_equal_p (trueop1, mmin))
3824 tem = const_true_rtx;
3825 else
3826 break;
3827
3828 case LEU:
3829 case LE:
3830 /* x <= max is always true. */
3831 if (rtx_equal_p (trueop1, mmax))
3832 tem = const_true_rtx;
3833 break;
3834
3835 case GTU:
3836 case GT:
3837 /* x > max is always false. */
3838 if (rtx_equal_p (trueop1, mmax))
3839 tem = const0_rtx;
3840 break;
3841
3842 case LTU:
3843 case LT:
3844 /* x < min is always false. */
3845 if (rtx_equal_p (trueop1, mmin))
3846 tem = const0_rtx;
3847 break;
3848
3849 default:
3850 break;
3851 }
3852 if (tem == const0_rtx
3853 || tem == const_true_rtx)
3854 return tem;
3855 }
3856
3857 switch (code)
3858 {
3859 case EQ:
3860 if (trueop1 == const0_rtx && nonzero_address_p (op0))
3861 return const0_rtx;
3862 break;
3863
3864 case NE:
3865 if (trueop1 == const0_rtx && nonzero_address_p (op0))
3866 return const_true_rtx;
3867 break;
3868
3869 case LT:
3870 /* Optimize abs(x) < 0.0. */
3871 if (trueop1 == CONST0_RTX (mode)
3872 && !HONOR_SNANS (mode)
3873 && !(flag_wrapv && INTEGRAL_MODE_P (mode)))
3874 {
3875 tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
3876 : trueop0;
3877 if (GET_CODE (tem) == ABS)
3878 return const0_rtx;
3879 }
3880 break;
3881
3882 case GE:
3883 /* Optimize abs(x) >= 0.0. */
3884 if (trueop1 == CONST0_RTX (mode)
3885 && !HONOR_NANS (mode)
3886 && !(flag_wrapv && INTEGRAL_MODE_P (mode)))
3887 {
3888 tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
3889 : trueop0;
3890 if (GET_CODE (tem) == ABS)
3891 return const_true_rtx;
3892 }
3893 break;
3894
3895 case UNGE:
3896 /* Optimize ! (abs(x) < 0.0). */
3897 if (trueop1 == CONST0_RTX (mode))
3898 {
3899 tem = GET_CODE (trueop0) == FLOAT_EXTEND ? XEXP (trueop0, 0)
3900 : trueop0;
3901 if (GET_CODE (tem) == ABS)
3902 return const_true_rtx;
3903 }
3904 break;
3905
3906 default:
3907 break;
3908 }
3909
3910 return 0;
3911 }
3912
3913 /* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
3914 as appropriate. */
3915 switch (code)
3916 {
3917 case EQ:
3918 case UNEQ:
3919 return equal ? const_true_rtx : const0_rtx;
3920 case NE:
3921 case LTGT:
3922 return ! equal ? const_true_rtx : const0_rtx;
3923 case LT:
3924 case UNLT:
3925 return op0lt ? const_true_rtx : const0_rtx;
3926 case GT:
3927 case UNGT:
3928 return op1lt ? const_true_rtx : const0_rtx;
3929 case LTU:
3930 return op0ltu ? const_true_rtx : const0_rtx;
3931 case GTU:
3932 return op1ltu ? const_true_rtx : const0_rtx;
3933 case LE:
3934 case UNLE:
3935 return equal || op0lt ? const_true_rtx : const0_rtx;
3936 case GE:
3937 case UNGE:
3938 return equal || op1lt ? const_true_rtx : const0_rtx;
3939 case LEU:
3940 return equal || op0ltu ? const_true_rtx : const0_rtx;
3941 case GEU:
3942 return equal || op1ltu ? const_true_rtx : const0_rtx;
3943 case ORDERED:
3944 return const_true_rtx;
3945 case UNORDERED:
3946 return const0_rtx;
3947 default:
3948 gcc_unreachable ();
3949 }
3950 }
3951 \f
3952 /* Simplify CODE, an operation with result mode MODE and three operands,
3953 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
3954 a constant. Return 0 if no simplifications is possible. */
3955
3956 rtx
3957 simplify_ternary_operation (enum rtx_code code, enum machine_mode mode,
3958 enum machine_mode op0_mode, rtx op0, rtx op1,
3959 rtx op2)
3960 {
3961 unsigned int width = GET_MODE_BITSIZE (mode);
3962
3963 /* VOIDmode means "infinite" precision. */
3964 if (width == 0)
3965 width = HOST_BITS_PER_WIDE_INT;
3966
3967 switch (code)
3968 {
3969 case SIGN_EXTRACT:
3970 case ZERO_EXTRACT:
3971 if (GET_CODE (op0) == CONST_INT
3972 && GET_CODE (op1) == CONST_INT
3973 && GET_CODE (op2) == CONST_INT
3974 && ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
3975 && width <= (unsigned) HOST_BITS_PER_WIDE_INT)
3976 {
3977 /* Extracting a bit-field from a constant */
3978 HOST_WIDE_INT val = INTVAL (op0);
3979
3980 if (BITS_BIG_ENDIAN)
3981 val >>= (GET_MODE_BITSIZE (op0_mode)
3982 - INTVAL (op2) - INTVAL (op1));
3983 else
3984 val >>= INTVAL (op2);
3985
3986 if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
3987 {
3988 /* First zero-extend. */
3989 val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
3990 /* If desired, propagate sign bit. */
3991 if (code == SIGN_EXTRACT
3992 && (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
3993 val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
3994 }
3995
3996 /* Clear the bits that don't belong in our mode,
3997 unless they and our sign bit are all one.
3998 So we get either a reasonable negative value or a reasonable
3999 unsigned value for this mode. */
4000 if (width < HOST_BITS_PER_WIDE_INT
4001 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
4002 != ((HOST_WIDE_INT) (-1) << (width - 1))))
4003 val &= ((HOST_WIDE_INT) 1 << width) - 1;
4004
4005 return gen_int_mode (val, mode);
4006 }
4007 break;
4008
4009 case IF_THEN_ELSE:
4010 if (GET_CODE (op0) == CONST_INT)
4011 return op0 != const0_rtx ? op1 : op2;
4012
4013 /* Convert c ? a : a into "a". */
4014 if (rtx_equal_p (op1, op2) && ! side_effects_p (op0))
4015 return op1;
4016
4017 /* Convert a != b ? a : b into "a". */
4018 if (GET_CODE (op0) == NE
4019 && ! side_effects_p (op0)
4020 && ! HONOR_NANS (mode)
4021 && ! HONOR_SIGNED_ZEROS (mode)
4022 && ((rtx_equal_p (XEXP (op0, 0), op1)
4023 && rtx_equal_p (XEXP (op0, 1), op2))
4024 || (rtx_equal_p (XEXP (op0, 0), op2)
4025 && rtx_equal_p (XEXP (op0, 1), op1))))
4026 return op1;
4027
4028 /* Convert a == b ? a : b into "b". */
4029 if (GET_CODE (op0) == EQ
4030 && ! side_effects_p (op0)
4031 && ! HONOR_NANS (mode)
4032 && ! HONOR_SIGNED_ZEROS (mode)
4033 && ((rtx_equal_p (XEXP (op0, 0), op1)
4034 && rtx_equal_p (XEXP (op0, 1), op2))
4035 || (rtx_equal_p (XEXP (op0, 0), op2)
4036 && rtx_equal_p (XEXP (op0, 1), op1))))
4037 return op2;
4038
4039 if (COMPARISON_P (op0) && ! side_effects_p (op0))
4040 {
4041 enum machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
4042 ? GET_MODE (XEXP (op0, 1))
4043 : GET_MODE (XEXP (op0, 0)));
4044 rtx temp;
4045
4046 /* Look for happy constants in op1 and op2. */
4047 if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
4048 {
4049 HOST_WIDE_INT t = INTVAL (op1);
4050 HOST_WIDE_INT f = INTVAL (op2);
4051
4052 if (t == STORE_FLAG_VALUE && f == 0)
4053 code = GET_CODE (op0);
4054 else if (t == 0 && f == STORE_FLAG_VALUE)
4055 {
4056 enum rtx_code tmp;
4057 tmp = reversed_comparison_code (op0, NULL_RTX);
4058 if (tmp == UNKNOWN)
4059 break;
4060 code = tmp;
4061 }
4062 else
4063 break;
4064
4065 return simplify_gen_relational (code, mode, cmp_mode,
4066 XEXP (op0, 0), XEXP (op0, 1));
4067 }
4068
4069 if (cmp_mode == VOIDmode)
4070 cmp_mode = op0_mode;
4071 temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
4072 cmp_mode, XEXP (op0, 0),
4073 XEXP (op0, 1));
4074
4075 /* See if any simplifications were possible. */
4076 if (temp)
4077 {
4078 if (GET_CODE (temp) == CONST_INT)
4079 return temp == const0_rtx ? op2 : op1;
4080 else if (temp)
4081 return gen_rtx_IF_THEN_ELSE (mode, temp, op1, op2);
4082 }
4083 }
4084 break;
4085
4086 case VEC_MERGE:
4087 gcc_assert (GET_MODE (op0) == mode);
4088 gcc_assert (GET_MODE (op1) == mode);
4089 gcc_assert (VECTOR_MODE_P (mode));
4090 op2 = avoid_constant_pool_reference (op2);
4091 if (GET_CODE (op2) == CONST_INT)
4092 {
4093 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
4094 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
4095 int mask = (1 << n_elts) - 1;
4096
4097 if (!(INTVAL (op2) & mask))
4098 return op1;
4099 if ((INTVAL (op2) & mask) == mask)
4100 return op0;
4101
4102 op0 = avoid_constant_pool_reference (op0);
4103 op1 = avoid_constant_pool_reference (op1);
4104 if (GET_CODE (op0) == CONST_VECTOR
4105 && GET_CODE (op1) == CONST_VECTOR)
4106 {
4107 rtvec v = rtvec_alloc (n_elts);
4108 unsigned int i;
4109
4110 for (i = 0; i < n_elts; i++)
4111 RTVEC_ELT (v, i) = (INTVAL (op2) & (1 << i)
4112 ? CONST_VECTOR_ELT (op0, i)
4113 : CONST_VECTOR_ELT (op1, i));
4114 return gen_rtx_CONST_VECTOR (mode, v);
4115 }
4116 }
4117 break;
4118
4119 default:
4120 gcc_unreachable ();
4121 }
4122
4123 return 0;
4124 }
4125
4126 /* Evaluate a SUBREG of a CONST_INT or CONST_DOUBLE or CONST_VECTOR,
4127 returning another CONST_INT or CONST_DOUBLE or CONST_VECTOR.
4128
4129 Works by unpacking OP into a collection of 8-bit values
4130 represented as a little-endian array of 'unsigned char', selecting by BYTE,
4131 and then repacking them again for OUTERMODE. */
4132
4133 static rtx
4134 simplify_immed_subreg (enum machine_mode outermode, rtx op,
4135 enum machine_mode innermode, unsigned int byte)
4136 {
4137 /* We support up to 512-bit values (for V8DFmode). */
4138 enum {
4139 max_bitsize = 512,
4140 value_bit = 8,
4141 value_mask = (1 << value_bit) - 1
4142 };
4143 unsigned char value[max_bitsize / value_bit];
4144 int value_start;
4145 int i;
4146 int elem;
4147
4148 int num_elem;
4149 rtx * elems;
4150 int elem_bitsize;
4151 rtx result_s;
4152 rtvec result_v = NULL;
4153 enum mode_class outer_class;
4154 enum machine_mode outer_submode;
4155
4156 /* Some ports misuse CCmode. */
4157 if (GET_MODE_CLASS (outermode) == MODE_CC && GET_CODE (op) == CONST_INT)
4158 return op;
4159
4160 /* We have no way to represent a complex constant at the rtl level. */
4161 if (COMPLEX_MODE_P (outermode))
4162 return NULL_RTX;
4163
4164 /* Unpack the value. */
4165
4166 if (GET_CODE (op) == CONST_VECTOR)
4167 {
4168 num_elem = CONST_VECTOR_NUNITS (op);
4169 elems = &CONST_VECTOR_ELT (op, 0);
4170 elem_bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (innermode));
4171 }
4172 else
4173 {
4174 num_elem = 1;
4175 elems = &op;
4176 elem_bitsize = max_bitsize;
4177 }
4178 /* If this asserts, it is too complicated; reducing value_bit may help. */
4179 gcc_assert (BITS_PER_UNIT % value_bit == 0);
4180 /* I don't know how to handle endianness of sub-units. */
4181 gcc_assert (elem_bitsize % BITS_PER_UNIT == 0);
4182
4183 for (elem = 0; elem < num_elem; elem++)
4184 {
4185 unsigned char * vp;
4186 rtx el = elems[elem];
4187
4188 /* Vectors are kept in target memory order. (This is probably
4189 a mistake.) */
4190 {
4191 unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
4192 unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
4193 / BITS_PER_UNIT);
4194 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
4195 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
4196 unsigned bytele = (subword_byte % UNITS_PER_WORD
4197 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
4198 vp = value + (bytele * BITS_PER_UNIT) / value_bit;
4199 }
4200
4201 switch (GET_CODE (el))
4202 {
4203 case CONST_INT:
4204 for (i = 0;
4205 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
4206 i += value_bit)
4207 *vp++ = INTVAL (el) >> i;
4208 /* CONST_INTs are always logically sign-extended. */
4209 for (; i < elem_bitsize; i += value_bit)
4210 *vp++ = INTVAL (el) < 0 ? -1 : 0;
4211 break;
4212
4213 case CONST_DOUBLE:
4214 if (GET_MODE (el) == VOIDmode)
4215 {
4216 /* If this triggers, someone should have generated a
4217 CONST_INT instead. */
4218 gcc_assert (elem_bitsize > HOST_BITS_PER_WIDE_INT);
4219
4220 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
4221 *vp++ = CONST_DOUBLE_LOW (el) >> i;
4222 while (i < HOST_BITS_PER_WIDE_INT * 2 && i < elem_bitsize)
4223 {
4224 *vp++
4225 = CONST_DOUBLE_HIGH (el) >> (i - HOST_BITS_PER_WIDE_INT);
4226 i += value_bit;
4227 }
4228 /* It shouldn't matter what's done here, so fill it with
4229 zero. */
4230 for (; i < elem_bitsize; i += value_bit)
4231 *vp++ = 0;
4232 }
4233 else
4234 {
4235 long tmp[max_bitsize / 32];
4236 int bitsize = GET_MODE_BITSIZE (GET_MODE (el));
4237
4238 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (el)));
4239 gcc_assert (bitsize <= elem_bitsize);
4240 gcc_assert (bitsize % value_bit == 0);
4241
4242 real_to_target (tmp, CONST_DOUBLE_REAL_VALUE (el),
4243 GET_MODE (el));
4244
4245 /* real_to_target produces its result in words affected by
4246 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
4247 and use WORDS_BIG_ENDIAN instead; see the documentation
4248 of SUBREG in rtl.texi. */
4249 for (i = 0; i < bitsize; i += value_bit)
4250 {
4251 int ibase;
4252 if (WORDS_BIG_ENDIAN)
4253 ibase = bitsize - 1 - i;
4254 else
4255 ibase = i;
4256 *vp++ = tmp[ibase / 32] >> i % 32;
4257 }
4258
4259 /* It shouldn't matter what's done here, so fill it with
4260 zero. */
4261 for (; i < elem_bitsize; i += value_bit)
4262 *vp++ = 0;
4263 }
4264 break;
4265
4266 default:
4267 gcc_unreachable ();
4268 }
4269 }
4270
4271 /* Now, pick the right byte to start with. */
4272 /* Renumber BYTE so that the least-significant byte is byte 0. A special
4273 case is paradoxical SUBREGs, which shouldn't be adjusted since they
4274 will already have offset 0. */
4275 if (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode))
4276 {
4277 unsigned ibyte = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode)
4278 - byte);
4279 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
4280 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
4281 byte = (subword_byte % UNITS_PER_WORD
4282 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
4283 }
4284
4285 /* BYTE should still be inside OP. (Note that BYTE is unsigned,
4286 so if it's become negative it will instead be very large.) */
4287 gcc_assert (byte < GET_MODE_SIZE (innermode));
4288
4289 /* Convert from bytes to chunks of size value_bit. */
4290 value_start = byte * (BITS_PER_UNIT / value_bit);
4291
4292 /* Re-pack the value. */
4293
4294 if (VECTOR_MODE_P (outermode))
4295 {
4296 num_elem = GET_MODE_NUNITS (outermode);
4297 result_v = rtvec_alloc (num_elem);
4298 elems = &RTVEC_ELT (result_v, 0);
4299 outer_submode = GET_MODE_INNER (outermode);
4300 }
4301 else
4302 {
4303 num_elem = 1;
4304 elems = &result_s;
4305 outer_submode = outermode;
4306 }
4307
4308 outer_class = GET_MODE_CLASS (outer_submode);
4309 elem_bitsize = GET_MODE_BITSIZE (outer_submode);
4310
4311 gcc_assert (elem_bitsize % value_bit == 0);
4312 gcc_assert (elem_bitsize + value_start * value_bit <= max_bitsize);
4313
4314 for (elem = 0; elem < num_elem; elem++)
4315 {
4316 unsigned char *vp;
4317
4318 /* Vectors are stored in target memory order. (This is probably
4319 a mistake.) */
4320 {
4321 unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
4322 unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
4323 / BITS_PER_UNIT);
4324 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
4325 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
4326 unsigned bytele = (subword_byte % UNITS_PER_WORD
4327 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
4328 vp = value + value_start + (bytele * BITS_PER_UNIT) / value_bit;
4329 }
4330
4331 switch (outer_class)
4332 {
4333 case MODE_INT:
4334 case MODE_PARTIAL_INT:
4335 {
4336 unsigned HOST_WIDE_INT hi = 0, lo = 0;
4337
4338 for (i = 0;
4339 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
4340 i += value_bit)
4341 lo |= (HOST_WIDE_INT)(*vp++ & value_mask) << i;
4342 for (; i < elem_bitsize; i += value_bit)
4343 hi |= ((HOST_WIDE_INT)(*vp++ & value_mask)
4344 << (i - HOST_BITS_PER_WIDE_INT));
4345
4346 /* immed_double_const doesn't call trunc_int_for_mode. I don't
4347 know why. */
4348 if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
4349 elems[elem] = gen_int_mode (lo, outer_submode);
4350 else if (elem_bitsize <= 2 * HOST_BITS_PER_WIDE_INT)
4351 elems[elem] = immed_double_const (lo, hi, outer_submode);
4352 else
4353 return NULL_RTX;
4354 }
4355 break;
4356
4357 case MODE_FLOAT:
4358 case MODE_DECIMAL_FLOAT:
4359 {
4360 REAL_VALUE_TYPE r;
4361 long tmp[max_bitsize / 32];
4362
4363 /* real_from_target wants its input in words affected by
4364 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
4365 and use WORDS_BIG_ENDIAN instead; see the documentation
4366 of SUBREG in rtl.texi. */
4367 for (i = 0; i < max_bitsize / 32; i++)
4368 tmp[i] = 0;
4369 for (i = 0; i < elem_bitsize; i += value_bit)
4370 {
4371 int ibase;
4372 if (WORDS_BIG_ENDIAN)
4373 ibase = elem_bitsize - 1 - i;
4374 else
4375 ibase = i;
4376 tmp[ibase / 32] |= (*vp++ & value_mask) << i % 32;
4377 }
4378
4379 real_from_target (&r, tmp, outer_submode);
4380 elems[elem] = CONST_DOUBLE_FROM_REAL_VALUE (r, outer_submode);
4381 }
4382 break;
4383
4384 default:
4385 gcc_unreachable ();
4386 }
4387 }
4388 if (VECTOR_MODE_P (outermode))
4389 return gen_rtx_CONST_VECTOR (outermode, result_v);
4390 else
4391 return result_s;
4392 }
4393
4394 /* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
4395 Return 0 if no simplifications are possible. */
4396 rtx
4397 simplify_subreg (enum machine_mode outermode, rtx op,
4398 enum machine_mode innermode, unsigned int byte)
4399 {
4400 /* Little bit of sanity checking. */
4401 gcc_assert (innermode != VOIDmode);
4402 gcc_assert (outermode != VOIDmode);
4403 gcc_assert (innermode != BLKmode);
4404 gcc_assert (outermode != BLKmode);
4405
4406 gcc_assert (GET_MODE (op) == innermode
4407 || GET_MODE (op) == VOIDmode);
4408
4409 gcc_assert ((byte % GET_MODE_SIZE (outermode)) == 0);
4410 gcc_assert (byte < GET_MODE_SIZE (innermode));
4411
4412 if (outermode == innermode && !byte)
4413 return op;
4414
4415 if (GET_CODE (op) == CONST_INT
4416 || GET_CODE (op) == CONST_DOUBLE
4417 || GET_CODE (op) == CONST_VECTOR)
4418 return simplify_immed_subreg (outermode, op, innermode, byte);
4419
4420 /* Changing mode twice with SUBREG => just change it once,
4421 or not at all if changing back op starting mode. */
4422 if (GET_CODE (op) == SUBREG)
4423 {
4424 enum machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
4425 int final_offset = byte + SUBREG_BYTE (op);
4426 rtx newx;
4427
4428 if (outermode == innermostmode
4429 && byte == 0 && SUBREG_BYTE (op) == 0)
4430 return SUBREG_REG (op);
4431
4432 /* The SUBREG_BYTE represents offset, as if the value were stored
4433 in memory. Irritating exception is paradoxical subreg, where
4434 we define SUBREG_BYTE to be 0. On big endian machines, this
4435 value should be negative. For a moment, undo this exception. */
4436 if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
4437 {
4438 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
4439 if (WORDS_BIG_ENDIAN)
4440 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
4441 if (BYTES_BIG_ENDIAN)
4442 final_offset += difference % UNITS_PER_WORD;
4443 }
4444 if (SUBREG_BYTE (op) == 0
4445 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
4446 {
4447 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
4448 if (WORDS_BIG_ENDIAN)
4449 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
4450 if (BYTES_BIG_ENDIAN)
4451 final_offset += difference % UNITS_PER_WORD;
4452 }
4453
4454 /* See whether resulting subreg will be paradoxical. */
4455 if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
4456 {
4457 /* In nonparadoxical subregs we can't handle negative offsets. */
4458 if (final_offset < 0)
4459 return NULL_RTX;
4460 /* Bail out in case resulting subreg would be incorrect. */
4461 if (final_offset % GET_MODE_SIZE (outermode)
4462 || (unsigned) final_offset >= GET_MODE_SIZE (innermostmode))
4463 return NULL_RTX;
4464 }
4465 else
4466 {
4467 int offset = 0;
4468 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
4469
4470 /* In paradoxical subreg, see if we are still looking on lower part.
4471 If so, our SUBREG_BYTE will be 0. */
4472 if (WORDS_BIG_ENDIAN)
4473 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
4474 if (BYTES_BIG_ENDIAN)
4475 offset += difference % UNITS_PER_WORD;
4476 if (offset == final_offset)
4477 final_offset = 0;
4478 else
4479 return NULL_RTX;
4480 }
4481
4482 /* Recurse for further possible simplifications. */
4483 newx = simplify_subreg (outermode, SUBREG_REG (op), innermostmode,
4484 final_offset);
4485 if (newx)
4486 return newx;
4487 if (validate_subreg (outermode, innermostmode,
4488 SUBREG_REG (op), final_offset))
4489 return gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
4490 return NULL_RTX;
4491 }
4492
4493 /* Merge implicit and explicit truncations. */
4494
4495 if (GET_CODE (op) == TRUNCATE
4496 && GET_MODE_SIZE (outermode) < GET_MODE_SIZE (innermode)
4497 && subreg_lowpart_offset (outermode, innermode) == byte)
4498 return simplify_gen_unary (TRUNCATE, outermode, XEXP (op, 0),
4499 GET_MODE (XEXP (op, 0)));
4500
4501 /* SUBREG of a hard register => just change the register number
4502 and/or mode. If the hard register is not valid in that mode,
4503 suppress this simplification. If the hard register is the stack,
4504 frame, or argument pointer, leave this as a SUBREG. */
4505
4506 if (REG_P (op)
4507 && REGNO (op) < FIRST_PSEUDO_REGISTER
4508 #ifdef CANNOT_CHANGE_MODE_CLASS
4509 && ! (REG_CANNOT_CHANGE_MODE_P (REGNO (op), innermode, outermode)
4510 && GET_MODE_CLASS (innermode) != MODE_COMPLEX_INT
4511 && GET_MODE_CLASS (innermode) != MODE_COMPLEX_FLOAT)
4512 #endif
4513 && ((reload_completed && !frame_pointer_needed)
4514 || (REGNO (op) != FRAME_POINTER_REGNUM
4515 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4516 && REGNO (op) != HARD_FRAME_POINTER_REGNUM
4517 #endif
4518 ))
4519 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4520 && REGNO (op) != ARG_POINTER_REGNUM
4521 #endif
4522 && REGNO (op) != STACK_POINTER_REGNUM
4523 && subreg_offset_representable_p (REGNO (op), innermode,
4524 byte, outermode))
4525 {
4526 unsigned int regno = REGNO (op);
4527 unsigned int final_regno
4528 = regno + subreg_regno_offset (regno, innermode, byte, outermode);
4529
4530 /* ??? We do allow it if the current REG is not valid for
4531 its mode. This is a kludge to work around how float/complex
4532 arguments are passed on 32-bit SPARC and should be fixed. */
4533 if (HARD_REGNO_MODE_OK (final_regno, outermode)
4534 || ! HARD_REGNO_MODE_OK (regno, innermode))
4535 {
4536 rtx x = gen_rtx_REG_offset (op, outermode, final_regno, byte);
4537
4538 /* Propagate original regno. We don't have any way to specify
4539 the offset inside original regno, so do so only for lowpart.
4540 The information is used only by alias analysis that can not
4541 grog partial register anyway. */
4542
4543 if (subreg_lowpart_offset (outermode, innermode) == byte)
4544 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (op);
4545 return x;
4546 }
4547 }
4548
4549 /* If we have a SUBREG of a register that we are replacing and we are
4550 replacing it with a MEM, make a new MEM and try replacing the
4551 SUBREG with it. Don't do this if the MEM has a mode-dependent address
4552 or if we would be widening it. */
4553
4554 if (MEM_P (op)
4555 && ! mode_dependent_address_p (XEXP (op, 0))
4556 /* Allow splitting of volatile memory references in case we don't
4557 have instruction to move the whole thing. */
4558 && (! MEM_VOLATILE_P (op)
4559 || ! have_insn_for (SET, innermode))
4560 && GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
4561 return adjust_address_nv (op, outermode, byte);
4562
4563 /* Handle complex values represented as CONCAT
4564 of real and imaginary part. */
4565 if (GET_CODE (op) == CONCAT)
4566 {
4567 unsigned int inner_size, final_offset;
4568 rtx part, res;
4569
4570 inner_size = GET_MODE_UNIT_SIZE (innermode);
4571 part = byte < inner_size ? XEXP (op, 0) : XEXP (op, 1);
4572 final_offset = byte % inner_size;
4573 if (final_offset + GET_MODE_SIZE (outermode) > inner_size)
4574 return NULL_RTX;
4575
4576 res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
4577 if (res)
4578 return res;
4579 if (validate_subreg (outermode, GET_MODE (part), part, final_offset))
4580 return gen_rtx_SUBREG (outermode, part, final_offset);
4581 return NULL_RTX;
4582 }
4583
4584 /* Optimize SUBREG truncations of zero and sign extended values. */
4585 if ((GET_CODE (op) == ZERO_EXTEND
4586 || GET_CODE (op) == SIGN_EXTEND)
4587 && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode))
4588 {
4589 unsigned int bitpos = subreg_lsb_1 (outermode, innermode, byte);
4590
4591 /* If we're requesting the lowpart of a zero or sign extension,
4592 there are three possibilities. If the outermode is the same
4593 as the origmode, we can omit both the extension and the subreg.
4594 If the outermode is not larger than the origmode, we can apply
4595 the truncation without the extension. Finally, if the outermode
4596 is larger than the origmode, but both are integer modes, we
4597 can just extend to the appropriate mode. */
4598 if (bitpos == 0)
4599 {
4600 enum machine_mode origmode = GET_MODE (XEXP (op, 0));
4601 if (outermode == origmode)
4602 return XEXP (op, 0);
4603 if (GET_MODE_BITSIZE (outermode) <= GET_MODE_BITSIZE (origmode))
4604 return simplify_gen_subreg (outermode, XEXP (op, 0), origmode,
4605 subreg_lowpart_offset (outermode,
4606 origmode));
4607 if (SCALAR_INT_MODE_P (outermode))
4608 return simplify_gen_unary (GET_CODE (op), outermode,
4609 XEXP (op, 0), origmode);
4610 }
4611
4612 /* A SUBREG resulting from a zero extension may fold to zero if
4613 it extracts higher bits that the ZERO_EXTEND's source bits. */
4614 if (GET_CODE (op) == ZERO_EXTEND
4615 && bitpos >= GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0))))
4616 return CONST0_RTX (outermode);
4617 }
4618
4619 /* Simplify (subreg:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C), 0) into
4620 to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
4621 the outer subreg is effectively a truncation to the original mode. */
4622 if ((GET_CODE (op) == LSHIFTRT
4623 || GET_CODE (op) == ASHIFTRT)
4624 && SCALAR_INT_MODE_P (outermode)
4625 /* Ensure that OUTERMODE is at least twice as wide as the INNERMODE
4626 to avoid the possibility that an outer LSHIFTRT shifts by more
4627 than the sign extension's sign_bit_copies and introduces zeros
4628 into the high bits of the result. */
4629 && (2 * GET_MODE_BITSIZE (outermode)) <= GET_MODE_BITSIZE (innermode)
4630 && GET_CODE (XEXP (op, 1)) == CONST_INT
4631 && GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
4632 && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
4633 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
4634 && subreg_lsb_1 (outermode, innermode, byte) == 0)
4635 return simplify_gen_binary (ASHIFTRT, outermode,
4636 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
4637
4638 /* Likewise (subreg:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C), 0) into
4639 to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
4640 the outer subreg is effectively a truncation to the original mode. */
4641 if ((GET_CODE (op) == LSHIFTRT
4642 || GET_CODE (op) == ASHIFTRT)
4643 && SCALAR_INT_MODE_P (outermode)
4644 && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode)
4645 && GET_CODE (XEXP (op, 1)) == CONST_INT
4646 && GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
4647 && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
4648 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
4649 && subreg_lsb_1 (outermode, innermode, byte) == 0)
4650 return simplify_gen_binary (LSHIFTRT, outermode,
4651 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
4652
4653 /* Likewise (subreg:QI (ashift:SI (zero_extend:SI (x:QI)) C), 0) into
4654 to (ashift:QI (x:QI) C), where C is a suitable small constant and
4655 the outer subreg is effectively a truncation to the original mode. */
4656 if (GET_CODE (op) == ASHIFT
4657 && SCALAR_INT_MODE_P (outermode)
4658 && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode)
4659 && GET_CODE (XEXP (op, 1)) == CONST_INT
4660 && (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
4661 || GET_CODE (XEXP (op, 0)) == SIGN_EXTEND)
4662 && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
4663 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
4664 && subreg_lsb_1 (outermode, innermode, byte) == 0)
4665 return simplify_gen_binary (ASHIFT, outermode,
4666 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
4667
4668 return NULL_RTX;
4669 }
4670
4671 /* Make a SUBREG operation or equivalent if it folds. */
4672
4673 rtx
4674 simplify_gen_subreg (enum machine_mode outermode, rtx op,
4675 enum machine_mode innermode, unsigned int byte)
4676 {
4677 rtx newx;
4678
4679 newx = simplify_subreg (outermode, op, innermode, byte);
4680 if (newx)
4681 return newx;
4682
4683 if (GET_CODE (op) == SUBREG
4684 || GET_CODE (op) == CONCAT
4685 || GET_MODE (op) == VOIDmode)
4686 return NULL_RTX;
4687
4688 if (validate_subreg (outermode, innermode, op, byte))
4689 return gen_rtx_SUBREG (outermode, op, byte);
4690
4691 return NULL_RTX;
4692 }
4693
4694 /* Simplify X, an rtx expression.
4695
4696 Return the simplified expression or NULL if no simplifications
4697 were possible.
4698
4699 This is the preferred entry point into the simplification routines;
4700 however, we still allow passes to call the more specific routines.
4701
4702 Right now GCC has three (yes, three) major bodies of RTL simplification
4703 code that need to be unified.
4704
4705 1. fold_rtx in cse.c. This code uses various CSE specific
4706 information to aid in RTL simplification.
4707
4708 2. simplify_rtx in combine.c. Similar to fold_rtx, except that
4709 it uses combine specific information to aid in RTL
4710 simplification.
4711
4712 3. The routines in this file.
4713
4714
4715 Long term we want to only have one body of simplification code; to
4716 get to that state I recommend the following steps:
4717
4718 1. Pour over fold_rtx & simplify_rtx and move any simplifications
4719 which are not pass dependent state into these routines.
4720
4721 2. As code is moved by #1, change fold_rtx & simplify_rtx to
4722 use this routine whenever possible.
4723
4724 3. Allow for pass dependent state to be provided to these
4725 routines and add simplifications based on the pass dependent
4726 state. Remove code from cse.c & combine.c that becomes
4727 redundant/dead.
4728
4729 It will take time, but ultimately the compiler will be easier to
4730 maintain and improve. It's totally silly that when we add a
4731 simplification that it needs to be added to 4 places (3 for RTL
4732 simplification and 1 for tree simplification. */
4733
4734 rtx
4735 simplify_rtx (rtx x)
4736 {
4737 enum rtx_code code = GET_CODE (x);
4738 enum machine_mode mode = GET_MODE (x);
4739
4740 switch (GET_RTX_CLASS (code))
4741 {
4742 case RTX_UNARY:
4743 return simplify_unary_operation (code, mode,
4744 XEXP (x, 0), GET_MODE (XEXP (x, 0)));
4745 case RTX_COMM_ARITH:
4746 if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4747 return simplify_gen_binary (code, mode, XEXP (x, 1), XEXP (x, 0));
4748
4749 /* Fall through.... */
4750
4751 case RTX_BIN_ARITH:
4752 return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4753
4754 case RTX_TERNARY:
4755 case RTX_BITFIELD_OPS:
4756 return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
4757 XEXP (x, 0), XEXP (x, 1),
4758 XEXP (x, 2));
4759
4760 case RTX_COMPARE:
4761 case RTX_COMM_COMPARE:
4762 return simplify_relational_operation (code, mode,
4763 ((GET_MODE (XEXP (x, 0))
4764 != VOIDmode)
4765 ? GET_MODE (XEXP (x, 0))
4766 : GET_MODE (XEXP (x, 1))),
4767 XEXP (x, 0),
4768 XEXP (x, 1));
4769
4770 case RTX_EXTRA:
4771 if (code == SUBREG)
4772 return simplify_gen_subreg (mode, SUBREG_REG (x),
4773 GET_MODE (SUBREG_REG (x)),
4774 SUBREG_BYTE (x));
4775 break;
4776
4777 case RTX_OBJ:
4778 if (code == LO_SUM)
4779 {
4780 /* Convert (lo_sum (high FOO) FOO) to FOO. */
4781 if (GET_CODE (XEXP (x, 0)) == HIGH
4782 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4783 return XEXP (x, 1);
4784 }
4785 break;
4786
4787 default:
4788 break;
4789 }
4790 return NULL;
4791 }
4792