ssa.c (remove_phi_alternative): Remove declaration.
[gcc.git] / gcc / ssa.c
1 /* Static Single Assignment conversion routines for the GNU compiler.
2 Copyright (C) 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
10
11 GNU CC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 /* References:
22
23 Building an Optimizing Compiler
24 Robert Morgan
25 Butterworth-Heinemann, 1998
26
27 Static Single Assignment Construction
28 Preston Briggs, Tim Harvey, Taylor Simpson
29 Technical Report, Rice University, 1995
30 ftp://ftp.cs.rice.edu/public/preston/optimizer/SSA.ps.gz. */
31
32 #include "config.h"
33 #include "system.h"
34
35 #include "rtl.h"
36 #include "expr.h"
37 #include "varray.h"
38 #include "partition.h"
39 #include "sbitmap.h"
40 #include "hashtab.h"
41 #include "regs.h"
42 #include "hard-reg-set.h"
43 #include "flags.h"
44 #include "function.h"
45 #include "real.h"
46 #include "insn-config.h"
47 #include "recog.h"
48 #include "basic-block.h"
49 #include "output.h"
50 #include "ssa.h"
51
52 /* TODO:
53
54 Handle subregs better, maybe. For now, if a reg that's set in a
55 subreg expression is duplicated going into SSA form, an extra copy
56 is inserted first that copies the entire reg into the duplicate, so
57 that the other bits are preserved. This isn't strictly SSA, since
58 at least part of the reg is assigned in more than one place (though
59 they are adjacent).
60
61 ??? What to do about strict_low_part. Probably I'll have to split
62 them out of their current instructions first thing.
63
64 Actually the best solution may be to have a kind of "mid-level rtl"
65 in which the RTL encodes exactly what we want, without exposing a
66 lot of niggling processor details. At some later point we lower
67 the representation, calling back into optabs to finish any necessary
68 expansion. */
69
70 /* All pseudo-registers and select hard registers are converted to SSA
71 form. When converting out of SSA, these select hard registers are
72 guaranteed to be mapped to their original register number. Each
73 machine's .h file should define CONVERT_HARD_REGISTER_TO_SSA_P
74 indicating which hard registers should be converted.
75
76 When converting out of SSA, temporaries for all registers are
77 partitioned. The partition is checked to ensure that all uses of
78 the same hard register in the same machine mode are in the same
79 class. */
80
81 /* If conservative_reg_partition is non-zero, use a conservative
82 register partitioning algorithm (which leaves more regs after
83 emerging from SSA) instead of the coalescing one. This is being
84 left in for a limited time only, as a debugging tool until the
85 coalescing algorithm is validated. */
86
87 static int conservative_reg_partition;
88
89 /* This flag is set when the CFG is in SSA form. */
90 int in_ssa_form = 0;
91
92 /* Element I is the single instruction that sets register I. */
93 varray_type ssa_definition;
94
95 /* Element I-PSEUDO is the normal register that originated the ssa
96 register in question. */
97 varray_type ssa_rename_from;
98
99 /* Element I is the normal register that originated the ssa
100 register in question.
101
102 A hash table stores the (register, rtl) pairs. These are each
103 xmalloc'ed and deleted when the hash table is destroyed. */
104 htab_t ssa_rename_from_ht;
105
106 /* The running target ssa register for a given pseudo register.
107 (Pseudo registers appear in only one mode.) */
108 static rtx *ssa_rename_to_pseudo;
109 /* Similar, but for hard registers. A hard register can appear in
110 many modes, so we store an equivalent pseudo for each of the
111 modes. */
112 static rtx ssa_rename_to_hard[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
113
114 /* ssa_rename_from maps pseudo registers to the original corresponding
115 RTL. It is implemented as using a hash table. */
116
117 typedef struct {
118 unsigned int reg;
119 rtx original;
120 } ssa_rename_from_pair;
121
122 struct ssa_rename_from_hash_table_data {
123 sbitmap canonical_elements;
124 partition reg_partition;
125 };
126
127 static void ssa_rename_from_initialize
128 PARAMS ((void));
129 static rtx ssa_rename_from_lookup
130 PARAMS ((int reg));
131 static unsigned int original_register
132 PARAMS ((unsigned int regno));
133 static void ssa_rename_from_insert
134 PARAMS ((unsigned int reg, rtx r));
135 static void ssa_rename_from_free
136 PARAMS ((void));
137 typedef int (*srf_trav) PARAMS ((int regno, rtx r, sbitmap canonical_elements, partition reg_partition));
138 static void ssa_rename_from_traverse
139 PARAMS ((htab_trav callback_function, sbitmap canonical_elements, partition reg_partition));
140 /*static Avoid warnign message. */ void ssa_rename_from_print
141 PARAMS ((void));
142 static int ssa_rename_from_print_1
143 PARAMS ((void **slot, void *data));
144 static hashval_t ssa_rename_from_hash_function
145 PARAMS ((const void * srfp));
146 static int ssa_rename_from_equal
147 PARAMS ((const void *srfp1, const void *srfp2));
148 static void ssa_rename_from_delete
149 PARAMS ((void *srfp));
150
151 static rtx ssa_rename_to_lookup
152 PARAMS ((rtx reg));
153 static void ssa_rename_to_insert
154 PARAMS ((rtx reg, rtx r));
155
156 /* The number of registers that were live on entry to the SSA routines. */
157 static unsigned int ssa_max_reg_num;
158
159 /* Local function prototypes. */
160
161 struct rename_context;
162
163 static inline rtx * phi_alternative
164 PARAMS ((rtx, int));
165 static rtx first_insn_after_basic_block_note
166 PARAMS ((basic_block));
167 static void compute_dominance_frontiers_1
168 PARAMS ((sbitmap *frontiers, int *idom, int bb, sbitmap done));
169 static void compute_dominance_frontiers
170 PARAMS ((sbitmap *frontiers, int *idom));
171 static void find_evaluations_1
172 PARAMS ((rtx dest, rtx set, void *data));
173 static void find_evaluations
174 PARAMS ((sbitmap *evals, int nregs));
175 static void compute_iterated_dominance_frontiers
176 PARAMS ((sbitmap *idfs, sbitmap *frontiers, sbitmap *evals, int nregs));
177 static void insert_phi_node
178 PARAMS ((int regno, int b));
179 static void insert_phi_nodes
180 PARAMS ((sbitmap *idfs, sbitmap *evals, int nregs));
181 static void create_delayed_rename
182 PARAMS ((struct rename_context *, rtx *));
183 static void apply_delayed_renames
184 PARAMS ((struct rename_context *));
185 static int rename_insn_1
186 PARAMS ((rtx *ptr, void *data));
187 static void rename_block
188 PARAMS ((int b, int *idom));
189 static void rename_registers
190 PARAMS ((int nregs, int *idom));
191
192 static inline int ephi_add_node
193 PARAMS ((rtx reg, rtx *nodes, int *n_nodes));
194 static int * ephi_forward
195 PARAMS ((int t, sbitmap visited, sbitmap *succ, int *tstack));
196 static void ephi_backward
197 PARAMS ((int t, sbitmap visited, sbitmap *pred, rtx *nodes));
198 static void ephi_create
199 PARAMS ((int t, sbitmap visited, sbitmap *pred, sbitmap *succ, rtx *nodes));
200 static void eliminate_phi
201 PARAMS ((edge e, partition reg_partition));
202 static int make_regs_equivalent_over_bad_edges
203 PARAMS ((int bb, partition reg_partition));
204
205 /* These are used only in the conservative register partitioning
206 algorithms. */
207 static int make_equivalent_phi_alternatives_equivalent
208 PARAMS ((int bb, partition reg_partition));
209 static partition compute_conservative_reg_partition
210 PARAMS ((void));
211 static int record_canonical_element_1
212 PARAMS ((void **srfp, void *data));
213 static int check_hard_regs_in_partition
214 PARAMS ((partition reg_partition));
215 static int rename_equivalent_regs_in_insn
216 PARAMS ((rtx *ptr, void *data));
217
218 /* These are used in the register coalescing algorithm. */
219 static int coalesce_if_unconflicting
220 PARAMS ((partition p, conflict_graph conflicts, int reg1, int reg2));
221 static int coalesce_regs_in_copies
222 PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
223 static int coalesce_reg_in_phi
224 PARAMS ((rtx, int dest_regno, int src_regno, void *data));
225 static int coalesce_regs_in_successor_phi_nodes
226 PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
227 static partition compute_coalesced_reg_partition
228 PARAMS ((void));
229 static int mark_reg_in_phi
230 PARAMS ((rtx *ptr, void *data));
231 static void mark_phi_and_copy_regs
232 PARAMS ((regset phi_set));
233
234 static int rename_equivalent_regs_in_insn
235 PARAMS ((rtx *ptr, void *data));
236 static void rename_equivalent_regs
237 PARAMS ((partition reg_partition));
238
239 /* Deal with hard registers. */
240 static int conflicting_hard_regs_p
241 PARAMS ((int reg1, int reg2));
242
243 /* ssa_rename_to maps registers and machine modes to SSA pseudo registers. */
244
245 /* Find the register associated with REG in the indicated mode. */
246
247 static rtx
248 ssa_rename_to_lookup (reg)
249 rtx reg;
250 {
251 if (!HARD_REGISTER_P (reg))
252 return ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER];
253 else
254 return ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)];
255 }
256
257 /* Store a new value mapping REG to R in ssa_rename_to. */
258
259 static void
260 ssa_rename_to_insert(reg, r)
261 rtx reg;
262 rtx r;
263 {
264 if (!HARD_REGISTER_P (reg))
265 ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER] = r;
266 else
267 ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)] = r;
268 }
269
270 /* Prepare ssa_rename_from for use. */
271
272 static void
273 ssa_rename_from_initialize ()
274 {
275 /* We use an arbitrary initial hash table size of 64. */
276 ssa_rename_from_ht = htab_create (64,
277 &ssa_rename_from_hash_function,
278 &ssa_rename_from_equal,
279 &ssa_rename_from_delete);
280 }
281
282 /* Find the REG entry in ssa_rename_from. Return NULL_RTX if no entry is
283 found. */
284
285 static rtx
286 ssa_rename_from_lookup (reg)
287 int reg;
288 {
289 ssa_rename_from_pair srfp;
290 ssa_rename_from_pair *answer;
291 srfp.reg = reg;
292 srfp.original = NULL_RTX;
293 answer = (ssa_rename_from_pair *)
294 htab_find_with_hash (ssa_rename_from_ht, (void *) &srfp, reg);
295 return (answer == 0 ? NULL_RTX : answer->original);
296 }
297
298 /* Find the number of the original register specified by REGNO. If
299 the register is a pseudo, return the original register's number.
300 Otherwise, return this register number REGNO. */
301
302 static unsigned int
303 original_register (regno)
304 unsigned int regno;
305 {
306 rtx original_rtx = ssa_rename_from_lookup (regno);
307 return original_rtx != NULL_RTX ? REGNO (original_rtx) : regno;
308 }
309
310 /* Add mapping from R to REG to ssa_rename_from even if already present. */
311
312 static void
313 ssa_rename_from_insert (reg, r)
314 unsigned int reg;
315 rtx r;
316 {
317 void **slot;
318 ssa_rename_from_pair *srfp = xmalloc (sizeof (ssa_rename_from_pair));
319 srfp->reg = reg;
320 srfp->original = r;
321 slot = htab_find_slot_with_hash (ssa_rename_from_ht, (const void *) srfp,
322 reg, INSERT);
323 if (*slot != 0)
324 free ((void *) *slot);
325 *slot = srfp;
326 }
327
328 /* Apply the CALLBACK_FUNCTION to each element in ssa_rename_from.
329 CANONICAL_ELEMENTS and REG_PARTITION pass data needed by the only
330 current use of this function. */
331
332 static void
333 ssa_rename_from_traverse (callback_function,
334 canonical_elements, reg_partition)
335 htab_trav callback_function;
336 sbitmap canonical_elements;
337 partition reg_partition;
338 {
339 struct ssa_rename_from_hash_table_data srfhd;
340 srfhd.canonical_elements = canonical_elements;
341 srfhd.reg_partition = reg_partition;
342 htab_traverse (ssa_rename_from_ht, callback_function, (void *) &srfhd);
343 }
344
345 /* Destroy ssa_rename_from. */
346
347 static void
348 ssa_rename_from_free ()
349 {
350 htab_delete (ssa_rename_from_ht);
351 }
352
353 /* Print the contents of ssa_rename_from. */
354
355 /* static Avoid erroneous error message. */
356 void
357 ssa_rename_from_print ()
358 {
359 printf ("ssa_rename_from's hash table contents:\n");
360 htab_traverse (ssa_rename_from_ht, &ssa_rename_from_print_1, NULL);
361 }
362
363 /* Print the contents of the hash table entry SLOT, passing the unused
364 sttribute DATA. Used as a callback function with htab_traverse (). */
365
366 static int
367 ssa_rename_from_print_1 (slot, data)
368 void **slot;
369 void *data ATTRIBUTE_UNUSED;
370 {
371 ssa_rename_from_pair * p = *slot;
372 printf ("ssa_rename_from maps pseudo %i to original %i.\n",
373 p->reg, REGNO (p->original));
374 return 1;
375 }
376
377 /* Given a hash entry SRFP, yield a hash value. */
378
379 static hashval_t
380 ssa_rename_from_hash_function (srfp)
381 const void *srfp;
382 {
383 return ((const ssa_rename_from_pair *) srfp)->reg;
384 }
385
386 /* Test whether two hash table entries SRFP1 and SRFP2 are equal. */
387
388 static int
389 ssa_rename_from_equal (srfp1, srfp2)
390 const void *srfp1;
391 const void *srfp2;
392 {
393 return ssa_rename_from_hash_function (srfp1) ==
394 ssa_rename_from_hash_function (srfp2);
395 }
396
397 /* Delete the hash table entry SRFP. */
398
399 static void
400 ssa_rename_from_delete (srfp)
401 void *srfp;
402 {
403 free (srfp);
404 }
405
406 /* Given the SET of a PHI node, return the address of the alternative
407 for predecessor block C. */
408
409 static inline rtx *
410 phi_alternative (set, c)
411 rtx set;
412 int c;
413 {
414 rtvec phi_vec = XVEC (SET_SRC (set), 0);
415 int v;
416
417 for (v = GET_NUM_ELEM (phi_vec) - 2; v >= 0; v -= 2)
418 if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
419 return &RTVEC_ELT (phi_vec, v);
420
421 return NULL;
422 }
423
424 /* Given the SET of a phi node, remove the alternative for predecessor
425 block C. Return non-zero on success, or zero if no alternative is
426 found for C. */
427
428 int
429 remove_phi_alternative (set, block)
430 rtx set;
431 basic_block block;
432 {
433 rtvec phi_vec = XVEC (SET_SRC (set), 0);
434 int num_elem = GET_NUM_ELEM (phi_vec);
435 int v, c;
436
437 c = block->index;
438 for (v = num_elem - 2; v >= 0; v -= 2)
439 if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
440 {
441 if (v < num_elem - 2)
442 {
443 RTVEC_ELT (phi_vec, v) = RTVEC_ELT (phi_vec, num_elem - 2);
444 RTVEC_ELT (phi_vec, v + 1) = RTVEC_ELT (phi_vec, num_elem - 1);
445 }
446 PUT_NUM_ELEM (phi_vec, num_elem - 2);
447 return 1;
448 }
449
450 return 0;
451 }
452
453 /* For all registers, find all blocks in which they are set.
454
455 This is the transform of what would be local kill information that
456 we ought to be getting from flow. */
457
458 static sbitmap *fe_evals;
459 static int fe_current_bb;
460
461 static void
462 find_evaluations_1 (dest, set, data)
463 rtx dest;
464 rtx set ATTRIBUTE_UNUSED;
465 void *data ATTRIBUTE_UNUSED;
466 {
467 if (GET_CODE (dest) == REG
468 && CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
469 SET_BIT (fe_evals[REGNO (dest)], fe_current_bb);
470 }
471
472 static void
473 find_evaluations (evals, nregs)
474 sbitmap *evals;
475 int nregs;
476 {
477 int bb;
478
479 sbitmap_vector_zero (evals, nregs);
480 fe_evals = evals;
481
482 for (bb = n_basic_blocks; --bb >= 0; )
483 {
484 rtx p, last;
485
486 fe_current_bb = bb;
487 p = BLOCK_HEAD (bb);
488 last = BLOCK_END (bb);
489 while (1)
490 {
491 if (INSN_P (p))
492 note_stores (PATTERN (p), find_evaluations_1, NULL);
493
494 if (p == last)
495 break;
496 p = NEXT_INSN (p);
497 }
498 }
499 }
500
501 /* Computing the Dominance Frontier:
502
503 As decribed in Morgan, section 3.5, this may be done simply by
504 walking the dominator tree bottom-up, computing the frontier for
505 the children before the parent. When considering a block B,
506 there are two cases:
507
508 (1) A flow graph edge leaving B that does not lead to a child
509 of B in the dominator tree must be a block that is either equal
510 to B or not dominated by B. Such blocks belong in the frontier
511 of B.
512
513 (2) Consider a block X in the frontier of one of the children C
514 of B. If X is not equal to B and is not dominated by B, it
515 is in the frontier of B.
516 */
517
518 static void
519 compute_dominance_frontiers_1 (frontiers, idom, bb, done)
520 sbitmap *frontiers;
521 int *idom;
522 int bb;
523 sbitmap done;
524 {
525 basic_block b = BASIC_BLOCK (bb);
526 edge e;
527 int c;
528
529 SET_BIT (done, bb);
530 sbitmap_zero (frontiers[bb]);
531
532 /* Do the frontier of the children first. Not all children in the
533 dominator tree (blocks dominated by this one) are children in the
534 CFG, so check all blocks. */
535 for (c = 0; c < n_basic_blocks; ++c)
536 if (idom[c] == bb && ! TEST_BIT (done, c))
537 compute_dominance_frontiers_1 (frontiers, idom, c, done);
538
539 /* Find blocks conforming to rule (1) above. */
540 for (e = b->succ; e; e = e->succ_next)
541 {
542 if (e->dest == EXIT_BLOCK_PTR)
543 continue;
544 if (idom[e->dest->index] != bb)
545 SET_BIT (frontiers[bb], e->dest->index);
546 }
547
548 /* Find blocks conforming to rule (2). */
549 for (c = 0; c < n_basic_blocks; ++c)
550 if (idom[c] == bb)
551 {
552 int x;
553 EXECUTE_IF_SET_IN_SBITMAP (frontiers[c], 0, x,
554 {
555 if (idom[x] != bb)
556 SET_BIT (frontiers[bb], x);
557 });
558 }
559 }
560
561 static void
562 compute_dominance_frontiers (frontiers, idom)
563 sbitmap *frontiers;
564 int *idom;
565 {
566 sbitmap done = sbitmap_alloc (n_basic_blocks);
567 sbitmap_zero (done);
568
569 compute_dominance_frontiers_1 (frontiers, idom, 0, done);
570
571 sbitmap_free (done);
572 }
573
574 /* Computing the Iterated Dominance Frontier:
575
576 This is the set of merge points for a given register.
577
578 This is not particularly intuitive. See section 7.1 of Morgan, in
579 particular figures 7.3 and 7.4 and the immediately surrounding text.
580 */
581
582 static void
583 compute_iterated_dominance_frontiers (idfs, frontiers, evals, nregs)
584 sbitmap *idfs;
585 sbitmap *frontiers;
586 sbitmap *evals;
587 int nregs;
588 {
589 sbitmap worklist;
590 int reg, passes = 0;
591
592 worklist = sbitmap_alloc (n_basic_blocks);
593
594 for (reg = 0; reg < nregs; ++reg)
595 {
596 sbitmap idf = idfs[reg];
597 int b, changed;
598
599 /* Start the iterative process by considering those blocks that
600 evaluate REG. We'll add their dominance frontiers to the
601 IDF, and then consider the blocks we just added. */
602 sbitmap_copy (worklist, evals[reg]);
603
604 /* Morgan's algorithm is incorrect here. Blocks that evaluate
605 REG aren't necessarily in REG's IDF. Start with an empty IDF. */
606 sbitmap_zero (idf);
607
608 /* Iterate until the worklist is empty. */
609 do
610 {
611 changed = 0;
612 passes++;
613 EXECUTE_IF_SET_IN_SBITMAP (worklist, 0, b,
614 {
615 RESET_BIT (worklist, b);
616 /* For each block on the worklist, add to the IDF all
617 blocks on its dominance frontier that aren't already
618 on the IDF. Every block that's added is also added
619 to the worklist. */
620 sbitmap_union_of_diff (worklist, worklist, frontiers[b], idf);
621 sbitmap_a_or_b (idf, idf, frontiers[b]);
622 changed = 1;
623 });
624 }
625 while (changed);
626 }
627
628 sbitmap_free (worklist);
629
630 if (rtl_dump_file)
631 {
632 fprintf(rtl_dump_file,
633 "Iterated dominance frontier: %d passes on %d regs.\n",
634 passes, nregs);
635 }
636 }
637
638 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
639 note associated with the BLOCK. */
640
641 static rtx
642 first_insn_after_basic_block_note (block)
643 basic_block block;
644 {
645 rtx insn;
646
647 /* Get the first instruction in the block. */
648 insn = block->head;
649
650 if (insn == NULL_RTX)
651 return NULL_RTX;
652 if (GET_CODE (insn) == CODE_LABEL)
653 insn = NEXT_INSN (insn);
654 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
655 abort ();
656
657 return NEXT_INSN (insn);
658 }
659
660 /* Insert the phi nodes. */
661
662 static void
663 insert_phi_node (regno, bb)
664 int regno, bb;
665 {
666 basic_block b = BASIC_BLOCK (bb);
667 edge e;
668 int npred, i;
669 rtvec vec;
670 rtx phi, reg;
671 rtx insn;
672 int end_p;
673
674 /* Find out how many predecessors there are. */
675 for (e = b->pred, npred = 0; e; e = e->pred_next)
676 if (e->src != ENTRY_BLOCK_PTR)
677 npred++;
678
679 /* If this block has no "interesting" preds, then there is nothing to
680 do. Consider a block that only has the entry block as a pred. */
681 if (npred == 0)
682 return;
683
684 /* This is the register to which the phi function will be assigned. */
685 reg = regno_reg_rtx[regno];
686
687 /* Construct the arguments to the PHI node. The use of pc_rtx is just
688 a placeholder; we'll insert the proper value in rename_registers. */
689 vec = rtvec_alloc (npred * 2);
690 for (e = b->pred, i = 0; e ; e = e->pred_next, i += 2)
691 if (e->src != ENTRY_BLOCK_PTR)
692 {
693 RTVEC_ELT (vec, i + 0) = pc_rtx;
694 RTVEC_ELT (vec, i + 1) = GEN_INT (e->src->index);
695 }
696
697 phi = gen_rtx_PHI (VOIDmode, vec);
698 phi = gen_rtx_SET (VOIDmode, reg, phi);
699
700 insn = first_insn_after_basic_block_note (b);
701 end_p = PREV_INSN (insn) == b->end;
702 emit_insn_before (phi, insn);
703 if (end_p)
704 b->end = PREV_INSN (insn);
705 }
706
707 static void
708 insert_phi_nodes (idfs, evals, nregs)
709 sbitmap *idfs;
710 sbitmap *evals ATTRIBUTE_UNUSED;
711 int nregs;
712 {
713 int reg;
714
715 for (reg = 0; reg < nregs; ++reg)
716 if (CONVERT_REGISTER_TO_SSA_P (reg))
717 {
718 int b;
719 EXECUTE_IF_SET_IN_SBITMAP (idfs[reg], 0, b,
720 {
721 if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, reg))
722 insert_phi_node (reg, b);
723 });
724 }
725 }
726
727 /* Rename the registers to conform to SSA.
728
729 This is essentially the algorithm presented in Figure 7.8 of Morgan,
730 with a few changes to reduce pattern search time in favour of a bit
731 more memory usage. */
732
733 /* One of these is created for each set. It will live in a list local
734 to its basic block for the duration of that block's processing. */
735 struct rename_set_data
736 {
737 struct rename_set_data *next;
738 /* This is the SET_DEST of the (first) SET that sets the REG. */
739 rtx *reg_loc;
740 /* This is what used to be at *REG_LOC. */
741 rtx old_reg;
742 /* This is the REG that will replace OLD_REG. It's set only
743 when the rename data is moved onto the DONE_RENAMES queue. */
744 rtx new_reg;
745 /* This is what to restore ssa_rename_to_lookup (old_reg) to. It is
746 usually the previous contents of ssa_rename_to_lookup (old_reg). */
747 rtx prev_reg;
748 /* This is the insn that contains all the SETs of the REG. */
749 rtx set_insn;
750 };
751
752 /* This struct is used to pass information to callback functions while
753 renaming registers. */
754 struct rename_context
755 {
756 struct rename_set_data *new_renames;
757 struct rename_set_data *done_renames;
758 rtx current_insn;
759 };
760
761 /* Queue the rename of *REG_LOC. */
762 static void
763 create_delayed_rename (c, reg_loc)
764 struct rename_context *c;
765 rtx *reg_loc;
766 {
767 struct rename_set_data *r;
768 r = (struct rename_set_data *) xmalloc (sizeof(*r));
769
770 if (GET_CODE (*reg_loc) != REG
771 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*reg_loc)))
772 abort();
773
774 r->reg_loc = reg_loc;
775 r->old_reg = *reg_loc;
776 r->prev_reg = ssa_rename_to_lookup(r->old_reg);
777 r->set_insn = c->current_insn;
778 r->next = c->new_renames;
779 c->new_renames = r;
780 }
781
782 /* This is part of a rather ugly hack to allow the pre-ssa regno to be
783 reused. If, during processing, a register has not yet been touched,
784 ssa_rename_to[regno][machno] will be NULL. Now, in the course of pushing
785 and popping values from ssa_rename_to, when we would ordinarily
786 pop NULL back in, we pop RENAME_NO_RTX. We treat this exactly the
787 same as NULL, except that it signals that the original regno has
788 already been reused. */
789 #define RENAME_NO_RTX pc_rtx
790
791 /* Move all the entries from NEW_RENAMES onto DONE_RENAMES by
792 applying all the renames on NEW_RENAMES. */
793
794 static void
795 apply_delayed_renames (c)
796 struct rename_context *c;
797 {
798 struct rename_set_data *r;
799 struct rename_set_data *last_r = NULL;
800
801 for (r = c->new_renames; r != NULL; r = r->next)
802 {
803 int new_regno;
804
805 /* Failure here means that someone has a PARALLEL that sets
806 a register twice (bad!). */
807 if (ssa_rename_to_lookup (r->old_reg) != r->prev_reg)
808 abort();
809 /* Failure here means we have changed REG_LOC before applying
810 the rename. */
811 /* For the first set we come across, reuse the original regno. */
812 if (r->prev_reg == NULL_RTX && !HARD_REGISTER_P (r->old_reg))
813 {
814 r->new_reg = r->old_reg;
815 /* We want to restore RENAME_NO_RTX rather than NULL_RTX. */
816 r->prev_reg = RENAME_NO_RTX;
817 }
818 else
819 r->new_reg = gen_reg_rtx (GET_MODE (r->old_reg));
820 new_regno = REGNO (r->new_reg);
821 ssa_rename_to_insert (r->old_reg, r->new_reg);
822
823 if (new_regno >= (int) ssa_definition->num_elements)
824 {
825 int new_limit = new_regno * 5 / 4;
826 VARRAY_GROW (ssa_definition, new_limit);
827 }
828
829 VARRAY_RTX (ssa_definition, new_regno) = r->set_insn;
830 ssa_rename_from_insert (new_regno, r->old_reg);
831 last_r = r;
832 }
833 if (last_r != NULL)
834 {
835 last_r->next = c->done_renames;
836 c->done_renames = c->new_renames;
837 c->new_renames = NULL;
838 }
839 }
840
841 /* Part one of the first step of rename_block, called through for_each_rtx.
842 Mark pseudos that are set for later update. Transform uses of pseudos. */
843
844 static int
845 rename_insn_1 (ptr, data)
846 rtx *ptr;
847 void *data;
848 {
849 rtx x = *ptr;
850 struct rename_context *context = data;
851
852 if (x == NULL_RTX)
853 return 0;
854
855 switch (GET_CODE (x))
856 {
857 case SET:
858 {
859 rtx *destp = &SET_DEST (x);
860 rtx dest = SET_DEST (x);
861
862 /* Some SETs also use the REG specified in their LHS.
863 These can be detected by the presence of
864 STRICT_LOW_PART, SUBREG, SIGN_EXTRACT, and ZERO_EXTRACT
865 in the LHS. Handle these by changing
866 (set (subreg (reg foo)) ...)
867 into
868 (sequence [(set (reg foo_1) (reg foo))
869 (set (subreg (reg foo_1)) ...)])
870
871 FIXME: Much of the time this is too much. For many libcalls,
872 paradoxical SUBREGs, etc., the input register is dead. We should
873 recognise this in rename_block or here and not make a false
874 dependency. */
875
876 if (GET_CODE (dest) == STRICT_LOW_PART
877 || GET_CODE (dest) == SUBREG
878 || GET_CODE (dest) == SIGN_EXTRACT
879 || GET_CODE (dest) == ZERO_EXTRACT)
880 {
881 rtx i, reg;
882 reg = dest;
883
884 while (GET_CODE (reg) == STRICT_LOW_PART
885 || GET_CODE (reg) == SUBREG
886 || GET_CODE (reg) == SIGN_EXTRACT
887 || GET_CODE (reg) == ZERO_EXTRACT)
888 reg = XEXP (reg, 0);
889
890 if (GET_CODE (reg) == REG
891 && CONVERT_REGISTER_TO_SSA_P (REGNO (reg)))
892 {
893 /* Generate (set reg reg), and do renaming on it so
894 that it becomes (set reg_1 reg_0), and we will
895 replace reg with reg_1 in the SUBREG. */
896
897 struct rename_set_data *saved_new_renames;
898 saved_new_renames = context->new_renames;
899 context->new_renames = NULL;
900 i = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
901 for_each_rtx (&i, rename_insn_1, data);
902 apply_delayed_renames (context);
903 context->new_renames = saved_new_renames;
904 }
905 }
906 else if (GET_CODE (dest) == REG &&
907 CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
908 {
909 /* We found a genuine set of an interesting register. Tag
910 it so that we can create a new name for it after we finish
911 processing this insn. */
912
913 create_delayed_rename (context, destp);
914
915 /* Since we do not wish to (directly) traverse the
916 SET_DEST, recurse through for_each_rtx for the SET_SRC
917 and return. */
918 if (GET_CODE (x) == SET)
919 for_each_rtx (&SET_SRC (x), rename_insn_1, data);
920 return -1;
921 }
922
923 /* Otherwise, this was not an interesting destination. Continue
924 on, marking uses as normal. */
925 return 0;
926 }
927
928 case REG:
929 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)) &&
930 REGNO (x) < ssa_max_reg_num)
931 {
932 rtx new_reg = ssa_rename_to_lookup (x);
933
934 if (new_reg != NULL_RTX && new_reg != RENAME_NO_RTX)
935 {
936 if (GET_MODE (x) != GET_MODE (new_reg))
937 abort ();
938 *ptr = new_reg;
939 }
940 /* Else this is a use before a set. Warn? */
941 }
942 return -1;
943
944 case CLOBBER:
945 /* There is considerable debate on how CLOBBERs ought to be
946 handled in SSA. For now, we're keeping the CLOBBERs, which
947 means that we don't really have SSA form. There are a couple
948 of proposals for how to fix this problem, but neither is
949 implemented yet. */
950 {
951 rtx dest = XCEXP (x, 0, CLOBBER);
952 if (REG_P (dest))
953 {
954 if (CONVERT_REGISTER_TO_SSA_P (REGNO (dest))
955 && REGNO (dest) < ssa_max_reg_num)
956 {
957 rtx new_reg = ssa_rename_to_lookup (dest);
958 if (new_reg != NULL_RTX && new_reg != RENAME_NO_RTX)
959 XCEXP (x, 0, CLOBBER) = new_reg;
960 }
961 /* Stop traversing. */
962 return -1;
963 }
964 else
965 /* Continue traversing. */
966 return 0;
967 }
968
969 case PHI:
970 /* Never muck with the phi. We do that elsewhere, special-like. */
971 return -1;
972
973 default:
974 /* Anything else, continue traversing. */
975 return 0;
976 }
977 }
978
979 static void
980 rename_block (bb, idom)
981 int bb;
982 int *idom;
983 {
984 basic_block b = BASIC_BLOCK (bb);
985 edge e;
986 rtx insn, next, last;
987 struct rename_set_data *set_data = NULL;
988 int c;
989
990 /* Step One: Walk the basic block, adding new names for sets and
991 replacing uses. */
992
993 next = b->head;
994 last = b->end;
995 do
996 {
997 insn = next;
998 if (INSN_P (insn))
999 {
1000 struct rename_context context;
1001 context.done_renames = set_data;
1002 context.new_renames = NULL;
1003 context.current_insn = insn;
1004
1005 start_sequence ();
1006 for_each_rtx (&PATTERN (insn), rename_insn_1, &context);
1007 for_each_rtx (&REG_NOTES (insn), rename_insn_1, &context);
1008
1009 /* Sometimes, we end up with a sequence of insns that
1010 SSA needs to treat as a single insn. Wrap these in a
1011 SEQUENCE. (Any notes now get attached to the SEQUENCE,
1012 not to the old version inner insn.) */
1013 if (get_insns () != NULL_RTX)
1014 {
1015 rtx seq;
1016 int i;
1017
1018 emit (PATTERN (insn));
1019 seq = gen_sequence ();
1020 /* We really want a SEQUENCE of SETs, not a SEQUENCE
1021 of INSNs. */
1022 for (i = 0; i < XVECLEN (seq, 0); i++)
1023 XVECEXP (seq, 0, i) = PATTERN (XVECEXP (seq, 0, i));
1024 PATTERN (insn) = seq;
1025 }
1026 end_sequence ();
1027
1028 apply_delayed_renames (&context);
1029 set_data = context.done_renames;
1030 }
1031
1032 next = NEXT_INSN (insn);
1033 }
1034 while (insn != last);
1035
1036 /* Step Two: Update the phi nodes of this block's successors. */
1037
1038 for (e = b->succ; e; e = e->succ_next)
1039 {
1040 if (e->dest == EXIT_BLOCK_PTR)
1041 continue;
1042
1043 insn = first_insn_after_basic_block_note (e->dest);
1044
1045 while (PHI_NODE_P (insn))
1046 {
1047 rtx phi = PATTERN (insn);
1048 rtx reg;
1049
1050 /* Find out which of our outgoing registers this node is
1051 intended to replace. Note that if this is not the first PHI
1052 node to have been created for this register, we have to
1053 jump through rename links to figure out which register
1054 we're talking about. This can easily be recognized by
1055 noting that the regno is new to this pass. */
1056 reg = SET_DEST (phi);
1057 if (REGNO (reg) >= ssa_max_reg_num)
1058 reg = ssa_rename_from_lookup (REGNO (reg));
1059 if (reg == NULL_RTX)
1060 abort ();
1061 reg = ssa_rename_to_lookup (reg);
1062
1063 /* It is possible for the variable to be uninitialized on
1064 edges in. Reduce the arity of the PHI so that we don't
1065 consider those edges. */
1066 if (reg == NULL || reg == RENAME_NO_RTX)
1067 {
1068 if (! remove_phi_alternative (phi, bb))
1069 abort ();
1070 }
1071 else
1072 {
1073 /* When we created the PHI nodes, we did not know what mode
1074 the register should be. Now that we've found an original,
1075 we can fill that in. */
1076 if (GET_MODE (SET_DEST (phi)) == VOIDmode)
1077 PUT_MODE (SET_DEST (phi), GET_MODE (reg));
1078 else if (GET_MODE (SET_DEST (phi)) != GET_MODE (reg))
1079 abort();
1080
1081 *phi_alternative (phi, bb) = reg;
1082 }
1083
1084 insn = NEXT_INSN (insn);
1085 }
1086 }
1087
1088 /* Step Three: Do the same to the children of this block in
1089 dominator order. */
1090
1091 for (c = 0; c < n_basic_blocks; ++c)
1092 if (idom[c] == bb)
1093 rename_block (c, idom);
1094
1095 /* Step Four: Update the sets to refer to their new register,
1096 and restore ssa_rename_to to its previous state. */
1097
1098 while (set_data)
1099 {
1100 struct rename_set_data *next;
1101 rtx old_reg = *set_data->reg_loc;
1102
1103 if (*set_data->reg_loc != set_data->old_reg)
1104 abort();
1105 *set_data->reg_loc = set_data->new_reg;
1106
1107 ssa_rename_to_insert (old_reg, set_data->prev_reg);
1108
1109 next = set_data->next;
1110 free (set_data);
1111 set_data = next;
1112 }
1113 }
1114
1115 static void
1116 rename_registers (nregs, idom)
1117 int nregs;
1118 int *idom;
1119 {
1120 VARRAY_RTX_INIT (ssa_definition, nregs * 3, "ssa_definition");
1121 ssa_rename_from_initialize ();
1122
1123 ssa_rename_to_pseudo = (rtx *) alloca (nregs * sizeof(rtx));
1124 memset ((char *) ssa_rename_to_pseudo, 0, nregs * sizeof(rtx));
1125 memset ((char *) ssa_rename_to_hard, 0,
1126 FIRST_PSEUDO_REGISTER * NUM_MACHINE_MODES * sizeof (rtx));
1127
1128 rename_block (0, idom);
1129
1130 /* ??? Update basic_block_live_at_start, and other flow info
1131 as needed. */
1132
1133 ssa_rename_to_pseudo = NULL;
1134 }
1135
1136 /* The main entry point for moving to SSA. */
1137
1138 void
1139 convert_to_ssa ()
1140 {
1141 /* Element I is the set of blocks that set register I. */
1142 sbitmap *evals;
1143
1144 /* Dominator bitmaps. */
1145 sbitmap *dfs;
1146 sbitmap *idfs;
1147
1148 /* Element I is the immediate dominator of block I. */
1149 int *idom;
1150
1151 int nregs;
1152
1153 /* Don't do it twice. */
1154 if (in_ssa_form)
1155 abort ();
1156
1157 /* Need global_live_at_{start,end} up to date. Do not remove any
1158 dead code. We'll let the SSA optimizers do that. */
1159 life_analysis (get_insns (), NULL, 0);
1160
1161 idom = (int *) alloca (n_basic_blocks * sizeof (int));
1162 memset ((void *)idom, -1, (size_t)n_basic_blocks * sizeof (int));
1163 calculate_dominance_info (idom, NULL, CDI_DOMINATORS);
1164
1165 if (rtl_dump_file)
1166 {
1167 int i;
1168 fputs (";; Immediate Dominators:\n", rtl_dump_file);
1169 for (i = 0; i < n_basic_blocks; ++i)
1170 fprintf (rtl_dump_file, ";\t%3d = %3d\n", i, idom[i]);
1171 fflush (rtl_dump_file);
1172 }
1173
1174 /* Compute dominance frontiers. */
1175
1176 dfs = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
1177 compute_dominance_frontiers (dfs, idom);
1178
1179 if (rtl_dump_file)
1180 {
1181 dump_sbitmap_vector (rtl_dump_file, ";; Dominance Frontiers:",
1182 "; Basic Block", dfs, n_basic_blocks);
1183 fflush (rtl_dump_file);
1184 }
1185
1186 /* Compute register evaluations. */
1187
1188 ssa_max_reg_num = max_reg_num();
1189 nregs = ssa_max_reg_num;
1190 evals = sbitmap_vector_alloc (nregs, n_basic_blocks);
1191 find_evaluations (evals, nregs);
1192
1193 /* Compute the iterated dominance frontier for each register. */
1194
1195 idfs = sbitmap_vector_alloc (nregs, n_basic_blocks);
1196 compute_iterated_dominance_frontiers (idfs, dfs, evals, nregs);
1197
1198 if (rtl_dump_file)
1199 {
1200 dump_sbitmap_vector (rtl_dump_file, ";; Iterated Dominance Frontiers:",
1201 "; Register", idfs, nregs);
1202 fflush (rtl_dump_file);
1203 }
1204
1205 /* Insert the phi nodes. */
1206
1207 insert_phi_nodes (idfs, evals, nregs);
1208
1209 /* Rename the registers to satisfy SSA. */
1210
1211 rename_registers (nregs, idom);
1212
1213 /* All done! Clean up and go home. */
1214
1215 sbitmap_vector_free (dfs);
1216 sbitmap_vector_free (evals);
1217 sbitmap_vector_free (idfs);
1218 in_ssa_form = 1;
1219
1220 reg_scan (get_insns (), max_reg_num (), 1);
1221 }
1222
1223 /* REG is the representative temporary of its partition. Add it to the
1224 set of nodes to be processed, if it hasn't been already. Return the
1225 index of this register in the node set. */
1226
1227 static inline int
1228 ephi_add_node (reg, nodes, n_nodes)
1229 rtx reg, *nodes;
1230 int *n_nodes;
1231 {
1232 int i;
1233 for (i = *n_nodes - 1; i >= 0; --i)
1234 if (REGNO (reg) == REGNO (nodes[i]))
1235 return i;
1236
1237 nodes[i = (*n_nodes)++] = reg;
1238 return i;
1239 }
1240
1241 /* Part one of the topological sort. This is a forward (downward) search
1242 through the graph collecting a stack of nodes to process. Assuming no
1243 cycles, the nodes at top of the stack when we are finished will have
1244 no other dependancies. */
1245
1246 static int *
1247 ephi_forward (t, visited, succ, tstack)
1248 int t;
1249 sbitmap visited;
1250 sbitmap *succ;
1251 int *tstack;
1252 {
1253 int s;
1254
1255 SET_BIT (visited, t);
1256
1257 EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
1258 {
1259 if (! TEST_BIT (visited, s))
1260 tstack = ephi_forward (s, visited, succ, tstack);
1261 });
1262
1263 *tstack++ = t;
1264 return tstack;
1265 }
1266
1267 /* Part two of the topological sort. The is a backward search through
1268 a cycle in the graph, copying the data forward as we go. */
1269
1270 static void
1271 ephi_backward (t, visited, pred, nodes)
1272 int t;
1273 sbitmap visited, *pred;
1274 rtx *nodes;
1275 {
1276 int p;
1277
1278 SET_BIT (visited, t);
1279
1280 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1281 {
1282 if (! TEST_BIT (visited, p))
1283 {
1284 ephi_backward (p, visited, pred, nodes);
1285 emit_move_insn (nodes[p], nodes[t]);
1286 }
1287 });
1288 }
1289
1290 /* Part two of the topological sort. Create the copy for a register
1291 and any cycle of which it is a member. */
1292
1293 static void
1294 ephi_create (t, visited, pred, succ, nodes)
1295 int t;
1296 sbitmap visited, *pred, *succ;
1297 rtx *nodes;
1298 {
1299 rtx reg_u = NULL_RTX;
1300 int unvisited_predecessors = 0;
1301 int p;
1302
1303 /* Iterate through the predecessor list looking for unvisited nodes.
1304 If there are any, we have a cycle, and must deal with that. At
1305 the same time, look for a visited predecessor. If there is one,
1306 we won't need to create a temporary. */
1307
1308 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1309 {
1310 if (! TEST_BIT (visited, p))
1311 unvisited_predecessors = 1;
1312 else if (!reg_u)
1313 reg_u = nodes[p];
1314 });
1315
1316 if (unvisited_predecessors)
1317 {
1318 /* We found a cycle. Copy out one element of the ring (if necessary),
1319 then traverse the ring copying as we go. */
1320
1321 if (!reg_u)
1322 {
1323 reg_u = gen_reg_rtx (GET_MODE (nodes[t]));
1324 emit_move_insn (reg_u, nodes[t]);
1325 }
1326
1327 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1328 {
1329 if (! TEST_BIT (visited, p))
1330 {
1331 ephi_backward (p, visited, pred, nodes);
1332 emit_move_insn (nodes[p], reg_u);
1333 }
1334 });
1335 }
1336 else
1337 {
1338 /* No cycle. Just copy the value from a successor. */
1339
1340 int s;
1341 EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
1342 {
1343 SET_BIT (visited, t);
1344 emit_move_insn (nodes[t], nodes[s]);
1345 return;
1346 });
1347 }
1348 }
1349
1350 /* Convert the edge to normal form. */
1351
1352 static void
1353 eliminate_phi (e, reg_partition)
1354 edge e;
1355 partition reg_partition;
1356 {
1357 int n_nodes;
1358 sbitmap *pred, *succ;
1359 sbitmap visited;
1360 rtx *nodes;
1361 int *stack, *tstack;
1362 rtx insn;
1363 int i;
1364
1365 /* Collect an upper bound on the number of registers needing processing. */
1366
1367 insn = first_insn_after_basic_block_note (e->dest);
1368
1369 n_nodes = 0;
1370 while (PHI_NODE_P (insn))
1371 {
1372 insn = next_nonnote_insn (insn);
1373 n_nodes += 2;
1374 }
1375
1376 if (n_nodes == 0)
1377 return;
1378
1379 /* Build the auxilliary graph R(B).
1380
1381 The nodes of the graph are the members of the register partition
1382 present in Phi(B). There is an edge from FIND(T0)->FIND(T1) for
1383 each T0 = PHI(...,T1,...), where T1 is for the edge from block C. */
1384
1385 nodes = (rtx *) alloca (n_nodes * sizeof(rtx));
1386 pred = sbitmap_vector_alloc (n_nodes, n_nodes);
1387 succ = sbitmap_vector_alloc (n_nodes, n_nodes);
1388 sbitmap_vector_zero (pred, n_nodes);
1389 sbitmap_vector_zero (succ, n_nodes);
1390
1391 insn = first_insn_after_basic_block_note (e->dest);
1392
1393 n_nodes = 0;
1394 for (; PHI_NODE_P (insn); insn = next_nonnote_insn (insn))
1395 {
1396 rtx* preg = phi_alternative (PATTERN (insn), e->src->index);
1397 rtx tgt = SET_DEST (PATTERN (insn));
1398 rtx reg;
1399
1400 /* There may be no phi alternative corresponding to this edge.
1401 This indicates that the phi variable is undefined along this
1402 edge. */
1403 if (preg == NULL)
1404 continue;
1405 reg = *preg;
1406
1407 if (GET_CODE (reg) != REG || GET_CODE (tgt) != REG)
1408 abort();
1409
1410 reg = regno_reg_rtx[partition_find (reg_partition, REGNO (reg))];
1411 tgt = regno_reg_rtx[partition_find (reg_partition, REGNO (tgt))];
1412 /* If the two registers are already in the same partition,
1413 nothing will need to be done. */
1414 if (reg != tgt)
1415 {
1416 int ireg, itgt;
1417
1418 ireg = ephi_add_node (reg, nodes, &n_nodes);
1419 itgt = ephi_add_node (tgt, nodes, &n_nodes);
1420
1421 SET_BIT (pred[ireg], itgt);
1422 SET_BIT (succ[itgt], ireg);
1423 }
1424 }
1425
1426 if (n_nodes == 0)
1427 goto out;
1428
1429 /* Begin a topological sort of the graph. */
1430
1431 visited = sbitmap_alloc (n_nodes);
1432 sbitmap_zero (visited);
1433
1434 tstack = stack = (int *) alloca (n_nodes * sizeof (int));
1435
1436 for (i = 0; i < n_nodes; ++i)
1437 if (! TEST_BIT (visited, i))
1438 tstack = ephi_forward (i, visited, succ, tstack);
1439
1440 sbitmap_zero (visited);
1441
1442 /* As we find a solution to the tsort, collect the implementation
1443 insns in a sequence. */
1444 start_sequence ();
1445
1446 while (tstack != stack)
1447 {
1448 i = *--tstack;
1449 if (! TEST_BIT (visited, i))
1450 ephi_create (i, visited, pred, succ, nodes);
1451 }
1452
1453 insn = gen_sequence ();
1454 end_sequence ();
1455 insert_insn_on_edge (insn, e);
1456 if (rtl_dump_file)
1457 fprintf (rtl_dump_file, "Emitting copy on edge (%d,%d)\n",
1458 e->src->index, e->dest->index);
1459
1460 sbitmap_free (visited);
1461 out:
1462 sbitmap_vector_free (pred);
1463 sbitmap_vector_free (succ);
1464 }
1465
1466 /* For basic block B, consider all phi insns which provide an
1467 alternative corresponding to an incoming abnormal critical edge.
1468 Place the phi alternative corresponding to that abnormal critical
1469 edge in the same register class as the destination of the set.
1470
1471 From Morgan, p. 178:
1472
1473 For each abnormal critical edge (C, B),
1474 if T0 = phi (T1, ..., Ti, ..., Tm) is a phi node in B,
1475 and C is the ith predecessor of B,
1476 then T0 and Ti must be equivalent.
1477
1478 Return non-zero iff any such cases were found for which the two
1479 regs were not already in the same class. */
1480
1481 static int
1482 make_regs_equivalent_over_bad_edges (bb, reg_partition)
1483 int bb;
1484 partition reg_partition;
1485 {
1486 int changed = 0;
1487 basic_block b = BASIC_BLOCK (bb);
1488 rtx phi;
1489
1490 /* Advance to the first phi node. */
1491 phi = first_insn_after_basic_block_note (b);
1492
1493 /* Scan all the phi nodes. */
1494 for (;
1495 PHI_NODE_P (phi);
1496 phi = next_nonnote_insn (phi))
1497 {
1498 edge e;
1499 int tgt_regno;
1500 rtx set = PATTERN (phi);
1501 rtx tgt = SET_DEST (set);
1502
1503 /* The set target is expected to be an SSA register. */
1504 if (GET_CODE (tgt) != REG
1505 || !CONVERT_REGISTER_TO_SSA_P (REGNO (tgt)))
1506 abort ();
1507 tgt_regno = REGNO (tgt);
1508
1509 /* Scan incoming abnormal critical edges. */
1510 for (e = b->pred; e; e = e->pred_next)
1511 if ((e->flags & (EDGE_ABNORMAL | EDGE_CRITICAL))
1512 == (EDGE_ABNORMAL | EDGE_CRITICAL))
1513 {
1514 rtx *alt = phi_alternative (set, e->src->index);
1515 int alt_regno;
1516
1517 /* If there is no alternative corresponding to this edge,
1518 the value is undefined along the edge, so just go on. */
1519 if (alt == 0)
1520 continue;
1521
1522 /* The phi alternative is expected to be an SSA register. */
1523 if (GET_CODE (*alt) != REG
1524 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
1525 abort ();
1526 alt_regno = REGNO (*alt);
1527
1528 /* If the set destination and the phi alternative aren't
1529 already in the same class... */
1530 if (partition_find (reg_partition, tgt_regno)
1531 != partition_find (reg_partition, alt_regno))
1532 {
1533 /* ... make them such. */
1534 if (conflicting_hard_regs_p (tgt_regno, alt_regno))
1535 /* It is illegal to unify a hard register with a
1536 different register. */
1537 abort ();
1538
1539 partition_union (reg_partition,
1540 tgt_regno, alt_regno);
1541 ++changed;
1542 }
1543 }
1544 }
1545
1546 return changed;
1547 }
1548
1549 /* Consider phi insns in basic block BB pairwise. If the set target
1550 of both isns are equivalent pseudos, make the corresponding phi
1551 alternatives in each phi corresponding equivalent.
1552
1553 Return nonzero if any new register classes were unioned. */
1554
1555 static int
1556 make_equivalent_phi_alternatives_equivalent (bb, reg_partition)
1557 int bb;
1558 partition reg_partition;
1559 {
1560 int changed = 0;
1561 basic_block b = BASIC_BLOCK (bb);
1562 rtx phi;
1563
1564 /* Advance to the first phi node. */
1565 phi = first_insn_after_basic_block_note (b);
1566
1567 /* Scan all the phi nodes. */
1568 for (;
1569 PHI_NODE_P (phi);
1570 phi = next_nonnote_insn (phi))
1571 {
1572 rtx set = PATTERN (phi);
1573 /* The regno of the destination of the set. */
1574 int tgt_regno = REGNO (SET_DEST (PATTERN (phi)));
1575
1576 rtx phi2 = next_nonnote_insn (phi);
1577
1578 /* Scan all phi nodes following this one. */
1579 for (;
1580 PHI_NODE_P (phi2);
1581 phi2 = next_nonnote_insn (phi2))
1582 {
1583 rtx set2 = PATTERN (phi2);
1584 /* The regno of the destination of the set. */
1585 int tgt2_regno = REGNO (SET_DEST (set2));
1586
1587 /* Are the set destinations equivalent regs? */
1588 if (partition_find (reg_partition, tgt_regno) ==
1589 partition_find (reg_partition, tgt2_regno))
1590 {
1591 edge e;
1592 /* Scan over edges. */
1593 for (e = b->pred; e; e = e->pred_next)
1594 {
1595 int pred_block = e->src->index;
1596 /* Identify the phi alternatives from both phi
1597 nodes corresponding to this edge. */
1598 rtx *alt = phi_alternative (set, pred_block);
1599 rtx *alt2 = phi_alternative (set2, pred_block);
1600
1601 /* If one of the phi nodes doesn't have a
1602 corresponding alternative, just skip it. */
1603 if (alt == 0 || alt2 == 0)
1604 continue;
1605
1606 /* Both alternatives should be SSA registers. */
1607 if (GET_CODE (*alt) != REG
1608 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
1609 abort ();
1610 if (GET_CODE (*alt2) != REG
1611 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt2)))
1612 abort ();
1613
1614 /* If the alternatives aren't already in the same
1615 class ... */
1616 if (partition_find (reg_partition, REGNO (*alt))
1617 != partition_find (reg_partition, REGNO (*alt2)))
1618 {
1619 /* ... make them so. */
1620 if (conflicting_hard_regs_p (REGNO (*alt), REGNO (*alt2)))
1621 /* It is illegal to unify a hard register with
1622 a different register. */
1623 abort ();
1624
1625 partition_union (reg_partition,
1626 REGNO (*alt), REGNO (*alt2));
1627 ++changed;
1628 }
1629 }
1630 }
1631 }
1632 }
1633
1634 return changed;
1635 }
1636
1637 /* Compute a conservative partition of outstanding pseudo registers.
1638 See Morgan 7.3.1. */
1639
1640 static partition
1641 compute_conservative_reg_partition ()
1642 {
1643 int bb;
1644 int changed = 0;
1645
1646 /* We don't actually work with hard registers, but it's easier to
1647 carry them around anyway rather than constantly doing register
1648 number arithmetic. */
1649 partition p =
1650 partition_new (ssa_definition->num_elements);
1651
1652 /* The first priority is to make sure registers that might have to
1653 be copied on abnormal critical edges are placed in the same
1654 partition. This saves us from having to split abnormal critical
1655 edges. */
1656 for (bb = n_basic_blocks; --bb >= 0; )
1657 changed += make_regs_equivalent_over_bad_edges (bb, p);
1658
1659 /* Now we have to insure that corresponding arguments of phi nodes
1660 assigning to corresponding regs are equivalent. Iterate until
1661 nothing changes. */
1662 while (changed > 0)
1663 {
1664 changed = 0;
1665 for (bb = n_basic_blocks; --bb >= 0; )
1666 changed += make_equivalent_phi_alternatives_equivalent (bb, p);
1667 }
1668
1669 return p;
1670 }
1671
1672 /* The following functions compute a register partition that attempts
1673 to eliminate as many reg copies and phi node copies as possible by
1674 coalescing registers. This is the strategy:
1675
1676 1. As in the conservative case, the top priority is to coalesce
1677 registers that otherwise would cause copies to be placed on
1678 abnormal critical edges (which isn't possible).
1679
1680 2. Figure out which regs are involved (in the LHS or RHS) of
1681 copies and phi nodes. Compute conflicts among these regs.
1682
1683 3. Walk around the instruction stream, placing two regs in the
1684 same class of the partition if one appears on the LHS and the
1685 other on the RHS of a copy or phi node and the two regs don't
1686 conflict. The conflict information of course needs to be
1687 updated.
1688
1689 4. If anything has changed, there may be new opportunities to
1690 coalesce regs, so go back to 2.
1691 */
1692
1693 /* If REG1 and REG2 don't conflict in CONFLICTS, place them in the
1694 same class of partition P, if they aren't already. Update
1695 CONFLICTS appropriately.
1696
1697 Returns one if REG1 and REG2 were placed in the same class but were
1698 not previously; zero otherwise.
1699
1700 See Morgan figure 11.15. */
1701
1702 static int
1703 coalesce_if_unconflicting (p, conflicts, reg1, reg2)
1704 partition p;
1705 conflict_graph conflicts;
1706 int reg1;
1707 int reg2;
1708 {
1709 int reg;
1710
1711 /* Work only on SSA registers. */
1712 if (!CONVERT_REGISTER_TO_SSA_P (reg1) || !CONVERT_REGISTER_TO_SSA_P (reg2))
1713 return 0;
1714
1715 /* Find the canonical regs for the classes containing REG1 and
1716 REG2. */
1717 reg1 = partition_find (p, reg1);
1718 reg2 = partition_find (p, reg2);
1719
1720 /* If they're already in the same class, there's nothing to do. */
1721 if (reg1 == reg2)
1722 return 0;
1723
1724 /* If the regs conflict, our hands are tied. */
1725 if (conflicting_hard_regs_p (reg1, reg2) ||
1726 conflict_graph_conflict_p (conflicts, reg1, reg2))
1727 return 0;
1728
1729 /* We're good to go. Put the regs in the same partition. */
1730 partition_union (p, reg1, reg2);
1731
1732 /* Find the new canonical reg for the merged class. */
1733 reg = partition_find (p, reg1);
1734
1735 /* Merge conflicts from the two previous classes. */
1736 conflict_graph_merge_regs (conflicts, reg, reg1);
1737 conflict_graph_merge_regs (conflicts, reg, reg2);
1738
1739 return 1;
1740 }
1741
1742 /* For each register copy insn in basic block BB, place the LHS and
1743 RHS regs in the same class in partition P if they do not conflict
1744 according to CONFLICTS.
1745
1746 Returns the number of changes that were made to P.
1747
1748 See Morgan figure 11.14. */
1749
1750 static int
1751 coalesce_regs_in_copies (bb, p, conflicts)
1752 basic_block bb;
1753 partition p;
1754 conflict_graph conflicts;
1755 {
1756 int changed = 0;
1757 rtx insn;
1758 rtx end = bb->end;
1759
1760 /* Scan the instruction stream of the block. */
1761 for (insn = bb->head; insn != end; insn = NEXT_INSN (insn))
1762 {
1763 rtx pattern;
1764 rtx src;
1765 rtx dest;
1766
1767 /* If this isn't a set insn, go to the next insn. */
1768 if (GET_CODE (insn) != INSN)
1769 continue;
1770 pattern = PATTERN (insn);
1771 if (GET_CODE (pattern) != SET)
1772 continue;
1773
1774 src = SET_SRC (pattern);
1775 dest = SET_DEST (pattern);
1776
1777 /* We're only looking for copies. */
1778 if (GET_CODE (src) != REG || GET_CODE (dest) != REG)
1779 continue;
1780
1781 /* Coalesce only if the reg modes are the same. As long as
1782 each reg's rtx is unique, it can have only one mode, so two
1783 pseudos of different modes can't be coalesced into one.
1784
1785 FIXME: We can probably get around this by inserting SUBREGs
1786 where appropriate, but for now we don't bother. */
1787 if (GET_MODE (src) != GET_MODE (dest))
1788 continue;
1789
1790 /* Found a copy; see if we can use the same reg for both the
1791 source and destination (and thus eliminate the copy,
1792 ultimately). */
1793 changed += coalesce_if_unconflicting (p, conflicts,
1794 REGNO (src), REGNO (dest));
1795 }
1796
1797 return changed;
1798 }
1799
1800 struct phi_coalesce_context
1801 {
1802 partition p;
1803 conflict_graph conflicts;
1804 int changed;
1805 };
1806
1807 /* Callback function for for_each_successor_phi. If the set
1808 destination and the phi alternative regs do not conflict, place
1809 them in the same paritition class. DATA is a pointer to a
1810 phi_coalesce_context struct. */
1811
1812 static int
1813 coalesce_reg_in_phi (insn, dest_regno, src_regno, data)
1814 rtx insn ATTRIBUTE_UNUSED;
1815 int dest_regno;
1816 int src_regno;
1817 void *data;
1818 {
1819 struct phi_coalesce_context *context =
1820 (struct phi_coalesce_context *) data;
1821
1822 /* Attempt to use the same reg, if they don't conflict. */
1823 context->changed
1824 += coalesce_if_unconflicting (context->p, context->conflicts,
1825 dest_regno, src_regno);
1826 return 0;
1827 }
1828
1829 /* For each alternative in a phi function corresponding to basic block
1830 BB (in phi nodes in successor block to BB), place the reg in the
1831 phi alternative and the reg to which the phi value is set into the
1832 same class in partition P, if allowed by CONFLICTS.
1833
1834 Return the number of changes that were made to P.
1835
1836 See Morgan figure 11.14. */
1837
1838 static int
1839 coalesce_regs_in_successor_phi_nodes (bb, p, conflicts)
1840 basic_block bb;
1841 partition p;
1842 conflict_graph conflicts;
1843 {
1844 struct phi_coalesce_context context;
1845 context.p = p;
1846 context.conflicts = conflicts;
1847 context.changed = 0;
1848
1849 for_each_successor_phi (bb, &coalesce_reg_in_phi, &context);
1850
1851 return context.changed;
1852 }
1853
1854 /* Compute and return a partition of pseudos. Where possible,
1855 non-conflicting pseudos are placed in the same class.
1856
1857 The caller is responsible for deallocating the returned partition. */
1858
1859 static partition
1860 compute_coalesced_reg_partition ()
1861 {
1862 int bb;
1863 int changed = 0;
1864
1865 partition p =
1866 partition_new (ssa_definition->num_elements);
1867
1868 /* The first priority is to make sure registers that might have to
1869 be copied on abnormal critical edges are placed in the same
1870 partition. This saves us from having to split abnormal critical
1871 edges (which can't be done). */
1872 for (bb = n_basic_blocks; --bb >= 0; )
1873 make_regs_equivalent_over_bad_edges (bb, p);
1874
1875 do
1876 {
1877 regset_head phi_set;
1878 conflict_graph conflicts;
1879
1880 changed = 0;
1881
1882 /* Build the set of registers involved in phi nodes, either as
1883 arguments to the phi function or as the target of a set. */
1884 INITIALIZE_REG_SET (phi_set);
1885 mark_phi_and_copy_regs (&phi_set);
1886
1887 /* Compute conflicts. */
1888 conflicts = conflict_graph_compute (&phi_set, p);
1889
1890 /* FIXME: Better would be to process most frequently executed
1891 blocks first, so that most frequently executed copies would
1892 be more likely to be removed by register coalescing. But any
1893 order will generate correct, if non-optimal, results. */
1894 for (bb = n_basic_blocks; --bb >= 0; )
1895 {
1896 basic_block block = BASIC_BLOCK (bb);
1897 changed += coalesce_regs_in_copies (block, p, conflicts);
1898 changed +=
1899 coalesce_regs_in_successor_phi_nodes (block, p, conflicts);
1900 }
1901
1902 conflict_graph_delete (conflicts);
1903 }
1904 while (changed > 0);
1905
1906 return p;
1907 }
1908
1909 /* Mark the regs in a phi node. PTR is a phi expression or one of its
1910 components (a REG or a CONST_INT). DATA is a reg set in which to
1911 set all regs. Called from for_each_rtx. */
1912
1913 static int
1914 mark_reg_in_phi (ptr, data)
1915 rtx *ptr;
1916 void *data;
1917 {
1918 rtx expr = *ptr;
1919 regset set = (regset) data;
1920
1921 switch (GET_CODE (expr))
1922 {
1923 case REG:
1924 SET_REGNO_REG_SET (set, REGNO (expr));
1925 /* Fall through. */
1926 case CONST_INT:
1927 case PHI:
1928 return 0;
1929 default:
1930 abort ();
1931 }
1932 }
1933
1934 /* Mark in PHI_SET all pseudos that are used in a phi node -- either
1935 set from a phi expression, or used as an argument in one. Also
1936 mark regs that are the source or target of a reg copy. Uses
1937 ssa_definition. */
1938
1939 static void
1940 mark_phi_and_copy_regs (phi_set)
1941 regset phi_set;
1942 {
1943 unsigned int reg;
1944
1945 /* Scan the definitions of all regs. */
1946 for (reg = 0; reg < VARRAY_SIZE (ssa_definition); ++reg)
1947 if (CONVERT_REGISTER_TO_SSA_P (reg))
1948 {
1949 rtx insn = VARRAY_RTX (ssa_definition, reg);
1950 rtx pattern;
1951 rtx src;
1952
1953 if (insn == NULL)
1954 continue;
1955 pattern = PATTERN (insn);
1956 /* Sometimes we get PARALLEL insns. These aren't phi nodes or
1957 copies. */
1958 if (GET_CODE (pattern) != SET)
1959 continue;
1960 src = SET_SRC (pattern);
1961
1962 if (GET_CODE (src) == REG)
1963 {
1964 /* It's a reg copy. */
1965 SET_REGNO_REG_SET (phi_set, reg);
1966 SET_REGNO_REG_SET (phi_set, REGNO (src));
1967 }
1968 else if (GET_CODE (src) == PHI)
1969 {
1970 /* It's a phi node. Mark the reg being set. */
1971 SET_REGNO_REG_SET (phi_set, reg);
1972 /* Mark the regs used in the phi function. */
1973 for_each_rtx (&src, mark_reg_in_phi, phi_set);
1974 }
1975 /* ... else nothing to do. */
1976 }
1977 }
1978
1979 /* Rename regs in insn PTR that are equivalent. DATA is the register
1980 partition which specifies equivalences. */
1981
1982 static int
1983 rename_equivalent_regs_in_insn (ptr, data)
1984 rtx *ptr;
1985 void* data;
1986 {
1987 rtx x = *ptr;
1988 partition reg_partition = (partition) data;
1989
1990 if (x == NULL_RTX)
1991 return 0;
1992
1993 switch (GET_CODE (x))
1994 {
1995 case REG:
1996 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)))
1997 {
1998 unsigned int regno = REGNO (x);
1999 unsigned int new_regno = partition_find (reg_partition, regno);
2000 rtx canonical_element_rtx = ssa_rename_from_lookup (new_regno);
2001
2002 if (canonical_element_rtx != NULL_RTX &&
2003 HARD_REGISTER_P (canonical_element_rtx))
2004 {
2005 if (REGNO (canonical_element_rtx) != regno)
2006 *ptr = canonical_element_rtx;
2007 }
2008 else if (regno != new_regno)
2009 {
2010 rtx new_reg = regno_reg_rtx[new_regno];
2011 if (GET_MODE (x) != GET_MODE (new_reg))
2012 abort ();
2013 *ptr = new_reg;
2014 }
2015 }
2016 return -1;
2017
2018 case PHI:
2019 /* No need to rename the phi nodes. We'll check equivalence
2020 when inserting copies. */
2021 return -1;
2022
2023 default:
2024 /* Anything else, continue traversing. */
2025 return 0;
2026 }
2027 }
2028
2029 /* Record the register's canonical element stored in SRFP in the
2030 canonical_elements sbitmap packaged in DATA. This function is used
2031 as a callback function for traversing ssa_rename_from. */
2032
2033 static int
2034 record_canonical_element_1 (srfp, data)
2035 void **srfp;
2036 void *data;
2037 {
2038 unsigned int reg = ((ssa_rename_from_pair *) *srfp)->reg;
2039 sbitmap canonical_elements =
2040 ((struct ssa_rename_from_hash_table_data *) data)->canonical_elements;
2041 partition reg_partition =
2042 ((struct ssa_rename_from_hash_table_data *) data)->reg_partition;
2043
2044 SET_BIT (canonical_elements, partition_find (reg_partition, reg));
2045 return 1;
2046 }
2047
2048 /* For each class in the REG_PARTITION corresponding to a particular
2049 hard register and machine mode, check that there are no other
2050 classes with the same hard register and machine mode. Returns
2051 nonzero if this is the case, i.e., the partition is acceptable. */
2052
2053 static int
2054 check_hard_regs_in_partition (reg_partition)
2055 partition reg_partition;
2056 {
2057 /* CANONICAL_ELEMENTS has a nonzero bit if a class with the given register
2058 number and machine mode has already been seen. This is a
2059 problem with the partition. */
2060 sbitmap canonical_elements;
2061 int element_index;
2062 int already_seen[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
2063 int reg;
2064 int mach_mode;
2065
2066 /* Collect a list of canonical elements. */
2067 canonical_elements = sbitmap_alloc (max_reg_num ());
2068 sbitmap_zero (canonical_elements);
2069 ssa_rename_from_traverse (&record_canonical_element_1,
2070 canonical_elements, reg_partition);
2071
2072 /* We have not seen any hard register uses. */
2073 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; ++reg)
2074 for (mach_mode = 0; mach_mode < NUM_MACHINE_MODES; ++mach_mode)
2075 already_seen[reg][mach_mode] = 0;
2076
2077 /* Check for classes with the same hard register and machine mode. */
2078 EXECUTE_IF_SET_IN_SBITMAP (canonical_elements, 0, element_index,
2079 {
2080 rtx hard_reg_rtx = ssa_rename_from_lookup (element_index);
2081 if (hard_reg_rtx != NULL_RTX &&
2082 HARD_REGISTER_P (hard_reg_rtx) &&
2083 already_seen[REGNO (hard_reg_rtx)][GET_MODE (hard_reg_rtx)] != 0)
2084 /* Two distinct partition classes should be mapped to the same
2085 hard register. */
2086 return 0;
2087 });
2088
2089 sbitmap_free (canonical_elements);
2090
2091 return 1;
2092 }
2093
2094 /* Rename regs that are equivalent in REG_PARTITION. Also collapse
2095 any SEQUENCE insns. */
2096
2097 static void
2098 rename_equivalent_regs (reg_partition)
2099 partition reg_partition;
2100 {
2101 int bb;
2102
2103 for (bb = n_basic_blocks; --bb >= 0; )
2104 {
2105 basic_block b = BASIC_BLOCK (bb);
2106 rtx next = b->head;
2107 rtx last = b->end;
2108 rtx insn;
2109
2110 do
2111 {
2112 insn = next;
2113 if (INSN_P (insn))
2114 {
2115 for_each_rtx (&PATTERN (insn),
2116 rename_equivalent_regs_in_insn,
2117 reg_partition);
2118 for_each_rtx (&REG_NOTES (insn),
2119 rename_equivalent_regs_in_insn,
2120 reg_partition);
2121
2122 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2123 {
2124 rtx s = PATTERN (insn);
2125 int slen = XVECLEN (s, 0);
2126 int i;
2127
2128 if (slen <= 1)
2129 abort();
2130
2131 PATTERN (insn) = XVECEXP (s, 0, slen-1);
2132 for (i = 0; i < slen - 1; i++)
2133 emit_block_insn_before (XVECEXP (s, 0, i), insn, b);
2134 }
2135 }
2136
2137 next = NEXT_INSN (insn);
2138 }
2139 while (insn != last);
2140 }
2141 }
2142
2143 /* The main entry point for moving from SSA. */
2144
2145 void
2146 convert_from_ssa()
2147 {
2148 int bb;
2149 partition reg_partition;
2150 rtx insns = get_insns ();
2151
2152 /* Need global_live_at_{start,end} up to date. There should not be
2153 any significant dead code at this point, except perhaps dead
2154 stores. So do not take the time to perform dead code elimination.
2155
2156 We also do not need death notes, so don't bother creating them. */
2157 life_analysis (insns, NULL, 0);
2158
2159 /* Figure out which regs in copies and phi nodes don't conflict and
2160 therefore can be coalesced. */
2161 if (conservative_reg_partition)
2162 reg_partition = compute_conservative_reg_partition ();
2163 else
2164 reg_partition = compute_coalesced_reg_partition ();
2165
2166 if (!check_hard_regs_in_partition (reg_partition))
2167 /* Two separate partitions should correspond to the same hard
2168 register but do not. */
2169 abort ();
2170
2171 rename_equivalent_regs (reg_partition);
2172
2173 /* Eliminate the PHI nodes. */
2174 for (bb = n_basic_blocks; --bb >= 0; )
2175 {
2176 basic_block b = BASIC_BLOCK (bb);
2177 edge e;
2178
2179 for (e = b->pred; e; e = e->pred_next)
2180 if (e->src != ENTRY_BLOCK_PTR)
2181 eliminate_phi (e, reg_partition);
2182 }
2183
2184 partition_delete (reg_partition);
2185
2186 /* Actually delete the PHI nodes. */
2187 for (bb = n_basic_blocks; --bb >= 0; )
2188 {
2189 rtx insn = BLOCK_HEAD (bb);
2190
2191 while (1)
2192 {
2193 /* If this is a PHI node delete it. */
2194 if (PHI_NODE_P (insn))
2195 {
2196 if (insn == BLOCK_END (bb))
2197 BLOCK_END (bb) = PREV_INSN (insn);
2198 insn = delete_insn (insn);
2199 }
2200 /* Since all the phi nodes come at the beginning of the
2201 block, if we find an ordinary insn, we can stop looking
2202 for more phi nodes. */
2203 else if (INSN_P (insn))
2204 break;
2205 /* If we've reached the end of the block, stop. */
2206 else if (insn == BLOCK_END (bb))
2207 break;
2208 else
2209 insn = NEXT_INSN (insn);
2210 }
2211 }
2212
2213 /* Commit all the copy nodes needed to convert out of SSA form. */
2214 commit_edge_insertions ();
2215
2216 in_ssa_form = 0;
2217
2218 count_or_remove_death_notes (NULL, 1);
2219
2220 /* Deallocate the data structures. */
2221 VARRAY_FREE (ssa_definition);
2222 ssa_rename_from_free ();
2223 }
2224
2225 /* Scan phi nodes in successors to BB. For each such phi node that
2226 has a phi alternative value corresponding to BB, invoke FN. FN
2227 is passed the entire phi node insn, the regno of the set
2228 destination, the regno of the phi argument corresponding to BB,
2229 and DATA.
2230
2231 If FN ever returns non-zero, stops immediately and returns this
2232 value. Otherwise, returns zero. */
2233
2234 int
2235 for_each_successor_phi (bb, fn, data)
2236 basic_block bb;
2237 successor_phi_fn fn;
2238 void *data;
2239 {
2240 edge e;
2241
2242 if (bb == EXIT_BLOCK_PTR)
2243 return 0;
2244
2245 /* Scan outgoing edges. */
2246 for (e = bb->succ; e != NULL; e = e->succ_next)
2247 {
2248 rtx insn;
2249
2250 basic_block successor = e->dest;
2251 if (successor == ENTRY_BLOCK_PTR
2252 || successor == EXIT_BLOCK_PTR)
2253 continue;
2254
2255 /* Advance to the first non-label insn of the successor block. */
2256 insn = first_insn_after_basic_block_note (successor);
2257
2258 if (insn == NULL)
2259 continue;
2260
2261 /* Scan phi nodes in the successor. */
2262 for ( ; PHI_NODE_P (insn); insn = NEXT_INSN (insn))
2263 {
2264 int result;
2265 rtx phi_set = PATTERN (insn);
2266 rtx *alternative = phi_alternative (phi_set, bb->index);
2267 rtx phi_src;
2268
2269 /* This phi function may not have an alternative
2270 corresponding to the incoming edge, indicating the
2271 assigned variable is not defined along the edge. */
2272 if (alternative == NULL)
2273 continue;
2274 phi_src = *alternative;
2275
2276 /* Invoke the callback. */
2277 result = (*fn) (insn, REGNO (SET_DEST (phi_set)),
2278 REGNO (phi_src), data);
2279
2280 /* Terminate if requested. */
2281 if (result != 0)
2282 return result;
2283 }
2284 }
2285
2286 return 0;
2287 }
2288
2289 /* Assuming the ssa_rename_from mapping has been established, yields
2290 nonzero if 1) only one SSA register of REG1 and REG2 comes from a
2291 hard register or 2) both SSA registers REG1 and REG2 come from
2292 different hard registers. */
2293
2294 static int
2295 conflicting_hard_regs_p (reg1, reg2)
2296 int reg1;
2297 int reg2;
2298 {
2299 int orig_reg1 = original_register (reg1);
2300 int orig_reg2 = original_register (reg2);
2301 if (HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2)
2302 && orig_reg1 != orig_reg2)
2303 return 1;
2304 if (HARD_REGISTER_NUM_P (orig_reg1) && !HARD_REGISTER_NUM_P (orig_reg2))
2305 return 1;
2306 if (!HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2))
2307 return 1;
2308
2309 return 0;
2310 }