Makefile.in (TARGET_H, [...]): New.
[gcc.git] / gcc / ssa.c
1 /* Static Single Assignment conversion routines for the GNU compiler.
2 Copyright (C) 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
10
11 GNU CC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 /* References:
22
23 Building an Optimizing Compiler
24 Robert Morgan
25 Butterworth-Heinemann, 1998
26
27 Static Single Assignment Construction
28 Preston Briggs, Tim Harvey, Taylor Simpson
29 Technical Report, Rice University, 1995
30 ftp://ftp.cs.rice.edu/public/preston/optimizer/SSA.ps.gz. */
31
32 #include "config.h"
33 #include "system.h"
34
35 #include "rtl.h"
36 #include "expr.h"
37 #include "varray.h"
38 #include "partition.h"
39 #include "sbitmap.h"
40 #include "hashtab.h"
41 #include "regs.h"
42 #include "hard-reg-set.h"
43 #include "flags.h"
44 #include "function.h"
45 #include "real.h"
46 #include "insn-config.h"
47 #include "recog.h"
48 #include "basic-block.h"
49 #include "output.h"
50 #include "ssa.h"
51
52 /* TODO:
53
54 Handle subregs better, maybe. For now, if a reg that's set in a
55 subreg expression is duplicated going into SSA form, an extra copy
56 is inserted first that copies the entire reg into the duplicate, so
57 that the other bits are preserved. This isn't strictly SSA, since
58 at least part of the reg is assigned in more than one place (though
59 they are adjacent).
60
61 ??? What to do about strict_low_part. Probably I'll have to split
62 them out of their current instructions first thing.
63
64 Actually the best solution may be to have a kind of "mid-level rtl"
65 in which the RTL encodes exactly what we want, without exposing a
66 lot of niggling processor details. At some later point we lower
67 the representation, calling back into optabs to finish any necessary
68 expansion. */
69
70 /* All pseudo-registers and select hard registers are converted to SSA
71 form. When converting out of SSA, these select hard registers are
72 guaranteed to be mapped to their original register number. Each
73 machine's .h file should define CONVERT_HARD_REGISTER_TO_SSA_P
74 indicating which hard registers should be converted.
75
76 When converting out of SSA, temporaries for all registers are
77 partitioned. The partition is checked to ensure that all uses of
78 the same hard register in the same machine mode are in the same
79 class. */
80
81 /* If conservative_reg_partition is non-zero, use a conservative
82 register partitioning algorithm (which leaves more regs after
83 emerging from SSA) instead of the coalescing one. This is being
84 left in for a limited time only, as a debugging tool until the
85 coalescing algorithm is validated. */
86
87 static int conservative_reg_partition;
88
89 /* This flag is set when the CFG is in SSA form. */
90 int in_ssa_form = 0;
91
92 /* Element I is the single instruction that sets register I. */
93 varray_type ssa_definition;
94
95 /* Element I-PSEUDO is the normal register that originated the ssa
96 register in question. */
97 varray_type ssa_rename_from;
98
99 /* Element I is the normal register that originated the ssa
100 register in question.
101
102 A hash table stores the (register, rtl) pairs. These are each
103 xmalloc'ed and deleted when the hash table is destroyed. */
104 htab_t ssa_rename_from_ht;
105
106 /* The running target ssa register for a given pseudo register.
107 (Pseudo registers appear in only one mode.) */
108 static rtx *ssa_rename_to_pseudo;
109 /* Similar, but for hard registers. A hard register can appear in
110 many modes, so we store an equivalent pseudo for each of the
111 modes. */
112 static rtx ssa_rename_to_hard[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
113
114 /* ssa_rename_from maps pseudo registers to the original corresponding
115 RTL. It is implemented as using a hash table. */
116
117 typedef struct {
118 unsigned int reg;
119 rtx original;
120 } ssa_rename_from_pair;
121
122 struct ssa_rename_from_hash_table_data {
123 sbitmap canonical_elements;
124 partition reg_partition;
125 };
126
127 static void ssa_rename_from_initialize
128 PARAMS ((void));
129 static rtx ssa_rename_from_lookup
130 PARAMS ((int reg));
131 static unsigned int original_register
132 PARAMS ((unsigned int regno));
133 static void ssa_rename_from_insert
134 PARAMS ((unsigned int reg, rtx r));
135 static void ssa_rename_from_free
136 PARAMS ((void));
137 typedef int (*srf_trav) PARAMS ((int regno, rtx r, sbitmap canonical_elements, partition reg_partition));
138 static void ssa_rename_from_traverse
139 PARAMS ((htab_trav callback_function, sbitmap canonical_elements, partition reg_partition));
140 /*static Avoid warnign message. */ void ssa_rename_from_print
141 PARAMS ((void));
142 static int ssa_rename_from_print_1
143 PARAMS ((void **slot, void *data));
144 static hashval_t ssa_rename_from_hash_function
145 PARAMS ((const void * srfp));
146 static int ssa_rename_from_equal
147 PARAMS ((const void *srfp1, const void *srfp2));
148 static void ssa_rename_from_delete
149 PARAMS ((void *srfp));
150
151 static rtx ssa_rename_to_lookup
152 PARAMS ((rtx reg));
153 static void ssa_rename_to_insert
154 PARAMS ((rtx reg, rtx r));
155
156 /* The number of registers that were live on entry to the SSA routines. */
157 static unsigned int ssa_max_reg_num;
158
159 /* Local function prototypes. */
160
161 struct rename_context;
162
163 static inline rtx * phi_alternative
164 PARAMS ((rtx, int));
165 static rtx first_insn_after_basic_block_note
166 PARAMS ((basic_block));
167 static void compute_dominance_frontiers_1
168 PARAMS ((sbitmap *frontiers, int *idom, int bb, sbitmap done));
169 static void find_evaluations_1
170 PARAMS ((rtx dest, rtx set, void *data));
171 static void find_evaluations
172 PARAMS ((sbitmap *evals, int nregs));
173 static void compute_iterated_dominance_frontiers
174 PARAMS ((sbitmap *idfs, sbitmap *frontiers, sbitmap *evals, int nregs));
175 static void insert_phi_node
176 PARAMS ((int regno, int b));
177 static void insert_phi_nodes
178 PARAMS ((sbitmap *idfs, sbitmap *evals, int nregs));
179 static void create_delayed_rename
180 PARAMS ((struct rename_context *, rtx *));
181 static void apply_delayed_renames
182 PARAMS ((struct rename_context *));
183 static int rename_insn_1
184 PARAMS ((rtx *ptr, void *data));
185 static void rename_block
186 PARAMS ((int b, int *idom));
187 static void rename_registers
188 PARAMS ((int nregs, int *idom));
189
190 static inline int ephi_add_node
191 PARAMS ((rtx reg, rtx *nodes, int *n_nodes));
192 static int * ephi_forward
193 PARAMS ((int t, sbitmap visited, sbitmap *succ, int *tstack));
194 static void ephi_backward
195 PARAMS ((int t, sbitmap visited, sbitmap *pred, rtx *nodes));
196 static void ephi_create
197 PARAMS ((int t, sbitmap visited, sbitmap *pred, sbitmap *succ, rtx *nodes));
198 static void eliminate_phi
199 PARAMS ((edge e, partition reg_partition));
200 static int make_regs_equivalent_over_bad_edges
201 PARAMS ((int bb, partition reg_partition));
202
203 /* These are used only in the conservative register partitioning
204 algorithms. */
205 static int make_equivalent_phi_alternatives_equivalent
206 PARAMS ((int bb, partition reg_partition));
207 static partition compute_conservative_reg_partition
208 PARAMS ((void));
209 static int record_canonical_element_1
210 PARAMS ((void **srfp, void *data));
211 static int check_hard_regs_in_partition
212 PARAMS ((partition reg_partition));
213 static int rename_equivalent_regs_in_insn
214 PARAMS ((rtx *ptr, void *data));
215
216 /* These are used in the register coalescing algorithm. */
217 static int coalesce_if_unconflicting
218 PARAMS ((partition p, conflict_graph conflicts, int reg1, int reg2));
219 static int coalesce_regs_in_copies
220 PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
221 static int coalesce_reg_in_phi
222 PARAMS ((rtx, int dest_regno, int src_regno, void *data));
223 static int coalesce_regs_in_successor_phi_nodes
224 PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
225 static partition compute_coalesced_reg_partition
226 PARAMS ((void));
227 static int mark_reg_in_phi
228 PARAMS ((rtx *ptr, void *data));
229 static void mark_phi_and_copy_regs
230 PARAMS ((regset phi_set));
231
232 static int rename_equivalent_regs_in_insn
233 PARAMS ((rtx *ptr, void *data));
234 static void rename_equivalent_regs
235 PARAMS ((partition reg_partition));
236
237 /* Deal with hard registers. */
238 static int conflicting_hard_regs_p
239 PARAMS ((int reg1, int reg2));
240
241 /* ssa_rename_to maps registers and machine modes to SSA pseudo registers. */
242
243 /* Find the register associated with REG in the indicated mode. */
244
245 static rtx
246 ssa_rename_to_lookup (reg)
247 rtx reg;
248 {
249 if (!HARD_REGISTER_P (reg))
250 return ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER];
251 else
252 return ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)];
253 }
254
255 /* Store a new value mapping REG to R in ssa_rename_to. */
256
257 static void
258 ssa_rename_to_insert(reg, r)
259 rtx reg;
260 rtx r;
261 {
262 if (!HARD_REGISTER_P (reg))
263 ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER] = r;
264 else
265 ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)] = r;
266 }
267
268 /* Prepare ssa_rename_from for use. */
269
270 static void
271 ssa_rename_from_initialize ()
272 {
273 /* We use an arbitrary initial hash table size of 64. */
274 ssa_rename_from_ht = htab_create (64,
275 &ssa_rename_from_hash_function,
276 &ssa_rename_from_equal,
277 &ssa_rename_from_delete);
278 }
279
280 /* Find the REG entry in ssa_rename_from. Return NULL_RTX if no entry is
281 found. */
282
283 static rtx
284 ssa_rename_from_lookup (reg)
285 int reg;
286 {
287 ssa_rename_from_pair srfp;
288 ssa_rename_from_pair *answer;
289 srfp.reg = reg;
290 srfp.original = NULL_RTX;
291 answer = (ssa_rename_from_pair *)
292 htab_find_with_hash (ssa_rename_from_ht, (void *) &srfp, reg);
293 return (answer == 0 ? NULL_RTX : answer->original);
294 }
295
296 /* Find the number of the original register specified by REGNO. If
297 the register is a pseudo, return the original register's number.
298 Otherwise, return this register number REGNO. */
299
300 static unsigned int
301 original_register (regno)
302 unsigned int regno;
303 {
304 rtx original_rtx = ssa_rename_from_lookup (regno);
305 return original_rtx != NULL_RTX ? REGNO (original_rtx) : regno;
306 }
307
308 /* Add mapping from R to REG to ssa_rename_from even if already present. */
309
310 static void
311 ssa_rename_from_insert (reg, r)
312 unsigned int reg;
313 rtx r;
314 {
315 void **slot;
316 ssa_rename_from_pair *srfp = xmalloc (sizeof (ssa_rename_from_pair));
317 srfp->reg = reg;
318 srfp->original = r;
319 slot = htab_find_slot_with_hash (ssa_rename_from_ht, (const void *) srfp,
320 reg, INSERT);
321 if (*slot != 0)
322 free ((void *) *slot);
323 *slot = srfp;
324 }
325
326 /* Apply the CALLBACK_FUNCTION to each element in ssa_rename_from.
327 CANONICAL_ELEMENTS and REG_PARTITION pass data needed by the only
328 current use of this function. */
329
330 static void
331 ssa_rename_from_traverse (callback_function,
332 canonical_elements, reg_partition)
333 htab_trav callback_function;
334 sbitmap canonical_elements;
335 partition reg_partition;
336 {
337 struct ssa_rename_from_hash_table_data srfhd;
338 srfhd.canonical_elements = canonical_elements;
339 srfhd.reg_partition = reg_partition;
340 htab_traverse (ssa_rename_from_ht, callback_function, (void *) &srfhd);
341 }
342
343 /* Destroy ssa_rename_from. */
344
345 static void
346 ssa_rename_from_free ()
347 {
348 htab_delete (ssa_rename_from_ht);
349 }
350
351 /* Print the contents of ssa_rename_from. */
352
353 /* static Avoid erroneous error message. */
354 void
355 ssa_rename_from_print ()
356 {
357 printf ("ssa_rename_from's hash table contents:\n");
358 htab_traverse (ssa_rename_from_ht, &ssa_rename_from_print_1, NULL);
359 }
360
361 /* Print the contents of the hash table entry SLOT, passing the unused
362 sttribute DATA. Used as a callback function with htab_traverse (). */
363
364 static int
365 ssa_rename_from_print_1 (slot, data)
366 void **slot;
367 void *data ATTRIBUTE_UNUSED;
368 {
369 ssa_rename_from_pair * p = *slot;
370 printf ("ssa_rename_from maps pseudo %i to original %i.\n",
371 p->reg, REGNO (p->original));
372 return 1;
373 }
374
375 /* Given a hash entry SRFP, yield a hash value. */
376
377 static hashval_t
378 ssa_rename_from_hash_function (srfp)
379 const void *srfp;
380 {
381 return ((const ssa_rename_from_pair *) srfp)->reg;
382 }
383
384 /* Test whether two hash table entries SRFP1 and SRFP2 are equal. */
385
386 static int
387 ssa_rename_from_equal (srfp1, srfp2)
388 const void *srfp1;
389 const void *srfp2;
390 {
391 return ssa_rename_from_hash_function (srfp1) ==
392 ssa_rename_from_hash_function (srfp2);
393 }
394
395 /* Delete the hash table entry SRFP. */
396
397 static void
398 ssa_rename_from_delete (srfp)
399 void *srfp;
400 {
401 free (srfp);
402 }
403
404 /* Given the SET of a PHI node, return the address of the alternative
405 for predecessor block C. */
406
407 static inline rtx *
408 phi_alternative (set, c)
409 rtx set;
410 int c;
411 {
412 rtvec phi_vec = XVEC (SET_SRC (set), 0);
413 int v;
414
415 for (v = GET_NUM_ELEM (phi_vec) - 2; v >= 0; v -= 2)
416 if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
417 return &RTVEC_ELT (phi_vec, v);
418
419 return NULL;
420 }
421
422 /* Given the SET of a phi node, remove the alternative for predecessor
423 block C. Return non-zero on success, or zero if no alternative is
424 found for C. */
425
426 int
427 remove_phi_alternative (set, block)
428 rtx set;
429 basic_block block;
430 {
431 rtvec phi_vec = XVEC (SET_SRC (set), 0);
432 int num_elem = GET_NUM_ELEM (phi_vec);
433 int v, c;
434
435 c = block->index;
436 for (v = num_elem - 2; v >= 0; v -= 2)
437 if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
438 {
439 if (v < num_elem - 2)
440 {
441 RTVEC_ELT (phi_vec, v) = RTVEC_ELT (phi_vec, num_elem - 2);
442 RTVEC_ELT (phi_vec, v + 1) = RTVEC_ELT (phi_vec, num_elem - 1);
443 }
444 PUT_NUM_ELEM (phi_vec, num_elem - 2);
445 return 1;
446 }
447
448 return 0;
449 }
450
451 /* For all registers, find all blocks in which they are set.
452
453 This is the transform of what would be local kill information that
454 we ought to be getting from flow. */
455
456 static sbitmap *fe_evals;
457 static int fe_current_bb;
458
459 static void
460 find_evaluations_1 (dest, set, data)
461 rtx dest;
462 rtx set ATTRIBUTE_UNUSED;
463 void *data ATTRIBUTE_UNUSED;
464 {
465 if (GET_CODE (dest) == REG
466 && CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
467 SET_BIT (fe_evals[REGNO (dest)], fe_current_bb);
468 }
469
470 static void
471 find_evaluations (evals, nregs)
472 sbitmap *evals;
473 int nregs;
474 {
475 int bb;
476
477 sbitmap_vector_zero (evals, nregs);
478 fe_evals = evals;
479
480 for (bb = n_basic_blocks; --bb >= 0; )
481 {
482 rtx p, last;
483
484 fe_current_bb = bb;
485 p = BLOCK_HEAD (bb);
486 last = BLOCK_END (bb);
487 while (1)
488 {
489 if (INSN_P (p))
490 note_stores (PATTERN (p), find_evaluations_1, NULL);
491
492 if (p == last)
493 break;
494 p = NEXT_INSN (p);
495 }
496 }
497 }
498
499 /* Computing the Dominance Frontier:
500
501 As decribed in Morgan, section 3.5, this may be done simply by
502 walking the dominator tree bottom-up, computing the frontier for
503 the children before the parent. When considering a block B,
504 there are two cases:
505
506 (1) A flow graph edge leaving B that does not lead to a child
507 of B in the dominator tree must be a block that is either equal
508 to B or not dominated by B. Such blocks belong in the frontier
509 of B.
510
511 (2) Consider a block X in the frontier of one of the children C
512 of B. If X is not equal to B and is not dominated by B, it
513 is in the frontier of B.
514 */
515
516 static void
517 compute_dominance_frontiers_1 (frontiers, idom, bb, done)
518 sbitmap *frontiers;
519 int *idom;
520 int bb;
521 sbitmap done;
522 {
523 basic_block b = BASIC_BLOCK (bb);
524 edge e;
525 int c;
526
527 SET_BIT (done, bb);
528 sbitmap_zero (frontiers[bb]);
529
530 /* Do the frontier of the children first. Not all children in the
531 dominator tree (blocks dominated by this one) are children in the
532 CFG, so check all blocks. */
533 for (c = 0; c < n_basic_blocks; ++c)
534 if (idom[c] == bb && ! TEST_BIT (done, c))
535 compute_dominance_frontiers_1 (frontiers, idom, c, done);
536
537 /* Find blocks conforming to rule (1) above. */
538 for (e = b->succ; e; e = e->succ_next)
539 {
540 if (e->dest == EXIT_BLOCK_PTR)
541 continue;
542 if (idom[e->dest->index] != bb)
543 SET_BIT (frontiers[bb], e->dest->index);
544 }
545
546 /* Find blocks conforming to rule (2). */
547 for (c = 0; c < n_basic_blocks; ++c)
548 if (idom[c] == bb)
549 {
550 int x;
551 EXECUTE_IF_SET_IN_SBITMAP (frontiers[c], 0, x,
552 {
553 if (idom[x] != bb)
554 SET_BIT (frontiers[bb], x);
555 });
556 }
557 }
558
559 void
560 compute_dominance_frontiers (frontiers, idom)
561 sbitmap *frontiers;
562 int *idom;
563 {
564 sbitmap done = sbitmap_alloc (n_basic_blocks);
565 sbitmap_zero (done);
566
567 compute_dominance_frontiers_1 (frontiers, idom, 0, done);
568
569 sbitmap_free (done);
570 }
571
572 /* Computing the Iterated Dominance Frontier:
573
574 This is the set of merge points for a given register.
575
576 This is not particularly intuitive. See section 7.1 of Morgan, in
577 particular figures 7.3 and 7.4 and the immediately surrounding text.
578 */
579
580 static void
581 compute_iterated_dominance_frontiers (idfs, frontiers, evals, nregs)
582 sbitmap *idfs;
583 sbitmap *frontiers;
584 sbitmap *evals;
585 int nregs;
586 {
587 sbitmap worklist;
588 int reg, passes = 0;
589
590 worklist = sbitmap_alloc (n_basic_blocks);
591
592 for (reg = 0; reg < nregs; ++reg)
593 {
594 sbitmap idf = idfs[reg];
595 int b, changed;
596
597 /* Start the iterative process by considering those blocks that
598 evaluate REG. We'll add their dominance frontiers to the
599 IDF, and then consider the blocks we just added. */
600 sbitmap_copy (worklist, evals[reg]);
601
602 /* Morgan's algorithm is incorrect here. Blocks that evaluate
603 REG aren't necessarily in REG's IDF. Start with an empty IDF. */
604 sbitmap_zero (idf);
605
606 /* Iterate until the worklist is empty. */
607 do
608 {
609 changed = 0;
610 passes++;
611 EXECUTE_IF_SET_IN_SBITMAP (worklist, 0, b,
612 {
613 RESET_BIT (worklist, b);
614 /* For each block on the worklist, add to the IDF all
615 blocks on its dominance frontier that aren't already
616 on the IDF. Every block that's added is also added
617 to the worklist. */
618 sbitmap_union_of_diff (worklist, worklist, frontiers[b], idf);
619 sbitmap_a_or_b (idf, idf, frontiers[b]);
620 changed = 1;
621 });
622 }
623 while (changed);
624 }
625
626 sbitmap_free (worklist);
627
628 if (rtl_dump_file)
629 {
630 fprintf(rtl_dump_file,
631 "Iterated dominance frontier: %d passes on %d regs.\n",
632 passes, nregs);
633 }
634 }
635
636 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
637 note associated with the BLOCK. */
638
639 static rtx
640 first_insn_after_basic_block_note (block)
641 basic_block block;
642 {
643 rtx insn;
644
645 /* Get the first instruction in the block. */
646 insn = block->head;
647
648 if (insn == NULL_RTX)
649 return NULL_RTX;
650 if (GET_CODE (insn) == CODE_LABEL)
651 insn = NEXT_INSN (insn);
652 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
653 abort ();
654
655 return NEXT_INSN (insn);
656 }
657
658 /* Insert the phi nodes. */
659
660 static void
661 insert_phi_node (regno, bb)
662 int regno, bb;
663 {
664 basic_block b = BASIC_BLOCK (bb);
665 edge e;
666 int npred, i;
667 rtvec vec;
668 rtx phi, reg;
669 rtx insn;
670 int end_p;
671
672 /* Find out how many predecessors there are. */
673 for (e = b->pred, npred = 0; e; e = e->pred_next)
674 if (e->src != ENTRY_BLOCK_PTR)
675 npred++;
676
677 /* If this block has no "interesting" preds, then there is nothing to
678 do. Consider a block that only has the entry block as a pred. */
679 if (npred == 0)
680 return;
681
682 /* This is the register to which the phi function will be assigned. */
683 reg = regno_reg_rtx[regno];
684
685 /* Construct the arguments to the PHI node. The use of pc_rtx is just
686 a placeholder; we'll insert the proper value in rename_registers. */
687 vec = rtvec_alloc (npred * 2);
688 for (e = b->pred, i = 0; e ; e = e->pred_next, i += 2)
689 if (e->src != ENTRY_BLOCK_PTR)
690 {
691 RTVEC_ELT (vec, i + 0) = pc_rtx;
692 RTVEC_ELT (vec, i + 1) = GEN_INT (e->src->index);
693 }
694
695 phi = gen_rtx_PHI (VOIDmode, vec);
696 phi = gen_rtx_SET (VOIDmode, reg, phi);
697
698 insn = first_insn_after_basic_block_note (b);
699 end_p = PREV_INSN (insn) == b->end;
700 emit_insn_before (phi, insn);
701 if (end_p)
702 b->end = PREV_INSN (insn);
703 }
704
705 static void
706 insert_phi_nodes (idfs, evals, nregs)
707 sbitmap *idfs;
708 sbitmap *evals ATTRIBUTE_UNUSED;
709 int nregs;
710 {
711 int reg;
712
713 for (reg = 0; reg < nregs; ++reg)
714 if (CONVERT_REGISTER_TO_SSA_P (reg))
715 {
716 int b;
717 EXECUTE_IF_SET_IN_SBITMAP (idfs[reg], 0, b,
718 {
719 if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, reg))
720 insert_phi_node (reg, b);
721 });
722 }
723 }
724
725 /* Rename the registers to conform to SSA.
726
727 This is essentially the algorithm presented in Figure 7.8 of Morgan,
728 with a few changes to reduce pattern search time in favour of a bit
729 more memory usage. */
730
731 /* One of these is created for each set. It will live in a list local
732 to its basic block for the duration of that block's processing. */
733 struct rename_set_data
734 {
735 struct rename_set_data *next;
736 /* This is the SET_DEST of the (first) SET that sets the REG. */
737 rtx *reg_loc;
738 /* This is what used to be at *REG_LOC. */
739 rtx old_reg;
740 /* This is the REG that will replace OLD_REG. It's set only
741 when the rename data is moved onto the DONE_RENAMES queue. */
742 rtx new_reg;
743 /* This is what to restore ssa_rename_to_lookup (old_reg) to. It is
744 usually the previous contents of ssa_rename_to_lookup (old_reg). */
745 rtx prev_reg;
746 /* This is the insn that contains all the SETs of the REG. */
747 rtx set_insn;
748 };
749
750 /* This struct is used to pass information to callback functions while
751 renaming registers. */
752 struct rename_context
753 {
754 struct rename_set_data *new_renames;
755 struct rename_set_data *done_renames;
756 rtx current_insn;
757 };
758
759 /* Queue the rename of *REG_LOC. */
760 static void
761 create_delayed_rename (c, reg_loc)
762 struct rename_context *c;
763 rtx *reg_loc;
764 {
765 struct rename_set_data *r;
766 r = (struct rename_set_data *) xmalloc (sizeof(*r));
767
768 if (GET_CODE (*reg_loc) != REG
769 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*reg_loc)))
770 abort();
771
772 r->reg_loc = reg_loc;
773 r->old_reg = *reg_loc;
774 r->prev_reg = ssa_rename_to_lookup(r->old_reg);
775 r->set_insn = c->current_insn;
776 r->next = c->new_renames;
777 c->new_renames = r;
778 }
779
780 /* This is part of a rather ugly hack to allow the pre-ssa regno to be
781 reused. If, during processing, a register has not yet been touched,
782 ssa_rename_to[regno][machno] will be NULL. Now, in the course of pushing
783 and popping values from ssa_rename_to, when we would ordinarily
784 pop NULL back in, we pop RENAME_NO_RTX. We treat this exactly the
785 same as NULL, except that it signals that the original regno has
786 already been reused. */
787 #define RENAME_NO_RTX pc_rtx
788
789 /* Move all the entries from NEW_RENAMES onto DONE_RENAMES by
790 applying all the renames on NEW_RENAMES. */
791
792 static void
793 apply_delayed_renames (c)
794 struct rename_context *c;
795 {
796 struct rename_set_data *r;
797 struct rename_set_data *last_r = NULL;
798
799 for (r = c->new_renames; r != NULL; r = r->next)
800 {
801 int new_regno;
802
803 /* Failure here means that someone has a PARALLEL that sets
804 a register twice (bad!). */
805 if (ssa_rename_to_lookup (r->old_reg) != r->prev_reg)
806 abort();
807 /* Failure here means we have changed REG_LOC before applying
808 the rename. */
809 /* For the first set we come across, reuse the original regno. */
810 if (r->prev_reg == NULL_RTX && !HARD_REGISTER_P (r->old_reg))
811 {
812 r->new_reg = r->old_reg;
813 /* We want to restore RENAME_NO_RTX rather than NULL_RTX. */
814 r->prev_reg = RENAME_NO_RTX;
815 }
816 else
817 r->new_reg = gen_reg_rtx (GET_MODE (r->old_reg));
818 new_regno = REGNO (r->new_reg);
819 ssa_rename_to_insert (r->old_reg, r->new_reg);
820
821 if (new_regno >= (int) ssa_definition->num_elements)
822 {
823 int new_limit = new_regno * 5 / 4;
824 VARRAY_GROW (ssa_definition, new_limit);
825 }
826
827 VARRAY_RTX (ssa_definition, new_regno) = r->set_insn;
828 ssa_rename_from_insert (new_regno, r->old_reg);
829 last_r = r;
830 }
831 if (last_r != NULL)
832 {
833 last_r->next = c->done_renames;
834 c->done_renames = c->new_renames;
835 c->new_renames = NULL;
836 }
837 }
838
839 /* Part one of the first step of rename_block, called through for_each_rtx.
840 Mark pseudos that are set for later update. Transform uses of pseudos. */
841
842 static int
843 rename_insn_1 (ptr, data)
844 rtx *ptr;
845 void *data;
846 {
847 rtx x = *ptr;
848 struct rename_context *context = data;
849
850 if (x == NULL_RTX)
851 return 0;
852
853 switch (GET_CODE (x))
854 {
855 case SET:
856 {
857 rtx *destp = &SET_DEST (x);
858 rtx dest = SET_DEST (x);
859
860 /* Some SETs also use the REG specified in their LHS.
861 These can be detected by the presence of
862 STRICT_LOW_PART, SUBREG, SIGN_EXTRACT, and ZERO_EXTRACT
863 in the LHS. Handle these by changing
864 (set (subreg (reg foo)) ...)
865 into
866 (sequence [(set (reg foo_1) (reg foo))
867 (set (subreg (reg foo_1)) ...)])
868
869 FIXME: Much of the time this is too much. For many libcalls,
870 paradoxical SUBREGs, etc., the input register is dead. We should
871 recognise this in rename_block or here and not make a false
872 dependency. */
873
874 if (GET_CODE (dest) == STRICT_LOW_PART
875 || GET_CODE (dest) == SUBREG
876 || GET_CODE (dest) == SIGN_EXTRACT
877 || GET_CODE (dest) == ZERO_EXTRACT)
878 {
879 rtx i, reg;
880 reg = dest;
881
882 while (GET_CODE (reg) == STRICT_LOW_PART
883 || GET_CODE (reg) == SUBREG
884 || GET_CODE (reg) == SIGN_EXTRACT
885 || GET_CODE (reg) == ZERO_EXTRACT)
886 reg = XEXP (reg, 0);
887
888 if (GET_CODE (reg) == REG
889 && CONVERT_REGISTER_TO_SSA_P (REGNO (reg)))
890 {
891 /* Generate (set reg reg), and do renaming on it so
892 that it becomes (set reg_1 reg_0), and we will
893 replace reg with reg_1 in the SUBREG. */
894
895 struct rename_set_data *saved_new_renames;
896 saved_new_renames = context->new_renames;
897 context->new_renames = NULL;
898 i = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
899 for_each_rtx (&i, rename_insn_1, data);
900 apply_delayed_renames (context);
901 context->new_renames = saved_new_renames;
902 }
903 }
904 else if (GET_CODE (dest) == REG &&
905 CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
906 {
907 /* We found a genuine set of an interesting register. Tag
908 it so that we can create a new name for it after we finish
909 processing this insn. */
910
911 create_delayed_rename (context, destp);
912
913 /* Since we do not wish to (directly) traverse the
914 SET_DEST, recurse through for_each_rtx for the SET_SRC
915 and return. */
916 if (GET_CODE (x) == SET)
917 for_each_rtx (&SET_SRC (x), rename_insn_1, data);
918 return -1;
919 }
920
921 /* Otherwise, this was not an interesting destination. Continue
922 on, marking uses as normal. */
923 return 0;
924 }
925
926 case REG:
927 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)) &&
928 REGNO (x) < ssa_max_reg_num)
929 {
930 rtx new_reg = ssa_rename_to_lookup (x);
931
932 if (new_reg != NULL_RTX && new_reg != RENAME_NO_RTX)
933 {
934 if (GET_MODE (x) != GET_MODE (new_reg))
935 abort ();
936 *ptr = new_reg;
937 }
938 /* Else this is a use before a set. Warn? */
939 }
940 return -1;
941
942 case CLOBBER:
943 /* There is considerable debate on how CLOBBERs ought to be
944 handled in SSA. For now, we're keeping the CLOBBERs, which
945 means that we don't really have SSA form. There are a couple
946 of proposals for how to fix this problem, but neither is
947 implemented yet. */
948 {
949 rtx dest = XCEXP (x, 0, CLOBBER);
950 if (REG_P (dest))
951 {
952 if (CONVERT_REGISTER_TO_SSA_P (REGNO (dest))
953 && REGNO (dest) < ssa_max_reg_num)
954 {
955 rtx new_reg = ssa_rename_to_lookup (dest);
956 if (new_reg != NULL_RTX && new_reg != RENAME_NO_RTX)
957 XCEXP (x, 0, CLOBBER) = new_reg;
958 }
959 /* Stop traversing. */
960 return -1;
961 }
962 else
963 /* Continue traversing. */
964 return 0;
965 }
966
967 case PHI:
968 /* Never muck with the phi. We do that elsewhere, special-like. */
969 return -1;
970
971 default:
972 /* Anything else, continue traversing. */
973 return 0;
974 }
975 }
976
977 static void
978 rename_block (bb, idom)
979 int bb;
980 int *idom;
981 {
982 basic_block b = BASIC_BLOCK (bb);
983 edge e;
984 rtx insn, next, last;
985 struct rename_set_data *set_data = NULL;
986 int c;
987
988 /* Step One: Walk the basic block, adding new names for sets and
989 replacing uses. */
990
991 next = b->head;
992 last = b->end;
993 do
994 {
995 insn = next;
996 if (INSN_P (insn))
997 {
998 struct rename_context context;
999 context.done_renames = set_data;
1000 context.new_renames = NULL;
1001 context.current_insn = insn;
1002
1003 start_sequence ();
1004 for_each_rtx (&PATTERN (insn), rename_insn_1, &context);
1005 for_each_rtx (&REG_NOTES (insn), rename_insn_1, &context);
1006
1007 /* Sometimes, we end up with a sequence of insns that
1008 SSA needs to treat as a single insn. Wrap these in a
1009 SEQUENCE. (Any notes now get attached to the SEQUENCE,
1010 not to the old version inner insn.) */
1011 if (get_insns () != NULL_RTX)
1012 {
1013 rtx seq;
1014 int i;
1015
1016 emit (PATTERN (insn));
1017 seq = gen_sequence ();
1018 /* We really want a SEQUENCE of SETs, not a SEQUENCE
1019 of INSNs. */
1020 for (i = 0; i < XVECLEN (seq, 0); i++)
1021 XVECEXP (seq, 0, i) = PATTERN (XVECEXP (seq, 0, i));
1022 PATTERN (insn) = seq;
1023 }
1024 end_sequence ();
1025
1026 apply_delayed_renames (&context);
1027 set_data = context.done_renames;
1028 }
1029
1030 next = NEXT_INSN (insn);
1031 }
1032 while (insn != last);
1033
1034 /* Step Two: Update the phi nodes of this block's successors. */
1035
1036 for (e = b->succ; e; e = e->succ_next)
1037 {
1038 if (e->dest == EXIT_BLOCK_PTR)
1039 continue;
1040
1041 insn = first_insn_after_basic_block_note (e->dest);
1042
1043 while (PHI_NODE_P (insn))
1044 {
1045 rtx phi = PATTERN (insn);
1046 rtx reg;
1047
1048 /* Find out which of our outgoing registers this node is
1049 intended to replace. Note that if this is not the first PHI
1050 node to have been created for this register, we have to
1051 jump through rename links to figure out which register
1052 we're talking about. This can easily be recognized by
1053 noting that the regno is new to this pass. */
1054 reg = SET_DEST (phi);
1055 if (REGNO (reg) >= ssa_max_reg_num)
1056 reg = ssa_rename_from_lookup (REGNO (reg));
1057 if (reg == NULL_RTX)
1058 abort ();
1059 reg = ssa_rename_to_lookup (reg);
1060
1061 /* It is possible for the variable to be uninitialized on
1062 edges in. Reduce the arity of the PHI so that we don't
1063 consider those edges. */
1064 if (reg == NULL || reg == RENAME_NO_RTX)
1065 {
1066 if (! remove_phi_alternative (phi, b))
1067 abort ();
1068 }
1069 else
1070 {
1071 /* When we created the PHI nodes, we did not know what mode
1072 the register should be. Now that we've found an original,
1073 we can fill that in. */
1074 if (GET_MODE (SET_DEST (phi)) == VOIDmode)
1075 PUT_MODE (SET_DEST (phi), GET_MODE (reg));
1076 else if (GET_MODE (SET_DEST (phi)) != GET_MODE (reg))
1077 abort();
1078
1079 *phi_alternative (phi, bb) = reg;
1080 }
1081
1082 insn = NEXT_INSN (insn);
1083 }
1084 }
1085
1086 /* Step Three: Do the same to the children of this block in
1087 dominator order. */
1088
1089 for (c = 0; c < n_basic_blocks; ++c)
1090 if (idom[c] == bb)
1091 rename_block (c, idom);
1092
1093 /* Step Four: Update the sets to refer to their new register,
1094 and restore ssa_rename_to to its previous state. */
1095
1096 while (set_data)
1097 {
1098 struct rename_set_data *next;
1099 rtx old_reg = *set_data->reg_loc;
1100
1101 if (*set_data->reg_loc != set_data->old_reg)
1102 abort();
1103 *set_data->reg_loc = set_data->new_reg;
1104
1105 ssa_rename_to_insert (old_reg, set_data->prev_reg);
1106
1107 next = set_data->next;
1108 free (set_data);
1109 set_data = next;
1110 }
1111 }
1112
1113 static void
1114 rename_registers (nregs, idom)
1115 int nregs;
1116 int *idom;
1117 {
1118 VARRAY_RTX_INIT (ssa_definition, nregs * 3, "ssa_definition");
1119 ssa_rename_from_initialize ();
1120
1121 ssa_rename_to_pseudo = (rtx *) alloca (nregs * sizeof(rtx));
1122 memset ((char *) ssa_rename_to_pseudo, 0, nregs * sizeof(rtx));
1123 memset ((char *) ssa_rename_to_hard, 0,
1124 FIRST_PSEUDO_REGISTER * NUM_MACHINE_MODES * sizeof (rtx));
1125
1126 rename_block (0, idom);
1127
1128 /* ??? Update basic_block_live_at_start, and other flow info
1129 as needed. */
1130
1131 ssa_rename_to_pseudo = NULL;
1132 }
1133
1134 /* The main entry point for moving to SSA. */
1135
1136 void
1137 convert_to_ssa ()
1138 {
1139 /* Element I is the set of blocks that set register I. */
1140 sbitmap *evals;
1141
1142 /* Dominator bitmaps. */
1143 sbitmap *dfs;
1144 sbitmap *idfs;
1145
1146 /* Element I is the immediate dominator of block I. */
1147 int *idom;
1148
1149 int nregs;
1150
1151 /* Don't do it twice. */
1152 if (in_ssa_form)
1153 abort ();
1154
1155 /* Need global_live_at_{start,end} up to date. Do not remove any
1156 dead code. We'll let the SSA optimizers do that. */
1157 life_analysis (get_insns (), NULL, 0);
1158
1159 idom = (int *) alloca (n_basic_blocks * sizeof (int));
1160 memset ((void *)idom, -1, (size_t)n_basic_blocks * sizeof (int));
1161 calculate_dominance_info (idom, NULL, CDI_DOMINATORS);
1162
1163 if (rtl_dump_file)
1164 {
1165 int i;
1166 fputs (";; Immediate Dominators:\n", rtl_dump_file);
1167 for (i = 0; i < n_basic_blocks; ++i)
1168 fprintf (rtl_dump_file, ";\t%3d = %3d\n", i, idom[i]);
1169 fflush (rtl_dump_file);
1170 }
1171
1172 /* Compute dominance frontiers. */
1173
1174 dfs = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
1175 compute_dominance_frontiers (dfs, idom);
1176
1177 if (rtl_dump_file)
1178 {
1179 dump_sbitmap_vector (rtl_dump_file, ";; Dominance Frontiers:",
1180 "; Basic Block", dfs, n_basic_blocks);
1181 fflush (rtl_dump_file);
1182 }
1183
1184 /* Compute register evaluations. */
1185
1186 ssa_max_reg_num = max_reg_num();
1187 nregs = ssa_max_reg_num;
1188 evals = sbitmap_vector_alloc (nregs, n_basic_blocks);
1189 find_evaluations (evals, nregs);
1190
1191 /* Compute the iterated dominance frontier for each register. */
1192
1193 idfs = sbitmap_vector_alloc (nregs, n_basic_blocks);
1194 compute_iterated_dominance_frontiers (idfs, dfs, evals, nregs);
1195
1196 if (rtl_dump_file)
1197 {
1198 dump_sbitmap_vector (rtl_dump_file, ";; Iterated Dominance Frontiers:",
1199 "; Register", idfs, nregs);
1200 fflush (rtl_dump_file);
1201 }
1202
1203 /* Insert the phi nodes. */
1204
1205 insert_phi_nodes (idfs, evals, nregs);
1206
1207 /* Rename the registers to satisfy SSA. */
1208
1209 rename_registers (nregs, idom);
1210
1211 /* All done! Clean up and go home. */
1212
1213 sbitmap_vector_free (dfs);
1214 sbitmap_vector_free (evals);
1215 sbitmap_vector_free (idfs);
1216 in_ssa_form = 1;
1217
1218 reg_scan (get_insns (), max_reg_num (), 1);
1219 }
1220
1221 /* REG is the representative temporary of its partition. Add it to the
1222 set of nodes to be processed, if it hasn't been already. Return the
1223 index of this register in the node set. */
1224
1225 static inline int
1226 ephi_add_node (reg, nodes, n_nodes)
1227 rtx reg, *nodes;
1228 int *n_nodes;
1229 {
1230 int i;
1231 for (i = *n_nodes - 1; i >= 0; --i)
1232 if (REGNO (reg) == REGNO (nodes[i]))
1233 return i;
1234
1235 nodes[i = (*n_nodes)++] = reg;
1236 return i;
1237 }
1238
1239 /* Part one of the topological sort. This is a forward (downward) search
1240 through the graph collecting a stack of nodes to process. Assuming no
1241 cycles, the nodes at top of the stack when we are finished will have
1242 no other dependancies. */
1243
1244 static int *
1245 ephi_forward (t, visited, succ, tstack)
1246 int t;
1247 sbitmap visited;
1248 sbitmap *succ;
1249 int *tstack;
1250 {
1251 int s;
1252
1253 SET_BIT (visited, t);
1254
1255 EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
1256 {
1257 if (! TEST_BIT (visited, s))
1258 tstack = ephi_forward (s, visited, succ, tstack);
1259 });
1260
1261 *tstack++ = t;
1262 return tstack;
1263 }
1264
1265 /* Part two of the topological sort. The is a backward search through
1266 a cycle in the graph, copying the data forward as we go. */
1267
1268 static void
1269 ephi_backward (t, visited, pred, nodes)
1270 int t;
1271 sbitmap visited, *pred;
1272 rtx *nodes;
1273 {
1274 int p;
1275
1276 SET_BIT (visited, t);
1277
1278 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1279 {
1280 if (! TEST_BIT (visited, p))
1281 {
1282 ephi_backward (p, visited, pred, nodes);
1283 emit_move_insn (nodes[p], nodes[t]);
1284 }
1285 });
1286 }
1287
1288 /* Part two of the topological sort. Create the copy for a register
1289 and any cycle of which it is a member. */
1290
1291 static void
1292 ephi_create (t, visited, pred, succ, nodes)
1293 int t;
1294 sbitmap visited, *pred, *succ;
1295 rtx *nodes;
1296 {
1297 rtx reg_u = NULL_RTX;
1298 int unvisited_predecessors = 0;
1299 int p;
1300
1301 /* Iterate through the predecessor list looking for unvisited nodes.
1302 If there are any, we have a cycle, and must deal with that. At
1303 the same time, look for a visited predecessor. If there is one,
1304 we won't need to create a temporary. */
1305
1306 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1307 {
1308 if (! TEST_BIT (visited, p))
1309 unvisited_predecessors = 1;
1310 else if (!reg_u)
1311 reg_u = nodes[p];
1312 });
1313
1314 if (unvisited_predecessors)
1315 {
1316 /* We found a cycle. Copy out one element of the ring (if necessary),
1317 then traverse the ring copying as we go. */
1318
1319 if (!reg_u)
1320 {
1321 reg_u = gen_reg_rtx (GET_MODE (nodes[t]));
1322 emit_move_insn (reg_u, nodes[t]);
1323 }
1324
1325 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1326 {
1327 if (! TEST_BIT (visited, p))
1328 {
1329 ephi_backward (p, visited, pred, nodes);
1330 emit_move_insn (nodes[p], reg_u);
1331 }
1332 });
1333 }
1334 else
1335 {
1336 /* No cycle. Just copy the value from a successor. */
1337
1338 int s;
1339 EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
1340 {
1341 SET_BIT (visited, t);
1342 emit_move_insn (nodes[t], nodes[s]);
1343 return;
1344 });
1345 }
1346 }
1347
1348 /* Convert the edge to normal form. */
1349
1350 static void
1351 eliminate_phi (e, reg_partition)
1352 edge e;
1353 partition reg_partition;
1354 {
1355 int n_nodes;
1356 sbitmap *pred, *succ;
1357 sbitmap visited;
1358 rtx *nodes;
1359 int *stack, *tstack;
1360 rtx insn;
1361 int i;
1362
1363 /* Collect an upper bound on the number of registers needing processing. */
1364
1365 insn = first_insn_after_basic_block_note (e->dest);
1366
1367 n_nodes = 0;
1368 while (PHI_NODE_P (insn))
1369 {
1370 insn = next_nonnote_insn (insn);
1371 n_nodes += 2;
1372 }
1373
1374 if (n_nodes == 0)
1375 return;
1376
1377 /* Build the auxilliary graph R(B).
1378
1379 The nodes of the graph are the members of the register partition
1380 present in Phi(B). There is an edge from FIND(T0)->FIND(T1) for
1381 each T0 = PHI(...,T1,...), where T1 is for the edge from block C. */
1382
1383 nodes = (rtx *) alloca (n_nodes * sizeof(rtx));
1384 pred = sbitmap_vector_alloc (n_nodes, n_nodes);
1385 succ = sbitmap_vector_alloc (n_nodes, n_nodes);
1386 sbitmap_vector_zero (pred, n_nodes);
1387 sbitmap_vector_zero (succ, n_nodes);
1388
1389 insn = first_insn_after_basic_block_note (e->dest);
1390
1391 n_nodes = 0;
1392 for (; PHI_NODE_P (insn); insn = next_nonnote_insn (insn))
1393 {
1394 rtx* preg = phi_alternative (PATTERN (insn), e->src->index);
1395 rtx tgt = SET_DEST (PATTERN (insn));
1396 rtx reg;
1397
1398 /* There may be no phi alternative corresponding to this edge.
1399 This indicates that the phi variable is undefined along this
1400 edge. */
1401 if (preg == NULL)
1402 continue;
1403 reg = *preg;
1404
1405 if (GET_CODE (reg) != REG || GET_CODE (tgt) != REG)
1406 abort();
1407
1408 reg = regno_reg_rtx[partition_find (reg_partition, REGNO (reg))];
1409 tgt = regno_reg_rtx[partition_find (reg_partition, REGNO (tgt))];
1410 /* If the two registers are already in the same partition,
1411 nothing will need to be done. */
1412 if (reg != tgt)
1413 {
1414 int ireg, itgt;
1415
1416 ireg = ephi_add_node (reg, nodes, &n_nodes);
1417 itgt = ephi_add_node (tgt, nodes, &n_nodes);
1418
1419 SET_BIT (pred[ireg], itgt);
1420 SET_BIT (succ[itgt], ireg);
1421 }
1422 }
1423
1424 if (n_nodes == 0)
1425 goto out;
1426
1427 /* Begin a topological sort of the graph. */
1428
1429 visited = sbitmap_alloc (n_nodes);
1430 sbitmap_zero (visited);
1431
1432 tstack = stack = (int *) alloca (n_nodes * sizeof (int));
1433
1434 for (i = 0; i < n_nodes; ++i)
1435 if (! TEST_BIT (visited, i))
1436 tstack = ephi_forward (i, visited, succ, tstack);
1437
1438 sbitmap_zero (visited);
1439
1440 /* As we find a solution to the tsort, collect the implementation
1441 insns in a sequence. */
1442 start_sequence ();
1443
1444 while (tstack != stack)
1445 {
1446 i = *--tstack;
1447 if (! TEST_BIT (visited, i))
1448 ephi_create (i, visited, pred, succ, nodes);
1449 }
1450
1451 insn = gen_sequence ();
1452 end_sequence ();
1453 insert_insn_on_edge (insn, e);
1454 if (rtl_dump_file)
1455 fprintf (rtl_dump_file, "Emitting copy on edge (%d,%d)\n",
1456 e->src->index, e->dest->index);
1457
1458 sbitmap_free (visited);
1459 out:
1460 sbitmap_vector_free (pred);
1461 sbitmap_vector_free (succ);
1462 }
1463
1464 /* For basic block B, consider all phi insns which provide an
1465 alternative corresponding to an incoming abnormal critical edge.
1466 Place the phi alternative corresponding to that abnormal critical
1467 edge in the same register class as the destination of the set.
1468
1469 From Morgan, p. 178:
1470
1471 For each abnormal critical edge (C, B),
1472 if T0 = phi (T1, ..., Ti, ..., Tm) is a phi node in B,
1473 and C is the ith predecessor of B,
1474 then T0 and Ti must be equivalent.
1475
1476 Return non-zero iff any such cases were found for which the two
1477 regs were not already in the same class. */
1478
1479 static int
1480 make_regs_equivalent_over_bad_edges (bb, reg_partition)
1481 int bb;
1482 partition reg_partition;
1483 {
1484 int changed = 0;
1485 basic_block b = BASIC_BLOCK (bb);
1486 rtx phi;
1487
1488 /* Advance to the first phi node. */
1489 phi = first_insn_after_basic_block_note (b);
1490
1491 /* Scan all the phi nodes. */
1492 for (;
1493 PHI_NODE_P (phi);
1494 phi = next_nonnote_insn (phi))
1495 {
1496 edge e;
1497 int tgt_regno;
1498 rtx set = PATTERN (phi);
1499 rtx tgt = SET_DEST (set);
1500
1501 /* The set target is expected to be an SSA register. */
1502 if (GET_CODE (tgt) != REG
1503 || !CONVERT_REGISTER_TO_SSA_P (REGNO (tgt)))
1504 abort ();
1505 tgt_regno = REGNO (tgt);
1506
1507 /* Scan incoming abnormal critical edges. */
1508 for (e = b->pred; e; e = e->pred_next)
1509 if ((e->flags & (EDGE_ABNORMAL | EDGE_CRITICAL))
1510 == (EDGE_ABNORMAL | EDGE_CRITICAL))
1511 {
1512 rtx *alt = phi_alternative (set, e->src->index);
1513 int alt_regno;
1514
1515 /* If there is no alternative corresponding to this edge,
1516 the value is undefined along the edge, so just go on. */
1517 if (alt == 0)
1518 continue;
1519
1520 /* The phi alternative is expected to be an SSA register. */
1521 if (GET_CODE (*alt) != REG
1522 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
1523 abort ();
1524 alt_regno = REGNO (*alt);
1525
1526 /* If the set destination and the phi alternative aren't
1527 already in the same class... */
1528 if (partition_find (reg_partition, tgt_regno)
1529 != partition_find (reg_partition, alt_regno))
1530 {
1531 /* ... make them such. */
1532 if (conflicting_hard_regs_p (tgt_regno, alt_regno))
1533 /* It is illegal to unify a hard register with a
1534 different register. */
1535 abort ();
1536
1537 partition_union (reg_partition,
1538 tgt_regno, alt_regno);
1539 ++changed;
1540 }
1541 }
1542 }
1543
1544 return changed;
1545 }
1546
1547 /* Consider phi insns in basic block BB pairwise. If the set target
1548 of both isns are equivalent pseudos, make the corresponding phi
1549 alternatives in each phi corresponding equivalent.
1550
1551 Return nonzero if any new register classes were unioned. */
1552
1553 static int
1554 make_equivalent_phi_alternatives_equivalent (bb, reg_partition)
1555 int bb;
1556 partition reg_partition;
1557 {
1558 int changed = 0;
1559 basic_block b = BASIC_BLOCK (bb);
1560 rtx phi;
1561
1562 /* Advance to the first phi node. */
1563 phi = first_insn_after_basic_block_note (b);
1564
1565 /* Scan all the phi nodes. */
1566 for (;
1567 PHI_NODE_P (phi);
1568 phi = next_nonnote_insn (phi))
1569 {
1570 rtx set = PATTERN (phi);
1571 /* The regno of the destination of the set. */
1572 int tgt_regno = REGNO (SET_DEST (PATTERN (phi)));
1573
1574 rtx phi2 = next_nonnote_insn (phi);
1575
1576 /* Scan all phi nodes following this one. */
1577 for (;
1578 PHI_NODE_P (phi2);
1579 phi2 = next_nonnote_insn (phi2))
1580 {
1581 rtx set2 = PATTERN (phi2);
1582 /* The regno of the destination of the set. */
1583 int tgt2_regno = REGNO (SET_DEST (set2));
1584
1585 /* Are the set destinations equivalent regs? */
1586 if (partition_find (reg_partition, tgt_regno) ==
1587 partition_find (reg_partition, tgt2_regno))
1588 {
1589 edge e;
1590 /* Scan over edges. */
1591 for (e = b->pred; e; e = e->pred_next)
1592 {
1593 int pred_block = e->src->index;
1594 /* Identify the phi alternatives from both phi
1595 nodes corresponding to this edge. */
1596 rtx *alt = phi_alternative (set, pred_block);
1597 rtx *alt2 = phi_alternative (set2, pred_block);
1598
1599 /* If one of the phi nodes doesn't have a
1600 corresponding alternative, just skip it. */
1601 if (alt == 0 || alt2 == 0)
1602 continue;
1603
1604 /* Both alternatives should be SSA registers. */
1605 if (GET_CODE (*alt) != REG
1606 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
1607 abort ();
1608 if (GET_CODE (*alt2) != REG
1609 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt2)))
1610 abort ();
1611
1612 /* If the alternatives aren't already in the same
1613 class ... */
1614 if (partition_find (reg_partition, REGNO (*alt))
1615 != partition_find (reg_partition, REGNO (*alt2)))
1616 {
1617 /* ... make them so. */
1618 if (conflicting_hard_regs_p (REGNO (*alt), REGNO (*alt2)))
1619 /* It is illegal to unify a hard register with
1620 a different register. */
1621 abort ();
1622
1623 partition_union (reg_partition,
1624 REGNO (*alt), REGNO (*alt2));
1625 ++changed;
1626 }
1627 }
1628 }
1629 }
1630 }
1631
1632 return changed;
1633 }
1634
1635 /* Compute a conservative partition of outstanding pseudo registers.
1636 See Morgan 7.3.1. */
1637
1638 static partition
1639 compute_conservative_reg_partition ()
1640 {
1641 int bb;
1642 int changed = 0;
1643
1644 /* We don't actually work with hard registers, but it's easier to
1645 carry them around anyway rather than constantly doing register
1646 number arithmetic. */
1647 partition p =
1648 partition_new (ssa_definition->num_elements);
1649
1650 /* The first priority is to make sure registers that might have to
1651 be copied on abnormal critical edges are placed in the same
1652 partition. This saves us from having to split abnormal critical
1653 edges. */
1654 for (bb = n_basic_blocks; --bb >= 0; )
1655 changed += make_regs_equivalent_over_bad_edges (bb, p);
1656
1657 /* Now we have to insure that corresponding arguments of phi nodes
1658 assigning to corresponding regs are equivalent. Iterate until
1659 nothing changes. */
1660 while (changed > 0)
1661 {
1662 changed = 0;
1663 for (bb = n_basic_blocks; --bb >= 0; )
1664 changed += make_equivalent_phi_alternatives_equivalent (bb, p);
1665 }
1666
1667 return p;
1668 }
1669
1670 /* The following functions compute a register partition that attempts
1671 to eliminate as many reg copies and phi node copies as possible by
1672 coalescing registers. This is the strategy:
1673
1674 1. As in the conservative case, the top priority is to coalesce
1675 registers that otherwise would cause copies to be placed on
1676 abnormal critical edges (which isn't possible).
1677
1678 2. Figure out which regs are involved (in the LHS or RHS) of
1679 copies and phi nodes. Compute conflicts among these regs.
1680
1681 3. Walk around the instruction stream, placing two regs in the
1682 same class of the partition if one appears on the LHS and the
1683 other on the RHS of a copy or phi node and the two regs don't
1684 conflict. The conflict information of course needs to be
1685 updated.
1686
1687 4. If anything has changed, there may be new opportunities to
1688 coalesce regs, so go back to 2.
1689 */
1690
1691 /* If REG1 and REG2 don't conflict in CONFLICTS, place them in the
1692 same class of partition P, if they aren't already. Update
1693 CONFLICTS appropriately.
1694
1695 Returns one if REG1 and REG2 were placed in the same class but were
1696 not previously; zero otherwise.
1697
1698 See Morgan figure 11.15. */
1699
1700 static int
1701 coalesce_if_unconflicting (p, conflicts, reg1, reg2)
1702 partition p;
1703 conflict_graph conflicts;
1704 int reg1;
1705 int reg2;
1706 {
1707 int reg;
1708
1709 /* Work only on SSA registers. */
1710 if (!CONVERT_REGISTER_TO_SSA_P (reg1) || !CONVERT_REGISTER_TO_SSA_P (reg2))
1711 return 0;
1712
1713 /* Find the canonical regs for the classes containing REG1 and
1714 REG2. */
1715 reg1 = partition_find (p, reg1);
1716 reg2 = partition_find (p, reg2);
1717
1718 /* If they're already in the same class, there's nothing to do. */
1719 if (reg1 == reg2)
1720 return 0;
1721
1722 /* If the regs conflict, our hands are tied. */
1723 if (conflicting_hard_regs_p (reg1, reg2) ||
1724 conflict_graph_conflict_p (conflicts, reg1, reg2))
1725 return 0;
1726
1727 /* We're good to go. Put the regs in the same partition. */
1728 partition_union (p, reg1, reg2);
1729
1730 /* Find the new canonical reg for the merged class. */
1731 reg = partition_find (p, reg1);
1732
1733 /* Merge conflicts from the two previous classes. */
1734 conflict_graph_merge_regs (conflicts, reg, reg1);
1735 conflict_graph_merge_regs (conflicts, reg, reg2);
1736
1737 return 1;
1738 }
1739
1740 /* For each register copy insn in basic block BB, place the LHS and
1741 RHS regs in the same class in partition P if they do not conflict
1742 according to CONFLICTS.
1743
1744 Returns the number of changes that were made to P.
1745
1746 See Morgan figure 11.14. */
1747
1748 static int
1749 coalesce_regs_in_copies (bb, p, conflicts)
1750 basic_block bb;
1751 partition p;
1752 conflict_graph conflicts;
1753 {
1754 int changed = 0;
1755 rtx insn;
1756 rtx end = bb->end;
1757
1758 /* Scan the instruction stream of the block. */
1759 for (insn = bb->head; insn != end; insn = NEXT_INSN (insn))
1760 {
1761 rtx pattern;
1762 rtx src;
1763 rtx dest;
1764
1765 /* If this isn't a set insn, go to the next insn. */
1766 if (GET_CODE (insn) != INSN)
1767 continue;
1768 pattern = PATTERN (insn);
1769 if (GET_CODE (pattern) != SET)
1770 continue;
1771
1772 src = SET_SRC (pattern);
1773 dest = SET_DEST (pattern);
1774
1775 /* We're only looking for copies. */
1776 if (GET_CODE (src) != REG || GET_CODE (dest) != REG)
1777 continue;
1778
1779 /* Coalesce only if the reg modes are the same. As long as
1780 each reg's rtx is unique, it can have only one mode, so two
1781 pseudos of different modes can't be coalesced into one.
1782
1783 FIXME: We can probably get around this by inserting SUBREGs
1784 where appropriate, but for now we don't bother. */
1785 if (GET_MODE (src) != GET_MODE (dest))
1786 continue;
1787
1788 /* Found a copy; see if we can use the same reg for both the
1789 source and destination (and thus eliminate the copy,
1790 ultimately). */
1791 changed += coalesce_if_unconflicting (p, conflicts,
1792 REGNO (src), REGNO (dest));
1793 }
1794
1795 return changed;
1796 }
1797
1798 struct phi_coalesce_context
1799 {
1800 partition p;
1801 conflict_graph conflicts;
1802 int changed;
1803 };
1804
1805 /* Callback function for for_each_successor_phi. If the set
1806 destination and the phi alternative regs do not conflict, place
1807 them in the same paritition class. DATA is a pointer to a
1808 phi_coalesce_context struct. */
1809
1810 static int
1811 coalesce_reg_in_phi (insn, dest_regno, src_regno, data)
1812 rtx insn ATTRIBUTE_UNUSED;
1813 int dest_regno;
1814 int src_regno;
1815 void *data;
1816 {
1817 struct phi_coalesce_context *context =
1818 (struct phi_coalesce_context *) data;
1819
1820 /* Attempt to use the same reg, if they don't conflict. */
1821 context->changed
1822 += coalesce_if_unconflicting (context->p, context->conflicts,
1823 dest_regno, src_regno);
1824 return 0;
1825 }
1826
1827 /* For each alternative in a phi function corresponding to basic block
1828 BB (in phi nodes in successor block to BB), place the reg in the
1829 phi alternative and the reg to which the phi value is set into the
1830 same class in partition P, if allowed by CONFLICTS.
1831
1832 Return the number of changes that were made to P.
1833
1834 See Morgan figure 11.14. */
1835
1836 static int
1837 coalesce_regs_in_successor_phi_nodes (bb, p, conflicts)
1838 basic_block bb;
1839 partition p;
1840 conflict_graph conflicts;
1841 {
1842 struct phi_coalesce_context context;
1843 context.p = p;
1844 context.conflicts = conflicts;
1845 context.changed = 0;
1846
1847 for_each_successor_phi (bb, &coalesce_reg_in_phi, &context);
1848
1849 return context.changed;
1850 }
1851
1852 /* Compute and return a partition of pseudos. Where possible,
1853 non-conflicting pseudos are placed in the same class.
1854
1855 The caller is responsible for deallocating the returned partition. */
1856
1857 static partition
1858 compute_coalesced_reg_partition ()
1859 {
1860 int bb;
1861 int changed = 0;
1862
1863 partition p =
1864 partition_new (ssa_definition->num_elements);
1865
1866 /* The first priority is to make sure registers that might have to
1867 be copied on abnormal critical edges are placed in the same
1868 partition. This saves us from having to split abnormal critical
1869 edges (which can't be done). */
1870 for (bb = n_basic_blocks; --bb >= 0; )
1871 make_regs_equivalent_over_bad_edges (bb, p);
1872
1873 do
1874 {
1875 regset_head phi_set;
1876 conflict_graph conflicts;
1877
1878 changed = 0;
1879
1880 /* Build the set of registers involved in phi nodes, either as
1881 arguments to the phi function or as the target of a set. */
1882 INITIALIZE_REG_SET (phi_set);
1883 mark_phi_and_copy_regs (&phi_set);
1884
1885 /* Compute conflicts. */
1886 conflicts = conflict_graph_compute (&phi_set, p);
1887
1888 /* FIXME: Better would be to process most frequently executed
1889 blocks first, so that most frequently executed copies would
1890 be more likely to be removed by register coalescing. But any
1891 order will generate correct, if non-optimal, results. */
1892 for (bb = n_basic_blocks; --bb >= 0; )
1893 {
1894 basic_block block = BASIC_BLOCK (bb);
1895 changed += coalesce_regs_in_copies (block, p, conflicts);
1896 changed +=
1897 coalesce_regs_in_successor_phi_nodes (block, p, conflicts);
1898 }
1899
1900 conflict_graph_delete (conflicts);
1901 }
1902 while (changed > 0);
1903
1904 return p;
1905 }
1906
1907 /* Mark the regs in a phi node. PTR is a phi expression or one of its
1908 components (a REG or a CONST_INT). DATA is a reg set in which to
1909 set all regs. Called from for_each_rtx. */
1910
1911 static int
1912 mark_reg_in_phi (ptr, data)
1913 rtx *ptr;
1914 void *data;
1915 {
1916 rtx expr = *ptr;
1917 regset set = (regset) data;
1918
1919 switch (GET_CODE (expr))
1920 {
1921 case REG:
1922 SET_REGNO_REG_SET (set, REGNO (expr));
1923 /* Fall through. */
1924 case CONST_INT:
1925 case PHI:
1926 return 0;
1927 default:
1928 abort ();
1929 }
1930 }
1931
1932 /* Mark in PHI_SET all pseudos that are used in a phi node -- either
1933 set from a phi expression, or used as an argument in one. Also
1934 mark regs that are the source or target of a reg copy. Uses
1935 ssa_definition. */
1936
1937 static void
1938 mark_phi_and_copy_regs (phi_set)
1939 regset phi_set;
1940 {
1941 unsigned int reg;
1942
1943 /* Scan the definitions of all regs. */
1944 for (reg = 0; reg < VARRAY_SIZE (ssa_definition); ++reg)
1945 if (CONVERT_REGISTER_TO_SSA_P (reg))
1946 {
1947 rtx insn = VARRAY_RTX (ssa_definition, reg);
1948 rtx pattern;
1949 rtx src;
1950
1951 if (insn == NULL)
1952 continue;
1953 pattern = PATTERN (insn);
1954 /* Sometimes we get PARALLEL insns. These aren't phi nodes or
1955 copies. */
1956 if (GET_CODE (pattern) != SET)
1957 continue;
1958 src = SET_SRC (pattern);
1959
1960 if (GET_CODE (src) == REG)
1961 {
1962 /* It's a reg copy. */
1963 SET_REGNO_REG_SET (phi_set, reg);
1964 SET_REGNO_REG_SET (phi_set, REGNO (src));
1965 }
1966 else if (GET_CODE (src) == PHI)
1967 {
1968 /* It's a phi node. Mark the reg being set. */
1969 SET_REGNO_REG_SET (phi_set, reg);
1970 /* Mark the regs used in the phi function. */
1971 for_each_rtx (&src, mark_reg_in_phi, phi_set);
1972 }
1973 /* ... else nothing to do. */
1974 }
1975 }
1976
1977 /* Rename regs in insn PTR that are equivalent. DATA is the register
1978 partition which specifies equivalences. */
1979
1980 static int
1981 rename_equivalent_regs_in_insn (ptr, data)
1982 rtx *ptr;
1983 void* data;
1984 {
1985 rtx x = *ptr;
1986 partition reg_partition = (partition) data;
1987
1988 if (x == NULL_RTX)
1989 return 0;
1990
1991 switch (GET_CODE (x))
1992 {
1993 case REG:
1994 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)))
1995 {
1996 unsigned int regno = REGNO (x);
1997 unsigned int new_regno = partition_find (reg_partition, regno);
1998 rtx canonical_element_rtx = ssa_rename_from_lookup (new_regno);
1999
2000 if (canonical_element_rtx != NULL_RTX &&
2001 HARD_REGISTER_P (canonical_element_rtx))
2002 {
2003 if (REGNO (canonical_element_rtx) != regno)
2004 *ptr = canonical_element_rtx;
2005 }
2006 else if (regno != new_regno)
2007 {
2008 rtx new_reg = regno_reg_rtx[new_regno];
2009 if (GET_MODE (x) != GET_MODE (new_reg))
2010 abort ();
2011 *ptr = new_reg;
2012 }
2013 }
2014 return -1;
2015
2016 case PHI:
2017 /* No need to rename the phi nodes. We'll check equivalence
2018 when inserting copies. */
2019 return -1;
2020
2021 default:
2022 /* Anything else, continue traversing. */
2023 return 0;
2024 }
2025 }
2026
2027 /* Record the register's canonical element stored in SRFP in the
2028 canonical_elements sbitmap packaged in DATA. This function is used
2029 as a callback function for traversing ssa_rename_from. */
2030
2031 static int
2032 record_canonical_element_1 (srfp, data)
2033 void **srfp;
2034 void *data;
2035 {
2036 unsigned int reg = ((ssa_rename_from_pair *) *srfp)->reg;
2037 sbitmap canonical_elements =
2038 ((struct ssa_rename_from_hash_table_data *) data)->canonical_elements;
2039 partition reg_partition =
2040 ((struct ssa_rename_from_hash_table_data *) data)->reg_partition;
2041
2042 SET_BIT (canonical_elements, partition_find (reg_partition, reg));
2043 return 1;
2044 }
2045
2046 /* For each class in the REG_PARTITION corresponding to a particular
2047 hard register and machine mode, check that there are no other
2048 classes with the same hard register and machine mode. Returns
2049 nonzero if this is the case, i.e., the partition is acceptable. */
2050
2051 static int
2052 check_hard_regs_in_partition (reg_partition)
2053 partition reg_partition;
2054 {
2055 /* CANONICAL_ELEMENTS has a nonzero bit if a class with the given register
2056 number and machine mode has already been seen. This is a
2057 problem with the partition. */
2058 sbitmap canonical_elements;
2059 int element_index;
2060 int already_seen[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
2061 int reg;
2062 int mach_mode;
2063
2064 /* Collect a list of canonical elements. */
2065 canonical_elements = sbitmap_alloc (max_reg_num ());
2066 sbitmap_zero (canonical_elements);
2067 ssa_rename_from_traverse (&record_canonical_element_1,
2068 canonical_elements, reg_partition);
2069
2070 /* We have not seen any hard register uses. */
2071 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; ++reg)
2072 for (mach_mode = 0; mach_mode < NUM_MACHINE_MODES; ++mach_mode)
2073 already_seen[reg][mach_mode] = 0;
2074
2075 /* Check for classes with the same hard register and machine mode. */
2076 EXECUTE_IF_SET_IN_SBITMAP (canonical_elements, 0, element_index,
2077 {
2078 rtx hard_reg_rtx = ssa_rename_from_lookup (element_index);
2079 if (hard_reg_rtx != NULL_RTX &&
2080 HARD_REGISTER_P (hard_reg_rtx) &&
2081 already_seen[REGNO (hard_reg_rtx)][GET_MODE (hard_reg_rtx)] != 0)
2082 /* Two distinct partition classes should be mapped to the same
2083 hard register. */
2084 return 0;
2085 });
2086
2087 sbitmap_free (canonical_elements);
2088
2089 return 1;
2090 }
2091
2092 /* Rename regs that are equivalent in REG_PARTITION. Also collapse
2093 any SEQUENCE insns. */
2094
2095 static void
2096 rename_equivalent_regs (reg_partition)
2097 partition reg_partition;
2098 {
2099 int bb;
2100
2101 for (bb = n_basic_blocks; --bb >= 0; )
2102 {
2103 basic_block b = BASIC_BLOCK (bb);
2104 rtx next = b->head;
2105 rtx last = b->end;
2106 rtx insn;
2107
2108 do
2109 {
2110 insn = next;
2111 if (INSN_P (insn))
2112 {
2113 for_each_rtx (&PATTERN (insn),
2114 rename_equivalent_regs_in_insn,
2115 reg_partition);
2116 for_each_rtx (&REG_NOTES (insn),
2117 rename_equivalent_regs_in_insn,
2118 reg_partition);
2119
2120 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2121 {
2122 rtx s = PATTERN (insn);
2123 int slen = XVECLEN (s, 0);
2124 int i;
2125
2126 if (slen <= 1)
2127 abort();
2128
2129 PATTERN (insn) = XVECEXP (s, 0, slen-1);
2130 for (i = 0; i < slen - 1; i++)
2131 emit_block_insn_before (XVECEXP (s, 0, i), insn, b);
2132 }
2133 }
2134
2135 next = NEXT_INSN (insn);
2136 }
2137 while (insn != last);
2138 }
2139 }
2140
2141 /* The main entry point for moving from SSA. */
2142
2143 void
2144 convert_from_ssa()
2145 {
2146 int bb;
2147 partition reg_partition;
2148 rtx insns = get_insns ();
2149
2150 /* Need global_live_at_{start,end} up to date. There should not be
2151 any significant dead code at this point, except perhaps dead
2152 stores. So do not take the time to perform dead code elimination.
2153
2154 Register coalescing needs death notes, so generate them. */
2155 life_analysis (insns, NULL, PROP_DEATH_NOTES);
2156
2157 /* Figure out which regs in copies and phi nodes don't conflict and
2158 therefore can be coalesced. */
2159 if (conservative_reg_partition)
2160 reg_partition = compute_conservative_reg_partition ();
2161 else
2162 reg_partition = compute_coalesced_reg_partition ();
2163
2164 if (!check_hard_regs_in_partition (reg_partition))
2165 /* Two separate partitions should correspond to the same hard
2166 register but do not. */
2167 abort ();
2168
2169 rename_equivalent_regs (reg_partition);
2170
2171 /* Eliminate the PHI nodes. */
2172 for (bb = n_basic_blocks; --bb >= 0; )
2173 {
2174 basic_block b = BASIC_BLOCK (bb);
2175 edge e;
2176
2177 for (e = b->pred; e; e = e->pred_next)
2178 if (e->src != ENTRY_BLOCK_PTR)
2179 eliminate_phi (e, reg_partition);
2180 }
2181
2182 partition_delete (reg_partition);
2183
2184 /* Actually delete the PHI nodes. */
2185 for (bb = n_basic_blocks; --bb >= 0; )
2186 {
2187 rtx insn = BLOCK_HEAD (bb);
2188
2189 while (1)
2190 {
2191 /* If this is a PHI node delete it. */
2192 if (PHI_NODE_P (insn))
2193 {
2194 if (insn == BLOCK_END (bb))
2195 BLOCK_END (bb) = PREV_INSN (insn);
2196 insn = delete_insn (insn);
2197 }
2198 /* Since all the phi nodes come at the beginning of the
2199 block, if we find an ordinary insn, we can stop looking
2200 for more phi nodes. */
2201 else if (INSN_P (insn))
2202 break;
2203 /* If we've reached the end of the block, stop. */
2204 else if (insn == BLOCK_END (bb))
2205 break;
2206 else
2207 insn = NEXT_INSN (insn);
2208 }
2209 }
2210
2211 /* Commit all the copy nodes needed to convert out of SSA form. */
2212 commit_edge_insertions ();
2213
2214 in_ssa_form = 0;
2215
2216 count_or_remove_death_notes (NULL, 1);
2217
2218 /* Deallocate the data structures. */
2219 VARRAY_FREE (ssa_definition);
2220 ssa_rename_from_free ();
2221 }
2222
2223 /* Scan phi nodes in successors to BB. For each such phi node that
2224 has a phi alternative value corresponding to BB, invoke FN. FN
2225 is passed the entire phi node insn, the regno of the set
2226 destination, the regno of the phi argument corresponding to BB,
2227 and DATA.
2228
2229 If FN ever returns non-zero, stops immediately and returns this
2230 value. Otherwise, returns zero. */
2231
2232 int
2233 for_each_successor_phi (bb, fn, data)
2234 basic_block bb;
2235 successor_phi_fn fn;
2236 void *data;
2237 {
2238 edge e;
2239
2240 if (bb == EXIT_BLOCK_PTR)
2241 return 0;
2242
2243 /* Scan outgoing edges. */
2244 for (e = bb->succ; e != NULL; e = e->succ_next)
2245 {
2246 rtx insn;
2247
2248 basic_block successor = e->dest;
2249 if (successor == ENTRY_BLOCK_PTR
2250 || successor == EXIT_BLOCK_PTR)
2251 continue;
2252
2253 /* Advance to the first non-label insn of the successor block. */
2254 insn = first_insn_after_basic_block_note (successor);
2255
2256 if (insn == NULL)
2257 continue;
2258
2259 /* Scan phi nodes in the successor. */
2260 for ( ; PHI_NODE_P (insn); insn = NEXT_INSN (insn))
2261 {
2262 int result;
2263 rtx phi_set = PATTERN (insn);
2264 rtx *alternative = phi_alternative (phi_set, bb->index);
2265 rtx phi_src;
2266
2267 /* This phi function may not have an alternative
2268 corresponding to the incoming edge, indicating the
2269 assigned variable is not defined along the edge. */
2270 if (alternative == NULL)
2271 continue;
2272 phi_src = *alternative;
2273
2274 /* Invoke the callback. */
2275 result = (*fn) (insn, REGNO (SET_DEST (phi_set)),
2276 REGNO (phi_src), data);
2277
2278 /* Terminate if requested. */
2279 if (result != 0)
2280 return result;
2281 }
2282 }
2283
2284 return 0;
2285 }
2286
2287 /* Assuming the ssa_rename_from mapping has been established, yields
2288 nonzero if 1) only one SSA register of REG1 and REG2 comes from a
2289 hard register or 2) both SSA registers REG1 and REG2 come from
2290 different hard registers. */
2291
2292 static int
2293 conflicting_hard_regs_p (reg1, reg2)
2294 int reg1;
2295 int reg2;
2296 {
2297 int orig_reg1 = original_register (reg1);
2298 int orig_reg2 = original_register (reg2);
2299 if (HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2)
2300 && orig_reg1 != orig_reg2)
2301 return 1;
2302 if (HARD_REGISTER_NUM_P (orig_reg1) && !HARD_REGISTER_NUM_P (orig_reg2))
2303 return 1;
2304 if (!HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2))
2305 return 1;
2306
2307 return 0;
2308 }