acconfig.h: _GLIBCPP_USING_THREADS and some workaround types added.
[gcc.git] / gcc / ssa.c
1 /* Static Single Assignment conversion routines for the GNU compiler.
2 Copyright (C) 2000 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
10
11 GNU CC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 /* References:
22
23 Building an Optimizing Compiler
24 Robert Morgan
25 Butterworth-Heinemann, 1998
26
27 Static Single Assignment Construction
28 Preston Briggs, Tim Harvey, Taylor Simpson
29 Technical Report, Rice University, 1995
30 ftp://ftp.cs.rice.edu/public/preston/optimizer/SSA.ps.gz. */
31
32 #include "config.h"
33 #include "system.h"
34
35 #include "rtl.h"
36 #include "varray.h"
37 #include "partition.h"
38 #include "sbitmap.h"
39 #include "hashtab.h"
40 #include "regs.h"
41 #include "hard-reg-set.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "real.h"
45 #include "insn-config.h"
46 #include "recog.h"
47 #include "basic-block.h"
48 #include "output.h"
49 #include "ssa.h"
50
51 /* TODO:
52
53 Handle subregs better, maybe. For now, if a reg that's set in a
54 subreg expression is duplicated going into SSA form, an extra copy
55 is inserted first that copies the entire reg into the duplicate, so
56 that the other bits are preserved. This isn't strictly SSA, since
57 at least part of the reg is assigned in more than one place (though
58 they are adjacent).
59
60 ??? What to do about strict_low_part. Probably I'll have to split
61 them out of their current instructions first thing.
62
63 Actually the best solution may be to have a kind of "mid-level rtl"
64 in which the RTL encodes exactly what we want, without exposing a
65 lot of niggling processor details. At some later point we lower
66 the representation, calling back into optabs to finish any necessary
67 expansion. */
68
69 /* All pseudo-registers and select hard registers are converted to SSA
70 form. When converting out of SSA, these select hard registers are
71 guaranteed to be mapped to their original register number. Each
72 machine's .h file should define CONVERT_HARD_REGISTER_TO_SSA_P
73 indicating which hard registers should be converted.
74
75 When converting out of SSA, temporaries for all registers are
76 partitioned. The partition is checked to ensure that all uses of
77 the same hard register in the same machine mode are in the same
78 class. */
79
80 /* If conservative_reg_partition is non-zero, use a conservative
81 register partitioning algorithm (which leaves more regs after
82 emerging from SSA) instead of the coalescing one. This is being
83 left in for a limited time only, as a debugging tool until the
84 coalescing algorithm is validated. */
85
86 static int conservative_reg_partition;
87
88 /* This flag is set when the CFG is in SSA form. */
89 int in_ssa_form = 0;
90
91 /* Element I is the single instruction that sets register I. */
92 varray_type ssa_definition;
93
94 /* Element I is an INSN_LIST of instructions that use register I. */
95 varray_type ssa_uses;
96
97 /* Element I-PSEUDO is the normal register that originated the ssa
98 register in question. */
99 varray_type ssa_rename_from;
100
101 /* Element I is the normal register that originated the ssa
102 register in question.
103
104 A hash table stores the (register, rtl) pairs. These are each
105 xmalloc'ed and deleted when the hash table is destroyed. */
106 htab_t ssa_rename_from_ht;
107
108 /* The running target ssa register for a given pseudo register.
109 (Pseudo registers appear in only one mode.) */
110 static rtx *ssa_rename_to_pseudo;
111 /* Similar, but for hard registers. A hard register can appear in
112 many modes, so we store an equivalent pseudo for each of the
113 modes. */
114 static rtx ssa_rename_to_hard[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
115
116 /* ssa_rename_from maps pseudo registers to the original corresponding
117 RTL. It is implemented as using a hash table. */
118
119 typedef struct {
120 unsigned int reg;
121 rtx original;
122 } ssa_rename_from_pair;
123
124 struct ssa_rename_from_hash_table_data {
125 sbitmap canonical_elements;
126 partition reg_partition;
127 };
128
129 static void ssa_rename_from_initialize
130 PARAMS ((void));
131 static rtx ssa_rename_from_lookup
132 PARAMS ((int reg));
133 static unsigned int original_register
134 PARAMS ((unsigned int regno));
135 static void ssa_rename_from_insert
136 PARAMS ((unsigned int reg, rtx r));
137 static void ssa_rename_from_free
138 PARAMS ((void));
139 typedef int (*srf_trav) PARAMS ((int regno, rtx r, sbitmap canonical_elements, partition reg_partition));
140 static void ssa_rename_from_traverse
141 PARAMS ((htab_trav callback_function, sbitmap canonical_elements, partition reg_partition));
142 /*static Avoid warnign message. */ void ssa_rename_from_print
143 PARAMS ((void));
144 static int ssa_rename_from_print_1
145 PARAMS ((void **slot, void *data));
146 static hashval_t ssa_rename_from_hash_function
147 PARAMS ((const void * srfp));
148 static int ssa_rename_from_equal
149 PARAMS ((const void *srfp1, const void *srfp2));
150 static void ssa_rename_from_delete
151 PARAMS ((void *srfp));
152
153 static rtx ssa_rename_to_lookup
154 PARAMS ((rtx reg));
155 static void ssa_rename_to_insert
156 PARAMS ((rtx reg, rtx r));
157
158 /* The number of registers that were live on entry to the SSA routines. */
159 static unsigned int ssa_max_reg_num;
160
161 /* Local function prototypes. */
162
163 struct rename_context;
164
165 static inline rtx * phi_alternative
166 PARAMS ((rtx, int));
167 static rtx first_insn_after_basic_block_note
168 PARAMS ((basic_block));
169 static int remove_phi_alternative
170 PARAMS ((rtx, int));
171 static void compute_dominance_frontiers_1
172 PARAMS ((sbitmap *frontiers, int *idom, int bb, sbitmap done));
173 static void compute_dominance_frontiers
174 PARAMS ((sbitmap *frontiers, int *idom));
175 static void find_evaluations_1
176 PARAMS ((rtx dest, rtx set, void *data));
177 static void find_evaluations
178 PARAMS ((sbitmap *evals, int nregs));
179 static void compute_iterated_dominance_frontiers
180 PARAMS ((sbitmap *idfs, sbitmap *frontiers, sbitmap *evals, int nregs));
181 static void insert_phi_node
182 PARAMS ((int regno, int b));
183 static void insert_phi_nodes
184 PARAMS ((sbitmap *idfs, sbitmap *evals, int nregs));
185 static void create_delayed_rename
186 PARAMS ((struct rename_context *, rtx *));
187 static void apply_delayed_renames
188 PARAMS ((struct rename_context *));
189 static int rename_insn_1
190 PARAMS ((rtx *ptr, void *data));
191 static void rename_block
192 PARAMS ((int b, int *idom));
193 static void rename_registers
194 PARAMS ((int nregs, int *idom));
195
196 static inline int ephi_add_node
197 PARAMS ((rtx reg, rtx *nodes, int *n_nodes));
198 static int * ephi_forward
199 PARAMS ((int t, sbitmap visited, sbitmap *succ, int *tstack));
200 static void ephi_backward
201 PARAMS ((int t, sbitmap visited, sbitmap *pred, rtx *nodes));
202 static void ephi_create
203 PARAMS ((int t, sbitmap visited, sbitmap *pred, sbitmap *succ, rtx *nodes));
204 static void eliminate_phi
205 PARAMS ((edge e, partition reg_partition));
206 static int make_regs_equivalent_over_bad_edges
207 PARAMS ((int bb, partition reg_partition));
208
209 /* These are used only in the conservative register partitioning
210 algorithms. */
211 static int make_equivalent_phi_alternatives_equivalent
212 PARAMS ((int bb, partition reg_partition));
213 static partition compute_conservative_reg_partition
214 PARAMS ((void));
215 static int record_canonical_element_1
216 PARAMS ((void **srfp, void *data));
217 static int check_hard_regs_in_partition
218 PARAMS ((partition reg_partition));
219 static int rename_equivalent_regs_in_insn
220 PARAMS ((rtx *ptr, void *data));
221
222 /* These are used in the register coalescing algorithm. */
223 static int coalesce_if_unconflicting
224 PARAMS ((partition p, conflict_graph conflicts, int reg1, int reg2));
225 static int coalesce_regs_in_copies
226 PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
227 static int coalesce_reg_in_phi
228 PARAMS ((rtx, int dest_regno, int src_regno, void *data));
229 static int coalesce_regs_in_successor_phi_nodes
230 PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
231 static partition compute_coalesced_reg_partition
232 PARAMS ((void));
233 static int mark_reg_in_phi
234 PARAMS ((rtx *ptr, void *data));
235 static void mark_phi_and_copy_regs
236 PARAMS ((regset phi_set));
237
238 static int rename_equivalent_regs_in_insn
239 PARAMS ((rtx *ptr, void *data));
240 static void rename_equivalent_regs
241 PARAMS ((partition reg_partition));
242
243 /* Deal with hard registers. */
244 static int conflicting_hard_regs_p
245 PARAMS ((int reg1, int reg2));
246
247 /* ssa_rename_to maps registers and machine modes to SSA pseudo registers. */
248
249 /* Find the register associated with REG in the indicated mode. */
250
251 static rtx
252 ssa_rename_to_lookup (reg)
253 rtx reg;
254 {
255 if (!HARD_REGISTER_P (reg))
256 return ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER];
257 else
258 return ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)];
259 }
260
261 /* Store a new value mapping REG to R in ssa_rename_to. */
262
263 static void
264 ssa_rename_to_insert(reg, r)
265 rtx reg;
266 rtx r;
267 {
268 if (!HARD_REGISTER_P (reg))
269 ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER] = r;
270 else
271 ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)] = r;
272 }
273
274 /* Prepare ssa_rename_from for use. */
275
276 static void
277 ssa_rename_from_initialize ()
278 {
279 /* We use an arbitrary initial hash table size of 64. */
280 ssa_rename_from_ht = htab_create (64,
281 &ssa_rename_from_hash_function,
282 &ssa_rename_from_equal,
283 &ssa_rename_from_delete);
284 }
285
286 /* Find the REG entry in ssa_rename_from. Return NULL_RTX if no entry is
287 found. */
288
289 static rtx
290 ssa_rename_from_lookup (reg)
291 int reg;
292 {
293 ssa_rename_from_pair srfp;
294 ssa_rename_from_pair *answer;
295 srfp.reg = reg;
296 srfp.original = NULL_RTX;
297 answer = (ssa_rename_from_pair *)
298 htab_find_with_hash (ssa_rename_from_ht, (void *) &srfp, reg);
299 return (answer == 0 ? NULL_RTX : answer->original);
300 }
301
302 /* Find the number of the original register specified by REGNO. If
303 the register is a pseudo, return the original register's number.
304 Otherwise, return this register number REGNO. */
305
306 static unsigned int
307 original_register (regno)
308 unsigned int regno;
309 {
310 rtx original_rtx = ssa_rename_from_lookup (regno);
311 return original_rtx != NULL_RTX ? REGNO (original_rtx) : regno;
312 }
313
314 /* Add mapping from R to REG to ssa_rename_from even if already present. */
315
316 static void
317 ssa_rename_from_insert (reg, r)
318 unsigned int reg;
319 rtx r;
320 {
321 void **slot;
322 ssa_rename_from_pair *srfp = xmalloc (sizeof (ssa_rename_from_pair));
323 srfp->reg = reg;
324 srfp->original = r;
325 slot = htab_find_slot_with_hash (ssa_rename_from_ht, (const void *) srfp,
326 reg, INSERT);
327 if (*slot != 0)
328 free ((void *) *slot);
329 *slot = srfp;
330 }
331
332 /* Apply the CALLBACK_FUNCTION to each element in ssa_rename_from.
333 CANONICAL_ELEMENTS and REG_PARTITION pass data needed by the only
334 current use of this function. */
335
336 static void
337 ssa_rename_from_traverse (callback_function,
338 canonical_elements, reg_partition)
339 htab_trav callback_function;
340 sbitmap canonical_elements;
341 partition reg_partition;
342 {
343 struct ssa_rename_from_hash_table_data srfhd;
344 srfhd.canonical_elements = canonical_elements;
345 srfhd.reg_partition = reg_partition;
346 htab_traverse (ssa_rename_from_ht, callback_function, (void *) &srfhd);
347 }
348
349 /* Destroy ssa_rename_from. */
350
351 static void
352 ssa_rename_from_free ()
353 {
354 htab_delete (ssa_rename_from_ht);
355 }
356
357 /* Print the contents of ssa_rename_from. */
358
359 /* static Avoid erroneous error message. */
360 void
361 ssa_rename_from_print ()
362 {
363 printf ("ssa_rename_from's hash table contents:\n");
364 htab_traverse (ssa_rename_from_ht, &ssa_rename_from_print_1, NULL);
365 }
366
367 /* Print the contents of the hash table entry SLOT, passing the unused
368 sttribute DATA. Used as a callback function with htab_traverse (). */
369
370 static int
371 ssa_rename_from_print_1 (slot, data)
372 void **slot;
373 void *data ATTRIBUTE_UNUSED;
374 {
375 ssa_rename_from_pair * p = *slot;
376 printf ("ssa_rename_from maps pseudo %i to original %i.\n",
377 p->reg, REGNO (p->original));
378 return 1;
379 }
380
381 /* Given a hash entry SRFP, yield a hash value. */
382
383 static hashval_t
384 ssa_rename_from_hash_function (srfp)
385 const void *srfp;
386 {
387 return ((ssa_rename_from_pair *) srfp)->reg;
388 }
389
390 /* Test whether two hash table entries SRFP1 and SRFP2 are equal. */
391
392 static int
393 ssa_rename_from_equal (srfp1, srfp2)
394 const void *srfp1;
395 const void *srfp2;
396 {
397 return ssa_rename_from_hash_function (srfp1) ==
398 ssa_rename_from_hash_function (srfp2);
399 }
400
401 /* Delete the hash table entry SRFP. */
402
403 static void
404 ssa_rename_from_delete (srfp)
405 void *srfp;
406 {
407 free (srfp);
408 }
409
410 /* Given the SET of a PHI node, return the address of the alternative
411 for predecessor block C. */
412
413 static inline rtx *
414 phi_alternative (set, c)
415 rtx set;
416 int c;
417 {
418 rtvec phi_vec = XVEC (SET_SRC (set), 0);
419 int v;
420
421 for (v = GET_NUM_ELEM (phi_vec) - 2; v >= 0; v -= 2)
422 if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
423 return &RTVEC_ELT (phi_vec, v);
424
425 return NULL;
426 }
427
428 /* Given the SET of a phi node, remove the alternative for predecessor
429 block C. Return non-zero on success, or zero if no alternative is
430 found for C. */
431
432 static int
433 remove_phi_alternative (set, c)
434 rtx set;
435 int c;
436 {
437 rtvec phi_vec = XVEC (SET_SRC (set), 0);
438 int num_elem = GET_NUM_ELEM (phi_vec);
439 int v;
440
441 for (v = num_elem - 2; v >= 0; v -= 2)
442 if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
443 {
444 if (v < num_elem - 2)
445 {
446 RTVEC_ELT (phi_vec, v) = RTVEC_ELT (phi_vec, num_elem - 2);
447 RTVEC_ELT (phi_vec, v + 1) = RTVEC_ELT (phi_vec, num_elem - 1);
448 }
449 PUT_NUM_ELEM (phi_vec, num_elem - 2);
450 return 1;
451 }
452
453 return 0;
454 }
455
456 /* For all registers, find all blocks in which they are set.
457
458 This is the transform of what would be local kill information that
459 we ought to be getting from flow. */
460
461 static sbitmap *fe_evals;
462 static int fe_current_bb;
463
464 static void
465 find_evaluations_1 (dest, set, data)
466 rtx dest;
467 rtx set ATTRIBUTE_UNUSED;
468 void *data ATTRIBUTE_UNUSED;
469 {
470 if (GET_CODE (dest) == REG
471 && CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
472 SET_BIT (fe_evals[REGNO (dest)], fe_current_bb);
473 }
474
475 static void
476 find_evaluations (evals, nregs)
477 sbitmap *evals;
478 int nregs;
479 {
480 int bb;
481
482 sbitmap_vector_zero (evals, nregs);
483 fe_evals = evals;
484
485 for (bb = n_basic_blocks; --bb >= 0; )
486 {
487 rtx p, last;
488
489 fe_current_bb = bb;
490 p = BLOCK_HEAD (bb);
491 last = BLOCK_END (bb);
492 while (1)
493 {
494 if (INSN_P (p))
495 note_stores (PATTERN (p), find_evaluations_1, NULL);
496
497 if (p == last)
498 break;
499 p = NEXT_INSN (p);
500 }
501 }
502 }
503
504 /* Computing the Dominance Frontier:
505
506 As decribed in Morgan, section 3.5, this may be done simply by
507 walking the dominator tree bottom-up, computing the frontier for
508 the children before the parent. When considering a block B,
509 there are two cases:
510
511 (1) A flow graph edge leaving B that does not lead to a child
512 of B in the dominator tree must be a block that is either equal
513 to B or not dominated by B. Such blocks belong in the frontier
514 of B.
515
516 (2) Consider a block X in the frontier of one of the children C
517 of B. If X is not equal to B and is not dominated by B, it
518 is in the frontier of B.
519 */
520
521 static void
522 compute_dominance_frontiers_1 (frontiers, idom, bb, done)
523 sbitmap *frontiers;
524 int *idom;
525 int bb;
526 sbitmap done;
527 {
528 basic_block b = BASIC_BLOCK (bb);
529 edge e;
530 int c;
531
532 SET_BIT (done, bb);
533 sbitmap_zero (frontiers[bb]);
534
535 /* Do the frontier of the children first. Not all children in the
536 dominator tree (blocks dominated by this one) are children in the
537 CFG, so check all blocks. */
538 for (c = 0; c < n_basic_blocks; ++c)
539 if (idom[c] == bb && ! TEST_BIT (done, c))
540 compute_dominance_frontiers_1 (frontiers, idom, c, done);
541
542 /* Find blocks conforming to rule (1) above. */
543 for (e = b->succ; e; e = e->succ_next)
544 {
545 if (e->dest == EXIT_BLOCK_PTR)
546 continue;
547 if (idom[e->dest->index] != bb)
548 SET_BIT (frontiers[bb], e->dest->index);
549 }
550
551 /* Find blocks conforming to rule (2). */
552 for (c = 0; c < n_basic_blocks; ++c)
553 if (idom[c] == bb)
554 {
555 int x;
556 EXECUTE_IF_SET_IN_SBITMAP (frontiers[c], 0, x,
557 {
558 if (idom[x] != bb)
559 SET_BIT (frontiers[bb], x);
560 });
561 }
562 }
563
564 static void
565 compute_dominance_frontiers (frontiers, idom)
566 sbitmap *frontiers;
567 int *idom;
568 {
569 sbitmap done = sbitmap_alloc (n_basic_blocks);
570 sbitmap_zero (done);
571
572 compute_dominance_frontiers_1 (frontiers, idom, 0, done);
573
574 sbitmap_free (done);
575 }
576
577 /* Computing the Iterated Dominance Frontier:
578
579 This is the set of merge points for a given register.
580
581 This is not particularly intuitive. See section 7.1 of Morgan, in
582 particular figures 7.3 and 7.4 and the immediately surrounding text.
583 */
584
585 static void
586 compute_iterated_dominance_frontiers (idfs, frontiers, evals, nregs)
587 sbitmap *idfs;
588 sbitmap *frontiers;
589 sbitmap *evals;
590 int nregs;
591 {
592 sbitmap worklist;
593 int reg, passes = 0;
594
595 worklist = sbitmap_alloc (n_basic_blocks);
596
597 for (reg = 0; reg < nregs; ++reg)
598 {
599 sbitmap idf = idfs[reg];
600 int b, changed;
601
602 /* Start the iterative process by considering those blocks that
603 evaluate REG. We'll add their dominance frontiers to the
604 IDF, and then consider the blocks we just added. */
605 sbitmap_copy (worklist, evals[reg]);
606
607 /* Morgan's algorithm is incorrect here. Blocks that evaluate
608 REG aren't necessarily in REG's IDF. Start with an empty IDF. */
609 sbitmap_zero (idf);
610
611 /* Iterate until the worklist is empty. */
612 do
613 {
614 changed = 0;
615 passes++;
616 EXECUTE_IF_SET_IN_SBITMAP (worklist, 0, b,
617 {
618 RESET_BIT (worklist, b);
619 /* For each block on the worklist, add to the IDF all
620 blocks on its dominance frontier that aren't already
621 on the IDF. Every block that's added is also added
622 to the worklist. */
623 sbitmap_union_of_diff (worklist, worklist, frontiers[b], idf);
624 sbitmap_a_or_b (idf, idf, frontiers[b]);
625 changed = 1;
626 });
627 }
628 while (changed);
629 }
630
631 sbitmap_free (worklist);
632
633 if (rtl_dump_file)
634 {
635 fprintf(rtl_dump_file,
636 "Iterated dominance frontier: %d passes on %d regs.\n",
637 passes, nregs);
638 }
639 }
640
641 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
642 note associated with the BLOCK. */
643
644 static rtx
645 first_insn_after_basic_block_note (block)
646 basic_block block;
647 {
648 rtx insn;
649
650 /* Get the first instruction in the block. */
651 insn = block->head;
652
653 if (insn == NULL_RTX)
654 return NULL_RTX;
655 if (GET_CODE (insn) == CODE_LABEL)
656 insn = NEXT_INSN (insn);
657 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
658 abort ();
659
660 return NEXT_INSN (insn);
661 }
662
663 /* Insert the phi nodes. */
664
665 static void
666 insert_phi_node (regno, bb)
667 int regno, bb;
668 {
669 basic_block b = BASIC_BLOCK (bb);
670 edge e;
671 int npred, i;
672 rtvec vec;
673 rtx phi, reg;
674 rtx insn;
675 int end_p;
676
677 /* Find out how many predecessors there are. */
678 for (e = b->pred, npred = 0; e; e = e->pred_next)
679 if (e->src != ENTRY_BLOCK_PTR)
680 npred++;
681
682 /* If this block has no "interesting" preds, then there is nothing to
683 do. Consider a block that only has the entry block as a pred. */
684 if (npred == 0)
685 return;
686
687 /* This is the register to which the phi function will be assigned. */
688 reg = regno_reg_rtx[regno];
689
690 /* Construct the arguments to the PHI node. The use of pc_rtx is just
691 a placeholder; we'll insert the proper value in rename_registers. */
692 vec = rtvec_alloc (npred * 2);
693 for (e = b->pred, i = 0; e ; e = e->pred_next, i += 2)
694 if (e->src != ENTRY_BLOCK_PTR)
695 {
696 RTVEC_ELT (vec, i + 0) = pc_rtx;
697 RTVEC_ELT (vec, i + 1) = GEN_INT (e->src->index);
698 }
699
700 phi = gen_rtx_PHI (VOIDmode, vec);
701 phi = gen_rtx_SET (VOIDmode, reg, phi);
702
703 insn = first_insn_after_basic_block_note (b);
704 end_p = PREV_INSN (insn) == b->end;
705 emit_insn_before (phi, insn);
706 if (end_p)
707 b->end = PREV_INSN (insn);
708 }
709
710 static void
711 insert_phi_nodes (idfs, evals, nregs)
712 sbitmap *idfs;
713 sbitmap *evals ATTRIBUTE_UNUSED;
714 int nregs;
715 {
716 int reg;
717
718 for (reg = 0; reg < nregs; ++reg)
719 if (CONVERT_REGISTER_TO_SSA_P (reg))
720 {
721 int b;
722 EXECUTE_IF_SET_IN_SBITMAP (idfs[reg], 0, b,
723 {
724 if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, reg))
725 insert_phi_node (reg, b);
726 });
727 }
728 }
729
730 /* Rename the registers to conform to SSA.
731
732 This is essentially the algorithm presented in Figure 7.8 of Morgan,
733 with a few changes to reduce pattern search time in favour of a bit
734 more memory usage. */
735
736 /* One of these is created for each set. It will live in a list local
737 to its basic block for the duration of that block's processing. */
738 struct rename_set_data
739 {
740 struct rename_set_data *next;
741 /* This is the SET_DEST of the (first) SET that sets the REG. */
742 rtx *reg_loc;
743 /* This is what used to be at *REG_LOC. */
744 rtx old_reg;
745 /* This is the REG that will replace OLD_REG. It's set only
746 when the rename data is moved onto the DONE_RENAMES queue. */
747 rtx new_reg;
748 /* This is what to restore ssa_rename_to_lookup (old_reg) to. It is
749 usually the previous contents of ssa_rename_to_lookup (old_reg). */
750 rtx prev_reg;
751 /* This is the insn that contains all the SETs of the REG. */
752 rtx set_insn;
753 };
754
755 /* This struct is used to pass information to callback functions while
756 renaming registers. */
757 struct rename_context
758 {
759 struct rename_set_data *new_renames;
760 struct rename_set_data *done_renames;
761 rtx current_insn;
762 };
763
764 /* Queue the rename of *REG_LOC. */
765 static void
766 create_delayed_rename (c, reg_loc)
767 struct rename_context *c;
768 rtx *reg_loc;
769 {
770 struct rename_set_data *r;
771 r = (struct rename_set_data *) xmalloc (sizeof(*r));
772
773 if (GET_CODE (*reg_loc) != REG
774 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*reg_loc)))
775 abort();
776
777 r->reg_loc = reg_loc;
778 r->old_reg = *reg_loc;
779 r->prev_reg = ssa_rename_to_lookup(r->old_reg);
780 r->set_insn = c->current_insn;
781 r->next = c->new_renames;
782 c->new_renames = r;
783 }
784
785 /* This is part of a rather ugly hack to allow the pre-ssa regno to be
786 reused. If, during processing, a register has not yet been touched,
787 ssa_rename_to[regno][machno] will be NULL. Now, in the course of pushing
788 and popping values from ssa_rename_to, when we would ordinarily
789 pop NULL back in, we pop RENAME_NO_RTX. We treat this exactly the
790 same as NULL, except that it signals that the original regno has
791 already been reused. */
792 #define RENAME_NO_RTX pc_rtx
793
794 /* Move all the entries from NEW_RENAMES onto DONE_RENAMES by
795 applying all the renames on NEW_RENAMES. */
796
797 static void
798 apply_delayed_renames (c)
799 struct rename_context *c;
800 {
801 struct rename_set_data *r;
802 struct rename_set_data *last_r = NULL;
803
804 for (r = c->new_renames; r != NULL; r = r->next)
805 {
806 int new_regno;
807
808 /* Failure here means that someone has a PARALLEL that sets
809 a register twice (bad!). */
810 if (ssa_rename_to_lookup (r->old_reg) != r->prev_reg)
811 abort();
812 /* Failure here means we have changed REG_LOC before applying
813 the rename. */
814 /* For the first set we come across, reuse the original regno. */
815 if (r->prev_reg == NULL_RTX && !HARD_REGISTER_P (r->old_reg))
816 {
817 r->new_reg = r->old_reg;
818 /* We want to restore RENAME_NO_RTX rather than NULL_RTX. */
819 r->prev_reg = RENAME_NO_RTX;
820 }
821 else
822 r->new_reg = gen_reg_rtx (GET_MODE (r->old_reg));
823 new_regno = REGNO (r->new_reg);
824 ssa_rename_to_insert (r->old_reg, r->new_reg);
825
826 if (new_regno >= (int) ssa_definition->num_elements)
827 {
828 int new_limit = new_regno * 5 / 4;
829 ssa_definition = VARRAY_GROW (ssa_definition, new_limit);
830 ssa_uses = VARRAY_GROW (ssa_uses, new_limit);
831 }
832
833 VARRAY_RTX (ssa_definition, new_regno) = r->set_insn;
834 ssa_rename_from_insert (new_regno, r->old_reg);
835 last_r = r;
836 }
837 if (last_r != NULL)
838 {
839 last_r->next = c->done_renames;
840 c->done_renames = c->new_renames;
841 c->new_renames = NULL;
842 }
843 }
844
845 /* Part one of the first step of rename_block, called through for_each_rtx.
846 Mark pseudos that are set for later update. Transform uses of pseudos. */
847
848 static int
849 rename_insn_1 (ptr, data)
850 rtx *ptr;
851 void *data;
852 {
853 rtx x = *ptr;
854 struct rename_context *context = data;
855
856 if (x == NULL_RTX)
857 return 0;
858
859 switch (GET_CODE (x))
860 {
861 case SET:
862 {
863 rtx *destp = &SET_DEST (x);
864 rtx dest = SET_DEST (x);
865
866 /* Some SETs also use the REG specified in their LHS.
867 These can be detected by the presence of
868 STRICT_LOW_PART, SUBREG, SIGN_EXTRACT, and ZERO_EXTRACT
869 in the LHS. Handle these by changing
870 (set (subreg (reg foo)) ...)
871 into
872 (sequence [(set (reg foo_1) (reg foo))
873 (set (subreg (reg foo_1)) ...)])
874
875 FIXME: Much of the time this is too much. For many libcalls,
876 paradoxical SUBREGs, etc., the input register is dead. We should
877 recognise this in rename_block or here and not make a false
878 dependency. */
879
880 if (GET_CODE (dest) == STRICT_LOW_PART
881 || GET_CODE (dest) == SUBREG
882 || GET_CODE (dest) == SIGN_EXTRACT
883 || GET_CODE (dest) == ZERO_EXTRACT)
884 {
885 rtx i, reg;
886 reg = dest;
887
888 while (GET_CODE (reg) == STRICT_LOW_PART
889 || GET_CODE (reg) == SUBREG
890 || GET_CODE (reg) == SIGN_EXTRACT
891 || GET_CODE (reg) == ZERO_EXTRACT)
892 reg = XEXP (reg, 0);
893
894 if (GET_CODE (reg) == REG
895 && CONVERT_REGISTER_TO_SSA_P (REGNO (reg)))
896 {
897 /* Generate (set reg reg), and do renaming on it so
898 that it becomes (set reg_1 reg_0), and we will
899 replace reg with reg_1 in the SUBREG. */
900
901 struct rename_set_data *saved_new_renames;
902 saved_new_renames = context->new_renames;
903 context->new_renames = NULL;
904 i = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
905 for_each_rtx (&i, rename_insn_1, data);
906 apply_delayed_renames (context);
907 context->new_renames = saved_new_renames;
908 }
909 }
910 else if (GET_CODE (dest) == REG &&
911 CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
912 {
913 /* We found a genuine set of an interesting register. Tag
914 it so that we can create a new name for it after we finish
915 processing this insn. */
916
917 create_delayed_rename (context, destp);
918
919 /* Since we do not wish to (directly) traverse the
920 SET_DEST, recurse through for_each_rtx for the SET_SRC
921 and return. */
922 if (GET_CODE (x) == SET)
923 for_each_rtx (&SET_SRC (x), rename_insn_1, data);
924 return -1;
925 }
926
927 /* Otherwise, this was not an interesting destination. Continue
928 on, marking uses as normal. */
929 return 0;
930 }
931
932 case REG:
933 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)) &&
934 REGNO (x) < ssa_max_reg_num)
935 {
936 rtx new_reg = ssa_rename_to_lookup (x);
937
938 if (new_reg != NULL_RTX && new_reg != RENAME_NO_RTX)
939 {
940 if (GET_MODE (x) != GET_MODE (new_reg))
941 abort ();
942 *ptr = new_reg;
943 }
944 /* Else this is a use before a set. Warn? */
945 }
946 return -1;
947
948 case CLOBBER:
949 /* There is considerable debate on how CLOBBERs ought to be
950 handled in SSA. For now, we're keeping the CLOBBERs, which
951 means that we don't really have SSA form. There are a couple
952 of proposals for how to fix this problem, but neither is
953 implemented yet. */
954 {
955 rtx dest = XCEXP (x, 0, CLOBBER);
956 if (REG_P (dest))
957 {
958 if (CONVERT_REGISTER_TO_SSA_P (REGNO (dest))
959 && REGNO (dest) < ssa_max_reg_num)
960 {
961 rtx new_reg = ssa_rename_to_lookup (dest);
962 if (new_reg != NULL_RTX && new_reg != RENAME_NO_RTX)
963 XCEXP (x, 0, CLOBBER) = new_reg;
964 }
965 /* Stop traversing. */
966 return -1;
967 }
968 else
969 /* Continue traversing. */
970 return 0;
971 }
972
973 case PHI:
974 /* Never muck with the phi. We do that elsewhere, special-like. */
975 return -1;
976
977 default:
978 /* Anything else, continue traversing. */
979 return 0;
980 }
981 }
982
983 static void
984 rename_block (bb, idom)
985 int bb;
986 int *idom;
987 {
988 basic_block b = BASIC_BLOCK (bb);
989 edge e;
990 rtx insn, next, last;
991 struct rename_set_data *set_data = NULL;
992 int c;
993
994 /* Step One: Walk the basic block, adding new names for sets and
995 replacing uses. */
996
997 next = b->head;
998 last = b->end;
999 do
1000 {
1001 insn = next;
1002 if (INSN_P (insn))
1003 {
1004 struct rename_context context;
1005 context.done_renames = set_data;
1006 context.new_renames = NULL;
1007 context.current_insn = insn;
1008
1009 start_sequence ();
1010 for_each_rtx (&PATTERN (insn), rename_insn_1, &context);
1011 for_each_rtx (&REG_NOTES (insn), rename_insn_1, &context);
1012
1013 /* Sometimes, we end up with a sequence of insns that
1014 SSA needs to treat as a single insn. Wrap these in a
1015 SEQUENCE. (Any notes now get attached to the SEQUENCE,
1016 not to the old version inner insn.) */
1017 if (get_insns () != NULL_RTX)
1018 {
1019 rtx seq;
1020 int i;
1021
1022 emit (PATTERN (insn));
1023 seq = gen_sequence ();
1024 /* We really want a SEQUENCE of SETs, not a SEQUENCE
1025 of INSNs. */
1026 for (i = 0; i < XVECLEN (seq, 0); i++)
1027 XVECEXP (seq, 0, i) = PATTERN (XVECEXP (seq, 0, i));
1028 PATTERN (insn) = seq;
1029 }
1030 end_sequence ();
1031
1032 apply_delayed_renames (&context);
1033 set_data = context.done_renames;
1034 }
1035
1036 next = NEXT_INSN (insn);
1037 }
1038 while (insn != last);
1039
1040 /* Step Two: Update the phi nodes of this block's successors. */
1041
1042 for (e = b->succ; e; e = e->succ_next)
1043 {
1044 if (e->dest == EXIT_BLOCK_PTR)
1045 continue;
1046
1047 insn = first_insn_after_basic_block_note (e->dest);
1048
1049 while (PHI_NODE_P (insn))
1050 {
1051 rtx phi = PATTERN (insn);
1052 rtx reg;
1053
1054 /* Find out which of our outgoing registers this node is
1055 intended to replace. Note that if this is not the first PHI
1056 node to have been created for this register, we have to
1057 jump through rename links to figure out which register
1058 we're talking about. This can easily be recognized by
1059 noting that the regno is new to this pass. */
1060 reg = SET_DEST (phi);
1061 if (REGNO (reg) >= ssa_max_reg_num)
1062 reg = ssa_rename_from_lookup (REGNO (reg));
1063 if (reg == NULL_RTX)
1064 abort ();
1065 reg = ssa_rename_to_lookup (reg);
1066
1067 /* It is possible for the variable to be uninitialized on
1068 edges in. Reduce the arity of the PHI so that we don't
1069 consider those edges. */
1070 if (reg == NULL || reg == RENAME_NO_RTX)
1071 {
1072 if (! remove_phi_alternative (phi, bb))
1073 abort ();
1074 }
1075 else
1076 {
1077 /* When we created the PHI nodes, we did not know what mode
1078 the register should be. Now that we've found an original,
1079 we can fill that in. */
1080 if (GET_MODE (SET_DEST (phi)) == VOIDmode)
1081 PUT_MODE (SET_DEST (phi), GET_MODE (reg));
1082 else if (GET_MODE (SET_DEST (phi)) != GET_MODE (reg))
1083 abort();
1084
1085 *phi_alternative (phi, bb) = reg;
1086 /* ??? Mark for a new ssa_uses entry. */
1087 }
1088
1089 insn = NEXT_INSN (insn);
1090 }
1091 }
1092
1093 /* Step Three: Do the same to the children of this block in
1094 dominator order. */
1095
1096 for (c = 0; c < n_basic_blocks; ++c)
1097 if (idom[c] == bb)
1098 rename_block (c, idom);
1099
1100 /* Step Four: Update the sets to refer to their new register,
1101 and restore ssa_rename_to to its previous state. */
1102
1103 while (set_data)
1104 {
1105 struct rename_set_data *next;
1106 rtx old_reg = *set_data->reg_loc;
1107
1108 if (*set_data->reg_loc != set_data->old_reg)
1109 abort();
1110 *set_data->reg_loc = set_data->new_reg;
1111
1112 ssa_rename_to_insert (old_reg, set_data->prev_reg);
1113
1114 next = set_data->next;
1115 free (set_data);
1116 set_data = next;
1117 }
1118 }
1119
1120 static void
1121 rename_registers (nregs, idom)
1122 int nregs;
1123 int *idom;
1124 {
1125 VARRAY_RTX_INIT (ssa_definition, nregs * 3, "ssa_definition");
1126 VARRAY_RTX_INIT (ssa_uses, nregs * 3, "ssa_uses");
1127 ssa_rename_from_initialize ();
1128
1129 ssa_rename_to_pseudo = (rtx *) alloca (nregs * sizeof(rtx));
1130 bzero ((char *) ssa_rename_to_pseudo, nregs * sizeof(rtx));
1131 bzero ((char *) ssa_rename_to_hard,
1132 FIRST_PSEUDO_REGISTER * NUM_MACHINE_MODES * sizeof (rtx));
1133
1134 rename_block (0, idom);
1135
1136 /* ??? Update basic_block_live_at_start, and other flow info
1137 as needed. */
1138
1139 ssa_rename_to_pseudo = NULL;
1140 }
1141
1142 /* The main entry point for moving to SSA. */
1143
1144 void
1145 convert_to_ssa ()
1146 {
1147 /* Element I is the set of blocks that set register I. */
1148 sbitmap *evals;
1149
1150 /* Dominator bitmaps. */
1151 sbitmap *dominators;
1152 sbitmap *dfs;
1153 sbitmap *idfs;
1154
1155 /* Element I is the immediate dominator of block I. */
1156 int *idom;
1157
1158 int nregs;
1159
1160 /* Don't do it twice. */
1161 if (in_ssa_form)
1162 abort ();
1163
1164 /* Need global_live_at_{start,end} up to date. */
1165 life_analysis (get_insns (), NULL, PROP_KILL_DEAD_CODE | PROP_SCAN_DEAD_CODE);
1166
1167 /* Compute dominators. */
1168 dominators = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
1169 compute_flow_dominators (dominators, NULL);
1170
1171 idom = (int *) alloca (n_basic_blocks * sizeof (int));
1172 memset ((void *)idom, -1, (size_t)n_basic_blocks * sizeof (int));
1173 compute_immediate_dominators (idom, dominators);
1174
1175 sbitmap_vector_free (dominators);
1176
1177 if (rtl_dump_file)
1178 {
1179 int i;
1180 fputs (";; Immediate Dominators:\n", rtl_dump_file);
1181 for (i = 0; i < n_basic_blocks; ++i)
1182 fprintf (rtl_dump_file, ";\t%3d = %3d\n", i, idom[i]);
1183 fflush (rtl_dump_file);
1184 }
1185
1186 /* Compute dominance frontiers. */
1187
1188 dfs = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
1189 compute_dominance_frontiers (dfs, idom);
1190
1191 if (rtl_dump_file)
1192 {
1193 dump_sbitmap_vector (rtl_dump_file, ";; Dominance Frontiers:",
1194 "; Basic Block", dfs, n_basic_blocks);
1195 fflush (rtl_dump_file);
1196 }
1197
1198 /* Compute register evaluations. */
1199
1200 ssa_max_reg_num = max_reg_num();
1201 nregs = ssa_max_reg_num;
1202 evals = sbitmap_vector_alloc (nregs, n_basic_blocks);
1203 find_evaluations (evals, nregs);
1204
1205 /* Compute the iterated dominance frontier for each register. */
1206
1207 idfs = sbitmap_vector_alloc (nregs, n_basic_blocks);
1208 compute_iterated_dominance_frontiers (idfs, dfs, evals, nregs);
1209
1210 if (rtl_dump_file)
1211 {
1212 dump_sbitmap_vector (rtl_dump_file, ";; Iterated Dominance Frontiers:",
1213 "; Register", idfs, nregs);
1214 fflush (rtl_dump_file);
1215 }
1216
1217 /* Insert the phi nodes. */
1218
1219 insert_phi_nodes (idfs, evals, nregs);
1220
1221 /* Rename the registers to satisfy SSA. */
1222
1223 rename_registers (nregs, idom);
1224
1225 /* All done! Clean up and go home. */
1226
1227 sbitmap_vector_free (dfs);
1228 sbitmap_vector_free (evals);
1229 sbitmap_vector_free (idfs);
1230 in_ssa_form = 1;
1231
1232 reg_scan (get_insns (), max_reg_num (), 1);
1233 }
1234
1235 /* REG is the representative temporary of its partition. Add it to the
1236 set of nodes to be processed, if it hasn't been already. Return the
1237 index of this register in the node set. */
1238
1239 static inline int
1240 ephi_add_node (reg, nodes, n_nodes)
1241 rtx reg, *nodes;
1242 int *n_nodes;
1243 {
1244 int i;
1245 for (i = *n_nodes - 1; i >= 0; --i)
1246 if (REGNO (reg) == REGNO (nodes[i]))
1247 return i;
1248
1249 nodes[i = (*n_nodes)++] = reg;
1250 return i;
1251 }
1252
1253 /* Part one of the topological sort. This is a forward (downward) search
1254 through the graph collecting a stack of nodes to process. Assuming no
1255 cycles, the nodes at top of the stack when we are finished will have
1256 no other dependancies. */
1257
1258 static int *
1259 ephi_forward (t, visited, succ, tstack)
1260 int t;
1261 sbitmap visited;
1262 sbitmap *succ;
1263 int *tstack;
1264 {
1265 int s;
1266
1267 SET_BIT (visited, t);
1268
1269 EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
1270 {
1271 if (! TEST_BIT (visited, s))
1272 tstack = ephi_forward (s, visited, succ, tstack);
1273 });
1274
1275 *tstack++ = t;
1276 return tstack;
1277 }
1278
1279 /* Part two of the topological sort. The is a backward search through
1280 a cycle in the graph, copying the data forward as we go. */
1281
1282 static void
1283 ephi_backward (t, visited, pred, nodes)
1284 int t;
1285 sbitmap visited, *pred;
1286 rtx *nodes;
1287 {
1288 int p;
1289
1290 SET_BIT (visited, t);
1291
1292 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1293 {
1294 if (! TEST_BIT (visited, p))
1295 {
1296 ephi_backward (p, visited, pred, nodes);
1297 emit_move_insn (nodes[p], nodes[t]);
1298 }
1299 });
1300 }
1301
1302 /* Part two of the topological sort. Create the copy for a register
1303 and any cycle of which it is a member. */
1304
1305 static void
1306 ephi_create (t, visited, pred, succ, nodes)
1307 int t;
1308 sbitmap visited, *pred, *succ;
1309 rtx *nodes;
1310 {
1311 rtx reg_u = NULL_RTX;
1312 int unvisited_predecessors = 0;
1313 int p;
1314
1315 /* Iterate through the predecessor list looking for unvisited nodes.
1316 If there are any, we have a cycle, and must deal with that. At
1317 the same time, look for a visited predecessor. If there is one,
1318 we won't need to create a temporary. */
1319
1320 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1321 {
1322 if (! TEST_BIT (visited, p))
1323 unvisited_predecessors = 1;
1324 else if (!reg_u)
1325 reg_u = nodes[p];
1326 });
1327
1328 if (unvisited_predecessors)
1329 {
1330 /* We found a cycle. Copy out one element of the ring (if necessary),
1331 then traverse the ring copying as we go. */
1332
1333 if (!reg_u)
1334 {
1335 reg_u = gen_reg_rtx (GET_MODE (nodes[t]));
1336 emit_move_insn (reg_u, nodes[t]);
1337 }
1338
1339 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1340 {
1341 if (! TEST_BIT (visited, p))
1342 {
1343 ephi_backward (p, visited, pred, nodes);
1344 emit_move_insn (nodes[p], reg_u);
1345 }
1346 });
1347 }
1348 else
1349 {
1350 /* No cycle. Just copy the value from a successor. */
1351
1352 int s;
1353 EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
1354 {
1355 SET_BIT (visited, t);
1356 emit_move_insn (nodes[t], nodes[s]);
1357 return;
1358 });
1359 }
1360 }
1361
1362 /* Convert the edge to normal form. */
1363
1364 static void
1365 eliminate_phi (e, reg_partition)
1366 edge e;
1367 partition reg_partition;
1368 {
1369 int n_nodes;
1370 sbitmap *pred, *succ;
1371 sbitmap visited;
1372 rtx *nodes;
1373 int *stack, *tstack;
1374 rtx insn;
1375 int i;
1376
1377 /* Collect an upper bound on the number of registers needing processing. */
1378
1379 insn = first_insn_after_basic_block_note (e->dest);
1380
1381 n_nodes = 0;
1382 while (PHI_NODE_P (insn))
1383 {
1384 insn = next_nonnote_insn (insn);
1385 n_nodes += 2;
1386 }
1387
1388 if (n_nodes == 0)
1389 return;
1390
1391 /* Build the auxilliary graph R(B).
1392
1393 The nodes of the graph are the members of the register partition
1394 present in Phi(B). There is an edge from FIND(T0)->FIND(T1) for
1395 each T0 = PHI(...,T1,...), where T1 is for the edge from block C. */
1396
1397 nodes = (rtx *) alloca (n_nodes * sizeof(rtx));
1398 pred = sbitmap_vector_alloc (n_nodes, n_nodes);
1399 succ = sbitmap_vector_alloc (n_nodes, n_nodes);
1400 sbitmap_vector_zero (pred, n_nodes);
1401 sbitmap_vector_zero (succ, n_nodes);
1402
1403 insn = first_insn_after_basic_block_note (e->dest);
1404
1405 n_nodes = 0;
1406 for (; PHI_NODE_P (insn); insn = next_nonnote_insn (insn))
1407 {
1408 rtx* preg = phi_alternative (PATTERN (insn), e->src->index);
1409 rtx tgt = SET_DEST (PATTERN (insn));
1410 rtx reg;
1411
1412 /* There may be no phi alternative corresponding to this edge.
1413 This indicates that the phi variable is undefined along this
1414 edge. */
1415 if (preg == NULL)
1416 continue;
1417 reg = *preg;
1418
1419 if (GET_CODE (reg) != REG || GET_CODE (tgt) != REG)
1420 abort();
1421
1422 reg = regno_reg_rtx[partition_find (reg_partition, REGNO (reg))];
1423 tgt = regno_reg_rtx[partition_find (reg_partition, REGNO (tgt))];
1424 /* If the two registers are already in the same partition,
1425 nothing will need to be done. */
1426 if (reg != tgt)
1427 {
1428 int ireg, itgt;
1429
1430 ireg = ephi_add_node (reg, nodes, &n_nodes);
1431 itgt = ephi_add_node (tgt, nodes, &n_nodes);
1432
1433 SET_BIT (pred[ireg], itgt);
1434 SET_BIT (succ[itgt], ireg);
1435 }
1436 }
1437
1438 if (n_nodes == 0)
1439 goto out;
1440
1441 /* Begin a topological sort of the graph. */
1442
1443 visited = sbitmap_alloc (n_nodes);
1444 sbitmap_zero (visited);
1445
1446 tstack = stack = (int *) alloca (n_nodes * sizeof (int));
1447
1448 for (i = 0; i < n_nodes; ++i)
1449 if (! TEST_BIT (visited, i))
1450 tstack = ephi_forward (i, visited, succ, tstack);
1451
1452 sbitmap_zero (visited);
1453
1454 /* As we find a solution to the tsort, collect the implementation
1455 insns in a sequence. */
1456 start_sequence ();
1457
1458 while (tstack != stack)
1459 {
1460 i = *--tstack;
1461 if (! TEST_BIT (visited, i))
1462 ephi_create (i, visited, pred, succ, nodes);
1463 }
1464
1465 insn = gen_sequence ();
1466 end_sequence ();
1467 insert_insn_on_edge (insn, e);
1468 if (rtl_dump_file)
1469 fprintf (rtl_dump_file, "Emitting copy on edge (%d,%d)\n",
1470 e->src->index, e->dest->index);
1471
1472 sbitmap_free (visited);
1473 out:
1474 sbitmap_vector_free (pred);
1475 sbitmap_vector_free (succ);
1476 }
1477
1478 /* For basic block B, consider all phi insns which provide an
1479 alternative corresponding to an incoming abnormal critical edge.
1480 Place the phi alternative corresponding to that abnormal critical
1481 edge in the same register class as the destination of the set.
1482
1483 From Morgan, p. 178:
1484
1485 For each abnormal critical edge (C, B),
1486 if T0 = phi (T1, ..., Ti, ..., Tm) is a phi node in B,
1487 and C is the ith predecessor of B,
1488 then T0 and Ti must be equivalent.
1489
1490 Return non-zero iff any such cases were found for which the two
1491 regs were not already in the same class. */
1492
1493 static int
1494 make_regs_equivalent_over_bad_edges (bb, reg_partition)
1495 int bb;
1496 partition reg_partition;
1497 {
1498 int changed = 0;
1499 basic_block b = BASIC_BLOCK (bb);
1500 rtx phi;
1501
1502 /* Advance to the first phi node. */
1503 phi = first_insn_after_basic_block_note (b);
1504
1505 /* Scan all the phi nodes. */
1506 for (;
1507 PHI_NODE_P (phi);
1508 phi = next_nonnote_insn (phi))
1509 {
1510 edge e;
1511 int tgt_regno;
1512 rtx set = PATTERN (phi);
1513 rtx tgt = SET_DEST (set);
1514
1515 /* The set target is expected to be an SSA register. */
1516 if (GET_CODE (tgt) != REG
1517 || !CONVERT_REGISTER_TO_SSA_P (REGNO (tgt)))
1518 abort ();
1519 tgt_regno = REGNO (tgt);
1520
1521 /* Scan incoming abnormal critical edges. */
1522 for (e = b->pred; e; e = e->pred_next)
1523 if ((e->flags & (EDGE_ABNORMAL | EDGE_CRITICAL))
1524 == (EDGE_ABNORMAL | EDGE_CRITICAL))
1525 {
1526 rtx *alt = phi_alternative (set, e->src->index);
1527 int alt_regno;
1528
1529 /* If there is no alternative corresponding to this edge,
1530 the value is undefined along the edge, so just go on. */
1531 if (alt == 0)
1532 continue;
1533
1534 /* The phi alternative is expected to be an SSA register. */
1535 if (GET_CODE (*alt) != REG
1536 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
1537 abort ();
1538 alt_regno = REGNO (*alt);
1539
1540 /* If the set destination and the phi alternative aren't
1541 already in the same class... */
1542 if (partition_find (reg_partition, tgt_regno)
1543 != partition_find (reg_partition, alt_regno))
1544 {
1545 /* ... make them such. */
1546 if (conflicting_hard_regs_p (tgt_regno, alt_regno))
1547 /* It is illegal to unify a hard register with a
1548 different register. */
1549 abort ();
1550
1551 partition_union (reg_partition,
1552 tgt_regno, alt_regno);
1553 ++changed;
1554 }
1555 }
1556 }
1557
1558 return changed;
1559 }
1560
1561 /* Consider phi insns in basic block BB pairwise. If the set target
1562 of both isns are equivalent pseudos, make the corresponding phi
1563 alternatives in each phi corresponding equivalent.
1564
1565 Return nonzero if any new register classes were unioned. */
1566
1567 static int
1568 make_equivalent_phi_alternatives_equivalent (bb, reg_partition)
1569 int bb;
1570 partition reg_partition;
1571 {
1572 int changed = 0;
1573 basic_block b = BASIC_BLOCK (bb);
1574 rtx phi;
1575
1576 /* Advance to the first phi node. */
1577 phi = first_insn_after_basic_block_note (b);
1578
1579 /* Scan all the phi nodes. */
1580 for (;
1581 PHI_NODE_P (phi);
1582 phi = next_nonnote_insn (phi))
1583 {
1584 rtx set = PATTERN (phi);
1585 /* The regno of the destination of the set. */
1586 int tgt_regno = REGNO (SET_DEST (PATTERN (phi)));
1587
1588 rtx phi2 = next_nonnote_insn (phi);
1589
1590 /* Scan all phi nodes following this one. */
1591 for (;
1592 PHI_NODE_P (phi2);
1593 phi2 = next_nonnote_insn (phi2))
1594 {
1595 rtx set2 = PATTERN (phi2);
1596 /* The regno of the destination of the set. */
1597 int tgt2_regno = REGNO (SET_DEST (set2));
1598
1599 /* Are the set destinations equivalent regs? */
1600 if (partition_find (reg_partition, tgt_regno) ==
1601 partition_find (reg_partition, tgt2_regno))
1602 {
1603 edge e;
1604 /* Scan over edges. */
1605 for (e = b->pred; e; e = e->pred_next)
1606 {
1607 int pred_block = e->src->index;
1608 /* Identify the phi alternatives from both phi
1609 nodes corresponding to this edge. */
1610 rtx *alt = phi_alternative (set, pred_block);
1611 rtx *alt2 = phi_alternative (set2, pred_block);
1612
1613 /* If one of the phi nodes doesn't have a
1614 corresponding alternative, just skip it. */
1615 if (alt == 0 || alt2 == 0)
1616 continue;
1617
1618 /* Both alternatives should be SSA registers. */
1619 if (GET_CODE (*alt) != REG
1620 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
1621 abort ();
1622 if (GET_CODE (*alt2) != REG
1623 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt2)))
1624 abort ();
1625
1626 /* If the alternatives aren't already in the same
1627 class ... */
1628 if (partition_find (reg_partition, REGNO (*alt))
1629 != partition_find (reg_partition, REGNO (*alt2)))
1630 {
1631 /* ... make them so. */
1632 if (conflicting_hard_regs_p (REGNO (*alt), REGNO (*alt2)))
1633 /* It is illegal to unify a hard register with
1634 a different register. */
1635 abort ();
1636
1637 partition_union (reg_partition,
1638 REGNO (*alt), REGNO (*alt2));
1639 ++changed;
1640 }
1641 }
1642 }
1643 }
1644 }
1645
1646 return changed;
1647 }
1648
1649 /* Compute a conservative partition of outstanding pseudo registers.
1650 See Morgan 7.3.1. */
1651
1652 static partition
1653 compute_conservative_reg_partition ()
1654 {
1655 int bb;
1656 int changed = 0;
1657
1658 /* We don't actually work with hard registers, but it's easier to
1659 carry them around anyway rather than constantly doing register
1660 number arithmetic. */
1661 partition p =
1662 partition_new (ssa_definition->num_elements);
1663
1664 /* The first priority is to make sure registers that might have to
1665 be copied on abnormal critical edges are placed in the same
1666 partition. This saves us from having to split abnormal critical
1667 edges. */
1668 for (bb = n_basic_blocks; --bb >= 0; )
1669 changed += make_regs_equivalent_over_bad_edges (bb, p);
1670
1671 /* Now we have to insure that corresponding arguments of phi nodes
1672 assigning to corresponding regs are equivalent. Iterate until
1673 nothing changes. */
1674 while (changed > 0)
1675 {
1676 changed = 0;
1677 for (bb = n_basic_blocks; --bb >= 0; )
1678 changed += make_equivalent_phi_alternatives_equivalent (bb, p);
1679 }
1680
1681 return p;
1682 }
1683
1684 /* The following functions compute a register partition that attempts
1685 to eliminate as many reg copies and phi node copies as possible by
1686 coalescing registers. This is the strategy:
1687
1688 1. As in the conservative case, the top priority is to coalesce
1689 registers that otherwise would cause copies to be placed on
1690 abnormal critical edges (which isn't possible).
1691
1692 2. Figure out which regs are involved (in the LHS or RHS) of
1693 copies and phi nodes. Compute conflicts among these regs.
1694
1695 3. Walk around the instruction stream, placing two regs in the
1696 same class of the partition if one appears on the LHS and the
1697 other on the RHS of a copy or phi node and the two regs don't
1698 conflict. The conflict information of course needs to be
1699 updated.
1700
1701 4. If anything has changed, there may be new opportunities to
1702 coalesce regs, so go back to 2.
1703 */
1704
1705 /* If REG1 and REG2 don't conflict in CONFLICTS, place them in the
1706 same class of partition P, if they aren't already. Update
1707 CONFLICTS appropriately.
1708
1709 Returns one if REG1 and REG2 were placed in the same class but were
1710 not previously; zero otherwise.
1711
1712 See Morgan figure 11.15. */
1713
1714 static int
1715 coalesce_if_unconflicting (p, conflicts, reg1, reg2)
1716 partition p;
1717 conflict_graph conflicts;
1718 int reg1;
1719 int reg2;
1720 {
1721 int reg;
1722
1723 /* Work only on SSA registers. */
1724 if (!CONVERT_REGISTER_TO_SSA_P (reg1) || !CONVERT_REGISTER_TO_SSA_P (reg2))
1725 return 0;
1726
1727 /* Find the canonical regs for the classes containing REG1 and
1728 REG2. */
1729 reg1 = partition_find (p, reg1);
1730 reg2 = partition_find (p, reg2);
1731
1732 /* If they're already in the same class, there's nothing to do. */
1733 if (reg1 == reg2)
1734 return 0;
1735
1736 /* If the regs conflict, our hands are tied. */
1737 if (conflicting_hard_regs_p (reg1, reg2) ||
1738 conflict_graph_conflict_p (conflicts, reg1, reg2))
1739 return 0;
1740
1741 /* We're good to go. Put the regs in the same partition. */
1742 partition_union (p, reg1, reg2);
1743
1744 /* Find the new canonical reg for the merged class. */
1745 reg = partition_find (p, reg1);
1746
1747 /* Merge conflicts from the two previous classes. */
1748 conflict_graph_merge_regs (conflicts, reg, reg1);
1749 conflict_graph_merge_regs (conflicts, reg, reg2);
1750
1751 return 1;
1752 }
1753
1754 /* For each register copy insn in basic block BB, place the LHS and
1755 RHS regs in the same class in partition P if they do not conflict
1756 according to CONFLICTS.
1757
1758 Returns the number of changes that were made to P.
1759
1760 See Morgan figure 11.14. */
1761
1762 static int
1763 coalesce_regs_in_copies (bb, p, conflicts)
1764 basic_block bb;
1765 partition p;
1766 conflict_graph conflicts;
1767 {
1768 int changed = 0;
1769 rtx insn;
1770 rtx end = bb->end;
1771
1772 /* Scan the instruction stream of the block. */
1773 for (insn = bb->head; insn != end; insn = NEXT_INSN (insn))
1774 {
1775 rtx pattern;
1776 rtx src;
1777 rtx dest;
1778
1779 /* If this isn't a set insn, go to the next insn. */
1780 if (GET_CODE (insn) != INSN)
1781 continue;
1782 pattern = PATTERN (insn);
1783 if (GET_CODE (pattern) != SET)
1784 continue;
1785
1786 src = SET_SRC (pattern);
1787 dest = SET_DEST (pattern);
1788
1789 /* We're only looking for copies. */
1790 if (GET_CODE (src) != REG || GET_CODE (dest) != REG)
1791 continue;
1792
1793 /* Coalesce only if the reg modes are the same. As long as
1794 each reg's rtx is unique, it can have only one mode, so two
1795 pseudos of different modes can't be coalesced into one.
1796
1797 FIXME: We can probably get around this by inserting SUBREGs
1798 where appropriate, but for now we don't bother. */
1799 if (GET_MODE (src) != GET_MODE (dest))
1800 continue;
1801
1802 /* Found a copy; see if we can use the same reg for both the
1803 source and destination (and thus eliminate the copy,
1804 ultimately). */
1805 changed += coalesce_if_unconflicting (p, conflicts,
1806 REGNO (src), REGNO (dest));
1807 }
1808
1809 return changed;
1810 }
1811
1812 struct phi_coalesce_context
1813 {
1814 partition p;
1815 conflict_graph conflicts;
1816 int changed;
1817 };
1818
1819 /* Callback function for for_each_successor_phi. If the set
1820 destination and the phi alternative regs do not conflict, place
1821 them in the same paritition class. DATA is a pointer to a
1822 phi_coalesce_context struct. */
1823
1824 static int
1825 coalesce_reg_in_phi (insn, dest_regno, src_regno, data)
1826 rtx insn ATTRIBUTE_UNUSED;
1827 int dest_regno;
1828 int src_regno;
1829 void *data;
1830 {
1831 struct phi_coalesce_context *context =
1832 (struct phi_coalesce_context *) data;
1833
1834 /* Attempt to use the same reg, if they don't conflict. */
1835 context->changed
1836 += coalesce_if_unconflicting (context->p, context->conflicts,
1837 dest_regno, src_regno);
1838 return 0;
1839 }
1840
1841 /* For each alternative in a phi function corresponding to basic block
1842 BB (in phi nodes in successor block to BB), place the reg in the
1843 phi alternative and the reg to which the phi value is set into the
1844 same class in partition P, if allowed by CONFLICTS.
1845
1846 Return the number of changes that were made to P.
1847
1848 See Morgan figure 11.14. */
1849
1850 static int
1851 coalesce_regs_in_successor_phi_nodes (bb, p, conflicts)
1852 basic_block bb;
1853 partition p;
1854 conflict_graph conflicts;
1855 {
1856 struct phi_coalesce_context context;
1857 context.p = p;
1858 context.conflicts = conflicts;
1859 context.changed = 0;
1860
1861 for_each_successor_phi (bb, &coalesce_reg_in_phi, &context);
1862
1863 return context.changed;
1864 }
1865
1866 /* Compute and return a partition of pseudos. Where possible,
1867 non-conflicting pseudos are placed in the same class.
1868
1869 The caller is responsible for deallocating the returned partition. */
1870
1871 static partition
1872 compute_coalesced_reg_partition ()
1873 {
1874 int bb;
1875 int changed = 0;
1876
1877 partition p =
1878 partition_new (ssa_definition->num_elements);
1879
1880 /* The first priority is to make sure registers that might have to
1881 be copied on abnormal critical edges are placed in the same
1882 partition. This saves us from having to split abnormal critical
1883 edges (which can't be done). */
1884 for (bb = n_basic_blocks; --bb >= 0; )
1885 make_regs_equivalent_over_bad_edges (bb, p);
1886
1887 do
1888 {
1889 regset_head phi_set;
1890 conflict_graph conflicts;
1891
1892 changed = 0;
1893
1894 /* Build the set of registers involved in phi nodes, either as
1895 arguments to the phi function or as the target of a set. */
1896 INITIALIZE_REG_SET (phi_set);
1897 mark_phi_and_copy_regs (&phi_set);
1898
1899 /* Compute conflicts. */
1900 conflicts = conflict_graph_compute (&phi_set, p);
1901
1902 /* FIXME: Better would be to process most frequently executed
1903 blocks first, so that most frequently executed copies would
1904 be more likely to be removed by register coalescing. But any
1905 order will generate correct, if non-optimal, results. */
1906 for (bb = n_basic_blocks; --bb >= 0; )
1907 {
1908 basic_block block = BASIC_BLOCK (bb);
1909 changed += coalesce_regs_in_copies (block, p, conflicts);
1910 changed +=
1911 coalesce_regs_in_successor_phi_nodes (block, p, conflicts);
1912 }
1913
1914 conflict_graph_delete (conflicts);
1915 }
1916 while (changed > 0);
1917
1918 return p;
1919 }
1920
1921 /* Mark the regs in a phi node. PTR is a phi expression or one of its
1922 components (a REG or a CONST_INT). DATA is a reg set in which to
1923 set all regs. Called from for_each_rtx. */
1924
1925 static int
1926 mark_reg_in_phi (ptr, data)
1927 rtx *ptr;
1928 void *data;
1929 {
1930 rtx expr = *ptr;
1931 regset set = (regset) data;
1932
1933 switch (GET_CODE (expr))
1934 {
1935 case REG:
1936 SET_REGNO_REG_SET (set, REGNO (expr));
1937 /* Fall through. */
1938 case CONST_INT:
1939 case PHI:
1940 return 0;
1941 default:
1942 abort ();
1943 }
1944 }
1945
1946 /* Mark in PHI_SET all pseudos that are used in a phi node -- either
1947 set from a phi expression, or used as an argument in one. Also
1948 mark regs that are the source or target of a reg copy. Uses
1949 ssa_definition. */
1950
1951 static void
1952 mark_phi_and_copy_regs (phi_set)
1953 regset phi_set;
1954 {
1955 unsigned int reg;
1956
1957 /* Scan the definitions of all regs. */
1958 for (reg = 0; reg < VARRAY_SIZE (ssa_definition); ++reg)
1959 if (CONVERT_REGISTER_TO_SSA_P (reg))
1960 {
1961 rtx insn = VARRAY_RTX (ssa_definition, reg);
1962 rtx pattern;
1963 rtx src;
1964
1965 if (insn == NULL)
1966 continue;
1967 pattern = PATTERN (insn);
1968 /* Sometimes we get PARALLEL insns. These aren't phi nodes or
1969 copies. */
1970 if (GET_CODE (pattern) != SET)
1971 continue;
1972 src = SET_SRC (pattern);
1973
1974 if (GET_CODE (src) == REG)
1975 {
1976 /* It's a reg copy. */
1977 SET_REGNO_REG_SET (phi_set, reg);
1978 SET_REGNO_REG_SET (phi_set, REGNO (src));
1979 }
1980 else if (GET_CODE (src) == PHI)
1981 {
1982 /* It's a phi node. Mark the reg being set. */
1983 SET_REGNO_REG_SET (phi_set, reg);
1984 /* Mark the regs used in the phi function. */
1985 for_each_rtx (&src, mark_reg_in_phi, phi_set);
1986 }
1987 /* ... else nothing to do. */
1988 }
1989 }
1990
1991 /* Rename regs in insn PTR that are equivalent. DATA is the register
1992 partition which specifies equivalences. */
1993
1994 static int
1995 rename_equivalent_regs_in_insn (ptr, data)
1996 rtx *ptr;
1997 void* data;
1998 {
1999 rtx x = *ptr;
2000 partition reg_partition = (partition) data;
2001
2002 if (x == NULL_RTX)
2003 return 0;
2004
2005 switch (GET_CODE (x))
2006 {
2007 case REG:
2008 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)))
2009 {
2010 unsigned int regno = REGNO (x);
2011 unsigned int new_regno = partition_find (reg_partition, regno);
2012 rtx canonical_element_rtx = ssa_rename_from_lookup (new_regno);
2013
2014 if (canonical_element_rtx != NULL_RTX &&
2015 HARD_REGISTER_P (canonical_element_rtx))
2016 {
2017 if (REGNO (canonical_element_rtx) != regno)
2018 *ptr = canonical_element_rtx;
2019 }
2020 else if (regno != new_regno)
2021 {
2022 rtx new_reg = regno_reg_rtx[new_regno];
2023 if (GET_MODE (x) != GET_MODE (new_reg))
2024 abort ();
2025 *ptr = new_reg;
2026 }
2027 }
2028 return -1;
2029
2030 case PHI:
2031 /* No need to rename the phi nodes. We'll check equivalence
2032 when inserting copies. */
2033 return -1;
2034
2035 default:
2036 /* Anything else, continue traversing. */
2037 return 0;
2038 }
2039 }
2040
2041 /* Record the register's canonical element stored in SRFP in the
2042 canonical_elements sbitmap packaged in DATA. This function is used
2043 as a callback function for traversing ssa_rename_from. */
2044
2045 static int
2046 record_canonical_element_1 (srfp, data)
2047 void **srfp;
2048 void *data;
2049 {
2050 unsigned int reg = ((ssa_rename_from_pair *) *srfp)->reg;
2051 sbitmap canonical_elements =
2052 ((struct ssa_rename_from_hash_table_data *) data)->canonical_elements;
2053 partition reg_partition =
2054 ((struct ssa_rename_from_hash_table_data *) data)->reg_partition;
2055
2056 SET_BIT (canonical_elements, partition_find (reg_partition, reg));
2057 return 1;
2058 }
2059
2060 /* For each class in the REG_PARTITION corresponding to a particular
2061 hard register and machine mode, check that there are no other
2062 classes with the same hard register and machine mode. Returns
2063 nonzero if this is the case, i.e., the partition is acceptable. */
2064
2065 static int
2066 check_hard_regs_in_partition (reg_partition)
2067 partition reg_partition;
2068 {
2069 /* CANONICAL_ELEMENTS has a nonzero bit if a class with the given register
2070 number and machine mode has already been seen. This is a
2071 problem with the partition. */
2072 sbitmap canonical_elements;
2073 int element_index;
2074 int already_seen[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
2075 int reg;
2076 int mach_mode;
2077
2078 /* Collect a list of canonical elements. */
2079 canonical_elements = sbitmap_alloc (max_reg_num ());
2080 sbitmap_zero (canonical_elements);
2081 ssa_rename_from_traverse (&record_canonical_element_1,
2082 canonical_elements, reg_partition);
2083
2084 /* We have not seen any hard register uses. */
2085 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; ++reg)
2086 for (mach_mode = 0; mach_mode < NUM_MACHINE_MODES; ++mach_mode)
2087 already_seen[reg][mach_mode] = 0;
2088
2089 /* Check for classes with the same hard register and machine mode. */
2090 EXECUTE_IF_SET_IN_SBITMAP (canonical_elements, 0, element_index,
2091 {
2092 rtx hard_reg_rtx = ssa_rename_from_lookup (element_index);
2093 if (hard_reg_rtx != NULL_RTX &&
2094 HARD_REGISTER_P (hard_reg_rtx) &&
2095 already_seen[REGNO (hard_reg_rtx)][GET_MODE (hard_reg_rtx)] != 0)
2096 /* Two distinct partition classes should be mapped to the same
2097 hard register. */
2098 return 0;
2099 });
2100
2101 sbitmap_free (canonical_elements);
2102
2103 return 1;
2104 }
2105
2106 /* Rename regs that are equivalent in REG_PARTITION. Also collapse
2107 any SEQUENCE insns. */
2108
2109 static void
2110 rename_equivalent_regs (reg_partition)
2111 partition reg_partition;
2112 {
2113 int bb;
2114
2115 for (bb = n_basic_blocks; --bb >= 0; )
2116 {
2117 basic_block b = BASIC_BLOCK (bb);
2118 rtx next = b->head;
2119 rtx last = b->end;
2120 rtx insn;
2121
2122 do
2123 {
2124 insn = next;
2125 if (INSN_P (insn))
2126 {
2127 for_each_rtx (&PATTERN (insn),
2128 rename_equivalent_regs_in_insn,
2129 reg_partition);
2130 for_each_rtx (&REG_NOTES (insn),
2131 rename_equivalent_regs_in_insn,
2132 reg_partition);
2133
2134 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2135 {
2136 rtx s = PATTERN (insn);
2137 int slen = XVECLEN (s, 0);
2138 int i;
2139
2140 if (slen <= 1)
2141 abort();
2142
2143 PATTERN (insn) = XVECEXP (s, 0, slen-1);
2144 for (i = 0; i < slen - 1; i++)
2145 emit_block_insn_before (XVECEXP (s, 0, i), insn, b);
2146 }
2147 }
2148
2149 next = NEXT_INSN (insn);
2150 }
2151 while (insn != last);
2152 }
2153 }
2154
2155 /* The main entry point for moving from SSA. */
2156
2157 void
2158 convert_from_ssa()
2159 {
2160 int bb;
2161 partition reg_partition;
2162 rtx insns = get_insns ();
2163
2164 /* Need global_live_at_{start,end} up to date. */
2165 life_analysis (insns, NULL,
2166 PROP_KILL_DEAD_CODE | PROP_SCAN_DEAD_CODE | PROP_DEATH_NOTES);
2167
2168 /* Figure out which regs in copies and phi nodes don't conflict and
2169 therefore can be coalesced. */
2170 if (conservative_reg_partition)
2171 reg_partition = compute_conservative_reg_partition ();
2172 else
2173 reg_partition = compute_coalesced_reg_partition ();
2174
2175 if (!check_hard_regs_in_partition (reg_partition))
2176 /* Two separate partitions should correspond to the same hard
2177 register but do not. */
2178 abort ();
2179
2180 rename_equivalent_regs (reg_partition);
2181
2182 /* Eliminate the PHI nodes. */
2183 for (bb = n_basic_blocks; --bb >= 0; )
2184 {
2185 basic_block b = BASIC_BLOCK (bb);
2186 edge e;
2187
2188 for (e = b->pred; e; e = e->pred_next)
2189 if (e->src != ENTRY_BLOCK_PTR)
2190 eliminate_phi (e, reg_partition);
2191 }
2192
2193 partition_delete (reg_partition);
2194
2195 /* Actually delete the PHI nodes. */
2196 for (bb = n_basic_blocks; --bb >= 0; )
2197 {
2198 rtx insn = BLOCK_HEAD (bb);
2199
2200 while (1)
2201 {
2202 /* If this is a PHI node delete it. */
2203 if (PHI_NODE_P (insn))
2204 {
2205 if (insn == BLOCK_END (bb))
2206 BLOCK_END (bb) = PREV_INSN (insn);
2207 insn = delete_insn (insn);
2208 }
2209 /* Since all the phi nodes come at the beginning of the
2210 block, if we find an ordinary insn, we can stop looking
2211 for more phi nodes. */
2212 else if (INSN_P (insn))
2213 break;
2214 /* If we've reached the end of the block, stop. */
2215 else if (insn == BLOCK_END (bb))
2216 break;
2217 else
2218 insn = NEXT_INSN (insn);
2219 }
2220 }
2221
2222 /* Commit all the copy nodes needed to convert out of SSA form. */
2223 commit_edge_insertions ();
2224
2225 in_ssa_form = 0;
2226
2227 count_or_remove_death_notes (NULL, 1);
2228
2229 /* Deallocate the data structures. */
2230 VARRAY_FREE (ssa_definition);
2231 VARRAY_FREE (ssa_uses);
2232 ssa_rename_from_free ();
2233 }
2234
2235 /* Scan phi nodes in successors to BB. For each such phi node that
2236 has a phi alternative value corresponding to BB, invoke FN. FN
2237 is passed the entire phi node insn, the regno of the set
2238 destination, the regno of the phi argument corresponding to BB,
2239 and DATA.
2240
2241 If FN ever returns non-zero, stops immediately and returns this
2242 value. Otherwise, returns zero. */
2243
2244 int
2245 for_each_successor_phi (bb, fn, data)
2246 basic_block bb;
2247 successor_phi_fn fn;
2248 void *data;
2249 {
2250 edge e;
2251
2252 if (bb == EXIT_BLOCK_PTR)
2253 return 0;
2254
2255 /* Scan outgoing edges. */
2256 for (e = bb->succ; e != NULL; e = e->succ_next)
2257 {
2258 rtx insn;
2259
2260 basic_block successor = e->dest;
2261 if (successor == ENTRY_BLOCK_PTR
2262 || successor == EXIT_BLOCK_PTR)
2263 continue;
2264
2265 /* Advance to the first non-label insn of the successor block. */
2266 insn = first_insn_after_basic_block_note (successor);
2267
2268 if (insn == NULL)
2269 continue;
2270
2271 /* Scan phi nodes in the successor. */
2272 for ( ; PHI_NODE_P (insn); insn = NEXT_INSN (insn))
2273 {
2274 int result;
2275 rtx phi_set = PATTERN (insn);
2276 rtx *alternative = phi_alternative (phi_set, bb->index);
2277 rtx phi_src;
2278
2279 /* This phi function may not have an alternative
2280 corresponding to the incoming edge, indicating the
2281 assigned variable is not defined along the edge. */
2282 if (alternative == NULL)
2283 continue;
2284 phi_src = *alternative;
2285
2286 /* Invoke the callback. */
2287 result = (*fn) (insn, REGNO (SET_DEST (phi_set)),
2288 REGNO (phi_src), data);
2289
2290 /* Terminate if requested. */
2291 if (result != 0)
2292 return result;
2293 }
2294 }
2295
2296 return 0;
2297 }
2298
2299 /* Assuming the ssa_rename_from mapping has been established, yields
2300 nonzero if 1) only one SSA register of REG1 and REG2 comes from a
2301 hard register or 2) both SSA registers REG1 and REG2 come from
2302 different hard registers. */
2303
2304 static int
2305 conflicting_hard_regs_p (reg1, reg2)
2306 int reg1;
2307 int reg2;
2308 {
2309 int orig_reg1 = original_register (reg1);
2310 int orig_reg2 = original_register (reg2);
2311 if (HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2)
2312 && orig_reg1 != orig_reg2)
2313 return 1;
2314 if (HARD_REGISTER_NUM_P (orig_reg1) && !HARD_REGISTER_NUM_P (orig_reg2))
2315 return 1;
2316 if (!HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2))
2317 return 1;
2318
2319 return 0;
2320 }