rtl.h (ASM_OPERANDS_INPUT_CONSTRAINT_EXP): New macro.
[gcc.git] / gcc / stmt.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
24 It also creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 The functions whose names start with `expand_' are called by the
28 parser to generate RTL instructions for various kinds of constructs.
29
30 Some control and binding constructs require calling several such
31 functions at different times. For example, a simple if-then
32 is expanded by calling `expand_start_cond' (with the condition-expression
33 as argument) before parsing the then-clause and calling `expand_end_cond'
34 after parsing the then-clause. */
35
36 #include "config.h"
37 #include "system.h"
38
39 #include "rtl.h"
40 #include "tree.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "insn-flags.h"
46 #include "insn-config.h"
47 #include "insn-codes.h"
48 #include "expr.h"
49 #include "hard-reg-set.h"
50 #include "obstack.h"
51 #include "loop.h"
52 #include "recog.h"
53 #include "machmode.h"
54 #include "toplev.h"
55 #include "output.h"
56 #include "ggc.h"
57
58 #define obstack_chunk_alloc xmalloc
59 #define obstack_chunk_free free
60 struct obstack stmt_obstack;
61
62 /* Assume that case vectors are not pc-relative. */
63 #ifndef CASE_VECTOR_PC_RELATIVE
64 #define CASE_VECTOR_PC_RELATIVE 0
65 #endif
66 \f
67 /* Functions and data structures for expanding case statements. */
68
69 /* Case label structure, used to hold info on labels within case
70 statements. We handle "range" labels; for a single-value label
71 as in C, the high and low limits are the same.
72
73 An AVL tree of case nodes is initially created, and later transformed
74 to a list linked via the RIGHT fields in the nodes. Nodes with
75 higher case values are later in the list.
76
77 Switch statements can be output in one of two forms. A branch table
78 is used if there are more than a few labels and the labels are dense
79 within the range between the smallest and largest case value. If a
80 branch table is used, no further manipulations are done with the case
81 node chain.
82
83 The alternative to the use of a branch table is to generate a series
84 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
85 and PARENT fields to hold a binary tree. Initially the tree is
86 totally unbalanced, with everything on the right. We balance the tree
87 with nodes on the left having lower case values than the parent
88 and nodes on the right having higher values. We then output the tree
89 in order. */
90
91 struct case_node
92 {
93 struct case_node *left; /* Left son in binary tree */
94 struct case_node *right; /* Right son in binary tree; also node chain */
95 struct case_node *parent; /* Parent of node in binary tree */
96 tree low; /* Lowest index value for this label */
97 tree high; /* Highest index value for this label */
98 tree code_label; /* Label to jump to when node matches */
99 int balance;
100 };
101
102 typedef struct case_node case_node;
103 typedef struct case_node *case_node_ptr;
104
105 /* These are used by estimate_case_costs and balance_case_nodes. */
106
107 /* This must be a signed type, and non-ANSI compilers lack signed char. */
108 static short cost_table_[129];
109 static short *cost_table;
110 static int use_cost_table;
111 \f
112 /* Stack of control and binding constructs we are currently inside.
113
114 These constructs begin when you call `expand_start_WHATEVER'
115 and end when you call `expand_end_WHATEVER'. This stack records
116 info about how the construct began that tells the end-function
117 what to do. It also may provide information about the construct
118 to alter the behavior of other constructs within the body.
119 For example, they may affect the behavior of C `break' and `continue'.
120
121 Each construct gets one `struct nesting' object.
122 All of these objects are chained through the `all' field.
123 `nesting_stack' points to the first object (innermost construct).
124 The position of an entry on `nesting_stack' is in its `depth' field.
125
126 Each type of construct has its own individual stack.
127 For example, loops have `loop_stack'. Each object points to the
128 next object of the same type through the `next' field.
129
130 Some constructs are visible to `break' exit-statements and others
131 are not. Which constructs are visible depends on the language.
132 Therefore, the data structure allows each construct to be visible
133 or not, according to the args given when the construct is started.
134 The construct is visible if the `exit_label' field is non-null.
135 In that case, the value should be a CODE_LABEL rtx. */
136
137 struct nesting
138 {
139 struct nesting *all;
140 struct nesting *next;
141 int depth;
142 rtx exit_label;
143 union
144 {
145 /* For conds (if-then and if-then-else statements). */
146 struct
147 {
148 /* Label for the end of the if construct.
149 There is none if EXITFLAG was not set
150 and no `else' has been seen yet. */
151 rtx endif_label;
152 /* Label for the end of this alternative.
153 This may be the end of the if or the next else/elseif. */
154 rtx next_label;
155 } cond;
156 /* For loops. */
157 struct
158 {
159 /* Label at the top of the loop; place to loop back to. */
160 rtx start_label;
161 /* Label at the end of the whole construct. */
162 rtx end_label;
163 /* Label before a jump that branches to the end of the whole
164 construct. This is where destructors go if any. */
165 rtx alt_end_label;
166 /* Label for `continue' statement to jump to;
167 this is in front of the stepper of the loop. */
168 rtx continue_label;
169 } loop;
170 /* For variable binding contours. */
171 struct
172 {
173 /* Sequence number of this binding contour within the function,
174 in order of entry. */
175 int block_start_count;
176 /* Nonzero => value to restore stack to on exit. */
177 rtx stack_level;
178 /* The NOTE that starts this contour.
179 Used by expand_goto to check whether the destination
180 is within each contour or not. */
181 rtx first_insn;
182 /* Innermost containing binding contour that has a stack level. */
183 struct nesting *innermost_stack_block;
184 /* List of cleanups to be run on exit from this contour.
185 This is a list of expressions to be evaluated.
186 The TREE_PURPOSE of each link is the ..._DECL node
187 which the cleanup pertains to. */
188 tree cleanups;
189 /* List of cleanup-lists of blocks containing this block,
190 as they were at the locus where this block appears.
191 There is an element for each containing block,
192 ordered innermost containing block first.
193 The tail of this list can be 0,
194 if all remaining elements would be empty lists.
195 The element's TREE_VALUE is the cleanup-list of that block,
196 which may be null. */
197 tree outer_cleanups;
198 /* Chain of labels defined inside this binding contour.
199 For contours that have stack levels or cleanups. */
200 struct label_chain *label_chain;
201 /* Number of function calls seen, as of start of this block. */
202 int n_function_calls;
203 /* Nonzero if this is associated with a EH region. */
204 int exception_region;
205 /* The saved target_temp_slot_level from our outer block.
206 We may reset target_temp_slot_level to be the level of
207 this block, if that is done, target_temp_slot_level
208 reverts to the saved target_temp_slot_level at the very
209 end of the block. */
210 int block_target_temp_slot_level;
211 /* True if we are currently emitting insns in an area of
212 output code that is controlled by a conditional
213 expression. This is used by the cleanup handling code to
214 generate conditional cleanup actions. */
215 int conditional_code;
216 /* A place to move the start of the exception region for any
217 of the conditional cleanups, must be at the end or after
218 the start of the last unconditional cleanup, and before any
219 conditional branch points. */
220 rtx last_unconditional_cleanup;
221 /* When in a conditional context, this is the specific
222 cleanup list associated with last_unconditional_cleanup,
223 where we place the conditionalized cleanups. */
224 tree *cleanup_ptr;
225 } block;
226 /* For switch (C) or case (Pascal) statements,
227 and also for dummies (see `expand_start_case_dummy'). */
228 struct
229 {
230 /* The insn after which the case dispatch should finally
231 be emitted. Zero for a dummy. */
232 rtx start;
233 /* A list of case labels; it is first built as an AVL tree.
234 During expand_end_case, this is converted to a list, and may be
235 rearranged into a nearly balanced binary tree. */
236 struct case_node *case_list;
237 /* Label to jump to if no case matches. */
238 tree default_label;
239 /* The expression to be dispatched on. */
240 tree index_expr;
241 /* Type that INDEX_EXPR should be converted to. */
242 tree nominal_type;
243 /* Number of range exprs in case statement. */
244 int num_ranges;
245 /* Name of this kind of statement, for warnings. */
246 const char *printname;
247 /* Used to save no_line_numbers till we see the first case label.
248 We set this to -1 when we see the first case label in this
249 case statement. */
250 int line_number_status;
251 } case_stmt;
252 } data;
253 };
254
255 /* Allocate and return a new `struct nesting'. */
256
257 #define ALLOC_NESTING() \
258 (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting))
259
260 /* Pop the nesting stack element by element until we pop off
261 the element which is at the top of STACK.
262 Update all the other stacks, popping off elements from them
263 as we pop them from nesting_stack. */
264
265 #define POPSTACK(STACK) \
266 do { struct nesting *target = STACK; \
267 struct nesting *this; \
268 do { this = nesting_stack; \
269 if (loop_stack == this) \
270 loop_stack = loop_stack->next; \
271 if (cond_stack == this) \
272 cond_stack = cond_stack->next; \
273 if (block_stack == this) \
274 block_stack = block_stack->next; \
275 if (stack_block_stack == this) \
276 stack_block_stack = stack_block_stack->next; \
277 if (case_stack == this) \
278 case_stack = case_stack->next; \
279 nesting_depth = nesting_stack->depth - 1; \
280 nesting_stack = this->all; \
281 obstack_free (&stmt_obstack, this); } \
282 while (this != target); } while (0)
283 \f
284 /* In some cases it is impossible to generate code for a forward goto
285 until the label definition is seen. This happens when it may be necessary
286 for the goto to reset the stack pointer: we don't yet know how to do that.
287 So expand_goto puts an entry on this fixup list.
288 Each time a binding contour that resets the stack is exited,
289 we check each fixup.
290 If the target label has now been defined, we can insert the proper code. */
291
292 struct goto_fixup
293 {
294 /* Points to following fixup. */
295 struct goto_fixup *next;
296 /* Points to the insn before the jump insn.
297 If more code must be inserted, it goes after this insn. */
298 rtx before_jump;
299 /* The LABEL_DECL that this jump is jumping to, or 0
300 for break, continue or return. */
301 tree target;
302 /* The BLOCK for the place where this goto was found. */
303 tree context;
304 /* The CODE_LABEL rtx that this is jumping to. */
305 rtx target_rtl;
306 /* Number of binding contours started in current function
307 before the label reference. */
308 int block_start_count;
309 /* The outermost stack level that should be restored for this jump.
310 Each time a binding contour that resets the stack is exited,
311 if the target label is *not* yet defined, this slot is updated. */
312 rtx stack_level;
313 /* List of lists of cleanup expressions to be run by this goto.
314 There is one element for each block that this goto is within.
315 The tail of this list can be 0,
316 if all remaining elements would be empty.
317 The TREE_VALUE contains the cleanup list of that block as of the
318 time this goto was seen.
319 The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */
320 tree cleanup_list_list;
321 };
322
323 /* Within any binding contour that must restore a stack level,
324 all labels are recorded with a chain of these structures. */
325
326 struct label_chain
327 {
328 /* Points to following fixup. */
329 struct label_chain *next;
330 tree label;
331 };
332
333 struct stmt_status
334 {
335 /* Chain of all pending binding contours. */
336 struct nesting *x_block_stack;
337
338 /* If any new stacks are added here, add them to POPSTACKS too. */
339
340 /* Chain of all pending binding contours that restore stack levels
341 or have cleanups. */
342 struct nesting *x_stack_block_stack;
343
344 /* Chain of all pending conditional statements. */
345 struct nesting *x_cond_stack;
346
347 /* Chain of all pending loops. */
348 struct nesting *x_loop_stack;
349
350 /* Chain of all pending case or switch statements. */
351 struct nesting *x_case_stack;
352
353 /* Separate chain including all of the above,
354 chained through the `all' field. */
355 struct nesting *x_nesting_stack;
356
357 /* Number of entries on nesting_stack now. */
358 int x_nesting_depth;
359
360 /* Number of binding contours started so far in this function. */
361 int x_block_start_count;
362
363 /* Each time we expand an expression-statement,
364 record the expr's type and its RTL value here. */
365 tree x_last_expr_type;
366 rtx x_last_expr_value;
367
368 /* Nonzero if within a ({...}) grouping, in which case we must
369 always compute a value for each expr-stmt in case it is the last one. */
370 int x_expr_stmts_for_value;
371
372 /* Filename and line number of last line-number note,
373 whether we actually emitted it or not. */
374 const char *x_emit_filename;
375 int x_emit_lineno;
376
377 struct goto_fixup *x_goto_fixup_chain;
378 };
379
380 #define block_stack (cfun->stmt->x_block_stack)
381 #define stack_block_stack (cfun->stmt->x_stack_block_stack)
382 #define cond_stack (cfun->stmt->x_cond_stack)
383 #define loop_stack (cfun->stmt->x_loop_stack)
384 #define case_stack (cfun->stmt->x_case_stack)
385 #define nesting_stack (cfun->stmt->x_nesting_stack)
386 #define nesting_depth (cfun->stmt->x_nesting_depth)
387 #define current_block_start_count (cfun->stmt->x_block_start_count)
388 #define last_expr_type (cfun->stmt->x_last_expr_type)
389 #define last_expr_value (cfun->stmt->x_last_expr_value)
390 #define expr_stmts_for_value (cfun->stmt->x_expr_stmts_for_value)
391 #define emit_filename (cfun->stmt->x_emit_filename)
392 #define emit_lineno (cfun->stmt->x_emit_lineno)
393 #define goto_fixup_chain (cfun->stmt->x_goto_fixup_chain)
394
395 /* Non-zero if we are using EH to handle cleanus. */
396 static int using_eh_for_cleanups_p = 0;
397
398 /* Character strings, each containing a single decimal digit. */
399 static char *digit_strings[10];
400
401 static int n_occurrences PARAMS ((int, const char *));
402 static void expand_goto_internal PARAMS ((tree, rtx, rtx));
403 static int expand_fixup PARAMS ((tree, rtx, rtx));
404 static rtx expand_nl_handler_label PARAMS ((rtx, rtx));
405 static void expand_nl_goto_receiver PARAMS ((void));
406 static void expand_nl_goto_receivers PARAMS ((struct nesting *));
407 static void fixup_gotos PARAMS ((struct nesting *, rtx, tree,
408 rtx, int));
409 static void expand_null_return_1 PARAMS ((rtx, int));
410 static void expand_value_return PARAMS ((rtx));
411 static int tail_recursion_args PARAMS ((tree, tree));
412 static void expand_cleanups PARAMS ((tree, tree, int, int));
413 static void check_seenlabel PARAMS ((void));
414 static void do_jump_if_equal PARAMS ((rtx, rtx, rtx, int));
415 static int estimate_case_costs PARAMS ((case_node_ptr));
416 static void group_case_nodes PARAMS ((case_node_ptr));
417 static void balance_case_nodes PARAMS ((case_node_ptr *,
418 case_node_ptr));
419 static int node_has_low_bound PARAMS ((case_node_ptr, tree));
420 static int node_has_high_bound PARAMS ((case_node_ptr, tree));
421 static int node_is_bounded PARAMS ((case_node_ptr, tree));
422 static void emit_jump_if_reachable PARAMS ((rtx));
423 static void emit_case_nodes PARAMS ((rtx, case_node_ptr, rtx, tree));
424 static int add_case_node PARAMS ((tree, tree, tree, tree *));
425 static struct case_node *case_tree2list PARAMS ((case_node *, case_node *));
426 static void mark_cond_nesting PARAMS ((struct nesting *));
427 static void mark_loop_nesting PARAMS ((struct nesting *));
428 static void mark_block_nesting PARAMS ((struct nesting *));
429 static void mark_case_nesting PARAMS ((struct nesting *));
430 static void mark_case_node PARAMS ((struct case_node *));
431 static void mark_goto_fixup PARAMS ((struct goto_fixup *));
432
433 \f
434 void
435 using_eh_for_cleanups ()
436 {
437 using_eh_for_cleanups_p = 1;
438 }
439
440 /* Mark N (known to be a cond-nesting) for GC. */
441
442 static void
443 mark_cond_nesting (n)
444 struct nesting *n;
445 {
446 while (n)
447 {
448 ggc_mark_rtx (n->exit_label);
449 ggc_mark_rtx (n->data.cond.endif_label);
450 ggc_mark_rtx (n->data.cond.next_label);
451
452 n = n->next;
453 }
454 }
455
456 /* Mark N (known to be a loop-nesting) for GC. */
457
458 static void
459 mark_loop_nesting (n)
460 struct nesting *n;
461 {
462
463 while (n)
464 {
465 ggc_mark_rtx (n->exit_label);
466 ggc_mark_rtx (n->data.loop.start_label);
467 ggc_mark_rtx (n->data.loop.end_label);
468 ggc_mark_rtx (n->data.loop.alt_end_label);
469 ggc_mark_rtx (n->data.loop.continue_label);
470
471 n = n->next;
472 }
473 }
474
475 /* Mark N (known to be a block-nesting) for GC. */
476
477 static void
478 mark_block_nesting (n)
479 struct nesting *n;
480 {
481 while (n)
482 {
483 struct label_chain *l;
484
485 ggc_mark_rtx (n->exit_label);
486 ggc_mark_rtx (n->data.block.stack_level);
487 ggc_mark_rtx (n->data.block.first_insn);
488 ggc_mark_tree (n->data.block.cleanups);
489 ggc_mark_tree (n->data.block.outer_cleanups);
490
491 for (l = n->data.block.label_chain; l != NULL; l = l->next)
492 ggc_mark_tree (l->label);
493
494 ggc_mark_rtx (n->data.block.last_unconditional_cleanup);
495
496 /* ??? cleanup_ptr never points outside the stack, does it? */
497
498 n = n->next;
499 }
500 }
501
502 /* Mark N (known to be a case-nesting) for GC. */
503
504 static void
505 mark_case_nesting (n)
506 struct nesting *n;
507 {
508 while (n)
509 {
510 ggc_mark_rtx (n->exit_label);
511 ggc_mark_rtx (n->data.case_stmt.start);
512
513 ggc_mark_tree (n->data.case_stmt.default_label);
514 ggc_mark_tree (n->data.case_stmt.index_expr);
515 ggc_mark_tree (n->data.case_stmt.nominal_type);
516
517 mark_case_node (n->data.case_stmt.case_list);
518 n = n->next;
519 }
520 }
521
522 /* Mark C for GC. */
523
524 static void
525 mark_case_node (c)
526 struct case_node *c;
527 {
528 if (c != 0)
529 {
530 ggc_mark_tree (c->low);
531 ggc_mark_tree (c->high);
532 ggc_mark_tree (c->code_label);
533
534 mark_case_node (c->right);
535 mark_case_node (c->left);
536 }
537 }
538
539 /* Mark G for GC. */
540
541 static void
542 mark_goto_fixup (g)
543 struct goto_fixup *g;
544 {
545 while (g)
546 {
547 ggc_mark (g);
548 ggc_mark_rtx (g->before_jump);
549 ggc_mark_tree (g->target);
550 ggc_mark_tree (g->context);
551 ggc_mark_rtx (g->target_rtl);
552 ggc_mark_rtx (g->stack_level);
553 ggc_mark_tree (g->cleanup_list_list);
554
555 g = g->next;
556 }
557 }
558
559 /* Clear out all parts of the state in F that can safely be discarded
560 after the function has been compiled, to let garbage collection
561 reclaim the memory. */
562
563 void
564 free_stmt_status (f)
565 struct function *f;
566 {
567 /* We're about to free the function obstack. If we hold pointers to
568 things allocated there, then we'll try to mark them when we do
569 GC. So, we clear them out here explicitly. */
570 if (f->stmt)
571 free (f->stmt);
572 f->stmt = NULL;
573 }
574
575 /* Mark P for GC. */
576
577 void
578 mark_stmt_status (p)
579 struct stmt_status *p;
580 {
581 if (p == 0)
582 return;
583
584 mark_block_nesting (p->x_block_stack);
585 mark_cond_nesting (p->x_cond_stack);
586 mark_loop_nesting (p->x_loop_stack);
587 mark_case_nesting (p->x_case_stack);
588
589 ggc_mark_tree (p->x_last_expr_type);
590 /* last_epxr_value is only valid if last_expr_type is nonzero. */
591 if (p->x_last_expr_type)
592 ggc_mark_rtx (p->x_last_expr_value);
593
594 mark_goto_fixup (p->x_goto_fixup_chain);
595 }
596
597 void
598 init_stmt ()
599 {
600 int i;
601
602 gcc_obstack_init (&stmt_obstack);
603
604 for (i = 0; i < 10; i++)
605 {
606 digit_strings[i] = ggc_alloc_string (NULL, 1);
607 digit_strings[i][0] = '0' + i;
608 }
609 ggc_add_string_root (digit_strings, 10);
610 }
611
612 void
613 init_stmt_for_function ()
614 {
615 cfun->stmt = (struct stmt_status *) xmalloc (sizeof (struct stmt_status));
616
617 /* We are not currently within any block, conditional, loop or case. */
618 block_stack = 0;
619 stack_block_stack = 0;
620 loop_stack = 0;
621 case_stack = 0;
622 cond_stack = 0;
623 nesting_stack = 0;
624 nesting_depth = 0;
625
626 current_block_start_count = 0;
627
628 /* No gotos have been expanded yet. */
629 goto_fixup_chain = 0;
630
631 /* We are not processing a ({...}) grouping. */
632 expr_stmts_for_value = 0;
633 last_expr_type = 0;
634 last_expr_value = NULL_RTX;
635 }
636 \f
637 /* Return nonzero if anything is pushed on the loop, condition, or case
638 stack. */
639 int
640 in_control_zone_p ()
641 {
642 return cond_stack || loop_stack || case_stack;
643 }
644
645 /* Record the current file and line. Called from emit_line_note. */
646 void
647 set_file_and_line_for_stmt (file, line)
648 const char *file;
649 int line;
650 {
651 /* If we're outputting an inline function, and we add a line note,
652 there may be no CFUN->STMT information. So, there's no need to
653 update it. */
654 if (cfun->stmt)
655 {
656 emit_filename = file;
657 emit_lineno = line;
658 }
659 }
660
661 /* Emit a no-op instruction. */
662
663 void
664 emit_nop ()
665 {
666 rtx last_insn;
667
668 last_insn = get_last_insn ();
669 if (!optimize
670 && (GET_CODE (last_insn) == CODE_LABEL
671 || (GET_CODE (last_insn) == NOTE
672 && prev_real_insn (last_insn) == 0)))
673 emit_insn (gen_nop ());
674 }
675 \f
676 /* Return the rtx-label that corresponds to a LABEL_DECL,
677 creating it if necessary. */
678
679 rtx
680 label_rtx (label)
681 tree label;
682 {
683 if (TREE_CODE (label) != LABEL_DECL)
684 abort ();
685
686 if (DECL_RTL (label))
687 return DECL_RTL (label);
688
689 return DECL_RTL (label) = gen_label_rtx ();
690 }
691
692 /* Add an unconditional jump to LABEL as the next sequential instruction. */
693
694 void
695 emit_jump (label)
696 rtx label;
697 {
698 do_pending_stack_adjust ();
699 emit_jump_insn (gen_jump (label));
700 emit_barrier ();
701 }
702
703 /* Emit code to jump to the address
704 specified by the pointer expression EXP. */
705
706 void
707 expand_computed_goto (exp)
708 tree exp;
709 {
710 rtx x = expand_expr (exp, NULL_RTX, VOIDmode, 0);
711
712 #ifdef POINTERS_EXTEND_UNSIGNED
713 x = convert_memory_address (Pmode, x);
714 #endif
715
716 emit_queue ();
717 /* Be sure the function is executable. */
718 if (current_function_check_memory_usage)
719 emit_library_call (chkr_check_exec_libfunc, 1,
720 VOIDmode, 1, x, ptr_mode);
721
722 do_pending_stack_adjust ();
723 emit_indirect_jump (x);
724
725 current_function_has_computed_jump = 1;
726 }
727 \f
728 /* Handle goto statements and the labels that they can go to. */
729
730 /* Specify the location in the RTL code of a label LABEL,
731 which is a LABEL_DECL tree node.
732
733 This is used for the kind of label that the user can jump to with a
734 goto statement, and for alternatives of a switch or case statement.
735 RTL labels generated for loops and conditionals don't go through here;
736 they are generated directly at the RTL level, by other functions below.
737
738 Note that this has nothing to do with defining label *names*.
739 Languages vary in how they do that and what that even means. */
740
741 void
742 expand_label (label)
743 tree label;
744 {
745 struct label_chain *p;
746
747 do_pending_stack_adjust ();
748 emit_label (label_rtx (label));
749 if (DECL_NAME (label))
750 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
751
752 if (stack_block_stack != 0)
753 {
754 p = (struct label_chain *) oballoc (sizeof (struct label_chain));
755 p->next = stack_block_stack->data.block.label_chain;
756 stack_block_stack->data.block.label_chain = p;
757 p->label = label;
758 }
759 }
760
761 /* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos
762 from nested functions. */
763
764 void
765 declare_nonlocal_label (label)
766 tree label;
767 {
768 rtx slot = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
769
770 nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels);
771 LABEL_PRESERVE_P (label_rtx (label)) = 1;
772 if (nonlocal_goto_handler_slots == 0)
773 {
774 emit_stack_save (SAVE_NONLOCAL,
775 &nonlocal_goto_stack_level,
776 PREV_INSN (tail_recursion_reentry));
777 }
778 nonlocal_goto_handler_slots
779 = gen_rtx_EXPR_LIST (VOIDmode, slot, nonlocal_goto_handler_slots);
780 }
781
782 /* Generate RTL code for a `goto' statement with target label LABEL.
783 LABEL should be a LABEL_DECL tree node that was or will later be
784 defined with `expand_label'. */
785
786 void
787 expand_goto (label)
788 tree label;
789 {
790 tree context;
791
792 /* Check for a nonlocal goto to a containing function. */
793 context = decl_function_context (label);
794 if (context != 0 && context != current_function_decl)
795 {
796 struct function *p = find_function_data (context);
797 rtx label_ref = gen_rtx_LABEL_REF (Pmode, label_rtx (label));
798 rtx handler_slot, static_chain, save_area;
799 tree link;
800
801 /* Find the corresponding handler slot for this label. */
802 handler_slot = p->x_nonlocal_goto_handler_slots;
803 for (link = p->x_nonlocal_labels; TREE_VALUE (link) != label;
804 link = TREE_CHAIN (link))
805 handler_slot = XEXP (handler_slot, 1);
806 handler_slot = XEXP (handler_slot, 0);
807
808 p->has_nonlocal_label = 1;
809 current_function_has_nonlocal_goto = 1;
810 LABEL_REF_NONLOCAL_P (label_ref) = 1;
811
812 /* Copy the rtl for the slots so that they won't be shared in
813 case the virtual stack vars register gets instantiated differently
814 in the parent than in the child. */
815
816 static_chain = copy_to_reg (lookup_static_chain (label));
817
818 /* Get addr of containing function's current nonlocal goto handler,
819 which will do any cleanups and then jump to the label. */
820 handler_slot = copy_to_reg (replace_rtx (copy_rtx (handler_slot),
821 virtual_stack_vars_rtx,
822 static_chain));
823
824 /* Get addr of containing function's nonlocal save area. */
825 save_area = p->x_nonlocal_goto_stack_level;
826 if (save_area)
827 save_area = replace_rtx (copy_rtx (save_area),
828 virtual_stack_vars_rtx, static_chain);
829
830 #if HAVE_nonlocal_goto
831 if (HAVE_nonlocal_goto)
832 emit_insn (gen_nonlocal_goto (static_chain, handler_slot,
833 save_area, label_ref));
834 else
835 #endif
836 {
837 /* Restore frame pointer for containing function.
838 This sets the actual hard register used for the frame pointer
839 to the location of the function's incoming static chain info.
840 The non-local goto handler will then adjust it to contain the
841 proper value and reload the argument pointer, if needed. */
842 emit_move_insn (hard_frame_pointer_rtx, static_chain);
843 emit_stack_restore (SAVE_NONLOCAL, save_area, NULL_RTX);
844
845 /* USE of hard_frame_pointer_rtx added for consistency;
846 not clear if really needed. */
847 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
848 emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
849 emit_indirect_jump (handler_slot);
850 }
851 }
852 else
853 expand_goto_internal (label, label_rtx (label), NULL_RTX);
854 }
855
856 /* Generate RTL code for a `goto' statement with target label BODY.
857 LABEL should be a LABEL_REF.
858 LAST_INSN, if non-0, is the rtx we should consider as the last
859 insn emitted (for the purposes of cleaning up a return). */
860
861 static void
862 expand_goto_internal (body, label, last_insn)
863 tree body;
864 rtx label;
865 rtx last_insn;
866 {
867 struct nesting *block;
868 rtx stack_level = 0;
869
870 if (GET_CODE (label) != CODE_LABEL)
871 abort ();
872
873 /* If label has already been defined, we can tell now
874 whether and how we must alter the stack level. */
875
876 if (PREV_INSN (label) != 0)
877 {
878 /* Find the innermost pending block that contains the label.
879 (Check containment by comparing insn-uids.)
880 Then restore the outermost stack level within that block,
881 and do cleanups of all blocks contained in it. */
882 for (block = block_stack; block; block = block->next)
883 {
884 if (INSN_UID (block->data.block.first_insn) < INSN_UID (label))
885 break;
886 if (block->data.block.stack_level != 0)
887 stack_level = block->data.block.stack_level;
888 /* Execute the cleanups for blocks we are exiting. */
889 if (block->data.block.cleanups != 0)
890 {
891 expand_cleanups (block->data.block.cleanups, NULL_TREE, 1, 1);
892 do_pending_stack_adjust ();
893 }
894 }
895
896 if (stack_level)
897 {
898 /* Ensure stack adjust isn't done by emit_jump, as this
899 would clobber the stack pointer. This one should be
900 deleted as dead by flow. */
901 clear_pending_stack_adjust ();
902 do_pending_stack_adjust ();
903
904 /* Don't do this adjust if it's to the end label and this function
905 is to return with a depressed stack pointer. */
906 if (label == return_label
907 && (((TREE_CODE (TREE_TYPE (current_function_decl))
908 == FUNCTION_TYPE)
909 && (TYPE_RETURNS_STACK_DEPRESSED
910 (TREE_TYPE (current_function_decl))))))
911 ;
912 else
913 emit_stack_restore (SAVE_BLOCK, stack_level, NULL_RTX);
914 }
915
916 if (body != 0 && DECL_TOO_LATE (body))
917 error ("jump to `%s' invalidly jumps into binding contour",
918 IDENTIFIER_POINTER (DECL_NAME (body)));
919 }
920 /* Label not yet defined: may need to put this goto
921 on the fixup list. */
922 else if (! expand_fixup (body, label, last_insn))
923 {
924 /* No fixup needed. Record that the label is the target
925 of at least one goto that has no fixup. */
926 if (body != 0)
927 TREE_ADDRESSABLE (body) = 1;
928 }
929
930 emit_jump (label);
931 }
932 \f
933 /* Generate if necessary a fixup for a goto
934 whose target label in tree structure (if any) is TREE_LABEL
935 and whose target in rtl is RTL_LABEL.
936
937 If LAST_INSN is nonzero, we pretend that the jump appears
938 after insn LAST_INSN instead of at the current point in the insn stream.
939
940 The fixup will be used later to insert insns just before the goto.
941 Those insns will restore the stack level as appropriate for the
942 target label, and will (in the case of C++) also invoke any object
943 destructors which have to be invoked when we exit the scopes which
944 are exited by the goto.
945
946 Value is nonzero if a fixup is made. */
947
948 static int
949 expand_fixup (tree_label, rtl_label, last_insn)
950 tree tree_label;
951 rtx rtl_label;
952 rtx last_insn;
953 {
954 struct nesting *block, *end_block;
955
956 /* See if we can recognize which block the label will be output in.
957 This is possible in some very common cases.
958 If we succeed, set END_BLOCK to that block.
959 Otherwise, set it to 0. */
960
961 if (cond_stack
962 && (rtl_label == cond_stack->data.cond.endif_label
963 || rtl_label == cond_stack->data.cond.next_label))
964 end_block = cond_stack;
965 /* If we are in a loop, recognize certain labels which
966 are likely targets. This reduces the number of fixups
967 we need to create. */
968 else if (loop_stack
969 && (rtl_label == loop_stack->data.loop.start_label
970 || rtl_label == loop_stack->data.loop.end_label
971 || rtl_label == loop_stack->data.loop.continue_label))
972 end_block = loop_stack;
973 else
974 end_block = 0;
975
976 /* Now set END_BLOCK to the binding level to which we will return. */
977
978 if (end_block)
979 {
980 struct nesting *next_block = end_block->all;
981 block = block_stack;
982
983 /* First see if the END_BLOCK is inside the innermost binding level.
984 If so, then no cleanups or stack levels are relevant. */
985 while (next_block && next_block != block)
986 next_block = next_block->all;
987
988 if (next_block)
989 return 0;
990
991 /* Otherwise, set END_BLOCK to the innermost binding level
992 which is outside the relevant control-structure nesting. */
993 next_block = block_stack->next;
994 for (block = block_stack; block != end_block; block = block->all)
995 if (block == next_block)
996 next_block = next_block->next;
997 end_block = next_block;
998 }
999
1000 /* Does any containing block have a stack level or cleanups?
1001 If not, no fixup is needed, and that is the normal case
1002 (the only case, for standard C). */
1003 for (block = block_stack; block != end_block; block = block->next)
1004 if (block->data.block.stack_level != 0
1005 || block->data.block.cleanups != 0)
1006 break;
1007
1008 if (block != end_block)
1009 {
1010 /* Ok, a fixup is needed. Add a fixup to the list of such. */
1011 struct goto_fixup *fixup
1012 = (struct goto_fixup *) ggc_alloc (sizeof (struct goto_fixup));
1013 /* In case an old stack level is restored, make sure that comes
1014 after any pending stack adjust. */
1015 /* ?? If the fixup isn't to come at the present position,
1016 doing the stack adjust here isn't useful. Doing it with our
1017 settings at that location isn't useful either. Let's hope
1018 someone does it! */
1019 if (last_insn == 0)
1020 do_pending_stack_adjust ();
1021 fixup->target = tree_label;
1022 fixup->target_rtl = rtl_label;
1023
1024 /* Create a BLOCK node and a corresponding matched set of
1025 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes at
1026 this point. The notes will encapsulate any and all fixup
1027 code which we might later insert at this point in the insn
1028 stream. Also, the BLOCK node will be the parent (i.e. the
1029 `SUPERBLOCK') of any other BLOCK nodes which we might create
1030 later on when we are expanding the fixup code.
1031
1032 Note that optimization passes (including expand_end_loop)
1033 might move the *_BLOCK notes away, so we use a NOTE_INSN_DELETED
1034 as a placeholder. */
1035
1036 {
1037 register rtx original_before_jump
1038 = last_insn ? last_insn : get_last_insn ();
1039 rtx start;
1040 rtx end;
1041 tree block;
1042
1043 block = make_node (BLOCK);
1044 TREE_USED (block) = 1;
1045
1046 if (!cfun->x_whole_function_mode_p)
1047 insert_block (block);
1048 else
1049 {
1050 BLOCK_CHAIN (block)
1051 = BLOCK_CHAIN (DECL_INITIAL (current_function_decl));
1052 BLOCK_CHAIN (DECL_INITIAL (current_function_decl))
1053 = block;
1054 }
1055
1056 start_sequence ();
1057 start = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG);
1058 if (cfun->x_whole_function_mode_p)
1059 NOTE_BLOCK (start) = block;
1060 fixup->before_jump = emit_note (NULL_PTR, NOTE_INSN_DELETED);
1061 end = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END);
1062 if (cfun->x_whole_function_mode_p)
1063 NOTE_BLOCK (end) = block;
1064 fixup->context = block;
1065 end_sequence ();
1066 emit_insns_after (start, original_before_jump);
1067 }
1068
1069 fixup->block_start_count = current_block_start_count;
1070 fixup->stack_level = 0;
1071 fixup->cleanup_list_list
1072 = ((block->data.block.outer_cleanups
1073 || block->data.block.cleanups)
1074 ? tree_cons (NULL_TREE, block->data.block.cleanups,
1075 block->data.block.outer_cleanups)
1076 : 0);
1077 fixup->next = goto_fixup_chain;
1078 goto_fixup_chain = fixup;
1079 }
1080
1081 return block != 0;
1082 }
1083 \f
1084 /* Expand any needed fixups in the outputmost binding level of the
1085 function. FIRST_INSN is the first insn in the function. */
1086
1087 void
1088 expand_fixups (first_insn)
1089 rtx first_insn;
1090 {
1091 fixup_gotos (NULL_PTR, NULL_RTX, NULL_TREE, first_insn, 0);
1092 }
1093
1094 /* When exiting a binding contour, process all pending gotos requiring fixups.
1095 THISBLOCK is the structure that describes the block being exited.
1096 STACK_LEVEL is the rtx for the stack level to restore exiting this contour.
1097 CLEANUP_LIST is a list of expressions to evaluate on exiting this contour.
1098 FIRST_INSN is the insn that began this contour.
1099
1100 Gotos that jump out of this contour must restore the
1101 stack level and do the cleanups before actually jumping.
1102
1103 DONT_JUMP_IN nonzero means report error there is a jump into this
1104 contour from before the beginning of the contour.
1105 This is also done if STACK_LEVEL is nonzero. */
1106
1107 static void
1108 fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in)
1109 struct nesting *thisblock;
1110 rtx stack_level;
1111 tree cleanup_list;
1112 rtx first_insn;
1113 int dont_jump_in;
1114 {
1115 register struct goto_fixup *f, *prev;
1116
1117 /* F is the fixup we are considering; PREV is the previous one. */
1118 /* We run this loop in two passes so that cleanups of exited blocks
1119 are run first, and blocks that are exited are marked so
1120 afterwards. */
1121
1122 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1123 {
1124 /* Test for a fixup that is inactive because it is already handled. */
1125 if (f->before_jump == 0)
1126 {
1127 /* Delete inactive fixup from the chain, if that is easy to do. */
1128 if (prev != 0)
1129 prev->next = f->next;
1130 }
1131 /* Has this fixup's target label been defined?
1132 If so, we can finalize it. */
1133 else if (PREV_INSN (f->target_rtl) != 0)
1134 {
1135 register rtx cleanup_insns;
1136
1137 /* If this fixup jumped into this contour from before the beginning
1138 of this contour, report an error. This code used to use
1139 the first non-label insn after f->target_rtl, but that's
1140 wrong since such can be added, by things like put_var_into_stack
1141 and have INSN_UIDs that are out of the range of the block. */
1142 /* ??? Bug: this does not detect jumping in through intermediate
1143 blocks that have stack levels or cleanups.
1144 It detects only a problem with the innermost block
1145 around the label. */
1146 if (f->target != 0
1147 && (dont_jump_in || stack_level || cleanup_list)
1148 && INSN_UID (first_insn) < INSN_UID (f->target_rtl)
1149 && INSN_UID (first_insn) > INSN_UID (f->before_jump)
1150 && ! DECL_ERROR_ISSUED (f->target))
1151 {
1152 error_with_decl (f->target,
1153 "label `%s' used before containing binding contour");
1154 /* Prevent multiple errors for one label. */
1155 DECL_ERROR_ISSUED (f->target) = 1;
1156 }
1157
1158 /* We will expand the cleanups into a sequence of their own and
1159 then later on we will attach this new sequence to the insn
1160 stream just ahead of the actual jump insn. */
1161
1162 start_sequence ();
1163
1164 /* Temporarily restore the lexical context where we will
1165 logically be inserting the fixup code. We do this for the
1166 sake of getting the debugging information right. */
1167
1168 pushlevel (0);
1169 set_block (f->context);
1170
1171 /* Expand the cleanups for blocks this jump exits. */
1172 if (f->cleanup_list_list)
1173 {
1174 tree lists;
1175 for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists))
1176 /* Marked elements correspond to blocks that have been closed.
1177 Do their cleanups. */
1178 if (TREE_ADDRESSABLE (lists)
1179 && TREE_VALUE (lists) != 0)
1180 {
1181 expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1);
1182 /* Pop any pushes done in the cleanups,
1183 in case function is about to return. */
1184 do_pending_stack_adjust ();
1185 }
1186 }
1187
1188 /* Restore stack level for the biggest contour that this
1189 jump jumps out of. */
1190 if (f->stack_level
1191 && ! (f->target_rtl == return_label
1192 && ((TREE_CODE (TREE_TYPE (current_function_decl))
1193 == FUNCTION_TYPE)
1194 && (TYPE_RETURNS_STACK_DEPRESSED
1195 (TREE_TYPE (current_function_decl))))))
1196 emit_stack_restore (SAVE_BLOCK, f->stack_level, f->before_jump);
1197
1198 /* Finish up the sequence containing the insns which implement the
1199 necessary cleanups, and then attach that whole sequence to the
1200 insn stream just ahead of the actual jump insn. Attaching it
1201 at that point insures that any cleanups which are in fact
1202 implicit C++ object destructions (which must be executed upon
1203 leaving the block) appear (to the debugger) to be taking place
1204 in an area of the generated code where the object(s) being
1205 destructed are still "in scope". */
1206
1207 cleanup_insns = get_insns ();
1208 poplevel (1, 0, 0);
1209
1210 end_sequence ();
1211 emit_insns_after (cleanup_insns, f->before_jump);
1212
1213 f->before_jump = 0;
1214 }
1215 }
1216
1217 /* For any still-undefined labels, do the cleanups for this block now.
1218 We must do this now since items in the cleanup list may go out
1219 of scope when the block ends. */
1220 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1221 if (f->before_jump != 0
1222 && PREV_INSN (f->target_rtl) == 0
1223 /* Label has still not appeared. If we are exiting a block with
1224 a stack level to restore, that started before the fixup,
1225 mark this stack level as needing restoration
1226 when the fixup is later finalized. */
1227 && thisblock != 0
1228 /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared, it
1229 means the label is undefined. That's erroneous, but possible. */
1230 && (thisblock->data.block.block_start_count
1231 <= f->block_start_count))
1232 {
1233 tree lists = f->cleanup_list_list;
1234 rtx cleanup_insns;
1235
1236 for (; lists; lists = TREE_CHAIN (lists))
1237 /* If the following elt. corresponds to our containing block
1238 then the elt. must be for this block. */
1239 if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups)
1240 {
1241 start_sequence ();
1242 pushlevel (0);
1243 set_block (f->context);
1244 expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1);
1245 do_pending_stack_adjust ();
1246 cleanup_insns = get_insns ();
1247 poplevel (1, 0, 0);
1248 end_sequence ();
1249 if (cleanup_insns != 0)
1250 f->before_jump
1251 = emit_insns_after (cleanup_insns, f->before_jump);
1252
1253 f->cleanup_list_list = TREE_CHAIN (lists);
1254 }
1255
1256 if (stack_level)
1257 f->stack_level = stack_level;
1258 }
1259 }
1260 \f
1261 /* Return the number of times character C occurs in string S. */
1262 static int
1263 n_occurrences (c, s)
1264 int c;
1265 const char *s;
1266 {
1267 int n = 0;
1268 while (*s)
1269 n += (*s++ == c);
1270 return n;
1271 }
1272 \f
1273 /* Generate RTL for an asm statement (explicit assembler code).
1274 BODY is a STRING_CST node containing the assembler code text,
1275 or an ADDR_EXPR containing a STRING_CST. */
1276
1277 void
1278 expand_asm (body)
1279 tree body;
1280 {
1281 if (current_function_check_memory_usage)
1282 {
1283 error ("`asm' cannot be used in function where memory usage is checked");
1284 return;
1285 }
1286
1287 if (TREE_CODE (body) == ADDR_EXPR)
1288 body = TREE_OPERAND (body, 0);
1289
1290 emit_insn (gen_rtx_ASM_INPUT (VOIDmode,
1291 TREE_STRING_POINTER (body)));
1292 last_expr_type = 0;
1293 }
1294
1295 /* Generate RTL for an asm statement with arguments.
1296 STRING is the instruction template.
1297 OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
1298 Each output or input has an expression in the TREE_VALUE and
1299 a constraint-string in the TREE_PURPOSE.
1300 CLOBBERS is a list of STRING_CST nodes each naming a hard register
1301 that is clobbered by this insn.
1302
1303 Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
1304 Some elements of OUTPUTS may be replaced with trees representing temporary
1305 values. The caller should copy those temporary values to the originally
1306 specified lvalues.
1307
1308 VOL nonzero means the insn is volatile; don't optimize it. */
1309
1310 void
1311 expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
1312 tree string, outputs, inputs, clobbers;
1313 int vol;
1314 const char *filename;
1315 int line;
1316 {
1317 rtvec argvec, constraints;
1318 rtx body;
1319 int ninputs = list_length (inputs);
1320 int noutputs = list_length (outputs);
1321 int ninout = 0;
1322 int nclobbers;
1323 tree tail;
1324 register int i;
1325 /* Vector of RTX's of evaluated output operands. */
1326 rtx *output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1327 int *inout_opnum = (int *) alloca (noutputs * sizeof (int));
1328 rtx *real_output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1329 enum machine_mode *inout_mode
1330 = (enum machine_mode *) alloca (noutputs * sizeof (enum machine_mode));
1331 /* The insn we have emitted. */
1332 rtx insn;
1333 int old_generating_concat_p = generating_concat_p;
1334
1335 /* An ASM with no outputs needs to be treated as volatile, for now. */
1336 if (noutputs == 0)
1337 vol = 1;
1338
1339 if (current_function_check_memory_usage)
1340 {
1341 error ("`asm' cannot be used with `-fcheck-memory-usage'");
1342 return;
1343 }
1344
1345 #ifdef MD_ASM_CLOBBERS
1346 /* Sometimes we wish to automatically clobber registers across an asm.
1347 Case in point is when the i386 backend moved from cc0 to a hard reg --
1348 maintaining source-level compatability means automatically clobbering
1349 the flags register. */
1350 MD_ASM_CLOBBERS (clobbers);
1351 #endif
1352
1353 if (current_function_check_memory_usage)
1354 {
1355 error ("`asm' cannot be used in function where memory usage is checked");
1356 return;
1357 }
1358
1359 /* Count the number of meaningful clobbered registers, ignoring what
1360 we would ignore later. */
1361 nclobbers = 0;
1362 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1363 {
1364 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1365
1366 i = decode_reg_name (regname);
1367 if (i >= 0 || i == -4)
1368 ++nclobbers;
1369 else if (i == -2)
1370 error ("unknown register name `%s' in `asm'", regname);
1371 }
1372
1373 last_expr_type = 0;
1374
1375 /* Check that the number of alternatives is constant across all
1376 operands. */
1377 if (outputs || inputs)
1378 {
1379 tree tmp = TREE_PURPOSE (outputs ? outputs : inputs);
1380 int nalternatives = n_occurrences (',', TREE_STRING_POINTER (tmp));
1381 tree next = inputs;
1382
1383 if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES)
1384 {
1385 error ("too many alternatives in `asm'");
1386 return;
1387 }
1388
1389 tmp = outputs;
1390 while (tmp)
1391 {
1392 const char *constraint = TREE_STRING_POINTER (TREE_PURPOSE (tmp));
1393
1394 if (n_occurrences (',', constraint) != nalternatives)
1395 {
1396 error ("operand constraints for `asm' differ in number of alternatives");
1397 return;
1398 }
1399
1400 if (TREE_CHAIN (tmp))
1401 tmp = TREE_CHAIN (tmp);
1402 else
1403 tmp = next, next = 0;
1404 }
1405 }
1406
1407 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1408 {
1409 tree val = TREE_VALUE (tail);
1410 tree type = TREE_TYPE (val);
1411 char *constraint;
1412 char *p;
1413 int c_len;
1414 int j;
1415 int is_inout = 0;
1416 int allows_reg = 0;
1417 int allows_mem = 0;
1418
1419 /* If there's an erroneous arg, emit no insn. */
1420 if (TREE_TYPE (val) == error_mark_node)
1421 return;
1422
1423 /* Make sure constraint has `=' and does not have `+'. Also, see
1424 if it allows any register. Be liberal on the latter test, since
1425 the worst that happens if we get it wrong is we issue an error
1426 message. */
1427
1428 c_len = strlen (TREE_STRING_POINTER (TREE_PURPOSE (tail)));
1429 constraint = TREE_STRING_POINTER (TREE_PURPOSE (tail));
1430
1431 /* Allow the `=' or `+' to not be at the beginning of the string,
1432 since it wasn't explicitly documented that way, and there is a
1433 large body of code that puts it last. Swap the character to
1434 the front, so as not to uglify any place else. */
1435 switch (c_len)
1436 {
1437 default:
1438 if ((p = strchr (constraint, '=')) != NULL)
1439 break;
1440 if ((p = strchr (constraint, '+')) != NULL)
1441 break;
1442 case 0:
1443 error ("output operand constraint lacks `='");
1444 return;
1445 }
1446
1447 if (p != constraint)
1448 {
1449 j = *p;
1450 bcopy (constraint, constraint+1, p-constraint);
1451 *constraint = j;
1452
1453 warning ("output constraint `%c' for operand %d is not at the beginning", j, i);
1454 }
1455
1456 is_inout = constraint[0] == '+';
1457 /* Replace '+' with '='. */
1458 constraint[0] = '=';
1459 /* Make sure we can specify the matching operand. */
1460 if (is_inout && i > 9)
1461 {
1462 error ("output operand constraint %d contains `+'", i);
1463 return;
1464 }
1465
1466 for (j = 1; j < c_len; j++)
1467 switch (constraint[j])
1468 {
1469 case '+':
1470 case '=':
1471 error ("operand constraint contains '+' or '=' at illegal position.");
1472 return;
1473
1474 case '%':
1475 if (i + 1 == ninputs + noutputs)
1476 {
1477 error ("`%%' constraint used with last operand");
1478 return;
1479 }
1480 break;
1481
1482 case '?': case '!': case '*': case '&':
1483 case 'E': case 'F': case 'G': case 'H':
1484 case 's': case 'i': case 'n':
1485 case 'I': case 'J': case 'K': case 'L': case 'M':
1486 case 'N': case 'O': case 'P': case ',':
1487 break;
1488
1489 case '0': case '1': case '2': case '3': case '4':
1490 case '5': case '6': case '7': case '8': case '9':
1491 error ("matching constraint not valid in output operand");
1492 break;
1493
1494 case 'V': case 'm': case 'o':
1495 allows_mem = 1;
1496 break;
1497
1498 case '<': case '>':
1499 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1500 excepting those that expand_call created. So match memory
1501 and hope. */
1502 allows_mem = 1;
1503 break;
1504
1505 case 'g': case 'X':
1506 allows_reg = 1;
1507 allows_mem = 1;
1508 break;
1509
1510 case 'p': case 'r':
1511 allows_reg = 1;
1512 break;
1513
1514 default:
1515 if (! ISALPHA (constraint[j]))
1516 {
1517 error ("invalid punctuation `%c' in constraint",
1518 constraint[j]);
1519 return;
1520 }
1521 if (REG_CLASS_FROM_LETTER (constraint[j]) != NO_REGS)
1522 allows_reg = 1;
1523 #ifdef EXTRA_CONSTRAINT
1524 else
1525 {
1526 /* Otherwise we can't assume anything about the nature of
1527 the constraint except that it isn't purely registers.
1528 Treat it like "g" and hope for the best. */
1529 allows_reg = 1;
1530 allows_mem = 1;
1531 }
1532 #endif
1533 break;
1534 }
1535
1536 /* If an output operand is not a decl or indirect ref and our constraint
1537 allows a register, make a temporary to act as an intermediate.
1538 Make the asm insn write into that, then our caller will copy it to
1539 the real output operand. Likewise for promoted variables. */
1540
1541 generating_concat_p = 0;
1542
1543 real_output_rtx[i] = NULL_RTX;
1544 if ((TREE_CODE (val) == INDIRECT_REF
1545 && allows_mem)
1546 || (DECL_P (val)
1547 && (allows_mem || GET_CODE (DECL_RTL (val)) == REG)
1548 && ! (GET_CODE (DECL_RTL (val)) == REG
1549 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type)))
1550 || ! allows_reg
1551 || is_inout)
1552 {
1553 if (! allows_reg)
1554 mark_addressable (TREE_VALUE (tail));
1555
1556 output_rtx[i]
1557 = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode,
1558 EXPAND_MEMORY_USE_WO);
1559
1560 if (! allows_reg && GET_CODE (output_rtx[i]) != MEM)
1561 error ("output number %d not directly addressable", i);
1562 if ((! allows_mem && GET_CODE (output_rtx[i]) == MEM)
1563 || GET_CODE (output_rtx[i]) == CONCAT)
1564 {
1565 real_output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1566 output_rtx[i] = gen_reg_rtx (GET_MODE (output_rtx[i]));
1567 if (is_inout)
1568 emit_move_insn (output_rtx[i], real_output_rtx[i]);
1569 }
1570 }
1571 else
1572 {
1573 output_rtx[i] = assign_temp (type, 0, 0, 1);
1574 TREE_VALUE (tail) = make_tree (type, output_rtx[i]);
1575 }
1576
1577 generating_concat_p = old_generating_concat_p;
1578
1579 if (is_inout)
1580 {
1581 inout_mode[ninout] = TYPE_MODE (TREE_TYPE (TREE_VALUE (tail)));
1582 inout_opnum[ninout++] = i;
1583 }
1584 }
1585
1586 ninputs += ninout;
1587 if (ninputs + noutputs > MAX_RECOG_OPERANDS)
1588 {
1589 error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS);
1590 return;
1591 }
1592
1593 /* Make vectors for the expression-rtx and constraint strings. */
1594
1595 argvec = rtvec_alloc (ninputs);
1596 constraints = rtvec_alloc (ninputs);
1597
1598 body = gen_rtx_ASM_OPERANDS ((noutputs == 0 ? VOIDmode
1599 : GET_MODE (output_rtx[0])),
1600 TREE_STRING_POINTER (string),
1601 empty_string, 0, argvec, constraints,
1602 filename, line);
1603
1604 MEM_VOLATILE_P (body) = vol;
1605
1606 /* Eval the inputs and put them into ARGVEC.
1607 Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
1608
1609 i = 0;
1610 for (tail = inputs; tail; tail = TREE_CHAIN (tail))
1611 {
1612 int j;
1613 int allows_reg = 0, allows_mem = 0;
1614 char *constraint, *orig_constraint;
1615 int c_len;
1616 rtx op;
1617
1618 /* If there's an erroneous arg, emit no insn,
1619 because the ASM_INPUT would get VOIDmode
1620 and that could cause a crash in reload. */
1621 if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
1622 return;
1623
1624 /* ??? Can this happen, and does the error message make any sense? */
1625 if (TREE_PURPOSE (tail) == NULL_TREE)
1626 {
1627 error ("hard register `%s' listed as input operand to `asm'",
1628 TREE_STRING_POINTER (TREE_VALUE (tail)) );
1629 return;
1630 }
1631
1632 c_len = strlen (TREE_STRING_POINTER (TREE_PURPOSE (tail)));
1633 constraint = TREE_STRING_POINTER (TREE_PURPOSE (tail));
1634 orig_constraint = constraint;
1635
1636 /* Make sure constraint has neither `=', `+', nor '&'. */
1637
1638 for (j = 0; j < c_len; j++)
1639 switch (constraint[j])
1640 {
1641 case '+': case '=': case '&':
1642 if (constraint == orig_constraint)
1643 {
1644 error ("input operand constraint contains `%c'",
1645 constraint[j]);
1646 return;
1647 }
1648 break;
1649
1650 case '%':
1651 if (constraint == orig_constraint
1652 && i + 1 == ninputs - ninout)
1653 {
1654 error ("`%%' constraint used with last operand");
1655 return;
1656 }
1657 break;
1658
1659 case 'V': case 'm': case 'o':
1660 allows_mem = 1;
1661 break;
1662
1663 case '<': case '>':
1664 case '?': case '!': case '*':
1665 case 'E': case 'F': case 'G': case 'H':
1666 case 's': case 'i': case 'n':
1667 case 'I': case 'J': case 'K': case 'L': case 'M':
1668 case 'N': case 'O': case 'P': case ',':
1669 break;
1670
1671 /* Whether or not a numeric constraint allows a register is
1672 decided by the matching constraint, and so there is no need
1673 to do anything special with them. We must handle them in
1674 the default case, so that we don't unnecessarily force
1675 operands to memory. */
1676 case '0': case '1': case '2': case '3': case '4':
1677 case '5': case '6': case '7': case '8': case '9':
1678 if (constraint[j] >= '0' + noutputs)
1679 {
1680 error
1681 ("matching constraint references invalid operand number");
1682 return;
1683 }
1684
1685 /* Try and find the real constraint for this dup. */
1686 if ((j == 0 && c_len == 1)
1687 || (j == 1 && c_len == 2 && constraint[0] == '%'))
1688 {
1689 tree o = outputs;
1690
1691 for (j = constraint[j] - '0'; j > 0; --j)
1692 o = TREE_CHAIN (o);
1693
1694 c_len = strlen (TREE_STRING_POINTER (TREE_PURPOSE (o)));
1695 constraint = TREE_STRING_POINTER (TREE_PURPOSE (o));
1696 j = 0;
1697 break;
1698 }
1699
1700 /* Fall through. */
1701
1702 case 'p': case 'r':
1703 allows_reg = 1;
1704 break;
1705
1706 case 'g': case 'X':
1707 allows_reg = 1;
1708 allows_mem = 1;
1709 break;
1710
1711 default:
1712 if (! ISALPHA (constraint[j]))
1713 {
1714 error ("invalid punctuation `%c' in constraint",
1715 constraint[j]);
1716 return;
1717 }
1718 if (REG_CLASS_FROM_LETTER (constraint[j]) != NO_REGS)
1719 allows_reg = 1;
1720 #ifdef EXTRA_CONSTRAINT
1721 else
1722 {
1723 /* Otherwise we can't assume anything about the nature of
1724 the constraint except that it isn't purely registers.
1725 Treat it like "g" and hope for the best. */
1726 allows_reg = 1;
1727 allows_mem = 1;
1728 }
1729 #endif
1730 break;
1731 }
1732
1733 if (! allows_reg && allows_mem)
1734 mark_addressable (TREE_VALUE (tail));
1735
1736 op = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, 0);
1737
1738 /* Never pass a CONCAT to an ASM. */
1739 generating_concat_p = 0;
1740 if (GET_CODE (op) == CONCAT)
1741 op = force_reg (GET_MODE (op), op);
1742
1743 if (asm_operand_ok (op, constraint) <= 0)
1744 {
1745 if (allows_reg)
1746 op = force_reg (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))), op);
1747 else if (!allows_mem)
1748 warning ("asm operand %d probably doesn't match constraints", i);
1749 else if (CONSTANT_P (op))
1750 op = force_const_mem (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
1751 op);
1752 else if (GET_CODE (op) == REG
1753 || GET_CODE (op) == SUBREG
1754 || GET_CODE (op) == CONCAT)
1755 {
1756 tree type = TREE_TYPE (TREE_VALUE (tail));
1757 rtx memloc = assign_temp (type, 1, 1, 1);
1758
1759 emit_move_insn (memloc, op);
1760 op = memloc;
1761 }
1762
1763 else if (GET_CODE (op) == MEM && MEM_VOLATILE_P (op))
1764 /* We won't recognize volatile memory as available a
1765 memory_operand at this point. Ignore it. */
1766 ;
1767 else if (queued_subexp_p (op))
1768 ;
1769 else
1770 /* ??? Leave this only until we have experience with what
1771 happens in combine and elsewhere when constraints are
1772 not satisfied. */
1773 warning ("asm operand %d probably doesn't match constraints", i);
1774 }
1775 generating_concat_p = old_generating_concat_p;
1776 ASM_OPERANDS_INPUT (body, i) = op;
1777
1778 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, i)
1779 = gen_rtx_ASM_INPUT (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
1780 orig_constraint);
1781 i++;
1782 }
1783
1784 /* Protect all the operands from the queue now that they have all been
1785 evaluated. */
1786
1787 generating_concat_p = 0;
1788
1789 for (i = 0; i < ninputs - ninout; i++)
1790 ASM_OPERANDS_INPUT (body, i)
1791 = protect_from_queue (ASM_OPERANDS_INPUT (body, i), 0);
1792
1793 for (i = 0; i < noutputs; i++)
1794 output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1795
1796 /* For in-out operands, copy output rtx to input rtx. */
1797 for (i = 0; i < ninout; i++)
1798 {
1799 int j = inout_opnum[i];
1800
1801 ASM_OPERANDS_INPUT (body, ninputs - ninout + i)
1802 = output_rtx[j];
1803 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, ninputs - ninout + i)
1804 = gen_rtx_ASM_INPUT (inout_mode[i], digit_strings[j]);
1805 }
1806
1807 generating_concat_p = old_generating_concat_p;
1808
1809 /* Now, for each output, construct an rtx
1810 (set OUTPUT (asm_operands INSN OUTPUTNUMBER OUTPUTCONSTRAINT
1811 ARGVEC CONSTRAINTS))
1812 If there is more than one, put them inside a PARALLEL. */
1813
1814 if (noutputs == 1 && nclobbers == 0)
1815 {
1816 ASM_OPERANDS_OUTPUT_CONSTRAINT (body)
1817 = TREE_STRING_POINTER (TREE_PURPOSE (outputs));
1818 insn = emit_insn (gen_rtx_SET (VOIDmode, output_rtx[0], body));
1819 }
1820
1821 else if (noutputs == 0 && nclobbers == 0)
1822 {
1823 /* No output operands: put in a raw ASM_OPERANDS rtx. */
1824 insn = emit_insn (body);
1825 }
1826
1827 else
1828 {
1829 rtx obody = body;
1830 int num = noutputs;
1831
1832 if (num == 0)
1833 num = 1;
1834
1835 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num + nclobbers));
1836
1837 /* For each output operand, store a SET. */
1838 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1839 {
1840 XVECEXP (body, 0, i)
1841 = gen_rtx_SET (VOIDmode,
1842 output_rtx[i],
1843 gen_rtx_ASM_OPERANDS
1844 (GET_MODE (output_rtx[i]),
1845 TREE_STRING_POINTER (string),
1846 TREE_STRING_POINTER (TREE_PURPOSE (tail)),
1847 i, argvec, constraints,
1848 filename, line));
1849
1850 MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
1851 }
1852
1853 /* If there are no outputs (but there are some clobbers)
1854 store the bare ASM_OPERANDS into the PARALLEL. */
1855
1856 if (i == 0)
1857 XVECEXP (body, 0, i++) = obody;
1858
1859 /* Store (clobber REG) for each clobbered register specified. */
1860
1861 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1862 {
1863 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1864 int j = decode_reg_name (regname);
1865
1866 if (j < 0)
1867 {
1868 if (j == -3) /* `cc', which is not a register */
1869 continue;
1870
1871 if (j == -4) /* `memory', don't cache memory across asm */
1872 {
1873 XVECEXP (body, 0, i++)
1874 = gen_rtx_CLOBBER (VOIDmode,
1875 gen_rtx_MEM
1876 (BLKmode,
1877 gen_rtx_SCRATCH (VOIDmode)));
1878 continue;
1879 }
1880
1881 /* Ignore unknown register, error already signaled. */
1882 continue;
1883 }
1884
1885 /* Use QImode since that's guaranteed to clobber just one reg. */
1886 XVECEXP (body, 0, i++)
1887 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (QImode, j));
1888 }
1889
1890 insn = emit_insn (body);
1891 }
1892
1893 /* For any outputs that needed reloading into registers, spill them
1894 back to where they belong. */
1895 for (i = 0; i < noutputs; ++i)
1896 if (real_output_rtx[i])
1897 emit_move_insn (real_output_rtx[i], output_rtx[i]);
1898
1899 free_temp_slots ();
1900 }
1901 \f
1902 /* Generate RTL to evaluate the expression EXP
1903 and remember it in case this is the VALUE in a ({... VALUE; }) constr. */
1904
1905 void
1906 expand_expr_stmt (exp)
1907 tree exp;
1908 {
1909 /* If -W, warn about statements with no side effects,
1910 except for an explicit cast to void (e.g. for assert()), and
1911 except inside a ({...}) where they may be useful. */
1912 if (expr_stmts_for_value == 0 && exp != error_mark_node)
1913 {
1914 if (! TREE_SIDE_EFFECTS (exp)
1915 && (extra_warnings || warn_unused_value)
1916 && !(TREE_CODE (exp) == CONVERT_EXPR
1917 && VOID_TYPE_P (TREE_TYPE (exp))))
1918 warning_with_file_and_line (emit_filename, emit_lineno,
1919 "statement with no effect");
1920 else if (warn_unused_value)
1921 warn_if_unused_value (exp);
1922 }
1923
1924 /* If EXP is of function type and we are expanding statements for
1925 value, convert it to pointer-to-function. */
1926 if (expr_stmts_for_value && TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE)
1927 exp = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (exp)), exp);
1928
1929 last_expr_type = TREE_TYPE (exp);
1930 last_expr_value = expand_expr (exp,
1931 (expr_stmts_for_value
1932 ? NULL_RTX : const0_rtx),
1933 VOIDmode, 0);
1934
1935 /* If all we do is reference a volatile value in memory,
1936 copy it to a register to be sure it is actually touched. */
1937 if (last_expr_value != 0 && GET_CODE (last_expr_value) == MEM
1938 && TREE_THIS_VOLATILE (exp))
1939 {
1940 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode)
1941 ;
1942 else if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
1943 copy_to_reg (last_expr_value);
1944 else
1945 {
1946 rtx lab = gen_label_rtx ();
1947
1948 /* Compare the value with itself to reference it. */
1949 emit_cmp_and_jump_insns (last_expr_value, last_expr_value, EQ,
1950 expand_expr (TYPE_SIZE (last_expr_type),
1951 NULL_RTX, VOIDmode, 0),
1952 BLKmode, 0,
1953 TYPE_ALIGN (last_expr_type) / BITS_PER_UNIT,
1954 lab);
1955 emit_label (lab);
1956 }
1957 }
1958
1959 /* If this expression is part of a ({...}) and is in memory, we may have
1960 to preserve temporaries. */
1961 preserve_temp_slots (last_expr_value);
1962
1963 /* Free any temporaries used to evaluate this expression. Any temporary
1964 used as a result of this expression will already have been preserved
1965 above. */
1966 free_temp_slots ();
1967
1968 emit_queue ();
1969 }
1970
1971 /* Warn if EXP contains any computations whose results are not used.
1972 Return 1 if a warning is printed; 0 otherwise. */
1973
1974 int
1975 warn_if_unused_value (exp)
1976 tree exp;
1977 {
1978 if (TREE_USED (exp))
1979 return 0;
1980
1981 switch (TREE_CODE (exp))
1982 {
1983 case PREINCREMENT_EXPR:
1984 case POSTINCREMENT_EXPR:
1985 case PREDECREMENT_EXPR:
1986 case POSTDECREMENT_EXPR:
1987 case MODIFY_EXPR:
1988 case INIT_EXPR:
1989 case TARGET_EXPR:
1990 case CALL_EXPR:
1991 case METHOD_CALL_EXPR:
1992 case RTL_EXPR:
1993 case TRY_CATCH_EXPR:
1994 case WITH_CLEANUP_EXPR:
1995 case EXIT_EXPR:
1996 /* We don't warn about COND_EXPR because it may be a useful
1997 construct if either arm contains a side effect. */
1998 case COND_EXPR:
1999 return 0;
2000
2001 case BIND_EXPR:
2002 /* For a binding, warn if no side effect within it. */
2003 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2004
2005 case SAVE_EXPR:
2006 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2007
2008 case TRUTH_ORIF_EXPR:
2009 case TRUTH_ANDIF_EXPR:
2010 /* In && or ||, warn if 2nd operand has no side effect. */
2011 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2012
2013 case COMPOUND_EXPR:
2014 if (TREE_NO_UNUSED_WARNING (exp))
2015 return 0;
2016 if (warn_if_unused_value (TREE_OPERAND (exp, 0)))
2017 return 1;
2018 /* Let people do `(foo (), 0)' without a warning. */
2019 if (TREE_CONSTANT (TREE_OPERAND (exp, 1)))
2020 return 0;
2021 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2022
2023 case NOP_EXPR:
2024 case CONVERT_EXPR:
2025 case NON_LVALUE_EXPR:
2026 /* Don't warn about values cast to void. */
2027 if (VOID_TYPE_P (TREE_TYPE (exp)))
2028 return 0;
2029 /* Don't warn about conversions not explicit in the user's program. */
2030 if (TREE_NO_UNUSED_WARNING (exp))
2031 return 0;
2032 /* Assignment to a cast usually results in a cast of a modify.
2033 Don't complain about that. There can be an arbitrary number of
2034 casts before the modify, so we must loop until we find the first
2035 non-cast expression and then test to see if that is a modify. */
2036 {
2037 tree tem = TREE_OPERAND (exp, 0);
2038
2039 while (TREE_CODE (tem) == CONVERT_EXPR || TREE_CODE (tem) == NOP_EXPR)
2040 tem = TREE_OPERAND (tem, 0);
2041
2042 if (TREE_CODE (tem) == MODIFY_EXPR || TREE_CODE (tem) == INIT_EXPR
2043 || TREE_CODE (tem) == CALL_EXPR)
2044 return 0;
2045 }
2046 goto warn;
2047
2048 case INDIRECT_REF:
2049 /* Don't warn about automatic dereferencing of references, since
2050 the user cannot control it. */
2051 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == REFERENCE_TYPE)
2052 return warn_if_unused_value (TREE_OPERAND (exp, 0));
2053 /* Fall through. */
2054
2055 default:
2056 /* Referencing a volatile value is a side effect, so don't warn. */
2057 if ((DECL_P (exp)
2058 || TREE_CODE_CLASS (TREE_CODE (exp)) == 'r')
2059 && TREE_THIS_VOLATILE (exp))
2060 return 0;
2061
2062 /* If this is an expression which has no operands, there is no value
2063 to be unused. There are no such language-independent codes,
2064 but front ends may define such. */
2065 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'e'
2066 && TREE_CODE_LENGTH (TREE_CODE (exp)) == 0)
2067 return 0;
2068
2069 warn:
2070 warning_with_file_and_line (emit_filename, emit_lineno,
2071 "value computed is not used");
2072 return 1;
2073 }
2074 }
2075
2076 /* Clear out the memory of the last expression evaluated. */
2077
2078 void
2079 clear_last_expr ()
2080 {
2081 last_expr_type = 0;
2082 }
2083
2084 /* Begin a statement which will return a value.
2085 Return the RTL_EXPR for this statement expr.
2086 The caller must save that value and pass it to expand_end_stmt_expr. */
2087
2088 tree
2089 expand_start_stmt_expr ()
2090 {
2091 int momentary;
2092 tree t;
2093
2094 /* Make the RTL_EXPR node temporary, not momentary,
2095 so that rtl_expr_chain doesn't become garbage. */
2096 momentary = suspend_momentary ();
2097 t = make_node (RTL_EXPR);
2098 resume_momentary (momentary);
2099 do_pending_stack_adjust ();
2100 start_sequence_for_rtl_expr (t);
2101 NO_DEFER_POP;
2102 expr_stmts_for_value++;
2103 return t;
2104 }
2105
2106 /* Restore the previous state at the end of a statement that returns a value.
2107 Returns a tree node representing the statement's value and the
2108 insns to compute the value.
2109
2110 The nodes of that expression have been freed by now, so we cannot use them.
2111 But we don't want to do that anyway; the expression has already been
2112 evaluated and now we just want to use the value. So generate a RTL_EXPR
2113 with the proper type and RTL value.
2114
2115 If the last substatement was not an expression,
2116 return something with type `void'. */
2117
2118 tree
2119 expand_end_stmt_expr (t)
2120 tree t;
2121 {
2122 OK_DEFER_POP;
2123
2124 if (last_expr_type == 0)
2125 {
2126 last_expr_type = void_type_node;
2127 last_expr_value = const0_rtx;
2128 }
2129 else if (last_expr_value == 0)
2130 /* There are some cases where this can happen, such as when the
2131 statement is void type. */
2132 last_expr_value = const0_rtx;
2133 else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value))
2134 /* Remove any possible QUEUED. */
2135 last_expr_value = protect_from_queue (last_expr_value, 0);
2136
2137 emit_queue ();
2138
2139 TREE_TYPE (t) = last_expr_type;
2140 RTL_EXPR_RTL (t) = last_expr_value;
2141 RTL_EXPR_SEQUENCE (t) = get_insns ();
2142
2143 rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain);
2144
2145 end_sequence ();
2146
2147 /* Don't consider deleting this expr or containing exprs at tree level. */
2148 TREE_SIDE_EFFECTS (t) = 1;
2149 /* Propagate volatility of the actual RTL expr. */
2150 TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value);
2151
2152 last_expr_type = 0;
2153 expr_stmts_for_value--;
2154
2155 return t;
2156 }
2157 \f
2158 /* Generate RTL for the start of an if-then. COND is the expression
2159 whose truth should be tested.
2160
2161 If EXITFLAG is nonzero, this conditional is visible to
2162 `exit_something'. */
2163
2164 void
2165 expand_start_cond (cond, exitflag)
2166 tree cond;
2167 int exitflag;
2168 {
2169 struct nesting *thiscond = ALLOC_NESTING ();
2170
2171 /* Make an entry on cond_stack for the cond we are entering. */
2172
2173 thiscond->next = cond_stack;
2174 thiscond->all = nesting_stack;
2175 thiscond->depth = ++nesting_depth;
2176 thiscond->data.cond.next_label = gen_label_rtx ();
2177 /* Before we encounter an `else', we don't need a separate exit label
2178 unless there are supposed to be exit statements
2179 to exit this conditional. */
2180 thiscond->exit_label = exitflag ? gen_label_rtx () : 0;
2181 thiscond->data.cond.endif_label = thiscond->exit_label;
2182 cond_stack = thiscond;
2183 nesting_stack = thiscond;
2184
2185 do_jump (cond, thiscond->data.cond.next_label, NULL_RTX);
2186 }
2187
2188 /* Generate RTL between then-clause and the elseif-clause
2189 of an if-then-elseif-.... */
2190
2191 void
2192 expand_start_elseif (cond)
2193 tree cond;
2194 {
2195 if (cond_stack->data.cond.endif_label == 0)
2196 cond_stack->data.cond.endif_label = gen_label_rtx ();
2197 emit_jump (cond_stack->data.cond.endif_label);
2198 emit_label (cond_stack->data.cond.next_label);
2199 cond_stack->data.cond.next_label = gen_label_rtx ();
2200 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2201 }
2202
2203 /* Generate RTL between the then-clause and the else-clause
2204 of an if-then-else. */
2205
2206 void
2207 expand_start_else ()
2208 {
2209 if (cond_stack->data.cond.endif_label == 0)
2210 cond_stack->data.cond.endif_label = gen_label_rtx ();
2211
2212 emit_jump (cond_stack->data.cond.endif_label);
2213 emit_label (cond_stack->data.cond.next_label);
2214 cond_stack->data.cond.next_label = 0; /* No more _else or _elseif calls. */
2215 }
2216
2217 /* After calling expand_start_else, turn this "else" into an "else if"
2218 by providing another condition. */
2219
2220 void
2221 expand_elseif (cond)
2222 tree cond;
2223 {
2224 cond_stack->data.cond.next_label = gen_label_rtx ();
2225 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2226 }
2227
2228 /* Generate RTL for the end of an if-then.
2229 Pop the record for it off of cond_stack. */
2230
2231 void
2232 expand_end_cond ()
2233 {
2234 struct nesting *thiscond = cond_stack;
2235
2236 do_pending_stack_adjust ();
2237 if (thiscond->data.cond.next_label)
2238 emit_label (thiscond->data.cond.next_label);
2239 if (thiscond->data.cond.endif_label)
2240 emit_label (thiscond->data.cond.endif_label);
2241
2242 POPSTACK (cond_stack);
2243 last_expr_type = 0;
2244 }
2245 \f
2246 /* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this
2247 loop should be exited by `exit_something'. This is a loop for which
2248 `expand_continue' will jump to the top of the loop.
2249
2250 Make an entry on loop_stack to record the labels associated with
2251 this loop. */
2252
2253 struct nesting *
2254 expand_start_loop (exit_flag)
2255 int exit_flag;
2256 {
2257 register struct nesting *thisloop = ALLOC_NESTING ();
2258
2259 /* Make an entry on loop_stack for the loop we are entering. */
2260
2261 thisloop->next = loop_stack;
2262 thisloop->all = nesting_stack;
2263 thisloop->depth = ++nesting_depth;
2264 thisloop->data.loop.start_label = gen_label_rtx ();
2265 thisloop->data.loop.end_label = gen_label_rtx ();
2266 thisloop->data.loop.alt_end_label = 0;
2267 thisloop->data.loop.continue_label = thisloop->data.loop.start_label;
2268 thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0;
2269 loop_stack = thisloop;
2270 nesting_stack = thisloop;
2271
2272 do_pending_stack_adjust ();
2273 emit_queue ();
2274 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
2275 emit_label (thisloop->data.loop.start_label);
2276
2277 return thisloop;
2278 }
2279
2280 /* Like expand_start_loop but for a loop where the continuation point
2281 (for expand_continue_loop) will be specified explicitly. */
2282
2283 struct nesting *
2284 expand_start_loop_continue_elsewhere (exit_flag)
2285 int exit_flag;
2286 {
2287 struct nesting *thisloop = expand_start_loop (exit_flag);
2288 loop_stack->data.loop.continue_label = gen_label_rtx ();
2289 return thisloop;
2290 }
2291
2292 /* Specify the continuation point for a loop started with
2293 expand_start_loop_continue_elsewhere.
2294 Use this at the point in the code to which a continue statement
2295 should jump. */
2296
2297 void
2298 expand_loop_continue_here ()
2299 {
2300 do_pending_stack_adjust ();
2301 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
2302 emit_label (loop_stack->data.loop.continue_label);
2303 }
2304
2305 /* Finish a loop. Generate a jump back to the top and the loop-exit label.
2306 Pop the block off of loop_stack. */
2307
2308 void
2309 expand_end_loop ()
2310 {
2311 rtx start_label = loop_stack->data.loop.start_label;
2312 rtx insn = get_last_insn ();
2313 int needs_end_jump = 1;
2314
2315 /* Mark the continue-point at the top of the loop if none elsewhere. */
2316 if (start_label == loop_stack->data.loop.continue_label)
2317 emit_note_before (NOTE_INSN_LOOP_CONT, start_label);
2318
2319 do_pending_stack_adjust ();
2320
2321 /* If optimizing, perhaps reorder the loop.
2322 First, try to use a condjump near the end.
2323 expand_exit_loop_if_false ends loops with unconditional jumps,
2324 like this:
2325
2326 if (test) goto label;
2327 optional: cleanup
2328 goto loop_stack->data.loop.end_label
2329 barrier
2330 label:
2331
2332 If we find such a pattern, we can end the loop earlier. */
2333
2334 if (optimize
2335 && GET_CODE (insn) == CODE_LABEL
2336 && LABEL_NAME (insn) == NULL
2337 && GET_CODE (PREV_INSN (insn)) == BARRIER)
2338 {
2339 rtx label = insn;
2340 rtx jump = PREV_INSN (PREV_INSN (label));
2341
2342 if (GET_CODE (jump) == JUMP_INSN
2343 && GET_CODE (PATTERN (jump)) == SET
2344 && SET_DEST (PATTERN (jump)) == pc_rtx
2345 && GET_CODE (SET_SRC (PATTERN (jump))) == LABEL_REF
2346 && (XEXP (SET_SRC (PATTERN (jump)), 0)
2347 == loop_stack->data.loop.end_label))
2348 {
2349 rtx prev;
2350
2351 /* The test might be complex and reference LABEL multiple times,
2352 like the loop in loop_iterations to set vtop. To handle this,
2353 we move LABEL. */
2354 insn = PREV_INSN (label);
2355 reorder_insns (label, label, start_label);
2356
2357 for (prev = PREV_INSN (jump);; prev = PREV_INSN (prev))
2358 {
2359 /* We ignore line number notes, but if we see any other note,
2360 in particular NOTE_INSN_BLOCK_*, NOTE_INSN_EH_REGION_*,
2361 NOTE_INSN_LOOP_*, we disable this optimization. */
2362 if (GET_CODE (prev) == NOTE)
2363 {
2364 if (NOTE_LINE_NUMBER (prev) < 0)
2365 break;
2366 continue;
2367 }
2368 if (GET_CODE (prev) == CODE_LABEL)
2369 break;
2370 if (GET_CODE (prev) == JUMP_INSN)
2371 {
2372 if (GET_CODE (PATTERN (prev)) == SET
2373 && SET_DEST (PATTERN (prev)) == pc_rtx
2374 && GET_CODE (SET_SRC (PATTERN (prev))) == IF_THEN_ELSE
2375 && (GET_CODE (XEXP (SET_SRC (PATTERN (prev)), 1))
2376 == LABEL_REF)
2377 && XEXP (XEXP (SET_SRC (PATTERN (prev)), 1), 0) == label)
2378 {
2379 XEXP (XEXP (SET_SRC (PATTERN (prev)), 1), 0)
2380 = start_label;
2381 emit_note_after (NOTE_INSN_LOOP_END, prev);
2382 needs_end_jump = 0;
2383 }
2384 break;
2385 }
2386 }
2387 }
2388 }
2389
2390 /* If the loop starts with a loop exit, roll that to the end where
2391 it will optimize together with the jump back.
2392
2393 We look for the conditional branch to the exit, except that once
2394 we find such a branch, we don't look past 30 instructions.
2395
2396 In more detail, if the loop presently looks like this (in pseudo-C):
2397
2398 start_label:
2399 if (test) goto end_label;
2400 body;
2401 goto start_label;
2402 end_label:
2403
2404 transform it to look like:
2405
2406 goto start_label;
2407 newstart_label:
2408 body;
2409 start_label:
2410 if (test) goto end_label;
2411 goto newstart_label;
2412 end_label:
2413
2414 Here, the `test' may actually consist of some reasonably complex
2415 code, terminating in a test. */
2416
2417 if (optimize
2418 && needs_end_jump
2419 &&
2420 ! (GET_CODE (insn) == JUMP_INSN
2421 && GET_CODE (PATTERN (insn)) == SET
2422 && SET_DEST (PATTERN (insn)) == pc_rtx
2423 && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE))
2424 {
2425 int eh_regions = 0;
2426 int num_insns = 0;
2427 rtx last_test_insn = NULL_RTX;
2428
2429 /* Scan insns from the top of the loop looking for a qualified
2430 conditional exit. */
2431 for (insn = NEXT_INSN (loop_stack->data.loop.start_label); insn;
2432 insn = NEXT_INSN (insn))
2433 {
2434 if (GET_CODE (insn) == NOTE)
2435 {
2436 if (optimize < 2
2437 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2438 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2439 /* The code that actually moves the exit test will
2440 carefully leave BLOCK notes in their original
2441 location. That means, however, that we can't debug
2442 the exit test itself. So, we refuse to move code
2443 containing BLOCK notes at low optimization levels. */
2444 break;
2445
2446 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2447 ++eh_regions;
2448 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
2449 {
2450 --eh_regions;
2451 if (eh_regions < 0)
2452 /* We've come to the end of an EH region, but
2453 never saw the beginning of that region. That
2454 means that an EH region begins before the top
2455 of the loop, and ends in the middle of it. The
2456 existence of such a situation violates a basic
2457 assumption in this code, since that would imply
2458 that even when EH_REGIONS is zero, we might
2459 move code out of an exception region. */
2460 abort ();
2461 }
2462
2463 /* We must not walk into a nested loop. */
2464 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2465 break;
2466
2467 /* We already know this INSN is a NOTE, so there's no
2468 point in looking at it to see if it's a JUMP. */
2469 continue;
2470 }
2471
2472 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN)
2473 num_insns++;
2474
2475 if (last_test_insn && num_insns > 30)
2476 break;
2477
2478 if (eh_regions > 0)
2479 /* We don't want to move a partial EH region. Consider:
2480
2481 while ( ( { try {
2482 if (cond ()) 0;
2483 else {
2484 bar();
2485 1;
2486 }
2487 } catch (...) {
2488 1;
2489 } )) {
2490 body;
2491 }
2492
2493 This isn't legal C++, but here's what it's supposed to
2494 mean: if cond() is true, stop looping. Otherwise,
2495 call bar, and keep looping. In addition, if cond
2496 throws an exception, catch it and keep looping. Such
2497 constructs are certainy legal in LISP.
2498
2499 We should not move the `if (cond()) 0' test since then
2500 the EH-region for the try-block would be broken up.
2501 (In this case we would the EH_BEG note for the `try'
2502 and `if cond()' but not the call to bar() or the
2503 EH_END note.)
2504
2505 So we don't look for tests within an EH region. */
2506 continue;
2507
2508 if (GET_CODE (insn) == JUMP_INSN
2509 && GET_CODE (PATTERN (insn)) == SET
2510 && SET_DEST (PATTERN (insn)) == pc_rtx)
2511 {
2512 /* This is indeed a jump. */
2513 rtx dest1 = NULL_RTX;
2514 rtx dest2 = NULL_RTX;
2515 rtx potential_last_test;
2516 if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2517 {
2518 /* A conditional jump. */
2519 dest1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2520 dest2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2521 potential_last_test = insn;
2522 }
2523 else
2524 {
2525 /* An unconditional jump. */
2526 dest1 = SET_SRC (PATTERN (insn));
2527 /* Include the BARRIER after the JUMP. */
2528 potential_last_test = NEXT_INSN (insn);
2529 }
2530
2531 do {
2532 if (dest1 && GET_CODE (dest1) == LABEL_REF
2533 && ((XEXP (dest1, 0)
2534 == loop_stack->data.loop.alt_end_label)
2535 || (XEXP (dest1, 0)
2536 == loop_stack->data.loop.end_label)))
2537 {
2538 last_test_insn = potential_last_test;
2539 break;
2540 }
2541
2542 /* If this was a conditional jump, there may be
2543 another label at which we should look. */
2544 dest1 = dest2;
2545 dest2 = NULL_RTX;
2546 } while (dest1);
2547 }
2548 }
2549
2550 if (last_test_insn != 0 && last_test_insn != get_last_insn ())
2551 {
2552 /* We found one. Move everything from there up
2553 to the end of the loop, and add a jump into the loop
2554 to jump to there. */
2555 register rtx newstart_label = gen_label_rtx ();
2556 register rtx start_move = start_label;
2557 rtx next_insn;
2558
2559 /* If the start label is preceded by a NOTE_INSN_LOOP_CONT note,
2560 then we want to move this note also. */
2561 if (GET_CODE (PREV_INSN (start_move)) == NOTE
2562 && (NOTE_LINE_NUMBER (PREV_INSN (start_move))
2563 == NOTE_INSN_LOOP_CONT))
2564 start_move = PREV_INSN (start_move);
2565
2566 emit_label_after (newstart_label, PREV_INSN (start_move));
2567
2568 /* Actually move the insns. Start at the beginning, and
2569 keep copying insns until we've copied the
2570 last_test_insn. */
2571 for (insn = start_move; insn; insn = next_insn)
2572 {
2573 /* Figure out which insn comes after this one. We have
2574 to do this before we move INSN. */
2575 if (insn == last_test_insn)
2576 /* We've moved all the insns. */
2577 next_insn = NULL_RTX;
2578 else
2579 next_insn = NEXT_INSN (insn);
2580
2581 if (GET_CODE (insn) == NOTE
2582 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2583 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2584 /* We don't want to move NOTE_INSN_BLOCK_BEGs or
2585 NOTE_INSN_BLOCK_ENDs because the correct generation
2586 of debugging information depends on these appearing
2587 in the same order in the RTL and in the tree
2588 structure, where they are represented as BLOCKs.
2589 So, we don't move block notes. Of course, moving
2590 the code inside the block is likely to make it
2591 impossible to debug the instructions in the exit
2592 test, but such is the price of optimization. */
2593 continue;
2594
2595 /* Move the INSN. */
2596 reorder_insns (insn, insn, get_last_insn ());
2597 }
2598
2599 emit_jump_insn_after (gen_jump (start_label),
2600 PREV_INSN (newstart_label));
2601 emit_barrier_after (PREV_INSN (newstart_label));
2602 start_label = newstart_label;
2603 }
2604 }
2605
2606 if (needs_end_jump)
2607 {
2608 emit_jump (start_label);
2609 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
2610 }
2611 emit_label (loop_stack->data.loop.end_label);
2612
2613 POPSTACK (loop_stack);
2614
2615 last_expr_type = 0;
2616 }
2617
2618 /* Generate a jump to the current loop's continue-point.
2619 This is usually the top of the loop, but may be specified
2620 explicitly elsewhere. If not currently inside a loop,
2621 return 0 and do nothing; caller will print an error message. */
2622
2623 int
2624 expand_continue_loop (whichloop)
2625 struct nesting *whichloop;
2626 {
2627 last_expr_type = 0;
2628 if (whichloop == 0)
2629 whichloop = loop_stack;
2630 if (whichloop == 0)
2631 return 0;
2632 expand_goto_internal (NULL_TREE, whichloop->data.loop.continue_label,
2633 NULL_RTX);
2634 return 1;
2635 }
2636
2637 /* Generate a jump to exit the current loop. If not currently inside a loop,
2638 return 0 and do nothing; caller will print an error message. */
2639
2640 int
2641 expand_exit_loop (whichloop)
2642 struct nesting *whichloop;
2643 {
2644 last_expr_type = 0;
2645 if (whichloop == 0)
2646 whichloop = loop_stack;
2647 if (whichloop == 0)
2648 return 0;
2649 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, NULL_RTX);
2650 return 1;
2651 }
2652
2653 /* Generate a conditional jump to exit the current loop if COND
2654 evaluates to zero. If not currently inside a loop,
2655 return 0 and do nothing; caller will print an error message. */
2656
2657 int
2658 expand_exit_loop_if_false (whichloop, cond)
2659 struct nesting *whichloop;
2660 tree cond;
2661 {
2662 rtx label = gen_label_rtx ();
2663 rtx last_insn;
2664 last_expr_type = 0;
2665
2666 if (whichloop == 0)
2667 whichloop = loop_stack;
2668 if (whichloop == 0)
2669 return 0;
2670 /* In order to handle fixups, we actually create a conditional jump
2671 around a unconditional branch to exit the loop. If fixups are
2672 necessary, they go before the unconditional branch. */
2673
2674 do_jump (cond, NULL_RTX, label);
2675 last_insn = get_last_insn ();
2676 if (GET_CODE (last_insn) == CODE_LABEL)
2677 whichloop->data.loop.alt_end_label = last_insn;
2678 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label,
2679 NULL_RTX);
2680 emit_label (label);
2681
2682 return 1;
2683 }
2684
2685 /* Return nonzero if the loop nest is empty. Else return zero. */
2686
2687 int
2688 stmt_loop_nest_empty ()
2689 {
2690 /* cfun->stmt can be NULL if we are building a call to get the
2691 EH context for a setjmp/longjmp EH target and the current
2692 function was a deferred inline function. */
2693 return (cfun->stmt == NULL || loop_stack == NULL);
2694 }
2695
2696 /* Return non-zero if we should preserve sub-expressions as separate
2697 pseudos. We never do so if we aren't optimizing. We always do so
2698 if -fexpensive-optimizations.
2699
2700 Otherwise, we only do so if we are in the "early" part of a loop. I.e.,
2701 the loop may still be a small one. */
2702
2703 int
2704 preserve_subexpressions_p ()
2705 {
2706 rtx insn;
2707
2708 if (flag_expensive_optimizations)
2709 return 1;
2710
2711 if (optimize == 0 || cfun == 0 || cfun->stmt == 0 || loop_stack == 0)
2712 return 0;
2713
2714 insn = get_last_insn_anywhere ();
2715
2716 return (insn
2717 && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label)
2718 < n_non_fixed_regs * 3));
2719
2720 }
2721
2722 /* Generate a jump to exit the current loop, conditional, binding contour
2723 or case statement. Not all such constructs are visible to this function,
2724 only those started with EXIT_FLAG nonzero. Individual languages use
2725 the EXIT_FLAG parameter to control which kinds of constructs you can
2726 exit this way.
2727
2728 If not currently inside anything that can be exited,
2729 return 0 and do nothing; caller will print an error message. */
2730
2731 int
2732 expand_exit_something ()
2733 {
2734 struct nesting *n;
2735 last_expr_type = 0;
2736 for (n = nesting_stack; n; n = n->all)
2737 if (n->exit_label != 0)
2738 {
2739 expand_goto_internal (NULL_TREE, n->exit_label, NULL_RTX);
2740 return 1;
2741 }
2742
2743 return 0;
2744 }
2745 \f
2746 /* Generate RTL to return from the current function, with no value.
2747 (That is, we do not do anything about returning any value.) */
2748
2749 void
2750 expand_null_return ()
2751 {
2752 struct nesting *block = block_stack;
2753 rtx last_insn = get_last_insn ();
2754
2755 /* If this function was declared to return a value, but we
2756 didn't, clobber the return registers so that they are not
2757 propogated live to the rest of the function. */
2758 clobber_return_register ();
2759
2760 /* Does any pending block have cleanups? */
2761 while (block && block->data.block.cleanups == 0)
2762 block = block->next;
2763
2764 /* If yes, use a goto to return, since that runs cleanups. */
2765
2766 expand_null_return_1 (last_insn, block != 0);
2767 }
2768
2769 /* Generate RTL to return from the current function, with value VAL. */
2770
2771 static void
2772 expand_value_return (val)
2773 rtx val;
2774 {
2775 struct nesting *block = block_stack;
2776 rtx last_insn = get_last_insn ();
2777 rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl));
2778
2779 /* Copy the value to the return location
2780 unless it's already there. */
2781
2782 if (return_reg != val)
2783 {
2784 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
2785 #ifdef PROMOTE_FUNCTION_RETURN
2786 int unsignedp = TREE_UNSIGNED (type);
2787 enum machine_mode old_mode
2788 = DECL_MODE (DECL_RESULT (current_function_decl));
2789 enum machine_mode mode
2790 = promote_mode (type, old_mode, &unsignedp, 1);
2791
2792 if (mode != old_mode)
2793 val = convert_modes (mode, old_mode, val, unsignedp);
2794 #endif
2795 if (GET_CODE (return_reg) == PARALLEL)
2796 emit_group_load (return_reg, val, int_size_in_bytes (type),
2797 TYPE_ALIGN (type));
2798 else
2799 emit_move_insn (return_reg, val);
2800 }
2801
2802 /* Does any pending block have cleanups? */
2803
2804 while (block && block->data.block.cleanups == 0)
2805 block = block->next;
2806
2807 /* If yes, use a goto to return, since that runs cleanups.
2808 Use LAST_INSN to put cleanups *before* the move insn emitted above. */
2809
2810 expand_null_return_1 (last_insn, block != 0);
2811 }
2812
2813 /* Output a return with no value. If LAST_INSN is nonzero,
2814 pretend that the return takes place after LAST_INSN.
2815 If USE_GOTO is nonzero then don't use a return instruction;
2816 go to the return label instead. This causes any cleanups
2817 of pending blocks to be executed normally. */
2818
2819 static void
2820 expand_null_return_1 (last_insn, use_goto)
2821 rtx last_insn;
2822 int use_goto;
2823 {
2824 rtx end_label = cleanup_label ? cleanup_label : return_label;
2825
2826 clear_pending_stack_adjust ();
2827 do_pending_stack_adjust ();
2828 last_expr_type = 0;
2829
2830 /* PCC-struct return always uses an epilogue. */
2831 if (current_function_returns_pcc_struct || use_goto)
2832 {
2833 if (end_label == 0)
2834 end_label = return_label = gen_label_rtx ();
2835 expand_goto_internal (NULL_TREE, end_label, last_insn);
2836 return;
2837 }
2838
2839 /* Otherwise output a simple return-insn if one is available,
2840 unless it won't do the job. */
2841 #ifdef HAVE_return
2842 if (HAVE_return && use_goto == 0 && cleanup_label == 0)
2843 {
2844 emit_jump_insn (gen_return ());
2845 emit_barrier ();
2846 return;
2847 }
2848 #endif
2849
2850 /* Otherwise jump to the epilogue. */
2851 expand_goto_internal (NULL_TREE, end_label, last_insn);
2852 }
2853 \f
2854 /* Generate RTL to evaluate the expression RETVAL and return it
2855 from the current function. */
2856
2857 void
2858 expand_return (retval)
2859 tree retval;
2860 {
2861 /* If there are any cleanups to be performed, then they will
2862 be inserted following LAST_INSN. It is desirable
2863 that the last_insn, for such purposes, should be the
2864 last insn before computing the return value. Otherwise, cleanups
2865 which call functions can clobber the return value. */
2866 /* ??? rms: I think that is erroneous, because in C++ it would
2867 run destructors on variables that might be used in the subsequent
2868 computation of the return value. */
2869 rtx last_insn = 0;
2870 rtx result_rtl = DECL_RTL (DECL_RESULT (current_function_decl));
2871 register rtx val = 0;
2872 tree retval_rhs;
2873 int cleanups;
2874
2875 /* If function wants no value, give it none. */
2876 if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
2877 {
2878 expand_expr (retval, NULL_RTX, VOIDmode, 0);
2879 emit_queue ();
2880 expand_null_return ();
2881 return;
2882 }
2883
2884 /* Are any cleanups needed? E.g. C++ destructors to be run? */
2885 /* This is not sufficient. We also need to watch for cleanups of the
2886 expression we are about to expand. Unfortunately, we cannot know
2887 if it has cleanups until we expand it, and we want to change how we
2888 expand it depending upon if we need cleanups. We can't win. */
2889 #if 0
2890 cleanups = any_pending_cleanups (1);
2891 #else
2892 cleanups = 1;
2893 #endif
2894
2895 if (retval == error_mark_node)
2896 retval_rhs = NULL_TREE;
2897 else if (TREE_CODE (retval) == RESULT_DECL)
2898 retval_rhs = retval;
2899 else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR)
2900 && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
2901 retval_rhs = TREE_OPERAND (retval, 1);
2902 else if (VOID_TYPE_P (TREE_TYPE (retval)))
2903 /* Recognize tail-recursive call to void function. */
2904 retval_rhs = retval;
2905 else
2906 retval_rhs = NULL_TREE;
2907
2908 /* Only use `last_insn' if there are cleanups which must be run. */
2909 if (cleanups || cleanup_label != 0)
2910 last_insn = get_last_insn ();
2911
2912 /* Distribute return down conditional expr if either of the sides
2913 may involve tail recursion (see test below). This enhances the number
2914 of tail recursions we see. Don't do this always since it can produce
2915 sub-optimal code in some cases and we distribute assignments into
2916 conditional expressions when it would help. */
2917
2918 if (optimize && retval_rhs != 0
2919 && frame_offset == 0
2920 && TREE_CODE (retval_rhs) == COND_EXPR
2921 && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR
2922 || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR))
2923 {
2924 rtx label = gen_label_rtx ();
2925 tree expr;
2926
2927 do_jump (TREE_OPERAND (retval_rhs, 0), label, NULL_RTX);
2928 start_cleanup_deferral ();
2929 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
2930 DECL_RESULT (current_function_decl),
2931 TREE_OPERAND (retval_rhs, 1));
2932 TREE_SIDE_EFFECTS (expr) = 1;
2933 expand_return (expr);
2934 emit_label (label);
2935
2936 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
2937 DECL_RESULT (current_function_decl),
2938 TREE_OPERAND (retval_rhs, 2));
2939 TREE_SIDE_EFFECTS (expr) = 1;
2940 expand_return (expr);
2941 end_cleanup_deferral ();
2942 return;
2943 }
2944
2945 /* If the result is an aggregate that is being returned in one (or more)
2946 registers, load the registers here. The compiler currently can't handle
2947 copying a BLKmode value into registers. We could put this code in a
2948 more general area (for use by everyone instead of just function
2949 call/return), but until this feature is generally usable it is kept here
2950 (and in expand_call). The value must go into a pseudo in case there
2951 are cleanups that will clobber the real return register. */
2952
2953 if (retval_rhs != 0
2954 && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode
2955 && GET_CODE (result_rtl) == REG)
2956 {
2957 int i;
2958 unsigned HOST_WIDE_INT bitpos, xbitpos;
2959 unsigned HOST_WIDE_INT big_endian_correction = 0;
2960 unsigned HOST_WIDE_INT bytes
2961 = int_size_in_bytes (TREE_TYPE (retval_rhs));
2962 int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2963 unsigned int bitsize
2964 = MIN (TYPE_ALIGN (TREE_TYPE (retval_rhs)), BITS_PER_WORD);
2965 rtx *result_pseudos = (rtx *) alloca (sizeof (rtx) * n_regs);
2966 rtx result_reg, src = NULL_RTX, dst = NULL_RTX;
2967 rtx result_val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0);
2968 enum machine_mode tmpmode, result_reg_mode;
2969
2970 /* Structures whose size is not a multiple of a word are aligned
2971 to the least significant byte (to the right). On a BYTES_BIG_ENDIAN
2972 machine, this means we must skip the empty high order bytes when
2973 calculating the bit offset. */
2974 if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD)
2975 big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2976 * BITS_PER_UNIT));
2977
2978 /* Copy the structure BITSIZE bits at a time. */
2979 for (bitpos = 0, xbitpos = big_endian_correction;
2980 bitpos < bytes * BITS_PER_UNIT;
2981 bitpos += bitsize, xbitpos += bitsize)
2982 {
2983 /* We need a new destination pseudo each time xbitpos is
2984 on a word boundary and when xbitpos == big_endian_correction
2985 (the first time through). */
2986 if (xbitpos % BITS_PER_WORD == 0
2987 || xbitpos == big_endian_correction)
2988 {
2989 /* Generate an appropriate register. */
2990 dst = gen_reg_rtx (word_mode);
2991 result_pseudos[xbitpos / BITS_PER_WORD] = dst;
2992
2993 /* Clobber the destination before we move anything into it. */
2994 emit_insn (gen_rtx_CLOBBER (VOIDmode, dst));
2995 }
2996
2997 /* We need a new source operand each time bitpos is on a word
2998 boundary. */
2999 if (bitpos % BITS_PER_WORD == 0)
3000 src = operand_subword_force (result_val,
3001 bitpos / BITS_PER_WORD,
3002 BLKmode);
3003
3004 /* Use bitpos for the source extraction (left justified) and
3005 xbitpos for the destination store (right justified). */
3006 store_bit_field (dst, bitsize, xbitpos % BITS_PER_WORD, word_mode,
3007 extract_bit_field (src, bitsize,
3008 bitpos % BITS_PER_WORD, 1,
3009 NULL_RTX, word_mode, word_mode,
3010 bitsize, BITS_PER_WORD),
3011 bitsize, BITS_PER_WORD);
3012 }
3013
3014 /* Find the smallest integer mode large enough to hold the
3015 entire structure and use that mode instead of BLKmode
3016 on the USE insn for the return register. */
3017 bytes = int_size_in_bytes (TREE_TYPE (retval_rhs));
3018 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3019 tmpmode != VOIDmode;
3020 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
3021 {
3022 /* Have we found a large enough mode? */
3023 if (GET_MODE_SIZE (tmpmode) >= bytes)
3024 break;
3025 }
3026
3027 /* No suitable mode found. */
3028 if (tmpmode == VOIDmode)
3029 abort ();
3030
3031 PUT_MODE (result_rtl, tmpmode);
3032
3033 if (GET_MODE_SIZE (tmpmode) < GET_MODE_SIZE (word_mode))
3034 result_reg_mode = word_mode;
3035 else
3036 result_reg_mode = tmpmode;
3037 result_reg = gen_reg_rtx (result_reg_mode);
3038
3039 emit_queue ();
3040 for (i = 0; i < n_regs; i++)
3041 emit_move_insn (operand_subword (result_reg, i, 0, result_reg_mode),
3042 result_pseudos[i]);
3043
3044 if (tmpmode != result_reg_mode)
3045 result_reg = gen_lowpart (tmpmode, result_reg);
3046
3047 expand_value_return (result_reg);
3048 }
3049 else if (cleanups
3050 && retval_rhs != 0
3051 && !VOID_TYPE_P (TREE_TYPE (retval_rhs))
3052 && (GET_CODE (result_rtl) == REG
3053 || (GET_CODE (result_rtl) == PARALLEL)))
3054 {
3055 /* Calculate the return value into a temporary (usually a pseudo
3056 reg). */
3057 val = assign_temp (TREE_TYPE (DECL_RESULT (current_function_decl)),
3058 0, 0, 1);
3059 val = expand_expr (retval_rhs, val, GET_MODE (val), 0);
3060 val = force_not_mem (val);
3061 emit_queue ();
3062 /* Return the calculated value, doing cleanups first. */
3063 expand_value_return (val);
3064 }
3065 else
3066 {
3067 /* No cleanups or no hard reg used;
3068 calculate value into hard return reg. */
3069 expand_expr (retval, const0_rtx, VOIDmode, 0);
3070 emit_queue ();
3071 expand_value_return (result_rtl);
3072 }
3073 }
3074
3075 /* Return 1 if the end of the generated RTX is not a barrier.
3076 This means code already compiled can drop through. */
3077
3078 int
3079 drop_through_at_end_p ()
3080 {
3081 rtx insn = get_last_insn ();
3082 while (insn && GET_CODE (insn) == NOTE)
3083 insn = PREV_INSN (insn);
3084 return insn && GET_CODE (insn) != BARRIER;
3085 }
3086 \f
3087 /* Attempt to optimize a potential tail recursion call into a goto.
3088 ARGUMENTS are the arguments to a CALL_EXPR; LAST_INSN indicates
3089 where to place the jump to the tail recursion label.
3090
3091 Return TRUE if the call was optimized into a goto. */
3092
3093 int
3094 optimize_tail_recursion (arguments, last_insn)
3095 tree arguments;
3096 rtx last_insn;
3097 {
3098 /* Finish checking validity, and if valid emit code to set the
3099 argument variables for the new call. */
3100 if (tail_recursion_args (arguments, DECL_ARGUMENTS (current_function_decl)))
3101 {
3102 if (tail_recursion_label == 0)
3103 {
3104 tail_recursion_label = gen_label_rtx ();
3105 emit_label_after (tail_recursion_label,
3106 tail_recursion_reentry);
3107 }
3108 emit_queue ();
3109 expand_goto_internal (NULL_TREE, tail_recursion_label, last_insn);
3110 emit_barrier ();
3111 return 1;
3112 }
3113 return 0;
3114 }
3115
3116 /* Emit code to alter this function's formal parms for a tail-recursive call.
3117 ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs).
3118 FORMALS is the chain of decls of formals.
3119 Return 1 if this can be done;
3120 otherwise return 0 and do not emit any code. */
3121
3122 static int
3123 tail_recursion_args (actuals, formals)
3124 tree actuals, formals;
3125 {
3126 register tree a = actuals, f = formals;
3127 register int i;
3128 register rtx *argvec;
3129
3130 /* Check that number and types of actuals are compatible
3131 with the formals. This is not always true in valid C code.
3132 Also check that no formal needs to be addressable
3133 and that all formals are scalars. */
3134
3135 /* Also count the args. */
3136
3137 for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++)
3138 {
3139 if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_VALUE (a)))
3140 != TYPE_MAIN_VARIANT (TREE_TYPE (f)))
3141 return 0;
3142 if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode)
3143 return 0;
3144 }
3145 if (a != 0 || f != 0)
3146 return 0;
3147
3148 /* Compute all the actuals. */
3149
3150 argvec = (rtx *) alloca (i * sizeof (rtx));
3151
3152 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3153 argvec[i] = expand_expr (TREE_VALUE (a), NULL_RTX, VOIDmode, 0);
3154
3155 /* Find which actual values refer to current values of previous formals.
3156 Copy each of them now, before any formal is changed. */
3157
3158 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3159 {
3160 int copy = 0;
3161 register int j;
3162 for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++)
3163 if (reg_mentioned_p (DECL_RTL (f), argvec[i]))
3164 {
3165 copy = 1;
3166 break;
3167 }
3168 if (copy)
3169 argvec[i] = copy_to_reg (argvec[i]);
3170 }
3171
3172 /* Store the values of the actuals into the formals. */
3173
3174 for (f = formals, a = actuals, i = 0; f;
3175 f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++)
3176 {
3177 if (GET_MODE (DECL_RTL (f)) == GET_MODE (argvec[i]))
3178 emit_move_insn (DECL_RTL (f), argvec[i]);
3179 else
3180 convert_move (DECL_RTL (f), argvec[i],
3181 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a))));
3182 }
3183
3184 free_temp_slots ();
3185 return 1;
3186 }
3187 \f
3188 /* Generate the RTL code for entering a binding contour.
3189 The variables are declared one by one, by calls to `expand_decl'.
3190
3191 FLAGS is a bitwise or of the following flags:
3192
3193 1 - Nonzero if this construct should be visible to
3194 `exit_something'.
3195
3196 2 - Nonzero if this contour does not require a
3197 NOTE_INSN_BLOCK_BEG note. Virtually all calls from
3198 language-independent code should set this flag because they
3199 will not create corresponding BLOCK nodes. (There should be
3200 a one-to-one correspondence between NOTE_INSN_BLOCK_BEG notes
3201 and BLOCKs.) If this flag is set, MARK_ENDS should be zero
3202 when expand_end_bindings is called.
3203
3204 If we are creating a NOTE_INSN_BLOCK_BEG note, a BLOCK may
3205 optionally be supplied. If so, it becomes the NOTE_BLOCK for the
3206 note. */
3207
3208 void
3209 expand_start_bindings_and_block (flags, block)
3210 int flags;
3211 tree block;
3212 {
3213 struct nesting *thisblock = ALLOC_NESTING ();
3214 rtx note;
3215 int exit_flag = ((flags & 1) != 0);
3216 int block_flag = ((flags & 2) == 0);
3217
3218 /* If a BLOCK is supplied, then the caller should be requesting a
3219 NOTE_INSN_BLOCK_BEG note. */
3220 if (!block_flag && block)
3221 abort ();
3222
3223 /* Create a note to mark the beginning of the block. */
3224 if (block_flag)
3225 {
3226 note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_BEG);
3227 NOTE_BLOCK (note) = block;
3228 }
3229 else
3230 note = emit_note (NULL_PTR, NOTE_INSN_DELETED);
3231
3232 /* Make an entry on block_stack for the block we are entering. */
3233
3234 thisblock->next = block_stack;
3235 thisblock->all = nesting_stack;
3236 thisblock->depth = ++nesting_depth;
3237 thisblock->data.block.stack_level = 0;
3238 thisblock->data.block.cleanups = 0;
3239 thisblock->data.block.n_function_calls = 0;
3240 thisblock->data.block.exception_region = 0;
3241 thisblock->data.block.block_target_temp_slot_level = target_temp_slot_level;
3242
3243 thisblock->data.block.conditional_code = 0;
3244 thisblock->data.block.last_unconditional_cleanup = note;
3245 /* When we insert instructions after the last unconditional cleanup,
3246 we don't adjust last_insn. That means that a later add_insn will
3247 clobber the instructions we've just added. The easiest way to
3248 fix this is to just insert another instruction here, so that the
3249 instructions inserted after the last unconditional cleanup are
3250 never the last instruction. */
3251 emit_note (NULL_PTR, NOTE_INSN_DELETED);
3252 thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups;
3253
3254 if (block_stack
3255 && !(block_stack->data.block.cleanups == NULL_TREE
3256 && block_stack->data.block.outer_cleanups == NULL_TREE))
3257 thisblock->data.block.outer_cleanups
3258 = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
3259 block_stack->data.block.outer_cleanups);
3260 else
3261 thisblock->data.block.outer_cleanups = 0;
3262 thisblock->data.block.label_chain = 0;
3263 thisblock->data.block.innermost_stack_block = stack_block_stack;
3264 thisblock->data.block.first_insn = note;
3265 thisblock->data.block.block_start_count = ++current_block_start_count;
3266 thisblock->exit_label = exit_flag ? gen_label_rtx () : 0;
3267 block_stack = thisblock;
3268 nesting_stack = thisblock;
3269
3270 /* Make a new level for allocating stack slots. */
3271 push_temp_slots ();
3272 }
3273
3274 /* Specify the scope of temporaries created by TARGET_EXPRs. Similar
3275 to CLEANUP_POINT_EXPR, but handles cases when a series of calls to
3276 expand_expr are made. After we end the region, we know that all
3277 space for all temporaries that were created by TARGET_EXPRs will be
3278 destroyed and their space freed for reuse. */
3279
3280 void
3281 expand_start_target_temps ()
3282 {
3283 /* This is so that even if the result is preserved, the space
3284 allocated will be freed, as we know that it is no longer in use. */
3285 push_temp_slots ();
3286
3287 /* Start a new binding layer that will keep track of all cleanup
3288 actions to be performed. */
3289 expand_start_bindings (2);
3290
3291 target_temp_slot_level = temp_slot_level;
3292 }
3293
3294 void
3295 expand_end_target_temps ()
3296 {
3297 expand_end_bindings (NULL_TREE, 0, 0);
3298
3299 /* This is so that even if the result is preserved, the space
3300 allocated will be freed, as we know that it is no longer in use. */
3301 pop_temp_slots ();
3302 }
3303
3304 /* Given a pointer to a BLOCK node return non-zero if (and only if) the node
3305 in question represents the outermost pair of curly braces (i.e. the "body
3306 block") of a function or method.
3307
3308 For any BLOCK node representing a "body block" of a function or method, the
3309 BLOCK_SUPERCONTEXT of the node will point to another BLOCK node which
3310 represents the outermost (function) scope for the function or method (i.e.
3311 the one which includes the formal parameters). The BLOCK_SUPERCONTEXT of
3312 *that* node in turn will point to the relevant FUNCTION_DECL node. */
3313
3314 int
3315 is_body_block (stmt)
3316 register tree stmt;
3317 {
3318 if (TREE_CODE (stmt) == BLOCK)
3319 {
3320 tree parent = BLOCK_SUPERCONTEXT (stmt);
3321
3322 if (parent && TREE_CODE (parent) == BLOCK)
3323 {
3324 tree grandparent = BLOCK_SUPERCONTEXT (parent);
3325
3326 if (grandparent && TREE_CODE (grandparent) == FUNCTION_DECL)
3327 return 1;
3328 }
3329 }
3330
3331 return 0;
3332 }
3333
3334 /* Mark top block of block_stack as an implicit binding for an
3335 exception region. This is used to prevent infinite recursion when
3336 ending a binding with expand_end_bindings. It is only ever called
3337 by expand_eh_region_start, as that it the only way to create a
3338 block stack for a exception region. */
3339
3340 void
3341 mark_block_as_eh_region ()
3342 {
3343 block_stack->data.block.exception_region = 1;
3344 if (block_stack->next
3345 && block_stack->next->data.block.conditional_code)
3346 {
3347 block_stack->data.block.conditional_code
3348 = block_stack->next->data.block.conditional_code;
3349 block_stack->data.block.last_unconditional_cleanup
3350 = block_stack->next->data.block.last_unconditional_cleanup;
3351 block_stack->data.block.cleanup_ptr
3352 = block_stack->next->data.block.cleanup_ptr;
3353 }
3354 }
3355
3356 /* True if we are currently emitting insns in an area of output code
3357 that is controlled by a conditional expression. This is used by
3358 the cleanup handling code to generate conditional cleanup actions. */
3359
3360 int
3361 conditional_context ()
3362 {
3363 return block_stack && block_stack->data.block.conditional_code;
3364 }
3365
3366 /* Mark top block of block_stack as not for an implicit binding for an
3367 exception region. This is only ever done by expand_eh_region_end
3368 to let expand_end_bindings know that it is being called explicitly
3369 to end the binding layer for just the binding layer associated with
3370 the exception region, otherwise expand_end_bindings would try and
3371 end all implicit binding layers for exceptions regions, and then
3372 one normal binding layer. */
3373
3374 void
3375 mark_block_as_not_eh_region ()
3376 {
3377 block_stack->data.block.exception_region = 0;
3378 }
3379
3380 /* True if the top block of block_stack was marked as for an exception
3381 region by mark_block_as_eh_region. */
3382
3383 int
3384 is_eh_region ()
3385 {
3386 return cfun && block_stack && block_stack->data.block.exception_region;
3387 }
3388
3389 /* Emit a handler label for a nonlocal goto handler.
3390 Also emit code to store the handler label in SLOT before BEFORE_INSN. */
3391
3392 static rtx
3393 expand_nl_handler_label (slot, before_insn)
3394 rtx slot, before_insn;
3395 {
3396 rtx insns;
3397 rtx handler_label = gen_label_rtx ();
3398
3399 /* Don't let jump_optimize delete the handler. */
3400 LABEL_PRESERVE_P (handler_label) = 1;
3401
3402 start_sequence ();
3403 emit_move_insn (slot, gen_rtx_LABEL_REF (Pmode, handler_label));
3404 insns = get_insns ();
3405 end_sequence ();
3406 emit_insns_before (insns, before_insn);
3407
3408 emit_label (handler_label);
3409
3410 return handler_label;
3411 }
3412
3413 /* Emit code to restore vital registers at the beginning of a nonlocal goto
3414 handler. */
3415 static void
3416 expand_nl_goto_receiver ()
3417 {
3418 #ifdef HAVE_nonlocal_goto
3419 if (! HAVE_nonlocal_goto)
3420 #endif
3421 /* First adjust our frame pointer to its actual value. It was
3422 previously set to the start of the virtual area corresponding to
3423 the stacked variables when we branched here and now needs to be
3424 adjusted to the actual hardware fp value.
3425
3426 Assignments are to virtual registers are converted by
3427 instantiate_virtual_regs into the corresponding assignment
3428 to the underlying register (fp in this case) that makes
3429 the original assignment true.
3430 So the following insn will actually be
3431 decrementing fp by STARTING_FRAME_OFFSET. */
3432 emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
3433
3434 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3435 if (fixed_regs[ARG_POINTER_REGNUM])
3436 {
3437 #ifdef ELIMINABLE_REGS
3438 /* If the argument pointer can be eliminated in favor of the
3439 frame pointer, we don't need to restore it. We assume here
3440 that if such an elimination is present, it can always be used.
3441 This is the case on all known machines; if we don't make this
3442 assumption, we do unnecessary saving on many machines. */
3443 static struct elims {int from, to;} elim_regs[] = ELIMINABLE_REGS;
3444 size_t i;
3445
3446 for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
3447 if (elim_regs[i].from == ARG_POINTER_REGNUM
3448 && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
3449 break;
3450
3451 if (i == ARRAY_SIZE (elim_regs))
3452 #endif
3453 {
3454 /* Now restore our arg pointer from the address at which it
3455 was saved in our stack frame.
3456 If there hasn't be space allocated for it yet, make
3457 some now. */
3458 if (arg_pointer_save_area == 0)
3459 arg_pointer_save_area
3460 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
3461 emit_move_insn (virtual_incoming_args_rtx,
3462 /* We need a pseudo here, or else
3463 instantiate_virtual_regs_1 complains. */
3464 copy_to_reg (arg_pointer_save_area));
3465 }
3466 }
3467 #endif
3468
3469 #ifdef HAVE_nonlocal_goto_receiver
3470 if (HAVE_nonlocal_goto_receiver)
3471 emit_insn (gen_nonlocal_goto_receiver ());
3472 #endif
3473 }
3474
3475 /* Make handlers for nonlocal gotos taking place in the function calls in
3476 block THISBLOCK. */
3477
3478 static void
3479 expand_nl_goto_receivers (thisblock)
3480 struct nesting *thisblock;
3481 {
3482 tree link;
3483 rtx afterward = gen_label_rtx ();
3484 rtx insns, slot;
3485 rtx label_list;
3486 int any_invalid;
3487
3488 /* Record the handler address in the stack slot for that purpose,
3489 during this block, saving and restoring the outer value. */
3490 if (thisblock->next != 0)
3491 for (slot = nonlocal_goto_handler_slots; slot; slot = XEXP (slot, 1))
3492 {
3493 rtx save_receiver = gen_reg_rtx (Pmode);
3494 emit_move_insn (XEXP (slot, 0), save_receiver);
3495
3496 start_sequence ();
3497 emit_move_insn (save_receiver, XEXP (slot, 0));
3498 insns = get_insns ();
3499 end_sequence ();
3500 emit_insns_before (insns, thisblock->data.block.first_insn);
3501 }
3502
3503 /* Jump around the handlers; they run only when specially invoked. */
3504 emit_jump (afterward);
3505
3506 /* Make a separate handler for each label. */
3507 link = nonlocal_labels;
3508 slot = nonlocal_goto_handler_slots;
3509 label_list = NULL_RTX;
3510 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3511 /* Skip any labels we shouldn't be able to jump to from here,
3512 we generate one special handler for all of them below which just calls
3513 abort. */
3514 if (! DECL_TOO_LATE (TREE_VALUE (link)))
3515 {
3516 rtx lab;
3517 lab = expand_nl_handler_label (XEXP (slot, 0),
3518 thisblock->data.block.first_insn);
3519 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3520
3521 expand_nl_goto_receiver ();
3522
3523 /* Jump to the "real" nonlocal label. */
3524 expand_goto (TREE_VALUE (link));
3525 }
3526
3527 /* A second pass over all nonlocal labels; this time we handle those
3528 we should not be able to jump to at this point. */
3529 link = nonlocal_labels;
3530 slot = nonlocal_goto_handler_slots;
3531 any_invalid = 0;
3532 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3533 if (DECL_TOO_LATE (TREE_VALUE (link)))
3534 {
3535 rtx lab;
3536 lab = expand_nl_handler_label (XEXP (slot, 0),
3537 thisblock->data.block.first_insn);
3538 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3539 any_invalid = 1;
3540 }
3541
3542 if (any_invalid)
3543 {
3544 expand_nl_goto_receiver ();
3545 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "abort"), 0,
3546 VOIDmode, 0);
3547 emit_barrier ();
3548 }
3549
3550 nonlocal_goto_handler_labels = label_list;
3551 emit_label (afterward);
3552 }
3553
3554 /* Warn about any unused VARS (which may contain nodes other than
3555 VAR_DECLs, but such nodes are ignored). The nodes are connected
3556 via the TREE_CHAIN field. */
3557
3558 void
3559 warn_about_unused_variables (vars)
3560 tree vars;
3561 {
3562 tree decl;
3563
3564 if (warn_unused_variable)
3565 for (decl = vars; decl; decl = TREE_CHAIN (decl))
3566 if (TREE_CODE (decl) == VAR_DECL
3567 && ! TREE_USED (decl)
3568 && ! DECL_IN_SYSTEM_HEADER (decl)
3569 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
3570 warning_with_decl (decl, "unused variable `%s'");
3571 }
3572
3573 /* Generate RTL code to terminate a binding contour.
3574
3575 VARS is the chain of VAR_DECL nodes for the variables bound in this
3576 contour. There may actually be other nodes in this chain, but any
3577 nodes other than VAR_DECLS are ignored.
3578
3579 MARK_ENDS is nonzero if we should put a note at the beginning
3580 and end of this binding contour.
3581
3582 DONT_JUMP_IN is nonzero if it is not valid to jump into this contour.
3583 (That is true automatically if the contour has a saved stack level.) */
3584
3585 void
3586 expand_end_bindings (vars, mark_ends, dont_jump_in)
3587 tree vars;
3588 int mark_ends;
3589 int dont_jump_in;
3590 {
3591 register struct nesting *thisblock;
3592
3593 while (block_stack->data.block.exception_region)
3594 {
3595 /* Because we don't need or want a new temporary level and
3596 because we didn't create one in expand_eh_region_start,
3597 create a fake one now to avoid removing one in
3598 expand_end_bindings. */
3599 push_temp_slots ();
3600
3601 block_stack->data.block.exception_region = 0;
3602
3603 expand_end_bindings (NULL_TREE, 0, 0);
3604 }
3605
3606 /* Since expand_eh_region_start does an expand_start_bindings, we
3607 have to first end all the bindings that were created by
3608 expand_eh_region_start. */
3609
3610 thisblock = block_stack;
3611
3612 /* If any of the variables in this scope were not used, warn the
3613 user. */
3614 warn_about_unused_variables (vars);
3615
3616 if (thisblock->exit_label)
3617 {
3618 do_pending_stack_adjust ();
3619 emit_label (thisblock->exit_label);
3620 }
3621
3622 /* If necessary, make handlers for nonlocal gotos taking
3623 place in the function calls in this block. */
3624 if (function_call_count != thisblock->data.block.n_function_calls
3625 && nonlocal_labels
3626 /* Make handler for outermost block
3627 if there were any nonlocal gotos to this function. */
3628 && (thisblock->next == 0 ? current_function_has_nonlocal_label
3629 /* Make handler for inner block if it has something
3630 special to do when you jump out of it. */
3631 : (thisblock->data.block.cleanups != 0
3632 || thisblock->data.block.stack_level != 0)))
3633 expand_nl_goto_receivers (thisblock);
3634
3635 /* Don't allow jumping into a block that has a stack level.
3636 Cleanups are allowed, though. */
3637 if (dont_jump_in
3638 || thisblock->data.block.stack_level != 0)
3639 {
3640 struct label_chain *chain;
3641
3642 /* Any labels in this block are no longer valid to go to.
3643 Mark them to cause an error message. */
3644 for (chain = thisblock->data.block.label_chain; chain; chain = chain->next)
3645 {
3646 DECL_TOO_LATE (chain->label) = 1;
3647 /* If any goto without a fixup came to this label,
3648 that must be an error, because gotos without fixups
3649 come from outside all saved stack-levels. */
3650 if (TREE_ADDRESSABLE (chain->label))
3651 error_with_decl (chain->label,
3652 "label `%s' used before containing binding contour");
3653 }
3654 }
3655
3656 /* Restore stack level in effect before the block
3657 (only if variable-size objects allocated). */
3658 /* Perform any cleanups associated with the block. */
3659
3660 if (thisblock->data.block.stack_level != 0
3661 || thisblock->data.block.cleanups != 0)
3662 {
3663 int reachable;
3664 rtx insn;
3665
3666 /* Don't let cleanups affect ({...}) constructs. */
3667 int old_expr_stmts_for_value = expr_stmts_for_value;
3668 rtx old_last_expr_value = last_expr_value;
3669 tree old_last_expr_type = last_expr_type;
3670 expr_stmts_for_value = 0;
3671
3672 /* Only clean up here if this point can actually be reached. */
3673 insn = get_last_insn ();
3674 if (GET_CODE (insn) == NOTE)
3675 insn = prev_nonnote_insn (insn);
3676 reachable = (! insn || GET_CODE (insn) != BARRIER);
3677
3678 /* Do the cleanups. */
3679 expand_cleanups (thisblock->data.block.cleanups, NULL_TREE, 0, reachable);
3680 if (reachable)
3681 do_pending_stack_adjust ();
3682
3683 expr_stmts_for_value = old_expr_stmts_for_value;
3684 last_expr_value = old_last_expr_value;
3685 last_expr_type = old_last_expr_type;
3686
3687 /* Restore the stack level. */
3688
3689 if (reachable && thisblock->data.block.stack_level != 0)
3690 {
3691 emit_stack_restore (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3692 thisblock->data.block.stack_level, NULL_RTX);
3693 if (nonlocal_goto_handler_slots != 0)
3694 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level,
3695 NULL_RTX);
3696 }
3697
3698 /* Any gotos out of this block must also do these things.
3699 Also report any gotos with fixups that came to labels in this
3700 level. */
3701 fixup_gotos (thisblock,
3702 thisblock->data.block.stack_level,
3703 thisblock->data.block.cleanups,
3704 thisblock->data.block.first_insn,
3705 dont_jump_in);
3706 }
3707
3708 /* Mark the beginning and end of the scope if requested.
3709 We do this now, after running cleanups on the variables
3710 just going out of scope, so they are in scope for their cleanups. */
3711
3712 if (mark_ends)
3713 {
3714 rtx note = emit_note (NULL_PTR, NOTE_INSN_BLOCK_END);
3715 NOTE_BLOCK (note) = NOTE_BLOCK (thisblock->data.block.first_insn);
3716 }
3717 else
3718 /* Get rid of the beginning-mark if we don't make an end-mark. */
3719 NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED;
3720
3721 /* Restore the temporary level of TARGET_EXPRs. */
3722 target_temp_slot_level = thisblock->data.block.block_target_temp_slot_level;
3723
3724 /* Restore block_stack level for containing block. */
3725
3726 stack_block_stack = thisblock->data.block.innermost_stack_block;
3727 POPSTACK (block_stack);
3728
3729 /* Pop the stack slot nesting and free any slots at this level. */
3730 pop_temp_slots ();
3731 }
3732 \f
3733 /* Generate code to save the stack pointer at the start of the current block
3734 and set up to restore it on exit. */
3735
3736 void
3737 save_stack_pointer ()
3738 {
3739 struct nesting *thisblock = block_stack;
3740
3741 if (thisblock->data.block.stack_level == 0)
3742 {
3743 emit_stack_save (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3744 &thisblock->data.block.stack_level,
3745 thisblock->data.block.first_insn);
3746 stack_block_stack = thisblock;
3747 }
3748 }
3749 \f
3750 /* Generate RTL for the automatic variable declaration DECL.
3751 (Other kinds of declarations are simply ignored if seen here.) */
3752
3753 void
3754 expand_decl (decl)
3755 register tree decl;
3756 {
3757 struct nesting *thisblock;
3758 tree type;
3759
3760 type = TREE_TYPE (decl);
3761
3762 /* Only automatic variables need any expansion done.
3763 Static and external variables, and external functions,
3764 will be handled by `assemble_variable' (called from finish_decl).
3765 TYPE_DECL and CONST_DECL require nothing.
3766 PARM_DECLs are handled in `assign_parms'. */
3767
3768 if (TREE_CODE (decl) != VAR_DECL)
3769 return;
3770 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
3771 return;
3772
3773 thisblock = block_stack;
3774
3775 /* Create the RTL representation for the variable. */
3776
3777 if (type == error_mark_node)
3778 DECL_RTL (decl) = gen_rtx_MEM (BLKmode, const0_rtx);
3779 else if (DECL_SIZE (decl) == 0)
3780 /* Variable with incomplete type. */
3781 {
3782 if (DECL_INITIAL (decl) == 0)
3783 /* Error message was already done; now avoid a crash. */
3784 DECL_RTL (decl) = assign_stack_temp (DECL_MODE (decl), 0, 1);
3785 else
3786 /* An initializer is going to decide the size of this array.
3787 Until we know the size, represent its address with a reg. */
3788 DECL_RTL (decl) = gen_rtx_MEM (BLKmode, gen_reg_rtx (Pmode));
3789
3790 set_mem_attributes (DECL_RTL (decl), decl, 1);
3791 }
3792 else if (DECL_MODE (decl) != BLKmode
3793 /* If -ffloat-store, don't put explicit float vars
3794 into regs. */
3795 && !(flag_float_store
3796 && TREE_CODE (type) == REAL_TYPE)
3797 && ! TREE_THIS_VOLATILE (decl)
3798 && ! TREE_ADDRESSABLE (decl)
3799 && (DECL_REGISTER (decl) || optimize)
3800 /* if -fcheck-memory-usage, check all variables. */
3801 && ! current_function_check_memory_usage)
3802 {
3803 /* Automatic variable that can go in a register. */
3804 int unsignedp = TREE_UNSIGNED (type);
3805 enum machine_mode reg_mode
3806 = promote_mode (type, DECL_MODE (decl), &unsignedp, 0);
3807
3808 DECL_RTL (decl) = gen_reg_rtx (reg_mode);
3809 mark_user_reg (DECL_RTL (decl));
3810
3811 if (POINTER_TYPE_P (type))
3812 mark_reg_pointer (DECL_RTL (decl),
3813 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl))));
3814
3815 maybe_set_unchanging (DECL_RTL (decl), decl);
3816 }
3817
3818 else if (TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST
3819 && ! (flag_stack_check && ! STACK_CHECK_BUILTIN
3820 && 0 < compare_tree_int (DECL_SIZE_UNIT (decl),
3821 STACK_CHECK_MAX_VAR_SIZE)))
3822 {
3823 /* Variable of fixed size that goes on the stack. */
3824 rtx oldaddr = 0;
3825 rtx addr;
3826
3827 /* If we previously made RTL for this decl, it must be an array
3828 whose size was determined by the initializer.
3829 The old address was a register; set that register now
3830 to the proper address. */
3831 if (DECL_RTL (decl) != 0)
3832 {
3833 if (GET_CODE (DECL_RTL (decl)) != MEM
3834 || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG)
3835 abort ();
3836 oldaddr = XEXP (DECL_RTL (decl), 0);
3837 }
3838
3839 DECL_RTL (decl) = assign_temp (TREE_TYPE (decl), 1, 1, 1);
3840
3841 /* Set alignment we actually gave this decl. */
3842 DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT
3843 : GET_MODE_BITSIZE (DECL_MODE (decl)));
3844 DECL_USER_ALIGN (decl) = 0;
3845
3846 if (oldaddr)
3847 {
3848 addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
3849 if (addr != oldaddr)
3850 emit_move_insn (oldaddr, addr);
3851 }
3852 }
3853 else
3854 /* Dynamic-size object: must push space on the stack. */
3855 {
3856 rtx address, size;
3857
3858 /* Record the stack pointer on entry to block, if have
3859 not already done so. */
3860 do_pending_stack_adjust ();
3861 save_stack_pointer ();
3862
3863 /* In function-at-a-time mode, variable_size doesn't expand this,
3864 so do it now. */
3865 if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type))
3866 expand_expr (TYPE_MAX_VALUE (TYPE_DOMAIN (type)),
3867 const0_rtx, VOIDmode, 0);
3868
3869 /* Compute the variable's size, in bytes. */
3870 size = expand_expr (DECL_SIZE_UNIT (decl), NULL_RTX, VOIDmode, 0);
3871 free_temp_slots ();
3872
3873 /* Allocate space on the stack for the variable. Note that
3874 DECL_ALIGN says how the variable is to be aligned and we
3875 cannot use it to conclude anything about the alignment of
3876 the size. */
3877 address = allocate_dynamic_stack_space (size, NULL_RTX,
3878 TYPE_ALIGN (TREE_TYPE (decl)));
3879
3880 /* Reference the variable indirect through that rtx. */
3881 DECL_RTL (decl) = gen_rtx_MEM (DECL_MODE (decl), address);
3882
3883 set_mem_attributes (DECL_RTL (decl), decl, 1);
3884
3885 /* Indicate the alignment we actually gave this variable. */
3886 #ifdef STACK_BOUNDARY
3887 DECL_ALIGN (decl) = STACK_BOUNDARY;
3888 #else
3889 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
3890 #endif
3891 DECL_USER_ALIGN (decl) = 0;
3892 }
3893 }
3894 \f
3895 /* Emit code to perform the initialization of a declaration DECL. */
3896
3897 void
3898 expand_decl_init (decl)
3899 tree decl;
3900 {
3901 int was_used = TREE_USED (decl);
3902
3903 /* If this is a CONST_DECL, we don't have to generate any code, but
3904 if DECL_INITIAL is a constant, call expand_expr to force TREE_CST_RTL
3905 to be set while in the obstack containing the constant. If we don't
3906 do this, we can lose if we have functions nested three deep and the middle
3907 function makes a CONST_DECL whose DECL_INITIAL is a STRING_CST while
3908 the innermost function is the first to expand that STRING_CST. */
3909 if (TREE_CODE (decl) == CONST_DECL)
3910 {
3911 if (DECL_INITIAL (decl) && TREE_CONSTANT (DECL_INITIAL (decl)))
3912 expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
3913 EXPAND_INITIALIZER);
3914 return;
3915 }
3916
3917 if (TREE_STATIC (decl))
3918 return;
3919
3920 /* Compute and store the initial value now. */
3921
3922 if (DECL_INITIAL (decl) == error_mark_node)
3923 {
3924 enum tree_code code = TREE_CODE (TREE_TYPE (decl));
3925
3926 if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE
3927 || code == POINTER_TYPE || code == REFERENCE_TYPE)
3928 expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node),
3929 0, 0);
3930 emit_queue ();
3931 }
3932 else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST)
3933 {
3934 emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl));
3935 expand_assignment (decl, DECL_INITIAL (decl), 0, 0);
3936 emit_queue ();
3937 }
3938
3939 /* Don't let the initialization count as "using" the variable. */
3940 TREE_USED (decl) = was_used;
3941
3942 /* Free any temporaries we made while initializing the decl. */
3943 preserve_temp_slots (NULL_RTX);
3944 free_temp_slots ();
3945 }
3946
3947 /* CLEANUP is an expression to be executed at exit from this binding contour;
3948 for example, in C++, it might call the destructor for this variable.
3949
3950 We wrap CLEANUP in an UNSAVE_EXPR node, so that we can expand the
3951 CLEANUP multiple times, and have the correct semantics. This
3952 happens in exception handling, for gotos, returns, breaks that
3953 leave the current scope.
3954
3955 If CLEANUP is nonzero and DECL is zero, we record a cleanup
3956 that is not associated with any particular variable. */
3957
3958 int
3959 expand_decl_cleanup (decl, cleanup)
3960 tree decl, cleanup;
3961 {
3962 struct nesting *thisblock;
3963
3964 /* Error if we are not in any block. */
3965 if (cfun == 0 || block_stack == 0)
3966 return 0;
3967
3968 thisblock = block_stack;
3969
3970 /* Record the cleanup if there is one. */
3971
3972 if (cleanup != 0)
3973 {
3974 tree t;
3975 rtx seq;
3976 tree *cleanups = &thisblock->data.block.cleanups;
3977 int cond_context = conditional_context ();
3978
3979 if (cond_context)
3980 {
3981 rtx flag = gen_reg_rtx (word_mode);
3982 rtx set_flag_0;
3983 tree cond;
3984
3985 start_sequence ();
3986 emit_move_insn (flag, const0_rtx);
3987 set_flag_0 = get_insns ();
3988 end_sequence ();
3989
3990 thisblock->data.block.last_unconditional_cleanup
3991 = emit_insns_after (set_flag_0,
3992 thisblock->data.block.last_unconditional_cleanup);
3993
3994 emit_move_insn (flag, const1_rtx);
3995
3996 /* All cleanups must be on the function_obstack. */
3997 push_obstacks_nochange ();
3998 resume_temporary_allocation ();
3999
4000 cond = build_decl (VAR_DECL, NULL_TREE, type_for_mode (word_mode, 1));
4001 DECL_RTL (cond) = flag;
4002
4003 /* Conditionalize the cleanup. */
4004 cleanup = build (COND_EXPR, void_type_node,
4005 truthvalue_conversion (cond),
4006 cleanup, integer_zero_node);
4007 cleanup = fold (cleanup);
4008
4009 pop_obstacks ();
4010
4011 cleanups = thisblock->data.block.cleanup_ptr;
4012 }
4013
4014 /* All cleanups must be on the function_obstack. */
4015 push_obstacks_nochange ();
4016 resume_temporary_allocation ();
4017 cleanup = unsave_expr (cleanup);
4018 pop_obstacks ();
4019
4020 t = *cleanups = temp_tree_cons (decl, cleanup, *cleanups);
4021
4022 if (! cond_context)
4023 /* If this block has a cleanup, it belongs in stack_block_stack. */
4024 stack_block_stack = thisblock;
4025
4026 if (cond_context)
4027 {
4028 start_sequence ();
4029 }
4030
4031 /* If this was optimized so that there is no exception region for the
4032 cleanup, then mark the TREE_LIST node, so that we can later tell
4033 if we need to call expand_eh_region_end. */
4034 if (! using_eh_for_cleanups_p
4035 || expand_eh_region_start_tree (decl, cleanup))
4036 TREE_ADDRESSABLE (t) = 1;
4037 /* If that started a new EH region, we're in a new block. */
4038 thisblock = block_stack;
4039
4040 if (cond_context)
4041 {
4042 seq = get_insns ();
4043 end_sequence ();
4044 if (seq)
4045 thisblock->data.block.last_unconditional_cleanup
4046 = emit_insns_after (seq,
4047 thisblock->data.block.last_unconditional_cleanup);
4048 }
4049 else
4050 {
4051 thisblock->data.block.last_unconditional_cleanup
4052 = get_last_insn ();
4053 /* When we insert instructions after the last unconditional cleanup,
4054 we don't adjust last_insn. That means that a later add_insn will
4055 clobber the instructions we've just added. The easiest way to
4056 fix this is to just insert another instruction here, so that the
4057 instructions inserted after the last unconditional cleanup are
4058 never the last instruction. */
4059 emit_note (NULL_PTR, NOTE_INSN_DELETED);
4060 thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups;
4061 }
4062 }
4063 return 1;
4064 }
4065
4066 /* Like expand_decl_cleanup, but suppress generating an exception handler
4067 to perform the cleanup. */
4068
4069 #if 0
4070 int
4071 expand_decl_cleanup_no_eh (decl, cleanup)
4072 tree decl, cleanup;
4073 {
4074 int save_eh = using_eh_for_cleanups_p;
4075 int result;
4076
4077 using_eh_for_cleanups_p = 0;
4078 result = expand_decl_cleanup (decl, cleanup);
4079 using_eh_for_cleanups_p = save_eh;
4080
4081 return result;
4082 }
4083 #endif
4084
4085 /* Arrange for the top element of the dynamic cleanup chain to be
4086 popped if we exit the current binding contour. DECL is the
4087 associated declaration, if any, otherwise NULL_TREE. If the
4088 current contour is left via an exception, then __sjthrow will pop
4089 the top element off the dynamic cleanup chain. The code that
4090 avoids doing the action we push into the cleanup chain in the
4091 exceptional case is contained in expand_cleanups.
4092
4093 This routine is only used by expand_eh_region_start, and that is
4094 the only way in which an exception region should be started. This
4095 routine is only used when using the setjmp/longjmp codegen method
4096 for exception handling. */
4097
4098 int
4099 expand_dcc_cleanup (decl)
4100 tree decl;
4101 {
4102 struct nesting *thisblock;
4103 tree cleanup;
4104
4105 /* Error if we are not in any block. */
4106 if (cfun == 0 || block_stack == 0)
4107 return 0;
4108 thisblock = block_stack;
4109
4110 /* Record the cleanup for the dynamic handler chain. */
4111
4112 /* All cleanups must be on the function_obstack. */
4113 push_obstacks_nochange ();
4114 resume_temporary_allocation ();
4115 cleanup = make_node (POPDCC_EXPR);
4116 pop_obstacks ();
4117
4118 /* Add the cleanup in a manner similar to expand_decl_cleanup. */
4119 thisblock->data.block.cleanups
4120 = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups);
4121
4122 /* If this block has a cleanup, it belongs in stack_block_stack. */
4123 stack_block_stack = thisblock;
4124 return 1;
4125 }
4126
4127 /* Arrange for the top element of the dynamic handler chain to be
4128 popped if we exit the current binding contour. DECL is the
4129 associated declaration, if any, otherwise NULL_TREE. If the current
4130 contour is left via an exception, then __sjthrow will pop the top
4131 element off the dynamic handler chain. The code that avoids doing
4132 the action we push into the handler chain in the exceptional case
4133 is contained in expand_cleanups.
4134
4135 This routine is only used by expand_eh_region_start, and that is
4136 the only way in which an exception region should be started. This
4137 routine is only used when using the setjmp/longjmp codegen method
4138 for exception handling. */
4139
4140 int
4141 expand_dhc_cleanup (decl)
4142 tree decl;
4143 {
4144 struct nesting *thisblock;
4145 tree cleanup;
4146
4147 /* Error if we are not in any block. */
4148 if (cfun == 0 || block_stack == 0)
4149 return 0;
4150 thisblock = block_stack;
4151
4152 /* Record the cleanup for the dynamic handler chain. */
4153
4154 /* All cleanups must be on the function_obstack. */
4155 push_obstacks_nochange ();
4156 resume_temporary_allocation ();
4157 cleanup = make_node (POPDHC_EXPR);
4158 pop_obstacks ();
4159
4160 /* Add the cleanup in a manner similar to expand_decl_cleanup. */
4161 thisblock->data.block.cleanups
4162 = temp_tree_cons (decl, cleanup, thisblock->data.block.cleanups);
4163
4164 /* If this block has a cleanup, it belongs in stack_block_stack. */
4165 stack_block_stack = thisblock;
4166 return 1;
4167 }
4168 \f
4169 /* DECL is an anonymous union. CLEANUP is a cleanup for DECL.
4170 DECL_ELTS is the list of elements that belong to DECL's type.
4171 In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */
4172
4173 void
4174 expand_anon_union_decl (decl, cleanup, decl_elts)
4175 tree decl, cleanup, decl_elts;
4176 {
4177 struct nesting *thisblock = cfun == 0 ? 0 : block_stack;
4178 rtx x;
4179 tree t;
4180
4181 /* If any of the elements are addressable, so is the entire union. */
4182 for (t = decl_elts; t; t = TREE_CHAIN (t))
4183 if (TREE_ADDRESSABLE (TREE_VALUE (t)))
4184 {
4185 TREE_ADDRESSABLE (decl) = 1;
4186 break;
4187 }
4188
4189 expand_decl (decl);
4190 expand_decl_cleanup (decl, cleanup);
4191 x = DECL_RTL (decl);
4192
4193 /* Go through the elements, assigning RTL to each. */
4194 for (t = decl_elts; t; t = TREE_CHAIN (t))
4195 {
4196 tree decl_elt = TREE_VALUE (t);
4197 tree cleanup_elt = TREE_PURPOSE (t);
4198 enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt));
4199
4200 /* Propagate the union's alignment to the elements. */
4201 DECL_ALIGN (decl_elt) = DECL_ALIGN (decl);
4202 DECL_USER_ALIGN (decl_elt) = DECL_USER_ALIGN (decl);
4203
4204 /* If the element has BLKmode and the union doesn't, the union is
4205 aligned such that the element doesn't need to have BLKmode, so
4206 change the element's mode to the appropriate one for its size. */
4207 if (mode == BLKmode && DECL_MODE (decl) != BLKmode)
4208 DECL_MODE (decl_elt) = mode
4209 = mode_for_size_tree (DECL_SIZE (decl_elt), MODE_INT, 1);
4210
4211 /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we
4212 instead create a new MEM rtx with the proper mode. */
4213 if (GET_CODE (x) == MEM)
4214 {
4215 if (mode == GET_MODE (x))
4216 DECL_RTL (decl_elt) = x;
4217 else
4218 {
4219 DECL_RTL (decl_elt) = gen_rtx_MEM (mode, copy_rtx (XEXP (x, 0)));
4220 MEM_COPY_ATTRIBUTES (DECL_RTL (decl_elt), x);
4221 }
4222 }
4223 else if (GET_CODE (x) == REG)
4224 {
4225 if (mode == GET_MODE (x))
4226 DECL_RTL (decl_elt) = x;
4227 else
4228 DECL_RTL (decl_elt) = gen_rtx_SUBREG (mode, x, 0);
4229 }
4230 else
4231 abort ();
4232
4233 /* Record the cleanup if there is one. */
4234
4235 if (cleanup != 0)
4236 thisblock->data.block.cleanups
4237 = temp_tree_cons (decl_elt, cleanup_elt,
4238 thisblock->data.block.cleanups);
4239 }
4240 }
4241 \f
4242 /* Expand a list of cleanups LIST.
4243 Elements may be expressions or may be nested lists.
4244
4245 If DONT_DO is nonnull, then any list-element
4246 whose TREE_PURPOSE matches DONT_DO is omitted.
4247 This is sometimes used to avoid a cleanup associated with
4248 a value that is being returned out of the scope.
4249
4250 If IN_FIXUP is non-zero, we are generating this cleanup for a fixup
4251 goto and handle protection regions specially in that case.
4252
4253 If REACHABLE, we emit code, otherwise just inform the exception handling
4254 code about this finalization. */
4255
4256 static void
4257 expand_cleanups (list, dont_do, in_fixup, reachable)
4258 tree list;
4259 tree dont_do;
4260 int in_fixup;
4261 int reachable;
4262 {
4263 tree tail;
4264 for (tail = list; tail; tail = TREE_CHAIN (tail))
4265 if (dont_do == 0 || TREE_PURPOSE (tail) != dont_do)
4266 {
4267 if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
4268 expand_cleanups (TREE_VALUE (tail), dont_do, in_fixup, reachable);
4269 else
4270 {
4271 if (! in_fixup)
4272 {
4273 tree cleanup = TREE_VALUE (tail);
4274
4275 /* See expand_d{h,c}c_cleanup for why we avoid this. */
4276 if (TREE_CODE (cleanup) != POPDHC_EXPR
4277 && TREE_CODE (cleanup) != POPDCC_EXPR
4278 /* See expand_eh_region_start_tree for this case. */
4279 && ! TREE_ADDRESSABLE (tail))
4280 {
4281 cleanup = protect_with_terminate (cleanup);
4282 expand_eh_region_end (cleanup);
4283 }
4284 }
4285
4286 if (reachable)
4287 {
4288 /* Cleanups may be run multiple times. For example,
4289 when exiting a binding contour, we expand the
4290 cleanups associated with that contour. When a goto
4291 within that binding contour has a target outside that
4292 contour, it will expand all cleanups from its scope to
4293 the target. Though the cleanups are expanded multiple
4294 times, the control paths are non-overlapping so the
4295 cleanups will not be executed twice. */
4296
4297 /* We may need to protect fixups with rethrow regions. */
4298 int protect = (in_fixup && ! TREE_ADDRESSABLE (tail));
4299
4300 if (protect)
4301 expand_fixup_region_start ();
4302
4303 /* The cleanup might contain try-blocks, so we have to
4304 preserve our current queue. */
4305 push_ehqueue ();
4306 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
4307 pop_ehqueue ();
4308 if (protect)
4309 expand_fixup_region_end (TREE_VALUE (tail));
4310 free_temp_slots ();
4311 }
4312 }
4313 }
4314 }
4315
4316 /* Mark when the context we are emitting RTL for as a conditional
4317 context, so that any cleanup actions we register with
4318 expand_decl_init will be properly conditionalized when those
4319 cleanup actions are later performed. Must be called before any
4320 expression (tree) is expanded that is within a conditional context. */
4321
4322 void
4323 start_cleanup_deferral ()
4324 {
4325 /* block_stack can be NULL if we are inside the parameter list. It is
4326 OK to do nothing, because cleanups aren't possible here. */
4327 if (block_stack)
4328 ++block_stack->data.block.conditional_code;
4329 }
4330
4331 /* Mark the end of a conditional region of code. Because cleanup
4332 deferrals may be nested, we may still be in a conditional region
4333 after we end the currently deferred cleanups, only after we end all
4334 deferred cleanups, are we back in unconditional code. */
4335
4336 void
4337 end_cleanup_deferral ()
4338 {
4339 /* block_stack can be NULL if we are inside the parameter list. It is
4340 OK to do nothing, because cleanups aren't possible here. */
4341 if (block_stack)
4342 --block_stack->data.block.conditional_code;
4343 }
4344
4345 /* Move all cleanups from the current block_stack
4346 to the containing block_stack, where they are assumed to
4347 have been created. If anything can cause a temporary to
4348 be created, but not expanded for more than one level of
4349 block_stacks, then this code will have to change. */
4350
4351 void
4352 move_cleanups_up ()
4353 {
4354 struct nesting *block = block_stack;
4355 struct nesting *outer = block->next;
4356
4357 outer->data.block.cleanups
4358 = chainon (block->data.block.cleanups,
4359 outer->data.block.cleanups);
4360 block->data.block.cleanups = 0;
4361 }
4362
4363 tree
4364 last_cleanup_this_contour ()
4365 {
4366 if (block_stack == 0)
4367 return 0;
4368
4369 return block_stack->data.block.cleanups;
4370 }
4371
4372 /* Return 1 if there are any pending cleanups at this point.
4373 If THIS_CONTOUR is nonzero, check the current contour as well.
4374 Otherwise, look only at the contours that enclose this one. */
4375
4376 int
4377 any_pending_cleanups (this_contour)
4378 int this_contour;
4379 {
4380 struct nesting *block;
4381
4382 if (cfun == NULL || cfun->stmt == NULL || block_stack == 0)
4383 return 0;
4384
4385 if (this_contour && block_stack->data.block.cleanups != NULL)
4386 return 1;
4387 if (block_stack->data.block.cleanups == 0
4388 && block_stack->data.block.outer_cleanups == 0)
4389 return 0;
4390
4391 for (block = block_stack->next; block; block = block->next)
4392 if (block->data.block.cleanups != 0)
4393 return 1;
4394
4395 return 0;
4396 }
4397 \f
4398 /* Enter a case (Pascal) or switch (C) statement.
4399 Push a block onto case_stack and nesting_stack
4400 to accumulate the case-labels that are seen
4401 and to record the labels generated for the statement.
4402
4403 EXIT_FLAG is nonzero if `exit_something' should exit this case stmt.
4404 Otherwise, this construct is transparent for `exit_something'.
4405
4406 EXPR is the index-expression to be dispatched on.
4407 TYPE is its nominal type. We could simply convert EXPR to this type,
4408 but instead we take short cuts. */
4409
4410 void
4411 expand_start_case (exit_flag, expr, type, printname)
4412 int exit_flag;
4413 tree expr;
4414 tree type;
4415 const char *printname;
4416 {
4417 register struct nesting *thiscase = ALLOC_NESTING ();
4418
4419 /* Make an entry on case_stack for the case we are entering. */
4420
4421 thiscase->next = case_stack;
4422 thiscase->all = nesting_stack;
4423 thiscase->depth = ++nesting_depth;
4424 thiscase->exit_label = exit_flag ? gen_label_rtx () : 0;
4425 thiscase->data.case_stmt.case_list = 0;
4426 thiscase->data.case_stmt.index_expr = expr;
4427 thiscase->data.case_stmt.nominal_type = type;
4428 thiscase->data.case_stmt.default_label = 0;
4429 thiscase->data.case_stmt.num_ranges = 0;
4430 thiscase->data.case_stmt.printname = printname;
4431 thiscase->data.case_stmt.line_number_status = force_line_numbers ();
4432 case_stack = thiscase;
4433 nesting_stack = thiscase;
4434
4435 do_pending_stack_adjust ();
4436
4437 /* Make sure case_stmt.start points to something that won't
4438 need any transformation before expand_end_case. */
4439 if (GET_CODE (get_last_insn ()) != NOTE)
4440 emit_note (NULL_PTR, NOTE_INSN_DELETED);
4441
4442 thiscase->data.case_stmt.start = get_last_insn ();
4443
4444 start_cleanup_deferral ();
4445 }
4446
4447 /* Start a "dummy case statement" within which case labels are invalid
4448 and are not connected to any larger real case statement.
4449 This can be used if you don't want to let a case statement jump
4450 into the middle of certain kinds of constructs. */
4451
4452 void
4453 expand_start_case_dummy ()
4454 {
4455 register struct nesting *thiscase = ALLOC_NESTING ();
4456
4457 /* Make an entry on case_stack for the dummy. */
4458
4459 thiscase->next = case_stack;
4460 thiscase->all = nesting_stack;
4461 thiscase->depth = ++nesting_depth;
4462 thiscase->exit_label = 0;
4463 thiscase->data.case_stmt.case_list = 0;
4464 thiscase->data.case_stmt.start = 0;
4465 thiscase->data.case_stmt.nominal_type = 0;
4466 thiscase->data.case_stmt.default_label = 0;
4467 thiscase->data.case_stmt.num_ranges = 0;
4468 case_stack = thiscase;
4469 nesting_stack = thiscase;
4470 start_cleanup_deferral ();
4471 }
4472
4473 /* End a dummy case statement. */
4474
4475 void
4476 expand_end_case_dummy ()
4477 {
4478 end_cleanup_deferral ();
4479 POPSTACK (case_stack);
4480 }
4481
4482 /* Return the data type of the index-expression
4483 of the innermost case statement, or null if none. */
4484
4485 tree
4486 case_index_expr_type ()
4487 {
4488 if (case_stack)
4489 return TREE_TYPE (case_stack->data.case_stmt.index_expr);
4490 return 0;
4491 }
4492 \f
4493 static void
4494 check_seenlabel ()
4495 {
4496 /* If this is the first label, warn if any insns have been emitted. */
4497 if (case_stack->data.case_stmt.line_number_status >= 0)
4498 {
4499 rtx insn;
4500
4501 restore_line_number_status
4502 (case_stack->data.case_stmt.line_number_status);
4503 case_stack->data.case_stmt.line_number_status = -1;
4504
4505 for (insn = case_stack->data.case_stmt.start;
4506 insn;
4507 insn = NEXT_INSN (insn))
4508 {
4509 if (GET_CODE (insn) == CODE_LABEL)
4510 break;
4511 if (GET_CODE (insn) != NOTE
4512 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE))
4513 {
4514 do
4515 insn = PREV_INSN (insn);
4516 while (insn && (GET_CODE (insn) != NOTE || NOTE_LINE_NUMBER (insn) < 0));
4517
4518 /* If insn is zero, then there must have been a syntax error. */
4519 if (insn)
4520 warning_with_file_and_line (NOTE_SOURCE_FILE (insn),
4521 NOTE_LINE_NUMBER (insn),
4522 "unreachable code at beginning of %s",
4523 case_stack->data.case_stmt.printname);
4524 break;
4525 }
4526 }
4527 }
4528 }
4529
4530 /* Accumulate one case or default label inside a case or switch statement.
4531 VALUE is the value of the case (a null pointer, for a default label).
4532 The function CONVERTER, when applied to arguments T and V,
4533 converts the value V to the type T.
4534
4535 If not currently inside a case or switch statement, return 1 and do
4536 nothing. The caller will print a language-specific error message.
4537 If VALUE is a duplicate or overlaps, return 2 and do nothing
4538 except store the (first) duplicate node in *DUPLICATE.
4539 If VALUE is out of range, return 3 and do nothing.
4540 If we are jumping into the scope of a cleanup or var-sized array, return 5.
4541 Return 0 on success.
4542
4543 Extended to handle range statements. */
4544
4545 int
4546 pushcase (value, converter, label, duplicate)
4547 register tree value;
4548 tree (*converter) PARAMS ((tree, tree));
4549 register tree label;
4550 tree *duplicate;
4551 {
4552 tree index_type;
4553 tree nominal_type;
4554
4555 /* Fail if not inside a real case statement. */
4556 if (! (case_stack && case_stack->data.case_stmt.start))
4557 return 1;
4558
4559 if (stack_block_stack
4560 && stack_block_stack->depth > case_stack->depth)
4561 return 5;
4562
4563 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4564 nominal_type = case_stack->data.case_stmt.nominal_type;
4565
4566 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4567 if (index_type == error_mark_node)
4568 return 0;
4569
4570 /* Convert VALUE to the type in which the comparisons are nominally done. */
4571 if (value != 0)
4572 value = (*converter) (nominal_type, value);
4573
4574 check_seenlabel ();
4575
4576 /* Fail if this value is out of range for the actual type of the index
4577 (which may be narrower than NOMINAL_TYPE). */
4578 if (value != 0
4579 && (TREE_CONSTANT_OVERFLOW (value)
4580 || ! int_fits_type_p (value, index_type)))
4581 return 3;
4582
4583 /* Fail if this is a duplicate or overlaps another entry. */
4584 if (value == 0)
4585 {
4586 if (case_stack->data.case_stmt.default_label != 0)
4587 {
4588 *duplicate = case_stack->data.case_stmt.default_label;
4589 return 2;
4590 }
4591 case_stack->data.case_stmt.default_label = label;
4592 }
4593 else
4594 return add_case_node (value, value, label, duplicate);
4595
4596 expand_label (label);
4597 return 0;
4598 }
4599
4600 /* Like pushcase but this case applies to all values between VALUE1 and
4601 VALUE2 (inclusive). If VALUE1 is NULL, the range starts at the lowest
4602 value of the index type and ends at VALUE2. If VALUE2 is NULL, the range
4603 starts at VALUE1 and ends at the highest value of the index type.
4604 If both are NULL, this case applies to all values.
4605
4606 The return value is the same as that of pushcase but there is one
4607 additional error code: 4 means the specified range was empty. */
4608
4609 int
4610 pushcase_range (value1, value2, converter, label, duplicate)
4611 register tree value1, value2;
4612 tree (*converter) PARAMS ((tree, tree));
4613 register tree label;
4614 tree *duplicate;
4615 {
4616 tree index_type;
4617 tree nominal_type;
4618
4619 /* Fail if not inside a real case statement. */
4620 if (! (case_stack && case_stack->data.case_stmt.start))
4621 return 1;
4622
4623 if (stack_block_stack
4624 && stack_block_stack->depth > case_stack->depth)
4625 return 5;
4626
4627 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4628 nominal_type = case_stack->data.case_stmt.nominal_type;
4629
4630 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4631 if (index_type == error_mark_node)
4632 return 0;
4633
4634 check_seenlabel ();
4635
4636 /* Convert VALUEs to type in which the comparisons are nominally done
4637 and replace any unspecified value with the corresponding bound. */
4638 if (value1 == 0)
4639 value1 = TYPE_MIN_VALUE (index_type);
4640 if (value2 == 0)
4641 value2 = TYPE_MAX_VALUE (index_type);
4642
4643 /* Fail if the range is empty. Do this before any conversion since
4644 we want to allow out-of-range empty ranges. */
4645 if (value2 != 0 && tree_int_cst_lt (value2, value1))
4646 return 4;
4647
4648 /* If the max was unbounded, use the max of the nominal_type we are
4649 converting to. Do this after the < check above to suppress false
4650 positives. */
4651 if (value2 == 0)
4652 value2 = TYPE_MAX_VALUE (nominal_type);
4653
4654 value1 = (*converter) (nominal_type, value1);
4655 value2 = (*converter) (nominal_type, value2);
4656
4657 /* Fail if these values are out of range. */
4658 if (TREE_CONSTANT_OVERFLOW (value1)
4659 || ! int_fits_type_p (value1, index_type))
4660 return 3;
4661
4662 if (TREE_CONSTANT_OVERFLOW (value2)
4663 || ! int_fits_type_p (value2, index_type))
4664 return 3;
4665
4666 return add_case_node (value1, value2, label, duplicate);
4667 }
4668
4669 /* Do the actual insertion of a case label for pushcase and pushcase_range
4670 into case_stack->data.case_stmt.case_list. Use an AVL tree to avoid
4671 slowdown for large switch statements. */
4672
4673 static int
4674 add_case_node (low, high, label, duplicate)
4675 tree low, high;
4676 tree label;
4677 tree *duplicate;
4678 {
4679 struct case_node *p, **q, *r;
4680
4681 q = &case_stack->data.case_stmt.case_list;
4682 p = *q;
4683
4684 while ((r = *q))
4685 {
4686 p = r;
4687
4688 /* Keep going past elements distinctly greater than HIGH. */
4689 if (tree_int_cst_lt (high, p->low))
4690 q = &p->left;
4691
4692 /* or distinctly less than LOW. */
4693 else if (tree_int_cst_lt (p->high, low))
4694 q = &p->right;
4695
4696 else
4697 {
4698 /* We have an overlap; this is an error. */
4699 *duplicate = p->code_label;
4700 return 2;
4701 }
4702 }
4703
4704 /* Add this label to the chain, and succeed.
4705 Copy LOW, HIGH so they are on temporary rather than momentary
4706 obstack and will thus survive till the end of the case statement. */
4707
4708 r = (struct case_node *) oballoc (sizeof (struct case_node));
4709 r->low = copy_node (low);
4710
4711 /* If the bounds are equal, turn this into the one-value case. */
4712
4713 if (tree_int_cst_equal (low, high))
4714 r->high = r->low;
4715 else
4716 {
4717 r->high = copy_node (high);
4718 case_stack->data.case_stmt.num_ranges++;
4719 }
4720
4721 r->code_label = label;
4722 expand_label (label);
4723
4724 *q = r;
4725 r->parent = p;
4726 r->left = 0;
4727 r->right = 0;
4728 r->balance = 0;
4729
4730 while (p)
4731 {
4732 struct case_node *s;
4733
4734 if (r == p->left)
4735 {
4736 int b;
4737
4738 if (! (b = p->balance))
4739 /* Growth propagation from left side. */
4740 p->balance = -1;
4741 else if (b < 0)
4742 {
4743 if (r->balance < 0)
4744 {
4745 /* R-Rotation */
4746 if ((p->left = s = r->right))
4747 s->parent = p;
4748
4749 r->right = p;
4750 p->balance = 0;
4751 r->balance = 0;
4752 s = p->parent;
4753 p->parent = r;
4754
4755 if ((r->parent = s))
4756 {
4757 if (s->left == p)
4758 s->left = r;
4759 else
4760 s->right = r;
4761 }
4762 else
4763 case_stack->data.case_stmt.case_list = r;
4764 }
4765 else
4766 /* r->balance == +1 */
4767 {
4768 /* LR-Rotation */
4769
4770 int b2;
4771 struct case_node *t = r->right;
4772
4773 if ((p->left = s = t->right))
4774 s->parent = p;
4775
4776 t->right = p;
4777 if ((r->right = s = t->left))
4778 s->parent = r;
4779
4780 t->left = r;
4781 b = t->balance;
4782 b2 = b < 0;
4783 p->balance = b2;
4784 b2 = -b2 - b;
4785 r->balance = b2;
4786 t->balance = 0;
4787 s = p->parent;
4788 p->parent = t;
4789 r->parent = t;
4790
4791 if ((t->parent = s))
4792 {
4793 if (s->left == p)
4794 s->left = t;
4795 else
4796 s->right = t;
4797 }
4798 else
4799 case_stack->data.case_stmt.case_list = t;
4800 }
4801 break;
4802 }
4803
4804 else
4805 {
4806 /* p->balance == +1; growth of left side balances the node. */
4807 p->balance = 0;
4808 break;
4809 }
4810 }
4811 else
4812 /* r == p->right */
4813 {
4814 int b;
4815
4816 if (! (b = p->balance))
4817 /* Growth propagation from right side. */
4818 p->balance++;
4819 else if (b > 0)
4820 {
4821 if (r->balance > 0)
4822 {
4823 /* L-Rotation */
4824
4825 if ((p->right = s = r->left))
4826 s->parent = p;
4827
4828 r->left = p;
4829 p->balance = 0;
4830 r->balance = 0;
4831 s = p->parent;
4832 p->parent = r;
4833 if ((r->parent = s))
4834 {
4835 if (s->left == p)
4836 s->left = r;
4837 else
4838 s->right = r;
4839 }
4840
4841 else
4842 case_stack->data.case_stmt.case_list = r;
4843 }
4844
4845 else
4846 /* r->balance == -1 */
4847 {
4848 /* RL-Rotation */
4849 int b2;
4850 struct case_node *t = r->left;
4851
4852 if ((p->right = s = t->left))
4853 s->parent = p;
4854
4855 t->left = p;
4856
4857 if ((r->left = s = t->right))
4858 s->parent = r;
4859
4860 t->right = r;
4861 b = t->balance;
4862 b2 = b < 0;
4863 r->balance = b2;
4864 b2 = -b2 - b;
4865 p->balance = b2;
4866 t->balance = 0;
4867 s = p->parent;
4868 p->parent = t;
4869 r->parent = t;
4870
4871 if ((t->parent = s))
4872 {
4873 if (s->left == p)
4874 s->left = t;
4875 else
4876 s->right = t;
4877 }
4878
4879 else
4880 case_stack->data.case_stmt.case_list = t;
4881 }
4882 break;
4883 }
4884 else
4885 {
4886 /* p->balance == -1; growth of right side balances the node. */
4887 p->balance = 0;
4888 break;
4889 }
4890 }
4891
4892 r = p;
4893 p = p->parent;
4894 }
4895
4896 return 0;
4897 }
4898 \f
4899 /* Returns the number of possible values of TYPE.
4900 Returns -1 if the number is unknown, variable, or if the number does not
4901 fit in a HOST_WIDE_INT.
4902 Sets *SPARENESS to 2 if TYPE is an ENUMERAL_TYPE whose values
4903 do not increase monotonically (there may be duplicates);
4904 to 1 if the values increase monotonically, but not always by 1;
4905 otherwise sets it to 0. */
4906
4907 HOST_WIDE_INT
4908 all_cases_count (type, spareness)
4909 tree type;
4910 int *spareness;
4911 {
4912 tree t;
4913 HOST_WIDE_INT count, minval, lastval;
4914
4915 *spareness = 0;
4916
4917 switch (TREE_CODE (type))
4918 {
4919 case BOOLEAN_TYPE:
4920 count = 2;
4921 break;
4922
4923 case CHAR_TYPE:
4924 count = 1 << BITS_PER_UNIT;
4925 break;
4926
4927 default:
4928 case INTEGER_TYPE:
4929 if (TYPE_MAX_VALUE (type) != 0
4930 && 0 != (t = fold (build (MINUS_EXPR, type, TYPE_MAX_VALUE (type),
4931 TYPE_MIN_VALUE (type))))
4932 && 0 != (t = fold (build (PLUS_EXPR, type, t,
4933 convert (type, integer_zero_node))))
4934 && host_integerp (t, 1))
4935 count = tree_low_cst (t, 1);
4936 else
4937 return -1;
4938 break;
4939
4940 case ENUMERAL_TYPE:
4941 /* Don't waste time with enumeral types with huge values. */
4942 if (! host_integerp (TYPE_MIN_VALUE (type), 0)
4943 || TYPE_MAX_VALUE (type) == 0
4944 || ! host_integerp (TYPE_MAX_VALUE (type), 0))
4945 return -1;
4946
4947 lastval = minval = tree_low_cst (TYPE_MIN_VALUE (type), 0);
4948 count = 0;
4949
4950 for (t = TYPE_VALUES (type); t != NULL_TREE; t = TREE_CHAIN (t))
4951 {
4952 HOST_WIDE_INT thisval = tree_low_cst (TREE_VALUE (t), 0);
4953
4954 if (*spareness == 2 || thisval < lastval)
4955 *spareness = 2;
4956 else if (thisval != minval + count)
4957 *spareness = 1;
4958
4959 count++;
4960 }
4961 }
4962
4963 return count;
4964 }
4965
4966 #define BITARRAY_TEST(ARRAY, INDEX) \
4967 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4968 & (1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR)))
4969 #define BITARRAY_SET(ARRAY, INDEX) \
4970 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4971 |= 1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR))
4972
4973 /* Set the elements of the bitstring CASES_SEEN (which has length COUNT),
4974 with the case values we have seen, assuming the case expression
4975 has the given TYPE.
4976 SPARSENESS is as determined by all_cases_count.
4977
4978 The time needed is proportional to COUNT, unless
4979 SPARSENESS is 2, in which case quadratic time is needed. */
4980
4981 void
4982 mark_seen_cases (type, cases_seen, count, sparseness)
4983 tree type;
4984 unsigned char *cases_seen;
4985 HOST_WIDE_INT count;
4986 int sparseness;
4987 {
4988 tree next_node_to_try = NULL_TREE;
4989 HOST_WIDE_INT next_node_offset = 0;
4990
4991 register struct case_node *n, *root = case_stack->data.case_stmt.case_list;
4992 tree val = make_node (INTEGER_CST);
4993
4994 TREE_TYPE (val) = type;
4995 if (! root)
4996 /* Do nothing. */
4997 ;
4998 else if (sparseness == 2)
4999 {
5000 tree t;
5001 unsigned HOST_WIDE_INT xlo;
5002
5003 /* This less efficient loop is only needed to handle
5004 duplicate case values (multiple enum constants
5005 with the same value). */
5006 TREE_TYPE (val) = TREE_TYPE (root->low);
5007 for (t = TYPE_VALUES (type), xlo = 0; t != NULL_TREE;
5008 t = TREE_CHAIN (t), xlo++)
5009 {
5010 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (TREE_VALUE (t));
5011 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (TREE_VALUE (t));
5012 n = root;
5013 do
5014 {
5015 /* Keep going past elements distinctly greater than VAL. */
5016 if (tree_int_cst_lt (val, n->low))
5017 n = n->left;
5018
5019 /* or distinctly less than VAL. */
5020 else if (tree_int_cst_lt (n->high, val))
5021 n = n->right;
5022
5023 else
5024 {
5025 /* We have found a matching range. */
5026 BITARRAY_SET (cases_seen, xlo);
5027 break;
5028 }
5029 }
5030 while (n);
5031 }
5032 }
5033 else
5034 {
5035 if (root->left)
5036 case_stack->data.case_stmt.case_list = root = case_tree2list (root, 0);
5037
5038 for (n = root; n; n = n->right)
5039 {
5040 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (n->low);
5041 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (n->low);
5042 while (! tree_int_cst_lt (n->high, val))
5043 {
5044 /* Calculate (into xlo) the "offset" of the integer (val).
5045 The element with lowest value has offset 0, the next smallest
5046 element has offset 1, etc. */
5047
5048 unsigned HOST_WIDE_INT xlo;
5049 HOST_WIDE_INT xhi;
5050 tree t;
5051
5052 if (sparseness && TYPE_VALUES (type) != NULL_TREE)
5053 {
5054 /* The TYPE_VALUES will be in increasing order, so
5055 starting searching where we last ended. */
5056 t = next_node_to_try;
5057 xlo = next_node_offset;
5058 xhi = 0;
5059 for (;;)
5060 {
5061 if (t == NULL_TREE)
5062 {
5063 t = TYPE_VALUES (type);
5064 xlo = 0;
5065 }
5066 if (tree_int_cst_equal (val, TREE_VALUE (t)))
5067 {
5068 next_node_to_try = TREE_CHAIN (t);
5069 next_node_offset = xlo + 1;
5070 break;
5071 }
5072 xlo++;
5073 t = TREE_CHAIN (t);
5074 if (t == next_node_to_try)
5075 {
5076 xlo = -1;
5077 break;
5078 }
5079 }
5080 }
5081 else
5082 {
5083 t = TYPE_MIN_VALUE (type);
5084 if (t)
5085 neg_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t),
5086 &xlo, &xhi);
5087 else
5088 xlo = xhi = 0;
5089 add_double (xlo, xhi,
5090 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5091 &xlo, &xhi);
5092 }
5093
5094 if (xhi == 0 && xlo < (unsigned HOST_WIDE_INT) count)
5095 BITARRAY_SET (cases_seen, xlo);
5096
5097 add_double (TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5098 1, 0,
5099 &TREE_INT_CST_LOW (val), &TREE_INT_CST_HIGH (val));
5100 }
5101 }
5102 }
5103 }
5104
5105 /* Called when the index of a switch statement is an enumerated type
5106 and there is no default label.
5107
5108 Checks that all enumeration literals are covered by the case
5109 expressions of a switch. Also, warn if there are any extra
5110 switch cases that are *not* elements of the enumerated type.
5111
5112 If all enumeration literals were covered by the case expressions,
5113 turn one of the expressions into the default expression since it should
5114 not be possible to fall through such a switch. */
5115
5116 void
5117 check_for_full_enumeration_handling (type)
5118 tree type;
5119 {
5120 register struct case_node *n;
5121 register tree chain;
5122 #if 0 /* variable used by 'if 0'ed code below. */
5123 register struct case_node **l;
5124 int all_values = 1;
5125 #endif
5126
5127 /* True iff the selector type is a numbered set mode. */
5128 int sparseness = 0;
5129
5130 /* The number of possible selector values. */
5131 HOST_WIDE_INT size;
5132
5133 /* For each possible selector value. a one iff it has been matched
5134 by a case value alternative. */
5135 unsigned char *cases_seen;
5136
5137 /* The allocated size of cases_seen, in chars. */
5138 HOST_WIDE_INT bytes_needed;
5139
5140 if (! warn_switch)
5141 return;
5142
5143 size = all_cases_count (type, &sparseness);
5144 bytes_needed = (size + HOST_BITS_PER_CHAR) / HOST_BITS_PER_CHAR;
5145
5146 if (size > 0 && size < 600000
5147 /* We deliberately use calloc here, not cmalloc, so that we can suppress
5148 this optimization if we don't have enough memory rather than
5149 aborting, as xmalloc would do. */
5150 && (cases_seen = (unsigned char *) calloc (bytes_needed, 1)) != NULL)
5151 {
5152 HOST_WIDE_INT i;
5153 tree v = TYPE_VALUES (type);
5154
5155 /* The time complexity of this code is normally O(N), where
5156 N being the number of members in the enumerated type.
5157 However, if type is a ENUMERAL_TYPE whose values do not
5158 increase monotonically, O(N*log(N)) time may be needed. */
5159
5160 mark_seen_cases (type, cases_seen, size, sparseness);
5161
5162 for (i = 0; v != NULL_TREE && i < size; i++, v = TREE_CHAIN (v))
5163 if (BITARRAY_TEST (cases_seen, i) == 0)
5164 warning ("enumeration value `%s' not handled in switch",
5165 IDENTIFIER_POINTER (TREE_PURPOSE (v)));
5166
5167 free (cases_seen);
5168 }
5169
5170 /* Now we go the other way around; we warn if there are case
5171 expressions that don't correspond to enumerators. This can
5172 occur since C and C++ don't enforce type-checking of
5173 assignments to enumeration variables. */
5174
5175 if (case_stack->data.case_stmt.case_list
5176 && case_stack->data.case_stmt.case_list->left)
5177 case_stack->data.case_stmt.case_list
5178 = case_tree2list (case_stack->data.case_stmt.case_list, 0);
5179 if (warn_switch)
5180 for (n = case_stack->data.case_stmt.case_list; n; n = n->right)
5181 {
5182 for (chain = TYPE_VALUES (type);
5183 chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain));
5184 chain = TREE_CHAIN (chain))
5185 ;
5186
5187 if (!chain)
5188 {
5189 if (TYPE_NAME (type) == 0)
5190 warning ("case value `%ld' not in enumerated type",
5191 (long) TREE_INT_CST_LOW (n->low));
5192 else
5193 warning ("case value `%ld' not in enumerated type `%s'",
5194 (long) TREE_INT_CST_LOW (n->low),
5195 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5196 == IDENTIFIER_NODE)
5197 ? TYPE_NAME (type)
5198 : DECL_NAME (TYPE_NAME (type))));
5199 }
5200 if (!tree_int_cst_equal (n->low, n->high))
5201 {
5202 for (chain = TYPE_VALUES (type);
5203 chain && !tree_int_cst_equal (n->high, TREE_VALUE (chain));
5204 chain = TREE_CHAIN (chain))
5205 ;
5206
5207 if (!chain)
5208 {
5209 if (TYPE_NAME (type) == 0)
5210 warning ("case value `%ld' not in enumerated type",
5211 (long) TREE_INT_CST_LOW (n->high));
5212 else
5213 warning ("case value `%ld' not in enumerated type `%s'",
5214 (long) TREE_INT_CST_LOW (n->high),
5215 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5216 == IDENTIFIER_NODE)
5217 ? TYPE_NAME (type)
5218 : DECL_NAME (TYPE_NAME (type))));
5219 }
5220 }
5221 }
5222
5223 #if 0
5224 /* ??? This optimization is disabled because it causes valid programs to
5225 fail. ANSI C does not guarantee that an expression with enum type
5226 will have a value that is the same as one of the enumeration literals. */
5227
5228 /* If all values were found as case labels, make one of them the default
5229 label. Thus, this switch will never fall through. We arbitrarily pick
5230 the last one to make the default since this is likely the most
5231 efficient choice. */
5232
5233 if (all_values)
5234 {
5235 for (l = &case_stack->data.case_stmt.case_list;
5236 (*l)->right != 0;
5237 l = &(*l)->right)
5238 ;
5239
5240 case_stack->data.case_stmt.default_label = (*l)->code_label;
5241 *l = 0;
5242 }
5243 #endif /* 0 */
5244 }
5245
5246 \f
5247 /* Terminate a case (Pascal) or switch (C) statement
5248 in which ORIG_INDEX is the expression to be tested.
5249 Generate the code to test it and jump to the right place. */
5250
5251 void
5252 expand_end_case (orig_index)
5253 tree orig_index;
5254 {
5255 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE, orig_minval;
5256 rtx default_label = 0;
5257 register struct case_node *n;
5258 unsigned int count;
5259 rtx index;
5260 rtx table_label;
5261 int ncases;
5262 rtx *labelvec;
5263 register int i;
5264 rtx before_case;
5265 register struct nesting *thiscase = case_stack;
5266 tree index_expr, index_type;
5267 int unsignedp;
5268
5269 /* Don't crash due to previous errors. */
5270 if (thiscase == NULL)
5271 return;
5272
5273 table_label = gen_label_rtx ();
5274 index_expr = thiscase->data.case_stmt.index_expr;
5275 index_type = TREE_TYPE (index_expr);
5276 unsignedp = TREE_UNSIGNED (index_type);
5277
5278 do_pending_stack_adjust ();
5279
5280 /* This might get an spurious warning in the presence of a syntax error;
5281 it could be fixed by moving the call to check_seenlabel after the
5282 check for error_mark_node, and copying the code of check_seenlabel that
5283 deals with case_stack->data.case_stmt.line_number_status /
5284 restore_line_number_status in front of the call to end_cleanup_deferral;
5285 However, this might miss some useful warnings in the presence of
5286 non-syntax errors. */
5287 check_seenlabel ();
5288
5289 /* An ERROR_MARK occurs for various reasons including invalid data type. */
5290 if (index_type != error_mark_node)
5291 {
5292 /* If switch expression was an enumerated type, check that all
5293 enumeration literals are covered by the cases.
5294 No sense trying this if there's a default case, however. */
5295
5296 if (!thiscase->data.case_stmt.default_label
5297 && TREE_CODE (TREE_TYPE (orig_index)) == ENUMERAL_TYPE
5298 && TREE_CODE (index_expr) != INTEGER_CST)
5299 check_for_full_enumeration_handling (TREE_TYPE (orig_index));
5300
5301 /* If we don't have a default-label, create one here,
5302 after the body of the switch. */
5303 if (thiscase->data.case_stmt.default_label == 0)
5304 {
5305 thiscase->data.case_stmt.default_label
5306 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
5307 expand_label (thiscase->data.case_stmt.default_label);
5308 }
5309 default_label = label_rtx (thiscase->data.case_stmt.default_label);
5310
5311 before_case = get_last_insn ();
5312
5313 if (thiscase->data.case_stmt.case_list
5314 && thiscase->data.case_stmt.case_list->left)
5315 thiscase->data.case_stmt.case_list
5316 = case_tree2list (thiscase->data.case_stmt.case_list, 0);
5317
5318 /* Simplify the case-list before we count it. */
5319 group_case_nodes (thiscase->data.case_stmt.case_list);
5320
5321 /* Get upper and lower bounds of case values.
5322 Also convert all the case values to the index expr's data type. */
5323
5324 count = 0;
5325 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5326 {
5327 /* Check low and high label values are integers. */
5328 if (TREE_CODE (n->low) != INTEGER_CST)
5329 abort ();
5330 if (TREE_CODE (n->high) != INTEGER_CST)
5331 abort ();
5332
5333 n->low = convert (index_type, n->low);
5334 n->high = convert (index_type, n->high);
5335
5336 /* Count the elements and track the largest and smallest
5337 of them (treating them as signed even if they are not). */
5338 if (count++ == 0)
5339 {
5340 minval = n->low;
5341 maxval = n->high;
5342 }
5343 else
5344 {
5345 if (INT_CST_LT (n->low, minval))
5346 minval = n->low;
5347 if (INT_CST_LT (maxval, n->high))
5348 maxval = n->high;
5349 }
5350 /* A range counts double, since it requires two compares. */
5351 if (! tree_int_cst_equal (n->low, n->high))
5352 count++;
5353 }
5354
5355 orig_minval = minval;
5356
5357 /* Compute span of values. */
5358 if (count != 0)
5359 range = fold (build (MINUS_EXPR, index_type, maxval, minval));
5360
5361 end_cleanup_deferral ();
5362
5363 if (count == 0)
5364 {
5365 expand_expr (index_expr, const0_rtx, VOIDmode, 0);
5366 emit_queue ();
5367 emit_jump (default_label);
5368 }
5369
5370 /* If range of values is much bigger than number of values,
5371 make a sequence of conditional branches instead of a dispatch.
5372 If the switch-index is a constant, do it this way
5373 because we can optimize it. */
5374
5375 #ifndef CASE_VALUES_THRESHOLD
5376 #ifdef HAVE_casesi
5377 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
5378 #else
5379 /* If machine does not have a case insn that compares the
5380 bounds, this means extra overhead for dispatch tables
5381 which raises the threshold for using them. */
5382 #define CASE_VALUES_THRESHOLD 5
5383 #endif /* HAVE_casesi */
5384 #endif /* CASE_VALUES_THRESHOLD */
5385
5386 else if (count < CASE_VALUES_THRESHOLD
5387 || compare_tree_int (range, 10 * count) > 0
5388 /* RANGE may be signed, and really large ranges will show up
5389 as negative numbers. */
5390 || compare_tree_int (range, 0) < 0
5391 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
5392 || flag_pic
5393 #endif
5394 || TREE_CODE (index_expr) == INTEGER_CST
5395 /* These will reduce to a constant. */
5396 || (TREE_CODE (index_expr) == CALL_EXPR
5397 && TREE_CODE (TREE_OPERAND (index_expr, 0)) == ADDR_EXPR
5398 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == FUNCTION_DECL
5399 && DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_NORMAL
5400 && DECL_FUNCTION_CODE (TREE_OPERAND (TREE_OPERAND (index_expr, 0), 0)) == BUILT_IN_CLASSIFY_TYPE)
5401 || (TREE_CODE (index_expr) == COMPOUND_EXPR
5402 && TREE_CODE (TREE_OPERAND (index_expr, 1)) == INTEGER_CST))
5403 {
5404 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5405
5406 /* If the index is a short or char that we do not have
5407 an insn to handle comparisons directly, convert it to
5408 a full integer now, rather than letting each comparison
5409 generate the conversion. */
5410
5411 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
5412 && (cmp_optab->handlers[(int) GET_MODE (index)].insn_code
5413 == CODE_FOR_nothing))
5414 {
5415 enum machine_mode wider_mode;
5416 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
5417 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5418 if (cmp_optab->handlers[(int) wider_mode].insn_code
5419 != CODE_FOR_nothing)
5420 {
5421 index = convert_to_mode (wider_mode, index, unsignedp);
5422 break;
5423 }
5424 }
5425
5426 emit_queue ();
5427 do_pending_stack_adjust ();
5428
5429 index = protect_from_queue (index, 0);
5430 if (GET_CODE (index) == MEM)
5431 index = copy_to_reg (index);
5432 if (GET_CODE (index) == CONST_INT
5433 || TREE_CODE (index_expr) == INTEGER_CST)
5434 {
5435 /* Make a tree node with the proper constant value
5436 if we don't already have one. */
5437 if (TREE_CODE (index_expr) != INTEGER_CST)
5438 {
5439 index_expr
5440 = build_int_2 (INTVAL (index),
5441 unsignedp || INTVAL (index) >= 0 ? 0 : -1);
5442 index_expr = convert (index_type, index_expr);
5443 }
5444
5445 /* For constant index expressions we need only
5446 issue a unconditional branch to the appropriate
5447 target code. The job of removing any unreachable
5448 code is left to the optimisation phase if the
5449 "-O" option is specified. */
5450 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5451 if (! tree_int_cst_lt (index_expr, n->low)
5452 && ! tree_int_cst_lt (n->high, index_expr))
5453 break;
5454
5455 if (n)
5456 emit_jump (label_rtx (n->code_label));
5457 else
5458 emit_jump (default_label);
5459 }
5460 else
5461 {
5462 /* If the index expression is not constant we generate
5463 a binary decision tree to select the appropriate
5464 target code. This is done as follows:
5465
5466 The list of cases is rearranged into a binary tree,
5467 nearly optimal assuming equal probability for each case.
5468
5469 The tree is transformed into RTL, eliminating
5470 redundant test conditions at the same time.
5471
5472 If program flow could reach the end of the
5473 decision tree an unconditional jump to the
5474 default code is emitted. */
5475
5476 use_cost_table
5477 = (TREE_CODE (TREE_TYPE (orig_index)) != ENUMERAL_TYPE
5478 && estimate_case_costs (thiscase->data.case_stmt.case_list));
5479 balance_case_nodes (&thiscase->data.case_stmt.case_list,
5480 NULL_PTR);
5481 emit_case_nodes (index, thiscase->data.case_stmt.case_list,
5482 default_label, index_type);
5483 emit_jump_if_reachable (default_label);
5484 }
5485 }
5486 else
5487 {
5488 int win = 0;
5489 #ifdef HAVE_casesi
5490 if (HAVE_casesi)
5491 {
5492 enum machine_mode index_mode = SImode;
5493 int index_bits = GET_MODE_BITSIZE (index_mode);
5494 rtx op1, op2;
5495 enum machine_mode op_mode;
5496
5497 /* Convert the index to SImode. */
5498 if (GET_MODE_BITSIZE (TYPE_MODE (index_type))
5499 > GET_MODE_BITSIZE (index_mode))
5500 {
5501 enum machine_mode omode = TYPE_MODE (index_type);
5502 rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0);
5503
5504 /* We must handle the endpoints in the original mode. */
5505 index_expr = build (MINUS_EXPR, index_type,
5506 index_expr, minval);
5507 minval = integer_zero_node;
5508 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5509 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
5510 omode, 1, 0, default_label);
5511 /* Now we can safely truncate. */
5512 index = convert_to_mode (index_mode, index, 0);
5513 }
5514 else
5515 {
5516 if (TYPE_MODE (index_type) != index_mode)
5517 {
5518 index_expr = convert (type_for_size (index_bits, 0),
5519 index_expr);
5520 index_type = TREE_TYPE (index_expr);
5521 }
5522
5523 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5524 }
5525 emit_queue ();
5526 index = protect_from_queue (index, 0);
5527 do_pending_stack_adjust ();
5528
5529 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
5530 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
5531 (index, op_mode))
5532 index = copy_to_mode_reg (op_mode, index);
5533
5534 op1 = expand_expr (minval, NULL_RTX, VOIDmode, 0);
5535
5536 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
5537 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
5538 (op1, op_mode))
5539 op1 = copy_to_mode_reg (op_mode, op1);
5540
5541 op2 = expand_expr (range, NULL_RTX, VOIDmode, 0);
5542
5543 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
5544 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
5545 (op2, op_mode))
5546 op2 = copy_to_mode_reg (op_mode, op2);
5547
5548 emit_jump_insn (gen_casesi (index, op1, op2,
5549 table_label, default_label));
5550 win = 1;
5551 }
5552 #endif
5553 #ifdef HAVE_tablejump
5554 if (! win && HAVE_tablejump)
5555 {
5556 index_type = thiscase->data.case_stmt.nominal_type;
5557 index_expr = fold (build (MINUS_EXPR, index_type,
5558 convert (index_type, index_expr),
5559 convert (index_type, minval)));
5560 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5561 emit_queue ();
5562 index = protect_from_queue (index, 0);
5563 do_pending_stack_adjust ();
5564
5565 do_tablejump (index, TYPE_MODE (index_type),
5566 expand_expr (range, NULL_RTX, VOIDmode, 0),
5567 table_label, default_label);
5568 win = 1;
5569 }
5570 #endif
5571 if (! win)
5572 abort ();
5573
5574 /* Get table of labels to jump to, in order of case index. */
5575
5576 ncases = TREE_INT_CST_LOW (range) + 1;
5577 labelvec = (rtx *) alloca (ncases * sizeof (rtx));
5578 bzero ((char *) labelvec, ncases * sizeof (rtx));
5579
5580 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5581 {
5582 register HOST_WIDE_INT i
5583 = TREE_INT_CST_LOW (n->low) - TREE_INT_CST_LOW (orig_minval);
5584
5585 while (1)
5586 {
5587 labelvec[i]
5588 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
5589 if (i + TREE_INT_CST_LOW (orig_minval)
5590 == TREE_INT_CST_LOW (n->high))
5591 break;
5592 i++;
5593 }
5594 }
5595
5596 /* Fill in the gaps with the default. */
5597 for (i = 0; i < ncases; i++)
5598 if (labelvec[i] == 0)
5599 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
5600
5601 /* Output the table */
5602 emit_label (table_label);
5603
5604 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
5605 emit_jump_insn (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
5606 gen_rtx_LABEL_REF (Pmode, table_label),
5607 gen_rtvec_v (ncases, labelvec),
5608 const0_rtx, const0_rtx));
5609 else
5610 emit_jump_insn (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
5611 gen_rtvec_v (ncases, labelvec)));
5612
5613 /* If the case insn drops through the table,
5614 after the table we must jump to the default-label.
5615 Otherwise record no drop-through after the table. */
5616 #ifdef CASE_DROPS_THROUGH
5617 emit_jump (default_label);
5618 #else
5619 emit_barrier ();
5620 #endif
5621 }
5622
5623 before_case = squeeze_notes (NEXT_INSN (before_case), get_last_insn ());
5624 reorder_insns (before_case, get_last_insn (),
5625 thiscase->data.case_stmt.start);
5626 }
5627 else
5628 end_cleanup_deferral ();
5629
5630 if (thiscase->exit_label)
5631 emit_label (thiscase->exit_label);
5632
5633 POPSTACK (case_stack);
5634
5635 free_temp_slots ();
5636 }
5637
5638 /* Convert the tree NODE into a list linked by the right field, with the left
5639 field zeroed. RIGHT is used for recursion; it is a list to be placed
5640 rightmost in the resulting list. */
5641
5642 static struct case_node *
5643 case_tree2list (node, right)
5644 struct case_node *node, *right;
5645 {
5646 struct case_node *left;
5647
5648 if (node->right)
5649 right = case_tree2list (node->right, right);
5650
5651 node->right = right;
5652 if ((left = node->left))
5653 {
5654 node->left = 0;
5655 return case_tree2list (left, node);
5656 }
5657
5658 return node;
5659 }
5660
5661 /* Generate code to jump to LABEL if OP1 and OP2 are equal. */
5662
5663 static void
5664 do_jump_if_equal (op1, op2, label, unsignedp)
5665 rtx op1, op2, label;
5666 int unsignedp;
5667 {
5668 if (GET_CODE (op1) == CONST_INT
5669 && GET_CODE (op2) == CONST_INT)
5670 {
5671 if (INTVAL (op1) == INTVAL (op2))
5672 emit_jump (label);
5673 }
5674 else
5675 {
5676 enum machine_mode mode = GET_MODE (op1);
5677 if (mode == VOIDmode)
5678 mode = GET_MODE (op2);
5679 emit_cmp_and_jump_insns (op1, op2, EQ, NULL_RTX, mode, unsignedp,
5680 0, label);
5681 }
5682 }
5683 \f
5684 /* Not all case values are encountered equally. This function
5685 uses a heuristic to weight case labels, in cases where that
5686 looks like a reasonable thing to do.
5687
5688 Right now, all we try to guess is text, and we establish the
5689 following weights:
5690
5691 chars above space: 16
5692 digits: 16
5693 default: 12
5694 space, punct: 8
5695 tab: 4
5696 newline: 2
5697 other "\" chars: 1
5698 remaining chars: 0
5699
5700 If we find any cases in the switch that are not either -1 or in the range
5701 of valid ASCII characters, or are control characters other than those
5702 commonly used with "\", don't treat this switch scanning text.
5703
5704 Return 1 if these nodes are suitable for cost estimation, otherwise
5705 return 0. */
5706
5707 static int
5708 estimate_case_costs (node)
5709 case_node_ptr node;
5710 {
5711 tree min_ascii = build_int_2 (-1, -1);
5712 tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0));
5713 case_node_ptr n;
5714 int i;
5715
5716 /* If we haven't already made the cost table, make it now. Note that the
5717 lower bound of the table is -1, not zero. */
5718
5719 if (cost_table == NULL)
5720 {
5721 cost_table = cost_table_ + 1;
5722
5723 for (i = 0; i < 128; i++)
5724 {
5725 if (ISALNUM (i))
5726 cost_table[i] = 16;
5727 else if (ISPUNCT (i))
5728 cost_table[i] = 8;
5729 else if (ISCNTRL (i))
5730 cost_table[i] = -1;
5731 }
5732
5733 cost_table[' '] = 8;
5734 cost_table['\t'] = 4;
5735 cost_table['\0'] = 4;
5736 cost_table['\n'] = 2;
5737 cost_table['\f'] = 1;
5738 cost_table['\v'] = 1;
5739 cost_table['\b'] = 1;
5740 }
5741
5742 /* See if all the case expressions look like text. It is text if the
5743 constant is >= -1 and the highest constant is <= 127. Do all comparisons
5744 as signed arithmetic since we don't want to ever access cost_table with a
5745 value less than -1. Also check that none of the constants in a range
5746 are strange control characters. */
5747
5748 for (n = node; n; n = n->right)
5749 {
5750 if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high))
5751 return 0;
5752
5753 for (i = (HOST_WIDE_INT) TREE_INT_CST_LOW (n->low);
5754 i <= (HOST_WIDE_INT) TREE_INT_CST_LOW (n->high); i++)
5755 if (cost_table[i] < 0)
5756 return 0;
5757 }
5758
5759 /* All interesting values are within the range of interesting
5760 ASCII characters. */
5761 return 1;
5762 }
5763
5764 /* Scan an ordered list of case nodes
5765 combining those with consecutive values or ranges.
5766
5767 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
5768
5769 static void
5770 group_case_nodes (head)
5771 case_node_ptr head;
5772 {
5773 case_node_ptr node = head;
5774
5775 while (node)
5776 {
5777 rtx lb = next_real_insn (label_rtx (node->code_label));
5778 rtx lb2;
5779 case_node_ptr np = node;
5780
5781 /* Try to group the successors of NODE with NODE. */
5782 while (((np = np->right) != 0)
5783 /* Do they jump to the same place? */
5784 && ((lb2 = next_real_insn (label_rtx (np->code_label))) == lb
5785 || (lb != 0 && lb2 != 0
5786 && simplejump_p (lb)
5787 && simplejump_p (lb2)
5788 && rtx_equal_p (SET_SRC (PATTERN (lb)),
5789 SET_SRC (PATTERN (lb2)))))
5790 /* Are their ranges consecutive? */
5791 && tree_int_cst_equal (np->low,
5792 fold (build (PLUS_EXPR,
5793 TREE_TYPE (node->high),
5794 node->high,
5795 integer_one_node)))
5796 /* An overflow is not consecutive. */
5797 && tree_int_cst_lt (node->high,
5798 fold (build (PLUS_EXPR,
5799 TREE_TYPE (node->high),
5800 node->high,
5801 integer_one_node))))
5802 {
5803 node->high = np->high;
5804 }
5805 /* NP is the first node after NODE which can't be grouped with it.
5806 Delete the nodes in between, and move on to that node. */
5807 node->right = np;
5808 node = np;
5809 }
5810 }
5811
5812 /* Take an ordered list of case nodes
5813 and transform them into a near optimal binary tree,
5814 on the assumption that any target code selection value is as
5815 likely as any other.
5816
5817 The transformation is performed by splitting the ordered
5818 list into two equal sections plus a pivot. The parts are
5819 then attached to the pivot as left and right branches. Each
5820 branch is then transformed recursively. */
5821
5822 static void
5823 balance_case_nodes (head, parent)
5824 case_node_ptr *head;
5825 case_node_ptr parent;
5826 {
5827 register case_node_ptr np;
5828
5829 np = *head;
5830 if (np)
5831 {
5832 int cost = 0;
5833 int i = 0;
5834 int ranges = 0;
5835 register case_node_ptr *npp;
5836 case_node_ptr left;
5837
5838 /* Count the number of entries on branch. Also count the ranges. */
5839
5840 while (np)
5841 {
5842 if (!tree_int_cst_equal (np->low, np->high))
5843 {
5844 ranges++;
5845 if (use_cost_table)
5846 cost += cost_table[TREE_INT_CST_LOW (np->high)];
5847 }
5848
5849 if (use_cost_table)
5850 cost += cost_table[TREE_INT_CST_LOW (np->low)];
5851
5852 i++;
5853 np = np->right;
5854 }
5855
5856 if (i > 2)
5857 {
5858 /* Split this list if it is long enough for that to help. */
5859 npp = head;
5860 left = *npp;
5861 if (use_cost_table)
5862 {
5863 /* Find the place in the list that bisects the list's total cost,
5864 Here I gets half the total cost. */
5865 int n_moved = 0;
5866 i = (cost + 1) / 2;
5867 while (1)
5868 {
5869 /* Skip nodes while their cost does not reach that amount. */
5870 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5871 i -= cost_table[TREE_INT_CST_LOW ((*npp)->high)];
5872 i -= cost_table[TREE_INT_CST_LOW ((*npp)->low)];
5873 if (i <= 0)
5874 break;
5875 npp = &(*npp)->right;
5876 n_moved += 1;
5877 }
5878 if (n_moved == 0)
5879 {
5880 /* Leave this branch lopsided, but optimize left-hand
5881 side and fill in `parent' fields for right-hand side. */
5882 np = *head;
5883 np->parent = parent;
5884 balance_case_nodes (&np->left, np);
5885 for (; np->right; np = np->right)
5886 np->right->parent = np;
5887 return;
5888 }
5889 }
5890 /* If there are just three nodes, split at the middle one. */
5891 else if (i == 3)
5892 npp = &(*npp)->right;
5893 else
5894 {
5895 /* Find the place in the list that bisects the list's total cost,
5896 where ranges count as 2.
5897 Here I gets half the total cost. */
5898 i = (i + ranges + 1) / 2;
5899 while (1)
5900 {
5901 /* Skip nodes while their cost does not reach that amount. */
5902 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5903 i--;
5904 i--;
5905 if (i <= 0)
5906 break;
5907 npp = &(*npp)->right;
5908 }
5909 }
5910 *head = np = *npp;
5911 *npp = 0;
5912 np->parent = parent;
5913 np->left = left;
5914
5915 /* Optimize each of the two split parts. */
5916 balance_case_nodes (&np->left, np);
5917 balance_case_nodes (&np->right, np);
5918 }
5919 else
5920 {
5921 /* Else leave this branch as one level,
5922 but fill in `parent' fields. */
5923 np = *head;
5924 np->parent = parent;
5925 for (; np->right; np = np->right)
5926 np->right->parent = np;
5927 }
5928 }
5929 }
5930 \f
5931 /* Search the parent sections of the case node tree
5932 to see if a test for the lower bound of NODE would be redundant.
5933 INDEX_TYPE is the type of the index expression.
5934
5935 The instructions to generate the case decision tree are
5936 output in the same order as nodes are processed so it is
5937 known that if a parent node checks the range of the current
5938 node minus one that the current node is bounded at its lower
5939 span. Thus the test would be redundant. */
5940
5941 static int
5942 node_has_low_bound (node, index_type)
5943 case_node_ptr node;
5944 tree index_type;
5945 {
5946 tree low_minus_one;
5947 case_node_ptr pnode;
5948
5949 /* If the lower bound of this node is the lowest value in the index type,
5950 we need not test it. */
5951
5952 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
5953 return 1;
5954
5955 /* If this node has a left branch, the value at the left must be less
5956 than that at this node, so it cannot be bounded at the bottom and
5957 we need not bother testing any further. */
5958
5959 if (node->left)
5960 return 0;
5961
5962 low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low),
5963 node->low, integer_one_node));
5964
5965 /* If the subtraction above overflowed, we can't verify anything.
5966 Otherwise, look for a parent that tests our value - 1. */
5967
5968 if (! tree_int_cst_lt (low_minus_one, node->low))
5969 return 0;
5970
5971 for (pnode = node->parent; pnode; pnode = pnode->parent)
5972 if (tree_int_cst_equal (low_minus_one, pnode->high))
5973 return 1;
5974
5975 return 0;
5976 }
5977
5978 /* Search the parent sections of the case node tree
5979 to see if a test for the upper bound of NODE would be redundant.
5980 INDEX_TYPE is the type of the index expression.
5981
5982 The instructions to generate the case decision tree are
5983 output in the same order as nodes are processed so it is
5984 known that if a parent node checks the range of the current
5985 node plus one that the current node is bounded at its upper
5986 span. Thus the test would be redundant. */
5987
5988 static int
5989 node_has_high_bound (node, index_type)
5990 case_node_ptr node;
5991 tree index_type;
5992 {
5993 tree high_plus_one;
5994 case_node_ptr pnode;
5995
5996 /* If there is no upper bound, obviously no test is needed. */
5997
5998 if (TYPE_MAX_VALUE (index_type) == NULL)
5999 return 1;
6000
6001 /* If the upper bound of this node is the highest value in the type
6002 of the index expression, we need not test against it. */
6003
6004 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
6005 return 1;
6006
6007 /* If this node has a right branch, the value at the right must be greater
6008 than that at this node, so it cannot be bounded at the top and
6009 we need not bother testing any further. */
6010
6011 if (node->right)
6012 return 0;
6013
6014 high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high),
6015 node->high, integer_one_node));
6016
6017 /* If the addition above overflowed, we can't verify anything.
6018 Otherwise, look for a parent that tests our value + 1. */
6019
6020 if (! tree_int_cst_lt (node->high, high_plus_one))
6021 return 0;
6022
6023 for (pnode = node->parent; pnode; pnode = pnode->parent)
6024 if (tree_int_cst_equal (high_plus_one, pnode->low))
6025 return 1;
6026
6027 return 0;
6028 }
6029
6030 /* Search the parent sections of the
6031 case node tree to see if both tests for the upper and lower
6032 bounds of NODE would be redundant. */
6033
6034 static int
6035 node_is_bounded (node, index_type)
6036 case_node_ptr node;
6037 tree index_type;
6038 {
6039 return (node_has_low_bound (node, index_type)
6040 && node_has_high_bound (node, index_type));
6041 }
6042
6043 /* Emit an unconditional jump to LABEL unless it would be dead code. */
6044
6045 static void
6046 emit_jump_if_reachable (label)
6047 rtx label;
6048 {
6049 if (GET_CODE (get_last_insn ()) != BARRIER)
6050 emit_jump (label);
6051 }
6052 \f
6053 /* Emit step-by-step code to select a case for the value of INDEX.
6054 The thus generated decision tree follows the form of the
6055 case-node binary tree NODE, whose nodes represent test conditions.
6056 INDEX_TYPE is the type of the index of the switch.
6057
6058 Care is taken to prune redundant tests from the decision tree
6059 by detecting any boundary conditions already checked by
6060 emitted rtx. (See node_has_high_bound, node_has_low_bound
6061 and node_is_bounded, above.)
6062
6063 Where the test conditions can be shown to be redundant we emit
6064 an unconditional jump to the target code. As a further
6065 optimization, the subordinates of a tree node are examined to
6066 check for bounded nodes. In this case conditional and/or
6067 unconditional jumps as a result of the boundary check for the
6068 current node are arranged to target the subordinates associated
6069 code for out of bound conditions on the current node.
6070
6071 We can assume that when control reaches the code generated here,
6072 the index value has already been compared with the parents
6073 of this node, and determined to be on the same side of each parent
6074 as this node is. Thus, if this node tests for the value 51,
6075 and a parent tested for 52, we don't need to consider
6076 the possibility of a value greater than 51. If another parent
6077 tests for the value 50, then this node need not test anything. */
6078
6079 static void
6080 emit_case_nodes (index, node, default_label, index_type)
6081 rtx index;
6082 case_node_ptr node;
6083 rtx default_label;
6084 tree index_type;
6085 {
6086 /* If INDEX has an unsigned type, we must make unsigned branches. */
6087 int unsignedp = TREE_UNSIGNED (index_type);
6088 enum machine_mode mode = GET_MODE (index);
6089
6090 /* See if our parents have already tested everything for us.
6091 If they have, emit an unconditional jump for this node. */
6092 if (node_is_bounded (node, index_type))
6093 emit_jump (label_rtx (node->code_label));
6094
6095 else if (tree_int_cst_equal (node->low, node->high))
6096 {
6097 /* Node is single valued. First see if the index expression matches
6098 this node and then check our children, if any. */
6099
6100 do_jump_if_equal (index, expand_expr (node->low, NULL_RTX, VOIDmode, 0),
6101 label_rtx (node->code_label), unsignedp);
6102
6103 if (node->right != 0 && node->left != 0)
6104 {
6105 /* This node has children on both sides.
6106 Dispatch to one side or the other
6107 by comparing the index value with this node's value.
6108 If one subtree is bounded, check that one first,
6109 so we can avoid real branches in the tree. */
6110
6111 if (node_is_bounded (node->right, index_type))
6112 {
6113 emit_cmp_and_jump_insns (index,
6114 expand_expr (node->high, NULL_RTX,
6115 VOIDmode, 0),
6116 GT, NULL_RTX, mode, unsignedp, 0,
6117 label_rtx (node->right->code_label));
6118 emit_case_nodes (index, node->left, default_label, index_type);
6119 }
6120
6121 else if (node_is_bounded (node->left, index_type))
6122 {
6123 emit_cmp_and_jump_insns (index,
6124 expand_expr (node->high, NULL_RTX,
6125 VOIDmode, 0),
6126 LT, NULL_RTX, mode, unsignedp, 0,
6127 label_rtx (node->left->code_label));
6128 emit_case_nodes (index, node->right, default_label, index_type);
6129 }
6130
6131 else
6132 {
6133 /* Neither node is bounded. First distinguish the two sides;
6134 then emit the code for one side at a time. */
6135
6136 tree test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6137
6138 /* See if the value is on the right. */
6139 emit_cmp_and_jump_insns (index,
6140 expand_expr (node->high, NULL_RTX,
6141 VOIDmode, 0),
6142 GT, NULL_RTX, mode, unsignedp, 0,
6143 label_rtx (test_label));
6144
6145 /* Value must be on the left.
6146 Handle the left-hand subtree. */
6147 emit_case_nodes (index, node->left, default_label, index_type);
6148 /* If left-hand subtree does nothing,
6149 go to default. */
6150 emit_jump_if_reachable (default_label);
6151
6152 /* Code branches here for the right-hand subtree. */
6153 expand_label (test_label);
6154 emit_case_nodes (index, node->right, default_label, index_type);
6155 }
6156 }
6157
6158 else if (node->right != 0 && node->left == 0)
6159 {
6160 /* Here we have a right child but no left so we issue conditional
6161 branch to default and process the right child.
6162
6163 Omit the conditional branch to default if we it avoid only one
6164 right child; it costs too much space to save so little time. */
6165
6166 if (node->right->right || node->right->left
6167 || !tree_int_cst_equal (node->right->low, node->right->high))
6168 {
6169 if (!node_has_low_bound (node, index_type))
6170 {
6171 emit_cmp_and_jump_insns (index,
6172 expand_expr (node->high, NULL_RTX,
6173 VOIDmode, 0),
6174 LT, NULL_RTX, mode, unsignedp, 0,
6175 default_label);
6176 }
6177
6178 emit_case_nodes (index, node->right, default_label, index_type);
6179 }
6180 else
6181 /* We cannot process node->right normally
6182 since we haven't ruled out the numbers less than
6183 this node's value. So handle node->right explicitly. */
6184 do_jump_if_equal (index,
6185 expand_expr (node->right->low, NULL_RTX,
6186 VOIDmode, 0),
6187 label_rtx (node->right->code_label), unsignedp);
6188 }
6189
6190 else if (node->right == 0 && node->left != 0)
6191 {
6192 /* Just one subtree, on the left. */
6193
6194 #if 0 /* The following code and comment were formerly part
6195 of the condition here, but they didn't work
6196 and I don't understand what the idea was. -- rms. */
6197 /* If our "most probable entry" is less probable
6198 than the default label, emit a jump to
6199 the default label using condition codes
6200 already lying around. With no right branch,
6201 a branch-greater-than will get us to the default
6202 label correctly. */
6203 if (use_cost_table
6204 && cost_table[TREE_INT_CST_LOW (node->high)] < 12)
6205 ;
6206 #endif /* 0 */
6207 if (node->left->left || node->left->right
6208 || !tree_int_cst_equal (node->left->low, node->left->high))
6209 {
6210 if (!node_has_high_bound (node, index_type))
6211 {
6212 emit_cmp_and_jump_insns (index, expand_expr (node->high,
6213 NULL_RTX,
6214 VOIDmode, 0),
6215 GT, NULL_RTX, mode, unsignedp, 0,
6216 default_label);
6217 }
6218
6219 emit_case_nodes (index, node->left, default_label, index_type);
6220 }
6221 else
6222 /* We cannot process node->left normally
6223 since we haven't ruled out the numbers less than
6224 this node's value. So handle node->left explicitly. */
6225 do_jump_if_equal (index,
6226 expand_expr (node->left->low, NULL_RTX,
6227 VOIDmode, 0),
6228 label_rtx (node->left->code_label), unsignedp);
6229 }
6230 }
6231 else
6232 {
6233 /* Node is a range. These cases are very similar to those for a single
6234 value, except that we do not start by testing whether this node
6235 is the one to branch to. */
6236
6237 if (node->right != 0 && node->left != 0)
6238 {
6239 /* Node has subtrees on both sides.
6240 If the right-hand subtree is bounded,
6241 test for it first, since we can go straight there.
6242 Otherwise, we need to make a branch in the control structure,
6243 then handle the two subtrees. */
6244 tree test_label = 0;
6245
6246 if (node_is_bounded (node->right, index_type))
6247 /* Right hand node is fully bounded so we can eliminate any
6248 testing and branch directly to the target code. */
6249 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6250 VOIDmode, 0),
6251 GT, NULL_RTX, mode, unsignedp, 0,
6252 label_rtx (node->right->code_label));
6253 else
6254 {
6255 /* Right hand node requires testing.
6256 Branch to a label where we will handle it later. */
6257
6258 test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6259 emit_cmp_and_jump_insns (index,
6260 expand_expr (node->high, NULL_RTX,
6261 VOIDmode, 0),
6262 GT, NULL_RTX, mode, unsignedp, 0,
6263 label_rtx (test_label));
6264 }
6265
6266 /* Value belongs to this node or to the left-hand subtree. */
6267
6268 emit_cmp_and_jump_insns (index, expand_expr (node->low, NULL_RTX,
6269 VOIDmode, 0),
6270 GE, NULL_RTX, mode, unsignedp, 0,
6271 label_rtx (node->code_label));
6272
6273 /* Handle the left-hand subtree. */
6274 emit_case_nodes (index, node->left, default_label, index_type);
6275
6276 /* If right node had to be handled later, do that now. */
6277
6278 if (test_label)
6279 {
6280 /* If the left-hand subtree fell through,
6281 don't let it fall into the right-hand subtree. */
6282 emit_jump_if_reachable (default_label);
6283
6284 expand_label (test_label);
6285 emit_case_nodes (index, node->right, default_label, index_type);
6286 }
6287 }
6288
6289 else if (node->right != 0 && node->left == 0)
6290 {
6291 /* Deal with values to the left of this node,
6292 if they are possible. */
6293 if (!node_has_low_bound (node, index_type))
6294 {
6295 emit_cmp_and_jump_insns (index,
6296 expand_expr (node->low, NULL_RTX,
6297 VOIDmode, 0),
6298 LT, NULL_RTX, mode, unsignedp, 0,
6299 default_label);
6300 }
6301
6302 /* Value belongs to this node or to the right-hand subtree. */
6303
6304 emit_cmp_and_jump_insns (index, expand_expr (node->high, NULL_RTX,
6305 VOIDmode, 0),
6306 LE, NULL_RTX, mode, unsignedp, 0,
6307 label_rtx (node->code_label));
6308
6309 emit_case_nodes (index, node->right, default_label, index_type);
6310 }
6311
6312 else if (node->right == 0 && node->left != 0)
6313 {
6314 /* Deal with values to the right of this node,
6315 if they are possible. */
6316 if (!node_has_high_bound (node, index_type))
6317 {
6318 emit_cmp_and_jump_insns (index,
6319 expand_expr (node->high, NULL_RTX,
6320 VOIDmode, 0),
6321 GT, NULL_RTX, mode, unsignedp, 0,
6322 default_label);
6323 }
6324
6325 /* Value belongs to this node or to the left-hand subtree. */
6326
6327 emit_cmp_and_jump_insns (index,
6328 expand_expr (node->low, NULL_RTX,
6329 VOIDmode, 0),
6330 GE, NULL_RTX, mode, unsignedp, 0,
6331 label_rtx (node->code_label));
6332
6333 emit_case_nodes (index, node->left, default_label, index_type);
6334 }
6335
6336 else
6337 {
6338 /* Node has no children so we check low and high bounds to remove
6339 redundant tests. Only one of the bounds can exist,
6340 since otherwise this node is bounded--a case tested already. */
6341
6342 if (!node_has_high_bound (node, index_type))
6343 {
6344 emit_cmp_and_jump_insns (index,
6345 expand_expr (node->high, NULL_RTX,
6346 VOIDmode, 0),
6347 GT, NULL_RTX, mode, unsignedp, 0,
6348 default_label);
6349 }
6350
6351 if (!node_has_low_bound (node, index_type))
6352 {
6353 emit_cmp_and_jump_insns (index,
6354 expand_expr (node->low, NULL_RTX,
6355 VOIDmode, 0),
6356 LT, NULL_RTX, mode, unsignedp, 0,
6357 default_label);
6358 }
6359
6360 emit_jump (label_rtx (node->code_label));
6361 }
6362 }
6363 }