re PR rtl-optimization/10392 ([SH] optimizer generates faulty array indexing)
[gcc.git] / gcc / stmt.c
1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
24 It also creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 The functions whose names start with `expand_' are called by the
28 parser to generate RTL instructions for various kinds of constructs.
29
30 Some control and binding constructs require calling several such
31 functions at different times. For example, a simple if-then
32 is expanded by calling `expand_start_cond' (with the condition-expression
33 as argument) before parsing the then-clause and calling `expand_end_cond'
34 after parsing the then-clause. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "except.h"
46 #include "function.h"
47 #include "insn-config.h"
48 #include "expr.h"
49 #include "libfuncs.h"
50 #include "hard-reg-set.h"
51 #include "loop.h"
52 #include "recog.h"
53 #include "machmode.h"
54 #include "toplev.h"
55 #include "output.h"
56 #include "ggc.h"
57 #include "langhooks.h"
58 #include "predict.h"
59 #include "optabs.h"
60 #include "target.h"
61
62 /* Assume that case vectors are not pc-relative. */
63 #ifndef CASE_VECTOR_PC_RELATIVE
64 #define CASE_VECTOR_PC_RELATIVE 0
65 #endif
66 \f
67 /* Functions and data structures for expanding case statements. */
68
69 /* Case label structure, used to hold info on labels within case
70 statements. We handle "range" labels; for a single-value label
71 as in C, the high and low limits are the same.
72
73 An AVL tree of case nodes is initially created, and later transformed
74 to a list linked via the RIGHT fields in the nodes. Nodes with
75 higher case values are later in the list.
76
77 Switch statements can be output in one of two forms. A branch table
78 is used if there are more than a few labels and the labels are dense
79 within the range between the smallest and largest case value. If a
80 branch table is used, no further manipulations are done with the case
81 node chain.
82
83 The alternative to the use of a branch table is to generate a series
84 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
85 and PARENT fields to hold a binary tree. Initially the tree is
86 totally unbalanced, with everything on the right. We balance the tree
87 with nodes on the left having lower case values than the parent
88 and nodes on the right having higher values. We then output the tree
89 in order. */
90
91 struct case_node GTY(())
92 {
93 struct case_node *left; /* Left son in binary tree */
94 struct case_node *right; /* Right son in binary tree; also node chain */
95 struct case_node *parent; /* Parent of node in binary tree */
96 tree low; /* Lowest index value for this label */
97 tree high; /* Highest index value for this label */
98 tree code_label; /* Label to jump to when node matches */
99 int balance;
100 };
101
102 typedef struct case_node case_node;
103 typedef struct case_node *case_node_ptr;
104
105 /* These are used by estimate_case_costs and balance_case_nodes. */
106
107 /* This must be a signed type, and non-ANSI compilers lack signed char. */
108 static short cost_table_[129];
109 static int use_cost_table;
110 static int cost_table_initialized;
111
112 /* Special care is needed because we allow -1, but TREE_INT_CST_LOW
113 is unsigned. */
114 #define COST_TABLE(I) cost_table_[(unsigned HOST_WIDE_INT) ((I) + 1)]
115 \f
116 /* Stack of control and binding constructs we are currently inside.
117
118 These constructs begin when you call `expand_start_WHATEVER'
119 and end when you call `expand_end_WHATEVER'. This stack records
120 info about how the construct began that tells the end-function
121 what to do. It also may provide information about the construct
122 to alter the behavior of other constructs within the body.
123 For example, they may affect the behavior of C `break' and `continue'.
124
125 Each construct gets one `struct nesting' object.
126 All of these objects are chained through the `all' field.
127 `nesting_stack' points to the first object (innermost construct).
128 The position of an entry on `nesting_stack' is in its `depth' field.
129
130 Each type of construct has its own individual stack.
131 For example, loops have `loop_stack'. Each object points to the
132 next object of the same type through the `next' field.
133
134 Some constructs are visible to `break' exit-statements and others
135 are not. Which constructs are visible depends on the language.
136 Therefore, the data structure allows each construct to be visible
137 or not, according to the args given when the construct is started.
138 The construct is visible if the `exit_label' field is non-null.
139 In that case, the value should be a CODE_LABEL rtx. */
140
141 struct nesting GTY(())
142 {
143 struct nesting *all;
144 struct nesting *next;
145 int depth;
146 rtx exit_label;
147 enum nesting_desc {
148 COND_NESTING,
149 LOOP_NESTING,
150 BLOCK_NESTING,
151 CASE_NESTING
152 } desc;
153 union nesting_u
154 {
155 /* For conds (if-then and if-then-else statements). */
156 struct nesting_cond
157 {
158 /* Label for the end of the if construct.
159 There is none if EXITFLAG was not set
160 and no `else' has been seen yet. */
161 rtx endif_label;
162 /* Label for the end of this alternative.
163 This may be the end of the if or the next else/elseif. */
164 rtx next_label;
165 } GTY ((tag ("COND_NESTING"))) cond;
166 /* For loops. */
167 struct nesting_loop
168 {
169 /* Label at the top of the loop; place to loop back to. */
170 rtx start_label;
171 /* Label at the end of the whole construct. */
172 rtx end_label;
173 /* Label for `continue' statement to jump to;
174 this is in front of the stepper of the loop. */
175 rtx continue_label;
176 } GTY ((tag ("LOOP_NESTING"))) loop;
177 /* For variable binding contours. */
178 struct nesting_block
179 {
180 /* Sequence number of this binding contour within the function,
181 in order of entry. */
182 int block_start_count;
183 /* Nonzero => value to restore stack to on exit. */
184 rtx stack_level;
185 /* The NOTE that starts this contour.
186 Used by expand_goto to check whether the destination
187 is within each contour or not. */
188 rtx first_insn;
189 /* Innermost containing binding contour that has a stack level. */
190 struct nesting *innermost_stack_block;
191 /* List of cleanups to be run on exit from this contour.
192 This is a list of expressions to be evaluated.
193 The TREE_PURPOSE of each link is the ..._DECL node
194 which the cleanup pertains to. */
195 tree cleanups;
196 /* List of cleanup-lists of blocks containing this block,
197 as they were at the locus where this block appears.
198 There is an element for each containing block,
199 ordered innermost containing block first.
200 The tail of this list can be 0,
201 if all remaining elements would be empty lists.
202 The element's TREE_VALUE is the cleanup-list of that block,
203 which may be null. */
204 tree outer_cleanups;
205 /* Chain of labels defined inside this binding contour.
206 For contours that have stack levels or cleanups. */
207 struct label_chain *label_chain;
208 /* Nonzero if this is associated with an EH region. */
209 int exception_region;
210 /* The saved target_temp_slot_level from our outer block.
211 We may reset target_temp_slot_level to be the level of
212 this block, if that is done, target_temp_slot_level
213 reverts to the saved target_temp_slot_level at the very
214 end of the block. */
215 int block_target_temp_slot_level;
216 /* True if we are currently emitting insns in an area of
217 output code that is controlled by a conditional
218 expression. This is used by the cleanup handling code to
219 generate conditional cleanup actions. */
220 int conditional_code;
221 /* A place to move the start of the exception region for any
222 of the conditional cleanups, must be at the end or after
223 the start of the last unconditional cleanup, and before any
224 conditional branch points. */
225 rtx last_unconditional_cleanup;
226 } GTY ((tag ("BLOCK_NESTING"))) block;
227 /* For switch (C) or case (Pascal) statements,
228 and also for dummies (see `expand_start_case_dummy'). */
229 struct nesting_case
230 {
231 /* The insn after which the case dispatch should finally
232 be emitted. Zero for a dummy. */
233 rtx start;
234 /* A list of case labels; it is first built as an AVL tree.
235 During expand_end_case, this is converted to a list, and may be
236 rearranged into a nearly balanced binary tree. */
237 struct case_node *case_list;
238 /* Label to jump to if no case matches. */
239 tree default_label;
240 /* The expression to be dispatched on. */
241 tree index_expr;
242 /* Type that INDEX_EXPR should be converted to. */
243 tree nominal_type;
244 /* Name of this kind of statement, for warnings. */
245 const char *printname;
246 /* Used to save no_line_numbers till we see the first case label.
247 We set this to -1 when we see the first case label in this
248 case statement. */
249 int line_number_status;
250 } GTY ((tag ("CASE_NESTING"))) case_stmt;
251 } GTY ((desc ("%1.desc"))) data;
252 };
253
254 /* Allocate and return a new `struct nesting'. */
255
256 #define ALLOC_NESTING() ggc_alloc (sizeof (struct nesting))
257
258 /* Pop the nesting stack element by element until we pop off
259 the element which is at the top of STACK.
260 Update all the other stacks, popping off elements from them
261 as we pop them from nesting_stack. */
262
263 #define POPSTACK(STACK) \
264 do { struct nesting *target = STACK; \
265 struct nesting *this; \
266 do { this = nesting_stack; \
267 if (loop_stack == this) \
268 loop_stack = loop_stack->next; \
269 if (cond_stack == this) \
270 cond_stack = cond_stack->next; \
271 if (block_stack == this) \
272 block_stack = block_stack->next; \
273 if (stack_block_stack == this) \
274 stack_block_stack = stack_block_stack->next; \
275 if (case_stack == this) \
276 case_stack = case_stack->next; \
277 nesting_depth = nesting_stack->depth - 1; \
278 nesting_stack = this->all; } \
279 while (this != target); } while (0)
280 \f
281 /* In some cases it is impossible to generate code for a forward goto
282 until the label definition is seen. This happens when it may be necessary
283 for the goto to reset the stack pointer: we don't yet know how to do that.
284 So expand_goto puts an entry on this fixup list.
285 Each time a binding contour that resets the stack is exited,
286 we check each fixup.
287 If the target label has now been defined, we can insert the proper code. */
288
289 struct goto_fixup GTY(())
290 {
291 /* Points to following fixup. */
292 struct goto_fixup *next;
293 /* Points to the insn before the jump insn.
294 If more code must be inserted, it goes after this insn. */
295 rtx before_jump;
296 /* The LABEL_DECL that this jump is jumping to, or 0
297 for break, continue or return. */
298 tree target;
299 /* The BLOCK for the place where this goto was found. */
300 tree context;
301 /* The CODE_LABEL rtx that this is jumping to. */
302 rtx target_rtl;
303 /* Number of binding contours started in current function
304 before the label reference. */
305 int block_start_count;
306 /* The outermost stack level that should be restored for this jump.
307 Each time a binding contour that resets the stack is exited,
308 if the target label is *not* yet defined, this slot is updated. */
309 rtx stack_level;
310 /* List of lists of cleanup expressions to be run by this goto.
311 There is one element for each block that this goto is within.
312 The tail of this list can be 0,
313 if all remaining elements would be empty.
314 The TREE_VALUE contains the cleanup list of that block as of the
315 time this goto was seen.
316 The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */
317 tree cleanup_list_list;
318 };
319
320 /* Within any binding contour that must restore a stack level,
321 all labels are recorded with a chain of these structures. */
322
323 struct label_chain GTY(())
324 {
325 /* Points to following fixup. */
326 struct label_chain *next;
327 tree label;
328 };
329
330 struct stmt_status GTY(())
331 {
332 /* Chain of all pending binding contours. */
333 struct nesting * x_block_stack;
334
335 /* If any new stacks are added here, add them to POPSTACKS too. */
336
337 /* Chain of all pending binding contours that restore stack levels
338 or have cleanups. */
339 struct nesting * x_stack_block_stack;
340
341 /* Chain of all pending conditional statements. */
342 struct nesting * x_cond_stack;
343
344 /* Chain of all pending loops. */
345 struct nesting * x_loop_stack;
346
347 /* Chain of all pending case or switch statements. */
348 struct nesting * x_case_stack;
349
350 /* Separate chain including all of the above,
351 chained through the `all' field. */
352 struct nesting * x_nesting_stack;
353
354 /* Number of entries on nesting_stack now. */
355 int x_nesting_depth;
356
357 /* Number of binding contours started so far in this function. */
358 int x_block_start_count;
359
360 /* Each time we expand an expression-statement,
361 record the expr's type and its RTL value here. */
362 tree x_last_expr_type;
363 rtx x_last_expr_value;
364 rtx x_last_expr_alt_rtl;
365
366 /* Nonzero if within a ({...}) grouping, in which case we must
367 always compute a value for each expr-stmt in case it is the last one. */
368 int x_expr_stmts_for_value;
369
370 /* Location of last line-number note, whether we actually
371 emitted it or not. */
372 location_t x_emit_locus;
373
374 struct goto_fixup *x_goto_fixup_chain;
375 };
376
377 #define block_stack (cfun->stmt->x_block_stack)
378 #define stack_block_stack (cfun->stmt->x_stack_block_stack)
379 #define cond_stack (cfun->stmt->x_cond_stack)
380 #define loop_stack (cfun->stmt->x_loop_stack)
381 #define case_stack (cfun->stmt->x_case_stack)
382 #define nesting_stack (cfun->stmt->x_nesting_stack)
383 #define nesting_depth (cfun->stmt->x_nesting_depth)
384 #define current_block_start_count (cfun->stmt->x_block_start_count)
385 #define last_expr_type (cfun->stmt->x_last_expr_type)
386 #define last_expr_value (cfun->stmt->x_last_expr_value)
387 #define last_expr_alt_rtl (cfun->stmt->x_last_expr_alt_rtl)
388 #define expr_stmts_for_value (cfun->stmt->x_expr_stmts_for_value)
389 #define emit_locus (cfun->stmt->x_emit_locus)
390 #define goto_fixup_chain (cfun->stmt->x_goto_fixup_chain)
391
392 /* Nonzero if we are using EH to handle cleanups. */
393 static int using_eh_for_cleanups_p = 0;
394
395 static int n_occurrences (int, const char *);
396 static bool decl_conflicts_with_clobbers_p (tree, const HARD_REG_SET);
397 static void expand_goto_internal (tree, rtx, rtx);
398 static int expand_fixup (tree, rtx, rtx);
399 static rtx expand_nl_handler_label (rtx, rtx);
400 static void expand_nl_goto_receiver (void);
401 static void expand_nl_goto_receivers (struct nesting *);
402 static void fixup_gotos (struct nesting *, rtx, tree, rtx, int);
403 static bool check_operand_nalternatives (tree, tree);
404 static bool check_unique_operand_names (tree, tree);
405 static char *resolve_operand_name_1 (char *, tree, tree);
406 static void expand_null_return_1 (rtx);
407 static enum br_predictor return_prediction (rtx);
408 static rtx shift_return_value (rtx);
409 static void expand_value_return (rtx);
410 static int tail_recursion_args (tree, tree);
411 static void expand_cleanups (tree, int, int);
412 static void check_seenlabel (void);
413 static void do_jump_if_equal (rtx, rtx, rtx, int);
414 static int estimate_case_costs (case_node_ptr);
415 static bool same_case_target_p (rtx, rtx);
416 static void strip_default_case_nodes (case_node_ptr *, rtx);
417 static bool lshift_cheap_p (void);
418 static int case_bit_test_cmp (const void *, const void *);
419 static void emit_case_bit_tests (tree, tree, tree, tree, case_node_ptr, rtx);
420 static void group_case_nodes (case_node_ptr);
421 static void balance_case_nodes (case_node_ptr *, case_node_ptr);
422 static int node_has_low_bound (case_node_ptr, tree);
423 static int node_has_high_bound (case_node_ptr, tree);
424 static int node_is_bounded (case_node_ptr, tree);
425 static void emit_jump_if_reachable (rtx);
426 static void emit_case_nodes (rtx, case_node_ptr, rtx, tree);
427 static struct case_node *case_tree2list (case_node *, case_node *);
428 \f
429 void
430 using_eh_for_cleanups (void)
431 {
432 using_eh_for_cleanups_p = 1;
433 }
434
435 void
436 init_stmt_for_function (void)
437 {
438 cfun->stmt = ggc_alloc_cleared (sizeof (struct stmt_status));
439 }
440 \f
441 /* Record the current file and line. Called from emit_line_note. */
442
443 void
444 set_file_and_line_for_stmt (location_t location)
445 {
446 /* If we're outputting an inline function, and we add a line note,
447 there may be no CFUN->STMT information. So, there's no need to
448 update it. */
449 if (cfun->stmt)
450 emit_locus = location;
451 }
452
453 /* Emit a no-op instruction. */
454
455 void
456 emit_nop (void)
457 {
458 rtx last_insn;
459
460 last_insn = get_last_insn ();
461 if (!optimize
462 && (GET_CODE (last_insn) == CODE_LABEL
463 || (GET_CODE (last_insn) == NOTE
464 && prev_real_insn (last_insn) == 0)))
465 emit_insn (gen_nop ());
466 }
467 \f
468 /* Return the rtx-label that corresponds to a LABEL_DECL,
469 creating it if necessary. */
470
471 rtx
472 label_rtx (tree label)
473 {
474 if (TREE_CODE (label) != LABEL_DECL)
475 abort ();
476
477 if (!DECL_RTL_SET_P (label))
478 SET_DECL_RTL (label, gen_label_rtx ());
479
480 return DECL_RTL (label);
481 }
482
483 /* As above, but also put it on the forced-reference list of the
484 function that contains it. */
485 rtx
486 force_label_rtx (tree label)
487 {
488 rtx ref = label_rtx (label);
489 tree function = decl_function_context (label);
490 struct function *p;
491
492 if (!function)
493 abort ();
494
495 if (function != current_function_decl
496 && function != inline_function_decl)
497 p = find_function_data (function);
498 else
499 p = cfun;
500
501 p->expr->x_forced_labels = gen_rtx_EXPR_LIST (VOIDmode, ref,
502 p->expr->x_forced_labels);
503 return ref;
504 }
505
506 /* Add an unconditional jump to LABEL as the next sequential instruction. */
507
508 void
509 emit_jump (rtx label)
510 {
511 do_pending_stack_adjust ();
512 emit_jump_insn (gen_jump (label));
513 emit_barrier ();
514 }
515
516 /* Emit code to jump to the address
517 specified by the pointer expression EXP. */
518
519 void
520 expand_computed_goto (tree exp)
521 {
522 rtx x = expand_expr (exp, NULL_RTX, VOIDmode, 0);
523
524 x = convert_memory_address (Pmode, x);
525
526 emit_queue ();
527
528 if (! cfun->computed_goto_common_label)
529 {
530 cfun->computed_goto_common_reg = copy_to_mode_reg (Pmode, x);
531 cfun->computed_goto_common_label = gen_label_rtx ();
532 emit_label (cfun->computed_goto_common_label);
533
534 do_pending_stack_adjust ();
535 emit_indirect_jump (cfun->computed_goto_common_reg);
536
537 current_function_has_computed_jump = 1;
538 }
539 else
540 {
541 emit_move_insn (cfun->computed_goto_common_reg, x);
542 emit_jump (cfun->computed_goto_common_label);
543 }
544 }
545 \f
546 /* Handle goto statements and the labels that they can go to. */
547
548 /* Specify the location in the RTL code of a label LABEL,
549 which is a LABEL_DECL tree node.
550
551 This is used for the kind of label that the user can jump to with a
552 goto statement, and for alternatives of a switch or case statement.
553 RTL labels generated for loops and conditionals don't go through here;
554 they are generated directly at the RTL level, by other functions below.
555
556 Note that this has nothing to do with defining label *names*.
557 Languages vary in how they do that and what that even means. */
558
559 void
560 expand_label (tree label)
561 {
562 struct label_chain *p;
563
564 do_pending_stack_adjust ();
565 emit_label (label_rtx (label));
566 if (DECL_NAME (label))
567 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
568
569 if (stack_block_stack != 0)
570 {
571 p = ggc_alloc (sizeof (struct label_chain));
572 p->next = stack_block_stack->data.block.label_chain;
573 stack_block_stack->data.block.label_chain = p;
574 p->label = label;
575 }
576 }
577
578 /* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos
579 from nested functions. */
580
581 void
582 declare_nonlocal_label (tree label)
583 {
584 rtx slot = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
585
586 nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels);
587 LABEL_PRESERVE_P (label_rtx (label)) = 1;
588 if (nonlocal_goto_handler_slots == 0)
589 {
590 emit_stack_save (SAVE_NONLOCAL,
591 &nonlocal_goto_stack_level,
592 PREV_INSN (tail_recursion_reentry));
593 }
594 nonlocal_goto_handler_slots
595 = gen_rtx_EXPR_LIST (VOIDmode, slot, nonlocal_goto_handler_slots);
596 }
597
598 /* Generate RTL code for a `goto' statement with target label LABEL.
599 LABEL should be a LABEL_DECL tree node that was or will later be
600 defined with `expand_label'. */
601
602 void
603 expand_goto (tree label)
604 {
605 tree context;
606
607 /* Check for a nonlocal goto to a containing function. */
608 context = decl_function_context (label);
609 if (context != 0 && context != current_function_decl)
610 {
611 struct function *p = find_function_data (context);
612 rtx label_ref = gen_rtx_LABEL_REF (Pmode, label_rtx (label));
613 rtx handler_slot, static_chain, save_area, insn;
614 tree link;
615
616 /* Find the corresponding handler slot for this label. */
617 handler_slot = p->x_nonlocal_goto_handler_slots;
618 for (link = p->x_nonlocal_labels; TREE_VALUE (link) != label;
619 link = TREE_CHAIN (link))
620 handler_slot = XEXP (handler_slot, 1);
621 handler_slot = XEXP (handler_slot, 0);
622
623 p->has_nonlocal_label = 1;
624 current_function_has_nonlocal_goto = 1;
625 LABEL_REF_NONLOCAL_P (label_ref) = 1;
626
627 /* Copy the rtl for the slots so that they won't be shared in
628 case the virtual stack vars register gets instantiated differently
629 in the parent than in the child. */
630
631 static_chain = copy_to_reg (lookup_static_chain (label));
632
633 /* Get addr of containing function's current nonlocal goto handler,
634 which will do any cleanups and then jump to the label. */
635 handler_slot = copy_to_reg (replace_rtx (copy_rtx (handler_slot),
636 virtual_stack_vars_rtx,
637 static_chain));
638
639 /* Get addr of containing function's nonlocal save area. */
640 save_area = p->x_nonlocal_goto_stack_level;
641 if (save_area)
642 save_area = replace_rtx (copy_rtx (save_area),
643 virtual_stack_vars_rtx, static_chain);
644
645 #if HAVE_nonlocal_goto
646 if (HAVE_nonlocal_goto)
647 emit_insn (gen_nonlocal_goto (static_chain, handler_slot,
648 save_area, label_ref));
649 else
650 #endif
651 {
652 emit_insn (gen_rtx_CLOBBER (VOIDmode,
653 gen_rtx_MEM (BLKmode,
654 gen_rtx_SCRATCH (VOIDmode))));
655 emit_insn (gen_rtx_CLOBBER (VOIDmode,
656 gen_rtx_MEM (BLKmode,
657 hard_frame_pointer_rtx)));
658
659 /* Restore frame pointer for containing function.
660 This sets the actual hard register used for the frame pointer
661 to the location of the function's incoming static chain info.
662 The non-local goto handler will then adjust it to contain the
663 proper value and reload the argument pointer, if needed. */
664 emit_move_insn (hard_frame_pointer_rtx, static_chain);
665 emit_stack_restore (SAVE_NONLOCAL, save_area, NULL_RTX);
666
667 /* USE of hard_frame_pointer_rtx added for consistency;
668 not clear if really needed. */
669 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
670 emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
671 emit_indirect_jump (handler_slot);
672 }
673
674 /* Search backwards to the jump insn and mark it as a
675 non-local goto. */
676 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
677 {
678 if (GET_CODE (insn) == JUMP_INSN)
679 {
680 REG_NOTES (insn) = alloc_EXPR_LIST (REG_NON_LOCAL_GOTO,
681 const0_rtx, REG_NOTES (insn));
682 break;
683 }
684 else if (GET_CODE (insn) == CALL_INSN)
685 break;
686 }
687 }
688 else
689 expand_goto_internal (label, label_rtx (label), NULL_RTX);
690 }
691
692 /* Generate RTL code for a `goto' statement with target label BODY.
693 LABEL should be a LABEL_REF.
694 LAST_INSN, if non-0, is the rtx we should consider as the last
695 insn emitted (for the purposes of cleaning up a return). */
696
697 static void
698 expand_goto_internal (tree body, rtx label, rtx last_insn)
699 {
700 struct nesting *block;
701 rtx stack_level = 0;
702
703 if (GET_CODE (label) != CODE_LABEL)
704 abort ();
705
706 /* If label has already been defined, we can tell now
707 whether and how we must alter the stack level. */
708
709 if (PREV_INSN (label) != 0)
710 {
711 /* Find the innermost pending block that contains the label.
712 (Check containment by comparing insn-uids.)
713 Then restore the outermost stack level within that block,
714 and do cleanups of all blocks contained in it. */
715 for (block = block_stack; block; block = block->next)
716 {
717 if (INSN_UID (block->data.block.first_insn) < INSN_UID (label))
718 break;
719 if (block->data.block.stack_level != 0)
720 stack_level = block->data.block.stack_level;
721 /* Execute the cleanups for blocks we are exiting. */
722 if (block->data.block.cleanups != 0)
723 {
724 expand_cleanups (block->data.block.cleanups, 1, 1);
725 do_pending_stack_adjust ();
726 }
727 }
728
729 if (stack_level)
730 {
731 /* Ensure stack adjust isn't done by emit_jump, as this
732 would clobber the stack pointer. This one should be
733 deleted as dead by flow. */
734 clear_pending_stack_adjust ();
735 do_pending_stack_adjust ();
736
737 /* Don't do this adjust if it's to the end label and this function
738 is to return with a depressed stack pointer. */
739 if (label == return_label
740 && (((TREE_CODE (TREE_TYPE (current_function_decl))
741 == FUNCTION_TYPE)
742 && (TYPE_RETURNS_STACK_DEPRESSED
743 (TREE_TYPE (current_function_decl))))))
744 ;
745 else
746 emit_stack_restore (SAVE_BLOCK, stack_level, NULL_RTX);
747 }
748
749 if (body != 0 && DECL_TOO_LATE (body))
750 error ("jump to `%s' invalidly jumps into binding contour",
751 IDENTIFIER_POINTER (DECL_NAME (body)));
752 }
753 /* Label not yet defined: may need to put this goto
754 on the fixup list. */
755 else if (! expand_fixup (body, label, last_insn))
756 {
757 /* No fixup needed. Record that the label is the target
758 of at least one goto that has no fixup. */
759 if (body != 0)
760 TREE_ADDRESSABLE (body) = 1;
761 }
762
763 emit_jump (label);
764 }
765 \f
766 /* Generate if necessary a fixup for a goto
767 whose target label in tree structure (if any) is TREE_LABEL
768 and whose target in rtl is RTL_LABEL.
769
770 If LAST_INSN is nonzero, we pretend that the jump appears
771 after insn LAST_INSN instead of at the current point in the insn stream.
772
773 The fixup will be used later to insert insns just before the goto.
774 Those insns will restore the stack level as appropriate for the
775 target label, and will (in the case of C++) also invoke any object
776 destructors which have to be invoked when we exit the scopes which
777 are exited by the goto.
778
779 Value is nonzero if a fixup is made. */
780
781 static int
782 expand_fixup (tree tree_label, rtx rtl_label, rtx last_insn)
783 {
784 struct nesting *block, *end_block;
785
786 /* See if we can recognize which block the label will be output in.
787 This is possible in some very common cases.
788 If we succeed, set END_BLOCK to that block.
789 Otherwise, set it to 0. */
790
791 if (cond_stack
792 && (rtl_label == cond_stack->data.cond.endif_label
793 || rtl_label == cond_stack->data.cond.next_label))
794 end_block = cond_stack;
795 /* If we are in a loop, recognize certain labels which
796 are likely targets. This reduces the number of fixups
797 we need to create. */
798 else if (loop_stack
799 && (rtl_label == loop_stack->data.loop.start_label
800 || rtl_label == loop_stack->data.loop.end_label
801 || rtl_label == loop_stack->data.loop.continue_label))
802 end_block = loop_stack;
803 else
804 end_block = 0;
805
806 /* Now set END_BLOCK to the binding level to which we will return. */
807
808 if (end_block)
809 {
810 struct nesting *next_block = end_block->all;
811 block = block_stack;
812
813 /* First see if the END_BLOCK is inside the innermost binding level.
814 If so, then no cleanups or stack levels are relevant. */
815 while (next_block && next_block != block)
816 next_block = next_block->all;
817
818 if (next_block)
819 return 0;
820
821 /* Otherwise, set END_BLOCK to the innermost binding level
822 which is outside the relevant control-structure nesting. */
823 next_block = block_stack->next;
824 for (block = block_stack; block != end_block; block = block->all)
825 if (block == next_block)
826 next_block = next_block->next;
827 end_block = next_block;
828 }
829
830 /* Does any containing block have a stack level or cleanups?
831 If not, no fixup is needed, and that is the normal case
832 (the only case, for standard C). */
833 for (block = block_stack; block != end_block; block = block->next)
834 if (block->data.block.stack_level != 0
835 || block->data.block.cleanups != 0)
836 break;
837
838 if (block != end_block)
839 {
840 /* Ok, a fixup is needed. Add a fixup to the list of such. */
841 struct goto_fixup *fixup = ggc_alloc (sizeof (struct goto_fixup));
842 /* In case an old stack level is restored, make sure that comes
843 after any pending stack adjust. */
844 /* ?? If the fixup isn't to come at the present position,
845 doing the stack adjust here isn't useful. Doing it with our
846 settings at that location isn't useful either. Let's hope
847 someone does it! */
848 if (last_insn == 0)
849 do_pending_stack_adjust ();
850 fixup->target = tree_label;
851 fixup->target_rtl = rtl_label;
852
853 /* Create a BLOCK node and a corresponding matched set of
854 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes at
855 this point. The notes will encapsulate any and all fixup
856 code which we might later insert at this point in the insn
857 stream. Also, the BLOCK node will be the parent (i.e. the
858 `SUPERBLOCK') of any other BLOCK nodes which we might create
859 later on when we are expanding the fixup code.
860
861 Note that optimization passes (including expand_end_loop)
862 might move the *_BLOCK notes away, so we use a NOTE_INSN_DELETED
863 as a placeholder. */
864
865 {
866 rtx original_before_jump
867 = last_insn ? last_insn : get_last_insn ();
868 rtx start;
869 rtx end;
870 tree block;
871
872 block = make_node (BLOCK);
873 TREE_USED (block) = 1;
874
875 if (!cfun->x_whole_function_mode_p)
876 (*lang_hooks.decls.insert_block) (block);
877 else
878 {
879 BLOCK_CHAIN (block)
880 = BLOCK_CHAIN (DECL_INITIAL (current_function_decl));
881 BLOCK_CHAIN (DECL_INITIAL (current_function_decl))
882 = block;
883 }
884
885 start_sequence ();
886 start = emit_note (NOTE_INSN_BLOCK_BEG);
887 if (cfun->x_whole_function_mode_p)
888 NOTE_BLOCK (start) = block;
889 fixup->before_jump = emit_note (NOTE_INSN_DELETED);
890 end = emit_note (NOTE_INSN_BLOCK_END);
891 if (cfun->x_whole_function_mode_p)
892 NOTE_BLOCK (end) = block;
893 fixup->context = block;
894 end_sequence ();
895 emit_insn_after (start, original_before_jump);
896 }
897
898 fixup->block_start_count = current_block_start_count;
899 fixup->stack_level = 0;
900 fixup->cleanup_list_list
901 = ((block->data.block.outer_cleanups
902 || block->data.block.cleanups)
903 ? tree_cons (NULL_TREE, block->data.block.cleanups,
904 block->data.block.outer_cleanups)
905 : 0);
906 fixup->next = goto_fixup_chain;
907 goto_fixup_chain = fixup;
908 }
909
910 return block != 0;
911 }
912 \f
913 /* Expand any needed fixups in the outputmost binding level of the
914 function. FIRST_INSN is the first insn in the function. */
915
916 void
917 expand_fixups (rtx first_insn)
918 {
919 fixup_gotos (NULL, NULL_RTX, NULL_TREE, first_insn, 0);
920 }
921
922 /* When exiting a binding contour, process all pending gotos requiring fixups.
923 THISBLOCK is the structure that describes the block being exited.
924 STACK_LEVEL is the rtx for the stack level to restore exiting this contour.
925 CLEANUP_LIST is a list of expressions to evaluate on exiting this contour.
926 FIRST_INSN is the insn that began this contour.
927
928 Gotos that jump out of this contour must restore the
929 stack level and do the cleanups before actually jumping.
930
931 DONT_JUMP_IN positive means report error if there is a jump into this
932 contour from before the beginning of the contour. This is also done if
933 STACK_LEVEL is nonzero unless DONT_JUMP_IN is negative. */
934
935 static void
936 fixup_gotos (struct nesting *thisblock, rtx stack_level,
937 tree cleanup_list, rtx first_insn, int dont_jump_in)
938 {
939 struct goto_fixup *f, *prev;
940
941 /* F is the fixup we are considering; PREV is the previous one. */
942 /* We run this loop in two passes so that cleanups of exited blocks
943 are run first, and blocks that are exited are marked so
944 afterwards. */
945
946 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
947 {
948 /* Test for a fixup that is inactive because it is already handled. */
949 if (f->before_jump == 0)
950 {
951 /* Delete inactive fixup from the chain, if that is easy to do. */
952 if (prev != 0)
953 prev->next = f->next;
954 }
955 /* Has this fixup's target label been defined?
956 If so, we can finalize it. */
957 else if (PREV_INSN (f->target_rtl) != 0)
958 {
959 rtx cleanup_insns;
960
961 /* If this fixup jumped into this contour from before the beginning
962 of this contour, report an error. This code used to use
963 the first non-label insn after f->target_rtl, but that's
964 wrong since such can be added, by things like put_var_into_stack
965 and have INSN_UIDs that are out of the range of the block. */
966 /* ??? Bug: this does not detect jumping in through intermediate
967 blocks that have stack levels or cleanups.
968 It detects only a problem with the innermost block
969 around the label. */
970 if (f->target != 0
971 && (dont_jump_in > 0 || (dont_jump_in == 0 && stack_level)
972 || cleanup_list)
973 && INSN_UID (first_insn) < INSN_UID (f->target_rtl)
974 && INSN_UID (first_insn) > INSN_UID (f->before_jump)
975 && ! DECL_ERROR_ISSUED (f->target))
976 {
977 error ("%Jlabel '%D' used before containing binding contour",
978 f->target, f->target);
979 /* Prevent multiple errors for one label. */
980 DECL_ERROR_ISSUED (f->target) = 1;
981 }
982
983 /* We will expand the cleanups into a sequence of their own and
984 then later on we will attach this new sequence to the insn
985 stream just ahead of the actual jump insn. */
986
987 start_sequence ();
988
989 /* Temporarily restore the lexical context where we will
990 logically be inserting the fixup code. We do this for the
991 sake of getting the debugging information right. */
992
993 (*lang_hooks.decls.pushlevel) (0);
994 (*lang_hooks.decls.set_block) (f->context);
995
996 /* Expand the cleanups for blocks this jump exits. */
997 if (f->cleanup_list_list)
998 {
999 tree lists;
1000 for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists))
1001 /* Marked elements correspond to blocks that have been closed.
1002 Do their cleanups. */
1003 if (TREE_ADDRESSABLE (lists)
1004 && TREE_VALUE (lists) != 0)
1005 {
1006 expand_cleanups (TREE_VALUE (lists), 1, 1);
1007 /* Pop any pushes done in the cleanups,
1008 in case function is about to return. */
1009 do_pending_stack_adjust ();
1010 }
1011 }
1012
1013 /* Restore stack level for the biggest contour that this
1014 jump jumps out of. */
1015 if (f->stack_level
1016 && ! (f->target_rtl == return_label
1017 && ((TREE_CODE (TREE_TYPE (current_function_decl))
1018 == FUNCTION_TYPE)
1019 && (TYPE_RETURNS_STACK_DEPRESSED
1020 (TREE_TYPE (current_function_decl))))))
1021 emit_stack_restore (SAVE_BLOCK, f->stack_level, f->before_jump);
1022
1023 /* Finish up the sequence containing the insns which implement the
1024 necessary cleanups, and then attach that whole sequence to the
1025 insn stream just ahead of the actual jump insn. Attaching it
1026 at that point insures that any cleanups which are in fact
1027 implicit C++ object destructions (which must be executed upon
1028 leaving the block) appear (to the debugger) to be taking place
1029 in an area of the generated code where the object(s) being
1030 destructed are still "in scope". */
1031
1032 cleanup_insns = get_insns ();
1033 (*lang_hooks.decls.poplevel) (1, 0, 0);
1034
1035 end_sequence ();
1036 emit_insn_after (cleanup_insns, f->before_jump);
1037
1038 f->before_jump = 0;
1039 }
1040 }
1041
1042 /* For any still-undefined labels, do the cleanups for this block now.
1043 We must do this now since items in the cleanup list may go out
1044 of scope when the block ends. */
1045 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1046 if (f->before_jump != 0
1047 && PREV_INSN (f->target_rtl) == 0
1048 /* Label has still not appeared. If we are exiting a block with
1049 a stack level to restore, that started before the fixup,
1050 mark this stack level as needing restoration
1051 when the fixup is later finalized. */
1052 && thisblock != 0
1053 /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared, it
1054 means the label is undefined. That's erroneous, but possible. */
1055 && (thisblock->data.block.block_start_count
1056 <= f->block_start_count))
1057 {
1058 tree lists = f->cleanup_list_list;
1059 rtx cleanup_insns;
1060
1061 for (; lists; lists = TREE_CHAIN (lists))
1062 /* If the following elt. corresponds to our containing block
1063 then the elt. must be for this block. */
1064 if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups)
1065 {
1066 start_sequence ();
1067 (*lang_hooks.decls.pushlevel) (0);
1068 (*lang_hooks.decls.set_block) (f->context);
1069 expand_cleanups (TREE_VALUE (lists), 1, 1);
1070 do_pending_stack_adjust ();
1071 cleanup_insns = get_insns ();
1072 (*lang_hooks.decls.poplevel) (1, 0, 0);
1073 end_sequence ();
1074 if (cleanup_insns != 0)
1075 f->before_jump
1076 = emit_insn_after (cleanup_insns, f->before_jump);
1077
1078 f->cleanup_list_list = TREE_CHAIN (lists);
1079 }
1080
1081 if (stack_level)
1082 f->stack_level = stack_level;
1083 }
1084 }
1085 \f
1086 /* Return the number of times character C occurs in string S. */
1087 static int
1088 n_occurrences (int c, const char *s)
1089 {
1090 int n = 0;
1091 while (*s)
1092 n += (*s++ == c);
1093 return n;
1094 }
1095 \f
1096 /* Generate RTL for an asm statement (explicit assembler code).
1097 STRING is a STRING_CST node containing the assembler code text,
1098 or an ADDR_EXPR containing a STRING_CST. VOL nonzero means the
1099 insn is volatile; don't optimize it. */
1100
1101 void
1102 expand_asm (tree string, int vol)
1103 {
1104 rtx body;
1105
1106 if (TREE_CODE (string) == ADDR_EXPR)
1107 string = TREE_OPERAND (string, 0);
1108
1109 body = gen_rtx_ASM_INPUT (VOIDmode,
1110 ggc_strdup (TREE_STRING_POINTER (string)));
1111
1112 MEM_VOLATILE_P (body) = vol;
1113
1114 emit_insn (body);
1115
1116 clear_last_expr ();
1117 }
1118
1119 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
1120 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
1121 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
1122 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
1123 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
1124 constraint allows the use of a register operand. And, *IS_INOUT
1125 will be true if the operand is read-write, i.e., if it is used as
1126 an input as well as an output. If *CONSTRAINT_P is not in
1127 canonical form, it will be made canonical. (Note that `+' will be
1128 replaced with `=' as part of this process.)
1129
1130 Returns TRUE if all went well; FALSE if an error occurred. */
1131
1132 bool
1133 parse_output_constraint (const char **constraint_p, int operand_num,
1134 int ninputs, int noutputs, bool *allows_mem,
1135 bool *allows_reg, bool *is_inout)
1136 {
1137 const char *constraint = *constraint_p;
1138 const char *p;
1139
1140 /* Assume the constraint doesn't allow the use of either a register
1141 or memory. */
1142 *allows_mem = false;
1143 *allows_reg = false;
1144
1145 /* Allow the `=' or `+' to not be at the beginning of the string,
1146 since it wasn't explicitly documented that way, and there is a
1147 large body of code that puts it last. Swap the character to
1148 the front, so as not to uglify any place else. */
1149 p = strchr (constraint, '=');
1150 if (!p)
1151 p = strchr (constraint, '+');
1152
1153 /* If the string doesn't contain an `=', issue an error
1154 message. */
1155 if (!p)
1156 {
1157 error ("output operand constraint lacks `='");
1158 return false;
1159 }
1160
1161 /* If the constraint begins with `+', then the operand is both read
1162 from and written to. */
1163 *is_inout = (*p == '+');
1164
1165 /* Canonicalize the output constraint so that it begins with `='. */
1166 if (p != constraint || is_inout)
1167 {
1168 char *buf;
1169 size_t c_len = strlen (constraint);
1170
1171 if (p != constraint)
1172 warning ("output constraint `%c' for operand %d is not at the beginning",
1173 *p, operand_num);
1174
1175 /* Make a copy of the constraint. */
1176 buf = alloca (c_len + 1);
1177 strcpy (buf, constraint);
1178 /* Swap the first character and the `=' or `+'. */
1179 buf[p - constraint] = buf[0];
1180 /* Make sure the first character is an `='. (Until we do this,
1181 it might be a `+'.) */
1182 buf[0] = '=';
1183 /* Replace the constraint with the canonicalized string. */
1184 *constraint_p = ggc_alloc_string (buf, c_len);
1185 constraint = *constraint_p;
1186 }
1187
1188 /* Loop through the constraint string. */
1189 for (p = constraint + 1; *p; p += CONSTRAINT_LEN (*p, p))
1190 switch (*p)
1191 {
1192 case '+':
1193 case '=':
1194 error ("operand constraint contains incorrectly positioned '+' or '='");
1195 return false;
1196
1197 case '%':
1198 if (operand_num + 1 == ninputs + noutputs)
1199 {
1200 error ("`%%' constraint used with last operand");
1201 return false;
1202 }
1203 break;
1204
1205 case 'V': case 'm': case 'o':
1206 *allows_mem = true;
1207 break;
1208
1209 case '?': case '!': case '*': case '&': case '#':
1210 case 'E': case 'F': case 'G': case 'H':
1211 case 's': case 'i': case 'n':
1212 case 'I': case 'J': case 'K': case 'L': case 'M':
1213 case 'N': case 'O': case 'P': case ',':
1214 break;
1215
1216 case '0': case '1': case '2': case '3': case '4':
1217 case '5': case '6': case '7': case '8': case '9':
1218 case '[':
1219 error ("matching constraint not valid in output operand");
1220 return false;
1221
1222 case '<': case '>':
1223 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1224 excepting those that expand_call created. So match memory
1225 and hope. */
1226 *allows_mem = true;
1227 break;
1228
1229 case 'g': case 'X':
1230 *allows_reg = true;
1231 *allows_mem = true;
1232 break;
1233
1234 case 'p': case 'r':
1235 *allows_reg = true;
1236 break;
1237
1238 default:
1239 if (!ISALPHA (*p))
1240 break;
1241 if (REG_CLASS_FROM_CONSTRAINT (*p, p) != NO_REGS)
1242 *allows_reg = true;
1243 #ifdef EXTRA_CONSTRAINT_STR
1244 else if (EXTRA_ADDRESS_CONSTRAINT (*p, p))
1245 *allows_reg = true;
1246 else if (EXTRA_MEMORY_CONSTRAINT (*p, p))
1247 *allows_mem = true;
1248 else
1249 {
1250 /* Otherwise we can't assume anything about the nature of
1251 the constraint except that it isn't purely registers.
1252 Treat it like "g" and hope for the best. */
1253 *allows_reg = true;
1254 *allows_mem = true;
1255 }
1256 #endif
1257 break;
1258 }
1259
1260 if (*is_inout && !*allows_reg)
1261 warning ("read-write constraint does not allow a register");
1262
1263 return true;
1264 }
1265
1266 /* Similar, but for input constraints. */
1267
1268 bool
1269 parse_input_constraint (const char **constraint_p, int input_num,
1270 int ninputs, int noutputs, int ninout,
1271 const char * const * constraints,
1272 bool *allows_mem, bool *allows_reg)
1273 {
1274 const char *constraint = *constraint_p;
1275 const char *orig_constraint = constraint;
1276 size_t c_len = strlen (constraint);
1277 size_t j;
1278 bool saw_match = false;
1279
1280 /* Assume the constraint doesn't allow the use of either
1281 a register or memory. */
1282 *allows_mem = false;
1283 *allows_reg = false;
1284
1285 /* Make sure constraint has neither `=', `+', nor '&'. */
1286
1287 for (j = 0; j < c_len; j += CONSTRAINT_LEN (constraint[j], constraint+j))
1288 switch (constraint[j])
1289 {
1290 case '+': case '=': case '&':
1291 if (constraint == orig_constraint)
1292 {
1293 error ("input operand constraint contains `%c'", constraint[j]);
1294 return false;
1295 }
1296 break;
1297
1298 case '%':
1299 if (constraint == orig_constraint
1300 && input_num + 1 == ninputs - ninout)
1301 {
1302 error ("`%%' constraint used with last operand");
1303 return false;
1304 }
1305 break;
1306
1307 case 'V': case 'm': case 'o':
1308 *allows_mem = true;
1309 break;
1310
1311 case '<': case '>':
1312 case '?': case '!': case '*': case '#':
1313 case 'E': case 'F': case 'G': case 'H':
1314 case 's': case 'i': case 'n':
1315 case 'I': case 'J': case 'K': case 'L': case 'M':
1316 case 'N': case 'O': case 'P': case ',':
1317 break;
1318
1319 /* Whether or not a numeric constraint allows a register is
1320 decided by the matching constraint, and so there is no need
1321 to do anything special with them. We must handle them in
1322 the default case, so that we don't unnecessarily force
1323 operands to memory. */
1324 case '0': case '1': case '2': case '3': case '4':
1325 case '5': case '6': case '7': case '8': case '9':
1326 {
1327 char *end;
1328 unsigned long match;
1329
1330 saw_match = true;
1331
1332 match = strtoul (constraint + j, &end, 10);
1333 if (match >= (unsigned long) noutputs)
1334 {
1335 error ("matching constraint references invalid operand number");
1336 return false;
1337 }
1338
1339 /* Try and find the real constraint for this dup. Only do this
1340 if the matching constraint is the only alternative. */
1341 if (*end == '\0'
1342 && (j == 0 || (j == 1 && constraint[0] == '%')))
1343 {
1344 constraint = constraints[match];
1345 *constraint_p = constraint;
1346 c_len = strlen (constraint);
1347 j = 0;
1348 /* ??? At the end of the loop, we will skip the first part of
1349 the matched constraint. This assumes not only that the
1350 other constraint is an output constraint, but also that
1351 the '=' or '+' come first. */
1352 break;
1353 }
1354 else
1355 j = end - constraint;
1356 /* Anticipate increment at end of loop. */
1357 j--;
1358 }
1359 /* Fall through. */
1360
1361 case 'p': case 'r':
1362 *allows_reg = true;
1363 break;
1364
1365 case 'g': case 'X':
1366 *allows_reg = true;
1367 *allows_mem = true;
1368 break;
1369
1370 default:
1371 if (! ISALPHA (constraint[j]))
1372 {
1373 error ("invalid punctuation `%c' in constraint", constraint[j]);
1374 return false;
1375 }
1376 if (REG_CLASS_FROM_CONSTRAINT (constraint[j], constraint + j)
1377 != NO_REGS)
1378 *allows_reg = true;
1379 #ifdef EXTRA_CONSTRAINT_STR
1380 else if (EXTRA_ADDRESS_CONSTRAINT (constraint[j], constraint + j))
1381 *allows_reg = true;
1382 else if (EXTRA_MEMORY_CONSTRAINT (constraint[j], constraint + j))
1383 *allows_mem = true;
1384 else
1385 {
1386 /* Otherwise we can't assume anything about the nature of
1387 the constraint except that it isn't purely registers.
1388 Treat it like "g" and hope for the best. */
1389 *allows_reg = true;
1390 *allows_mem = true;
1391 }
1392 #endif
1393 break;
1394 }
1395
1396 if (saw_match && !*allows_reg)
1397 warning ("matching constraint does not allow a register");
1398
1399 return true;
1400 }
1401
1402 /* Check for overlap between registers marked in CLOBBERED_REGS and
1403 anything inappropriate in DECL. Emit error and return TRUE for error,
1404 FALSE for ok. */
1405
1406 static bool
1407 decl_conflicts_with_clobbers_p (tree decl, const HARD_REG_SET clobbered_regs)
1408 {
1409 /* Conflicts between asm-declared register variables and the clobber
1410 list are not allowed. */
1411 if ((TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL)
1412 && DECL_REGISTER (decl)
1413 && REG_P (DECL_RTL (decl))
1414 && REGNO (DECL_RTL (decl)) < FIRST_PSEUDO_REGISTER)
1415 {
1416 rtx reg = DECL_RTL (decl);
1417 unsigned int regno;
1418
1419 for (regno = REGNO (reg);
1420 regno < (REGNO (reg)
1421 + HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)));
1422 regno++)
1423 if (TEST_HARD_REG_BIT (clobbered_regs, regno))
1424 {
1425 error ("asm-specifier for variable `%s' conflicts with asm clobber list",
1426 IDENTIFIER_POINTER (DECL_NAME (decl)));
1427
1428 /* Reset registerness to stop multiple errors emitted for a
1429 single variable. */
1430 DECL_REGISTER (decl) = 0;
1431 return true;
1432 }
1433 }
1434 return false;
1435 }
1436
1437 /* Generate RTL for an asm statement with arguments.
1438 STRING is the instruction template.
1439 OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
1440 Each output or input has an expression in the TREE_VALUE and
1441 and a tree list in TREE_PURPOSE which in turn contains a constraint
1442 name in TREE_VALUE (or NULL_TREE) and a constraint string
1443 in TREE_PURPOSE.
1444 CLOBBERS is a list of STRING_CST nodes each naming a hard register
1445 that is clobbered by this insn.
1446
1447 Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
1448 Some elements of OUTPUTS may be replaced with trees representing temporary
1449 values. The caller should copy those temporary values to the originally
1450 specified lvalues.
1451
1452 VOL nonzero means the insn is volatile; don't optimize it. */
1453
1454 void
1455 expand_asm_operands (tree string, tree outputs, tree inputs,
1456 tree clobbers, int vol, location_t locus)
1457 {
1458 rtvec argvec, constraintvec;
1459 rtx body;
1460 int ninputs = list_length (inputs);
1461 int noutputs = list_length (outputs);
1462 int ninout;
1463 int nclobbers;
1464 HARD_REG_SET clobbered_regs;
1465 int clobber_conflict_found = 0;
1466 tree tail;
1467 tree t;
1468 int i;
1469 /* Vector of RTX's of evaluated output operands. */
1470 rtx *output_rtx = alloca (noutputs * sizeof (rtx));
1471 int *inout_opnum = alloca (noutputs * sizeof (int));
1472 rtx *real_output_rtx = alloca (noutputs * sizeof (rtx));
1473 enum machine_mode *inout_mode
1474 = alloca (noutputs * sizeof (enum machine_mode));
1475 const char **constraints
1476 = alloca ((noutputs + ninputs) * sizeof (const char *));
1477 int old_generating_concat_p = generating_concat_p;
1478
1479 /* An ASM with no outputs needs to be treated as volatile, for now. */
1480 if (noutputs == 0)
1481 vol = 1;
1482
1483 if (! check_operand_nalternatives (outputs, inputs))
1484 return;
1485
1486 string = resolve_asm_operand_names (string, outputs, inputs);
1487
1488 /* Collect constraints. */
1489 i = 0;
1490 for (t = outputs; t ; t = TREE_CHAIN (t), i++)
1491 constraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1492 for (t = inputs; t ; t = TREE_CHAIN (t), i++)
1493 constraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1494
1495 #ifdef MD_ASM_CLOBBERS
1496 /* Sometimes we wish to automatically clobber registers across an asm.
1497 Case in point is when the i386 backend moved from cc0 to a hard reg --
1498 maintaining source-level compatibility means automatically clobbering
1499 the flags register. */
1500 MD_ASM_CLOBBERS (clobbers);
1501 #endif
1502
1503 /* Count the number of meaningful clobbered registers, ignoring what
1504 we would ignore later. */
1505 nclobbers = 0;
1506 CLEAR_HARD_REG_SET (clobbered_regs);
1507 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1508 {
1509 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1510
1511 i = decode_reg_name (regname);
1512 if (i >= 0 || i == -4)
1513 ++nclobbers;
1514 else if (i == -2)
1515 error ("unknown register name `%s' in `asm'", regname);
1516
1517 /* Mark clobbered registers. */
1518 if (i >= 0)
1519 {
1520 /* Clobbering the PIC register is an error */
1521 if (i == (int) PIC_OFFSET_TABLE_REGNUM)
1522 {
1523 error ("PIC register `%s' clobbered in `asm'", regname);
1524 return;
1525 }
1526
1527 SET_HARD_REG_BIT (clobbered_regs, i);
1528 }
1529 }
1530
1531 clear_last_expr ();
1532
1533 /* First pass over inputs and outputs checks validity and sets
1534 mark_addressable if needed. */
1535
1536 ninout = 0;
1537 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1538 {
1539 tree val = TREE_VALUE (tail);
1540 tree type = TREE_TYPE (val);
1541 const char *constraint;
1542 bool is_inout;
1543 bool allows_reg;
1544 bool allows_mem;
1545
1546 /* If there's an erroneous arg, emit no insn. */
1547 if (type == error_mark_node)
1548 return;
1549
1550 /* Try to parse the output constraint. If that fails, there's
1551 no point in going further. */
1552 constraint = constraints[i];
1553 if (!parse_output_constraint (&constraint, i, ninputs, noutputs,
1554 &allows_mem, &allows_reg, &is_inout))
1555 return;
1556
1557 if (! allows_reg
1558 && (allows_mem
1559 || is_inout
1560 || (DECL_P (val)
1561 && GET_CODE (DECL_RTL (val)) == REG
1562 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type))))
1563 (*lang_hooks.mark_addressable) (val);
1564
1565 if (is_inout)
1566 ninout++;
1567 }
1568
1569 ninputs += ninout;
1570 if (ninputs + noutputs > MAX_RECOG_OPERANDS)
1571 {
1572 error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS);
1573 return;
1574 }
1575
1576 for (i = 0, tail = inputs; tail; i++, tail = TREE_CHAIN (tail))
1577 {
1578 bool allows_reg, allows_mem;
1579 const char *constraint;
1580
1581 /* If there's an erroneous arg, emit no insn, because the ASM_INPUT
1582 would get VOIDmode and that could cause a crash in reload. */
1583 if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
1584 return;
1585
1586 constraint = constraints[i + noutputs];
1587 if (! parse_input_constraint (&constraint, i, ninputs, noutputs, ninout,
1588 constraints, &allows_mem, &allows_reg))
1589 return;
1590
1591 if (! allows_reg && allows_mem)
1592 (*lang_hooks.mark_addressable) (TREE_VALUE (tail));
1593 }
1594
1595 /* Second pass evaluates arguments. */
1596
1597 ninout = 0;
1598 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1599 {
1600 tree val = TREE_VALUE (tail);
1601 tree type = TREE_TYPE (val);
1602 bool is_inout;
1603 bool allows_reg;
1604 bool allows_mem;
1605 rtx op;
1606
1607 if (!parse_output_constraint (&constraints[i], i, ninputs,
1608 noutputs, &allows_mem, &allows_reg,
1609 &is_inout))
1610 abort ();
1611
1612 /* If an output operand is not a decl or indirect ref and our constraint
1613 allows a register, make a temporary to act as an intermediate.
1614 Make the asm insn write into that, then our caller will copy it to
1615 the real output operand. Likewise for promoted variables. */
1616
1617 generating_concat_p = 0;
1618
1619 real_output_rtx[i] = NULL_RTX;
1620 if ((TREE_CODE (val) == INDIRECT_REF
1621 && allows_mem)
1622 || (DECL_P (val)
1623 && (allows_mem || GET_CODE (DECL_RTL (val)) == REG)
1624 && ! (GET_CODE (DECL_RTL (val)) == REG
1625 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type)))
1626 || ! allows_reg
1627 || is_inout)
1628 {
1629 op = expand_expr (val, NULL_RTX, VOIDmode, EXPAND_WRITE);
1630 if (GET_CODE (op) == MEM)
1631 op = validize_mem (op);
1632
1633 if (! allows_reg && GET_CODE (op) != MEM)
1634 error ("output number %d not directly addressable", i);
1635 if ((! allows_mem && GET_CODE (op) == MEM)
1636 || GET_CODE (op) == CONCAT)
1637 {
1638 real_output_rtx[i] = protect_from_queue (op, 1);
1639 op = gen_reg_rtx (GET_MODE (op));
1640 if (is_inout)
1641 emit_move_insn (op, real_output_rtx[i]);
1642 }
1643 }
1644 else
1645 {
1646 op = assign_temp (type, 0, 0, 1);
1647 op = validize_mem (op);
1648 TREE_VALUE (tail) = make_tree (type, op);
1649 }
1650 output_rtx[i] = op;
1651
1652 generating_concat_p = old_generating_concat_p;
1653
1654 if (is_inout)
1655 {
1656 inout_mode[ninout] = TYPE_MODE (type);
1657 inout_opnum[ninout++] = i;
1658 }
1659
1660 if (decl_conflicts_with_clobbers_p (val, clobbered_regs))
1661 clobber_conflict_found = 1;
1662 }
1663
1664 /* Make vectors for the expression-rtx, constraint strings,
1665 and named operands. */
1666
1667 argvec = rtvec_alloc (ninputs);
1668 constraintvec = rtvec_alloc (ninputs);
1669
1670 body = gen_rtx_ASM_OPERANDS ((noutputs == 0 ? VOIDmode
1671 : GET_MODE (output_rtx[0])),
1672 ggc_strdup (TREE_STRING_POINTER (string)),
1673 empty_string, 0, argvec, constraintvec,
1674 locus.file, locus.line);
1675
1676 MEM_VOLATILE_P (body) = vol;
1677
1678 /* Eval the inputs and put them into ARGVEC.
1679 Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
1680
1681 for (i = 0, tail = inputs; tail; tail = TREE_CHAIN (tail), ++i)
1682 {
1683 bool allows_reg, allows_mem;
1684 const char *constraint;
1685 tree val, type;
1686 rtx op;
1687
1688 constraint = constraints[i + noutputs];
1689 if (! parse_input_constraint (&constraint, i, ninputs, noutputs, ninout,
1690 constraints, &allows_mem, &allows_reg))
1691 abort ();
1692
1693 generating_concat_p = 0;
1694
1695 val = TREE_VALUE (tail);
1696 type = TREE_TYPE (val);
1697 op = expand_expr (val, NULL_RTX, VOIDmode,
1698 (allows_mem && !allows_reg
1699 ? EXPAND_MEMORY : EXPAND_NORMAL));
1700
1701 /* Never pass a CONCAT to an ASM. */
1702 if (GET_CODE (op) == CONCAT)
1703 op = force_reg (GET_MODE (op), op);
1704 else if (GET_CODE (op) == MEM)
1705 op = validize_mem (op);
1706
1707 if (asm_operand_ok (op, constraint) <= 0)
1708 {
1709 if (allows_reg)
1710 op = force_reg (TYPE_MODE (type), op);
1711 else if (!allows_mem)
1712 warning ("asm operand %d probably doesn't match constraints",
1713 i + noutputs);
1714 else if (GET_CODE (op) == MEM)
1715 {
1716 /* We won't recognize either volatile memory or memory
1717 with a queued address as available a memory_operand
1718 at this point. Ignore it: clearly this *is* a memory. */
1719 }
1720 else
1721 {
1722 warning ("use of memory input without lvalue in "
1723 "asm operand %d is deprecated", i + noutputs);
1724
1725 if (CONSTANT_P (op))
1726 {
1727 rtx mem = force_const_mem (TYPE_MODE (type), op);
1728 if (mem)
1729 op = validize_mem (mem);
1730 else
1731 op = force_reg (TYPE_MODE (type), op);
1732 }
1733 if (GET_CODE (op) == REG
1734 || GET_CODE (op) == SUBREG
1735 || GET_CODE (op) == ADDRESSOF
1736 || GET_CODE (op) == CONCAT)
1737 {
1738 tree qual_type = build_qualified_type (type,
1739 (TYPE_QUALS (type)
1740 | TYPE_QUAL_CONST));
1741 rtx memloc = assign_temp (qual_type, 1, 1, 1);
1742 memloc = validize_mem (memloc);
1743 emit_move_insn (memloc, op);
1744 op = memloc;
1745 }
1746 }
1747 }
1748
1749 generating_concat_p = old_generating_concat_p;
1750 ASM_OPERANDS_INPUT (body, i) = op;
1751
1752 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, i)
1753 = gen_rtx_ASM_INPUT (TYPE_MODE (type),
1754 ggc_strdup (constraints[i + noutputs]));
1755
1756 if (decl_conflicts_with_clobbers_p (val, clobbered_regs))
1757 clobber_conflict_found = 1;
1758 }
1759
1760 /* Protect all the operands from the queue now that they have all been
1761 evaluated. */
1762
1763 generating_concat_p = 0;
1764
1765 for (i = 0; i < ninputs - ninout; i++)
1766 ASM_OPERANDS_INPUT (body, i)
1767 = protect_from_queue (ASM_OPERANDS_INPUT (body, i), 0);
1768
1769 for (i = 0; i < noutputs; i++)
1770 output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1771
1772 /* For in-out operands, copy output rtx to input rtx. */
1773 for (i = 0; i < ninout; i++)
1774 {
1775 int j = inout_opnum[i];
1776 char buffer[16];
1777
1778 ASM_OPERANDS_INPUT (body, ninputs - ninout + i)
1779 = output_rtx[j];
1780
1781 sprintf (buffer, "%d", j);
1782 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, ninputs - ninout + i)
1783 = gen_rtx_ASM_INPUT (inout_mode[i], ggc_strdup (buffer));
1784 }
1785
1786 generating_concat_p = old_generating_concat_p;
1787
1788 /* Now, for each output, construct an rtx
1789 (set OUTPUT (asm_operands INSN OUTPUTCONSTRAINT OUTPUTNUMBER
1790 ARGVEC CONSTRAINTS OPNAMES))
1791 If there is more than one, put them inside a PARALLEL. */
1792
1793 if (noutputs == 1 && nclobbers == 0)
1794 {
1795 ASM_OPERANDS_OUTPUT_CONSTRAINT (body) = ggc_strdup (constraints[0]);
1796 emit_insn (gen_rtx_SET (VOIDmode, output_rtx[0], body));
1797 }
1798
1799 else if (noutputs == 0 && nclobbers == 0)
1800 {
1801 /* No output operands: put in a raw ASM_OPERANDS rtx. */
1802 emit_insn (body);
1803 }
1804
1805 else
1806 {
1807 rtx obody = body;
1808 int num = noutputs;
1809
1810 if (num == 0)
1811 num = 1;
1812
1813 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num + nclobbers));
1814
1815 /* For each output operand, store a SET. */
1816 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1817 {
1818 XVECEXP (body, 0, i)
1819 = gen_rtx_SET (VOIDmode,
1820 output_rtx[i],
1821 gen_rtx_ASM_OPERANDS
1822 (GET_MODE (output_rtx[i]),
1823 ggc_strdup (TREE_STRING_POINTER (string)),
1824 ggc_strdup (constraints[i]),
1825 i, argvec, constraintvec,
1826 locus.file, locus.line));
1827
1828 MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
1829 }
1830
1831 /* If there are no outputs (but there are some clobbers)
1832 store the bare ASM_OPERANDS into the PARALLEL. */
1833
1834 if (i == 0)
1835 XVECEXP (body, 0, i++) = obody;
1836
1837 /* Store (clobber REG) for each clobbered register specified. */
1838
1839 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1840 {
1841 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1842 int j = decode_reg_name (regname);
1843 rtx clobbered_reg;
1844
1845 if (j < 0)
1846 {
1847 if (j == -3) /* `cc', which is not a register */
1848 continue;
1849
1850 if (j == -4) /* `memory', don't cache memory across asm */
1851 {
1852 XVECEXP (body, 0, i++)
1853 = gen_rtx_CLOBBER (VOIDmode,
1854 gen_rtx_MEM
1855 (BLKmode,
1856 gen_rtx_SCRATCH (VOIDmode)));
1857 continue;
1858 }
1859
1860 /* Ignore unknown register, error already signaled. */
1861 continue;
1862 }
1863
1864 /* Use QImode since that's guaranteed to clobber just one reg. */
1865 clobbered_reg = gen_rtx_REG (QImode, j);
1866
1867 /* Do sanity check for overlap between clobbers and respectively
1868 input and outputs that hasn't been handled. Such overlap
1869 should have been detected and reported above. */
1870 if (!clobber_conflict_found)
1871 {
1872 int opno;
1873
1874 /* We test the old body (obody) contents to avoid tripping
1875 over the under-construction body. */
1876 for (opno = 0; opno < noutputs; opno++)
1877 if (reg_overlap_mentioned_p (clobbered_reg, output_rtx[opno]))
1878 internal_error ("asm clobber conflict with output operand");
1879
1880 for (opno = 0; opno < ninputs - ninout; opno++)
1881 if (reg_overlap_mentioned_p (clobbered_reg,
1882 ASM_OPERANDS_INPUT (obody, opno)))
1883 internal_error ("asm clobber conflict with input operand");
1884 }
1885
1886 XVECEXP (body, 0, i++)
1887 = gen_rtx_CLOBBER (VOIDmode, clobbered_reg);
1888 }
1889
1890 emit_insn (body);
1891 }
1892
1893 /* For any outputs that needed reloading into registers, spill them
1894 back to where they belong. */
1895 for (i = 0; i < noutputs; ++i)
1896 if (real_output_rtx[i])
1897 emit_move_insn (real_output_rtx[i], output_rtx[i]);
1898
1899 free_temp_slots ();
1900 }
1901
1902 /* A subroutine of expand_asm_operands. Check that all operands have
1903 the same number of alternatives. Return true if so. */
1904
1905 static bool
1906 check_operand_nalternatives (tree outputs, tree inputs)
1907 {
1908 if (outputs || inputs)
1909 {
1910 tree tmp = TREE_PURPOSE (outputs ? outputs : inputs);
1911 int nalternatives
1912 = n_occurrences (',', TREE_STRING_POINTER (TREE_VALUE (tmp)));
1913 tree next = inputs;
1914
1915 if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES)
1916 {
1917 error ("too many alternatives in `asm'");
1918 return false;
1919 }
1920
1921 tmp = outputs;
1922 while (tmp)
1923 {
1924 const char *constraint
1925 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tmp)));
1926
1927 if (n_occurrences (',', constraint) != nalternatives)
1928 {
1929 error ("operand constraints for `asm' differ in number of alternatives");
1930 return false;
1931 }
1932
1933 if (TREE_CHAIN (tmp))
1934 tmp = TREE_CHAIN (tmp);
1935 else
1936 tmp = next, next = 0;
1937 }
1938 }
1939
1940 return true;
1941 }
1942
1943 /* A subroutine of expand_asm_operands. Check that all operand names
1944 are unique. Return true if so. We rely on the fact that these names
1945 are identifiers, and so have been canonicalized by get_identifier,
1946 so all we need are pointer comparisons. */
1947
1948 static bool
1949 check_unique_operand_names (tree outputs, tree inputs)
1950 {
1951 tree i, j;
1952
1953 for (i = outputs; i ; i = TREE_CHAIN (i))
1954 {
1955 tree i_name = TREE_PURPOSE (TREE_PURPOSE (i));
1956 if (! i_name)
1957 continue;
1958
1959 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
1960 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1961 goto failure;
1962 }
1963
1964 for (i = inputs; i ; i = TREE_CHAIN (i))
1965 {
1966 tree i_name = TREE_PURPOSE (TREE_PURPOSE (i));
1967 if (! i_name)
1968 continue;
1969
1970 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
1971 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1972 goto failure;
1973 for (j = outputs; j ; j = TREE_CHAIN (j))
1974 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1975 goto failure;
1976 }
1977
1978 return true;
1979
1980 failure:
1981 error ("duplicate asm operand name '%s'",
1982 TREE_STRING_POINTER (TREE_PURPOSE (TREE_PURPOSE (i))));
1983 return false;
1984 }
1985
1986 /* A subroutine of expand_asm_operands. Resolve the names of the operands
1987 in *POUTPUTS and *PINPUTS to numbers, and replace the name expansions in
1988 STRING and in the constraints to those numbers. */
1989
1990 tree
1991 resolve_asm_operand_names (tree string, tree outputs, tree inputs)
1992 {
1993 char *buffer;
1994 char *p;
1995 const char *c;
1996 tree t;
1997
1998 check_unique_operand_names (outputs, inputs);
1999
2000 /* Substitute [<name>] in input constraint strings. There should be no
2001 named operands in output constraints. */
2002 for (t = inputs; t ; t = TREE_CHAIN (t))
2003 {
2004 c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
2005 if (strchr (c, '[') != NULL)
2006 {
2007 p = buffer = xstrdup (c);
2008 while ((p = strchr (p, '[')) != NULL)
2009 p = resolve_operand_name_1 (p, outputs, inputs);
2010 TREE_VALUE (TREE_PURPOSE (t))
2011 = build_string (strlen (buffer), buffer);
2012 free (buffer);
2013 }
2014 }
2015
2016 /* Now check for any needed substitutions in the template. */
2017 c = TREE_STRING_POINTER (string);
2018 while ((c = strchr (c, '%')) != NULL)
2019 {
2020 if (c[1] == '[')
2021 break;
2022 else if (ISALPHA (c[1]) && c[2] == '[')
2023 break;
2024 else
2025 {
2026 c += 1;
2027 continue;
2028 }
2029 }
2030
2031 if (c)
2032 {
2033 /* OK, we need to make a copy so we can perform the substitutions.
2034 Assume that we will not need extra space--we get to remove '['
2035 and ']', which means we cannot have a problem until we have more
2036 than 999 operands. */
2037 buffer = xstrdup (TREE_STRING_POINTER (string));
2038 p = buffer + (c - TREE_STRING_POINTER (string));
2039
2040 while ((p = strchr (p, '%')) != NULL)
2041 {
2042 if (p[1] == '[')
2043 p += 1;
2044 else if (ISALPHA (p[1]) && p[2] == '[')
2045 p += 2;
2046 else
2047 {
2048 p += 1;
2049 continue;
2050 }
2051
2052 p = resolve_operand_name_1 (p, outputs, inputs);
2053 }
2054
2055 string = build_string (strlen (buffer), buffer);
2056 free (buffer);
2057 }
2058
2059 return string;
2060 }
2061
2062 /* A subroutine of resolve_operand_names. P points to the '[' for a
2063 potential named operand of the form [<name>]. In place, replace
2064 the name and brackets with a number. Return a pointer to the
2065 balance of the string after substitution. */
2066
2067 static char *
2068 resolve_operand_name_1 (char *p, tree outputs, tree inputs)
2069 {
2070 char *q;
2071 int op;
2072 tree t;
2073 size_t len;
2074
2075 /* Collect the operand name. */
2076 q = strchr (p, ']');
2077 if (!q)
2078 {
2079 error ("missing close brace for named operand");
2080 return strchr (p, '\0');
2081 }
2082 len = q - p - 1;
2083
2084 /* Resolve the name to a number. */
2085 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
2086 {
2087 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
2088 if (name)
2089 {
2090 const char *c = TREE_STRING_POINTER (name);
2091 if (strncmp (c, p + 1, len) == 0 && c[len] == '\0')
2092 goto found;
2093 }
2094 }
2095 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
2096 {
2097 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
2098 if (name)
2099 {
2100 const char *c = TREE_STRING_POINTER (name);
2101 if (strncmp (c, p + 1, len) == 0 && c[len] == '\0')
2102 goto found;
2103 }
2104 }
2105
2106 *q = '\0';
2107 error ("undefined named operand '%s'", p + 1);
2108 op = 0;
2109 found:
2110
2111 /* Replace the name with the number. Unfortunately, not all libraries
2112 get the return value of sprintf correct, so search for the end of the
2113 generated string by hand. */
2114 sprintf (p, "%d", op);
2115 p = strchr (p, '\0');
2116
2117 /* Verify the no extra buffer space assumption. */
2118 if (p > q)
2119 abort ();
2120
2121 /* Shift the rest of the buffer down to fill the gap. */
2122 memmove (p, q + 1, strlen (q + 1) + 1);
2123
2124 return p;
2125 }
2126 \f
2127 /* Generate RTL to evaluate the expression EXP
2128 and remember it in case this is the VALUE in a ({... VALUE; }) constr.
2129 Provided just for backward-compatibility. expand_expr_stmt_value()
2130 should be used for new code. */
2131
2132 void
2133 expand_expr_stmt (tree exp)
2134 {
2135 expand_expr_stmt_value (exp, -1, 1);
2136 }
2137
2138 /* Generate RTL to evaluate the expression EXP. WANT_VALUE tells
2139 whether to (1) save the value of the expression, (0) discard it or
2140 (-1) use expr_stmts_for_value to tell. The use of -1 is
2141 deprecated, and retained only for backward compatibility. */
2142
2143 void
2144 expand_expr_stmt_value (tree exp, int want_value, int maybe_last)
2145 {
2146 rtx value;
2147 tree type;
2148 rtx alt_rtl = NULL;
2149
2150 if (want_value == -1)
2151 want_value = expr_stmts_for_value != 0;
2152
2153 /* If -Wextra, warn about statements with no side effects,
2154 except for an explicit cast to void (e.g. for assert()), and
2155 except for last statement in ({...}) where they may be useful. */
2156 if (! want_value
2157 && (expr_stmts_for_value == 0 || ! maybe_last)
2158 && exp != error_mark_node
2159 && warn_unused_value)
2160 {
2161 if (TREE_SIDE_EFFECTS (exp))
2162 warn_if_unused_value (exp);
2163 else if (!VOID_TYPE_P (TREE_TYPE (exp)))
2164 warning ("%Hstatement with no effect", &emit_locus);
2165 }
2166
2167 /* If EXP is of function type and we are expanding statements for
2168 value, convert it to pointer-to-function. */
2169 if (want_value && TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE)
2170 exp = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (exp)), exp);
2171
2172 /* The call to `expand_expr' could cause last_expr_type and
2173 last_expr_value to get reset. Therefore, we set last_expr_value
2174 and last_expr_type *after* calling expand_expr. */
2175 value = expand_expr_real (exp, want_value ? NULL_RTX : const0_rtx,
2176 VOIDmode, 0, &alt_rtl);
2177 type = TREE_TYPE (exp);
2178
2179 /* If all we do is reference a volatile value in memory,
2180 copy it to a register to be sure it is actually touched. */
2181 if (value && GET_CODE (value) == MEM && TREE_THIS_VOLATILE (exp))
2182 {
2183 if (TYPE_MODE (type) == VOIDmode)
2184 ;
2185 else if (TYPE_MODE (type) != BLKmode)
2186 value = copy_to_reg (value);
2187 else
2188 {
2189 rtx lab = gen_label_rtx ();
2190
2191 /* Compare the value with itself to reference it. */
2192 emit_cmp_and_jump_insns (value, value, EQ,
2193 expand_expr (TYPE_SIZE (type),
2194 NULL_RTX, VOIDmode, 0),
2195 BLKmode, 0, lab);
2196 emit_label (lab);
2197 }
2198 }
2199
2200 /* If this expression is part of a ({...}) and is in memory, we may have
2201 to preserve temporaries. */
2202 preserve_temp_slots (value);
2203
2204 /* Free any temporaries used to evaluate this expression. Any temporary
2205 used as a result of this expression will already have been preserved
2206 above. */
2207 free_temp_slots ();
2208
2209 if (want_value)
2210 {
2211 last_expr_value = value;
2212 last_expr_alt_rtl = alt_rtl;
2213 last_expr_type = type;
2214 }
2215
2216 emit_queue ();
2217 }
2218
2219 /* Warn if EXP contains any computations whose results are not used.
2220 Return 1 if a warning is printed; 0 otherwise. */
2221
2222 int
2223 warn_if_unused_value (tree exp)
2224 {
2225 if (TREE_USED (exp))
2226 return 0;
2227
2228 /* Don't warn about void constructs. This includes casting to void,
2229 void function calls, and statement expressions with a final cast
2230 to void. */
2231 if (VOID_TYPE_P (TREE_TYPE (exp)))
2232 return 0;
2233
2234 switch (TREE_CODE (exp))
2235 {
2236 case PREINCREMENT_EXPR:
2237 case POSTINCREMENT_EXPR:
2238 case PREDECREMENT_EXPR:
2239 case POSTDECREMENT_EXPR:
2240 case MODIFY_EXPR:
2241 case INIT_EXPR:
2242 case TARGET_EXPR:
2243 case CALL_EXPR:
2244 case RTL_EXPR:
2245 case TRY_CATCH_EXPR:
2246 case WITH_CLEANUP_EXPR:
2247 case EXIT_EXPR:
2248 return 0;
2249
2250 case BIND_EXPR:
2251 /* For a binding, warn if no side effect within it. */
2252 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2253
2254 case SAVE_EXPR:
2255 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2256
2257 case TRUTH_ORIF_EXPR:
2258 case TRUTH_ANDIF_EXPR:
2259 /* In && or ||, warn if 2nd operand has no side effect. */
2260 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2261
2262 case COMPOUND_EXPR:
2263 if (TREE_NO_UNUSED_WARNING (exp))
2264 return 0;
2265 if (warn_if_unused_value (TREE_OPERAND (exp, 0)))
2266 return 1;
2267 /* Let people do `(foo (), 0)' without a warning. */
2268 if (TREE_CONSTANT (TREE_OPERAND (exp, 1)))
2269 return 0;
2270 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2271
2272 case NOP_EXPR:
2273 case CONVERT_EXPR:
2274 case NON_LVALUE_EXPR:
2275 /* Don't warn about conversions not explicit in the user's program. */
2276 if (TREE_NO_UNUSED_WARNING (exp))
2277 return 0;
2278 /* Assignment to a cast usually results in a cast of a modify.
2279 Don't complain about that. There can be an arbitrary number of
2280 casts before the modify, so we must loop until we find the first
2281 non-cast expression and then test to see if that is a modify. */
2282 {
2283 tree tem = TREE_OPERAND (exp, 0);
2284
2285 while (TREE_CODE (tem) == CONVERT_EXPR || TREE_CODE (tem) == NOP_EXPR)
2286 tem = TREE_OPERAND (tem, 0);
2287
2288 if (TREE_CODE (tem) == MODIFY_EXPR || TREE_CODE (tem) == INIT_EXPR
2289 || TREE_CODE (tem) == CALL_EXPR)
2290 return 0;
2291 }
2292 goto maybe_warn;
2293
2294 case INDIRECT_REF:
2295 /* Don't warn about automatic dereferencing of references, since
2296 the user cannot control it. */
2297 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == REFERENCE_TYPE)
2298 return warn_if_unused_value (TREE_OPERAND (exp, 0));
2299 /* Fall through. */
2300
2301 default:
2302 /* Referencing a volatile value is a side effect, so don't warn. */
2303 if ((DECL_P (exp)
2304 || TREE_CODE_CLASS (TREE_CODE (exp)) == 'r')
2305 && TREE_THIS_VOLATILE (exp))
2306 return 0;
2307
2308 /* If this is an expression which has no operands, there is no value
2309 to be unused. There are no such language-independent codes,
2310 but front ends may define such. */
2311 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'e'
2312 && TREE_CODE_LENGTH (TREE_CODE (exp)) == 0)
2313 return 0;
2314
2315 maybe_warn:
2316 /* If this is an expression with side effects, don't warn. */
2317 if (TREE_SIDE_EFFECTS (exp))
2318 return 0;
2319
2320 warning ("%Hvalue computed is not used", &emit_locus);
2321 return 1;
2322 }
2323 }
2324
2325 /* Clear out the memory of the last expression evaluated. */
2326
2327 void
2328 clear_last_expr (void)
2329 {
2330 last_expr_type = NULL_TREE;
2331 last_expr_value = NULL_RTX;
2332 last_expr_alt_rtl = NULL_RTX;
2333 }
2334
2335 /* Begin a statement-expression, i.e., a series of statements which
2336 may return a value. Return the RTL_EXPR for this statement expr.
2337 The caller must save that value and pass it to
2338 expand_end_stmt_expr. If HAS_SCOPE is nonzero, temporaries created
2339 in the statement-expression are deallocated at the end of the
2340 expression. */
2341
2342 tree
2343 expand_start_stmt_expr (int has_scope)
2344 {
2345 tree t;
2346
2347 /* Make the RTL_EXPR node temporary, not momentary,
2348 so that rtl_expr_chain doesn't become garbage. */
2349 t = make_node (RTL_EXPR);
2350 do_pending_stack_adjust ();
2351 if (has_scope)
2352 start_sequence_for_rtl_expr (t);
2353 else
2354 start_sequence ();
2355 NO_DEFER_POP;
2356 expr_stmts_for_value++;
2357 return t;
2358 }
2359
2360 /* Restore the previous state at the end of a statement that returns a value.
2361 Returns a tree node representing the statement's value and the
2362 insns to compute the value.
2363
2364 The nodes of that expression have been freed by now, so we cannot use them.
2365 But we don't want to do that anyway; the expression has already been
2366 evaluated and now we just want to use the value. So generate a RTL_EXPR
2367 with the proper type and RTL value.
2368
2369 If the last substatement was not an expression,
2370 return something with type `void'. */
2371
2372 tree
2373 expand_end_stmt_expr (tree t)
2374 {
2375 OK_DEFER_POP;
2376
2377 if (! last_expr_value || ! last_expr_type)
2378 {
2379 last_expr_value = const0_rtx;
2380 last_expr_alt_rtl = NULL_RTX;
2381 last_expr_type = void_type_node;
2382 }
2383 else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value))
2384 /* Remove any possible QUEUED. */
2385 last_expr_value = protect_from_queue (last_expr_value, 0);
2386
2387 emit_queue ();
2388
2389 TREE_TYPE (t) = last_expr_type;
2390 RTL_EXPR_RTL (t) = last_expr_value;
2391 RTL_EXPR_ALT_RTL (t) = last_expr_alt_rtl;
2392 RTL_EXPR_SEQUENCE (t) = get_insns ();
2393
2394 rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain);
2395
2396 end_sequence ();
2397
2398 /* Don't consider deleting this expr or containing exprs at tree level. */
2399 TREE_SIDE_EFFECTS (t) = 1;
2400 /* Propagate volatility of the actual RTL expr. */
2401 TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value);
2402
2403 clear_last_expr ();
2404 expr_stmts_for_value--;
2405
2406 return t;
2407 }
2408 \f
2409 /* Generate RTL for the start of an if-then. COND is the expression
2410 whose truth should be tested.
2411
2412 If EXITFLAG is nonzero, this conditional is visible to
2413 `exit_something'. */
2414
2415 void
2416 expand_start_cond (tree cond, int exitflag)
2417 {
2418 struct nesting *thiscond = ALLOC_NESTING ();
2419
2420 /* Make an entry on cond_stack for the cond we are entering. */
2421
2422 thiscond->desc = COND_NESTING;
2423 thiscond->next = cond_stack;
2424 thiscond->all = nesting_stack;
2425 thiscond->depth = ++nesting_depth;
2426 thiscond->data.cond.next_label = gen_label_rtx ();
2427 /* Before we encounter an `else', we don't need a separate exit label
2428 unless there are supposed to be exit statements
2429 to exit this conditional. */
2430 thiscond->exit_label = exitflag ? gen_label_rtx () : 0;
2431 thiscond->data.cond.endif_label = thiscond->exit_label;
2432 cond_stack = thiscond;
2433 nesting_stack = thiscond;
2434
2435 do_jump (cond, thiscond->data.cond.next_label, NULL_RTX);
2436 }
2437
2438 /* Generate RTL between then-clause and the elseif-clause
2439 of an if-then-elseif-.... */
2440
2441 void
2442 expand_start_elseif (tree cond)
2443 {
2444 if (cond_stack->data.cond.endif_label == 0)
2445 cond_stack->data.cond.endif_label = gen_label_rtx ();
2446 emit_jump (cond_stack->data.cond.endif_label);
2447 emit_label (cond_stack->data.cond.next_label);
2448 cond_stack->data.cond.next_label = gen_label_rtx ();
2449 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2450 }
2451
2452 /* Generate RTL between the then-clause and the else-clause
2453 of an if-then-else. */
2454
2455 void
2456 expand_start_else (void)
2457 {
2458 if (cond_stack->data.cond.endif_label == 0)
2459 cond_stack->data.cond.endif_label = gen_label_rtx ();
2460
2461 emit_jump (cond_stack->data.cond.endif_label);
2462 emit_label (cond_stack->data.cond.next_label);
2463 cond_stack->data.cond.next_label = 0; /* No more _else or _elseif calls. */
2464 }
2465
2466 /* After calling expand_start_else, turn this "else" into an "else if"
2467 by providing another condition. */
2468
2469 void
2470 expand_elseif (tree cond)
2471 {
2472 cond_stack->data.cond.next_label = gen_label_rtx ();
2473 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2474 }
2475
2476 /* Generate RTL for the end of an if-then.
2477 Pop the record for it off of cond_stack. */
2478
2479 void
2480 expand_end_cond (void)
2481 {
2482 struct nesting *thiscond = cond_stack;
2483
2484 do_pending_stack_adjust ();
2485 if (thiscond->data.cond.next_label)
2486 emit_label (thiscond->data.cond.next_label);
2487 if (thiscond->data.cond.endif_label)
2488 emit_label (thiscond->data.cond.endif_label);
2489
2490 POPSTACK (cond_stack);
2491 clear_last_expr ();
2492 }
2493 \f
2494 /* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this
2495 loop should be exited by `exit_something'. This is a loop for which
2496 `expand_continue' will jump to the top of the loop.
2497
2498 Make an entry on loop_stack to record the labels associated with
2499 this loop. */
2500
2501 struct nesting *
2502 expand_start_loop (int exit_flag)
2503 {
2504 struct nesting *thisloop = ALLOC_NESTING ();
2505
2506 /* Make an entry on loop_stack for the loop we are entering. */
2507
2508 thisloop->desc = LOOP_NESTING;
2509 thisloop->next = loop_stack;
2510 thisloop->all = nesting_stack;
2511 thisloop->depth = ++nesting_depth;
2512 thisloop->data.loop.start_label = gen_label_rtx ();
2513 thisloop->data.loop.end_label = gen_label_rtx ();
2514 thisloop->data.loop.continue_label = thisloop->data.loop.start_label;
2515 thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0;
2516 loop_stack = thisloop;
2517 nesting_stack = thisloop;
2518
2519 do_pending_stack_adjust ();
2520 emit_queue ();
2521 emit_note (NOTE_INSN_LOOP_BEG);
2522 emit_label (thisloop->data.loop.start_label);
2523
2524 return thisloop;
2525 }
2526
2527 /* Like expand_start_loop but for a loop where the continuation point
2528 (for expand_continue_loop) will be specified explicitly. */
2529
2530 struct nesting *
2531 expand_start_loop_continue_elsewhere (int exit_flag)
2532 {
2533 struct nesting *thisloop = expand_start_loop (exit_flag);
2534 loop_stack->data.loop.continue_label = gen_label_rtx ();
2535 return thisloop;
2536 }
2537
2538 /* Begin a null, aka do { } while (0) "loop". But since the contents
2539 of said loop can still contain a break, we must frob the loop nest. */
2540
2541 struct nesting *
2542 expand_start_null_loop (void)
2543 {
2544 struct nesting *thisloop = ALLOC_NESTING ();
2545
2546 /* Make an entry on loop_stack for the loop we are entering. */
2547
2548 thisloop->desc = LOOP_NESTING;
2549 thisloop->next = loop_stack;
2550 thisloop->all = nesting_stack;
2551 thisloop->depth = ++nesting_depth;
2552 thisloop->data.loop.start_label = emit_note (NOTE_INSN_DELETED);
2553 thisloop->data.loop.end_label = gen_label_rtx ();
2554 thisloop->data.loop.continue_label = thisloop->data.loop.end_label;
2555 thisloop->exit_label = thisloop->data.loop.end_label;
2556 loop_stack = thisloop;
2557 nesting_stack = thisloop;
2558
2559 return thisloop;
2560 }
2561
2562 /* Specify the continuation point for a loop started with
2563 expand_start_loop_continue_elsewhere.
2564 Use this at the point in the code to which a continue statement
2565 should jump. */
2566
2567 void
2568 expand_loop_continue_here (void)
2569 {
2570 do_pending_stack_adjust ();
2571 emit_note (NOTE_INSN_LOOP_CONT);
2572 emit_label (loop_stack->data.loop.continue_label);
2573 }
2574
2575 /* Finish a loop. Generate a jump back to the top and the loop-exit label.
2576 Pop the block off of loop_stack. */
2577
2578 void
2579 expand_end_loop (void)
2580 {
2581 rtx start_label = loop_stack->data.loop.start_label;
2582 rtx etc_note;
2583 int eh_regions, debug_blocks;
2584 bool empty_test;
2585
2586 /* Mark the continue-point at the top of the loop if none elsewhere. */
2587 if (start_label == loop_stack->data.loop.continue_label)
2588 emit_note_before (NOTE_INSN_LOOP_CONT, start_label);
2589
2590 do_pending_stack_adjust ();
2591
2592 /* If the loop starts with a loop exit, roll that to the end where
2593 it will optimize together with the jump back.
2594
2595 If the loop presently looks like this (in pseudo-C):
2596
2597 LOOP_BEG
2598 start_label:
2599 if (test) goto end_label;
2600 LOOP_END_TOP_COND
2601 body;
2602 goto start_label;
2603 end_label:
2604
2605 transform it to look like:
2606
2607 LOOP_BEG
2608 goto start_label;
2609 top_label:
2610 body;
2611 start_label:
2612 if (test) goto end_label;
2613 goto top_label;
2614 end_label:
2615
2616 We rely on the presence of NOTE_INSN_LOOP_END_TOP_COND to mark
2617 the end of the entry conditional. Without this, our lexical scan
2618 can't tell the difference between an entry conditional and a
2619 body conditional that exits the loop. Mistaking the two means
2620 that we can misplace the NOTE_INSN_LOOP_CONT note, which can
2621 screw up loop unrolling.
2622
2623 Things will be oh so much better when loop optimization is done
2624 off of a proper control flow graph... */
2625
2626 /* Scan insns from the top of the loop looking for the END_TOP_COND note. */
2627
2628 empty_test = true;
2629 eh_regions = debug_blocks = 0;
2630 for (etc_note = start_label; etc_note ; etc_note = NEXT_INSN (etc_note))
2631 if (GET_CODE (etc_note) == NOTE)
2632 {
2633 if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_LOOP_END_TOP_COND)
2634 break;
2635
2636 /* We must not walk into a nested loop. */
2637 else if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_LOOP_BEG)
2638 {
2639 etc_note = NULL_RTX;
2640 break;
2641 }
2642
2643 /* At the same time, scan for EH region notes, as we don't want
2644 to scrog region nesting. This shouldn't happen, but... */
2645 else if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_EH_REGION_BEG)
2646 eh_regions++;
2647 else if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_EH_REGION_END)
2648 {
2649 if (--eh_regions < 0)
2650 /* We've come to the end of an EH region, but never saw the
2651 beginning of that region. That means that an EH region
2652 begins before the top of the loop, and ends in the middle
2653 of it. The existence of such a situation violates a basic
2654 assumption in this code, since that would imply that even
2655 when EH_REGIONS is zero, we might move code out of an
2656 exception region. */
2657 abort ();
2658 }
2659
2660 /* Likewise for debug scopes. In this case we'll either (1) move
2661 all of the notes if they are properly nested or (2) leave the
2662 notes alone and only rotate the loop at high optimization
2663 levels when we expect to scrog debug info. */
2664 else if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_BLOCK_BEG)
2665 debug_blocks++;
2666 else if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_BLOCK_END)
2667 debug_blocks--;
2668 }
2669 else if (INSN_P (etc_note))
2670 empty_test = false;
2671
2672 if (etc_note
2673 && optimize
2674 && ! empty_test
2675 && eh_regions == 0
2676 && (debug_blocks == 0 || optimize >= 2)
2677 && NEXT_INSN (etc_note) != NULL_RTX
2678 && ! any_condjump_p (get_last_insn ()))
2679 {
2680 /* We found one. Move everything from START to ETC to the end
2681 of the loop, and add a jump from the top of the loop. */
2682 rtx top_label = gen_label_rtx ();
2683 rtx start_move = start_label;
2684
2685 /* If the start label is preceded by a NOTE_INSN_LOOP_CONT note,
2686 then we want to move this note also. */
2687 if (GET_CODE (PREV_INSN (start_move)) == NOTE
2688 && NOTE_LINE_NUMBER (PREV_INSN (start_move)) == NOTE_INSN_LOOP_CONT)
2689 start_move = PREV_INSN (start_move);
2690
2691 emit_label_before (top_label, start_move);
2692
2693 /* Actually move the insns. If the debug scopes are nested, we
2694 can move everything at once. Otherwise we have to move them
2695 one by one and squeeze out the block notes. */
2696 if (debug_blocks == 0)
2697 reorder_insns (start_move, etc_note, get_last_insn ());
2698 else
2699 {
2700 rtx insn, next_insn;
2701 for (insn = start_move; insn; insn = next_insn)
2702 {
2703 /* Figure out which insn comes after this one. We have
2704 to do this before we move INSN. */
2705 next_insn = (insn == etc_note ? NULL : NEXT_INSN (insn));
2706
2707 if (GET_CODE (insn) == NOTE
2708 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2709 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2710 continue;
2711
2712 reorder_insns (insn, insn, get_last_insn ());
2713 }
2714 }
2715
2716 /* Add the jump from the top of the loop. */
2717 emit_jump_insn_before (gen_jump (start_label), top_label);
2718 emit_barrier_before (top_label);
2719 start_label = top_label;
2720 }
2721
2722 emit_jump (start_label);
2723 emit_note (NOTE_INSN_LOOP_END);
2724 emit_label (loop_stack->data.loop.end_label);
2725
2726 POPSTACK (loop_stack);
2727
2728 clear_last_expr ();
2729 }
2730
2731 /* Finish a null loop, aka do { } while (0). */
2732
2733 void
2734 expand_end_null_loop (void)
2735 {
2736 do_pending_stack_adjust ();
2737 emit_label (loop_stack->data.loop.end_label);
2738
2739 POPSTACK (loop_stack);
2740
2741 clear_last_expr ();
2742 }
2743
2744 /* Generate a jump to the current loop's continue-point.
2745 This is usually the top of the loop, but may be specified
2746 explicitly elsewhere. If not currently inside a loop,
2747 return 0 and do nothing; caller will print an error message. */
2748
2749 int
2750 expand_continue_loop (struct nesting *whichloop)
2751 {
2752 /* Emit information for branch prediction. */
2753 rtx note;
2754
2755 if (flag_guess_branch_prob)
2756 {
2757 note = emit_note (NOTE_INSN_PREDICTION);
2758 NOTE_PREDICTION (note) = NOTE_PREDICT (PRED_CONTINUE, IS_TAKEN);
2759 }
2760 clear_last_expr ();
2761 if (whichloop == 0)
2762 whichloop = loop_stack;
2763 if (whichloop == 0)
2764 return 0;
2765 expand_goto_internal (NULL_TREE, whichloop->data.loop.continue_label,
2766 NULL_RTX);
2767 return 1;
2768 }
2769
2770 /* Generate a jump to exit the current loop. If not currently inside a loop,
2771 return 0 and do nothing; caller will print an error message. */
2772
2773 int
2774 expand_exit_loop (struct nesting *whichloop)
2775 {
2776 clear_last_expr ();
2777 if (whichloop == 0)
2778 whichloop = loop_stack;
2779 if (whichloop == 0)
2780 return 0;
2781 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, NULL_RTX);
2782 return 1;
2783 }
2784
2785 /* Generate a conditional jump to exit the current loop if COND
2786 evaluates to zero. If not currently inside a loop,
2787 return 0 and do nothing; caller will print an error message. */
2788
2789 int
2790 expand_exit_loop_if_false (struct nesting *whichloop, tree cond)
2791 {
2792 rtx label;
2793 clear_last_expr ();
2794
2795 if (whichloop == 0)
2796 whichloop = loop_stack;
2797 if (whichloop == 0)
2798 return 0;
2799
2800 if (integer_nonzerop (cond))
2801 return 1;
2802 if (integer_zerop (cond))
2803 return expand_exit_loop (whichloop);
2804
2805 /* Check if we definitely won't need a fixup. */
2806 if (whichloop == nesting_stack)
2807 {
2808 jumpifnot (cond, whichloop->data.loop.end_label);
2809 return 1;
2810 }
2811
2812 /* In order to handle fixups, we actually create a conditional jump
2813 around an unconditional branch to exit the loop. If fixups are
2814 necessary, they go before the unconditional branch. */
2815
2816 label = gen_label_rtx ();
2817 jumpif (cond, label);
2818 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label,
2819 NULL_RTX);
2820 emit_label (label);
2821
2822 return 1;
2823 }
2824
2825 /* Like expand_exit_loop_if_false except also emit a note marking
2826 the end of the conditional. Should only be used immediately
2827 after expand_loop_start. */
2828
2829 int
2830 expand_exit_loop_top_cond (struct nesting *whichloop, tree cond)
2831 {
2832 if (! expand_exit_loop_if_false (whichloop, cond))
2833 return 0;
2834
2835 emit_note (NOTE_INSN_LOOP_END_TOP_COND);
2836 return 1;
2837 }
2838
2839 /* Return nonzero if we should preserve sub-expressions as separate
2840 pseudos. We never do so if we aren't optimizing. We always do so
2841 if -fexpensive-optimizations.
2842
2843 Otherwise, we only do so if we are in the "early" part of a loop. I.e.,
2844 the loop may still be a small one. */
2845
2846 int
2847 preserve_subexpressions_p (void)
2848 {
2849 rtx insn;
2850
2851 if (flag_expensive_optimizations)
2852 return 1;
2853
2854 if (optimize == 0 || cfun == 0 || cfun->stmt == 0 || loop_stack == 0)
2855 return 0;
2856
2857 insn = get_last_insn_anywhere ();
2858
2859 return (insn
2860 && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label)
2861 < n_non_fixed_regs * 3));
2862
2863 }
2864
2865 /* Generate a jump to exit the current loop, conditional, binding contour
2866 or case statement. Not all such constructs are visible to this function,
2867 only those started with EXIT_FLAG nonzero. Individual languages use
2868 the EXIT_FLAG parameter to control which kinds of constructs you can
2869 exit this way.
2870
2871 If not currently inside anything that can be exited,
2872 return 0 and do nothing; caller will print an error message. */
2873
2874 int
2875 expand_exit_something (void)
2876 {
2877 struct nesting *n;
2878 clear_last_expr ();
2879 for (n = nesting_stack; n; n = n->all)
2880 if (n->exit_label != 0)
2881 {
2882 expand_goto_internal (NULL_TREE, n->exit_label, NULL_RTX);
2883 return 1;
2884 }
2885
2886 return 0;
2887 }
2888 \f
2889 /* Generate RTL to return from the current function, with no value.
2890 (That is, we do not do anything about returning any value.) */
2891
2892 void
2893 expand_null_return (void)
2894 {
2895 rtx last_insn;
2896
2897 last_insn = get_last_insn ();
2898
2899 /* If this function was declared to return a value, but we
2900 didn't, clobber the return registers so that they are not
2901 propagated live to the rest of the function. */
2902 clobber_return_register ();
2903
2904 expand_null_return_1 (last_insn);
2905 }
2906
2907 /* Generate RTL to return directly from the current function.
2908 (That is, we bypass any return value.) */
2909
2910 void
2911 expand_naked_return (void)
2912 {
2913 rtx last_insn, end_label;
2914
2915 last_insn = get_last_insn ();
2916 end_label = naked_return_label;
2917
2918 clear_pending_stack_adjust ();
2919 do_pending_stack_adjust ();
2920 clear_last_expr ();
2921
2922 if (end_label == 0)
2923 end_label = naked_return_label = gen_label_rtx ();
2924 expand_goto_internal (NULL_TREE, end_label, last_insn);
2925 }
2926
2927 /* Try to guess whether the value of return means error code. */
2928 static enum br_predictor
2929 return_prediction (rtx val)
2930 {
2931 /* Different heuristics for pointers and scalars. */
2932 if (POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
2933 {
2934 /* NULL is usually not returned. */
2935 if (val == const0_rtx)
2936 return PRED_NULL_RETURN;
2937 }
2938 else
2939 {
2940 /* Negative return values are often used to indicate
2941 errors. */
2942 if (GET_CODE (val) == CONST_INT
2943 && INTVAL (val) < 0)
2944 return PRED_NEGATIVE_RETURN;
2945 /* Constant return values are also usually erors,
2946 zero/one often mean booleans so exclude them from the
2947 heuristics. */
2948 if (CONSTANT_P (val)
2949 && (val != const0_rtx && val != const1_rtx))
2950 return PRED_CONST_RETURN;
2951 }
2952 return PRED_NO_PREDICTION;
2953 }
2954
2955
2956 /* If the current function returns values in the most significant part
2957 of a register, shift return value VAL appropriately. The mode of
2958 the function's return type is known not to be BLKmode. */
2959
2960 static rtx
2961 shift_return_value (rtx val)
2962 {
2963 tree type;
2964
2965 type = TREE_TYPE (DECL_RESULT (current_function_decl));
2966 if (targetm.calls.return_in_msb (type))
2967 {
2968 rtx target;
2969 HOST_WIDE_INT shift;
2970
2971 target = DECL_RTL (DECL_RESULT (current_function_decl));
2972 shift = (GET_MODE_BITSIZE (GET_MODE (target))
2973 - BITS_PER_UNIT * int_size_in_bytes (type));
2974 if (shift > 0)
2975 val = expand_binop (GET_MODE (target), ashl_optab,
2976 gen_lowpart (GET_MODE (target), val),
2977 GEN_INT (shift), target, 1, OPTAB_WIDEN);
2978 }
2979 return val;
2980 }
2981
2982
2983 /* Generate RTL to return from the current function, with value VAL. */
2984
2985 static void
2986 expand_value_return (rtx val)
2987 {
2988 rtx last_insn;
2989 rtx return_reg;
2990 enum br_predictor pred;
2991
2992 if (flag_guess_branch_prob
2993 && (pred = return_prediction (val)) != PRED_NO_PREDICTION)
2994 {
2995 /* Emit information for branch prediction. */
2996 rtx note;
2997
2998 note = emit_note (NOTE_INSN_PREDICTION);
2999
3000 NOTE_PREDICTION (note) = NOTE_PREDICT (pred, NOT_TAKEN);
3001
3002 }
3003
3004 last_insn = get_last_insn ();
3005 return_reg = DECL_RTL (DECL_RESULT (current_function_decl));
3006
3007 /* Copy the value to the return location
3008 unless it's already there. */
3009
3010 if (return_reg != val)
3011 {
3012 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
3013 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
3014 {
3015 int unsignedp = TREE_UNSIGNED (type);
3016 enum machine_mode old_mode
3017 = DECL_MODE (DECL_RESULT (current_function_decl));
3018 enum machine_mode mode
3019 = promote_mode (type, old_mode, &unsignedp, 1);
3020
3021 if (mode != old_mode)
3022 val = convert_modes (mode, old_mode, val, unsignedp);
3023 }
3024 if (GET_CODE (return_reg) == PARALLEL)
3025 emit_group_load (return_reg, val, type, int_size_in_bytes (type));
3026 else
3027 emit_move_insn (return_reg, val);
3028 }
3029
3030 expand_null_return_1 (last_insn);
3031 }
3032
3033 /* Output a return with no value. If LAST_INSN is nonzero,
3034 pretend that the return takes place after LAST_INSN. */
3035
3036 static void
3037 expand_null_return_1 (rtx last_insn)
3038 {
3039 rtx end_label = cleanup_label ? cleanup_label : return_label;
3040
3041 clear_pending_stack_adjust ();
3042 do_pending_stack_adjust ();
3043 clear_last_expr ();
3044
3045 if (end_label == 0)
3046 end_label = return_label = gen_label_rtx ();
3047 expand_goto_internal (NULL_TREE, end_label, last_insn);
3048 }
3049 \f
3050 /* Generate RTL to evaluate the expression RETVAL and return it
3051 from the current function. */
3052
3053 void
3054 expand_return (tree retval)
3055 {
3056 /* If there are any cleanups to be performed, then they will
3057 be inserted following LAST_INSN. It is desirable
3058 that the last_insn, for such purposes, should be the
3059 last insn before computing the return value. Otherwise, cleanups
3060 which call functions can clobber the return value. */
3061 /* ??? rms: I think that is erroneous, because in C++ it would
3062 run destructors on variables that might be used in the subsequent
3063 computation of the return value. */
3064 rtx last_insn = 0;
3065 rtx result_rtl;
3066 rtx val = 0;
3067 tree retval_rhs;
3068
3069 /* If function wants no value, give it none. */
3070 if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
3071 {
3072 expand_expr (retval, NULL_RTX, VOIDmode, 0);
3073 emit_queue ();
3074 expand_null_return ();
3075 return;
3076 }
3077
3078 if (retval == error_mark_node)
3079 {
3080 /* Treat this like a return of no value from a function that
3081 returns a value. */
3082 expand_null_return ();
3083 return;
3084 }
3085 else if (TREE_CODE (retval) == RESULT_DECL)
3086 retval_rhs = retval;
3087 else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR)
3088 && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
3089 retval_rhs = TREE_OPERAND (retval, 1);
3090 else if (VOID_TYPE_P (TREE_TYPE (retval)))
3091 /* Recognize tail-recursive call to void function. */
3092 retval_rhs = retval;
3093 else
3094 retval_rhs = NULL_TREE;
3095
3096 last_insn = get_last_insn ();
3097
3098 /* Distribute return down conditional expr if either of the sides
3099 may involve tail recursion (see test below). This enhances the number
3100 of tail recursions we see. Don't do this always since it can produce
3101 sub-optimal code in some cases and we distribute assignments into
3102 conditional expressions when it would help. */
3103
3104 if (optimize && retval_rhs != 0
3105 && frame_offset == 0
3106 && TREE_CODE (retval_rhs) == COND_EXPR
3107 && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR
3108 || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR))
3109 {
3110 rtx label = gen_label_rtx ();
3111 tree expr;
3112
3113 do_jump (TREE_OPERAND (retval_rhs, 0), label, NULL_RTX);
3114 start_cleanup_deferral ();
3115 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
3116 DECL_RESULT (current_function_decl),
3117 TREE_OPERAND (retval_rhs, 1));
3118 TREE_SIDE_EFFECTS (expr) = 1;
3119 expand_return (expr);
3120 emit_label (label);
3121
3122 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
3123 DECL_RESULT (current_function_decl),
3124 TREE_OPERAND (retval_rhs, 2));
3125 TREE_SIDE_EFFECTS (expr) = 1;
3126 expand_return (expr);
3127 end_cleanup_deferral ();
3128 return;
3129 }
3130
3131 result_rtl = DECL_RTL (DECL_RESULT (current_function_decl));
3132
3133 /* If the result is an aggregate that is being returned in one (or more)
3134 registers, load the registers here. The compiler currently can't handle
3135 copying a BLKmode value into registers. We could put this code in a
3136 more general area (for use by everyone instead of just function
3137 call/return), but until this feature is generally usable it is kept here
3138 (and in expand_call). The value must go into a pseudo in case there
3139 are cleanups that will clobber the real return register. */
3140
3141 if (retval_rhs != 0
3142 && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode
3143 && GET_CODE (result_rtl) == REG)
3144 {
3145 int i;
3146 unsigned HOST_WIDE_INT bitpos, xbitpos;
3147 unsigned HOST_WIDE_INT padding_correction = 0;
3148 unsigned HOST_WIDE_INT bytes
3149 = int_size_in_bytes (TREE_TYPE (retval_rhs));
3150 int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
3151 unsigned int bitsize
3152 = MIN (TYPE_ALIGN (TREE_TYPE (retval_rhs)), BITS_PER_WORD);
3153 rtx *result_pseudos = alloca (sizeof (rtx) * n_regs);
3154 rtx result_reg, src = NULL_RTX, dst = NULL_RTX;
3155 rtx result_val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0);
3156 enum machine_mode tmpmode, result_reg_mode;
3157
3158 if (bytes == 0)
3159 {
3160 expand_null_return ();
3161 return;
3162 }
3163
3164 /* If the structure doesn't take up a whole number of words, see
3165 whether the register value should be padded on the left or on
3166 the right. Set PADDING_CORRECTION to the number of padding
3167 bits needed on the left side.
3168
3169 In most ABIs, the structure will be returned at the least end of
3170 the register, which translates to right padding on little-endian
3171 targets and left padding on big-endian targets. The opposite
3172 holds if the structure is returned at the most significant
3173 end of the register. */
3174 if (bytes % UNITS_PER_WORD != 0
3175 && (targetm.calls.return_in_msb (TREE_TYPE (retval_rhs))
3176 ? !BYTES_BIG_ENDIAN
3177 : BYTES_BIG_ENDIAN))
3178 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
3179 * BITS_PER_UNIT));
3180
3181 /* Copy the structure BITSIZE bits at a time. */
3182 for (bitpos = 0, xbitpos = padding_correction;
3183 bitpos < bytes * BITS_PER_UNIT;
3184 bitpos += bitsize, xbitpos += bitsize)
3185 {
3186 /* We need a new destination pseudo each time xbitpos is
3187 on a word boundary and when xbitpos == padding_correction
3188 (the first time through). */
3189 if (xbitpos % BITS_PER_WORD == 0
3190 || xbitpos == padding_correction)
3191 {
3192 /* Generate an appropriate register. */
3193 dst = gen_reg_rtx (word_mode);
3194 result_pseudos[xbitpos / BITS_PER_WORD] = dst;
3195
3196 /* Clear the destination before we move anything into it. */
3197 emit_move_insn (dst, CONST0_RTX (GET_MODE (dst)));
3198 }
3199
3200 /* We need a new source operand each time bitpos is on a word
3201 boundary. */
3202 if (bitpos % BITS_PER_WORD == 0)
3203 src = operand_subword_force (result_val,
3204 bitpos / BITS_PER_WORD,
3205 BLKmode);
3206
3207 /* Use bitpos for the source extraction (left justified) and
3208 xbitpos for the destination store (right justified). */
3209 store_bit_field (dst, bitsize, xbitpos % BITS_PER_WORD, word_mode,
3210 extract_bit_field (src, bitsize,
3211 bitpos % BITS_PER_WORD, 1,
3212 NULL_RTX, word_mode, word_mode,
3213 BITS_PER_WORD),
3214 BITS_PER_WORD);
3215 }
3216
3217 tmpmode = GET_MODE (result_rtl);
3218 if (tmpmode == BLKmode)
3219 {
3220 /* Find the smallest integer mode large enough to hold the
3221 entire structure and use that mode instead of BLKmode
3222 on the USE insn for the return register. */
3223 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3224 tmpmode != VOIDmode;
3225 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
3226 /* Have we found a large enough mode? */
3227 if (GET_MODE_SIZE (tmpmode) >= bytes)
3228 break;
3229
3230 /* No suitable mode found. */
3231 if (tmpmode == VOIDmode)
3232 abort ();
3233
3234 PUT_MODE (result_rtl, tmpmode);
3235 }
3236
3237 if (GET_MODE_SIZE (tmpmode) < GET_MODE_SIZE (word_mode))
3238 result_reg_mode = word_mode;
3239 else
3240 result_reg_mode = tmpmode;
3241 result_reg = gen_reg_rtx (result_reg_mode);
3242
3243 emit_queue ();
3244 for (i = 0; i < n_regs; i++)
3245 emit_move_insn (operand_subword (result_reg, i, 0, result_reg_mode),
3246 result_pseudos[i]);
3247
3248 if (tmpmode != result_reg_mode)
3249 result_reg = gen_lowpart (tmpmode, result_reg);
3250
3251 expand_value_return (result_reg);
3252 }
3253 else if (retval_rhs != 0
3254 && !VOID_TYPE_P (TREE_TYPE (retval_rhs))
3255 && (GET_CODE (result_rtl) == REG
3256 || (GET_CODE (result_rtl) == PARALLEL)))
3257 {
3258 /* Calculate the return value into a temporary (usually a pseudo
3259 reg). */
3260 tree ot = TREE_TYPE (DECL_RESULT (current_function_decl));
3261 tree nt = build_qualified_type (ot, TYPE_QUALS (ot) | TYPE_QUAL_CONST);
3262
3263 val = assign_temp (nt, 0, 0, 1);
3264 val = expand_expr (retval_rhs, val, GET_MODE (val), 0);
3265 val = force_not_mem (val);
3266 emit_queue ();
3267 /* Return the calculated value, doing cleanups first. */
3268 expand_value_return (shift_return_value (val));
3269 }
3270 else
3271 {
3272 /* No cleanups or no hard reg used;
3273 calculate value into hard return reg. */
3274 expand_expr (retval, const0_rtx, VOIDmode, 0);
3275 emit_queue ();
3276 expand_value_return (result_rtl);
3277 }
3278 }
3279 \f
3280 /* Attempt to optimize a potential tail recursion call into a goto.
3281 ARGUMENTS are the arguments to a CALL_EXPR; LAST_INSN indicates
3282 where to place the jump to the tail recursion label.
3283
3284 Return TRUE if the call was optimized into a goto. */
3285
3286 int
3287 optimize_tail_recursion (tree arguments, rtx last_insn)
3288 {
3289 /* Finish checking validity, and if valid emit code to set the
3290 argument variables for the new call. */
3291 if (tail_recursion_args (arguments, DECL_ARGUMENTS (current_function_decl)))
3292 {
3293 if (tail_recursion_label == 0)
3294 {
3295 tail_recursion_label = gen_label_rtx ();
3296 emit_label_after (tail_recursion_label,
3297 tail_recursion_reentry);
3298 }
3299 emit_queue ();
3300 expand_goto_internal (NULL_TREE, tail_recursion_label, last_insn);
3301 emit_barrier ();
3302 return 1;
3303 }
3304 return 0;
3305 }
3306
3307 /* Emit code to alter this function's formal parms for a tail-recursive call.
3308 ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs).
3309 FORMALS is the chain of decls of formals.
3310 Return 1 if this can be done;
3311 otherwise return 0 and do not emit any code. */
3312
3313 static int
3314 tail_recursion_args (tree actuals, tree formals)
3315 {
3316 tree a = actuals, f = formals;
3317 int i;
3318 rtx *argvec;
3319
3320 /* Check that number and types of actuals are compatible
3321 with the formals. This is not always true in valid C code.
3322 Also check that no formal needs to be addressable
3323 and that all formals are scalars. */
3324
3325 /* Also count the args. */
3326
3327 for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++)
3328 {
3329 if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_VALUE (a)))
3330 != TYPE_MAIN_VARIANT (TREE_TYPE (f)))
3331 return 0;
3332 if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode)
3333 return 0;
3334 }
3335 if (a != 0 || f != 0)
3336 return 0;
3337
3338 /* Compute all the actuals. */
3339
3340 argvec = alloca (i * sizeof (rtx));
3341
3342 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3343 argvec[i] = expand_expr (TREE_VALUE (a), NULL_RTX, VOIDmode, 0);
3344
3345 /* Find which actual values refer to current values of previous formals.
3346 Copy each of them now, before any formal is changed. */
3347
3348 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3349 {
3350 int copy = 0;
3351 int j;
3352 for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++)
3353 if (reg_mentioned_p (DECL_RTL (f), argvec[i]))
3354 {
3355 copy = 1;
3356 break;
3357 }
3358 if (copy)
3359 argvec[i] = copy_to_reg (argvec[i]);
3360 }
3361
3362 /* Store the values of the actuals into the formals. */
3363
3364 for (f = formals, a = actuals, i = 0; f;
3365 f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++)
3366 {
3367 if (GET_MODE (DECL_RTL (f)) == GET_MODE (argvec[i]))
3368 emit_move_insn (DECL_RTL (f), argvec[i]);
3369 else
3370 {
3371 rtx tmp = argvec[i];
3372 int unsignedp = TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a)));
3373 promote_mode(TREE_TYPE (TREE_VALUE (a)), GET_MODE (tmp),
3374 &unsignedp, 0);
3375 if (DECL_MODE (f) != GET_MODE (DECL_RTL (f)))
3376 {
3377 tmp = gen_reg_rtx (DECL_MODE (f));
3378 convert_move (tmp, argvec[i], unsignedp);
3379 }
3380 convert_move (DECL_RTL (f), tmp, unsignedp);
3381 }
3382 }
3383
3384 free_temp_slots ();
3385 return 1;
3386 }
3387 \f
3388 /* Generate the RTL code for entering a binding contour.
3389 The variables are declared one by one, by calls to `expand_decl'.
3390
3391 FLAGS is a bitwise or of the following flags:
3392
3393 1 - Nonzero if this construct should be visible to
3394 `exit_something'.
3395
3396 2 - Nonzero if this contour does not require a
3397 NOTE_INSN_BLOCK_BEG note. Virtually all calls from
3398 language-independent code should set this flag because they
3399 will not create corresponding BLOCK nodes. (There should be
3400 a one-to-one correspondence between NOTE_INSN_BLOCK_BEG notes
3401 and BLOCKs.) If this flag is set, MARK_ENDS should be zero
3402 when expand_end_bindings is called.
3403
3404 If we are creating a NOTE_INSN_BLOCK_BEG note, a BLOCK may
3405 optionally be supplied. If so, it becomes the NOTE_BLOCK for the
3406 note. */
3407
3408 void
3409 expand_start_bindings_and_block (int flags, tree block)
3410 {
3411 struct nesting *thisblock = ALLOC_NESTING ();
3412 rtx note;
3413 int exit_flag = ((flags & 1) != 0);
3414 int block_flag = ((flags & 2) == 0);
3415
3416 /* If a BLOCK is supplied, then the caller should be requesting a
3417 NOTE_INSN_BLOCK_BEG note. */
3418 if (!block_flag && block)
3419 abort ();
3420
3421 /* Create a note to mark the beginning of the block. */
3422 if (block_flag)
3423 {
3424 note = emit_note (NOTE_INSN_BLOCK_BEG);
3425 NOTE_BLOCK (note) = block;
3426 }
3427 else
3428 note = emit_note (NOTE_INSN_DELETED);
3429
3430 /* Make an entry on block_stack for the block we are entering. */
3431
3432 thisblock->desc = BLOCK_NESTING;
3433 thisblock->next = block_stack;
3434 thisblock->all = nesting_stack;
3435 thisblock->depth = ++nesting_depth;
3436 thisblock->data.block.stack_level = 0;
3437 thisblock->data.block.cleanups = 0;
3438 thisblock->data.block.exception_region = 0;
3439 thisblock->data.block.block_target_temp_slot_level = target_temp_slot_level;
3440
3441 thisblock->data.block.conditional_code = 0;
3442 thisblock->data.block.last_unconditional_cleanup = note;
3443 /* When we insert instructions after the last unconditional cleanup,
3444 we don't adjust last_insn. That means that a later add_insn will
3445 clobber the instructions we've just added. The easiest way to
3446 fix this is to just insert another instruction here, so that the
3447 instructions inserted after the last unconditional cleanup are
3448 never the last instruction. */
3449 emit_note (NOTE_INSN_DELETED);
3450
3451 if (block_stack
3452 && !(block_stack->data.block.cleanups == NULL_TREE
3453 && block_stack->data.block.outer_cleanups == NULL_TREE))
3454 thisblock->data.block.outer_cleanups
3455 = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
3456 block_stack->data.block.outer_cleanups);
3457 else
3458 thisblock->data.block.outer_cleanups = 0;
3459 thisblock->data.block.label_chain = 0;
3460 thisblock->data.block.innermost_stack_block = stack_block_stack;
3461 thisblock->data.block.first_insn = note;
3462 thisblock->data.block.block_start_count = ++current_block_start_count;
3463 thisblock->exit_label = exit_flag ? gen_label_rtx () : 0;
3464 block_stack = thisblock;
3465 nesting_stack = thisblock;
3466
3467 /* Make a new level for allocating stack slots. */
3468 push_temp_slots ();
3469 }
3470
3471 /* Specify the scope of temporaries created by TARGET_EXPRs. Similar
3472 to CLEANUP_POINT_EXPR, but handles cases when a series of calls to
3473 expand_expr are made. After we end the region, we know that all
3474 space for all temporaries that were created by TARGET_EXPRs will be
3475 destroyed and their space freed for reuse. */
3476
3477 void
3478 expand_start_target_temps (void)
3479 {
3480 /* This is so that even if the result is preserved, the space
3481 allocated will be freed, as we know that it is no longer in use. */
3482 push_temp_slots ();
3483
3484 /* Start a new binding layer that will keep track of all cleanup
3485 actions to be performed. */
3486 expand_start_bindings (2);
3487
3488 target_temp_slot_level = temp_slot_level;
3489 }
3490
3491 void
3492 expand_end_target_temps (void)
3493 {
3494 expand_end_bindings (NULL_TREE, 0, 0);
3495
3496 /* This is so that even if the result is preserved, the space
3497 allocated will be freed, as we know that it is no longer in use. */
3498 pop_temp_slots ();
3499 }
3500
3501 /* Given a pointer to a BLOCK node return nonzero if (and only if) the node
3502 in question represents the outermost pair of curly braces (i.e. the "body
3503 block") of a function or method.
3504
3505 For any BLOCK node representing a "body block" of a function or method, the
3506 BLOCK_SUPERCONTEXT of the node will point to another BLOCK node which
3507 represents the outermost (function) scope for the function or method (i.e.
3508 the one which includes the formal parameters). The BLOCK_SUPERCONTEXT of
3509 *that* node in turn will point to the relevant FUNCTION_DECL node. */
3510
3511 int
3512 is_body_block (tree stmt)
3513 {
3514 if (lang_hooks.no_body_blocks)
3515 return 0;
3516
3517 if (TREE_CODE (stmt) == BLOCK)
3518 {
3519 tree parent = BLOCK_SUPERCONTEXT (stmt);
3520
3521 if (parent && TREE_CODE (parent) == BLOCK)
3522 {
3523 tree grandparent = BLOCK_SUPERCONTEXT (parent);
3524
3525 if (grandparent && TREE_CODE (grandparent) == FUNCTION_DECL)
3526 return 1;
3527 }
3528 }
3529
3530 return 0;
3531 }
3532
3533 /* True if we are currently emitting insns in an area of output code
3534 that is controlled by a conditional expression. This is used by
3535 the cleanup handling code to generate conditional cleanup actions. */
3536
3537 int
3538 conditional_context (void)
3539 {
3540 return block_stack && block_stack->data.block.conditional_code;
3541 }
3542
3543 /* Return an opaque pointer to the current nesting level, so frontend code
3544 can check its own sanity. */
3545
3546 struct nesting *
3547 current_nesting_level (void)
3548 {
3549 return cfun ? block_stack : 0;
3550 }
3551
3552 /* Emit a handler label for a nonlocal goto handler.
3553 Also emit code to store the handler label in SLOT before BEFORE_INSN. */
3554
3555 static rtx
3556 expand_nl_handler_label (rtx slot, rtx before_insn)
3557 {
3558 rtx insns;
3559 rtx handler_label = gen_label_rtx ();
3560
3561 /* Don't let cleanup_cfg delete the handler. */
3562 LABEL_PRESERVE_P (handler_label) = 1;
3563
3564 start_sequence ();
3565 emit_move_insn (slot, gen_rtx_LABEL_REF (Pmode, handler_label));
3566 insns = get_insns ();
3567 end_sequence ();
3568 emit_insn_before (insns, before_insn);
3569
3570 emit_label (handler_label);
3571
3572 return handler_label;
3573 }
3574
3575 /* Emit code to restore vital registers at the beginning of a nonlocal goto
3576 handler. */
3577 static void
3578 expand_nl_goto_receiver (void)
3579 {
3580 /* Clobber the FP when we get here, so we have to make sure it's
3581 marked as used by this function. */
3582 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
3583
3584 /* Mark the static chain as clobbered here so life information
3585 doesn't get messed up for it. */
3586 emit_insn (gen_rtx_CLOBBER (VOIDmode, static_chain_rtx));
3587
3588 #ifdef HAVE_nonlocal_goto
3589 if (! HAVE_nonlocal_goto)
3590 #endif
3591 /* First adjust our frame pointer to its actual value. It was
3592 previously set to the start of the virtual area corresponding to
3593 the stacked variables when we branched here and now needs to be
3594 adjusted to the actual hardware fp value.
3595
3596 Assignments are to virtual registers are converted by
3597 instantiate_virtual_regs into the corresponding assignment
3598 to the underlying register (fp in this case) that makes
3599 the original assignment true.
3600 So the following insn will actually be
3601 decrementing fp by STARTING_FRAME_OFFSET. */
3602 emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
3603
3604 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3605 if (fixed_regs[ARG_POINTER_REGNUM])
3606 {
3607 #ifdef ELIMINABLE_REGS
3608 /* If the argument pointer can be eliminated in favor of the
3609 frame pointer, we don't need to restore it. We assume here
3610 that if such an elimination is present, it can always be used.
3611 This is the case on all known machines; if we don't make this
3612 assumption, we do unnecessary saving on many machines. */
3613 static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS;
3614 size_t i;
3615
3616 for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
3617 if (elim_regs[i].from == ARG_POINTER_REGNUM
3618 && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
3619 break;
3620
3621 if (i == ARRAY_SIZE (elim_regs))
3622 #endif
3623 {
3624 /* Now restore our arg pointer from the address at which it
3625 was saved in our stack frame. */
3626 emit_move_insn (virtual_incoming_args_rtx,
3627 copy_to_reg (get_arg_pointer_save_area (cfun)));
3628 }
3629 }
3630 #endif
3631
3632 #ifdef HAVE_nonlocal_goto_receiver
3633 if (HAVE_nonlocal_goto_receiver)
3634 emit_insn (gen_nonlocal_goto_receiver ());
3635 #endif
3636
3637 /* @@@ This is a kludge. Not all machine descriptions define a blockage
3638 insn, but we must not allow the code we just generated to be reordered
3639 by scheduling. Specifically, the update of the frame pointer must
3640 happen immediately, not later. So emit an ASM_INPUT to act as blockage
3641 insn. */
3642 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
3643 }
3644
3645 /* Make handlers for nonlocal gotos taking place in the function calls in
3646 block THISBLOCK. */
3647
3648 static void
3649 expand_nl_goto_receivers (struct nesting *thisblock)
3650 {
3651 tree link;
3652 rtx afterward = gen_label_rtx ();
3653 rtx insns, slot;
3654 rtx label_list;
3655 int any_invalid;
3656
3657 /* Record the handler address in the stack slot for that purpose,
3658 during this block, saving and restoring the outer value. */
3659 if (thisblock->next != 0)
3660 for (slot = nonlocal_goto_handler_slots; slot; slot = XEXP (slot, 1))
3661 {
3662 rtx save_receiver = gen_reg_rtx (Pmode);
3663 emit_move_insn (XEXP (slot, 0), save_receiver);
3664
3665 start_sequence ();
3666 emit_move_insn (save_receiver, XEXP (slot, 0));
3667 insns = get_insns ();
3668 end_sequence ();
3669 emit_insn_before (insns, thisblock->data.block.first_insn);
3670 }
3671
3672 /* Jump around the handlers; they run only when specially invoked. */
3673 emit_jump (afterward);
3674
3675 /* Make a separate handler for each label. */
3676 link = nonlocal_labels;
3677 slot = nonlocal_goto_handler_slots;
3678 label_list = NULL_RTX;
3679 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3680 /* Skip any labels we shouldn't be able to jump to from here,
3681 we generate one special handler for all of them below which just calls
3682 abort. */
3683 if (! DECL_TOO_LATE (TREE_VALUE (link)))
3684 {
3685 rtx lab;
3686 lab = expand_nl_handler_label (XEXP (slot, 0),
3687 thisblock->data.block.first_insn);
3688 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3689
3690 expand_nl_goto_receiver ();
3691
3692 /* Jump to the "real" nonlocal label. */
3693 expand_goto (TREE_VALUE (link));
3694 }
3695
3696 /* A second pass over all nonlocal labels; this time we handle those
3697 we should not be able to jump to at this point. */
3698 link = nonlocal_labels;
3699 slot = nonlocal_goto_handler_slots;
3700 any_invalid = 0;
3701 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3702 if (DECL_TOO_LATE (TREE_VALUE (link)))
3703 {
3704 rtx lab;
3705 lab = expand_nl_handler_label (XEXP (slot, 0),
3706 thisblock->data.block.first_insn);
3707 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3708 any_invalid = 1;
3709 }
3710
3711 if (any_invalid)
3712 {
3713 expand_nl_goto_receiver ();
3714 expand_builtin_trap ();
3715 }
3716
3717 nonlocal_goto_handler_labels = label_list;
3718 emit_label (afterward);
3719 }
3720
3721 /* Warn about any unused VARS (which may contain nodes other than
3722 VAR_DECLs, but such nodes are ignored). The nodes are connected
3723 via the TREE_CHAIN field. */
3724
3725 void
3726 warn_about_unused_variables (tree vars)
3727 {
3728 tree decl;
3729
3730 if (warn_unused_variable)
3731 for (decl = vars; decl; decl = TREE_CHAIN (decl))
3732 if (TREE_CODE (decl) == VAR_DECL
3733 && ! TREE_USED (decl)
3734 && ! DECL_IN_SYSTEM_HEADER (decl)
3735 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
3736 warning ("%Junused variable '%D'", decl, decl);
3737 }
3738
3739 /* Generate RTL code to terminate a binding contour.
3740
3741 VARS is the chain of VAR_DECL nodes for the variables bound in this
3742 contour. There may actually be other nodes in this chain, but any
3743 nodes other than VAR_DECLS are ignored.
3744
3745 MARK_ENDS is nonzero if we should put a note at the beginning
3746 and end of this binding contour.
3747
3748 DONT_JUMP_IN is positive if it is not valid to jump into this contour,
3749 zero if we can jump into this contour only if it does not have a saved
3750 stack level, and negative if we are not to check for invalid use of
3751 labels (because the front end does that). */
3752
3753 void
3754 expand_end_bindings (tree vars, int mark_ends, int dont_jump_in)
3755 {
3756 struct nesting *thisblock = block_stack;
3757
3758 /* If any of the variables in this scope were not used, warn the
3759 user. */
3760 warn_about_unused_variables (vars);
3761
3762 if (thisblock->exit_label)
3763 {
3764 do_pending_stack_adjust ();
3765 emit_label (thisblock->exit_label);
3766 }
3767
3768 /* If necessary, make handlers for nonlocal gotos taking
3769 place in the function calls in this block. */
3770 if (function_call_count != 0 && nonlocal_labels
3771 /* Make handler for outermost block
3772 if there were any nonlocal gotos to this function. */
3773 && (thisblock->next == 0 ? current_function_has_nonlocal_label
3774 /* Make handler for inner block if it has something
3775 special to do when you jump out of it. */
3776 : (thisblock->data.block.cleanups != 0
3777 || thisblock->data.block.stack_level != 0)))
3778 expand_nl_goto_receivers (thisblock);
3779
3780 /* Don't allow jumping into a block that has a stack level.
3781 Cleanups are allowed, though. */
3782 if (dont_jump_in > 0
3783 || (dont_jump_in == 0 && thisblock->data.block.stack_level != 0))
3784 {
3785 struct label_chain *chain;
3786
3787 /* Any labels in this block are no longer valid to go to.
3788 Mark them to cause an error message. */
3789 for (chain = thisblock->data.block.label_chain; chain; chain = chain->next)
3790 {
3791 DECL_TOO_LATE (chain->label) = 1;
3792 /* If any goto without a fixup came to this label,
3793 that must be an error, because gotos without fixups
3794 come from outside all saved stack-levels. */
3795 if (TREE_ADDRESSABLE (chain->label))
3796 error ("%Jlabel '%D' used before containing binding contour",
3797 chain->label, chain->label);
3798 }
3799 }
3800
3801 /* Restore stack level in effect before the block
3802 (only if variable-size objects allocated). */
3803 /* Perform any cleanups associated with the block. */
3804
3805 if (thisblock->data.block.stack_level != 0
3806 || thisblock->data.block.cleanups != 0)
3807 {
3808 int reachable;
3809 rtx insn;
3810
3811 /* Don't let cleanups affect ({...}) constructs. */
3812 int old_expr_stmts_for_value = expr_stmts_for_value;
3813 rtx old_last_expr_value = last_expr_value;
3814 rtx old_last_expr_alt_rtl = last_expr_alt_rtl;
3815 tree old_last_expr_type = last_expr_type;
3816 expr_stmts_for_value = 0;
3817
3818 /* Only clean up here if this point can actually be reached. */
3819 insn = get_last_insn ();
3820 if (GET_CODE (insn) == NOTE)
3821 insn = prev_nonnote_insn (insn);
3822 reachable = (! insn || GET_CODE (insn) != BARRIER);
3823
3824 /* Do the cleanups. */
3825 expand_cleanups (thisblock->data.block.cleanups, 0, reachable);
3826 if (reachable)
3827 do_pending_stack_adjust ();
3828
3829 expr_stmts_for_value = old_expr_stmts_for_value;
3830 last_expr_value = old_last_expr_value;
3831 last_expr_alt_rtl = old_last_expr_alt_rtl;
3832 last_expr_type = old_last_expr_type;
3833
3834 /* Restore the stack level. */
3835
3836 if (reachable && thisblock->data.block.stack_level != 0)
3837 {
3838 emit_stack_restore (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3839 thisblock->data.block.stack_level, NULL_RTX);
3840 if (nonlocal_goto_handler_slots != 0)
3841 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level,
3842 NULL_RTX);
3843 }
3844
3845 /* Any gotos out of this block must also do these things.
3846 Also report any gotos with fixups that came to labels in this
3847 level. */
3848 fixup_gotos (thisblock,
3849 thisblock->data.block.stack_level,
3850 thisblock->data.block.cleanups,
3851 thisblock->data.block.first_insn,
3852 dont_jump_in);
3853 }
3854
3855 /* Mark the beginning and end of the scope if requested.
3856 We do this now, after running cleanups on the variables
3857 just going out of scope, so they are in scope for their cleanups. */
3858
3859 if (mark_ends)
3860 {
3861 rtx note = emit_note (NOTE_INSN_BLOCK_END);
3862 NOTE_BLOCK (note) = NOTE_BLOCK (thisblock->data.block.first_insn);
3863 }
3864 else
3865 /* Get rid of the beginning-mark if we don't make an end-mark. */
3866 NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED;
3867
3868 /* Restore the temporary level of TARGET_EXPRs. */
3869 target_temp_slot_level = thisblock->data.block.block_target_temp_slot_level;
3870
3871 /* Restore block_stack level for containing block. */
3872
3873 stack_block_stack = thisblock->data.block.innermost_stack_block;
3874 POPSTACK (block_stack);
3875
3876 /* Pop the stack slot nesting and free any slots at this level. */
3877 pop_temp_slots ();
3878 }
3879 \f
3880 /* Generate code to save the stack pointer at the start of the current block
3881 and set up to restore it on exit. */
3882
3883 void
3884 save_stack_pointer (void)
3885 {
3886 struct nesting *thisblock = block_stack;
3887
3888 if (thisblock->data.block.stack_level == 0)
3889 {
3890 emit_stack_save (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3891 &thisblock->data.block.stack_level,
3892 thisblock->data.block.first_insn);
3893 stack_block_stack = thisblock;
3894 }
3895 }
3896 \f
3897 /* Generate RTL for the automatic variable declaration DECL.
3898 (Other kinds of declarations are simply ignored if seen here.) */
3899
3900 void
3901 expand_decl (tree decl)
3902 {
3903 tree type;
3904
3905 type = TREE_TYPE (decl);
3906
3907 /* For a CONST_DECL, set mode, alignment, and sizes from those of the
3908 type in case this node is used in a reference. */
3909 if (TREE_CODE (decl) == CONST_DECL)
3910 {
3911 DECL_MODE (decl) = TYPE_MODE (type);
3912 DECL_ALIGN (decl) = TYPE_ALIGN (type);
3913 DECL_SIZE (decl) = TYPE_SIZE (type);
3914 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
3915 return;
3916 }
3917
3918 /* Otherwise, only automatic variables need any expansion done. Static and
3919 external variables, and external functions, will be handled by
3920 `assemble_variable' (called from finish_decl). TYPE_DECL requires
3921 nothing. PARM_DECLs are handled in `assign_parms'. */
3922 if (TREE_CODE (decl) != VAR_DECL)
3923 return;
3924
3925 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
3926 return;
3927
3928 /* Create the RTL representation for the variable. */
3929
3930 if (type == error_mark_node)
3931 SET_DECL_RTL (decl, gen_rtx_MEM (BLKmode, const0_rtx));
3932
3933 else if (DECL_SIZE (decl) == 0)
3934 /* Variable with incomplete type. */
3935 {
3936 rtx x;
3937 if (DECL_INITIAL (decl) == 0)
3938 /* Error message was already done; now avoid a crash. */
3939 x = gen_rtx_MEM (BLKmode, const0_rtx);
3940 else
3941 /* An initializer is going to decide the size of this array.
3942 Until we know the size, represent its address with a reg. */
3943 x = gen_rtx_MEM (BLKmode, gen_reg_rtx (Pmode));
3944
3945 set_mem_attributes (x, decl, 1);
3946 SET_DECL_RTL (decl, x);
3947 }
3948 else if (DECL_MODE (decl) != BLKmode
3949 /* If -ffloat-store, don't put explicit float vars
3950 into regs. */
3951 && !(flag_float_store
3952 && TREE_CODE (type) == REAL_TYPE)
3953 && ! TREE_THIS_VOLATILE (decl)
3954 && ! DECL_NONLOCAL (decl)
3955 && (DECL_REGISTER (decl) || DECL_ARTIFICIAL (decl) || optimize))
3956 {
3957 /* Automatic variable that can go in a register. */
3958 int unsignedp = TREE_UNSIGNED (type);
3959 enum machine_mode reg_mode
3960 = promote_mode (type, DECL_MODE (decl), &unsignedp, 0);
3961
3962 SET_DECL_RTL (decl, gen_reg_rtx (reg_mode));
3963
3964 if (!DECL_ARTIFICIAL (decl))
3965 mark_user_reg (DECL_RTL (decl));
3966
3967 if (POINTER_TYPE_P (type))
3968 mark_reg_pointer (DECL_RTL (decl),
3969 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl))));
3970
3971 maybe_set_unchanging (DECL_RTL (decl), decl);
3972
3973 /* If something wants our address, try to use ADDRESSOF. */
3974 if (TREE_ADDRESSABLE (decl))
3975 put_var_into_stack (decl, /*rescan=*/false);
3976 }
3977
3978 else if (TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST
3979 && ! (flag_stack_check && ! STACK_CHECK_BUILTIN
3980 && 0 < compare_tree_int (DECL_SIZE_UNIT (decl),
3981 STACK_CHECK_MAX_VAR_SIZE)))
3982 {
3983 /* Variable of fixed size that goes on the stack. */
3984 rtx oldaddr = 0;
3985 rtx addr;
3986 rtx x;
3987
3988 /* If we previously made RTL for this decl, it must be an array
3989 whose size was determined by the initializer.
3990 The old address was a register; set that register now
3991 to the proper address. */
3992 if (DECL_RTL_SET_P (decl))
3993 {
3994 if (GET_CODE (DECL_RTL (decl)) != MEM
3995 || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG)
3996 abort ();
3997 oldaddr = XEXP (DECL_RTL (decl), 0);
3998 }
3999
4000 /* Set alignment we actually gave this decl. */
4001 DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT
4002 : GET_MODE_BITSIZE (DECL_MODE (decl)));
4003 DECL_USER_ALIGN (decl) = 0;
4004
4005 x = assign_temp (decl, 1, 1, 1);
4006 set_mem_attributes (x, decl, 1);
4007 SET_DECL_RTL (decl, x);
4008
4009 if (oldaddr)
4010 {
4011 addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
4012 if (addr != oldaddr)
4013 emit_move_insn (oldaddr, addr);
4014 }
4015 }
4016 else
4017 /* Dynamic-size object: must push space on the stack. */
4018 {
4019 rtx address, size, x;
4020
4021 /* Record the stack pointer on entry to block, if have
4022 not already done so. */
4023 do_pending_stack_adjust ();
4024 save_stack_pointer ();
4025
4026 /* In function-at-a-time mode, variable_size doesn't expand this,
4027 so do it now. */
4028 if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type))
4029 expand_expr (TYPE_MAX_VALUE (TYPE_DOMAIN (type)),
4030 const0_rtx, VOIDmode, 0);
4031
4032 /* Compute the variable's size, in bytes. */
4033 size = expand_expr (DECL_SIZE_UNIT (decl), NULL_RTX, VOIDmode, 0);
4034 free_temp_slots ();
4035
4036 /* Allocate space on the stack for the variable. Note that
4037 DECL_ALIGN says how the variable is to be aligned and we
4038 cannot use it to conclude anything about the alignment of
4039 the size. */
4040 address = allocate_dynamic_stack_space (size, NULL_RTX,
4041 TYPE_ALIGN (TREE_TYPE (decl)));
4042
4043 /* Reference the variable indirect through that rtx. */
4044 x = gen_rtx_MEM (DECL_MODE (decl), address);
4045 set_mem_attributes (x, decl, 1);
4046 SET_DECL_RTL (decl, x);
4047
4048
4049 /* Indicate the alignment we actually gave this variable. */
4050 #ifdef STACK_BOUNDARY
4051 DECL_ALIGN (decl) = STACK_BOUNDARY;
4052 #else
4053 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
4054 #endif
4055 DECL_USER_ALIGN (decl) = 0;
4056 }
4057 }
4058 \f
4059 /* Emit code to perform the initialization of a declaration DECL. */
4060
4061 void
4062 expand_decl_init (tree decl)
4063 {
4064 int was_used = TREE_USED (decl);
4065
4066 /* If this is a CONST_DECL, we don't have to generate any code. Likewise
4067 for static decls. */
4068 if (TREE_CODE (decl) == CONST_DECL
4069 || TREE_STATIC (decl))
4070 return;
4071
4072 /* Compute and store the initial value now. */
4073
4074 push_temp_slots ();
4075
4076 if (DECL_INITIAL (decl) == error_mark_node)
4077 {
4078 enum tree_code code = TREE_CODE (TREE_TYPE (decl));
4079
4080 if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE
4081 || code == POINTER_TYPE || code == REFERENCE_TYPE)
4082 expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node),
4083 0);
4084 emit_queue ();
4085 }
4086 else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST)
4087 {
4088 emit_line_note (DECL_SOURCE_LOCATION (decl));
4089 expand_assignment (decl, DECL_INITIAL (decl), 0);
4090 emit_queue ();
4091 }
4092
4093 /* Don't let the initialization count as "using" the variable. */
4094 TREE_USED (decl) = was_used;
4095
4096 /* Free any temporaries we made while initializing the decl. */
4097 preserve_temp_slots (NULL_RTX);
4098 free_temp_slots ();
4099 pop_temp_slots ();
4100 }
4101
4102 /* CLEANUP is an expression to be executed at exit from this binding contour;
4103 for example, in C++, it might call the destructor for this variable.
4104
4105 We wrap CLEANUP in an UNSAVE_EXPR node, so that we can expand the
4106 CLEANUP multiple times, and have the correct semantics. This
4107 happens in exception handling, for gotos, returns, breaks that
4108 leave the current scope.
4109
4110 If CLEANUP is nonzero and DECL is zero, we record a cleanup
4111 that is not associated with any particular variable. */
4112
4113 int
4114 expand_decl_cleanup (tree decl, tree cleanup)
4115 {
4116 struct nesting *thisblock;
4117
4118 /* Error if we are not in any block. */
4119 if (cfun == 0 || block_stack == 0)
4120 return 0;
4121
4122 thisblock = block_stack;
4123
4124 /* Record the cleanup if there is one. */
4125
4126 if (cleanup != 0)
4127 {
4128 tree t;
4129 rtx seq;
4130 tree *cleanups = &thisblock->data.block.cleanups;
4131 int cond_context = conditional_context ();
4132
4133 if (cond_context)
4134 {
4135 rtx flag = gen_reg_rtx (word_mode);
4136 rtx set_flag_0;
4137 tree cond;
4138
4139 start_sequence ();
4140 emit_move_insn (flag, const0_rtx);
4141 set_flag_0 = get_insns ();
4142 end_sequence ();
4143
4144 thisblock->data.block.last_unconditional_cleanup
4145 = emit_insn_after (set_flag_0,
4146 thisblock->data.block.last_unconditional_cleanup);
4147
4148 emit_move_insn (flag, const1_rtx);
4149
4150 cond = build_decl (VAR_DECL, NULL_TREE,
4151 (*lang_hooks.types.type_for_mode) (word_mode, 1));
4152 SET_DECL_RTL (cond, flag);
4153
4154 /* Conditionalize the cleanup. */
4155 cleanup = build (COND_EXPR, void_type_node,
4156 (*lang_hooks.truthvalue_conversion) (cond),
4157 cleanup, integer_zero_node);
4158 cleanup = fold (cleanup);
4159
4160 cleanups = &thisblock->data.block.cleanups;
4161 }
4162
4163 cleanup = unsave_expr (cleanup);
4164
4165 t = *cleanups = tree_cons (decl, cleanup, *cleanups);
4166
4167 if (! cond_context)
4168 /* If this block has a cleanup, it belongs in stack_block_stack. */
4169 stack_block_stack = thisblock;
4170
4171 if (cond_context)
4172 {
4173 start_sequence ();
4174 }
4175
4176 if (! using_eh_for_cleanups_p)
4177 TREE_ADDRESSABLE (t) = 1;
4178 else
4179 expand_eh_region_start ();
4180
4181 if (cond_context)
4182 {
4183 seq = get_insns ();
4184 end_sequence ();
4185 if (seq)
4186 thisblock->data.block.last_unconditional_cleanup
4187 = emit_insn_after (seq,
4188 thisblock->data.block.last_unconditional_cleanup);
4189 }
4190 else
4191 {
4192 thisblock->data.block.last_unconditional_cleanup
4193 = get_last_insn ();
4194 /* When we insert instructions after the last unconditional cleanup,
4195 we don't adjust last_insn. That means that a later add_insn will
4196 clobber the instructions we've just added. The easiest way to
4197 fix this is to just insert another instruction here, so that the
4198 instructions inserted after the last unconditional cleanup are
4199 never the last instruction. */
4200 emit_note (NOTE_INSN_DELETED);
4201 }
4202 }
4203 return 1;
4204 }
4205
4206 /* Like expand_decl_cleanup, but maybe only run the cleanup if an exception
4207 is thrown. */
4208
4209 int
4210 expand_decl_cleanup_eh (tree decl, tree cleanup, int eh_only)
4211 {
4212 int ret = expand_decl_cleanup (decl, cleanup);
4213 if (cleanup && ret)
4214 {
4215 tree node = block_stack->data.block.cleanups;
4216 CLEANUP_EH_ONLY (node) = eh_only;
4217 }
4218 return ret;
4219 }
4220 \f
4221 /* DECL is an anonymous union. CLEANUP is a cleanup for DECL.
4222 DECL_ELTS is the list of elements that belong to DECL's type.
4223 In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */
4224
4225 void
4226 expand_anon_union_decl (tree decl, tree cleanup, tree decl_elts)
4227 {
4228 struct nesting *thisblock = cfun == 0 ? 0 : block_stack;
4229 rtx x;
4230 tree t;
4231
4232 /* If any of the elements are addressable, so is the entire union. */
4233 for (t = decl_elts; t; t = TREE_CHAIN (t))
4234 if (TREE_ADDRESSABLE (TREE_VALUE (t)))
4235 {
4236 TREE_ADDRESSABLE (decl) = 1;
4237 break;
4238 }
4239
4240 expand_decl (decl);
4241 expand_decl_cleanup (decl, cleanup);
4242 x = DECL_RTL (decl);
4243
4244 /* Go through the elements, assigning RTL to each. */
4245 for (t = decl_elts; t; t = TREE_CHAIN (t))
4246 {
4247 tree decl_elt = TREE_VALUE (t);
4248 tree cleanup_elt = TREE_PURPOSE (t);
4249 enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt));
4250
4251 /* If any of the elements are addressable, so is the entire
4252 union. */
4253 if (TREE_USED (decl_elt))
4254 TREE_USED (decl) = 1;
4255
4256 /* Propagate the union's alignment to the elements. */
4257 DECL_ALIGN (decl_elt) = DECL_ALIGN (decl);
4258 DECL_USER_ALIGN (decl_elt) = DECL_USER_ALIGN (decl);
4259
4260 /* If the element has BLKmode and the union doesn't, the union is
4261 aligned such that the element doesn't need to have BLKmode, so
4262 change the element's mode to the appropriate one for its size. */
4263 if (mode == BLKmode && DECL_MODE (decl) != BLKmode)
4264 DECL_MODE (decl_elt) = mode
4265 = mode_for_size_tree (DECL_SIZE (decl_elt), MODE_INT, 1);
4266
4267 /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we
4268 instead create a new MEM rtx with the proper mode. */
4269 if (GET_CODE (x) == MEM)
4270 {
4271 if (mode == GET_MODE (x))
4272 SET_DECL_RTL (decl_elt, x);
4273 else
4274 SET_DECL_RTL (decl_elt, adjust_address_nv (x, mode, 0));
4275 }
4276 else if (GET_CODE (x) == REG)
4277 {
4278 if (mode == GET_MODE (x))
4279 SET_DECL_RTL (decl_elt, x);
4280 else
4281 SET_DECL_RTL (decl_elt, gen_lowpart_SUBREG (mode, x));
4282 }
4283 else
4284 abort ();
4285
4286 /* Record the cleanup if there is one. */
4287
4288 if (cleanup != 0)
4289 thisblock->data.block.cleanups
4290 = tree_cons (decl_elt, cleanup_elt,
4291 thisblock->data.block.cleanups);
4292 }
4293 }
4294 \f
4295 /* Expand a list of cleanups LIST.
4296 Elements may be expressions or may be nested lists.
4297
4298 If IN_FIXUP is nonzero, we are generating this cleanup for a fixup
4299 goto and handle protection regions specially in that case.
4300
4301 If REACHABLE, we emit code, otherwise just inform the exception handling
4302 code about this finalization. */
4303
4304 static void
4305 expand_cleanups (tree list, int in_fixup, int reachable)
4306 {
4307 tree tail;
4308 for (tail = list; tail; tail = TREE_CHAIN (tail))
4309 if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
4310 expand_cleanups (TREE_VALUE (tail), in_fixup, reachable);
4311 else
4312 {
4313 if (! in_fixup && using_eh_for_cleanups_p)
4314 expand_eh_region_end_cleanup (TREE_VALUE (tail));
4315
4316 if (reachable && !CLEANUP_EH_ONLY (tail))
4317 {
4318 /* Cleanups may be run multiple times. For example,
4319 when exiting a binding contour, we expand the
4320 cleanups associated with that contour. When a goto
4321 within that binding contour has a target outside that
4322 contour, it will expand all cleanups from its scope to
4323 the target. Though the cleanups are expanded multiple
4324 times, the control paths are non-overlapping so the
4325 cleanups will not be executed twice. */
4326
4327 /* We may need to protect from outer cleanups. */
4328 if (in_fixup && using_eh_for_cleanups_p)
4329 {
4330 expand_eh_region_start ();
4331
4332 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
4333
4334 expand_eh_region_end_fixup (TREE_VALUE (tail));
4335 }
4336 else
4337 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
4338
4339 free_temp_slots ();
4340 }
4341 }
4342 }
4343
4344 /* Mark when the context we are emitting RTL for as a conditional
4345 context, so that any cleanup actions we register with
4346 expand_decl_init will be properly conditionalized when those
4347 cleanup actions are later performed. Must be called before any
4348 expression (tree) is expanded that is within a conditional context. */
4349
4350 void
4351 start_cleanup_deferral (void)
4352 {
4353 /* block_stack can be NULL if we are inside the parameter list. It is
4354 OK to do nothing, because cleanups aren't possible here. */
4355 if (block_stack)
4356 ++block_stack->data.block.conditional_code;
4357 }
4358
4359 /* Mark the end of a conditional region of code. Because cleanup
4360 deferrals may be nested, we may still be in a conditional region
4361 after we end the currently deferred cleanups, only after we end all
4362 deferred cleanups, are we back in unconditional code. */
4363
4364 void
4365 end_cleanup_deferral (void)
4366 {
4367 /* block_stack can be NULL if we are inside the parameter list. It is
4368 OK to do nothing, because cleanups aren't possible here. */
4369 if (block_stack)
4370 --block_stack->data.block.conditional_code;
4371 }
4372
4373 tree
4374 last_cleanup_this_contour (void)
4375 {
4376 if (block_stack == 0)
4377 return 0;
4378
4379 return block_stack->data.block.cleanups;
4380 }
4381
4382 /* Return 1 if there are any pending cleanups at this point.
4383 Check the current contour as well as contours that enclose
4384 the current contour. */
4385
4386 int
4387 any_pending_cleanups (void)
4388 {
4389 struct nesting *block;
4390
4391 if (cfun == NULL || cfun->stmt == NULL || block_stack == 0)
4392 return 0;
4393
4394 if (block_stack->data.block.cleanups != NULL)
4395 return 1;
4396
4397 if (block_stack->data.block.outer_cleanups == 0)
4398 return 0;
4399
4400 for (block = block_stack->next; block; block = block->next)
4401 if (block->data.block.cleanups != 0)
4402 return 1;
4403
4404 return 0;
4405 }
4406 \f
4407 /* Enter a case (Pascal) or switch (C) statement.
4408 Push a block onto case_stack and nesting_stack
4409 to accumulate the case-labels that are seen
4410 and to record the labels generated for the statement.
4411
4412 EXIT_FLAG is nonzero if `exit_something' should exit this case stmt.
4413 Otherwise, this construct is transparent for `exit_something'.
4414
4415 EXPR is the index-expression to be dispatched on.
4416 TYPE is its nominal type. We could simply convert EXPR to this type,
4417 but instead we take short cuts. */
4418
4419 void
4420 expand_start_case (int exit_flag, tree expr, tree type,
4421 const char *printname)
4422 {
4423 struct nesting *thiscase = ALLOC_NESTING ();
4424
4425 /* Make an entry on case_stack for the case we are entering. */
4426
4427 thiscase->desc = CASE_NESTING;
4428 thiscase->next = case_stack;
4429 thiscase->all = nesting_stack;
4430 thiscase->depth = ++nesting_depth;
4431 thiscase->exit_label = exit_flag ? gen_label_rtx () : 0;
4432 thiscase->data.case_stmt.case_list = 0;
4433 thiscase->data.case_stmt.index_expr = expr;
4434 thiscase->data.case_stmt.nominal_type = type;
4435 thiscase->data.case_stmt.default_label = 0;
4436 thiscase->data.case_stmt.printname = printname;
4437 thiscase->data.case_stmt.line_number_status = force_line_numbers ();
4438 case_stack = thiscase;
4439 nesting_stack = thiscase;
4440
4441 do_pending_stack_adjust ();
4442 emit_queue ();
4443
4444 /* Make sure case_stmt.start points to something that won't
4445 need any transformation before expand_end_case. */
4446 if (GET_CODE (get_last_insn ()) != NOTE)
4447 emit_note (NOTE_INSN_DELETED);
4448
4449 thiscase->data.case_stmt.start = get_last_insn ();
4450
4451 start_cleanup_deferral ();
4452 }
4453
4454 /* Start a "dummy case statement" within which case labels are invalid
4455 and are not connected to any larger real case statement.
4456 This can be used if you don't want to let a case statement jump
4457 into the middle of certain kinds of constructs. */
4458
4459 void
4460 expand_start_case_dummy (void)
4461 {
4462 struct nesting *thiscase = ALLOC_NESTING ();
4463
4464 /* Make an entry on case_stack for the dummy. */
4465
4466 thiscase->desc = CASE_NESTING;
4467 thiscase->next = case_stack;
4468 thiscase->all = nesting_stack;
4469 thiscase->depth = ++nesting_depth;
4470 thiscase->exit_label = 0;
4471 thiscase->data.case_stmt.case_list = 0;
4472 thiscase->data.case_stmt.start = 0;
4473 thiscase->data.case_stmt.nominal_type = 0;
4474 thiscase->data.case_stmt.default_label = 0;
4475 case_stack = thiscase;
4476 nesting_stack = thiscase;
4477 start_cleanup_deferral ();
4478 }
4479 \f
4480 static void
4481 check_seenlabel (void)
4482 {
4483 /* If this is the first label, warn if any insns have been emitted. */
4484 if (case_stack->data.case_stmt.line_number_status >= 0)
4485 {
4486 rtx insn;
4487
4488 restore_line_number_status
4489 (case_stack->data.case_stmt.line_number_status);
4490 case_stack->data.case_stmt.line_number_status = -1;
4491
4492 for (insn = case_stack->data.case_stmt.start;
4493 insn;
4494 insn = NEXT_INSN (insn))
4495 {
4496 if (GET_CODE (insn) == CODE_LABEL)
4497 break;
4498 if (GET_CODE (insn) != NOTE
4499 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE))
4500 {
4501 do
4502 insn = PREV_INSN (insn);
4503 while (insn && (GET_CODE (insn) != NOTE || NOTE_LINE_NUMBER (insn) < 0));
4504
4505 /* If insn is zero, then there must have been a syntax error. */
4506 if (insn)
4507 {
4508 location_t locus;
4509 locus.file = NOTE_SOURCE_FILE (insn);
4510 locus.line = NOTE_LINE_NUMBER (insn);
4511 warning ("%Hunreachable code at beginning of %s", &locus,
4512 case_stack->data.case_stmt.printname);
4513 }
4514 break;
4515 }
4516 }
4517 }
4518 }
4519
4520 /* Accumulate one case or default label inside a case or switch statement.
4521 VALUE is the value of the case (a null pointer, for a default label).
4522 The function CONVERTER, when applied to arguments T and V,
4523 converts the value V to the type T.
4524
4525 If not currently inside a case or switch statement, return 1 and do
4526 nothing. The caller will print a language-specific error message.
4527 If VALUE is a duplicate or overlaps, return 2 and do nothing
4528 except store the (first) duplicate node in *DUPLICATE.
4529 If VALUE is out of range, return 3 and do nothing.
4530 If we are jumping into the scope of a cleanup or var-sized array, return 5.
4531 Return 0 on success.
4532
4533 Extended to handle range statements. */
4534
4535 int
4536 pushcase (tree value, tree (*converter) (tree, tree), tree label,
4537 tree *duplicate)
4538 {
4539 tree index_type;
4540 tree nominal_type;
4541
4542 /* Fail if not inside a real case statement. */
4543 if (! (case_stack && case_stack->data.case_stmt.start))
4544 return 1;
4545
4546 if (stack_block_stack
4547 && stack_block_stack->depth > case_stack->depth)
4548 return 5;
4549
4550 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4551 nominal_type = case_stack->data.case_stmt.nominal_type;
4552
4553 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4554 if (index_type == error_mark_node)
4555 return 0;
4556
4557 /* Convert VALUE to the type in which the comparisons are nominally done. */
4558 if (value != 0)
4559 value = (*converter) (nominal_type, value);
4560
4561 check_seenlabel ();
4562
4563 /* Fail if this value is out of range for the actual type of the index
4564 (which may be narrower than NOMINAL_TYPE). */
4565 if (value != 0
4566 && (TREE_CONSTANT_OVERFLOW (value)
4567 || ! int_fits_type_p (value, index_type)))
4568 return 3;
4569
4570 return add_case_node (value, value, label, duplicate);
4571 }
4572
4573 /* Like pushcase but this case applies to all values between VALUE1 and
4574 VALUE2 (inclusive). If VALUE1 is NULL, the range starts at the lowest
4575 value of the index type and ends at VALUE2. If VALUE2 is NULL, the range
4576 starts at VALUE1 and ends at the highest value of the index type.
4577 If both are NULL, this case applies to all values.
4578
4579 The return value is the same as that of pushcase but there is one
4580 additional error code: 4 means the specified range was empty. */
4581
4582 int
4583 pushcase_range (tree value1, tree value2, tree (*converter) (tree, tree),
4584 tree label, tree *duplicate)
4585 {
4586 tree index_type;
4587 tree nominal_type;
4588
4589 /* Fail if not inside a real case statement. */
4590 if (! (case_stack && case_stack->data.case_stmt.start))
4591 return 1;
4592
4593 if (stack_block_stack
4594 && stack_block_stack->depth > case_stack->depth)
4595 return 5;
4596
4597 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4598 nominal_type = case_stack->data.case_stmt.nominal_type;
4599
4600 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4601 if (index_type == error_mark_node)
4602 return 0;
4603
4604 check_seenlabel ();
4605
4606 /* Convert VALUEs to type in which the comparisons are nominally done
4607 and replace any unspecified value with the corresponding bound. */
4608 if (value1 == 0)
4609 value1 = TYPE_MIN_VALUE (index_type);
4610 if (value2 == 0)
4611 value2 = TYPE_MAX_VALUE (index_type);
4612
4613 /* Fail if the range is empty. Do this before any conversion since
4614 we want to allow out-of-range empty ranges. */
4615 if (value2 != 0 && tree_int_cst_lt (value2, value1))
4616 return 4;
4617
4618 /* If the max was unbounded, use the max of the nominal_type we are
4619 converting to. Do this after the < check above to suppress false
4620 positives. */
4621 if (value2 == 0)
4622 value2 = TYPE_MAX_VALUE (nominal_type);
4623
4624 value1 = (*converter) (nominal_type, value1);
4625 value2 = (*converter) (nominal_type, value2);
4626
4627 /* Fail if these values are out of range. */
4628 if (TREE_CONSTANT_OVERFLOW (value1)
4629 || ! int_fits_type_p (value1, index_type))
4630 return 3;
4631
4632 if (TREE_CONSTANT_OVERFLOW (value2)
4633 || ! int_fits_type_p (value2, index_type))
4634 return 3;
4635
4636 return add_case_node (value1, value2, label, duplicate);
4637 }
4638
4639 /* Do the actual insertion of a case label for pushcase and pushcase_range
4640 into case_stack->data.case_stmt.case_list. Use an AVL tree to avoid
4641 slowdown for large switch statements. */
4642
4643 int
4644 add_case_node (tree low, tree high, tree label, tree *duplicate)
4645 {
4646 struct case_node *p, **q, *r;
4647
4648 /* If there's no HIGH value, then this is not a case range; it's
4649 just a simple case label. But that's just a degenerate case
4650 range. */
4651 if (!high)
4652 high = low;
4653
4654 /* Handle default labels specially. */
4655 if (!high && !low)
4656 {
4657 if (case_stack->data.case_stmt.default_label != 0)
4658 {
4659 *duplicate = case_stack->data.case_stmt.default_label;
4660 return 2;
4661 }
4662 case_stack->data.case_stmt.default_label = label;
4663 expand_label (label);
4664 return 0;
4665 }
4666
4667 q = &case_stack->data.case_stmt.case_list;
4668 p = *q;
4669
4670 while ((r = *q))
4671 {
4672 p = r;
4673
4674 /* Keep going past elements distinctly greater than HIGH. */
4675 if (tree_int_cst_lt (high, p->low))
4676 q = &p->left;
4677
4678 /* or distinctly less than LOW. */
4679 else if (tree_int_cst_lt (p->high, low))
4680 q = &p->right;
4681
4682 else
4683 {
4684 /* We have an overlap; this is an error. */
4685 *duplicate = p->code_label;
4686 return 2;
4687 }
4688 }
4689
4690 /* Add this label to the chain, and succeed. */
4691
4692 r = ggc_alloc (sizeof (struct case_node));
4693 r->low = low;
4694
4695 /* If the bounds are equal, turn this into the one-value case. */
4696 if (tree_int_cst_equal (low, high))
4697 r->high = r->low;
4698 else
4699 r->high = high;
4700
4701 r->code_label = label;
4702 expand_label (label);
4703
4704 *q = r;
4705 r->parent = p;
4706 r->left = 0;
4707 r->right = 0;
4708 r->balance = 0;
4709
4710 while (p)
4711 {
4712 struct case_node *s;
4713
4714 if (r == p->left)
4715 {
4716 int b;
4717
4718 if (! (b = p->balance))
4719 /* Growth propagation from left side. */
4720 p->balance = -1;
4721 else if (b < 0)
4722 {
4723 if (r->balance < 0)
4724 {
4725 /* R-Rotation */
4726 if ((p->left = s = r->right))
4727 s->parent = p;
4728
4729 r->right = p;
4730 p->balance = 0;
4731 r->balance = 0;
4732 s = p->parent;
4733 p->parent = r;
4734
4735 if ((r->parent = s))
4736 {
4737 if (s->left == p)
4738 s->left = r;
4739 else
4740 s->right = r;
4741 }
4742 else
4743 case_stack->data.case_stmt.case_list = r;
4744 }
4745 else
4746 /* r->balance == +1 */
4747 {
4748 /* LR-Rotation */
4749
4750 int b2;
4751 struct case_node *t = r->right;
4752
4753 if ((p->left = s = t->right))
4754 s->parent = p;
4755
4756 t->right = p;
4757 if ((r->right = s = t->left))
4758 s->parent = r;
4759
4760 t->left = r;
4761 b = t->balance;
4762 b2 = b < 0;
4763 p->balance = b2;
4764 b2 = -b2 - b;
4765 r->balance = b2;
4766 t->balance = 0;
4767 s = p->parent;
4768 p->parent = t;
4769 r->parent = t;
4770
4771 if ((t->parent = s))
4772 {
4773 if (s->left == p)
4774 s->left = t;
4775 else
4776 s->right = t;
4777 }
4778 else
4779 case_stack->data.case_stmt.case_list = t;
4780 }
4781 break;
4782 }
4783
4784 else
4785 {
4786 /* p->balance == +1; growth of left side balances the node. */
4787 p->balance = 0;
4788 break;
4789 }
4790 }
4791 else
4792 /* r == p->right */
4793 {
4794 int b;
4795
4796 if (! (b = p->balance))
4797 /* Growth propagation from right side. */
4798 p->balance++;
4799 else if (b > 0)
4800 {
4801 if (r->balance > 0)
4802 {
4803 /* L-Rotation */
4804
4805 if ((p->right = s = r->left))
4806 s->parent = p;
4807
4808 r->left = p;
4809 p->balance = 0;
4810 r->balance = 0;
4811 s = p->parent;
4812 p->parent = r;
4813 if ((r->parent = s))
4814 {
4815 if (s->left == p)
4816 s->left = r;
4817 else
4818 s->right = r;
4819 }
4820
4821 else
4822 case_stack->data.case_stmt.case_list = r;
4823 }
4824
4825 else
4826 /* r->balance == -1 */
4827 {
4828 /* RL-Rotation */
4829 int b2;
4830 struct case_node *t = r->left;
4831
4832 if ((p->right = s = t->left))
4833 s->parent = p;
4834
4835 t->left = p;
4836
4837 if ((r->left = s = t->right))
4838 s->parent = r;
4839
4840 t->right = r;
4841 b = t->balance;
4842 b2 = b < 0;
4843 r->balance = b2;
4844 b2 = -b2 - b;
4845 p->balance = b2;
4846 t->balance = 0;
4847 s = p->parent;
4848 p->parent = t;
4849 r->parent = t;
4850
4851 if ((t->parent = s))
4852 {
4853 if (s->left == p)
4854 s->left = t;
4855 else
4856 s->right = t;
4857 }
4858
4859 else
4860 case_stack->data.case_stmt.case_list = t;
4861 }
4862 break;
4863 }
4864 else
4865 {
4866 /* p->balance == -1; growth of right side balances the node. */
4867 p->balance = 0;
4868 break;
4869 }
4870 }
4871
4872 r = p;
4873 p = p->parent;
4874 }
4875
4876 return 0;
4877 }
4878 \f
4879 /* Returns the number of possible values of TYPE.
4880 Returns -1 if the number is unknown, variable, or if the number does not
4881 fit in a HOST_WIDE_INT.
4882 Sets *SPARSENESS to 2 if TYPE is an ENUMERAL_TYPE whose values
4883 do not increase monotonically (there may be duplicates);
4884 to 1 if the values increase monotonically, but not always by 1;
4885 otherwise sets it to 0. */
4886
4887 HOST_WIDE_INT
4888 all_cases_count (tree type, int *sparseness)
4889 {
4890 tree t;
4891 HOST_WIDE_INT count, minval, lastval;
4892
4893 *sparseness = 0;
4894
4895 switch (TREE_CODE (type))
4896 {
4897 case BOOLEAN_TYPE:
4898 count = 2;
4899 break;
4900
4901 case CHAR_TYPE:
4902 count = 1 << BITS_PER_UNIT;
4903 break;
4904
4905 default:
4906 case INTEGER_TYPE:
4907 if (TYPE_MAX_VALUE (type) != 0
4908 && 0 != (t = fold (build (MINUS_EXPR, type, TYPE_MAX_VALUE (type),
4909 TYPE_MIN_VALUE (type))))
4910 && 0 != (t = fold (build (PLUS_EXPR, type, t,
4911 convert (type, integer_zero_node))))
4912 && host_integerp (t, 1))
4913 count = tree_low_cst (t, 1);
4914 else
4915 return -1;
4916 break;
4917
4918 case ENUMERAL_TYPE:
4919 /* Don't waste time with enumeral types with huge values. */
4920 if (! host_integerp (TYPE_MIN_VALUE (type), 0)
4921 || TYPE_MAX_VALUE (type) == 0
4922 || ! host_integerp (TYPE_MAX_VALUE (type), 0))
4923 return -1;
4924
4925 lastval = minval = tree_low_cst (TYPE_MIN_VALUE (type), 0);
4926 count = 0;
4927
4928 for (t = TYPE_VALUES (type); t != NULL_TREE; t = TREE_CHAIN (t))
4929 {
4930 HOST_WIDE_INT thisval = tree_low_cst (TREE_VALUE (t), 0);
4931
4932 if (*sparseness == 2 || thisval <= lastval)
4933 *sparseness = 2;
4934 else if (thisval != minval + count)
4935 *sparseness = 1;
4936
4937 lastval = thisval;
4938 count++;
4939 }
4940 }
4941
4942 return count;
4943 }
4944
4945 #define BITARRAY_TEST(ARRAY, INDEX) \
4946 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4947 & (1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR)))
4948 #define BITARRAY_SET(ARRAY, INDEX) \
4949 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4950 |= 1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR))
4951
4952 /* Set the elements of the bitstring CASES_SEEN (which has length COUNT),
4953 with the case values we have seen, assuming the case expression
4954 has the given TYPE.
4955 SPARSENESS is as determined by all_cases_count.
4956
4957 The time needed is proportional to COUNT, unless
4958 SPARSENESS is 2, in which case quadratic time is needed. */
4959
4960 void
4961 mark_seen_cases (tree type, unsigned char *cases_seen, HOST_WIDE_INT count,
4962 int sparseness)
4963 {
4964 tree next_node_to_try = NULL_TREE;
4965 HOST_WIDE_INT next_node_offset = 0;
4966
4967 struct case_node *n, *root = case_stack->data.case_stmt.case_list;
4968 tree val = make_node (INTEGER_CST);
4969
4970 TREE_TYPE (val) = type;
4971 if (! root)
4972 /* Do nothing. */
4973 ;
4974 else if (sparseness == 2)
4975 {
4976 tree t;
4977 unsigned HOST_WIDE_INT xlo;
4978
4979 /* This less efficient loop is only needed to handle
4980 duplicate case values (multiple enum constants
4981 with the same value). */
4982 TREE_TYPE (val) = TREE_TYPE (root->low);
4983 for (t = TYPE_VALUES (type), xlo = 0; t != NULL_TREE;
4984 t = TREE_CHAIN (t), xlo++)
4985 {
4986 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (TREE_VALUE (t));
4987 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (TREE_VALUE (t));
4988 n = root;
4989 do
4990 {
4991 /* Keep going past elements distinctly greater than VAL. */
4992 if (tree_int_cst_lt (val, n->low))
4993 n = n->left;
4994
4995 /* or distinctly less than VAL. */
4996 else if (tree_int_cst_lt (n->high, val))
4997 n = n->right;
4998
4999 else
5000 {
5001 /* We have found a matching range. */
5002 BITARRAY_SET (cases_seen, xlo);
5003 break;
5004 }
5005 }
5006 while (n);
5007 }
5008 }
5009 else
5010 {
5011 if (root->left)
5012 case_stack->data.case_stmt.case_list = root = case_tree2list (root, 0);
5013
5014 for (n = root; n; n = n->right)
5015 {
5016 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (n->low);
5017 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (n->low);
5018 while (! tree_int_cst_lt (n->high, val))
5019 {
5020 /* Calculate (into xlo) the "offset" of the integer (val).
5021 The element with lowest value has offset 0, the next smallest
5022 element has offset 1, etc. */
5023
5024 unsigned HOST_WIDE_INT xlo;
5025 HOST_WIDE_INT xhi;
5026 tree t;
5027
5028 if (sparseness && TYPE_VALUES (type) != NULL_TREE)
5029 {
5030 /* The TYPE_VALUES will be in increasing order, so
5031 starting searching where we last ended. */
5032 t = next_node_to_try;
5033 xlo = next_node_offset;
5034 xhi = 0;
5035 for (;;)
5036 {
5037 if (t == NULL_TREE)
5038 {
5039 t = TYPE_VALUES (type);
5040 xlo = 0;
5041 }
5042 if (tree_int_cst_equal (val, TREE_VALUE (t)))
5043 {
5044 next_node_to_try = TREE_CHAIN (t);
5045 next_node_offset = xlo + 1;
5046 break;
5047 }
5048 xlo++;
5049 t = TREE_CHAIN (t);
5050 if (t == next_node_to_try)
5051 {
5052 xlo = -1;
5053 break;
5054 }
5055 }
5056 }
5057 else
5058 {
5059 t = TYPE_MIN_VALUE (type);
5060 if (t)
5061 neg_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t),
5062 &xlo, &xhi);
5063 else
5064 xlo = xhi = 0;
5065 add_double (xlo, xhi,
5066 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5067 &xlo, &xhi);
5068 }
5069
5070 if (xhi == 0 && xlo < (unsigned HOST_WIDE_INT) count)
5071 BITARRAY_SET (cases_seen, xlo);
5072
5073 add_double (TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5074 1, 0,
5075 &TREE_INT_CST_LOW (val), &TREE_INT_CST_HIGH (val));
5076 }
5077 }
5078 }
5079 }
5080
5081 /* Given a switch statement with an expression that is an enumeration
5082 type, warn if any of the enumeration type's literals are not
5083 covered by the case expressions of the switch. Also, warn if there
5084 are any extra switch cases that are *not* elements of the
5085 enumerated type.
5086
5087 Historical note:
5088
5089 At one stage this function would: ``If all enumeration literals
5090 were covered by the case expressions, turn one of the expressions
5091 into the default expression since it should not be possible to fall
5092 through such a switch.''
5093
5094 That code has since been removed as: ``This optimization is
5095 disabled because it causes valid programs to fail. ANSI C does not
5096 guarantee that an expression with enum type will have a value that
5097 is the same as one of the enumeration literals.'' */
5098
5099 void
5100 check_for_full_enumeration_handling (tree type)
5101 {
5102 struct case_node *n;
5103 tree chain;
5104
5105 /* True iff the selector type is a numbered set mode. */
5106 int sparseness = 0;
5107
5108 /* The number of possible selector values. */
5109 HOST_WIDE_INT size;
5110
5111 /* For each possible selector value. a one iff it has been matched
5112 by a case value alternative. */
5113 unsigned char *cases_seen;
5114
5115 /* The allocated size of cases_seen, in chars. */
5116 HOST_WIDE_INT bytes_needed;
5117
5118 size = all_cases_count (type, &sparseness);
5119 bytes_needed = (size + HOST_BITS_PER_CHAR) / HOST_BITS_PER_CHAR;
5120
5121 if (size > 0 && size < 600000
5122 /* We deliberately use calloc here, not cmalloc, so that we can suppress
5123 this optimization if we don't have enough memory rather than
5124 aborting, as xmalloc would do. */
5125 && (cases_seen = really_call_calloc (bytes_needed, 1)) != NULL)
5126 {
5127 HOST_WIDE_INT i;
5128 tree v = TYPE_VALUES (type);
5129
5130 /* The time complexity of this code is normally O(N), where
5131 N being the number of members in the enumerated type.
5132 However, if type is an ENUMERAL_TYPE whose values do not
5133 increase monotonically, O(N*log(N)) time may be needed. */
5134
5135 mark_seen_cases (type, cases_seen, size, sparseness);
5136
5137 for (i = 0; v != NULL_TREE && i < size; i++, v = TREE_CHAIN (v))
5138 if (BITARRAY_TEST (cases_seen, i) == 0)
5139 warning ("enumeration value `%s' not handled in switch",
5140 IDENTIFIER_POINTER (TREE_PURPOSE (v)));
5141
5142 free (cases_seen);
5143 }
5144
5145 /* Now we go the other way around; we warn if there are case
5146 expressions that don't correspond to enumerators. This can
5147 occur since C and C++ don't enforce type-checking of
5148 assignments to enumeration variables. */
5149
5150 if (case_stack->data.case_stmt.case_list
5151 && case_stack->data.case_stmt.case_list->left)
5152 case_stack->data.case_stmt.case_list
5153 = case_tree2list (case_stack->data.case_stmt.case_list, 0);
5154 for (n = case_stack->data.case_stmt.case_list; n; n = n->right)
5155 {
5156 for (chain = TYPE_VALUES (type);
5157 chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain));
5158 chain = TREE_CHAIN (chain))
5159 ;
5160
5161 if (!chain)
5162 {
5163 if (TYPE_NAME (type) == 0)
5164 warning ("case value `%ld' not in enumerated type",
5165 (long) TREE_INT_CST_LOW (n->low));
5166 else
5167 warning ("case value `%ld' not in enumerated type `%s'",
5168 (long) TREE_INT_CST_LOW (n->low),
5169 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5170 == IDENTIFIER_NODE)
5171 ? TYPE_NAME (type)
5172 : DECL_NAME (TYPE_NAME (type))));
5173 }
5174 if (!tree_int_cst_equal (n->low, n->high))
5175 {
5176 for (chain = TYPE_VALUES (type);
5177 chain && !tree_int_cst_equal (n->high, TREE_VALUE (chain));
5178 chain = TREE_CHAIN (chain))
5179 ;
5180
5181 if (!chain)
5182 {
5183 if (TYPE_NAME (type) == 0)
5184 warning ("case value `%ld' not in enumerated type",
5185 (long) TREE_INT_CST_LOW (n->high));
5186 else
5187 warning ("case value `%ld' not in enumerated type `%s'",
5188 (long) TREE_INT_CST_LOW (n->high),
5189 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5190 == IDENTIFIER_NODE)
5191 ? TYPE_NAME (type)
5192 : DECL_NAME (TYPE_NAME (type))));
5193 }
5194 }
5195 }
5196 }
5197
5198 \f
5199 /* Maximum number of case bit tests. */
5200 #define MAX_CASE_BIT_TESTS 3
5201
5202 /* By default, enable case bit tests on targets with ashlsi3. */
5203 #ifndef CASE_USE_BIT_TESTS
5204 #define CASE_USE_BIT_TESTS (ashl_optab->handlers[word_mode].insn_code \
5205 != CODE_FOR_nothing)
5206 #endif
5207
5208
5209 /* A case_bit_test represents a set of case nodes that may be
5210 selected from using a bit-wise comparison. HI and LO hold
5211 the integer to be tested against, LABEL contains the label
5212 to jump to upon success and BITS counts the number of case
5213 nodes handled by this test, typically the number of bits
5214 set in HI:LO. */
5215
5216 struct case_bit_test
5217 {
5218 HOST_WIDE_INT hi;
5219 HOST_WIDE_INT lo;
5220 rtx label;
5221 int bits;
5222 };
5223
5224 /* Determine whether "1 << x" is relatively cheap in word_mode. */
5225
5226 static
5227 bool lshift_cheap_p (void)
5228 {
5229 static bool init = false;
5230 static bool cheap = true;
5231
5232 if (!init)
5233 {
5234 rtx reg = gen_rtx_REG (word_mode, 10000);
5235 int cost = rtx_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg), SET);
5236 cheap = cost < COSTS_N_INSNS (3);
5237 init = true;
5238 }
5239
5240 return cheap;
5241 }
5242
5243 /* Comparison function for qsort to order bit tests by decreasing
5244 number of case nodes, i.e. the node with the most cases gets
5245 tested first. */
5246
5247 static
5248 int case_bit_test_cmp (const void *p1, const void *p2)
5249 {
5250 const struct case_bit_test *d1 = p1;
5251 const struct case_bit_test *d2 = p2;
5252
5253 return d2->bits - d1->bits;
5254 }
5255
5256 /* Expand a switch statement by a short sequence of bit-wise
5257 comparisons. "switch(x)" is effectively converted into
5258 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
5259 integer constants.
5260
5261 INDEX_EXPR is the value being switched on, which is of
5262 type INDEX_TYPE. MINVAL is the lowest case value of in
5263 the case nodes, of INDEX_TYPE type, and RANGE is highest
5264 value minus MINVAL, also of type INDEX_TYPE. NODES is
5265 the set of case nodes, and DEFAULT_LABEL is the label to
5266 branch to should none of the cases match.
5267
5268 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
5269 node targets. */
5270
5271 static void
5272 emit_case_bit_tests (tree index_type, tree index_expr, tree minval,
5273 tree range, case_node_ptr nodes, rtx default_label)
5274 {
5275 struct case_bit_test test[MAX_CASE_BIT_TESTS];
5276 enum machine_mode mode;
5277 rtx expr, index, label;
5278 unsigned int i,j,lo,hi;
5279 struct case_node *n;
5280 unsigned int count;
5281
5282 count = 0;
5283 for (n = nodes; n; n = n->right)
5284 {
5285 label = label_rtx (n->code_label);
5286 for (i = 0; i < count; i++)
5287 if (same_case_target_p (label, test[i].label))
5288 break;
5289
5290 if (i == count)
5291 {
5292 if (count >= MAX_CASE_BIT_TESTS)
5293 abort ();
5294 test[i].hi = 0;
5295 test[i].lo = 0;
5296 test[i].label = label;
5297 test[i].bits = 1;
5298 count++;
5299 }
5300 else
5301 test[i].bits++;
5302
5303 lo = tree_low_cst (fold (build (MINUS_EXPR, index_type,
5304 n->low, minval)), 1);
5305 hi = tree_low_cst (fold (build (MINUS_EXPR, index_type,
5306 n->high, minval)), 1);
5307 for (j = lo; j <= hi; j++)
5308 if (j >= HOST_BITS_PER_WIDE_INT)
5309 test[i].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT);
5310 else
5311 test[i].lo |= (HOST_WIDE_INT) 1 << j;
5312 }
5313
5314 qsort (test, count, sizeof(*test), case_bit_test_cmp);
5315
5316 index_expr = fold (build (MINUS_EXPR, index_type,
5317 convert (index_type, index_expr),
5318 convert (index_type, minval)));
5319 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5320 emit_queue ();
5321 index = protect_from_queue (index, 0);
5322 do_pending_stack_adjust ();
5323
5324 mode = TYPE_MODE (index_type);
5325 expr = expand_expr (range, NULL_RTX, VOIDmode, 0);
5326 emit_cmp_and_jump_insns (index, expr, GTU, NULL_RTX, mode, 1,
5327 default_label);
5328
5329 index = convert_to_mode (word_mode, index, 0);
5330 index = expand_binop (word_mode, ashl_optab, const1_rtx,
5331 index, NULL_RTX, 1, OPTAB_WIDEN);
5332
5333 for (i = 0; i < count; i++)
5334 {
5335 expr = immed_double_const (test[i].lo, test[i].hi, word_mode);
5336 expr = expand_binop (word_mode, and_optab, index, expr,
5337 NULL_RTX, 1, OPTAB_WIDEN);
5338 emit_cmp_and_jump_insns (expr, const0_rtx, NE, NULL_RTX,
5339 word_mode, 1, test[i].label);
5340 }
5341
5342 emit_jump (default_label);
5343 }
5344
5345 /* Terminate a case (Pascal) or switch (C) statement
5346 in which ORIG_INDEX is the expression to be tested.
5347 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
5348 type as given in the source before any compiler conversions.
5349 Generate the code to test it and jump to the right place. */
5350
5351 void
5352 expand_end_case_type (tree orig_index, tree orig_type)
5353 {
5354 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
5355 rtx default_label = 0;
5356 struct case_node *n, *m;
5357 unsigned int count, uniq;
5358 rtx index;
5359 rtx table_label;
5360 int ncases;
5361 rtx *labelvec;
5362 int i;
5363 rtx before_case, end, lab;
5364 struct nesting *thiscase = case_stack;
5365 tree index_expr, index_type;
5366 bool exit_done = false;
5367 int unsignedp;
5368
5369 /* Don't crash due to previous errors. */
5370 if (thiscase == NULL)
5371 return;
5372
5373 index_expr = thiscase->data.case_stmt.index_expr;
5374 index_type = TREE_TYPE (index_expr);
5375 unsignedp = TREE_UNSIGNED (index_type);
5376 if (orig_type == NULL)
5377 orig_type = TREE_TYPE (orig_index);
5378
5379 do_pending_stack_adjust ();
5380
5381 /* This might get a spurious warning in the presence of a syntax error;
5382 it could be fixed by moving the call to check_seenlabel after the
5383 check for error_mark_node, and copying the code of check_seenlabel that
5384 deals with case_stack->data.case_stmt.line_number_status /
5385 restore_line_number_status in front of the call to end_cleanup_deferral;
5386 However, this might miss some useful warnings in the presence of
5387 non-syntax errors. */
5388 check_seenlabel ();
5389
5390 /* An ERROR_MARK occurs for various reasons including invalid data type. */
5391 if (index_type != error_mark_node)
5392 {
5393 /* If the switch expression was an enumerated type, check that
5394 exactly all enumeration literals are covered by the cases.
5395 The check is made when -Wswitch was specified and there is no
5396 default case, or when -Wswitch-enum was specified. */
5397 if (((warn_switch && !thiscase->data.case_stmt.default_label)
5398 || warn_switch_enum)
5399 && TREE_CODE (orig_type) == ENUMERAL_TYPE
5400 && TREE_CODE (index_expr) != INTEGER_CST)
5401 check_for_full_enumeration_handling (orig_type);
5402
5403 if (warn_switch_default && !thiscase->data.case_stmt.default_label)
5404 warning ("switch missing default case");
5405
5406 /* If we don't have a default-label, create one here,
5407 after the body of the switch. */
5408 if (thiscase->data.case_stmt.default_label == 0)
5409 {
5410 thiscase->data.case_stmt.default_label
5411 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
5412 /* Share the exit label if possible. */
5413 if (thiscase->exit_label)
5414 {
5415 SET_DECL_RTL (thiscase->data.case_stmt.default_label,
5416 thiscase->exit_label);
5417 exit_done = true;
5418 }
5419 expand_label (thiscase->data.case_stmt.default_label);
5420 }
5421 default_label = label_rtx (thiscase->data.case_stmt.default_label);
5422
5423 before_case = get_last_insn ();
5424
5425 if (thiscase->data.case_stmt.case_list
5426 && thiscase->data.case_stmt.case_list->left)
5427 thiscase->data.case_stmt.case_list
5428 = case_tree2list (thiscase->data.case_stmt.case_list, 0);
5429
5430 /* Simplify the case-list before we count it. */
5431 group_case_nodes (thiscase->data.case_stmt.case_list);
5432 strip_default_case_nodes (&thiscase->data.case_stmt.case_list,
5433 default_label);
5434
5435 /* Get upper and lower bounds of case values.
5436 Also convert all the case values to the index expr's data type. */
5437
5438 uniq = 0;
5439 count = 0;
5440 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5441 {
5442 /* Check low and high label values are integers. */
5443 if (TREE_CODE (n->low) != INTEGER_CST)
5444 abort ();
5445 if (TREE_CODE (n->high) != INTEGER_CST)
5446 abort ();
5447
5448 n->low = convert (index_type, n->low);
5449 n->high = convert (index_type, n->high);
5450
5451 /* Count the elements and track the largest and smallest
5452 of them (treating them as signed even if they are not). */
5453 if (count++ == 0)
5454 {
5455 minval = n->low;
5456 maxval = n->high;
5457 }
5458 else
5459 {
5460 if (INT_CST_LT (n->low, minval))
5461 minval = n->low;
5462 if (INT_CST_LT (maxval, n->high))
5463 maxval = n->high;
5464 }
5465 /* A range counts double, since it requires two compares. */
5466 if (! tree_int_cst_equal (n->low, n->high))
5467 count++;
5468
5469 /* Count the number of unique case node targets. */
5470 uniq++;
5471 lab = label_rtx (n->code_label);
5472 for (m = thiscase->data.case_stmt.case_list; m != n; m = m->right)
5473 if (same_case_target_p (label_rtx (m->code_label), lab))
5474 {
5475 uniq--;
5476 break;
5477 }
5478 }
5479
5480 /* Compute span of values. */
5481 if (count != 0)
5482 range = fold (build (MINUS_EXPR, index_type, maxval, minval));
5483
5484 end_cleanup_deferral ();
5485
5486 if (count == 0)
5487 {
5488 expand_expr (index_expr, const0_rtx, VOIDmode, 0);
5489 emit_queue ();
5490 emit_jump (default_label);
5491 }
5492
5493 /* Try implementing this switch statement by a short sequence of
5494 bit-wise comparisons. However, we let the binary-tree case
5495 below handle constant index expressions. */
5496 else if (CASE_USE_BIT_TESTS
5497 && ! TREE_CONSTANT (index_expr)
5498 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
5499 && compare_tree_int (range, 0) > 0
5500 && lshift_cheap_p ()
5501 && ((uniq == 1 && count >= 3)
5502 || (uniq == 2 && count >= 5)
5503 || (uniq == 3 && count >= 6)))
5504 {
5505 /* Optimize the case where all the case values fit in a
5506 word without having to subtract MINVAL. In this case,
5507 we can optimize away the subtraction. */
5508 if (compare_tree_int (minval, 0) > 0
5509 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
5510 {
5511 minval = integer_zero_node;
5512 range = maxval;
5513 }
5514 emit_case_bit_tests (index_type, index_expr, minval, range,
5515 thiscase->data.case_stmt.case_list,
5516 default_label);
5517 }
5518
5519 /* If range of values is much bigger than number of values,
5520 make a sequence of conditional branches instead of a dispatch.
5521 If the switch-index is a constant, do it this way
5522 because we can optimize it. */
5523
5524 else if (count < case_values_threshold ()
5525 || compare_tree_int (range,
5526 (optimize_size ? 3 : 10) * count) > 0
5527 /* RANGE may be signed, and really large ranges will show up
5528 as negative numbers. */
5529 || compare_tree_int (range, 0) < 0
5530 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
5531 || flag_pic
5532 #endif
5533 || TREE_CONSTANT (index_expr))
5534 {
5535 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5536
5537 /* If the index is a short or char that we do not have
5538 an insn to handle comparisons directly, convert it to
5539 a full integer now, rather than letting each comparison
5540 generate the conversion. */
5541
5542 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
5543 && ! have_insn_for (COMPARE, GET_MODE (index)))
5544 {
5545 enum machine_mode wider_mode;
5546 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
5547 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5548 if (have_insn_for (COMPARE, wider_mode))
5549 {
5550 index = convert_to_mode (wider_mode, index, unsignedp);
5551 break;
5552 }
5553 }
5554
5555 emit_queue ();
5556 do_pending_stack_adjust ();
5557
5558 index = protect_from_queue (index, 0);
5559 if (GET_CODE (index) == MEM)
5560 index = copy_to_reg (index);
5561 if (GET_CODE (index) == CONST_INT
5562 || TREE_CODE (index_expr) == INTEGER_CST)
5563 {
5564 /* Make a tree node with the proper constant value
5565 if we don't already have one. */
5566 if (TREE_CODE (index_expr) != INTEGER_CST)
5567 {
5568 index_expr
5569 = build_int_2 (INTVAL (index),
5570 unsignedp || INTVAL (index) >= 0 ? 0 : -1);
5571 index_expr = convert (index_type, index_expr);
5572 }
5573
5574 /* For constant index expressions we need only
5575 issue an unconditional branch to the appropriate
5576 target code. The job of removing any unreachable
5577 code is left to the optimization phase if the
5578 "-O" option is specified. */
5579 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5580 if (! tree_int_cst_lt (index_expr, n->low)
5581 && ! tree_int_cst_lt (n->high, index_expr))
5582 break;
5583
5584 if (n)
5585 emit_jump (label_rtx (n->code_label));
5586 else
5587 emit_jump (default_label);
5588 }
5589 else
5590 {
5591 /* If the index expression is not constant we generate
5592 a binary decision tree to select the appropriate
5593 target code. This is done as follows:
5594
5595 The list of cases is rearranged into a binary tree,
5596 nearly optimal assuming equal probability for each case.
5597
5598 The tree is transformed into RTL, eliminating
5599 redundant test conditions at the same time.
5600
5601 If program flow could reach the end of the
5602 decision tree an unconditional jump to the
5603 default code is emitted. */
5604
5605 use_cost_table
5606 = (TREE_CODE (orig_type) != ENUMERAL_TYPE
5607 && estimate_case_costs (thiscase->data.case_stmt.case_list));
5608 balance_case_nodes (&thiscase->data.case_stmt.case_list, NULL);
5609 emit_case_nodes (index, thiscase->data.case_stmt.case_list,
5610 default_label, index_type);
5611 emit_jump_if_reachable (default_label);
5612 }
5613 }
5614 else
5615 {
5616 table_label = gen_label_rtx ();
5617 if (! try_casesi (index_type, index_expr, minval, range,
5618 table_label, default_label))
5619 {
5620 index_type = thiscase->data.case_stmt.nominal_type;
5621
5622 /* Index jumptables from zero for suitable values of
5623 minval to avoid a subtraction. */
5624 if (! optimize_size
5625 && compare_tree_int (minval, 0) > 0
5626 && compare_tree_int (minval, 3) < 0)
5627 {
5628 minval = integer_zero_node;
5629 range = maxval;
5630 }
5631
5632 if (! try_tablejump (index_type, index_expr, minval, range,
5633 table_label, default_label))
5634 abort ();
5635 }
5636
5637 /* Get table of labels to jump to, in order of case index. */
5638
5639 ncases = tree_low_cst (range, 0) + 1;
5640 labelvec = alloca (ncases * sizeof (rtx));
5641 memset (labelvec, 0, ncases * sizeof (rtx));
5642
5643 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5644 {
5645 /* Compute the low and high bounds relative to the minimum
5646 value since that should fit in a HOST_WIDE_INT while the
5647 actual values may not. */
5648 HOST_WIDE_INT i_low
5649 = tree_low_cst (fold (build (MINUS_EXPR, index_type,
5650 n->low, minval)), 1);
5651 HOST_WIDE_INT i_high
5652 = tree_low_cst (fold (build (MINUS_EXPR, index_type,
5653 n->high, minval)), 1);
5654 HOST_WIDE_INT i;
5655
5656 for (i = i_low; i <= i_high; i ++)
5657 labelvec[i]
5658 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
5659 }
5660
5661 /* Fill in the gaps with the default. */
5662 for (i = 0; i < ncases; i++)
5663 if (labelvec[i] == 0)
5664 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
5665
5666 /* Output the table. */
5667 emit_label (table_label);
5668
5669 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
5670 emit_jump_insn (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
5671 gen_rtx_LABEL_REF (Pmode, table_label),
5672 gen_rtvec_v (ncases, labelvec),
5673 const0_rtx, const0_rtx));
5674 else
5675 emit_jump_insn (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
5676 gen_rtvec_v (ncases, labelvec)));
5677
5678 /* If the case insn drops through the table,
5679 after the table we must jump to the default-label.
5680 Otherwise record no drop-through after the table. */
5681 #ifdef CASE_DROPS_THROUGH
5682 emit_jump (default_label);
5683 #else
5684 emit_barrier ();
5685 #endif
5686 }
5687
5688 before_case = NEXT_INSN (before_case);
5689 end = get_last_insn ();
5690 if (squeeze_notes (&before_case, &end))
5691 abort ();
5692 reorder_insns (before_case, end,
5693 thiscase->data.case_stmt.start);
5694 }
5695 else
5696 end_cleanup_deferral ();
5697
5698 if (thiscase->exit_label && !exit_done)
5699 emit_label (thiscase->exit_label);
5700
5701 POPSTACK (case_stack);
5702
5703 free_temp_slots ();
5704 }
5705
5706 /* Convert the tree NODE into a list linked by the right field, with the left
5707 field zeroed. RIGHT is used for recursion; it is a list to be placed
5708 rightmost in the resulting list. */
5709
5710 static struct case_node *
5711 case_tree2list (struct case_node *node, struct case_node *right)
5712 {
5713 struct case_node *left;
5714
5715 if (node->right)
5716 right = case_tree2list (node->right, right);
5717
5718 node->right = right;
5719 if ((left = node->left))
5720 {
5721 node->left = 0;
5722 return case_tree2list (left, node);
5723 }
5724
5725 return node;
5726 }
5727
5728 /* Generate code to jump to LABEL if OP1 and OP2 are equal. */
5729
5730 static void
5731 do_jump_if_equal (rtx op1, rtx op2, rtx label, int unsignedp)
5732 {
5733 if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
5734 {
5735 if (op1 == op2)
5736 emit_jump (label);
5737 }
5738 else
5739 emit_cmp_and_jump_insns (op1, op2, EQ, NULL_RTX,
5740 (GET_MODE (op1) == VOIDmode
5741 ? GET_MODE (op2) : GET_MODE (op1)),
5742 unsignedp, label);
5743 }
5744 \f
5745 /* Not all case values are encountered equally. This function
5746 uses a heuristic to weight case labels, in cases where that
5747 looks like a reasonable thing to do.
5748
5749 Right now, all we try to guess is text, and we establish the
5750 following weights:
5751
5752 chars above space: 16
5753 digits: 16
5754 default: 12
5755 space, punct: 8
5756 tab: 4
5757 newline: 2
5758 other "\" chars: 1
5759 remaining chars: 0
5760
5761 If we find any cases in the switch that are not either -1 or in the range
5762 of valid ASCII characters, or are control characters other than those
5763 commonly used with "\", don't treat this switch scanning text.
5764
5765 Return 1 if these nodes are suitable for cost estimation, otherwise
5766 return 0. */
5767
5768 static int
5769 estimate_case_costs (case_node_ptr node)
5770 {
5771 tree min_ascii = integer_minus_one_node;
5772 tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0));
5773 case_node_ptr n;
5774 int i;
5775
5776 /* If we haven't already made the cost table, make it now. Note that the
5777 lower bound of the table is -1, not zero. */
5778
5779 if (! cost_table_initialized)
5780 {
5781 cost_table_initialized = 1;
5782
5783 for (i = 0; i < 128; i++)
5784 {
5785 if (ISALNUM (i))
5786 COST_TABLE (i) = 16;
5787 else if (ISPUNCT (i))
5788 COST_TABLE (i) = 8;
5789 else if (ISCNTRL (i))
5790 COST_TABLE (i) = -1;
5791 }
5792
5793 COST_TABLE (' ') = 8;
5794 COST_TABLE ('\t') = 4;
5795 COST_TABLE ('\0') = 4;
5796 COST_TABLE ('\n') = 2;
5797 COST_TABLE ('\f') = 1;
5798 COST_TABLE ('\v') = 1;
5799 COST_TABLE ('\b') = 1;
5800 }
5801
5802 /* See if all the case expressions look like text. It is text if the
5803 constant is >= -1 and the highest constant is <= 127. Do all comparisons
5804 as signed arithmetic since we don't want to ever access cost_table with a
5805 value less than -1. Also check that none of the constants in a range
5806 are strange control characters. */
5807
5808 for (n = node; n; n = n->right)
5809 {
5810 if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high))
5811 return 0;
5812
5813 for (i = (HOST_WIDE_INT) TREE_INT_CST_LOW (n->low);
5814 i <= (HOST_WIDE_INT) TREE_INT_CST_LOW (n->high); i++)
5815 if (COST_TABLE (i) < 0)
5816 return 0;
5817 }
5818
5819 /* All interesting values are within the range of interesting
5820 ASCII characters. */
5821 return 1;
5822 }
5823
5824 /* Determine whether two case labels branch to the same target. */
5825
5826 static bool
5827 same_case_target_p (rtx l1, rtx l2)
5828 {
5829 rtx i1, i2;
5830
5831 if (l1 == l2)
5832 return true;
5833
5834 i1 = next_real_insn (l1);
5835 i2 = next_real_insn (l2);
5836 if (i1 == i2)
5837 return true;
5838
5839 if (i1 && simplejump_p (i1))
5840 {
5841 l1 = XEXP (SET_SRC (PATTERN (i1)), 0);
5842 }
5843
5844 if (i2 && simplejump_p (i2))
5845 {
5846 l2 = XEXP (SET_SRC (PATTERN (i2)), 0);
5847 }
5848 return l1 == l2;
5849 }
5850
5851 /* Delete nodes that branch to the default label from a list of
5852 case nodes. Eg. case 5: default: becomes just default: */
5853
5854 static void
5855 strip_default_case_nodes (case_node_ptr *prev, rtx deflab)
5856 {
5857 case_node_ptr ptr;
5858
5859 while (*prev)
5860 {
5861 ptr = *prev;
5862 if (same_case_target_p (label_rtx (ptr->code_label), deflab))
5863 *prev = ptr->right;
5864 else
5865 prev = &ptr->right;
5866 }
5867 }
5868
5869 /* Scan an ordered list of case nodes
5870 combining those with consecutive values or ranges.
5871
5872 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
5873
5874 static void
5875 group_case_nodes (case_node_ptr head)
5876 {
5877 case_node_ptr node = head;
5878
5879 while (node)
5880 {
5881 rtx lab = label_rtx (node->code_label);
5882 case_node_ptr np = node;
5883
5884 /* Try to group the successors of NODE with NODE. */
5885 while (((np = np->right) != 0)
5886 /* Do they jump to the same place? */
5887 && same_case_target_p (label_rtx (np->code_label), lab)
5888 /* Are their ranges consecutive? */
5889 && tree_int_cst_equal (np->low,
5890 fold (build (PLUS_EXPR,
5891 TREE_TYPE (node->high),
5892 node->high,
5893 integer_one_node)))
5894 /* An overflow is not consecutive. */
5895 && tree_int_cst_lt (node->high,
5896 fold (build (PLUS_EXPR,
5897 TREE_TYPE (node->high),
5898 node->high,
5899 integer_one_node))))
5900 {
5901 node->high = np->high;
5902 }
5903 /* NP is the first node after NODE which can't be grouped with it.
5904 Delete the nodes in between, and move on to that node. */
5905 node->right = np;
5906 node = np;
5907 }
5908 }
5909
5910 /* Take an ordered list of case nodes
5911 and transform them into a near optimal binary tree,
5912 on the assumption that any target code selection value is as
5913 likely as any other.
5914
5915 The transformation is performed by splitting the ordered
5916 list into two equal sections plus a pivot. The parts are
5917 then attached to the pivot as left and right branches. Each
5918 branch is then transformed recursively. */
5919
5920 static void
5921 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
5922 {
5923 case_node_ptr np;
5924
5925 np = *head;
5926 if (np)
5927 {
5928 int cost = 0;
5929 int i = 0;
5930 int ranges = 0;
5931 case_node_ptr *npp;
5932 case_node_ptr left;
5933
5934 /* Count the number of entries on branch. Also count the ranges. */
5935
5936 while (np)
5937 {
5938 if (!tree_int_cst_equal (np->low, np->high))
5939 {
5940 ranges++;
5941 if (use_cost_table)
5942 cost += COST_TABLE (TREE_INT_CST_LOW (np->high));
5943 }
5944
5945 if (use_cost_table)
5946 cost += COST_TABLE (TREE_INT_CST_LOW (np->low));
5947
5948 i++;
5949 np = np->right;
5950 }
5951
5952 if (i > 2)
5953 {
5954 /* Split this list if it is long enough for that to help. */
5955 npp = head;
5956 left = *npp;
5957 if (use_cost_table)
5958 {
5959 /* Find the place in the list that bisects the list's total cost,
5960 Here I gets half the total cost. */
5961 int n_moved = 0;
5962 i = (cost + 1) / 2;
5963 while (1)
5964 {
5965 /* Skip nodes while their cost does not reach that amount. */
5966 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5967 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->high));
5968 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->low));
5969 if (i <= 0)
5970 break;
5971 npp = &(*npp)->right;
5972 n_moved += 1;
5973 }
5974 if (n_moved == 0)
5975 {
5976 /* Leave this branch lopsided, but optimize left-hand
5977 side and fill in `parent' fields for right-hand side. */
5978 np = *head;
5979 np->parent = parent;
5980 balance_case_nodes (&np->left, np);
5981 for (; np->right; np = np->right)
5982 np->right->parent = np;
5983 return;
5984 }
5985 }
5986 /* If there are just three nodes, split at the middle one. */
5987 else if (i == 3)
5988 npp = &(*npp)->right;
5989 else
5990 {
5991 /* Find the place in the list that bisects the list's total cost,
5992 where ranges count as 2.
5993 Here I gets half the total cost. */
5994 i = (i + ranges + 1) / 2;
5995 while (1)
5996 {
5997 /* Skip nodes while their cost does not reach that amount. */
5998 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5999 i--;
6000 i--;
6001 if (i <= 0)
6002 break;
6003 npp = &(*npp)->right;
6004 }
6005 }
6006 *head = np = *npp;
6007 *npp = 0;
6008 np->parent = parent;
6009 np->left = left;
6010
6011 /* Optimize each of the two split parts. */
6012 balance_case_nodes (&np->left, np);
6013 balance_case_nodes (&np->right, np);
6014 }
6015 else
6016 {
6017 /* Else leave this branch as one level,
6018 but fill in `parent' fields. */
6019 np = *head;
6020 np->parent = parent;
6021 for (; np->right; np = np->right)
6022 np->right->parent = np;
6023 }
6024 }
6025 }
6026 \f
6027 /* Search the parent sections of the case node tree
6028 to see if a test for the lower bound of NODE would be redundant.
6029 INDEX_TYPE is the type of the index expression.
6030
6031 The instructions to generate the case decision tree are
6032 output in the same order as nodes are processed so it is
6033 known that if a parent node checks the range of the current
6034 node minus one that the current node is bounded at its lower
6035 span. Thus the test would be redundant. */
6036
6037 static int
6038 node_has_low_bound (case_node_ptr node, tree index_type)
6039 {
6040 tree low_minus_one;
6041 case_node_ptr pnode;
6042
6043 /* If the lower bound of this node is the lowest value in the index type,
6044 we need not test it. */
6045
6046 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
6047 return 1;
6048
6049 /* If this node has a left branch, the value at the left must be less
6050 than that at this node, so it cannot be bounded at the bottom and
6051 we need not bother testing any further. */
6052
6053 if (node->left)
6054 return 0;
6055
6056 low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low),
6057 node->low, integer_one_node));
6058
6059 /* If the subtraction above overflowed, we can't verify anything.
6060 Otherwise, look for a parent that tests our value - 1. */
6061
6062 if (! tree_int_cst_lt (low_minus_one, node->low))
6063 return 0;
6064
6065 for (pnode = node->parent; pnode; pnode = pnode->parent)
6066 if (tree_int_cst_equal (low_minus_one, pnode->high))
6067 return 1;
6068
6069 return 0;
6070 }
6071
6072 /* Search the parent sections of the case node tree
6073 to see if a test for the upper bound of NODE would be redundant.
6074 INDEX_TYPE is the type of the index expression.
6075
6076 The instructions to generate the case decision tree are
6077 output in the same order as nodes are processed so it is
6078 known that if a parent node checks the range of the current
6079 node plus one that the current node is bounded at its upper
6080 span. Thus the test would be redundant. */
6081
6082 static int
6083 node_has_high_bound (case_node_ptr node, tree index_type)
6084 {
6085 tree high_plus_one;
6086 case_node_ptr pnode;
6087
6088 /* If there is no upper bound, obviously no test is needed. */
6089
6090 if (TYPE_MAX_VALUE (index_type) == NULL)
6091 return 1;
6092
6093 /* If the upper bound of this node is the highest value in the type
6094 of the index expression, we need not test against it. */
6095
6096 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
6097 return 1;
6098
6099 /* If this node has a right branch, the value at the right must be greater
6100 than that at this node, so it cannot be bounded at the top and
6101 we need not bother testing any further. */
6102
6103 if (node->right)
6104 return 0;
6105
6106 high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high),
6107 node->high, integer_one_node));
6108
6109 /* If the addition above overflowed, we can't verify anything.
6110 Otherwise, look for a parent that tests our value + 1. */
6111
6112 if (! tree_int_cst_lt (node->high, high_plus_one))
6113 return 0;
6114
6115 for (pnode = node->parent; pnode; pnode = pnode->parent)
6116 if (tree_int_cst_equal (high_plus_one, pnode->low))
6117 return 1;
6118
6119 return 0;
6120 }
6121
6122 /* Search the parent sections of the
6123 case node tree to see if both tests for the upper and lower
6124 bounds of NODE would be redundant. */
6125
6126 static int
6127 node_is_bounded (case_node_ptr node, tree index_type)
6128 {
6129 return (node_has_low_bound (node, index_type)
6130 && node_has_high_bound (node, index_type));
6131 }
6132
6133 /* Emit an unconditional jump to LABEL unless it would be dead code. */
6134
6135 static void
6136 emit_jump_if_reachable (rtx label)
6137 {
6138 if (GET_CODE (get_last_insn ()) != BARRIER)
6139 emit_jump (label);
6140 }
6141 \f
6142 /* Emit step-by-step code to select a case for the value of INDEX.
6143 The thus generated decision tree follows the form of the
6144 case-node binary tree NODE, whose nodes represent test conditions.
6145 INDEX_TYPE is the type of the index of the switch.
6146
6147 Care is taken to prune redundant tests from the decision tree
6148 by detecting any boundary conditions already checked by
6149 emitted rtx. (See node_has_high_bound, node_has_low_bound
6150 and node_is_bounded, above.)
6151
6152 Where the test conditions can be shown to be redundant we emit
6153 an unconditional jump to the target code. As a further
6154 optimization, the subordinates of a tree node are examined to
6155 check for bounded nodes. In this case conditional and/or
6156 unconditional jumps as a result of the boundary check for the
6157 current node are arranged to target the subordinates associated
6158 code for out of bound conditions on the current node.
6159
6160 We can assume that when control reaches the code generated here,
6161 the index value has already been compared with the parents
6162 of this node, and determined to be on the same side of each parent
6163 as this node is. Thus, if this node tests for the value 51,
6164 and a parent tested for 52, we don't need to consider
6165 the possibility of a value greater than 51. If another parent
6166 tests for the value 50, then this node need not test anything. */
6167
6168 static void
6169 emit_case_nodes (rtx index, case_node_ptr node, rtx default_label,
6170 tree index_type)
6171 {
6172 /* If INDEX has an unsigned type, we must make unsigned branches. */
6173 int unsignedp = TREE_UNSIGNED (index_type);
6174 enum machine_mode mode = GET_MODE (index);
6175 enum machine_mode imode = TYPE_MODE (index_type);
6176
6177 /* See if our parents have already tested everything for us.
6178 If they have, emit an unconditional jump for this node. */
6179 if (node_is_bounded (node, index_type))
6180 emit_jump (label_rtx (node->code_label));
6181
6182 else if (tree_int_cst_equal (node->low, node->high))
6183 {
6184 /* Node is single valued. First see if the index expression matches
6185 this node and then check our children, if any. */
6186
6187 do_jump_if_equal (index,
6188 convert_modes (mode, imode,
6189 expand_expr (node->low, NULL_RTX,
6190 VOIDmode, 0),
6191 unsignedp),
6192 label_rtx (node->code_label), unsignedp);
6193
6194 if (node->right != 0 && node->left != 0)
6195 {
6196 /* This node has children on both sides.
6197 Dispatch to one side or the other
6198 by comparing the index value with this node's value.
6199 If one subtree is bounded, check that one first,
6200 so we can avoid real branches in the tree. */
6201
6202 if (node_is_bounded (node->right, index_type))
6203 {
6204 emit_cmp_and_jump_insns (index,
6205 convert_modes
6206 (mode, imode,
6207 expand_expr (node->high, NULL_RTX,
6208 VOIDmode, 0),
6209 unsignedp),
6210 GT, NULL_RTX, mode, unsignedp,
6211 label_rtx (node->right->code_label));
6212 emit_case_nodes (index, node->left, default_label, index_type);
6213 }
6214
6215 else if (node_is_bounded (node->left, index_type))
6216 {
6217 emit_cmp_and_jump_insns (index,
6218 convert_modes
6219 (mode, imode,
6220 expand_expr (node->high, NULL_RTX,
6221 VOIDmode, 0),
6222 unsignedp),
6223 LT, NULL_RTX, mode, unsignedp,
6224 label_rtx (node->left->code_label));
6225 emit_case_nodes (index, node->right, default_label, index_type);
6226 }
6227
6228 else
6229 {
6230 /* Neither node is bounded. First distinguish the two sides;
6231 then emit the code for one side at a time. */
6232
6233 tree test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6234
6235 /* See if the value is on the right. */
6236 emit_cmp_and_jump_insns (index,
6237 convert_modes
6238 (mode, imode,
6239 expand_expr (node->high, NULL_RTX,
6240 VOIDmode, 0),
6241 unsignedp),
6242 GT, NULL_RTX, mode, unsignedp,
6243 label_rtx (test_label));
6244
6245 /* Value must be on the left.
6246 Handle the left-hand subtree. */
6247 emit_case_nodes (index, node->left, default_label, index_type);
6248 /* If left-hand subtree does nothing,
6249 go to default. */
6250 emit_jump_if_reachable (default_label);
6251
6252 /* Code branches here for the right-hand subtree. */
6253 expand_label (test_label);
6254 emit_case_nodes (index, node->right, default_label, index_type);
6255 }
6256 }
6257
6258 else if (node->right != 0 && node->left == 0)
6259 {
6260 /* Here we have a right child but no left so we issue conditional
6261 branch to default and process the right child.
6262
6263 Omit the conditional branch to default if we it avoid only one
6264 right child; it costs too much space to save so little time. */
6265
6266 if (node->right->right || node->right->left
6267 || !tree_int_cst_equal (node->right->low, node->right->high))
6268 {
6269 if (!node_has_low_bound (node, index_type))
6270 {
6271 emit_cmp_and_jump_insns (index,
6272 convert_modes
6273 (mode, imode,
6274 expand_expr (node->high, NULL_RTX,
6275 VOIDmode, 0),
6276 unsignedp),
6277 LT, NULL_RTX, mode, unsignedp,
6278 default_label);
6279 }
6280
6281 emit_case_nodes (index, node->right, default_label, index_type);
6282 }
6283 else
6284 /* We cannot process node->right normally
6285 since we haven't ruled out the numbers less than
6286 this node's value. So handle node->right explicitly. */
6287 do_jump_if_equal (index,
6288 convert_modes
6289 (mode, imode,
6290 expand_expr (node->right->low, NULL_RTX,
6291 VOIDmode, 0),
6292 unsignedp),
6293 label_rtx (node->right->code_label), unsignedp);
6294 }
6295
6296 else if (node->right == 0 && node->left != 0)
6297 {
6298 /* Just one subtree, on the left. */
6299 if (node->left->left || node->left->right
6300 || !tree_int_cst_equal (node->left->low, node->left->high))
6301 {
6302 if (!node_has_high_bound (node, index_type))
6303 {
6304 emit_cmp_and_jump_insns (index,
6305 convert_modes
6306 (mode, imode,
6307 expand_expr (node->high, NULL_RTX,
6308 VOIDmode, 0),
6309 unsignedp),
6310 GT, NULL_RTX, mode, unsignedp,
6311 default_label);
6312 }
6313
6314 emit_case_nodes (index, node->left, default_label, index_type);
6315 }
6316 else
6317 /* We cannot process node->left normally
6318 since we haven't ruled out the numbers less than
6319 this node's value. So handle node->left explicitly. */
6320 do_jump_if_equal (index,
6321 convert_modes
6322 (mode, imode,
6323 expand_expr (node->left->low, NULL_RTX,
6324 VOIDmode, 0),
6325 unsignedp),
6326 label_rtx (node->left->code_label), unsignedp);
6327 }
6328 }
6329 else
6330 {
6331 /* Node is a range. These cases are very similar to those for a single
6332 value, except that we do not start by testing whether this node
6333 is the one to branch to. */
6334
6335 if (node->right != 0 && node->left != 0)
6336 {
6337 /* Node has subtrees on both sides.
6338 If the right-hand subtree is bounded,
6339 test for it first, since we can go straight there.
6340 Otherwise, we need to make a branch in the control structure,
6341 then handle the two subtrees. */
6342 tree test_label = 0;
6343
6344 if (node_is_bounded (node->right, index_type))
6345 /* Right hand node is fully bounded so we can eliminate any
6346 testing and branch directly to the target code. */
6347 emit_cmp_and_jump_insns (index,
6348 convert_modes
6349 (mode, imode,
6350 expand_expr (node->high, NULL_RTX,
6351 VOIDmode, 0),
6352 unsignedp),
6353 GT, NULL_RTX, mode, unsignedp,
6354 label_rtx (node->right->code_label));
6355 else
6356 {
6357 /* Right hand node requires testing.
6358 Branch to a label where we will handle it later. */
6359
6360 test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6361 emit_cmp_and_jump_insns (index,
6362 convert_modes
6363 (mode, imode,
6364 expand_expr (node->high, NULL_RTX,
6365 VOIDmode, 0),
6366 unsignedp),
6367 GT, NULL_RTX, mode, unsignedp,
6368 label_rtx (test_label));
6369 }
6370
6371 /* Value belongs to this node or to the left-hand subtree. */
6372
6373 emit_cmp_and_jump_insns (index,
6374 convert_modes
6375 (mode, imode,
6376 expand_expr (node->low, NULL_RTX,
6377 VOIDmode, 0),
6378 unsignedp),
6379 GE, NULL_RTX, mode, unsignedp,
6380 label_rtx (node->code_label));
6381
6382 /* Handle the left-hand subtree. */
6383 emit_case_nodes (index, node->left, default_label, index_type);
6384
6385 /* If right node had to be handled later, do that now. */
6386
6387 if (test_label)
6388 {
6389 /* If the left-hand subtree fell through,
6390 don't let it fall into the right-hand subtree. */
6391 emit_jump_if_reachable (default_label);
6392
6393 expand_label (test_label);
6394 emit_case_nodes (index, node->right, default_label, index_type);
6395 }
6396 }
6397
6398 else if (node->right != 0 && node->left == 0)
6399 {
6400 /* Deal with values to the left of this node,
6401 if they are possible. */
6402 if (!node_has_low_bound (node, index_type))
6403 {
6404 emit_cmp_and_jump_insns (index,
6405 convert_modes
6406 (mode, imode,
6407 expand_expr (node->low, NULL_RTX,
6408 VOIDmode, 0),
6409 unsignedp),
6410 LT, NULL_RTX, mode, unsignedp,
6411 default_label);
6412 }
6413
6414 /* Value belongs to this node or to the right-hand subtree. */
6415
6416 emit_cmp_and_jump_insns (index,
6417 convert_modes
6418 (mode, imode,
6419 expand_expr (node->high, NULL_RTX,
6420 VOIDmode, 0),
6421 unsignedp),
6422 LE, NULL_RTX, mode, unsignedp,
6423 label_rtx (node->code_label));
6424
6425 emit_case_nodes (index, node->right, default_label, index_type);
6426 }
6427
6428 else if (node->right == 0 && node->left != 0)
6429 {
6430 /* Deal with values to the right of this node,
6431 if they are possible. */
6432 if (!node_has_high_bound (node, index_type))
6433 {
6434 emit_cmp_and_jump_insns (index,
6435 convert_modes
6436 (mode, imode,
6437 expand_expr (node->high, NULL_RTX,
6438 VOIDmode, 0),
6439 unsignedp),
6440 GT, NULL_RTX, mode, unsignedp,
6441 default_label);
6442 }
6443
6444 /* Value belongs to this node or to the left-hand subtree. */
6445
6446 emit_cmp_and_jump_insns (index,
6447 convert_modes
6448 (mode, imode,
6449 expand_expr (node->low, NULL_RTX,
6450 VOIDmode, 0),
6451 unsignedp),
6452 GE, NULL_RTX, mode, unsignedp,
6453 label_rtx (node->code_label));
6454
6455 emit_case_nodes (index, node->left, default_label, index_type);
6456 }
6457
6458 else
6459 {
6460 /* Node has no children so we check low and high bounds to remove
6461 redundant tests. Only one of the bounds can exist,
6462 since otherwise this node is bounded--a case tested already. */
6463 int high_bound = node_has_high_bound (node, index_type);
6464 int low_bound = node_has_low_bound (node, index_type);
6465
6466 if (!high_bound && low_bound)
6467 {
6468 emit_cmp_and_jump_insns (index,
6469 convert_modes
6470 (mode, imode,
6471 expand_expr (node->high, NULL_RTX,
6472 VOIDmode, 0),
6473 unsignedp),
6474 GT, NULL_RTX, mode, unsignedp,
6475 default_label);
6476 }
6477
6478 else if (!low_bound && high_bound)
6479 {
6480 emit_cmp_and_jump_insns (index,
6481 convert_modes
6482 (mode, imode,
6483 expand_expr (node->low, NULL_RTX,
6484 VOIDmode, 0),
6485 unsignedp),
6486 LT, NULL_RTX, mode, unsignedp,
6487 default_label);
6488 }
6489 else if (!low_bound && !high_bound)
6490 {
6491 /* Widen LOW and HIGH to the same width as INDEX. */
6492 tree type = (*lang_hooks.types.type_for_mode) (mode, unsignedp);
6493 tree low = build1 (CONVERT_EXPR, type, node->low);
6494 tree high = build1 (CONVERT_EXPR, type, node->high);
6495 rtx low_rtx, new_index, new_bound;
6496
6497 /* Instead of doing two branches, emit one unsigned branch for
6498 (index-low) > (high-low). */
6499 low_rtx = expand_expr (low, NULL_RTX, mode, 0);
6500 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
6501 NULL_RTX, unsignedp,
6502 OPTAB_WIDEN);
6503 new_bound = expand_expr (fold (build (MINUS_EXPR, type,
6504 high, low)),
6505 NULL_RTX, mode, 0);
6506
6507 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
6508 mode, 1, default_label);
6509 }
6510
6511 emit_jump (label_rtx (node->code_label));
6512 }
6513 }
6514 }
6515
6516 #include "gt-stmt.h"