re PR c++/18738 (typename not allowed with non-dependent qualified name)
[gcc.git] / gcc / stmt.c
1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
24 The functions whose names start with `expand_' are called by the
25 expander to generate RTL instructions for various kinds of constructs. */
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "except.h"
37 #include "function.h"
38 #include "insn-config.h"
39 #include "expr.h"
40 #include "libfuncs.h"
41 #include "hard-reg-set.h"
42 #include "recog.h"
43 #include "machmode.h"
44 #include "toplev.h"
45 #include "output.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "predict.h"
49 #include "optabs.h"
50 #include "target.h"
51 #include "regs.h"
52 \f
53 /* Functions and data structures for expanding case statements. */
54
55 /* Case label structure, used to hold info on labels within case
56 statements. We handle "range" labels; for a single-value label
57 as in C, the high and low limits are the same.
58
59 We start with a vector of case nodes sorted in ascending order, and
60 the default label as the last element in the vector. Before expanding
61 to RTL, we transform this vector into a list linked via the RIGHT
62 fields in the case_node struct. Nodes with higher case values are
63 later in the list.
64
65 Switch statements can be output in three forms. A branch table is
66 used if there are more than a few labels and the labels are dense
67 within the range between the smallest and largest case value. If a
68 branch table is used, no further manipulations are done with the case
69 node chain.
70
71 The alternative to the use of a branch table is to generate a series
72 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
73 and PARENT fields to hold a binary tree. Initially the tree is
74 totally unbalanced, with everything on the right. We balance the tree
75 with nodes on the left having lower case values than the parent
76 and nodes on the right having higher values. We then output the tree
77 in order.
78
79 For very small, suitable switch statements, we can generate a series
80 of simple bit test and branches instead. */
81
82 struct case_node GTY(())
83 {
84 struct case_node *left; /* Left son in binary tree */
85 struct case_node *right; /* Right son in binary tree; also node chain */
86 struct case_node *parent; /* Parent of node in binary tree */
87 tree low; /* Lowest index value for this label */
88 tree high; /* Highest index value for this label */
89 tree code_label; /* Label to jump to when node matches */
90 };
91
92 typedef struct case_node case_node;
93 typedef struct case_node *case_node_ptr;
94
95 /* These are used by estimate_case_costs and balance_case_nodes. */
96
97 /* This must be a signed type, and non-ANSI compilers lack signed char. */
98 static short cost_table_[129];
99 static int use_cost_table;
100 static int cost_table_initialized;
101
102 /* Special care is needed because we allow -1, but TREE_INT_CST_LOW
103 is unsigned. */
104 #define COST_TABLE(I) cost_table_[(unsigned HOST_WIDE_INT) ((I) + 1)]
105 \f
106 static int n_occurrences (int, const char *);
107 static bool decl_conflicts_with_clobbers_p (tree, const HARD_REG_SET);
108 static void expand_nl_goto_receiver (void);
109 static bool check_operand_nalternatives (tree, tree);
110 static bool check_unique_operand_names (tree, tree);
111 static char *resolve_operand_name_1 (char *, tree, tree);
112 static void expand_null_return_1 (void);
113 static void expand_value_return (rtx);
114 static void do_jump_if_equal (rtx, rtx, rtx, int);
115 static int estimate_case_costs (case_node_ptr);
116 static bool lshift_cheap_p (void);
117 static int case_bit_test_cmp (const void *, const void *);
118 static void emit_case_bit_tests (tree, tree, tree, tree, case_node_ptr, rtx);
119 static void balance_case_nodes (case_node_ptr *, case_node_ptr);
120 static int node_has_low_bound (case_node_ptr, tree);
121 static int node_has_high_bound (case_node_ptr, tree);
122 static int node_is_bounded (case_node_ptr, tree);
123 static void emit_case_nodes (rtx, case_node_ptr, rtx, tree);
124 static struct case_node *add_case_node (struct case_node *, tree,
125 tree, tree, tree);
126
127 \f
128 /* Return the rtx-label that corresponds to a LABEL_DECL,
129 creating it if necessary. */
130
131 rtx
132 label_rtx (tree label)
133 {
134 gcc_assert (TREE_CODE (label) == LABEL_DECL);
135
136 if (!DECL_RTL_SET_P (label))
137 {
138 rtx r = gen_label_rtx ();
139 SET_DECL_RTL (label, r);
140 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
141 LABEL_PRESERVE_P (r) = 1;
142 }
143
144 return DECL_RTL (label);
145 }
146
147 /* As above, but also put it on the forced-reference list of the
148 function that contains it. */
149 rtx
150 force_label_rtx (tree label)
151 {
152 rtx ref = label_rtx (label);
153 tree function = decl_function_context (label);
154 struct function *p;
155
156 gcc_assert (function);
157
158 if (function != current_function_decl)
159 p = find_function_data (function);
160 else
161 p = cfun;
162
163 p->expr->x_forced_labels = gen_rtx_EXPR_LIST (VOIDmode, ref,
164 p->expr->x_forced_labels);
165 return ref;
166 }
167
168 /* Add an unconditional jump to LABEL as the next sequential instruction. */
169
170 void
171 emit_jump (rtx label)
172 {
173 do_pending_stack_adjust ();
174 emit_jump_insn (gen_jump (label));
175 emit_barrier ();
176 }
177
178 /* Emit code to jump to the address
179 specified by the pointer expression EXP. */
180
181 void
182 expand_computed_goto (tree exp)
183 {
184 rtx x = expand_expr (exp, NULL_RTX, VOIDmode, 0);
185
186 x = convert_memory_address (Pmode, x);
187
188 do_pending_stack_adjust ();
189 emit_indirect_jump (x);
190 }
191 \f
192 /* Handle goto statements and the labels that they can go to. */
193
194 /* Specify the location in the RTL code of a label LABEL,
195 which is a LABEL_DECL tree node.
196
197 This is used for the kind of label that the user can jump to with a
198 goto statement, and for alternatives of a switch or case statement.
199 RTL labels generated for loops and conditionals don't go through here;
200 they are generated directly at the RTL level, by other functions below.
201
202 Note that this has nothing to do with defining label *names*.
203 Languages vary in how they do that and what that even means. */
204
205 void
206 expand_label (tree label)
207 {
208 rtx label_r = label_rtx (label);
209
210 do_pending_stack_adjust ();
211 emit_label (label_r);
212 if (DECL_NAME (label))
213 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
214
215 if (DECL_NONLOCAL (label))
216 {
217 expand_nl_goto_receiver ();
218 nonlocal_goto_handler_labels
219 = gen_rtx_EXPR_LIST (VOIDmode, label_r,
220 nonlocal_goto_handler_labels);
221 }
222
223 if (FORCED_LABEL (label))
224 forced_labels = gen_rtx_EXPR_LIST (VOIDmode, label_r, forced_labels);
225
226 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
227 maybe_set_first_label_num (label_r);
228 }
229
230 /* Generate RTL code for a `goto' statement with target label LABEL.
231 LABEL should be a LABEL_DECL tree node that was or will later be
232 defined with `expand_label'. */
233
234 void
235 expand_goto (tree label)
236 {
237 #ifdef ENABLE_CHECKING
238 /* Check for a nonlocal goto to a containing function. Should have
239 gotten translated to __builtin_nonlocal_goto. */
240 tree context = decl_function_context (label);
241 gcc_assert (!context || context == current_function_decl);
242 #endif
243
244 emit_jump (label_rtx (label));
245 }
246 \f
247 /* Return the number of times character C occurs in string S. */
248 static int
249 n_occurrences (int c, const char *s)
250 {
251 int n = 0;
252 while (*s)
253 n += (*s++ == c);
254 return n;
255 }
256 \f
257 /* Generate RTL for an asm statement (explicit assembler code).
258 STRING is a STRING_CST node containing the assembler code text,
259 or an ADDR_EXPR containing a STRING_CST. VOL nonzero means the
260 insn is volatile; don't optimize it. */
261
262 static void
263 expand_asm (tree string, int vol)
264 {
265 rtx body;
266
267 if (TREE_CODE (string) == ADDR_EXPR)
268 string = TREE_OPERAND (string, 0);
269
270 body = gen_rtx_ASM_INPUT (VOIDmode,
271 ggc_strdup (TREE_STRING_POINTER (string)));
272
273 MEM_VOLATILE_P (body) = vol;
274
275 emit_insn (body);
276 }
277
278 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
279 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
280 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
281 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
282 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
283 constraint allows the use of a register operand. And, *IS_INOUT
284 will be true if the operand is read-write, i.e., if it is used as
285 an input as well as an output. If *CONSTRAINT_P is not in
286 canonical form, it will be made canonical. (Note that `+' will be
287 replaced with `=' as part of this process.)
288
289 Returns TRUE if all went well; FALSE if an error occurred. */
290
291 bool
292 parse_output_constraint (const char **constraint_p, int operand_num,
293 int ninputs, int noutputs, bool *allows_mem,
294 bool *allows_reg, bool *is_inout)
295 {
296 const char *constraint = *constraint_p;
297 const char *p;
298
299 /* Assume the constraint doesn't allow the use of either a register
300 or memory. */
301 *allows_mem = false;
302 *allows_reg = false;
303
304 /* Allow the `=' or `+' to not be at the beginning of the string,
305 since it wasn't explicitly documented that way, and there is a
306 large body of code that puts it last. Swap the character to
307 the front, so as not to uglify any place else. */
308 p = strchr (constraint, '=');
309 if (!p)
310 p = strchr (constraint, '+');
311
312 /* If the string doesn't contain an `=', issue an error
313 message. */
314 if (!p)
315 {
316 error ("output operand constraint lacks %<=%>");
317 return false;
318 }
319
320 /* If the constraint begins with `+', then the operand is both read
321 from and written to. */
322 *is_inout = (*p == '+');
323
324 /* Canonicalize the output constraint so that it begins with `='. */
325 if (p != constraint || is_inout)
326 {
327 char *buf;
328 size_t c_len = strlen (constraint);
329
330 if (p != constraint)
331 warning ("output constraint %qc for operand %d "
332 "is not at the beginning",
333 *p, operand_num);
334
335 /* Make a copy of the constraint. */
336 buf = alloca (c_len + 1);
337 strcpy (buf, constraint);
338 /* Swap the first character and the `=' or `+'. */
339 buf[p - constraint] = buf[0];
340 /* Make sure the first character is an `='. (Until we do this,
341 it might be a `+'.) */
342 buf[0] = '=';
343 /* Replace the constraint with the canonicalized string. */
344 *constraint_p = ggc_alloc_string (buf, c_len);
345 constraint = *constraint_p;
346 }
347
348 /* Loop through the constraint string. */
349 for (p = constraint + 1; *p; p += CONSTRAINT_LEN (*p, p))
350 switch (*p)
351 {
352 case '+':
353 case '=':
354 error ("operand constraint contains incorrectly positioned "
355 "%<+%> or %<=%>");
356 return false;
357
358 case '%':
359 if (operand_num + 1 == ninputs + noutputs)
360 {
361 error ("%<%%%> constraint used with last operand");
362 return false;
363 }
364 break;
365
366 case 'V': case 'm': case 'o':
367 *allows_mem = true;
368 break;
369
370 case '?': case '!': case '*': case '&': case '#':
371 case 'E': case 'F': case 'G': case 'H':
372 case 's': case 'i': case 'n':
373 case 'I': case 'J': case 'K': case 'L': case 'M':
374 case 'N': case 'O': case 'P': case ',':
375 break;
376
377 case '0': case '1': case '2': case '3': case '4':
378 case '5': case '6': case '7': case '8': case '9':
379 case '[':
380 error ("matching constraint not valid in output operand");
381 return false;
382
383 case '<': case '>':
384 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
385 excepting those that expand_call created. So match memory
386 and hope. */
387 *allows_mem = true;
388 break;
389
390 case 'g': case 'X':
391 *allows_reg = true;
392 *allows_mem = true;
393 break;
394
395 case 'p': case 'r':
396 *allows_reg = true;
397 break;
398
399 default:
400 if (!ISALPHA (*p))
401 break;
402 if (REG_CLASS_FROM_CONSTRAINT (*p, p) != NO_REGS)
403 *allows_reg = true;
404 #ifdef EXTRA_CONSTRAINT_STR
405 else if (EXTRA_ADDRESS_CONSTRAINT (*p, p))
406 *allows_reg = true;
407 else if (EXTRA_MEMORY_CONSTRAINT (*p, p))
408 *allows_mem = true;
409 else
410 {
411 /* Otherwise we can't assume anything about the nature of
412 the constraint except that it isn't purely registers.
413 Treat it like "g" and hope for the best. */
414 *allows_reg = true;
415 *allows_mem = true;
416 }
417 #endif
418 break;
419 }
420
421 return true;
422 }
423
424 /* Similar, but for input constraints. */
425
426 bool
427 parse_input_constraint (const char **constraint_p, int input_num,
428 int ninputs, int noutputs, int ninout,
429 const char * const * constraints,
430 bool *allows_mem, bool *allows_reg)
431 {
432 const char *constraint = *constraint_p;
433 const char *orig_constraint = constraint;
434 size_t c_len = strlen (constraint);
435 size_t j;
436 bool saw_match = false;
437
438 /* Assume the constraint doesn't allow the use of either
439 a register or memory. */
440 *allows_mem = false;
441 *allows_reg = false;
442
443 /* Make sure constraint has neither `=', `+', nor '&'. */
444
445 for (j = 0; j < c_len; j += CONSTRAINT_LEN (constraint[j], constraint+j))
446 switch (constraint[j])
447 {
448 case '+': case '=': case '&':
449 if (constraint == orig_constraint)
450 {
451 error ("input operand constraint contains %qc", constraint[j]);
452 return false;
453 }
454 break;
455
456 case '%':
457 if (constraint == orig_constraint
458 && input_num + 1 == ninputs - ninout)
459 {
460 error ("%<%%%> constraint used with last operand");
461 return false;
462 }
463 break;
464
465 case 'V': case 'm': case 'o':
466 *allows_mem = true;
467 break;
468
469 case '<': case '>':
470 case '?': case '!': case '*': case '#':
471 case 'E': case 'F': case 'G': case 'H':
472 case 's': case 'i': case 'n':
473 case 'I': case 'J': case 'K': case 'L': case 'M':
474 case 'N': case 'O': case 'P': case ',':
475 break;
476
477 /* Whether or not a numeric constraint allows a register is
478 decided by the matching constraint, and so there is no need
479 to do anything special with them. We must handle them in
480 the default case, so that we don't unnecessarily force
481 operands to memory. */
482 case '0': case '1': case '2': case '3': case '4':
483 case '5': case '6': case '7': case '8': case '9':
484 {
485 char *end;
486 unsigned long match;
487
488 saw_match = true;
489
490 match = strtoul (constraint + j, &end, 10);
491 if (match >= (unsigned long) noutputs)
492 {
493 error ("matching constraint references invalid operand number");
494 return false;
495 }
496
497 /* Try and find the real constraint for this dup. Only do this
498 if the matching constraint is the only alternative. */
499 if (*end == '\0'
500 && (j == 0 || (j == 1 && constraint[0] == '%')))
501 {
502 constraint = constraints[match];
503 *constraint_p = constraint;
504 c_len = strlen (constraint);
505 j = 0;
506 /* ??? At the end of the loop, we will skip the first part of
507 the matched constraint. This assumes not only that the
508 other constraint is an output constraint, but also that
509 the '=' or '+' come first. */
510 break;
511 }
512 else
513 j = end - constraint;
514 /* Anticipate increment at end of loop. */
515 j--;
516 }
517 /* Fall through. */
518
519 case 'p': case 'r':
520 *allows_reg = true;
521 break;
522
523 case 'g': case 'X':
524 *allows_reg = true;
525 *allows_mem = true;
526 break;
527
528 default:
529 if (! ISALPHA (constraint[j]))
530 {
531 error ("invalid punctuation %qc in constraint", constraint[j]);
532 return false;
533 }
534 if (REG_CLASS_FROM_CONSTRAINT (constraint[j], constraint + j)
535 != NO_REGS)
536 *allows_reg = true;
537 #ifdef EXTRA_CONSTRAINT_STR
538 else if (EXTRA_ADDRESS_CONSTRAINT (constraint[j], constraint + j))
539 *allows_reg = true;
540 else if (EXTRA_MEMORY_CONSTRAINT (constraint[j], constraint + j))
541 *allows_mem = true;
542 else
543 {
544 /* Otherwise we can't assume anything about the nature of
545 the constraint except that it isn't purely registers.
546 Treat it like "g" and hope for the best. */
547 *allows_reg = true;
548 *allows_mem = true;
549 }
550 #endif
551 break;
552 }
553
554 if (saw_match && !*allows_reg)
555 warning ("matching constraint does not allow a register");
556
557 return true;
558 }
559
560 /* Check for overlap between registers marked in CLOBBERED_REGS and
561 anything inappropriate in DECL. Emit error and return TRUE for error,
562 FALSE for ok. */
563
564 static bool
565 decl_conflicts_with_clobbers_p (tree decl, const HARD_REG_SET clobbered_regs)
566 {
567 /* Conflicts between asm-declared register variables and the clobber
568 list are not allowed. */
569 if ((TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL)
570 && DECL_REGISTER (decl)
571 && REG_P (DECL_RTL (decl))
572 && REGNO (DECL_RTL (decl)) < FIRST_PSEUDO_REGISTER)
573 {
574 rtx reg = DECL_RTL (decl);
575 unsigned int regno;
576
577 for (regno = REGNO (reg);
578 regno < (REGNO (reg)
579 + hard_regno_nregs[REGNO (reg)][GET_MODE (reg)]);
580 regno++)
581 if (TEST_HARD_REG_BIT (clobbered_regs, regno))
582 {
583 error ("asm-specifier for variable %qs conflicts with "
584 "asm clobber list",
585 IDENTIFIER_POINTER (DECL_NAME (decl)));
586
587 /* Reset registerness to stop multiple errors emitted for a
588 single variable. */
589 DECL_REGISTER (decl) = 0;
590 return true;
591 }
592 }
593 return false;
594 }
595
596 /* Generate RTL for an asm statement with arguments.
597 STRING is the instruction template.
598 OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
599 Each output or input has an expression in the TREE_VALUE and
600 and a tree list in TREE_PURPOSE which in turn contains a constraint
601 name in TREE_VALUE (or NULL_TREE) and a constraint string
602 in TREE_PURPOSE.
603 CLOBBERS is a list of STRING_CST nodes each naming a hard register
604 that is clobbered by this insn.
605
606 Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
607 Some elements of OUTPUTS may be replaced with trees representing temporary
608 values. The caller should copy those temporary values to the originally
609 specified lvalues.
610
611 VOL nonzero means the insn is volatile; don't optimize it. */
612
613 static void
614 expand_asm_operands (tree string, tree outputs, tree inputs,
615 tree clobbers, int vol, location_t locus)
616 {
617 rtvec argvec, constraintvec;
618 rtx body;
619 int ninputs = list_length (inputs);
620 int noutputs = list_length (outputs);
621 int ninout;
622 int nclobbers;
623 HARD_REG_SET clobbered_regs;
624 int clobber_conflict_found = 0;
625 tree tail;
626 tree t;
627 int i;
628 /* Vector of RTX's of evaluated output operands. */
629 rtx *output_rtx = alloca (noutputs * sizeof (rtx));
630 int *inout_opnum = alloca (noutputs * sizeof (int));
631 rtx *real_output_rtx = alloca (noutputs * sizeof (rtx));
632 enum machine_mode *inout_mode
633 = alloca (noutputs * sizeof (enum machine_mode));
634 const char **constraints
635 = alloca ((noutputs + ninputs) * sizeof (const char *));
636 int old_generating_concat_p = generating_concat_p;
637
638 /* An ASM with no outputs needs to be treated as volatile, for now. */
639 if (noutputs == 0)
640 vol = 1;
641
642 if (! check_operand_nalternatives (outputs, inputs))
643 return;
644
645 string = resolve_asm_operand_names (string, outputs, inputs);
646
647 /* Collect constraints. */
648 i = 0;
649 for (t = outputs; t ; t = TREE_CHAIN (t), i++)
650 constraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
651 for (t = inputs; t ; t = TREE_CHAIN (t), i++)
652 constraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
653
654 /* Sometimes we wish to automatically clobber registers across an asm.
655 Case in point is when the i386 backend moved from cc0 to a hard reg --
656 maintaining source-level compatibility means automatically clobbering
657 the flags register. */
658 clobbers = targetm.md_asm_clobbers (clobbers);
659
660 /* Count the number of meaningful clobbered registers, ignoring what
661 we would ignore later. */
662 nclobbers = 0;
663 CLEAR_HARD_REG_SET (clobbered_regs);
664 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
665 {
666 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
667
668 i = decode_reg_name (regname);
669 if (i >= 0 || i == -4)
670 ++nclobbers;
671 else if (i == -2)
672 error ("unknown register name %qs in %<asm%>", regname);
673
674 /* Mark clobbered registers. */
675 if (i >= 0)
676 {
677 /* Clobbering the PIC register is an error. */
678 if (i == (int) PIC_OFFSET_TABLE_REGNUM)
679 {
680 error ("PIC register %qs clobbered in %<asm%>", regname);
681 return;
682 }
683
684 SET_HARD_REG_BIT (clobbered_regs, i);
685 }
686 }
687
688 /* First pass over inputs and outputs checks validity and sets
689 mark_addressable if needed. */
690
691 ninout = 0;
692 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
693 {
694 tree val = TREE_VALUE (tail);
695 tree type = TREE_TYPE (val);
696 const char *constraint;
697 bool is_inout;
698 bool allows_reg;
699 bool allows_mem;
700
701 /* If there's an erroneous arg, emit no insn. */
702 if (type == error_mark_node)
703 return;
704
705 /* Try to parse the output constraint. If that fails, there's
706 no point in going further. */
707 constraint = constraints[i];
708 if (!parse_output_constraint (&constraint, i, ninputs, noutputs,
709 &allows_mem, &allows_reg, &is_inout))
710 return;
711
712 if (! allows_reg
713 && (allows_mem
714 || is_inout
715 || (DECL_P (val)
716 && REG_P (DECL_RTL (val))
717 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type))))
718 lang_hooks.mark_addressable (val);
719
720 if (is_inout)
721 ninout++;
722 }
723
724 ninputs += ninout;
725 if (ninputs + noutputs > MAX_RECOG_OPERANDS)
726 {
727 error ("more than %d operands in %<asm%>", MAX_RECOG_OPERANDS);
728 return;
729 }
730
731 for (i = 0, tail = inputs; tail; i++, tail = TREE_CHAIN (tail))
732 {
733 bool allows_reg, allows_mem;
734 const char *constraint;
735
736 /* If there's an erroneous arg, emit no insn, because the ASM_INPUT
737 would get VOIDmode and that could cause a crash in reload. */
738 if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
739 return;
740
741 constraint = constraints[i + noutputs];
742 if (! parse_input_constraint (&constraint, i, ninputs, noutputs, ninout,
743 constraints, &allows_mem, &allows_reg))
744 return;
745
746 if (! allows_reg && allows_mem)
747 lang_hooks.mark_addressable (TREE_VALUE (tail));
748 }
749
750 /* Second pass evaluates arguments. */
751
752 ninout = 0;
753 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
754 {
755 tree val = TREE_VALUE (tail);
756 tree type = TREE_TYPE (val);
757 bool is_inout;
758 bool allows_reg;
759 bool allows_mem;
760 rtx op;
761 bool ok;
762
763 ok = parse_output_constraint (&constraints[i], i, ninputs,
764 noutputs, &allows_mem, &allows_reg,
765 &is_inout);
766 gcc_assert (ok);
767
768 /* If an output operand is not a decl or indirect ref and our constraint
769 allows a register, make a temporary to act as an intermediate.
770 Make the asm insn write into that, then our caller will copy it to
771 the real output operand. Likewise for promoted variables. */
772
773 generating_concat_p = 0;
774
775 real_output_rtx[i] = NULL_RTX;
776 if ((TREE_CODE (val) == INDIRECT_REF
777 && allows_mem)
778 || (DECL_P (val)
779 && (allows_mem || REG_P (DECL_RTL (val)))
780 && ! (REG_P (DECL_RTL (val))
781 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type)))
782 || ! allows_reg
783 || is_inout)
784 {
785 op = expand_expr (val, NULL_RTX, VOIDmode, EXPAND_WRITE);
786 if (MEM_P (op))
787 op = validize_mem (op);
788
789 if (! allows_reg && !MEM_P (op))
790 error ("output number %d not directly addressable", i);
791 if ((! allows_mem && MEM_P (op))
792 || GET_CODE (op) == CONCAT)
793 {
794 real_output_rtx[i] = op;
795 op = gen_reg_rtx (GET_MODE (op));
796 if (is_inout)
797 emit_move_insn (op, real_output_rtx[i]);
798 }
799 }
800 else
801 {
802 op = assign_temp (type, 0, 0, 1);
803 op = validize_mem (op);
804 TREE_VALUE (tail) = make_tree (type, op);
805 }
806 output_rtx[i] = op;
807
808 generating_concat_p = old_generating_concat_p;
809
810 if (is_inout)
811 {
812 inout_mode[ninout] = TYPE_MODE (type);
813 inout_opnum[ninout++] = i;
814 }
815
816 if (decl_conflicts_with_clobbers_p (val, clobbered_regs))
817 clobber_conflict_found = 1;
818 }
819
820 /* Make vectors for the expression-rtx, constraint strings,
821 and named operands. */
822
823 argvec = rtvec_alloc (ninputs);
824 constraintvec = rtvec_alloc (ninputs);
825
826 body = gen_rtx_ASM_OPERANDS ((noutputs == 0 ? VOIDmode
827 : GET_MODE (output_rtx[0])),
828 ggc_strdup (TREE_STRING_POINTER (string)),
829 empty_string, 0, argvec, constraintvec,
830 locus);
831
832 MEM_VOLATILE_P (body) = vol;
833
834 /* Eval the inputs and put them into ARGVEC.
835 Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
836
837 for (i = 0, tail = inputs; tail; tail = TREE_CHAIN (tail), ++i)
838 {
839 bool allows_reg, allows_mem;
840 const char *constraint;
841 tree val, type;
842 rtx op;
843 bool ok;
844
845 constraint = constraints[i + noutputs];
846 ok = parse_input_constraint (&constraint, i, ninputs, noutputs, ninout,
847 constraints, &allows_mem, &allows_reg);
848 gcc_assert (ok);
849
850 generating_concat_p = 0;
851
852 val = TREE_VALUE (tail);
853 type = TREE_TYPE (val);
854 op = expand_expr (val, NULL_RTX, VOIDmode,
855 (allows_mem && !allows_reg
856 ? EXPAND_MEMORY : EXPAND_NORMAL));
857
858 /* Never pass a CONCAT to an ASM. */
859 if (GET_CODE (op) == CONCAT)
860 op = force_reg (GET_MODE (op), op);
861 else if (MEM_P (op))
862 op = validize_mem (op);
863
864 if (asm_operand_ok (op, constraint) <= 0)
865 {
866 if (allows_reg)
867 op = force_reg (TYPE_MODE (type), op);
868 else if (!allows_mem)
869 warning ("asm operand %d probably doesn%'t match constraints",
870 i + noutputs);
871 else if (MEM_P (op))
872 {
873 /* We won't recognize either volatile memory or memory
874 with a queued address as available a memory_operand
875 at this point. Ignore it: clearly this *is* a memory. */
876 }
877 else
878 {
879 warning ("use of memory input without lvalue in "
880 "asm operand %d is deprecated", i + noutputs);
881
882 if (CONSTANT_P (op))
883 {
884 rtx mem = force_const_mem (TYPE_MODE (type), op);
885 if (mem)
886 op = validize_mem (mem);
887 else
888 op = force_reg (TYPE_MODE (type), op);
889 }
890 if (REG_P (op)
891 || GET_CODE (op) == SUBREG
892 || GET_CODE (op) == CONCAT)
893 {
894 tree qual_type = build_qualified_type (type,
895 (TYPE_QUALS (type)
896 | TYPE_QUAL_CONST));
897 rtx memloc = assign_temp (qual_type, 1, 1, 1);
898 memloc = validize_mem (memloc);
899 emit_move_insn (memloc, op);
900 op = memloc;
901 }
902 }
903 }
904
905 generating_concat_p = old_generating_concat_p;
906 ASM_OPERANDS_INPUT (body, i) = op;
907
908 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, i)
909 = gen_rtx_ASM_INPUT (TYPE_MODE (type),
910 ggc_strdup (constraints[i + noutputs]));
911
912 if (decl_conflicts_with_clobbers_p (val, clobbered_regs))
913 clobber_conflict_found = 1;
914 }
915
916 /* Protect all the operands from the queue now that they have all been
917 evaluated. */
918
919 generating_concat_p = 0;
920
921 /* For in-out operands, copy output rtx to input rtx. */
922 for (i = 0; i < ninout; i++)
923 {
924 int j = inout_opnum[i];
925 char buffer[16];
926
927 ASM_OPERANDS_INPUT (body, ninputs - ninout + i)
928 = output_rtx[j];
929
930 sprintf (buffer, "%d", j);
931 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, ninputs - ninout + i)
932 = gen_rtx_ASM_INPUT (inout_mode[i], ggc_strdup (buffer));
933 }
934
935 generating_concat_p = old_generating_concat_p;
936
937 /* Now, for each output, construct an rtx
938 (set OUTPUT (asm_operands INSN OUTPUTCONSTRAINT OUTPUTNUMBER
939 ARGVEC CONSTRAINTS OPNAMES))
940 If there is more than one, put them inside a PARALLEL. */
941
942 if (noutputs == 1 && nclobbers == 0)
943 {
944 ASM_OPERANDS_OUTPUT_CONSTRAINT (body) = ggc_strdup (constraints[0]);
945 emit_insn (gen_rtx_SET (VOIDmode, output_rtx[0], body));
946 }
947
948 else if (noutputs == 0 && nclobbers == 0)
949 {
950 /* No output operands: put in a raw ASM_OPERANDS rtx. */
951 emit_insn (body);
952 }
953
954 else
955 {
956 rtx obody = body;
957 int num = noutputs;
958
959 if (num == 0)
960 num = 1;
961
962 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num + nclobbers));
963
964 /* For each output operand, store a SET. */
965 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
966 {
967 XVECEXP (body, 0, i)
968 = gen_rtx_SET (VOIDmode,
969 output_rtx[i],
970 gen_rtx_ASM_OPERANDS
971 (GET_MODE (output_rtx[i]),
972 ggc_strdup (TREE_STRING_POINTER (string)),
973 ggc_strdup (constraints[i]),
974 i, argvec, constraintvec, locus));
975
976 MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
977 }
978
979 /* If there are no outputs (but there are some clobbers)
980 store the bare ASM_OPERANDS into the PARALLEL. */
981
982 if (i == 0)
983 XVECEXP (body, 0, i++) = obody;
984
985 /* Store (clobber REG) for each clobbered register specified. */
986
987 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
988 {
989 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
990 int j = decode_reg_name (regname);
991 rtx clobbered_reg;
992
993 if (j < 0)
994 {
995 if (j == -3) /* `cc', which is not a register */
996 continue;
997
998 if (j == -4) /* `memory', don't cache memory across asm */
999 {
1000 XVECEXP (body, 0, i++)
1001 = gen_rtx_CLOBBER (VOIDmode,
1002 gen_rtx_MEM
1003 (BLKmode,
1004 gen_rtx_SCRATCH (VOIDmode)));
1005 continue;
1006 }
1007
1008 /* Ignore unknown register, error already signaled. */
1009 continue;
1010 }
1011
1012 /* Use QImode since that's guaranteed to clobber just one reg. */
1013 clobbered_reg = gen_rtx_REG (QImode, j);
1014
1015 /* Do sanity check for overlap between clobbers and respectively
1016 input and outputs that hasn't been handled. Such overlap
1017 should have been detected and reported above. */
1018 if (!clobber_conflict_found)
1019 {
1020 int opno;
1021
1022 /* We test the old body (obody) contents to avoid tripping
1023 over the under-construction body. */
1024 for (opno = 0; opno < noutputs; opno++)
1025 if (reg_overlap_mentioned_p (clobbered_reg, output_rtx[opno]))
1026 internal_error ("asm clobber conflict with output operand");
1027
1028 for (opno = 0; opno < ninputs - ninout; opno++)
1029 if (reg_overlap_mentioned_p (clobbered_reg,
1030 ASM_OPERANDS_INPUT (obody, opno)))
1031 internal_error ("asm clobber conflict with input operand");
1032 }
1033
1034 XVECEXP (body, 0, i++)
1035 = gen_rtx_CLOBBER (VOIDmode, clobbered_reg);
1036 }
1037
1038 emit_insn (body);
1039 }
1040
1041 /* For any outputs that needed reloading into registers, spill them
1042 back to where they belong. */
1043 for (i = 0; i < noutputs; ++i)
1044 if (real_output_rtx[i])
1045 emit_move_insn (real_output_rtx[i], output_rtx[i]);
1046
1047 free_temp_slots ();
1048 }
1049
1050 void
1051 expand_asm_expr (tree exp)
1052 {
1053 int noutputs, i;
1054 tree outputs, tail;
1055 tree *o;
1056
1057 if (ASM_INPUT_P (exp))
1058 {
1059 expand_asm (ASM_STRING (exp), ASM_VOLATILE_P (exp));
1060 return;
1061 }
1062
1063 outputs = ASM_OUTPUTS (exp);
1064 noutputs = list_length (outputs);
1065 /* o[I] is the place that output number I should be written. */
1066 o = (tree *) alloca (noutputs * sizeof (tree));
1067
1068 /* Record the contents of OUTPUTS before it is modified. */
1069 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1070 o[i] = TREE_VALUE (tail);
1071
1072 /* Generate the ASM_OPERANDS insn; store into the TREE_VALUEs of
1073 OUTPUTS some trees for where the values were actually stored. */
1074 expand_asm_operands (ASM_STRING (exp), outputs, ASM_INPUTS (exp),
1075 ASM_CLOBBERS (exp), ASM_VOLATILE_P (exp),
1076 input_location);
1077
1078 /* Copy all the intermediate outputs into the specified outputs. */
1079 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1080 {
1081 if (o[i] != TREE_VALUE (tail))
1082 {
1083 expand_assignment (o[i], TREE_VALUE (tail));
1084 free_temp_slots ();
1085
1086 /* Restore the original value so that it's correct the next
1087 time we expand this function. */
1088 TREE_VALUE (tail) = o[i];
1089 }
1090 }
1091 }
1092
1093 /* A subroutine of expand_asm_operands. Check that all operands have
1094 the same number of alternatives. Return true if so. */
1095
1096 static bool
1097 check_operand_nalternatives (tree outputs, tree inputs)
1098 {
1099 if (outputs || inputs)
1100 {
1101 tree tmp = TREE_PURPOSE (outputs ? outputs : inputs);
1102 int nalternatives
1103 = n_occurrences (',', TREE_STRING_POINTER (TREE_VALUE (tmp)));
1104 tree next = inputs;
1105
1106 if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES)
1107 {
1108 error ("too many alternatives in %<asm%>");
1109 return false;
1110 }
1111
1112 tmp = outputs;
1113 while (tmp)
1114 {
1115 const char *constraint
1116 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tmp)));
1117
1118 if (n_occurrences (',', constraint) != nalternatives)
1119 {
1120 error ("operand constraints for %<asm%> differ "
1121 "in number of alternatives");
1122 return false;
1123 }
1124
1125 if (TREE_CHAIN (tmp))
1126 tmp = TREE_CHAIN (tmp);
1127 else
1128 tmp = next, next = 0;
1129 }
1130 }
1131
1132 return true;
1133 }
1134
1135 /* A subroutine of expand_asm_operands. Check that all operand names
1136 are unique. Return true if so. We rely on the fact that these names
1137 are identifiers, and so have been canonicalized by get_identifier,
1138 so all we need are pointer comparisons. */
1139
1140 static bool
1141 check_unique_operand_names (tree outputs, tree inputs)
1142 {
1143 tree i, j;
1144
1145 for (i = outputs; i ; i = TREE_CHAIN (i))
1146 {
1147 tree i_name = TREE_PURPOSE (TREE_PURPOSE (i));
1148 if (! i_name)
1149 continue;
1150
1151 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
1152 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1153 goto failure;
1154 }
1155
1156 for (i = inputs; i ; i = TREE_CHAIN (i))
1157 {
1158 tree i_name = TREE_PURPOSE (TREE_PURPOSE (i));
1159 if (! i_name)
1160 continue;
1161
1162 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
1163 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1164 goto failure;
1165 for (j = outputs; j ; j = TREE_CHAIN (j))
1166 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1167 goto failure;
1168 }
1169
1170 return true;
1171
1172 failure:
1173 error ("duplicate asm operand name %qs",
1174 TREE_STRING_POINTER (TREE_PURPOSE (TREE_PURPOSE (i))));
1175 return false;
1176 }
1177
1178 /* A subroutine of expand_asm_operands. Resolve the names of the operands
1179 in *POUTPUTS and *PINPUTS to numbers, and replace the name expansions in
1180 STRING and in the constraints to those numbers. */
1181
1182 tree
1183 resolve_asm_operand_names (tree string, tree outputs, tree inputs)
1184 {
1185 char *buffer;
1186 char *p;
1187 const char *c;
1188 tree t;
1189
1190 check_unique_operand_names (outputs, inputs);
1191
1192 /* Substitute [<name>] in input constraint strings. There should be no
1193 named operands in output constraints. */
1194 for (t = inputs; t ; t = TREE_CHAIN (t))
1195 {
1196 c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1197 if (strchr (c, '[') != NULL)
1198 {
1199 p = buffer = xstrdup (c);
1200 while ((p = strchr (p, '[')) != NULL)
1201 p = resolve_operand_name_1 (p, outputs, inputs);
1202 TREE_VALUE (TREE_PURPOSE (t))
1203 = build_string (strlen (buffer), buffer);
1204 free (buffer);
1205 }
1206 }
1207
1208 /* Now check for any needed substitutions in the template. */
1209 c = TREE_STRING_POINTER (string);
1210 while ((c = strchr (c, '%')) != NULL)
1211 {
1212 if (c[1] == '[')
1213 break;
1214 else if (ISALPHA (c[1]) && c[2] == '[')
1215 break;
1216 else
1217 {
1218 c += 1;
1219 continue;
1220 }
1221 }
1222
1223 if (c)
1224 {
1225 /* OK, we need to make a copy so we can perform the substitutions.
1226 Assume that we will not need extra space--we get to remove '['
1227 and ']', which means we cannot have a problem until we have more
1228 than 999 operands. */
1229 buffer = xstrdup (TREE_STRING_POINTER (string));
1230 p = buffer + (c - TREE_STRING_POINTER (string));
1231
1232 while ((p = strchr (p, '%')) != NULL)
1233 {
1234 if (p[1] == '[')
1235 p += 1;
1236 else if (ISALPHA (p[1]) && p[2] == '[')
1237 p += 2;
1238 else
1239 {
1240 p += 1;
1241 continue;
1242 }
1243
1244 p = resolve_operand_name_1 (p, outputs, inputs);
1245 }
1246
1247 string = build_string (strlen (buffer), buffer);
1248 free (buffer);
1249 }
1250
1251 return string;
1252 }
1253
1254 /* A subroutine of resolve_operand_names. P points to the '[' for a
1255 potential named operand of the form [<name>]. In place, replace
1256 the name and brackets with a number. Return a pointer to the
1257 balance of the string after substitution. */
1258
1259 static char *
1260 resolve_operand_name_1 (char *p, tree outputs, tree inputs)
1261 {
1262 char *q;
1263 int op;
1264 tree t;
1265 size_t len;
1266
1267 /* Collect the operand name. */
1268 q = strchr (p, ']');
1269 if (!q)
1270 {
1271 error ("missing close brace for named operand");
1272 return strchr (p, '\0');
1273 }
1274 len = q - p - 1;
1275
1276 /* Resolve the name to a number. */
1277 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
1278 {
1279 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
1280 if (name)
1281 {
1282 const char *c = TREE_STRING_POINTER (name);
1283 if (strncmp (c, p + 1, len) == 0 && c[len] == '\0')
1284 goto found;
1285 }
1286 }
1287 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
1288 {
1289 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
1290 if (name)
1291 {
1292 const char *c = TREE_STRING_POINTER (name);
1293 if (strncmp (c, p + 1, len) == 0 && c[len] == '\0')
1294 goto found;
1295 }
1296 }
1297
1298 *q = '\0';
1299 error ("undefined named operand %qs", p + 1);
1300 op = 0;
1301 found:
1302
1303 /* Replace the name with the number. Unfortunately, not all libraries
1304 get the return value of sprintf correct, so search for the end of the
1305 generated string by hand. */
1306 sprintf (p, "%d", op);
1307 p = strchr (p, '\0');
1308
1309 /* Verify the no extra buffer space assumption. */
1310 gcc_assert (p <= q);
1311
1312 /* Shift the rest of the buffer down to fill the gap. */
1313 memmove (p, q + 1, strlen (q + 1) + 1);
1314
1315 return p;
1316 }
1317 \f
1318 /* Generate RTL to evaluate the expression EXP. */
1319
1320 void
1321 expand_expr_stmt (tree exp)
1322 {
1323 rtx value;
1324 tree type;
1325
1326 value = expand_expr (exp, const0_rtx, VOIDmode, 0);
1327 type = TREE_TYPE (exp);
1328
1329 /* If all we do is reference a volatile value in memory,
1330 copy it to a register to be sure it is actually touched. */
1331 if (value && MEM_P (value) && TREE_THIS_VOLATILE (exp))
1332 {
1333 if (TYPE_MODE (type) == VOIDmode)
1334 ;
1335 else if (TYPE_MODE (type) != BLKmode)
1336 value = copy_to_reg (value);
1337 else
1338 {
1339 rtx lab = gen_label_rtx ();
1340
1341 /* Compare the value with itself to reference it. */
1342 emit_cmp_and_jump_insns (value, value, EQ,
1343 expand_expr (TYPE_SIZE (type),
1344 NULL_RTX, VOIDmode, 0),
1345 BLKmode, 0, lab);
1346 emit_label (lab);
1347 }
1348 }
1349
1350 /* Free any temporaries used to evaluate this expression. */
1351 free_temp_slots ();
1352 }
1353
1354 /* Warn if EXP contains any computations whose results are not used.
1355 Return 1 if a warning is printed; 0 otherwise. LOCUS is the
1356 (potential) location of the expression. */
1357
1358 int
1359 warn_if_unused_value (tree exp, location_t locus)
1360 {
1361 restart:
1362 if (TREE_USED (exp))
1363 return 0;
1364
1365 /* Don't warn about void constructs. This includes casting to void,
1366 void function calls, and statement expressions with a final cast
1367 to void. */
1368 if (VOID_TYPE_P (TREE_TYPE (exp)))
1369 return 0;
1370
1371 if (EXPR_HAS_LOCATION (exp))
1372 locus = EXPR_LOCATION (exp);
1373
1374 switch (TREE_CODE (exp))
1375 {
1376 case PREINCREMENT_EXPR:
1377 case POSTINCREMENT_EXPR:
1378 case PREDECREMENT_EXPR:
1379 case POSTDECREMENT_EXPR:
1380 case MODIFY_EXPR:
1381 case INIT_EXPR:
1382 case TARGET_EXPR:
1383 case CALL_EXPR:
1384 case TRY_CATCH_EXPR:
1385 case WITH_CLEANUP_EXPR:
1386 case EXIT_EXPR:
1387 return 0;
1388
1389 case BIND_EXPR:
1390 /* For a binding, warn if no side effect within it. */
1391 exp = BIND_EXPR_BODY (exp);
1392 goto restart;
1393
1394 case SAVE_EXPR:
1395 exp = TREE_OPERAND (exp, 0);
1396 goto restart;
1397
1398 case TRUTH_ORIF_EXPR:
1399 case TRUTH_ANDIF_EXPR:
1400 /* In && or ||, warn if 2nd operand has no side effect. */
1401 exp = TREE_OPERAND (exp, 1);
1402 goto restart;
1403
1404 case COMPOUND_EXPR:
1405 if (TREE_NO_WARNING (exp))
1406 return 0;
1407 if (warn_if_unused_value (TREE_OPERAND (exp, 0), locus))
1408 return 1;
1409 /* Let people do `(foo (), 0)' without a warning. */
1410 if (TREE_CONSTANT (TREE_OPERAND (exp, 1)))
1411 return 0;
1412 exp = TREE_OPERAND (exp, 1);
1413 goto restart;
1414
1415 case NOP_EXPR:
1416 case CONVERT_EXPR:
1417 case NON_LVALUE_EXPR:
1418 /* Don't warn about conversions not explicit in the user's program. */
1419 if (TREE_NO_WARNING (exp))
1420 return 0;
1421 /* Assignment to a cast usually results in a cast of a modify.
1422 Don't complain about that. There can be an arbitrary number of
1423 casts before the modify, so we must loop until we find the first
1424 non-cast expression and then test to see if that is a modify. */
1425 {
1426 tree tem = TREE_OPERAND (exp, 0);
1427
1428 while (TREE_CODE (tem) == CONVERT_EXPR || TREE_CODE (tem) == NOP_EXPR)
1429 tem = TREE_OPERAND (tem, 0);
1430
1431 if (TREE_CODE (tem) == MODIFY_EXPR || TREE_CODE (tem) == INIT_EXPR
1432 || TREE_CODE (tem) == CALL_EXPR)
1433 return 0;
1434 }
1435 goto maybe_warn;
1436
1437 case INDIRECT_REF:
1438 /* Don't warn about automatic dereferencing of references, since
1439 the user cannot control it. */
1440 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == REFERENCE_TYPE)
1441 {
1442 exp = TREE_OPERAND (exp, 0);
1443 goto restart;
1444 }
1445 /* Fall through. */
1446
1447 default:
1448 /* Referencing a volatile value is a side effect, so don't warn. */
1449 if ((DECL_P (exp) || REFERENCE_CLASS_P (exp))
1450 && TREE_THIS_VOLATILE (exp))
1451 return 0;
1452
1453 /* If this is an expression which has no operands, there is no value
1454 to be unused. There are no such language-independent codes,
1455 but front ends may define such. */
1456 if (EXPRESSION_CLASS_P (exp) && TREE_CODE_LENGTH (TREE_CODE (exp)) == 0)
1457 return 0;
1458
1459 maybe_warn:
1460 /* If this is an expression with side effects, don't warn. */
1461 if (TREE_SIDE_EFFECTS (exp))
1462 return 0;
1463
1464 warning ("%Hvalue computed is not used", &locus);
1465 return 1;
1466 }
1467 }
1468
1469 \f
1470 /* Generate RTL to return from the current function, with no value.
1471 (That is, we do not do anything about returning any value.) */
1472
1473 void
1474 expand_null_return (void)
1475 {
1476 /* If this function was declared to return a value, but we
1477 didn't, clobber the return registers so that they are not
1478 propagated live to the rest of the function. */
1479 clobber_return_register ();
1480
1481 expand_null_return_1 ();
1482 }
1483
1484 /* Generate RTL to return directly from the current function.
1485 (That is, we bypass any return value.) */
1486
1487 void
1488 expand_naked_return (void)
1489 {
1490 rtx end_label;
1491
1492 clear_pending_stack_adjust ();
1493 do_pending_stack_adjust ();
1494
1495 end_label = naked_return_label;
1496 if (end_label == 0)
1497 end_label = naked_return_label = gen_label_rtx ();
1498
1499 emit_jump (end_label);
1500 }
1501
1502 /* Generate RTL to return from the current function, with value VAL. */
1503
1504 static void
1505 expand_value_return (rtx val)
1506 {
1507 /* Copy the value to the return location
1508 unless it's already there. */
1509
1510 rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl));
1511 if (return_reg != val)
1512 {
1513 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
1514 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
1515 {
1516 int unsignedp = TYPE_UNSIGNED (type);
1517 enum machine_mode old_mode
1518 = DECL_MODE (DECL_RESULT (current_function_decl));
1519 enum machine_mode mode
1520 = promote_mode (type, old_mode, &unsignedp, 1);
1521
1522 if (mode != old_mode)
1523 val = convert_modes (mode, old_mode, val, unsignedp);
1524 }
1525 if (GET_CODE (return_reg) == PARALLEL)
1526 emit_group_load (return_reg, val, type, int_size_in_bytes (type));
1527 else
1528 emit_move_insn (return_reg, val);
1529 }
1530
1531 expand_null_return_1 ();
1532 }
1533
1534 /* Output a return with no value. */
1535
1536 static void
1537 expand_null_return_1 (void)
1538 {
1539 clear_pending_stack_adjust ();
1540 do_pending_stack_adjust ();
1541 emit_jump (return_label);
1542 }
1543 \f
1544 /* Generate RTL to evaluate the expression RETVAL and return it
1545 from the current function. */
1546
1547 void
1548 expand_return (tree retval)
1549 {
1550 rtx result_rtl;
1551 rtx val = 0;
1552 tree retval_rhs;
1553
1554 /* If function wants no value, give it none. */
1555 if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
1556 {
1557 expand_expr (retval, NULL_RTX, VOIDmode, 0);
1558 expand_null_return ();
1559 return;
1560 }
1561
1562 if (retval == error_mark_node)
1563 {
1564 /* Treat this like a return of no value from a function that
1565 returns a value. */
1566 expand_null_return ();
1567 return;
1568 }
1569 else if ((TREE_CODE (retval) == MODIFY_EXPR
1570 || TREE_CODE (retval) == INIT_EXPR)
1571 && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
1572 retval_rhs = TREE_OPERAND (retval, 1);
1573 else
1574 retval_rhs = retval;
1575
1576 result_rtl = DECL_RTL (DECL_RESULT (current_function_decl));
1577
1578 /* If we are returning the RESULT_DECL, then the value has already
1579 been stored into it, so we don't have to do anything special. */
1580 if (TREE_CODE (retval_rhs) == RESULT_DECL)
1581 expand_value_return (result_rtl);
1582
1583 /* If the result is an aggregate that is being returned in one (or more)
1584 registers, load the registers here. The compiler currently can't handle
1585 copying a BLKmode value into registers. We could put this code in a
1586 more general area (for use by everyone instead of just function
1587 call/return), but until this feature is generally usable it is kept here
1588 (and in expand_call). */
1589
1590 else if (retval_rhs != 0
1591 && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode
1592 && REG_P (result_rtl))
1593 {
1594 int i;
1595 unsigned HOST_WIDE_INT bitpos, xbitpos;
1596 unsigned HOST_WIDE_INT padding_correction = 0;
1597 unsigned HOST_WIDE_INT bytes
1598 = int_size_in_bytes (TREE_TYPE (retval_rhs));
1599 int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1600 unsigned int bitsize
1601 = MIN (TYPE_ALIGN (TREE_TYPE (retval_rhs)), BITS_PER_WORD);
1602 rtx *result_pseudos = alloca (sizeof (rtx) * n_regs);
1603 rtx result_reg, src = NULL_RTX, dst = NULL_RTX;
1604 rtx result_val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0);
1605 enum machine_mode tmpmode, result_reg_mode;
1606
1607 if (bytes == 0)
1608 {
1609 expand_null_return ();
1610 return;
1611 }
1612
1613 /* If the structure doesn't take up a whole number of words, see
1614 whether the register value should be padded on the left or on
1615 the right. Set PADDING_CORRECTION to the number of padding
1616 bits needed on the left side.
1617
1618 In most ABIs, the structure will be returned at the least end of
1619 the register, which translates to right padding on little-endian
1620 targets and left padding on big-endian targets. The opposite
1621 holds if the structure is returned at the most significant
1622 end of the register. */
1623 if (bytes % UNITS_PER_WORD != 0
1624 && (targetm.calls.return_in_msb (TREE_TYPE (retval_rhs))
1625 ? !BYTES_BIG_ENDIAN
1626 : BYTES_BIG_ENDIAN))
1627 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
1628 * BITS_PER_UNIT));
1629
1630 /* Copy the structure BITSIZE bits at a time. */
1631 for (bitpos = 0, xbitpos = padding_correction;
1632 bitpos < bytes * BITS_PER_UNIT;
1633 bitpos += bitsize, xbitpos += bitsize)
1634 {
1635 /* We need a new destination pseudo each time xbitpos is
1636 on a word boundary and when xbitpos == padding_correction
1637 (the first time through). */
1638 if (xbitpos % BITS_PER_WORD == 0
1639 || xbitpos == padding_correction)
1640 {
1641 /* Generate an appropriate register. */
1642 dst = gen_reg_rtx (word_mode);
1643 result_pseudos[xbitpos / BITS_PER_WORD] = dst;
1644
1645 /* Clear the destination before we move anything into it. */
1646 emit_move_insn (dst, CONST0_RTX (GET_MODE (dst)));
1647 }
1648
1649 /* We need a new source operand each time bitpos is on a word
1650 boundary. */
1651 if (bitpos % BITS_PER_WORD == 0)
1652 src = operand_subword_force (result_val,
1653 bitpos / BITS_PER_WORD,
1654 BLKmode);
1655
1656 /* Use bitpos for the source extraction (left justified) and
1657 xbitpos for the destination store (right justified). */
1658 store_bit_field (dst, bitsize, xbitpos % BITS_PER_WORD, word_mode,
1659 extract_bit_field (src, bitsize,
1660 bitpos % BITS_PER_WORD, 1,
1661 NULL_RTX, word_mode, word_mode));
1662 }
1663
1664 tmpmode = GET_MODE (result_rtl);
1665 if (tmpmode == BLKmode)
1666 {
1667 /* Find the smallest integer mode large enough to hold the
1668 entire structure and use that mode instead of BLKmode
1669 on the USE insn for the return register. */
1670 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1671 tmpmode != VOIDmode;
1672 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1673 /* Have we found a large enough mode? */
1674 if (GET_MODE_SIZE (tmpmode) >= bytes)
1675 break;
1676
1677 /* A suitable mode should have been found. */
1678 gcc_assert (tmpmode != VOIDmode);
1679
1680 PUT_MODE (result_rtl, tmpmode);
1681 }
1682
1683 if (GET_MODE_SIZE (tmpmode) < GET_MODE_SIZE (word_mode))
1684 result_reg_mode = word_mode;
1685 else
1686 result_reg_mode = tmpmode;
1687 result_reg = gen_reg_rtx (result_reg_mode);
1688
1689 for (i = 0; i < n_regs; i++)
1690 emit_move_insn (operand_subword (result_reg, i, 0, result_reg_mode),
1691 result_pseudos[i]);
1692
1693 if (tmpmode != result_reg_mode)
1694 result_reg = gen_lowpart (tmpmode, result_reg);
1695
1696 expand_value_return (result_reg);
1697 }
1698 else if (retval_rhs != 0
1699 && !VOID_TYPE_P (TREE_TYPE (retval_rhs))
1700 && (REG_P (result_rtl)
1701 || (GET_CODE (result_rtl) == PARALLEL)))
1702 {
1703 /* Calculate the return value into a temporary (usually a pseudo
1704 reg). */
1705 tree ot = TREE_TYPE (DECL_RESULT (current_function_decl));
1706 tree nt = build_qualified_type (ot, TYPE_QUALS (ot) | TYPE_QUAL_CONST);
1707
1708 val = assign_temp (nt, 0, 0, 1);
1709 val = expand_expr (retval_rhs, val, GET_MODE (val), 0);
1710 val = force_not_mem (val);
1711 /* Return the calculated value. */
1712 expand_value_return (val);
1713 }
1714 else
1715 {
1716 /* No hard reg used; calculate value into hard return reg. */
1717 expand_expr (retval, const0_rtx, VOIDmode, 0);
1718 expand_value_return (result_rtl);
1719 }
1720 }
1721 \f
1722 /* Given a pointer to a BLOCK node return nonzero if (and only if) the node
1723 in question represents the outermost pair of curly braces (i.e. the "body
1724 block") of a function or method.
1725
1726 For any BLOCK node representing a "body block" of a function or method, the
1727 BLOCK_SUPERCONTEXT of the node will point to another BLOCK node which
1728 represents the outermost (function) scope for the function or method (i.e.
1729 the one which includes the formal parameters). The BLOCK_SUPERCONTEXT of
1730 *that* node in turn will point to the relevant FUNCTION_DECL node. */
1731
1732 int
1733 is_body_block (tree stmt)
1734 {
1735 if (lang_hooks.no_body_blocks)
1736 return 0;
1737
1738 if (TREE_CODE (stmt) == BLOCK)
1739 {
1740 tree parent = BLOCK_SUPERCONTEXT (stmt);
1741
1742 if (parent && TREE_CODE (parent) == BLOCK)
1743 {
1744 tree grandparent = BLOCK_SUPERCONTEXT (parent);
1745
1746 if (grandparent && TREE_CODE (grandparent) == FUNCTION_DECL)
1747 return 1;
1748 }
1749 }
1750
1751 return 0;
1752 }
1753
1754 /* Emit code to restore vital registers at the beginning of a nonlocal goto
1755 handler. */
1756 static void
1757 expand_nl_goto_receiver (void)
1758 {
1759 /* Clobber the FP when we get here, so we have to make sure it's
1760 marked as used by this function. */
1761 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
1762
1763 /* Mark the static chain as clobbered here so life information
1764 doesn't get messed up for it. */
1765 emit_insn (gen_rtx_CLOBBER (VOIDmode, static_chain_rtx));
1766
1767 #ifdef HAVE_nonlocal_goto
1768 if (! HAVE_nonlocal_goto)
1769 #endif
1770 /* First adjust our frame pointer to its actual value. It was
1771 previously set to the start of the virtual area corresponding to
1772 the stacked variables when we branched here and now needs to be
1773 adjusted to the actual hardware fp value.
1774
1775 Assignments are to virtual registers are converted by
1776 instantiate_virtual_regs into the corresponding assignment
1777 to the underlying register (fp in this case) that makes
1778 the original assignment true.
1779 So the following insn will actually be
1780 decrementing fp by STARTING_FRAME_OFFSET. */
1781 emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
1782
1783 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1784 if (fixed_regs[ARG_POINTER_REGNUM])
1785 {
1786 #ifdef ELIMINABLE_REGS
1787 /* If the argument pointer can be eliminated in favor of the
1788 frame pointer, we don't need to restore it. We assume here
1789 that if such an elimination is present, it can always be used.
1790 This is the case on all known machines; if we don't make this
1791 assumption, we do unnecessary saving on many machines. */
1792 static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS;
1793 size_t i;
1794
1795 for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
1796 if (elim_regs[i].from == ARG_POINTER_REGNUM
1797 && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
1798 break;
1799
1800 if (i == ARRAY_SIZE (elim_regs))
1801 #endif
1802 {
1803 /* Now restore our arg pointer from the address at which it
1804 was saved in our stack frame. */
1805 emit_move_insn (virtual_incoming_args_rtx,
1806 copy_to_reg (get_arg_pointer_save_area (cfun)));
1807 }
1808 }
1809 #endif
1810
1811 #ifdef HAVE_nonlocal_goto_receiver
1812 if (HAVE_nonlocal_goto_receiver)
1813 emit_insn (gen_nonlocal_goto_receiver ());
1814 #endif
1815
1816 /* @@@ This is a kludge. Not all machine descriptions define a blockage
1817 insn, but we must not allow the code we just generated to be reordered
1818 by scheduling. Specifically, the update of the frame pointer must
1819 happen immediately, not later. So emit an ASM_INPUT to act as blockage
1820 insn. */
1821 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
1822 }
1823 \f
1824 /* Generate RTL for the automatic variable declaration DECL.
1825 (Other kinds of declarations are simply ignored if seen here.) */
1826
1827 void
1828 expand_decl (tree decl)
1829 {
1830 tree type;
1831
1832 type = TREE_TYPE (decl);
1833
1834 /* For a CONST_DECL, set mode, alignment, and sizes from those of the
1835 type in case this node is used in a reference. */
1836 if (TREE_CODE (decl) == CONST_DECL)
1837 {
1838 DECL_MODE (decl) = TYPE_MODE (type);
1839 DECL_ALIGN (decl) = TYPE_ALIGN (type);
1840 DECL_SIZE (decl) = TYPE_SIZE (type);
1841 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
1842 return;
1843 }
1844
1845 /* Otherwise, only automatic variables need any expansion done. Static and
1846 external variables, and external functions, will be handled by
1847 `assemble_variable' (called from finish_decl). TYPE_DECL requires
1848 nothing. PARM_DECLs are handled in `assign_parms'. */
1849 if (TREE_CODE (decl) != VAR_DECL)
1850 return;
1851
1852 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
1853 return;
1854
1855 /* Create the RTL representation for the variable. */
1856
1857 if (type == error_mark_node)
1858 SET_DECL_RTL (decl, gen_rtx_MEM (BLKmode, const0_rtx));
1859
1860 else if (DECL_SIZE (decl) == 0)
1861 /* Variable with incomplete type. */
1862 {
1863 rtx x;
1864 if (DECL_INITIAL (decl) == 0)
1865 /* Error message was already done; now avoid a crash. */
1866 x = gen_rtx_MEM (BLKmode, const0_rtx);
1867 else
1868 /* An initializer is going to decide the size of this array.
1869 Until we know the size, represent its address with a reg. */
1870 x = gen_rtx_MEM (BLKmode, gen_reg_rtx (Pmode));
1871
1872 set_mem_attributes (x, decl, 1);
1873 SET_DECL_RTL (decl, x);
1874 }
1875 else if (use_register_for_decl (decl))
1876 {
1877 /* Automatic variable that can go in a register. */
1878 int unsignedp = TYPE_UNSIGNED (type);
1879 enum machine_mode reg_mode
1880 = promote_mode (type, DECL_MODE (decl), &unsignedp, 0);
1881
1882 SET_DECL_RTL (decl, gen_reg_rtx (reg_mode));
1883
1884 /* Note if the object is a user variable. */
1885 if (!DECL_ARTIFICIAL (decl))
1886 {
1887 mark_user_reg (DECL_RTL (decl));
1888
1889 /* Trust user variables which have a pointer type to really
1890 be pointers. Do not trust compiler generated temporaries
1891 as our type system is totally busted as it relates to
1892 pointer arithmetic which translates into lots of compiler
1893 generated objects with pointer types, but which are not really
1894 pointers. */
1895 if (POINTER_TYPE_P (type))
1896 mark_reg_pointer (DECL_RTL (decl),
1897 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl))));
1898 }
1899 }
1900
1901 else if (TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST
1902 && ! (flag_stack_check && ! STACK_CHECK_BUILTIN
1903 && 0 < compare_tree_int (DECL_SIZE_UNIT (decl),
1904 STACK_CHECK_MAX_VAR_SIZE)))
1905 {
1906 /* Variable of fixed size that goes on the stack. */
1907 rtx oldaddr = 0;
1908 rtx addr;
1909 rtx x;
1910
1911 /* If we previously made RTL for this decl, it must be an array
1912 whose size was determined by the initializer.
1913 The old address was a register; set that register now
1914 to the proper address. */
1915 if (DECL_RTL_SET_P (decl))
1916 {
1917 gcc_assert (MEM_P (DECL_RTL (decl)));
1918 gcc_assert (REG_P (XEXP (DECL_RTL (decl), 0)));
1919 oldaddr = XEXP (DECL_RTL (decl), 0);
1920 }
1921
1922 /* Set alignment we actually gave this decl. */
1923 DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT
1924 : GET_MODE_BITSIZE (DECL_MODE (decl)));
1925 DECL_USER_ALIGN (decl) = 0;
1926
1927 x = assign_temp (decl, 1, 1, 1);
1928 set_mem_attributes (x, decl, 1);
1929 SET_DECL_RTL (decl, x);
1930
1931 if (oldaddr)
1932 {
1933 addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
1934 if (addr != oldaddr)
1935 emit_move_insn (oldaddr, addr);
1936 }
1937 }
1938 else
1939 /* Dynamic-size object: must push space on the stack. */
1940 {
1941 rtx address, size, x;
1942
1943 /* Record the stack pointer on entry to block, if have
1944 not already done so. */
1945 do_pending_stack_adjust ();
1946
1947 /* Compute the variable's size, in bytes. This will expand any
1948 needed SAVE_EXPRs for the first time. */
1949 size = expand_expr (DECL_SIZE_UNIT (decl), NULL_RTX, VOIDmode, 0);
1950 free_temp_slots ();
1951
1952 /* Allocate space on the stack for the variable. Note that
1953 DECL_ALIGN says how the variable is to be aligned and we
1954 cannot use it to conclude anything about the alignment of
1955 the size. */
1956 address = allocate_dynamic_stack_space (size, NULL_RTX,
1957 TYPE_ALIGN (TREE_TYPE (decl)));
1958
1959 /* Reference the variable indirect through that rtx. */
1960 x = gen_rtx_MEM (DECL_MODE (decl), address);
1961 set_mem_attributes (x, decl, 1);
1962 SET_DECL_RTL (decl, x);
1963
1964
1965 /* Indicate the alignment we actually gave this variable. */
1966 #ifdef STACK_BOUNDARY
1967 DECL_ALIGN (decl) = STACK_BOUNDARY;
1968 #else
1969 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
1970 #endif
1971 DECL_USER_ALIGN (decl) = 0;
1972 }
1973 }
1974 \f
1975 /* Emit code to save the current value of stack. */
1976 rtx
1977 expand_stack_save (void)
1978 {
1979 rtx ret = NULL_RTX;
1980
1981 do_pending_stack_adjust ();
1982 emit_stack_save (SAVE_BLOCK, &ret, NULL_RTX);
1983 return ret;
1984 }
1985
1986 /* Emit code to restore the current value of stack. */
1987 void
1988 expand_stack_restore (tree var)
1989 {
1990 rtx sa = DECL_RTL (var);
1991
1992 emit_stack_restore (SAVE_BLOCK, sa, NULL_RTX);
1993 }
1994 \f
1995 /* DECL is an anonymous union. CLEANUP is a cleanup for DECL.
1996 DECL_ELTS is the list of elements that belong to DECL's type.
1997 In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */
1998
1999 void
2000 expand_anon_union_decl (tree decl, tree cleanup ATTRIBUTE_UNUSED,
2001 tree decl_elts)
2002 {
2003 rtx x;
2004 tree t;
2005
2006 /* If any of the elements are addressable, so is the entire union. */
2007 for (t = decl_elts; t; t = TREE_CHAIN (t))
2008 if (TREE_ADDRESSABLE (TREE_VALUE (t)))
2009 {
2010 TREE_ADDRESSABLE (decl) = 1;
2011 break;
2012 }
2013
2014 expand_decl (decl);
2015 x = DECL_RTL (decl);
2016
2017 /* Go through the elements, assigning RTL to each. */
2018 for (t = decl_elts; t; t = TREE_CHAIN (t))
2019 {
2020 tree decl_elt = TREE_VALUE (t);
2021 enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt));
2022 rtx decl_rtl;
2023
2024 /* If any of the elements are addressable, so is the entire
2025 union. */
2026 if (TREE_USED (decl_elt))
2027 TREE_USED (decl) = 1;
2028
2029 /* Propagate the union's alignment to the elements. */
2030 DECL_ALIGN (decl_elt) = DECL_ALIGN (decl);
2031 DECL_USER_ALIGN (decl_elt) = DECL_USER_ALIGN (decl);
2032
2033 /* If the element has BLKmode and the union doesn't, the union is
2034 aligned such that the element doesn't need to have BLKmode, so
2035 change the element's mode to the appropriate one for its size. */
2036 if (mode == BLKmode && DECL_MODE (decl) != BLKmode)
2037 DECL_MODE (decl_elt) = mode
2038 = mode_for_size_tree (DECL_SIZE (decl_elt), MODE_INT, 1);
2039
2040 if (mode == GET_MODE (x))
2041 decl_rtl = x;
2042 else if (MEM_P (x))
2043 /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we
2044 instead create a new MEM rtx with the proper mode. */
2045 decl_rtl = adjust_address_nv (x, mode, 0);
2046 else
2047 {
2048 gcc_assert (REG_P (x));
2049 decl_rtl = gen_lowpart_SUBREG (mode, x);
2050 }
2051 SET_DECL_RTL (decl_elt, decl_rtl);
2052 }
2053 }
2054 \f
2055 /* Do the insertion of a case label into case_list. The labels are
2056 fed to us in descending order from the sorted vector of case labels used
2057 in the tree part of the middle end. So the list we construct is
2058 sorted in ascending order. The bounds on the case range, LOW and HIGH,
2059 are converted to case's index type TYPE. */
2060
2061 static struct case_node *
2062 add_case_node (struct case_node *head, tree type, tree low, tree high,
2063 tree label)
2064 {
2065 tree min_value, max_value;
2066 struct case_node *r;
2067
2068 gcc_assert (TREE_CODE (low) == INTEGER_CST);
2069 gcc_assert (!high || TREE_CODE (high) == INTEGER_CST);
2070
2071 min_value = TYPE_MIN_VALUE (type);
2072 max_value = TYPE_MAX_VALUE (type);
2073
2074 /* If there's no HIGH value, then this is not a case range; it's
2075 just a simple case label. But that's just a degenerate case
2076 range.
2077 If the bounds are equal, turn this into the one-value case. */
2078 if (!high || tree_int_cst_equal (low, high))
2079 {
2080 /* If the simple case value is unreachable, ignore it. */
2081 if ((TREE_CODE (min_value) == INTEGER_CST
2082 && tree_int_cst_compare (low, min_value) < 0)
2083 || (TREE_CODE (max_value) == INTEGER_CST
2084 && tree_int_cst_compare (low, max_value) > 0))
2085 return head;
2086 low = fold_convert (type, low);
2087 high = low;
2088 }
2089 else
2090 {
2091 /* If the entire case range is unreachable, ignore it. */
2092 if ((TREE_CODE (min_value) == INTEGER_CST
2093 && tree_int_cst_compare (high, min_value) < 0)
2094 || (TREE_CODE (max_value) == INTEGER_CST
2095 && tree_int_cst_compare (low, max_value) > 0))
2096 return head;
2097
2098 /* If the lower bound is less than the index type's minimum
2099 value, truncate the range bounds. */
2100 if (TREE_CODE (min_value) == INTEGER_CST
2101 && tree_int_cst_compare (low, min_value) < 0)
2102 low = min_value;
2103 low = fold_convert (type, low);
2104
2105 /* If the upper bound is greater than the index type's maximum
2106 value, truncate the range bounds. */
2107 if (TREE_CODE (max_value) == INTEGER_CST
2108 && tree_int_cst_compare (high, max_value) > 0)
2109 high = max_value;
2110 high = fold_convert (type, high);
2111 }
2112
2113
2114 /* Add this label to the chain. */
2115 r = ggc_alloc (sizeof (struct case_node));
2116 r->low = low;
2117 r->high = high;
2118 r->code_label = label;
2119 r->parent = r->left = NULL;
2120 r->right = head;
2121 return r;
2122 }
2123 \f
2124 /* Maximum number of case bit tests. */
2125 #define MAX_CASE_BIT_TESTS 3
2126
2127 /* By default, enable case bit tests on targets with ashlsi3. */
2128 #ifndef CASE_USE_BIT_TESTS
2129 #define CASE_USE_BIT_TESTS (ashl_optab->handlers[word_mode].insn_code \
2130 != CODE_FOR_nothing)
2131 #endif
2132
2133
2134 /* A case_bit_test represents a set of case nodes that may be
2135 selected from using a bit-wise comparison. HI and LO hold
2136 the integer to be tested against, LABEL contains the label
2137 to jump to upon success and BITS counts the number of case
2138 nodes handled by this test, typically the number of bits
2139 set in HI:LO. */
2140
2141 struct case_bit_test
2142 {
2143 HOST_WIDE_INT hi;
2144 HOST_WIDE_INT lo;
2145 rtx label;
2146 int bits;
2147 };
2148
2149 /* Determine whether "1 << x" is relatively cheap in word_mode. */
2150
2151 static
2152 bool lshift_cheap_p (void)
2153 {
2154 static bool init = false;
2155 static bool cheap = true;
2156
2157 if (!init)
2158 {
2159 rtx reg = gen_rtx_REG (word_mode, 10000);
2160 int cost = rtx_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg), SET);
2161 cheap = cost < COSTS_N_INSNS (3);
2162 init = true;
2163 }
2164
2165 return cheap;
2166 }
2167
2168 /* Comparison function for qsort to order bit tests by decreasing
2169 number of case nodes, i.e. the node with the most cases gets
2170 tested first. */
2171
2172 static int
2173 case_bit_test_cmp (const void *p1, const void *p2)
2174 {
2175 const struct case_bit_test *d1 = p1;
2176 const struct case_bit_test *d2 = p2;
2177
2178 return d2->bits - d1->bits;
2179 }
2180
2181 /* Expand a switch statement by a short sequence of bit-wise
2182 comparisons. "switch(x)" is effectively converted into
2183 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
2184 integer constants.
2185
2186 INDEX_EXPR is the value being switched on, which is of
2187 type INDEX_TYPE. MINVAL is the lowest case value of in
2188 the case nodes, of INDEX_TYPE type, and RANGE is highest
2189 value minus MINVAL, also of type INDEX_TYPE. NODES is
2190 the set of case nodes, and DEFAULT_LABEL is the label to
2191 branch to should none of the cases match.
2192
2193 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
2194 node targets. */
2195
2196 static void
2197 emit_case_bit_tests (tree index_type, tree index_expr, tree minval,
2198 tree range, case_node_ptr nodes, rtx default_label)
2199 {
2200 struct case_bit_test test[MAX_CASE_BIT_TESTS];
2201 enum machine_mode mode;
2202 rtx expr, index, label;
2203 unsigned int i,j,lo,hi;
2204 struct case_node *n;
2205 unsigned int count;
2206
2207 count = 0;
2208 for (n = nodes; n; n = n->right)
2209 {
2210 label = label_rtx (n->code_label);
2211 for (i = 0; i < count; i++)
2212 if (label == test[i].label)
2213 break;
2214
2215 if (i == count)
2216 {
2217 gcc_assert (count < MAX_CASE_BIT_TESTS);
2218 test[i].hi = 0;
2219 test[i].lo = 0;
2220 test[i].label = label;
2221 test[i].bits = 1;
2222 count++;
2223 }
2224 else
2225 test[i].bits++;
2226
2227 lo = tree_low_cst (fold (build2 (MINUS_EXPR, index_type,
2228 n->low, minval)), 1);
2229 hi = tree_low_cst (fold (build2 (MINUS_EXPR, index_type,
2230 n->high, minval)), 1);
2231 for (j = lo; j <= hi; j++)
2232 if (j >= HOST_BITS_PER_WIDE_INT)
2233 test[i].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT);
2234 else
2235 test[i].lo |= (HOST_WIDE_INT) 1 << j;
2236 }
2237
2238 qsort (test, count, sizeof(*test), case_bit_test_cmp);
2239
2240 index_expr = fold (build2 (MINUS_EXPR, index_type,
2241 convert (index_type, index_expr),
2242 convert (index_type, minval)));
2243 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
2244 do_pending_stack_adjust ();
2245
2246 mode = TYPE_MODE (index_type);
2247 expr = expand_expr (range, NULL_RTX, VOIDmode, 0);
2248 emit_cmp_and_jump_insns (index, expr, GTU, NULL_RTX, mode, 1,
2249 default_label);
2250
2251 index = convert_to_mode (word_mode, index, 0);
2252 index = expand_binop (word_mode, ashl_optab, const1_rtx,
2253 index, NULL_RTX, 1, OPTAB_WIDEN);
2254
2255 for (i = 0; i < count; i++)
2256 {
2257 expr = immed_double_const (test[i].lo, test[i].hi, word_mode);
2258 expr = expand_binop (word_mode, and_optab, index, expr,
2259 NULL_RTX, 1, OPTAB_WIDEN);
2260 emit_cmp_and_jump_insns (expr, const0_rtx, NE, NULL_RTX,
2261 word_mode, 1, test[i].label);
2262 }
2263
2264 emit_jump (default_label);
2265 }
2266
2267 #ifndef HAVE_casesi
2268 #define HAVE_casesi 0
2269 #endif
2270
2271 #ifndef HAVE_tablejump
2272 #define HAVE_tablejump 0
2273 #endif
2274
2275 /* Terminate a case (Pascal) or switch (C) statement
2276 in which ORIG_INDEX is the expression to be tested.
2277 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
2278 type as given in the source before any compiler conversions.
2279 Generate the code to test it and jump to the right place. */
2280
2281 void
2282 expand_case (tree exp)
2283 {
2284 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
2285 rtx default_label = 0;
2286 struct case_node *n;
2287 unsigned int count, uniq;
2288 rtx index;
2289 rtx table_label;
2290 int ncases;
2291 rtx *labelvec;
2292 int i, fail;
2293 rtx before_case, end, lab;
2294
2295 tree vec = SWITCH_LABELS (exp);
2296 tree orig_type = TREE_TYPE (exp);
2297 tree index_expr = SWITCH_COND (exp);
2298 tree index_type = TREE_TYPE (index_expr);
2299 int unsignedp = TYPE_UNSIGNED (index_type);
2300
2301 /* The insn after which the case dispatch should finally
2302 be emitted. Zero for a dummy. */
2303 rtx start;
2304
2305 /* A list of case labels; it is first built as a list and it may then
2306 be rearranged into a nearly balanced binary tree. */
2307 struct case_node *case_list = 0;
2308
2309 /* Label to jump to if no case matches. */
2310 tree default_label_decl;
2311
2312 /* The switch body is lowered in gimplify.c, we should never have
2313 switches with a non-NULL SWITCH_BODY here. */
2314 gcc_assert (!SWITCH_BODY (exp));
2315 gcc_assert (SWITCH_LABELS (exp));
2316
2317 do_pending_stack_adjust ();
2318
2319 /* An ERROR_MARK occurs for various reasons including invalid data type. */
2320 if (index_type != error_mark_node)
2321 {
2322 tree elt;
2323 bitmap label_bitmap;
2324
2325 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
2326 expressions being INTEGER_CST. */
2327 gcc_assert (TREE_CODE (index_expr) != INTEGER_CST);
2328
2329 /* The default case is at the end of TREE_VEC. */
2330 elt = TREE_VEC_ELT (vec, TREE_VEC_LENGTH (vec) - 1);
2331 gcc_assert (!CASE_HIGH (elt));
2332 gcc_assert (!CASE_LOW (elt));
2333 default_label_decl = CASE_LABEL (elt);
2334
2335 for (i = TREE_VEC_LENGTH (vec) - 1; --i >= 0; )
2336 {
2337 elt = TREE_VEC_ELT (vec, i);
2338 gcc_assert (CASE_LOW (elt));
2339 case_list = add_case_node (case_list, index_type,
2340 CASE_LOW (elt), CASE_HIGH (elt),
2341 CASE_LABEL (elt));
2342 }
2343
2344
2345 /* Make sure start points to something that won't need any
2346 transformation before the end of this function. */
2347 start = get_last_insn ();
2348 if (! NOTE_P (start))
2349 {
2350 emit_note (NOTE_INSN_DELETED);
2351 start = get_last_insn ();
2352 }
2353
2354 default_label = label_rtx (default_label_decl);
2355
2356 before_case = get_last_insn ();
2357
2358 /* Get upper and lower bounds of case values. */
2359
2360 uniq = 0;
2361 count = 0;
2362 label_bitmap = BITMAP_XMALLOC ();
2363 for (n = case_list; n; n = n->right)
2364 {
2365 /* Count the elements and track the largest and smallest
2366 of them (treating them as signed even if they are not). */
2367 if (count++ == 0)
2368 {
2369 minval = n->low;
2370 maxval = n->high;
2371 }
2372 else
2373 {
2374 if (INT_CST_LT (n->low, minval))
2375 minval = n->low;
2376 if (INT_CST_LT (maxval, n->high))
2377 maxval = n->high;
2378 }
2379 /* A range counts double, since it requires two compares. */
2380 if (! tree_int_cst_equal (n->low, n->high))
2381 count++;
2382
2383 /* If we have not seen this label yet, then increase the
2384 number of unique case node targets seen. */
2385 lab = label_rtx (n->code_label);
2386 if (!bitmap_bit_p (label_bitmap, CODE_LABEL_NUMBER (lab)))
2387 {
2388 bitmap_set_bit (label_bitmap, CODE_LABEL_NUMBER (lab));
2389 uniq++;
2390 }
2391 }
2392
2393 BITMAP_XFREE (label_bitmap);
2394
2395 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
2396 destination, such as one with a default case only. */
2397 gcc_assert (count != 0);
2398
2399 /* Compute span of values. */
2400 range = fold (build2 (MINUS_EXPR, index_type, maxval, minval));
2401
2402 /* Try implementing this switch statement by a short sequence of
2403 bit-wise comparisons. However, we let the binary-tree case
2404 below handle constant index expressions. */
2405 if (CASE_USE_BIT_TESTS
2406 && ! TREE_CONSTANT (index_expr)
2407 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
2408 && compare_tree_int (range, 0) > 0
2409 && lshift_cheap_p ()
2410 && ((uniq == 1 && count >= 3)
2411 || (uniq == 2 && count >= 5)
2412 || (uniq == 3 && count >= 6)))
2413 {
2414 /* Optimize the case where all the case values fit in a
2415 word without having to subtract MINVAL. In this case,
2416 we can optimize away the subtraction. */
2417 if (compare_tree_int (minval, 0) > 0
2418 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
2419 {
2420 minval = integer_zero_node;
2421 range = maxval;
2422 }
2423 emit_case_bit_tests (index_type, index_expr, minval, range,
2424 case_list, default_label);
2425 }
2426
2427 /* If range of values is much bigger than number of values,
2428 make a sequence of conditional branches instead of a dispatch.
2429 If the switch-index is a constant, do it this way
2430 because we can optimize it. */
2431
2432 else if (count < case_values_threshold ()
2433 || compare_tree_int (range,
2434 (optimize_size ? 3 : 10) * count) > 0
2435 /* RANGE may be signed, and really large ranges will show up
2436 as negative numbers. */
2437 || compare_tree_int (range, 0) < 0
2438 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
2439 || flag_pic
2440 #endif
2441 || TREE_CONSTANT (index_expr)
2442 /* If neither casesi or tablejump is available, we can
2443 only go this way. */
2444 || (!HAVE_casesi && !HAVE_tablejump))
2445 {
2446 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
2447
2448 /* If the index is a short or char that we do not have
2449 an insn to handle comparisons directly, convert it to
2450 a full integer now, rather than letting each comparison
2451 generate the conversion. */
2452
2453 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
2454 && ! have_insn_for (COMPARE, GET_MODE (index)))
2455 {
2456 enum machine_mode wider_mode;
2457 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
2458 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2459 if (have_insn_for (COMPARE, wider_mode))
2460 {
2461 index = convert_to_mode (wider_mode, index, unsignedp);
2462 break;
2463 }
2464 }
2465
2466 do_pending_stack_adjust ();
2467
2468 if (MEM_P (index))
2469 index = copy_to_reg (index);
2470
2471 /* We generate a binary decision tree to select the
2472 appropriate target code. This is done as follows:
2473
2474 The list of cases is rearranged into a binary tree,
2475 nearly optimal assuming equal probability for each case.
2476
2477 The tree is transformed into RTL, eliminating
2478 redundant test conditions at the same time.
2479
2480 If program flow could reach the end of the
2481 decision tree an unconditional jump to the
2482 default code is emitted. */
2483
2484 use_cost_table
2485 = (TREE_CODE (orig_type) != ENUMERAL_TYPE
2486 && estimate_case_costs (case_list));
2487 balance_case_nodes (&case_list, NULL);
2488 emit_case_nodes (index, case_list, default_label, index_type);
2489 emit_jump (default_label);
2490 }
2491 else
2492 {
2493 table_label = gen_label_rtx ();
2494 if (! try_casesi (index_type, index_expr, minval, range,
2495 table_label, default_label))
2496 {
2497 bool ok;
2498 index_type = integer_type_node;
2499
2500 /* Index jumptables from zero for suitable values of
2501 minval to avoid a subtraction. */
2502 if (! optimize_size
2503 && compare_tree_int (minval, 0) > 0
2504 && compare_tree_int (minval, 3) < 0)
2505 {
2506 minval = integer_zero_node;
2507 range = maxval;
2508 }
2509
2510 ok = try_tablejump (index_type, index_expr, minval, range,
2511 table_label, default_label);
2512 gcc_assert (ok);
2513 }
2514
2515 /* Get table of labels to jump to, in order of case index. */
2516
2517 ncases = tree_low_cst (range, 0) + 1;
2518 labelvec = alloca (ncases * sizeof (rtx));
2519 memset (labelvec, 0, ncases * sizeof (rtx));
2520
2521 for (n = case_list; n; n = n->right)
2522 {
2523 /* Compute the low and high bounds relative to the minimum
2524 value since that should fit in a HOST_WIDE_INT while the
2525 actual values may not. */
2526 HOST_WIDE_INT i_low
2527 = tree_low_cst (fold (build2 (MINUS_EXPR, index_type,
2528 n->low, minval)), 1);
2529 HOST_WIDE_INT i_high
2530 = tree_low_cst (fold (build2 (MINUS_EXPR, index_type,
2531 n->high, minval)), 1);
2532 HOST_WIDE_INT i;
2533
2534 for (i = i_low; i <= i_high; i ++)
2535 labelvec[i]
2536 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
2537 }
2538
2539 /* Fill in the gaps with the default. */
2540 for (i = 0; i < ncases; i++)
2541 if (labelvec[i] == 0)
2542 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
2543
2544 /* Output the table. */
2545 emit_label (table_label);
2546
2547 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
2548 emit_jump_insn (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
2549 gen_rtx_LABEL_REF (Pmode, table_label),
2550 gen_rtvec_v (ncases, labelvec),
2551 const0_rtx, const0_rtx));
2552 else
2553 emit_jump_insn (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
2554 gen_rtvec_v (ncases, labelvec)));
2555
2556 /* Record no drop-through after the table. */
2557 emit_barrier ();
2558 }
2559
2560 before_case = NEXT_INSN (before_case);
2561 end = get_last_insn ();
2562 fail = squeeze_notes (&before_case, &end);
2563 gcc_assert (!fail);
2564 reorder_insns (before_case, end, start);
2565 }
2566
2567 free_temp_slots ();
2568 }
2569
2570 /* Generate code to jump to LABEL if OP1 and OP2 are equal. */
2571
2572 static void
2573 do_jump_if_equal (rtx op1, rtx op2, rtx label, int unsignedp)
2574 {
2575 if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
2576 {
2577 if (op1 == op2)
2578 emit_jump (label);
2579 }
2580 else
2581 emit_cmp_and_jump_insns (op1, op2, EQ, NULL_RTX,
2582 (GET_MODE (op1) == VOIDmode
2583 ? GET_MODE (op2) : GET_MODE (op1)),
2584 unsignedp, label);
2585 }
2586 \f
2587 /* Not all case values are encountered equally. This function
2588 uses a heuristic to weight case labels, in cases where that
2589 looks like a reasonable thing to do.
2590
2591 Right now, all we try to guess is text, and we establish the
2592 following weights:
2593
2594 chars above space: 16
2595 digits: 16
2596 default: 12
2597 space, punct: 8
2598 tab: 4
2599 newline: 2
2600 other "\" chars: 1
2601 remaining chars: 0
2602
2603 If we find any cases in the switch that are not either -1 or in the range
2604 of valid ASCII characters, or are control characters other than those
2605 commonly used with "\", don't treat this switch scanning text.
2606
2607 Return 1 if these nodes are suitable for cost estimation, otherwise
2608 return 0. */
2609
2610 static int
2611 estimate_case_costs (case_node_ptr node)
2612 {
2613 tree min_ascii = integer_minus_one_node;
2614 tree max_ascii = convert (TREE_TYPE (node->high),
2615 build_int_cst (NULL_TREE, 127));
2616 case_node_ptr n;
2617 int i;
2618
2619 /* If we haven't already made the cost table, make it now. Note that the
2620 lower bound of the table is -1, not zero. */
2621
2622 if (! cost_table_initialized)
2623 {
2624 cost_table_initialized = 1;
2625
2626 for (i = 0; i < 128; i++)
2627 {
2628 if (ISALNUM (i))
2629 COST_TABLE (i) = 16;
2630 else if (ISPUNCT (i))
2631 COST_TABLE (i) = 8;
2632 else if (ISCNTRL (i))
2633 COST_TABLE (i) = -1;
2634 }
2635
2636 COST_TABLE (' ') = 8;
2637 COST_TABLE ('\t') = 4;
2638 COST_TABLE ('\0') = 4;
2639 COST_TABLE ('\n') = 2;
2640 COST_TABLE ('\f') = 1;
2641 COST_TABLE ('\v') = 1;
2642 COST_TABLE ('\b') = 1;
2643 }
2644
2645 /* See if all the case expressions look like text. It is text if the
2646 constant is >= -1 and the highest constant is <= 127. Do all comparisons
2647 as signed arithmetic since we don't want to ever access cost_table with a
2648 value less than -1. Also check that none of the constants in a range
2649 are strange control characters. */
2650
2651 for (n = node; n; n = n->right)
2652 {
2653 if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high))
2654 return 0;
2655
2656 for (i = (HOST_WIDE_INT) TREE_INT_CST_LOW (n->low);
2657 i <= (HOST_WIDE_INT) TREE_INT_CST_LOW (n->high); i++)
2658 if (COST_TABLE (i) < 0)
2659 return 0;
2660 }
2661
2662 /* All interesting values are within the range of interesting
2663 ASCII characters. */
2664 return 1;
2665 }
2666
2667 /* Take an ordered list of case nodes
2668 and transform them into a near optimal binary tree,
2669 on the assumption that any target code selection value is as
2670 likely as any other.
2671
2672 The transformation is performed by splitting the ordered
2673 list into two equal sections plus a pivot. The parts are
2674 then attached to the pivot as left and right branches. Each
2675 branch is then transformed recursively. */
2676
2677 static void
2678 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
2679 {
2680 case_node_ptr np;
2681
2682 np = *head;
2683 if (np)
2684 {
2685 int cost = 0;
2686 int i = 0;
2687 int ranges = 0;
2688 case_node_ptr *npp;
2689 case_node_ptr left;
2690
2691 /* Count the number of entries on branch. Also count the ranges. */
2692
2693 while (np)
2694 {
2695 if (!tree_int_cst_equal (np->low, np->high))
2696 {
2697 ranges++;
2698 if (use_cost_table)
2699 cost += COST_TABLE (TREE_INT_CST_LOW (np->high));
2700 }
2701
2702 if (use_cost_table)
2703 cost += COST_TABLE (TREE_INT_CST_LOW (np->low));
2704
2705 i++;
2706 np = np->right;
2707 }
2708
2709 if (i > 2)
2710 {
2711 /* Split this list if it is long enough for that to help. */
2712 npp = head;
2713 left = *npp;
2714 if (use_cost_table)
2715 {
2716 /* Find the place in the list that bisects the list's total cost,
2717 Here I gets half the total cost. */
2718 int n_moved = 0;
2719 i = (cost + 1) / 2;
2720 while (1)
2721 {
2722 /* Skip nodes while their cost does not reach that amount. */
2723 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
2724 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->high));
2725 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->low));
2726 if (i <= 0)
2727 break;
2728 npp = &(*npp)->right;
2729 n_moved += 1;
2730 }
2731 if (n_moved == 0)
2732 {
2733 /* Leave this branch lopsided, but optimize left-hand
2734 side and fill in `parent' fields for right-hand side. */
2735 np = *head;
2736 np->parent = parent;
2737 balance_case_nodes (&np->left, np);
2738 for (; np->right; np = np->right)
2739 np->right->parent = np;
2740 return;
2741 }
2742 }
2743 /* If there are just three nodes, split at the middle one. */
2744 else if (i == 3)
2745 npp = &(*npp)->right;
2746 else
2747 {
2748 /* Find the place in the list that bisects the list's total cost,
2749 where ranges count as 2.
2750 Here I gets half the total cost. */
2751 i = (i + ranges + 1) / 2;
2752 while (1)
2753 {
2754 /* Skip nodes while their cost does not reach that amount. */
2755 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
2756 i--;
2757 i--;
2758 if (i <= 0)
2759 break;
2760 npp = &(*npp)->right;
2761 }
2762 }
2763 *head = np = *npp;
2764 *npp = 0;
2765 np->parent = parent;
2766 np->left = left;
2767
2768 /* Optimize each of the two split parts. */
2769 balance_case_nodes (&np->left, np);
2770 balance_case_nodes (&np->right, np);
2771 }
2772 else
2773 {
2774 /* Else leave this branch as one level,
2775 but fill in `parent' fields. */
2776 np = *head;
2777 np->parent = parent;
2778 for (; np->right; np = np->right)
2779 np->right->parent = np;
2780 }
2781 }
2782 }
2783 \f
2784 /* Search the parent sections of the case node tree
2785 to see if a test for the lower bound of NODE would be redundant.
2786 INDEX_TYPE is the type of the index expression.
2787
2788 The instructions to generate the case decision tree are
2789 output in the same order as nodes are processed so it is
2790 known that if a parent node checks the range of the current
2791 node minus one that the current node is bounded at its lower
2792 span. Thus the test would be redundant. */
2793
2794 static int
2795 node_has_low_bound (case_node_ptr node, tree index_type)
2796 {
2797 tree low_minus_one;
2798 case_node_ptr pnode;
2799
2800 /* If the lower bound of this node is the lowest value in the index type,
2801 we need not test it. */
2802
2803 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
2804 return 1;
2805
2806 /* If this node has a left branch, the value at the left must be less
2807 than that at this node, so it cannot be bounded at the bottom and
2808 we need not bother testing any further. */
2809
2810 if (node->left)
2811 return 0;
2812
2813 low_minus_one = fold (build2 (MINUS_EXPR, TREE_TYPE (node->low),
2814 node->low, integer_one_node));
2815
2816 /* If the subtraction above overflowed, we can't verify anything.
2817 Otherwise, look for a parent that tests our value - 1. */
2818
2819 if (! tree_int_cst_lt (low_minus_one, node->low))
2820 return 0;
2821
2822 for (pnode = node->parent; pnode; pnode = pnode->parent)
2823 if (tree_int_cst_equal (low_minus_one, pnode->high))
2824 return 1;
2825
2826 return 0;
2827 }
2828
2829 /* Search the parent sections of the case node tree
2830 to see if a test for the upper bound of NODE would be redundant.
2831 INDEX_TYPE is the type of the index expression.
2832
2833 The instructions to generate the case decision tree are
2834 output in the same order as nodes are processed so it is
2835 known that if a parent node checks the range of the current
2836 node plus one that the current node is bounded at its upper
2837 span. Thus the test would be redundant. */
2838
2839 static int
2840 node_has_high_bound (case_node_ptr node, tree index_type)
2841 {
2842 tree high_plus_one;
2843 case_node_ptr pnode;
2844
2845 /* If there is no upper bound, obviously no test is needed. */
2846
2847 if (TYPE_MAX_VALUE (index_type) == NULL)
2848 return 1;
2849
2850 /* If the upper bound of this node is the highest value in the type
2851 of the index expression, we need not test against it. */
2852
2853 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
2854 return 1;
2855
2856 /* If this node has a right branch, the value at the right must be greater
2857 than that at this node, so it cannot be bounded at the top and
2858 we need not bother testing any further. */
2859
2860 if (node->right)
2861 return 0;
2862
2863 high_plus_one = fold (build2 (PLUS_EXPR, TREE_TYPE (node->high),
2864 node->high, integer_one_node));
2865
2866 /* If the addition above overflowed, we can't verify anything.
2867 Otherwise, look for a parent that tests our value + 1. */
2868
2869 if (! tree_int_cst_lt (node->high, high_plus_one))
2870 return 0;
2871
2872 for (pnode = node->parent; pnode; pnode = pnode->parent)
2873 if (tree_int_cst_equal (high_plus_one, pnode->low))
2874 return 1;
2875
2876 return 0;
2877 }
2878
2879 /* Search the parent sections of the
2880 case node tree to see if both tests for the upper and lower
2881 bounds of NODE would be redundant. */
2882
2883 static int
2884 node_is_bounded (case_node_ptr node, tree index_type)
2885 {
2886 return (node_has_low_bound (node, index_type)
2887 && node_has_high_bound (node, index_type));
2888 }
2889 \f
2890 /* Emit step-by-step code to select a case for the value of INDEX.
2891 The thus generated decision tree follows the form of the
2892 case-node binary tree NODE, whose nodes represent test conditions.
2893 INDEX_TYPE is the type of the index of the switch.
2894
2895 Care is taken to prune redundant tests from the decision tree
2896 by detecting any boundary conditions already checked by
2897 emitted rtx. (See node_has_high_bound, node_has_low_bound
2898 and node_is_bounded, above.)
2899
2900 Where the test conditions can be shown to be redundant we emit
2901 an unconditional jump to the target code. As a further
2902 optimization, the subordinates of a tree node are examined to
2903 check for bounded nodes. In this case conditional and/or
2904 unconditional jumps as a result of the boundary check for the
2905 current node are arranged to target the subordinates associated
2906 code for out of bound conditions on the current node.
2907
2908 We can assume that when control reaches the code generated here,
2909 the index value has already been compared with the parents
2910 of this node, and determined to be on the same side of each parent
2911 as this node is. Thus, if this node tests for the value 51,
2912 and a parent tested for 52, we don't need to consider
2913 the possibility of a value greater than 51. If another parent
2914 tests for the value 50, then this node need not test anything. */
2915
2916 static void
2917 emit_case_nodes (rtx index, case_node_ptr node, rtx default_label,
2918 tree index_type)
2919 {
2920 /* If INDEX has an unsigned type, we must make unsigned branches. */
2921 int unsignedp = TYPE_UNSIGNED (index_type);
2922 enum machine_mode mode = GET_MODE (index);
2923 enum machine_mode imode = TYPE_MODE (index_type);
2924
2925 /* See if our parents have already tested everything for us.
2926 If they have, emit an unconditional jump for this node. */
2927 if (node_is_bounded (node, index_type))
2928 emit_jump (label_rtx (node->code_label));
2929
2930 else if (tree_int_cst_equal (node->low, node->high))
2931 {
2932 /* Node is single valued. First see if the index expression matches
2933 this node and then check our children, if any. */
2934
2935 do_jump_if_equal (index,
2936 convert_modes (mode, imode,
2937 expand_expr (node->low, NULL_RTX,
2938 VOIDmode, 0),
2939 unsignedp),
2940 label_rtx (node->code_label), unsignedp);
2941
2942 if (node->right != 0 && node->left != 0)
2943 {
2944 /* This node has children on both sides.
2945 Dispatch to one side or the other
2946 by comparing the index value with this node's value.
2947 If one subtree is bounded, check that one first,
2948 so we can avoid real branches in the tree. */
2949
2950 if (node_is_bounded (node->right, index_type))
2951 {
2952 emit_cmp_and_jump_insns (index,
2953 convert_modes
2954 (mode, imode,
2955 expand_expr (node->high, NULL_RTX,
2956 VOIDmode, 0),
2957 unsignedp),
2958 GT, NULL_RTX, mode, unsignedp,
2959 label_rtx (node->right->code_label));
2960 emit_case_nodes (index, node->left, default_label, index_type);
2961 }
2962
2963 else if (node_is_bounded (node->left, index_type))
2964 {
2965 emit_cmp_and_jump_insns (index,
2966 convert_modes
2967 (mode, imode,
2968 expand_expr (node->high, NULL_RTX,
2969 VOIDmode, 0),
2970 unsignedp),
2971 LT, NULL_RTX, mode, unsignedp,
2972 label_rtx (node->left->code_label));
2973 emit_case_nodes (index, node->right, default_label, index_type);
2974 }
2975
2976 /* If both children are single-valued cases with no
2977 children, finish up all the work. This way, we can save
2978 one ordered comparison. */
2979 else if (tree_int_cst_equal (node->right->low, node->right->high)
2980 && node->right->left == 0
2981 && node->right->right == 0
2982 && tree_int_cst_equal (node->left->low, node->left->high)
2983 && node->left->left == 0
2984 && node->left->right == 0)
2985 {
2986 /* Neither node is bounded. First distinguish the two sides;
2987 then emit the code for one side at a time. */
2988
2989 /* See if the value matches what the right hand side
2990 wants. */
2991 do_jump_if_equal (index,
2992 convert_modes (mode, imode,
2993 expand_expr (node->right->low,
2994 NULL_RTX,
2995 VOIDmode, 0),
2996 unsignedp),
2997 label_rtx (node->right->code_label),
2998 unsignedp);
2999
3000 /* See if the value matches what the left hand side
3001 wants. */
3002 do_jump_if_equal (index,
3003 convert_modes (mode, imode,
3004 expand_expr (node->left->low,
3005 NULL_RTX,
3006 VOIDmode, 0),
3007 unsignedp),
3008 label_rtx (node->left->code_label),
3009 unsignedp);
3010 }
3011
3012 else
3013 {
3014 /* Neither node is bounded. First distinguish the two sides;
3015 then emit the code for one side at a time. */
3016
3017 tree test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
3018
3019 /* See if the value is on the right. */
3020 emit_cmp_and_jump_insns (index,
3021 convert_modes
3022 (mode, imode,
3023 expand_expr (node->high, NULL_RTX,
3024 VOIDmode, 0),
3025 unsignedp),
3026 GT, NULL_RTX, mode, unsignedp,
3027 label_rtx (test_label));
3028
3029 /* Value must be on the left.
3030 Handle the left-hand subtree. */
3031 emit_case_nodes (index, node->left, default_label, index_type);
3032 /* If left-hand subtree does nothing,
3033 go to default. */
3034 emit_jump (default_label);
3035
3036 /* Code branches here for the right-hand subtree. */
3037 expand_label (test_label);
3038 emit_case_nodes (index, node->right, default_label, index_type);
3039 }
3040 }
3041
3042 else if (node->right != 0 && node->left == 0)
3043 {
3044 /* Here we have a right child but no left so we issue a conditional
3045 branch to default and process the right child.
3046
3047 Omit the conditional branch to default if the right child
3048 does not have any children and is single valued; it would
3049 cost too much space to save so little time. */
3050
3051 if (node->right->right || node->right->left
3052 || !tree_int_cst_equal (node->right->low, node->right->high))
3053 {
3054 if (!node_has_low_bound (node, index_type))
3055 {
3056 emit_cmp_and_jump_insns (index,
3057 convert_modes
3058 (mode, imode,
3059 expand_expr (node->high, NULL_RTX,
3060 VOIDmode, 0),
3061 unsignedp),
3062 LT, NULL_RTX, mode, unsignedp,
3063 default_label);
3064 }
3065
3066 emit_case_nodes (index, node->right, default_label, index_type);
3067 }
3068 else
3069 /* We cannot process node->right normally
3070 since we haven't ruled out the numbers less than
3071 this node's value. So handle node->right explicitly. */
3072 do_jump_if_equal (index,
3073 convert_modes
3074 (mode, imode,
3075 expand_expr (node->right->low, NULL_RTX,
3076 VOIDmode, 0),
3077 unsignedp),
3078 label_rtx (node->right->code_label), unsignedp);
3079 }
3080
3081 else if (node->right == 0 && node->left != 0)
3082 {
3083 /* Just one subtree, on the left. */
3084 if (node->left->left || node->left->right
3085 || !tree_int_cst_equal (node->left->low, node->left->high))
3086 {
3087 if (!node_has_high_bound (node, index_type))
3088 {
3089 emit_cmp_and_jump_insns (index,
3090 convert_modes
3091 (mode, imode,
3092 expand_expr (node->high, NULL_RTX,
3093 VOIDmode, 0),
3094 unsignedp),
3095 GT, NULL_RTX, mode, unsignedp,
3096 default_label);
3097 }
3098
3099 emit_case_nodes (index, node->left, default_label, index_type);
3100 }
3101 else
3102 /* We cannot process node->left normally
3103 since we haven't ruled out the numbers less than
3104 this node's value. So handle node->left explicitly. */
3105 do_jump_if_equal (index,
3106 convert_modes
3107 (mode, imode,
3108 expand_expr (node->left->low, NULL_RTX,
3109 VOIDmode, 0),
3110 unsignedp),
3111 label_rtx (node->left->code_label), unsignedp);
3112 }
3113 }
3114 else
3115 {
3116 /* Node is a range. These cases are very similar to those for a single
3117 value, except that we do not start by testing whether this node
3118 is the one to branch to. */
3119
3120 if (node->right != 0 && node->left != 0)
3121 {
3122 /* Node has subtrees on both sides.
3123 If the right-hand subtree is bounded,
3124 test for it first, since we can go straight there.
3125 Otherwise, we need to make a branch in the control structure,
3126 then handle the two subtrees. */
3127 tree test_label = 0;
3128
3129 if (node_is_bounded (node->right, index_type))
3130 /* Right hand node is fully bounded so we can eliminate any
3131 testing and branch directly to the target code. */
3132 emit_cmp_and_jump_insns (index,
3133 convert_modes
3134 (mode, imode,
3135 expand_expr (node->high, NULL_RTX,
3136 VOIDmode, 0),
3137 unsignedp),
3138 GT, NULL_RTX, mode, unsignedp,
3139 label_rtx (node->right->code_label));
3140 else
3141 {
3142 /* Right hand node requires testing.
3143 Branch to a label where we will handle it later. */
3144
3145 test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
3146 emit_cmp_and_jump_insns (index,
3147 convert_modes
3148 (mode, imode,
3149 expand_expr (node->high, NULL_RTX,
3150 VOIDmode, 0),
3151 unsignedp),
3152 GT, NULL_RTX, mode, unsignedp,
3153 label_rtx (test_label));
3154 }
3155
3156 /* Value belongs to this node or to the left-hand subtree. */
3157
3158 emit_cmp_and_jump_insns (index,
3159 convert_modes
3160 (mode, imode,
3161 expand_expr (node->low, NULL_RTX,
3162 VOIDmode, 0),
3163 unsignedp),
3164 GE, NULL_RTX, mode, unsignedp,
3165 label_rtx (node->code_label));
3166
3167 /* Handle the left-hand subtree. */
3168 emit_case_nodes (index, node->left, default_label, index_type);
3169
3170 /* If right node had to be handled later, do that now. */
3171
3172 if (test_label)
3173 {
3174 /* If the left-hand subtree fell through,
3175 don't let it fall into the right-hand subtree. */
3176 emit_jump (default_label);
3177
3178 expand_label (test_label);
3179 emit_case_nodes (index, node->right, default_label, index_type);
3180 }
3181 }
3182
3183 else if (node->right != 0 && node->left == 0)
3184 {
3185 /* Deal with values to the left of this node,
3186 if they are possible. */
3187 if (!node_has_low_bound (node, index_type))
3188 {
3189 emit_cmp_and_jump_insns (index,
3190 convert_modes
3191 (mode, imode,
3192 expand_expr (node->low, NULL_RTX,
3193 VOIDmode, 0),
3194 unsignedp),
3195 LT, NULL_RTX, mode, unsignedp,
3196 default_label);
3197 }
3198
3199 /* Value belongs to this node or to the right-hand subtree. */
3200
3201 emit_cmp_and_jump_insns (index,
3202 convert_modes
3203 (mode, imode,
3204 expand_expr (node->high, NULL_RTX,
3205 VOIDmode, 0),
3206 unsignedp),
3207 LE, NULL_RTX, mode, unsignedp,
3208 label_rtx (node->code_label));
3209
3210 emit_case_nodes (index, node->right, default_label, index_type);
3211 }
3212
3213 else if (node->right == 0 && node->left != 0)
3214 {
3215 /* Deal with values to the right of this node,
3216 if they are possible. */
3217 if (!node_has_high_bound (node, index_type))
3218 {
3219 emit_cmp_and_jump_insns (index,
3220 convert_modes
3221 (mode, imode,
3222 expand_expr (node->high, NULL_RTX,
3223 VOIDmode, 0),
3224 unsignedp),
3225 GT, NULL_RTX, mode, unsignedp,
3226 default_label);
3227 }
3228
3229 /* Value belongs to this node or to the left-hand subtree. */
3230
3231 emit_cmp_and_jump_insns (index,
3232 convert_modes
3233 (mode, imode,
3234 expand_expr (node->low, NULL_RTX,
3235 VOIDmode, 0),
3236 unsignedp),
3237 GE, NULL_RTX, mode, unsignedp,
3238 label_rtx (node->code_label));
3239
3240 emit_case_nodes (index, node->left, default_label, index_type);
3241 }
3242
3243 else
3244 {
3245 /* Node has no children so we check low and high bounds to remove
3246 redundant tests. Only one of the bounds can exist,
3247 since otherwise this node is bounded--a case tested already. */
3248 int high_bound = node_has_high_bound (node, index_type);
3249 int low_bound = node_has_low_bound (node, index_type);
3250
3251 if (!high_bound && low_bound)
3252 {
3253 emit_cmp_and_jump_insns (index,
3254 convert_modes
3255 (mode, imode,
3256 expand_expr (node->high, NULL_RTX,
3257 VOIDmode, 0),
3258 unsignedp),
3259 GT, NULL_RTX, mode, unsignedp,
3260 default_label);
3261 }
3262
3263 else if (!low_bound && high_bound)
3264 {
3265 emit_cmp_and_jump_insns (index,
3266 convert_modes
3267 (mode, imode,
3268 expand_expr (node->low, NULL_RTX,
3269 VOIDmode, 0),
3270 unsignedp),
3271 LT, NULL_RTX, mode, unsignedp,
3272 default_label);
3273 }
3274 else if (!low_bound && !high_bound)
3275 {
3276 /* Widen LOW and HIGH to the same width as INDEX. */
3277 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
3278 tree low = build1 (CONVERT_EXPR, type, node->low);
3279 tree high = build1 (CONVERT_EXPR, type, node->high);
3280 rtx low_rtx, new_index, new_bound;
3281
3282 /* Instead of doing two branches, emit one unsigned branch for
3283 (index-low) > (high-low). */
3284 low_rtx = expand_expr (low, NULL_RTX, mode, 0);
3285 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
3286 NULL_RTX, unsignedp,
3287 OPTAB_WIDEN);
3288 new_bound = expand_expr (fold (build2 (MINUS_EXPR, type,
3289 high, low)),
3290 NULL_RTX, mode, 0);
3291
3292 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
3293 mode, 1, default_label);
3294 }
3295
3296 emit_jump (label_rtx (node->code_label));
3297 }
3298 }
3299 }