IA MCU psABI support: changes to libraries
[gcc.git] / gcc / stmt.c
1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
22 The functions whose names start with `expand_' are called by the
23 expander to generate RTL instructions for various kinds of constructs. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29
30 #include "rtl.h"
31 #include "hard-reg-set.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "tree.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "stor-layout.h"
38 #include "tm_p.h"
39 #include "flags.h"
40 #include "except.h"
41 #include "function.h"
42 #include "insn-config.h"
43 #include "expmed.h"
44 #include "dojump.h"
45 #include "explow.h"
46 #include "calls.h"
47 #include "emit-rtl.h"
48 #include "stmt.h"
49 #include "expr.h"
50 #include "libfuncs.h"
51 #include "recog.h"
52 #include "diagnostic-core.h"
53 #include "output.h"
54 #include "langhooks.h"
55 #include "predict.h"
56 #include "insn-codes.h"
57 #include "optabs.h"
58 #include "target.h"
59 #include "cfganal.h"
60 #include "basic-block.h"
61 #include "tree-ssa-alias.h"
62 #include "internal-fn.h"
63 #include "gimple-expr.h"
64 #include "gimple.h"
65 #include "regs.h"
66 #include "alloc-pool.h"
67 #include "pretty-print.h"
68 #include "params.h"
69 #include "dumpfile.h"
70 #include "builtins.h"
71
72 \f
73 /* Functions and data structures for expanding case statements. */
74
75 /* Case label structure, used to hold info on labels within case
76 statements. We handle "range" labels; for a single-value label
77 as in C, the high and low limits are the same.
78
79 We start with a vector of case nodes sorted in ascending order, and
80 the default label as the last element in the vector. Before expanding
81 to RTL, we transform this vector into a list linked via the RIGHT
82 fields in the case_node struct. Nodes with higher case values are
83 later in the list.
84
85 Switch statements can be output in three forms. A branch table is
86 used if there are more than a few labels and the labels are dense
87 within the range between the smallest and largest case value. If a
88 branch table is used, no further manipulations are done with the case
89 node chain.
90
91 The alternative to the use of a branch table is to generate a series
92 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
93 and PARENT fields to hold a binary tree. Initially the tree is
94 totally unbalanced, with everything on the right. We balance the tree
95 with nodes on the left having lower case values than the parent
96 and nodes on the right having higher values. We then output the tree
97 in order.
98
99 For very small, suitable switch statements, we can generate a series
100 of simple bit test and branches instead. */
101
102 struct case_node
103 {
104 struct case_node *left; /* Left son in binary tree */
105 struct case_node *right; /* Right son in binary tree; also node chain */
106 struct case_node *parent; /* Parent of node in binary tree */
107 tree low; /* Lowest index value for this label */
108 tree high; /* Highest index value for this label */
109 tree code_label; /* Label to jump to when node matches */
110 int prob; /* Probability of taking this case. */
111 /* Probability of reaching subtree rooted at this node */
112 int subtree_prob;
113 };
114
115 typedef struct case_node case_node;
116 typedef struct case_node *case_node_ptr;
117
118 extern basic_block label_to_block_fn (struct function *, tree);
119 \f
120 static bool check_unique_operand_names (tree, tree, tree);
121 static char *resolve_operand_name_1 (char *, tree, tree, tree);
122 static void balance_case_nodes (case_node_ptr *, case_node_ptr);
123 static int node_has_low_bound (case_node_ptr, tree);
124 static int node_has_high_bound (case_node_ptr, tree);
125 static int node_is_bounded (case_node_ptr, tree);
126 static void emit_case_nodes (rtx, case_node_ptr, rtx_code_label *, int, tree);
127 \f
128 /* Return the rtx-label that corresponds to a LABEL_DECL,
129 creating it if necessary. */
130
131 rtx_insn *
132 label_rtx (tree label)
133 {
134 gcc_assert (TREE_CODE (label) == LABEL_DECL);
135
136 if (!DECL_RTL_SET_P (label))
137 {
138 rtx_code_label *r = gen_label_rtx ();
139 SET_DECL_RTL (label, r);
140 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
141 LABEL_PRESERVE_P (r) = 1;
142 }
143
144 return as_a <rtx_insn *> (DECL_RTL (label));
145 }
146
147 /* As above, but also put it on the forced-reference list of the
148 function that contains it. */
149 rtx_insn *
150 force_label_rtx (tree label)
151 {
152 rtx_insn *ref = label_rtx (label);
153 tree function = decl_function_context (label);
154
155 gcc_assert (function);
156
157 forced_labels = gen_rtx_INSN_LIST (VOIDmode, ref, forced_labels);
158 return ref;
159 }
160
161 /* As label_rtx, but ensures (in check build), that returned value is
162 an existing label (i.e. rtx with code CODE_LABEL). */
163 rtx_code_label *
164 jump_target_rtx (tree label)
165 {
166 return as_a <rtx_code_label *> (label_rtx (label));
167 }
168
169 /* Add an unconditional jump to LABEL as the next sequential instruction. */
170
171 void
172 emit_jump (rtx label)
173 {
174 do_pending_stack_adjust ();
175 emit_jump_insn (gen_jump (label));
176 emit_barrier ();
177 }
178 \f
179 /* Handle goto statements and the labels that they can go to. */
180
181 /* Specify the location in the RTL code of a label LABEL,
182 which is a LABEL_DECL tree node.
183
184 This is used for the kind of label that the user can jump to with a
185 goto statement, and for alternatives of a switch or case statement.
186 RTL labels generated for loops and conditionals don't go through here;
187 they are generated directly at the RTL level, by other functions below.
188
189 Note that this has nothing to do with defining label *names*.
190 Languages vary in how they do that and what that even means. */
191
192 void
193 expand_label (tree label)
194 {
195 rtx_code_label *label_r = jump_target_rtx (label);
196
197 do_pending_stack_adjust ();
198 emit_label (label_r);
199 if (DECL_NAME (label))
200 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
201
202 if (DECL_NONLOCAL (label))
203 {
204 expand_builtin_setjmp_receiver (NULL);
205 nonlocal_goto_handler_labels
206 = gen_rtx_INSN_LIST (VOIDmode, label_r,
207 nonlocal_goto_handler_labels);
208 }
209
210 if (FORCED_LABEL (label))
211 forced_labels = gen_rtx_INSN_LIST (VOIDmode, label_r, forced_labels);
212
213 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
214 maybe_set_first_label_num (label_r);
215 }
216 \f
217 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
218 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
219 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
220 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
221 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
222 constraint allows the use of a register operand. And, *IS_INOUT
223 will be true if the operand is read-write, i.e., if it is used as
224 an input as well as an output. If *CONSTRAINT_P is not in
225 canonical form, it will be made canonical. (Note that `+' will be
226 replaced with `=' as part of this process.)
227
228 Returns TRUE if all went well; FALSE if an error occurred. */
229
230 bool
231 parse_output_constraint (const char **constraint_p, int operand_num,
232 int ninputs, int noutputs, bool *allows_mem,
233 bool *allows_reg, bool *is_inout)
234 {
235 const char *constraint = *constraint_p;
236 const char *p;
237
238 /* Assume the constraint doesn't allow the use of either a register
239 or memory. */
240 *allows_mem = false;
241 *allows_reg = false;
242
243 /* Allow the `=' or `+' to not be at the beginning of the string,
244 since it wasn't explicitly documented that way, and there is a
245 large body of code that puts it last. Swap the character to
246 the front, so as not to uglify any place else. */
247 p = strchr (constraint, '=');
248 if (!p)
249 p = strchr (constraint, '+');
250
251 /* If the string doesn't contain an `=', issue an error
252 message. */
253 if (!p)
254 {
255 error ("output operand constraint lacks %<=%>");
256 return false;
257 }
258
259 /* If the constraint begins with `+', then the operand is both read
260 from and written to. */
261 *is_inout = (*p == '+');
262
263 /* Canonicalize the output constraint so that it begins with `='. */
264 if (p != constraint || *is_inout)
265 {
266 char *buf;
267 size_t c_len = strlen (constraint);
268
269 if (p != constraint)
270 warning (0, "output constraint %qc for operand %d "
271 "is not at the beginning",
272 *p, operand_num);
273
274 /* Make a copy of the constraint. */
275 buf = XALLOCAVEC (char, c_len + 1);
276 strcpy (buf, constraint);
277 /* Swap the first character and the `=' or `+'. */
278 buf[p - constraint] = buf[0];
279 /* Make sure the first character is an `='. (Until we do this,
280 it might be a `+'.) */
281 buf[0] = '=';
282 /* Replace the constraint with the canonicalized string. */
283 *constraint_p = ggc_alloc_string (buf, c_len);
284 constraint = *constraint_p;
285 }
286
287 /* Loop through the constraint string. */
288 for (p = constraint + 1; *p; p += CONSTRAINT_LEN (*p, p))
289 switch (*p)
290 {
291 case '+':
292 case '=':
293 error ("operand constraint contains incorrectly positioned "
294 "%<+%> or %<=%>");
295 return false;
296
297 case '%':
298 if (operand_num + 1 == ninputs + noutputs)
299 {
300 error ("%<%%%> constraint used with last operand");
301 return false;
302 }
303 break;
304
305 case '?': case '!': case '*': case '&': case '#':
306 case '$': case '^':
307 case 'E': case 'F': case 'G': case 'H':
308 case 's': case 'i': case 'n':
309 case 'I': case 'J': case 'K': case 'L': case 'M':
310 case 'N': case 'O': case 'P': case ',':
311 break;
312
313 case '0': case '1': case '2': case '3': case '4':
314 case '5': case '6': case '7': case '8': case '9':
315 case '[':
316 error ("matching constraint not valid in output operand");
317 return false;
318
319 case '<': case '>':
320 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
321 excepting those that expand_call created. So match memory
322 and hope. */
323 *allows_mem = true;
324 break;
325
326 case 'g': case 'X':
327 *allows_reg = true;
328 *allows_mem = true;
329 break;
330
331 default:
332 if (!ISALPHA (*p))
333 break;
334 enum constraint_num cn = lookup_constraint (p);
335 if (reg_class_for_constraint (cn) != NO_REGS
336 || insn_extra_address_constraint (cn))
337 *allows_reg = true;
338 else if (insn_extra_memory_constraint (cn))
339 *allows_mem = true;
340 else
341 insn_extra_constraint_allows_reg_mem (cn, allows_reg, allows_mem);
342 break;
343 }
344
345 return true;
346 }
347
348 /* Similar, but for input constraints. */
349
350 bool
351 parse_input_constraint (const char **constraint_p, int input_num,
352 int ninputs, int noutputs, int ninout,
353 const char * const * constraints,
354 bool *allows_mem, bool *allows_reg)
355 {
356 const char *constraint = *constraint_p;
357 const char *orig_constraint = constraint;
358 size_t c_len = strlen (constraint);
359 size_t j;
360 bool saw_match = false;
361
362 /* Assume the constraint doesn't allow the use of either
363 a register or memory. */
364 *allows_mem = false;
365 *allows_reg = false;
366
367 /* Make sure constraint has neither `=', `+', nor '&'. */
368
369 for (j = 0; j < c_len; j += CONSTRAINT_LEN (constraint[j], constraint+j))
370 switch (constraint[j])
371 {
372 case '+': case '=': case '&':
373 if (constraint == orig_constraint)
374 {
375 error ("input operand constraint contains %qc", constraint[j]);
376 return false;
377 }
378 break;
379
380 case '%':
381 if (constraint == orig_constraint
382 && input_num + 1 == ninputs - ninout)
383 {
384 error ("%<%%%> constraint used with last operand");
385 return false;
386 }
387 break;
388
389 case '<': case '>':
390 case '?': case '!': case '*': case '#':
391 case '$': case '^':
392 case 'E': case 'F': case 'G': case 'H':
393 case 's': case 'i': case 'n':
394 case 'I': case 'J': case 'K': case 'L': case 'M':
395 case 'N': case 'O': case 'P': case ',':
396 break;
397
398 /* Whether or not a numeric constraint allows a register is
399 decided by the matching constraint, and so there is no need
400 to do anything special with them. We must handle them in
401 the default case, so that we don't unnecessarily force
402 operands to memory. */
403 case '0': case '1': case '2': case '3': case '4':
404 case '5': case '6': case '7': case '8': case '9':
405 {
406 char *end;
407 unsigned long match;
408
409 saw_match = true;
410
411 match = strtoul (constraint + j, &end, 10);
412 if (match >= (unsigned long) noutputs)
413 {
414 error ("matching constraint references invalid operand number");
415 return false;
416 }
417
418 /* Try and find the real constraint for this dup. Only do this
419 if the matching constraint is the only alternative. */
420 if (*end == '\0'
421 && (j == 0 || (j == 1 && constraint[0] == '%')))
422 {
423 constraint = constraints[match];
424 *constraint_p = constraint;
425 c_len = strlen (constraint);
426 j = 0;
427 /* ??? At the end of the loop, we will skip the first part of
428 the matched constraint. This assumes not only that the
429 other constraint is an output constraint, but also that
430 the '=' or '+' come first. */
431 break;
432 }
433 else
434 j = end - constraint;
435 /* Anticipate increment at end of loop. */
436 j--;
437 }
438 /* Fall through. */
439
440 case 'g': case 'X':
441 *allows_reg = true;
442 *allows_mem = true;
443 break;
444
445 default:
446 if (! ISALPHA (constraint[j]))
447 {
448 error ("invalid punctuation %qc in constraint", constraint[j]);
449 return false;
450 }
451 enum constraint_num cn = lookup_constraint (constraint + j);
452 if (reg_class_for_constraint (cn) != NO_REGS
453 || insn_extra_address_constraint (cn))
454 *allows_reg = true;
455 else if (insn_extra_memory_constraint (cn))
456 *allows_mem = true;
457 else
458 insn_extra_constraint_allows_reg_mem (cn, allows_reg, allows_mem);
459 break;
460 }
461
462 if (saw_match && !*allows_reg)
463 warning (0, "matching constraint does not allow a register");
464
465 return true;
466 }
467
468 /* Return DECL iff there's an overlap between *REGS and DECL, where DECL
469 can be an asm-declared register. Called via walk_tree. */
470
471 static tree
472 decl_overlaps_hard_reg_set_p (tree *declp, int *walk_subtrees ATTRIBUTE_UNUSED,
473 void *data)
474 {
475 tree decl = *declp;
476 const HARD_REG_SET *const regs = (const HARD_REG_SET *) data;
477
478 if (TREE_CODE (decl) == VAR_DECL)
479 {
480 if (DECL_HARD_REGISTER (decl)
481 && REG_P (DECL_RTL (decl))
482 && REGNO (DECL_RTL (decl)) < FIRST_PSEUDO_REGISTER)
483 {
484 rtx reg = DECL_RTL (decl);
485
486 if (overlaps_hard_reg_set_p (*regs, GET_MODE (reg), REGNO (reg)))
487 return decl;
488 }
489 walk_subtrees = 0;
490 }
491 else if (TYPE_P (decl) || TREE_CODE (decl) == PARM_DECL)
492 walk_subtrees = 0;
493 return NULL_TREE;
494 }
495
496 /* If there is an overlap between *REGS and DECL, return the first overlap
497 found. */
498 tree
499 tree_overlaps_hard_reg_set (tree decl, HARD_REG_SET *regs)
500 {
501 return walk_tree (&decl, decl_overlaps_hard_reg_set_p, regs, NULL);
502 }
503
504
505 /* A subroutine of expand_asm_operands. Check that all operand names
506 are unique. Return true if so. We rely on the fact that these names
507 are identifiers, and so have been canonicalized by get_identifier,
508 so all we need are pointer comparisons. */
509
510 static bool
511 check_unique_operand_names (tree outputs, tree inputs, tree labels)
512 {
513 tree i, j, i_name = NULL_TREE;
514
515 for (i = outputs; i ; i = TREE_CHAIN (i))
516 {
517 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
518 if (! i_name)
519 continue;
520
521 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
522 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
523 goto failure;
524 }
525
526 for (i = inputs; i ; i = TREE_CHAIN (i))
527 {
528 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
529 if (! i_name)
530 continue;
531
532 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
533 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
534 goto failure;
535 for (j = outputs; j ; j = TREE_CHAIN (j))
536 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
537 goto failure;
538 }
539
540 for (i = labels; i ; i = TREE_CHAIN (i))
541 {
542 i_name = TREE_PURPOSE (i);
543 if (! i_name)
544 continue;
545
546 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
547 if (simple_cst_equal (i_name, TREE_PURPOSE (j)))
548 goto failure;
549 for (j = inputs; j ; j = TREE_CHAIN (j))
550 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
551 goto failure;
552 }
553
554 return true;
555
556 failure:
557 error ("duplicate asm operand name %qs", TREE_STRING_POINTER (i_name));
558 return false;
559 }
560
561 /* Resolve the names of the operands in *POUTPUTS and *PINPUTS to numbers,
562 and replace the name expansions in STRING and in the constraints to
563 those numbers. This is generally done in the front end while creating
564 the ASM_EXPR generic tree that eventually becomes the GIMPLE_ASM. */
565
566 tree
567 resolve_asm_operand_names (tree string, tree outputs, tree inputs, tree labels)
568 {
569 char *buffer;
570 char *p;
571 const char *c;
572 tree t;
573
574 check_unique_operand_names (outputs, inputs, labels);
575
576 /* Substitute [<name>] in input constraint strings. There should be no
577 named operands in output constraints. */
578 for (t = inputs; t ; t = TREE_CHAIN (t))
579 {
580 c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
581 if (strchr (c, '[') != NULL)
582 {
583 p = buffer = xstrdup (c);
584 while ((p = strchr (p, '[')) != NULL)
585 p = resolve_operand_name_1 (p, outputs, inputs, NULL);
586 TREE_VALUE (TREE_PURPOSE (t))
587 = build_string (strlen (buffer), buffer);
588 free (buffer);
589 }
590 }
591
592 /* Now check for any needed substitutions in the template. */
593 c = TREE_STRING_POINTER (string);
594 while ((c = strchr (c, '%')) != NULL)
595 {
596 if (c[1] == '[')
597 break;
598 else if (ISALPHA (c[1]) && c[2] == '[')
599 break;
600 else
601 {
602 c += 1 + (c[1] == '%');
603 continue;
604 }
605 }
606
607 if (c)
608 {
609 /* OK, we need to make a copy so we can perform the substitutions.
610 Assume that we will not need extra space--we get to remove '['
611 and ']', which means we cannot have a problem until we have more
612 than 999 operands. */
613 buffer = xstrdup (TREE_STRING_POINTER (string));
614 p = buffer + (c - TREE_STRING_POINTER (string));
615
616 while ((p = strchr (p, '%')) != NULL)
617 {
618 if (p[1] == '[')
619 p += 1;
620 else if (ISALPHA (p[1]) && p[2] == '[')
621 p += 2;
622 else
623 {
624 p += 1 + (p[1] == '%');
625 continue;
626 }
627
628 p = resolve_operand_name_1 (p, outputs, inputs, labels);
629 }
630
631 string = build_string (strlen (buffer), buffer);
632 free (buffer);
633 }
634
635 return string;
636 }
637
638 /* A subroutine of resolve_operand_names. P points to the '[' for a
639 potential named operand of the form [<name>]. In place, replace
640 the name and brackets with a number. Return a pointer to the
641 balance of the string after substitution. */
642
643 static char *
644 resolve_operand_name_1 (char *p, tree outputs, tree inputs, tree labels)
645 {
646 char *q;
647 int op;
648 tree t;
649
650 /* Collect the operand name. */
651 q = strchr (++p, ']');
652 if (!q)
653 {
654 error ("missing close brace for named operand");
655 return strchr (p, '\0');
656 }
657 *q = '\0';
658
659 /* Resolve the name to a number. */
660 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
661 {
662 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
663 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
664 goto found;
665 }
666 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
667 {
668 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
669 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
670 goto found;
671 }
672 for (t = labels; t ; t = TREE_CHAIN (t), op++)
673 {
674 tree name = TREE_PURPOSE (t);
675 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
676 goto found;
677 }
678
679 error ("undefined named operand %qs", identifier_to_locale (p));
680 op = 0;
681
682 found:
683 /* Replace the name with the number. Unfortunately, not all libraries
684 get the return value of sprintf correct, so search for the end of the
685 generated string by hand. */
686 sprintf (--p, "%d", op);
687 p = strchr (p, '\0');
688
689 /* Verify the no extra buffer space assumption. */
690 gcc_assert (p <= q);
691
692 /* Shift the rest of the buffer down to fill the gap. */
693 memmove (p, q + 1, strlen (q + 1) + 1);
694
695 return p;
696 }
697 \f
698
699 /* Generate RTL to return directly from the current function.
700 (That is, we bypass any return value.) */
701
702 void
703 expand_naked_return (void)
704 {
705 rtx_code_label *end_label;
706
707 clear_pending_stack_adjust ();
708 do_pending_stack_adjust ();
709
710 end_label = naked_return_label;
711 if (end_label == 0)
712 end_label = naked_return_label = gen_label_rtx ();
713
714 emit_jump (end_label);
715 }
716
717 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. PROB
718 is the probability of jumping to LABEL. */
719 static void
720 do_jump_if_equal (machine_mode mode, rtx op0, rtx op1, rtx_code_label *label,
721 int unsignedp, int prob)
722 {
723 gcc_assert (prob <= REG_BR_PROB_BASE);
724 do_compare_rtx_and_jump (op0, op1, EQ, unsignedp, mode,
725 NULL_RTX, NULL, label, prob);
726 }
727 \f
728 /* Do the insertion of a case label into case_list. The labels are
729 fed to us in descending order from the sorted vector of case labels used
730 in the tree part of the middle end. So the list we construct is
731 sorted in ascending order.
732
733 LABEL is the case label to be inserted. LOW and HIGH are the bounds
734 against which the index is compared to jump to LABEL and PROB is the
735 estimated probability LABEL is reached from the switch statement. */
736
737 static struct case_node *
738 add_case_node (struct case_node *head, tree low, tree high,
739 tree label, int prob, pool_allocator<case_node> &case_node_pool)
740 {
741 struct case_node *r;
742
743 gcc_checking_assert (low);
744 gcc_checking_assert (high && (TREE_TYPE (low) == TREE_TYPE (high)));
745
746 /* Add this label to the chain. */
747 r = case_node_pool.allocate ();
748 r->low = low;
749 r->high = high;
750 r->code_label = label;
751 r->parent = r->left = NULL;
752 r->prob = prob;
753 r->subtree_prob = prob;
754 r->right = head;
755 return r;
756 }
757 \f
758 /* Dump ROOT, a list or tree of case nodes, to file. */
759
760 static void
761 dump_case_nodes (FILE *f, struct case_node *root,
762 int indent_step, int indent_level)
763 {
764 if (root == 0)
765 return;
766 indent_level++;
767
768 dump_case_nodes (f, root->left, indent_step, indent_level);
769
770 fputs (";; ", f);
771 fprintf (f, "%*s", indent_step * indent_level, "");
772 print_dec (root->low, f, TYPE_SIGN (TREE_TYPE (root->low)));
773 if (!tree_int_cst_equal (root->low, root->high))
774 {
775 fprintf (f, " ... ");
776 print_dec (root->high, f, TYPE_SIGN (TREE_TYPE (root->high)));
777 }
778 fputs ("\n", f);
779
780 dump_case_nodes (f, root->right, indent_step, indent_level);
781 }
782 \f
783 #ifndef HAVE_casesi
784 #define HAVE_casesi 0
785 #endif
786
787 /* Return the smallest number of different values for which it is best to use a
788 jump-table instead of a tree of conditional branches. */
789
790 static unsigned int
791 case_values_threshold (void)
792 {
793 unsigned int threshold = PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD);
794
795 if (threshold == 0)
796 threshold = targetm.case_values_threshold ();
797
798 return threshold;
799 }
800
801 /* Return true if a switch should be expanded as a decision tree.
802 RANGE is the difference between highest and lowest case.
803 UNIQ is number of unique case node targets, not counting the default case.
804 COUNT is the number of comparisons needed, not counting the default case. */
805
806 static bool
807 expand_switch_as_decision_tree_p (tree range,
808 unsigned int uniq ATTRIBUTE_UNUSED,
809 unsigned int count)
810 {
811 int max_ratio;
812
813 /* If neither casesi or tablejump is available, or flag_jump_tables
814 over-ruled us, we really have no choice. */
815 if (!HAVE_casesi && !HAVE_tablejump)
816 return true;
817 if (!flag_jump_tables)
818 return true;
819 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
820 if (flag_pic)
821 return true;
822 #endif
823
824 /* If the switch is relatively small such that the cost of one
825 indirect jump on the target are higher than the cost of a
826 decision tree, go with the decision tree.
827
828 If range of values is much bigger than number of values,
829 or if it is too large to represent in a HOST_WIDE_INT,
830 make a sequence of conditional branches instead of a dispatch.
831
832 The definition of "much bigger" depends on whether we are
833 optimizing for size or for speed. If the former, the maximum
834 ratio range/count = 3, because this was found to be the optimal
835 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
836 10 is much older, and was probably selected after an extensive
837 benchmarking investigation on numerous platforms. Or maybe it
838 just made sense to someone at some point in the history of GCC,
839 who knows... */
840 max_ratio = optimize_insn_for_size_p () ? 3 : 10;
841 if (count < case_values_threshold ()
842 || ! tree_fits_uhwi_p (range)
843 || compare_tree_int (range, max_ratio * count) > 0)
844 return true;
845
846 return false;
847 }
848
849 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
850 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
851 DEFAULT_PROB is the estimated probability that it jumps to
852 DEFAULT_LABEL.
853
854 We generate a binary decision tree to select the appropriate target
855 code. This is done as follows:
856
857 If the index is a short or char that we do not have
858 an insn to handle comparisons directly, convert it to
859 a full integer now, rather than letting each comparison
860 generate the conversion.
861
862 Load the index into a register.
863
864 The list of cases is rearranged into a binary tree,
865 nearly optimal assuming equal probability for each case.
866
867 The tree is transformed into RTL, eliminating redundant
868 test conditions at the same time.
869
870 If program flow could reach the end of the decision tree
871 an unconditional jump to the default code is emitted.
872
873 The above process is unaware of the CFG. The caller has to fix up
874 the CFG itself. This is done in cfgexpand.c. */
875
876 static void
877 emit_case_decision_tree (tree index_expr, tree index_type,
878 case_node_ptr case_list, rtx_code_label *default_label,
879 int default_prob)
880 {
881 rtx index = expand_normal (index_expr);
882
883 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
884 && ! have_insn_for (COMPARE, GET_MODE (index)))
885 {
886 int unsignedp = TYPE_UNSIGNED (index_type);
887 machine_mode wider_mode;
888 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
889 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
890 if (have_insn_for (COMPARE, wider_mode))
891 {
892 index = convert_to_mode (wider_mode, index, unsignedp);
893 break;
894 }
895 }
896
897 do_pending_stack_adjust ();
898
899 if (MEM_P (index))
900 {
901 index = copy_to_reg (index);
902 if (TREE_CODE (index_expr) == SSA_NAME)
903 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (index_expr), index);
904 }
905
906 balance_case_nodes (&case_list, NULL);
907
908 if (dump_file && (dump_flags & TDF_DETAILS))
909 {
910 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
911 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
912 dump_case_nodes (dump_file, case_list, indent_step, 0);
913 }
914
915 emit_case_nodes (index, case_list, default_label, default_prob, index_type);
916 if (default_label)
917 emit_jump (default_label);
918 }
919
920 /* Return the sum of probabilities of outgoing edges of basic block BB. */
921
922 static int
923 get_outgoing_edge_probs (basic_block bb)
924 {
925 edge e;
926 edge_iterator ei;
927 int prob_sum = 0;
928 if (!bb)
929 return 0;
930 FOR_EACH_EDGE (e, ei, bb->succs)
931 prob_sum += e->probability;
932 return prob_sum;
933 }
934
935 /* Computes the conditional probability of jumping to a target if the branch
936 instruction is executed.
937 TARGET_PROB is the estimated probability of jumping to a target relative
938 to some basic block BB.
939 BASE_PROB is the probability of reaching the branch instruction relative
940 to the same basic block BB. */
941
942 static inline int
943 conditional_probability (int target_prob, int base_prob)
944 {
945 if (base_prob > 0)
946 {
947 gcc_assert (target_prob >= 0);
948 gcc_assert (target_prob <= base_prob);
949 return GCOV_COMPUTE_SCALE (target_prob, base_prob);
950 }
951 return -1;
952 }
953
954 /* Generate a dispatch tabler, switching on INDEX_EXPR and jumping to
955 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
956 MINVAL, MAXVAL, and RANGE are the extrema and range of the case
957 labels in CASE_LIST. STMT_BB is the basic block containing the statement.
958
959 First, a jump insn is emitted. First we try "casesi". If that
960 fails, try "tablejump". A target *must* have one of them (or both).
961
962 Then, a table with the target labels is emitted.
963
964 The process is unaware of the CFG. The caller has to fix up
965 the CFG itself. This is done in cfgexpand.c. */
966
967 static void
968 emit_case_dispatch_table (tree index_expr, tree index_type,
969 struct case_node *case_list, rtx default_label,
970 tree minval, tree maxval, tree range,
971 basic_block stmt_bb)
972 {
973 int i, ncases;
974 struct case_node *n;
975 rtx *labelvec;
976 rtx_insn *fallback_label = label_rtx (case_list->code_label);
977 rtx_code_label *table_label = gen_label_rtx ();
978 bool has_gaps = false;
979 edge default_edge = stmt_bb ? EDGE_SUCC (stmt_bb, 0) : NULL;
980 int default_prob = default_edge ? default_edge->probability : 0;
981 int base = get_outgoing_edge_probs (stmt_bb);
982 bool try_with_tablejump = false;
983
984 int new_default_prob = conditional_probability (default_prob,
985 base);
986
987 if (! try_casesi (index_type, index_expr, minval, range,
988 table_label, default_label, fallback_label,
989 new_default_prob))
990 {
991 /* Index jumptables from zero for suitable values of minval to avoid
992 a subtraction. For the rationale see:
993 "http://gcc.gnu.org/ml/gcc-patches/2001-10/msg01234.html". */
994 if (optimize_insn_for_speed_p ()
995 && compare_tree_int (minval, 0) > 0
996 && compare_tree_int (minval, 3) < 0)
997 {
998 minval = build_int_cst (index_type, 0);
999 range = maxval;
1000 has_gaps = true;
1001 }
1002 try_with_tablejump = true;
1003 }
1004
1005 /* Get table of labels to jump to, in order of case index. */
1006
1007 ncases = tree_to_shwi (range) + 1;
1008 labelvec = XALLOCAVEC (rtx, ncases);
1009 memset (labelvec, 0, ncases * sizeof (rtx));
1010
1011 for (n = case_list; n; n = n->right)
1012 {
1013 /* Compute the low and high bounds relative to the minimum
1014 value since that should fit in a HOST_WIDE_INT while the
1015 actual values may not. */
1016 HOST_WIDE_INT i_low
1017 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
1018 n->low, minval));
1019 HOST_WIDE_INT i_high
1020 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
1021 n->high, minval));
1022 HOST_WIDE_INT i;
1023
1024 for (i = i_low; i <= i_high; i ++)
1025 labelvec[i]
1026 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
1027 }
1028
1029 /* Fill in the gaps with the default. We may have gaps at
1030 the beginning if we tried to avoid the minval subtraction,
1031 so substitute some label even if the default label was
1032 deemed unreachable. */
1033 if (!default_label)
1034 default_label = fallback_label;
1035 for (i = 0; i < ncases; i++)
1036 if (labelvec[i] == 0)
1037 {
1038 has_gaps = true;
1039 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
1040 }
1041
1042 if (has_gaps)
1043 {
1044 /* There is at least one entry in the jump table that jumps
1045 to default label. The default label can either be reached
1046 through the indirect jump or the direct conditional jump
1047 before that. Split the probability of reaching the
1048 default label among these two jumps. */
1049 new_default_prob = conditional_probability (default_prob/2,
1050 base);
1051 default_prob /= 2;
1052 base -= default_prob;
1053 }
1054 else
1055 {
1056 base -= default_prob;
1057 default_prob = 0;
1058 }
1059
1060 if (default_edge)
1061 default_edge->probability = default_prob;
1062
1063 /* We have altered the probability of the default edge. So the probabilities
1064 of all other edges need to be adjusted so that it sums up to
1065 REG_BR_PROB_BASE. */
1066 if (base)
1067 {
1068 edge e;
1069 edge_iterator ei;
1070 FOR_EACH_EDGE (e, ei, stmt_bb->succs)
1071 e->probability = GCOV_COMPUTE_SCALE (e->probability, base);
1072 }
1073
1074 if (try_with_tablejump)
1075 {
1076 bool ok = try_tablejump (index_type, index_expr, minval, range,
1077 table_label, default_label, new_default_prob);
1078 gcc_assert (ok);
1079 }
1080 /* Output the table. */
1081 emit_label (table_label);
1082
1083 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
1084 emit_jump_table_data (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
1085 gen_rtx_LABEL_REF (Pmode,
1086 table_label),
1087 gen_rtvec_v (ncases, labelvec),
1088 const0_rtx, const0_rtx));
1089 else
1090 emit_jump_table_data (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
1091 gen_rtvec_v (ncases, labelvec)));
1092
1093 /* Record no drop-through after the table. */
1094 emit_barrier ();
1095 }
1096
1097 /* Reset the aux field of all outgoing edges of basic block BB. */
1098
1099 static inline void
1100 reset_out_edges_aux (basic_block bb)
1101 {
1102 edge e;
1103 edge_iterator ei;
1104 FOR_EACH_EDGE (e, ei, bb->succs)
1105 e->aux = (void *)0;
1106 }
1107
1108 /* Compute the number of case labels that correspond to each outgoing edge of
1109 STMT. Record this information in the aux field of the edge. */
1110
1111 static inline void
1112 compute_cases_per_edge (gswitch *stmt)
1113 {
1114 basic_block bb = gimple_bb (stmt);
1115 reset_out_edges_aux (bb);
1116 int ncases = gimple_switch_num_labels (stmt);
1117 for (int i = ncases - 1; i >= 1; --i)
1118 {
1119 tree elt = gimple_switch_label (stmt, i);
1120 tree lab = CASE_LABEL (elt);
1121 basic_block case_bb = label_to_block_fn (cfun, lab);
1122 edge case_edge = find_edge (bb, case_bb);
1123 case_edge->aux = (void *)((intptr_t)(case_edge->aux) + 1);
1124 }
1125 }
1126
1127 /* Terminate a case (Pascal/Ada) or switch (C) statement
1128 in which ORIG_INDEX is the expression to be tested.
1129 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
1130 type as given in the source before any compiler conversions.
1131 Generate the code to test it and jump to the right place. */
1132
1133 void
1134 expand_case (gswitch *stmt)
1135 {
1136 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
1137 rtx_code_label *default_label = NULL;
1138 unsigned int count, uniq;
1139 int i;
1140 int ncases = gimple_switch_num_labels (stmt);
1141 tree index_expr = gimple_switch_index (stmt);
1142 tree index_type = TREE_TYPE (index_expr);
1143 tree elt;
1144 basic_block bb = gimple_bb (stmt);
1145
1146 /* A list of case labels; it is first built as a list and it may then
1147 be rearranged into a nearly balanced binary tree. */
1148 struct case_node *case_list = 0;
1149
1150 /* A pool for case nodes. */
1151 pool_allocator<case_node> case_node_pool ("struct case_node pool", 100);
1152
1153 /* An ERROR_MARK occurs for various reasons including invalid data type.
1154 ??? Can this still happen, with GIMPLE and all? */
1155 if (index_type == error_mark_node)
1156 return;
1157
1158 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
1159 expressions being INTEGER_CST. */
1160 gcc_assert (TREE_CODE (index_expr) != INTEGER_CST);
1161
1162
1163 do_pending_stack_adjust ();
1164
1165 /* Find the default case target label. */
1166 default_label = jump_target_rtx
1167 (CASE_LABEL (gimple_switch_default_label (stmt)));
1168 edge default_edge = EDGE_SUCC (bb, 0);
1169 int default_prob = default_edge->probability;
1170
1171 /* Get upper and lower bounds of case values. */
1172 elt = gimple_switch_label (stmt, 1);
1173 minval = fold_convert (index_type, CASE_LOW (elt));
1174 elt = gimple_switch_label (stmt, ncases - 1);
1175 if (CASE_HIGH (elt))
1176 maxval = fold_convert (index_type, CASE_HIGH (elt));
1177 else
1178 maxval = fold_convert (index_type, CASE_LOW (elt));
1179
1180 /* Compute span of values. */
1181 range = fold_build2 (MINUS_EXPR, index_type, maxval, minval);
1182
1183 /* Listify the labels queue and gather some numbers to decide
1184 how to expand this switch(). */
1185 uniq = 0;
1186 count = 0;
1187 hash_set<tree> seen_labels;
1188 compute_cases_per_edge (stmt);
1189
1190 for (i = ncases - 1; i >= 1; --i)
1191 {
1192 elt = gimple_switch_label (stmt, i);
1193 tree low = CASE_LOW (elt);
1194 gcc_assert (low);
1195 tree high = CASE_HIGH (elt);
1196 gcc_assert (! high || tree_int_cst_lt (low, high));
1197 tree lab = CASE_LABEL (elt);
1198
1199 /* Count the elements.
1200 A range counts double, since it requires two compares. */
1201 count++;
1202 if (high)
1203 count++;
1204
1205 /* If we have not seen this label yet, then increase the
1206 number of unique case node targets seen. */
1207 if (!seen_labels.add (lab))
1208 uniq++;
1209
1210 /* The bounds on the case range, LOW and HIGH, have to be converted
1211 to case's index type TYPE. Note that the original type of the
1212 case index in the source code is usually "lost" during
1213 gimplification due to type promotion, but the case labels retain the
1214 original type. Make sure to drop overflow flags. */
1215 low = fold_convert (index_type, low);
1216 if (TREE_OVERFLOW (low))
1217 low = wide_int_to_tree (index_type, low);
1218
1219 /* The canonical from of a case label in GIMPLE is that a simple case
1220 has an empty CASE_HIGH. For the casesi and tablejump expanders,
1221 the back ends want simple cases to have high == low. */
1222 if (! high)
1223 high = low;
1224 high = fold_convert (index_type, high);
1225 if (TREE_OVERFLOW (high))
1226 high = wide_int_to_tree (index_type, high);
1227
1228 basic_block case_bb = label_to_block_fn (cfun, lab);
1229 edge case_edge = find_edge (bb, case_bb);
1230 case_list = add_case_node (
1231 case_list, low, high, lab,
1232 case_edge->probability / (intptr_t)(case_edge->aux),
1233 case_node_pool);
1234 }
1235 reset_out_edges_aux (bb);
1236
1237 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
1238 destination, such as one with a default case only.
1239 It also removes cases that are out of range for the switch
1240 type, so we should never get a zero here. */
1241 gcc_assert (count > 0);
1242
1243 rtx_insn *before_case = get_last_insn ();
1244
1245 /* Decide how to expand this switch.
1246 The two options at this point are a dispatch table (casesi or
1247 tablejump) or a decision tree. */
1248
1249 if (expand_switch_as_decision_tree_p (range, uniq, count))
1250 emit_case_decision_tree (index_expr, index_type,
1251 case_list, default_label,
1252 default_prob);
1253 else
1254 emit_case_dispatch_table (index_expr, index_type,
1255 case_list, default_label,
1256 minval, maxval, range, bb);
1257
1258 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1259
1260 free_temp_slots ();
1261 }
1262
1263 /* Expand the dispatch to a short decrement chain if there are few cases
1264 to dispatch to. Likewise if neither casesi nor tablejump is available,
1265 or if flag_jump_tables is set. Otherwise, expand as a casesi or a
1266 tablejump. The index mode is always the mode of integer_type_node.
1267 Trap if no case matches the index.
1268
1269 DISPATCH_INDEX is the index expression to switch on. It should be a
1270 memory or register operand.
1271
1272 DISPATCH_TABLE is a set of case labels. The set should be sorted in
1273 ascending order, be contiguous, starting with value 0, and contain only
1274 single-valued case labels. */
1275
1276 void
1277 expand_sjlj_dispatch_table (rtx dispatch_index,
1278 vec<tree> dispatch_table)
1279 {
1280 tree index_type = integer_type_node;
1281 machine_mode index_mode = TYPE_MODE (index_type);
1282
1283 int ncases = dispatch_table.length ();
1284
1285 do_pending_stack_adjust ();
1286 rtx_insn *before_case = get_last_insn ();
1287
1288 /* Expand as a decrement-chain if there are 5 or fewer dispatch
1289 labels. This covers more than 98% of the cases in libjava,
1290 and seems to be a reasonable compromise between the "old way"
1291 of expanding as a decision tree or dispatch table vs. the "new
1292 way" with decrement chain or dispatch table. */
1293 if (dispatch_table.length () <= 5
1294 || (!HAVE_casesi && !HAVE_tablejump)
1295 || !flag_jump_tables)
1296 {
1297 /* Expand the dispatch as a decrement chain:
1298
1299 "switch(index) {case 0: do_0; case 1: do_1; ...; case N: do_N;}"
1300
1301 ==>
1302
1303 if (index == 0) do_0; else index--;
1304 if (index == 0) do_1; else index--;
1305 ...
1306 if (index == 0) do_N; else index--;
1307
1308 This is more efficient than a dispatch table on most machines.
1309 The last "index--" is redundant but the code is trivially dead
1310 and will be cleaned up by later passes. */
1311 rtx index = copy_to_mode_reg (index_mode, dispatch_index);
1312 rtx zero = CONST0_RTX (index_mode);
1313 for (int i = 0; i < ncases; i++)
1314 {
1315 tree elt = dispatch_table[i];
1316 rtx_code_label *lab = jump_target_rtx (CASE_LABEL (elt));
1317 do_jump_if_equal (index_mode, index, zero, lab, 0, -1);
1318 force_expand_binop (index_mode, sub_optab,
1319 index, CONST1_RTX (index_mode),
1320 index, 0, OPTAB_DIRECT);
1321 }
1322 }
1323 else
1324 {
1325 /* Similar to expand_case, but much simpler. */
1326 struct case_node *case_list = 0;
1327 pool_allocator<case_node> case_node_pool ("struct sjlj_case pool",
1328 ncases);
1329 tree index_expr = make_tree (index_type, dispatch_index);
1330 tree minval = build_int_cst (index_type, 0);
1331 tree maxval = CASE_LOW (dispatch_table.last ());
1332 tree range = maxval;
1333 rtx_code_label *default_label = gen_label_rtx ();
1334
1335 for (int i = ncases - 1; i >= 0; --i)
1336 {
1337 tree elt = dispatch_table[i];
1338 tree low = CASE_LOW (elt);
1339 tree lab = CASE_LABEL (elt);
1340 case_list = add_case_node (case_list, low, low, lab, 0, case_node_pool);
1341 }
1342
1343 emit_case_dispatch_table (index_expr, index_type,
1344 case_list, default_label,
1345 minval, maxval, range,
1346 BLOCK_FOR_INSN (before_case));
1347 emit_label (default_label);
1348 }
1349
1350 /* Dispatching something not handled? Trap! */
1351 expand_builtin_trap ();
1352
1353 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1354
1355 free_temp_slots ();
1356 }
1357
1358 \f
1359 /* Take an ordered list of case nodes
1360 and transform them into a near optimal binary tree,
1361 on the assumption that any target code selection value is as
1362 likely as any other.
1363
1364 The transformation is performed by splitting the ordered
1365 list into two equal sections plus a pivot. The parts are
1366 then attached to the pivot as left and right branches. Each
1367 branch is then transformed recursively. */
1368
1369 static void
1370 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
1371 {
1372 case_node_ptr np;
1373
1374 np = *head;
1375 if (np)
1376 {
1377 int i = 0;
1378 int ranges = 0;
1379 case_node_ptr *npp;
1380 case_node_ptr left;
1381
1382 /* Count the number of entries on branch. Also count the ranges. */
1383
1384 while (np)
1385 {
1386 if (!tree_int_cst_equal (np->low, np->high))
1387 ranges++;
1388
1389 i++;
1390 np = np->right;
1391 }
1392
1393 if (i > 2)
1394 {
1395 /* Split this list if it is long enough for that to help. */
1396 npp = head;
1397 left = *npp;
1398
1399 /* If there are just three nodes, split at the middle one. */
1400 if (i == 3)
1401 npp = &(*npp)->right;
1402 else
1403 {
1404 /* Find the place in the list that bisects the list's total cost,
1405 where ranges count as 2.
1406 Here I gets half the total cost. */
1407 i = (i + ranges + 1) / 2;
1408 while (1)
1409 {
1410 /* Skip nodes while their cost does not reach that amount. */
1411 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
1412 i--;
1413 i--;
1414 if (i <= 0)
1415 break;
1416 npp = &(*npp)->right;
1417 }
1418 }
1419 *head = np = *npp;
1420 *npp = 0;
1421 np->parent = parent;
1422 np->left = left;
1423
1424 /* Optimize each of the two split parts. */
1425 balance_case_nodes (&np->left, np);
1426 balance_case_nodes (&np->right, np);
1427 np->subtree_prob = np->prob;
1428 np->subtree_prob += np->left->subtree_prob;
1429 np->subtree_prob += np->right->subtree_prob;
1430 }
1431 else
1432 {
1433 /* Else leave this branch as one level,
1434 but fill in `parent' fields. */
1435 np = *head;
1436 np->parent = parent;
1437 np->subtree_prob = np->prob;
1438 for (; np->right; np = np->right)
1439 {
1440 np->right->parent = np;
1441 (*head)->subtree_prob += np->right->subtree_prob;
1442 }
1443 }
1444 }
1445 }
1446 \f
1447 /* Search the parent sections of the case node tree
1448 to see if a test for the lower bound of NODE would be redundant.
1449 INDEX_TYPE is the type of the index expression.
1450
1451 The instructions to generate the case decision tree are
1452 output in the same order as nodes are processed so it is
1453 known that if a parent node checks the range of the current
1454 node minus one that the current node is bounded at its lower
1455 span. Thus the test would be redundant. */
1456
1457 static int
1458 node_has_low_bound (case_node_ptr node, tree index_type)
1459 {
1460 tree low_minus_one;
1461 case_node_ptr pnode;
1462
1463 /* If the lower bound of this node is the lowest value in the index type,
1464 we need not test it. */
1465
1466 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
1467 return 1;
1468
1469 /* If this node has a left branch, the value at the left must be less
1470 than that at this node, so it cannot be bounded at the bottom and
1471 we need not bother testing any further. */
1472
1473 if (node->left)
1474 return 0;
1475
1476 low_minus_one = fold_build2 (MINUS_EXPR, TREE_TYPE (node->low),
1477 node->low,
1478 build_int_cst (TREE_TYPE (node->low), 1));
1479
1480 /* If the subtraction above overflowed, we can't verify anything.
1481 Otherwise, look for a parent that tests our value - 1. */
1482
1483 if (! tree_int_cst_lt (low_minus_one, node->low))
1484 return 0;
1485
1486 for (pnode = node->parent; pnode; pnode = pnode->parent)
1487 if (tree_int_cst_equal (low_minus_one, pnode->high))
1488 return 1;
1489
1490 return 0;
1491 }
1492
1493 /* Search the parent sections of the case node tree
1494 to see if a test for the upper bound of NODE would be redundant.
1495 INDEX_TYPE is the type of the index expression.
1496
1497 The instructions to generate the case decision tree are
1498 output in the same order as nodes are processed so it is
1499 known that if a parent node checks the range of the current
1500 node plus one that the current node is bounded at its upper
1501 span. Thus the test would be redundant. */
1502
1503 static int
1504 node_has_high_bound (case_node_ptr node, tree index_type)
1505 {
1506 tree high_plus_one;
1507 case_node_ptr pnode;
1508
1509 /* If there is no upper bound, obviously no test is needed. */
1510
1511 if (TYPE_MAX_VALUE (index_type) == NULL)
1512 return 1;
1513
1514 /* If the upper bound of this node is the highest value in the type
1515 of the index expression, we need not test against it. */
1516
1517 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
1518 return 1;
1519
1520 /* If this node has a right branch, the value at the right must be greater
1521 than that at this node, so it cannot be bounded at the top and
1522 we need not bother testing any further. */
1523
1524 if (node->right)
1525 return 0;
1526
1527 high_plus_one = fold_build2 (PLUS_EXPR, TREE_TYPE (node->high),
1528 node->high,
1529 build_int_cst (TREE_TYPE (node->high), 1));
1530
1531 /* If the addition above overflowed, we can't verify anything.
1532 Otherwise, look for a parent that tests our value + 1. */
1533
1534 if (! tree_int_cst_lt (node->high, high_plus_one))
1535 return 0;
1536
1537 for (pnode = node->parent; pnode; pnode = pnode->parent)
1538 if (tree_int_cst_equal (high_plus_one, pnode->low))
1539 return 1;
1540
1541 return 0;
1542 }
1543
1544 /* Search the parent sections of the
1545 case node tree to see if both tests for the upper and lower
1546 bounds of NODE would be redundant. */
1547
1548 static int
1549 node_is_bounded (case_node_ptr node, tree index_type)
1550 {
1551 return (node_has_low_bound (node, index_type)
1552 && node_has_high_bound (node, index_type));
1553 }
1554 \f
1555
1556 /* Emit step-by-step code to select a case for the value of INDEX.
1557 The thus generated decision tree follows the form of the
1558 case-node binary tree NODE, whose nodes represent test conditions.
1559 INDEX_TYPE is the type of the index of the switch.
1560
1561 Care is taken to prune redundant tests from the decision tree
1562 by detecting any boundary conditions already checked by
1563 emitted rtx. (See node_has_high_bound, node_has_low_bound
1564 and node_is_bounded, above.)
1565
1566 Where the test conditions can be shown to be redundant we emit
1567 an unconditional jump to the target code. As a further
1568 optimization, the subordinates of a tree node are examined to
1569 check for bounded nodes. In this case conditional and/or
1570 unconditional jumps as a result of the boundary check for the
1571 current node are arranged to target the subordinates associated
1572 code for out of bound conditions on the current node.
1573
1574 We can assume that when control reaches the code generated here,
1575 the index value has already been compared with the parents
1576 of this node, and determined to be on the same side of each parent
1577 as this node is. Thus, if this node tests for the value 51,
1578 and a parent tested for 52, we don't need to consider
1579 the possibility of a value greater than 51. If another parent
1580 tests for the value 50, then this node need not test anything. */
1581
1582 static void
1583 emit_case_nodes (rtx index, case_node_ptr node, rtx_code_label *default_label,
1584 int default_prob, tree index_type)
1585 {
1586 /* If INDEX has an unsigned type, we must make unsigned branches. */
1587 int unsignedp = TYPE_UNSIGNED (index_type);
1588 int probability;
1589 int prob = node->prob, subtree_prob = node->subtree_prob;
1590 machine_mode mode = GET_MODE (index);
1591 machine_mode imode = TYPE_MODE (index_type);
1592
1593 /* Handle indices detected as constant during RTL expansion. */
1594 if (mode == VOIDmode)
1595 mode = imode;
1596
1597 /* See if our parents have already tested everything for us.
1598 If they have, emit an unconditional jump for this node. */
1599 if (node_is_bounded (node, index_type))
1600 emit_jump (label_rtx (node->code_label));
1601
1602 else if (tree_int_cst_equal (node->low, node->high))
1603 {
1604 probability = conditional_probability (prob, subtree_prob + default_prob);
1605 /* Node is single valued. First see if the index expression matches
1606 this node and then check our children, if any. */
1607 do_jump_if_equal (mode, index,
1608 convert_modes (mode, imode,
1609 expand_normal (node->low),
1610 unsignedp),
1611 jump_target_rtx (node->code_label),
1612 unsignedp, probability);
1613 /* Since this case is taken at this point, reduce its weight from
1614 subtree_weight. */
1615 subtree_prob -= prob;
1616 if (node->right != 0 && node->left != 0)
1617 {
1618 /* This node has children on both sides.
1619 Dispatch to one side or the other
1620 by comparing the index value with this node's value.
1621 If one subtree is bounded, check that one first,
1622 so we can avoid real branches in the tree. */
1623
1624 if (node_is_bounded (node->right, index_type))
1625 {
1626 probability = conditional_probability (
1627 node->right->prob,
1628 subtree_prob + default_prob);
1629 emit_cmp_and_jump_insns (index,
1630 convert_modes
1631 (mode, imode,
1632 expand_normal (node->high),
1633 unsignedp),
1634 GT, NULL_RTX, mode, unsignedp,
1635 label_rtx (node->right->code_label),
1636 probability);
1637 emit_case_nodes (index, node->left, default_label, default_prob,
1638 index_type);
1639 }
1640
1641 else if (node_is_bounded (node->left, index_type))
1642 {
1643 probability = conditional_probability (
1644 node->left->prob,
1645 subtree_prob + default_prob);
1646 emit_cmp_and_jump_insns (index,
1647 convert_modes
1648 (mode, imode,
1649 expand_normal (node->high),
1650 unsignedp),
1651 LT, NULL_RTX, mode, unsignedp,
1652 label_rtx (node->left->code_label),
1653 probability);
1654 emit_case_nodes (index, node->right, default_label, default_prob,
1655 index_type);
1656 }
1657
1658 /* If both children are single-valued cases with no
1659 children, finish up all the work. This way, we can save
1660 one ordered comparison. */
1661 else if (tree_int_cst_equal (node->right->low, node->right->high)
1662 && node->right->left == 0
1663 && node->right->right == 0
1664 && tree_int_cst_equal (node->left->low, node->left->high)
1665 && node->left->left == 0
1666 && node->left->right == 0)
1667 {
1668 /* Neither node is bounded. First distinguish the two sides;
1669 then emit the code for one side at a time. */
1670
1671 /* See if the value matches what the right hand side
1672 wants. */
1673 probability = conditional_probability (
1674 node->right->prob,
1675 subtree_prob + default_prob);
1676 do_jump_if_equal (mode, index,
1677 convert_modes (mode, imode,
1678 expand_normal (node->right->low),
1679 unsignedp),
1680 jump_target_rtx (node->right->code_label),
1681 unsignedp, probability);
1682
1683 /* See if the value matches what the left hand side
1684 wants. */
1685 probability = conditional_probability (
1686 node->left->prob,
1687 subtree_prob + default_prob);
1688 do_jump_if_equal (mode, index,
1689 convert_modes (mode, imode,
1690 expand_normal (node->left->low),
1691 unsignedp),
1692 jump_target_rtx (node->left->code_label),
1693 unsignedp, probability);
1694 }
1695
1696 else
1697 {
1698 /* Neither node is bounded. First distinguish the two sides;
1699 then emit the code for one side at a time. */
1700
1701 tree test_label
1702 = build_decl (curr_insn_location (),
1703 LABEL_DECL, NULL_TREE, void_type_node);
1704
1705 /* The default label could be reached either through the right
1706 subtree or the left subtree. Divide the probability
1707 equally. */
1708 probability = conditional_probability (
1709 node->right->subtree_prob + default_prob/2,
1710 subtree_prob + default_prob);
1711 /* See if the value is on the right. */
1712 emit_cmp_and_jump_insns (index,
1713 convert_modes
1714 (mode, imode,
1715 expand_normal (node->high),
1716 unsignedp),
1717 GT, NULL_RTX, mode, unsignedp,
1718 label_rtx (test_label),
1719 probability);
1720 default_prob /= 2;
1721
1722 /* Value must be on the left.
1723 Handle the left-hand subtree. */
1724 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1725 /* If left-hand subtree does nothing,
1726 go to default. */
1727 if (default_label)
1728 emit_jump (default_label);
1729
1730 /* Code branches here for the right-hand subtree. */
1731 expand_label (test_label);
1732 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1733 }
1734 }
1735
1736 else if (node->right != 0 && node->left == 0)
1737 {
1738 /* Here we have a right child but no left so we issue a conditional
1739 branch to default and process the right child.
1740
1741 Omit the conditional branch to default if the right child
1742 does not have any children and is single valued; it would
1743 cost too much space to save so little time. */
1744
1745 if (node->right->right || node->right->left
1746 || !tree_int_cst_equal (node->right->low, node->right->high))
1747 {
1748 if (!node_has_low_bound (node, index_type))
1749 {
1750 probability = conditional_probability (
1751 default_prob/2,
1752 subtree_prob + default_prob);
1753 emit_cmp_and_jump_insns (index,
1754 convert_modes
1755 (mode, imode,
1756 expand_normal (node->high),
1757 unsignedp),
1758 LT, NULL_RTX, mode, unsignedp,
1759 default_label,
1760 probability);
1761 default_prob /= 2;
1762 }
1763
1764 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1765 }
1766 else
1767 {
1768 probability = conditional_probability (
1769 node->right->subtree_prob,
1770 subtree_prob + default_prob);
1771 /* We cannot process node->right normally
1772 since we haven't ruled out the numbers less than
1773 this node's value. So handle node->right explicitly. */
1774 do_jump_if_equal (mode, index,
1775 convert_modes
1776 (mode, imode,
1777 expand_normal (node->right->low),
1778 unsignedp),
1779 jump_target_rtx (node->right->code_label),
1780 unsignedp, probability);
1781 }
1782 }
1783
1784 else if (node->right == 0 && node->left != 0)
1785 {
1786 /* Just one subtree, on the left. */
1787 if (node->left->left || node->left->right
1788 || !tree_int_cst_equal (node->left->low, node->left->high))
1789 {
1790 if (!node_has_high_bound (node, index_type))
1791 {
1792 probability = conditional_probability (
1793 default_prob/2,
1794 subtree_prob + default_prob);
1795 emit_cmp_and_jump_insns (index,
1796 convert_modes
1797 (mode, imode,
1798 expand_normal (node->high),
1799 unsignedp),
1800 GT, NULL_RTX, mode, unsignedp,
1801 default_label,
1802 probability);
1803 default_prob /= 2;
1804 }
1805
1806 emit_case_nodes (index, node->left, default_label,
1807 default_prob, index_type);
1808 }
1809 else
1810 {
1811 probability = conditional_probability (
1812 node->left->subtree_prob,
1813 subtree_prob + default_prob);
1814 /* We cannot process node->left normally
1815 since we haven't ruled out the numbers less than
1816 this node's value. So handle node->left explicitly. */
1817 do_jump_if_equal (mode, index,
1818 convert_modes
1819 (mode, imode,
1820 expand_normal (node->left->low),
1821 unsignedp),
1822 jump_target_rtx (node->left->code_label),
1823 unsignedp, probability);
1824 }
1825 }
1826 }
1827 else
1828 {
1829 /* Node is a range. These cases are very similar to those for a single
1830 value, except that we do not start by testing whether this node
1831 is the one to branch to. */
1832
1833 if (node->right != 0 && node->left != 0)
1834 {
1835 /* Node has subtrees on both sides.
1836 If the right-hand subtree is bounded,
1837 test for it first, since we can go straight there.
1838 Otherwise, we need to make a branch in the control structure,
1839 then handle the two subtrees. */
1840 tree test_label = 0;
1841
1842 if (node_is_bounded (node->right, index_type))
1843 {
1844 /* Right hand node is fully bounded so we can eliminate any
1845 testing and branch directly to the target code. */
1846 probability = conditional_probability (
1847 node->right->subtree_prob,
1848 subtree_prob + default_prob);
1849 emit_cmp_and_jump_insns (index,
1850 convert_modes
1851 (mode, imode,
1852 expand_normal (node->high),
1853 unsignedp),
1854 GT, NULL_RTX, mode, unsignedp,
1855 label_rtx (node->right->code_label),
1856 probability);
1857 }
1858 else
1859 {
1860 /* Right hand node requires testing.
1861 Branch to a label where we will handle it later. */
1862
1863 test_label = build_decl (curr_insn_location (),
1864 LABEL_DECL, NULL_TREE, void_type_node);
1865 probability = conditional_probability (
1866 node->right->subtree_prob + default_prob/2,
1867 subtree_prob + default_prob);
1868 emit_cmp_and_jump_insns (index,
1869 convert_modes
1870 (mode, imode,
1871 expand_normal (node->high),
1872 unsignedp),
1873 GT, NULL_RTX, mode, unsignedp,
1874 label_rtx (test_label),
1875 probability);
1876 default_prob /= 2;
1877 }
1878
1879 /* Value belongs to this node or to the left-hand subtree. */
1880
1881 probability = conditional_probability (
1882 prob,
1883 subtree_prob + default_prob);
1884 emit_cmp_and_jump_insns (index,
1885 convert_modes
1886 (mode, imode,
1887 expand_normal (node->low),
1888 unsignedp),
1889 GE, NULL_RTX, mode, unsignedp,
1890 label_rtx (node->code_label),
1891 probability);
1892
1893 /* Handle the left-hand subtree. */
1894 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1895
1896 /* If right node had to be handled later, do that now. */
1897
1898 if (test_label)
1899 {
1900 /* If the left-hand subtree fell through,
1901 don't let it fall into the right-hand subtree. */
1902 if (default_label)
1903 emit_jump (default_label);
1904
1905 expand_label (test_label);
1906 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1907 }
1908 }
1909
1910 else if (node->right != 0 && node->left == 0)
1911 {
1912 /* Deal with values to the left of this node,
1913 if they are possible. */
1914 if (!node_has_low_bound (node, index_type))
1915 {
1916 probability = conditional_probability (
1917 default_prob/2,
1918 subtree_prob + default_prob);
1919 emit_cmp_and_jump_insns (index,
1920 convert_modes
1921 (mode, imode,
1922 expand_normal (node->low),
1923 unsignedp),
1924 LT, NULL_RTX, mode, unsignedp,
1925 default_label,
1926 probability);
1927 default_prob /= 2;
1928 }
1929
1930 /* Value belongs to this node or to the right-hand subtree. */
1931
1932 probability = conditional_probability (
1933 prob,
1934 subtree_prob + default_prob);
1935 emit_cmp_and_jump_insns (index,
1936 convert_modes
1937 (mode, imode,
1938 expand_normal (node->high),
1939 unsignedp),
1940 LE, NULL_RTX, mode, unsignedp,
1941 label_rtx (node->code_label),
1942 probability);
1943
1944 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1945 }
1946
1947 else if (node->right == 0 && node->left != 0)
1948 {
1949 /* Deal with values to the right of this node,
1950 if they are possible. */
1951 if (!node_has_high_bound (node, index_type))
1952 {
1953 probability = conditional_probability (
1954 default_prob/2,
1955 subtree_prob + default_prob);
1956 emit_cmp_and_jump_insns (index,
1957 convert_modes
1958 (mode, imode,
1959 expand_normal (node->high),
1960 unsignedp),
1961 GT, NULL_RTX, mode, unsignedp,
1962 default_label,
1963 probability);
1964 default_prob /= 2;
1965 }
1966
1967 /* Value belongs to this node or to the left-hand subtree. */
1968
1969 probability = conditional_probability (
1970 prob,
1971 subtree_prob + default_prob);
1972 emit_cmp_and_jump_insns (index,
1973 convert_modes
1974 (mode, imode,
1975 expand_normal (node->low),
1976 unsignedp),
1977 GE, NULL_RTX, mode, unsignedp,
1978 label_rtx (node->code_label),
1979 probability);
1980
1981 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1982 }
1983
1984 else
1985 {
1986 /* Node has no children so we check low and high bounds to remove
1987 redundant tests. Only one of the bounds can exist,
1988 since otherwise this node is bounded--a case tested already. */
1989 int high_bound = node_has_high_bound (node, index_type);
1990 int low_bound = node_has_low_bound (node, index_type);
1991
1992 if (!high_bound && low_bound)
1993 {
1994 probability = conditional_probability (
1995 default_prob,
1996 subtree_prob + default_prob);
1997 emit_cmp_and_jump_insns (index,
1998 convert_modes
1999 (mode, imode,
2000 expand_normal (node->high),
2001 unsignedp),
2002 GT, NULL_RTX, mode, unsignedp,
2003 default_label,
2004 probability);
2005 }
2006
2007 else if (!low_bound && high_bound)
2008 {
2009 probability = conditional_probability (
2010 default_prob,
2011 subtree_prob + default_prob);
2012 emit_cmp_and_jump_insns (index,
2013 convert_modes
2014 (mode, imode,
2015 expand_normal (node->low),
2016 unsignedp),
2017 LT, NULL_RTX, mode, unsignedp,
2018 default_label,
2019 probability);
2020 }
2021 else if (!low_bound && !high_bound)
2022 {
2023 /* Widen LOW and HIGH to the same width as INDEX. */
2024 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
2025 tree low = build1 (CONVERT_EXPR, type, node->low);
2026 tree high = build1 (CONVERT_EXPR, type, node->high);
2027 rtx low_rtx, new_index, new_bound;
2028
2029 /* Instead of doing two branches, emit one unsigned branch for
2030 (index-low) > (high-low). */
2031 low_rtx = expand_expr (low, NULL_RTX, mode, EXPAND_NORMAL);
2032 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
2033 NULL_RTX, unsignedp,
2034 OPTAB_WIDEN);
2035 new_bound = expand_expr (fold_build2 (MINUS_EXPR, type,
2036 high, low),
2037 NULL_RTX, mode, EXPAND_NORMAL);
2038
2039 probability = conditional_probability (
2040 default_prob,
2041 subtree_prob + default_prob);
2042 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
2043 mode, 1, default_label, probability);
2044 }
2045
2046 emit_jump (jump_target_rtx (node->code_label));
2047 }
2048 }
2049 }