* config/alpha/x-vms (version): Change "." to "_".
[gcc.git] / gcc / stmt.c
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
24 It also creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 The functions whose names start with `expand_' are called by the
28 parser to generate RTL instructions for various kinds of constructs.
29
30 Some control and binding constructs require calling several such
31 functions at different times. For example, a simple if-then
32 is expanded by calling `expand_start_cond' (with the condition-expression
33 as argument) before parsing the then-clause and calling `expand_end_cond'
34 after parsing the then-clause. */
35
36 #include "config.h"
37 #include "system.h"
38
39 #include "rtl.h"
40 #include "tree.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "insn-config.h"
46 #include "expr.h"
47 #include "libfuncs.h"
48 #include "hard-reg-set.h"
49 #include "obstack.h"
50 #include "loop.h"
51 #include "recog.h"
52 #include "machmode.h"
53 #include "toplev.h"
54 #include "output.h"
55 #include "ggc.h"
56
57 #define obstack_chunk_alloc xmalloc
58 #define obstack_chunk_free free
59 struct obstack stmt_obstack;
60
61 /* Assume that case vectors are not pc-relative. */
62 #ifndef CASE_VECTOR_PC_RELATIVE
63 #define CASE_VECTOR_PC_RELATIVE 0
64 #endif
65 \f
66 /* Functions and data structures for expanding case statements. */
67
68 /* Case label structure, used to hold info on labels within case
69 statements. We handle "range" labels; for a single-value label
70 as in C, the high and low limits are the same.
71
72 An AVL tree of case nodes is initially created, and later transformed
73 to a list linked via the RIGHT fields in the nodes. Nodes with
74 higher case values are later in the list.
75
76 Switch statements can be output in one of two forms. A branch table
77 is used if there are more than a few labels and the labels are dense
78 within the range between the smallest and largest case value. If a
79 branch table is used, no further manipulations are done with the case
80 node chain.
81
82 The alternative to the use of a branch table is to generate a series
83 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
84 and PARENT fields to hold a binary tree. Initially the tree is
85 totally unbalanced, with everything on the right. We balance the tree
86 with nodes on the left having lower case values than the parent
87 and nodes on the right having higher values. We then output the tree
88 in order. */
89
90 struct case_node
91 {
92 struct case_node *left; /* Left son in binary tree */
93 struct case_node *right; /* Right son in binary tree; also node chain */
94 struct case_node *parent; /* Parent of node in binary tree */
95 tree low; /* Lowest index value for this label */
96 tree high; /* Highest index value for this label */
97 tree code_label; /* Label to jump to when node matches */
98 int balance;
99 };
100
101 typedef struct case_node case_node;
102 typedef struct case_node *case_node_ptr;
103
104 /* These are used by estimate_case_costs and balance_case_nodes. */
105
106 /* This must be a signed type, and non-ANSI compilers lack signed char. */
107 static short cost_table_[129];
108 static int use_cost_table;
109 static int cost_table_initialized;
110
111 /* Special care is needed because we allow -1, but TREE_INT_CST_LOW
112 is unsigned. */
113 #define COST_TABLE(I) cost_table_[(unsigned HOST_WIDE_INT)((I) + 1)]
114 \f
115 /* Stack of control and binding constructs we are currently inside.
116
117 These constructs begin when you call `expand_start_WHATEVER'
118 and end when you call `expand_end_WHATEVER'. This stack records
119 info about how the construct began that tells the end-function
120 what to do. It also may provide information about the construct
121 to alter the behavior of other constructs within the body.
122 For example, they may affect the behavior of C `break' and `continue'.
123
124 Each construct gets one `struct nesting' object.
125 All of these objects are chained through the `all' field.
126 `nesting_stack' points to the first object (innermost construct).
127 The position of an entry on `nesting_stack' is in its `depth' field.
128
129 Each type of construct has its own individual stack.
130 For example, loops have `loop_stack'. Each object points to the
131 next object of the same type through the `next' field.
132
133 Some constructs are visible to `break' exit-statements and others
134 are not. Which constructs are visible depends on the language.
135 Therefore, the data structure allows each construct to be visible
136 or not, according to the args given when the construct is started.
137 The construct is visible if the `exit_label' field is non-null.
138 In that case, the value should be a CODE_LABEL rtx. */
139
140 struct nesting
141 {
142 struct nesting *all;
143 struct nesting *next;
144 int depth;
145 rtx exit_label;
146 union
147 {
148 /* For conds (if-then and if-then-else statements). */
149 struct
150 {
151 /* Label for the end of the if construct.
152 There is none if EXITFLAG was not set
153 and no `else' has been seen yet. */
154 rtx endif_label;
155 /* Label for the end of this alternative.
156 This may be the end of the if or the next else/elseif. */
157 rtx next_label;
158 } cond;
159 /* For loops. */
160 struct
161 {
162 /* Label at the top of the loop; place to loop back to. */
163 rtx start_label;
164 /* Label at the end of the whole construct. */
165 rtx end_label;
166 /* Label before a jump that branches to the end of the whole
167 construct. This is where destructors go if any. */
168 rtx alt_end_label;
169 /* Label for `continue' statement to jump to;
170 this is in front of the stepper of the loop. */
171 rtx continue_label;
172 } loop;
173 /* For variable binding contours. */
174 struct
175 {
176 /* Sequence number of this binding contour within the function,
177 in order of entry. */
178 int block_start_count;
179 /* Nonzero => value to restore stack to on exit. */
180 rtx stack_level;
181 /* The NOTE that starts this contour.
182 Used by expand_goto to check whether the destination
183 is within each contour or not. */
184 rtx first_insn;
185 /* Innermost containing binding contour that has a stack level. */
186 struct nesting *innermost_stack_block;
187 /* List of cleanups to be run on exit from this contour.
188 This is a list of expressions to be evaluated.
189 The TREE_PURPOSE of each link is the ..._DECL node
190 which the cleanup pertains to. */
191 tree cleanups;
192 /* List of cleanup-lists of blocks containing this block,
193 as they were at the locus where this block appears.
194 There is an element for each containing block,
195 ordered innermost containing block first.
196 The tail of this list can be 0,
197 if all remaining elements would be empty lists.
198 The element's TREE_VALUE is the cleanup-list of that block,
199 which may be null. */
200 tree outer_cleanups;
201 /* Chain of labels defined inside this binding contour.
202 For contours that have stack levels or cleanups. */
203 struct label_chain *label_chain;
204 /* Number of function calls seen, as of start of this block. */
205 int n_function_calls;
206 /* Nonzero if this is associated with a EH region. */
207 int exception_region;
208 /* The saved target_temp_slot_level from our outer block.
209 We may reset target_temp_slot_level to be the level of
210 this block, if that is done, target_temp_slot_level
211 reverts to the saved target_temp_slot_level at the very
212 end of the block. */
213 int block_target_temp_slot_level;
214 /* True if we are currently emitting insns in an area of
215 output code that is controlled by a conditional
216 expression. This is used by the cleanup handling code to
217 generate conditional cleanup actions. */
218 int conditional_code;
219 /* A place to move the start of the exception region for any
220 of the conditional cleanups, must be at the end or after
221 the start of the last unconditional cleanup, and before any
222 conditional branch points. */
223 rtx last_unconditional_cleanup;
224 /* When in a conditional context, this is the specific
225 cleanup list associated with last_unconditional_cleanup,
226 where we place the conditionalized cleanups. */
227 tree *cleanup_ptr;
228 } block;
229 /* For switch (C) or case (Pascal) statements,
230 and also for dummies (see `expand_start_case_dummy'). */
231 struct
232 {
233 /* The insn after which the case dispatch should finally
234 be emitted. Zero for a dummy. */
235 rtx start;
236 /* A list of case labels; it is first built as an AVL tree.
237 During expand_end_case, this is converted to a list, and may be
238 rearranged into a nearly balanced binary tree. */
239 struct case_node *case_list;
240 /* Label to jump to if no case matches. */
241 tree default_label;
242 /* The expression to be dispatched on. */
243 tree index_expr;
244 /* Type that INDEX_EXPR should be converted to. */
245 tree nominal_type;
246 /* Name of this kind of statement, for warnings. */
247 const char *printname;
248 /* Used to save no_line_numbers till we see the first case label.
249 We set this to -1 when we see the first case label in this
250 case statement. */
251 int line_number_status;
252 } case_stmt;
253 } data;
254 };
255
256 /* Allocate and return a new `struct nesting'. */
257
258 #define ALLOC_NESTING() \
259 (struct nesting *) obstack_alloc (&stmt_obstack, sizeof (struct nesting))
260
261 /* Pop the nesting stack element by element until we pop off
262 the element which is at the top of STACK.
263 Update all the other stacks, popping off elements from them
264 as we pop them from nesting_stack. */
265
266 #define POPSTACK(STACK) \
267 do { struct nesting *target = STACK; \
268 struct nesting *this; \
269 do { this = nesting_stack; \
270 if (loop_stack == this) \
271 loop_stack = loop_stack->next; \
272 if (cond_stack == this) \
273 cond_stack = cond_stack->next; \
274 if (block_stack == this) \
275 block_stack = block_stack->next; \
276 if (stack_block_stack == this) \
277 stack_block_stack = stack_block_stack->next; \
278 if (case_stack == this) \
279 case_stack = case_stack->next; \
280 nesting_depth = nesting_stack->depth - 1; \
281 nesting_stack = this->all; \
282 obstack_free (&stmt_obstack, this); } \
283 while (this != target); } while (0)
284 \f
285 /* In some cases it is impossible to generate code for a forward goto
286 until the label definition is seen. This happens when it may be necessary
287 for the goto to reset the stack pointer: we don't yet know how to do that.
288 So expand_goto puts an entry on this fixup list.
289 Each time a binding contour that resets the stack is exited,
290 we check each fixup.
291 If the target label has now been defined, we can insert the proper code. */
292
293 struct goto_fixup
294 {
295 /* Points to following fixup. */
296 struct goto_fixup *next;
297 /* Points to the insn before the jump insn.
298 If more code must be inserted, it goes after this insn. */
299 rtx before_jump;
300 /* The LABEL_DECL that this jump is jumping to, or 0
301 for break, continue or return. */
302 tree target;
303 /* The BLOCK for the place where this goto was found. */
304 tree context;
305 /* The CODE_LABEL rtx that this is jumping to. */
306 rtx target_rtl;
307 /* Number of binding contours started in current function
308 before the label reference. */
309 int block_start_count;
310 /* The outermost stack level that should be restored for this jump.
311 Each time a binding contour that resets the stack is exited,
312 if the target label is *not* yet defined, this slot is updated. */
313 rtx stack_level;
314 /* List of lists of cleanup expressions to be run by this goto.
315 There is one element for each block that this goto is within.
316 The tail of this list can be 0,
317 if all remaining elements would be empty.
318 The TREE_VALUE contains the cleanup list of that block as of the
319 time this goto was seen.
320 The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */
321 tree cleanup_list_list;
322 };
323
324 /* Within any binding contour that must restore a stack level,
325 all labels are recorded with a chain of these structures. */
326
327 struct label_chain
328 {
329 /* Points to following fixup. */
330 struct label_chain *next;
331 tree label;
332 };
333
334 struct stmt_status
335 {
336 /* Chain of all pending binding contours. */
337 struct nesting *x_block_stack;
338
339 /* If any new stacks are added here, add them to POPSTACKS too. */
340
341 /* Chain of all pending binding contours that restore stack levels
342 or have cleanups. */
343 struct nesting *x_stack_block_stack;
344
345 /* Chain of all pending conditional statements. */
346 struct nesting *x_cond_stack;
347
348 /* Chain of all pending loops. */
349 struct nesting *x_loop_stack;
350
351 /* Chain of all pending case or switch statements. */
352 struct nesting *x_case_stack;
353
354 /* Separate chain including all of the above,
355 chained through the `all' field. */
356 struct nesting *x_nesting_stack;
357
358 /* Number of entries on nesting_stack now. */
359 int x_nesting_depth;
360
361 /* Number of binding contours started so far in this function. */
362 int x_block_start_count;
363
364 /* Each time we expand an expression-statement,
365 record the expr's type and its RTL value here. */
366 tree x_last_expr_type;
367 rtx x_last_expr_value;
368
369 /* Nonzero if within a ({...}) grouping, in which case we must
370 always compute a value for each expr-stmt in case it is the last one. */
371 int x_expr_stmts_for_value;
372
373 /* Filename and line number of last line-number note,
374 whether we actually emitted it or not. */
375 const char *x_emit_filename;
376 int x_emit_lineno;
377
378 struct goto_fixup *x_goto_fixup_chain;
379 };
380
381 #define block_stack (cfun->stmt->x_block_stack)
382 #define stack_block_stack (cfun->stmt->x_stack_block_stack)
383 #define cond_stack (cfun->stmt->x_cond_stack)
384 #define loop_stack (cfun->stmt->x_loop_stack)
385 #define case_stack (cfun->stmt->x_case_stack)
386 #define nesting_stack (cfun->stmt->x_nesting_stack)
387 #define nesting_depth (cfun->stmt->x_nesting_depth)
388 #define current_block_start_count (cfun->stmt->x_block_start_count)
389 #define last_expr_type (cfun->stmt->x_last_expr_type)
390 #define last_expr_value (cfun->stmt->x_last_expr_value)
391 #define expr_stmts_for_value (cfun->stmt->x_expr_stmts_for_value)
392 #define emit_filename (cfun->stmt->x_emit_filename)
393 #define emit_lineno (cfun->stmt->x_emit_lineno)
394 #define goto_fixup_chain (cfun->stmt->x_goto_fixup_chain)
395
396 /* Non-zero if we are using EH to handle cleanus. */
397 static int using_eh_for_cleanups_p = 0;
398
399 static int n_occurrences PARAMS ((int, const char *));
400 static void expand_goto_internal PARAMS ((tree, rtx, rtx));
401 static int expand_fixup PARAMS ((tree, rtx, rtx));
402 static rtx expand_nl_handler_label PARAMS ((rtx, rtx));
403 static void expand_nl_goto_receiver PARAMS ((void));
404 static void expand_nl_goto_receivers PARAMS ((struct nesting *));
405 static void fixup_gotos PARAMS ((struct nesting *, rtx, tree,
406 rtx, int));
407 static bool check_operand_nalternatives PARAMS ((tree, tree));
408 static bool check_unique_operand_names PARAMS ((tree, tree));
409 static tree resolve_operand_names PARAMS ((tree, tree, tree,
410 const char **));
411 static char *resolve_operand_name_1 PARAMS ((char *, tree, tree));
412 static void expand_null_return_1 PARAMS ((rtx));
413 static void expand_value_return PARAMS ((rtx));
414 static int tail_recursion_args PARAMS ((tree, tree));
415 static void expand_cleanups PARAMS ((tree, tree, int, int));
416 static void check_seenlabel PARAMS ((void));
417 static void do_jump_if_equal PARAMS ((rtx, rtx, rtx, int));
418 static int estimate_case_costs PARAMS ((case_node_ptr));
419 static void group_case_nodes PARAMS ((case_node_ptr));
420 static void balance_case_nodes PARAMS ((case_node_ptr *,
421 case_node_ptr));
422 static int node_has_low_bound PARAMS ((case_node_ptr, tree));
423 static int node_has_high_bound PARAMS ((case_node_ptr, tree));
424 static int node_is_bounded PARAMS ((case_node_ptr, tree));
425 static void emit_jump_if_reachable PARAMS ((rtx));
426 static void emit_case_nodes PARAMS ((rtx, case_node_ptr, rtx, tree));
427 static struct case_node *case_tree2list PARAMS ((case_node *, case_node *));
428 static void mark_cond_nesting PARAMS ((struct nesting *));
429 static void mark_loop_nesting PARAMS ((struct nesting *));
430 static void mark_block_nesting PARAMS ((struct nesting *));
431 static void mark_case_nesting PARAMS ((struct nesting *));
432 static void mark_case_node PARAMS ((struct case_node *));
433 static void mark_goto_fixup PARAMS ((struct goto_fixup *));
434 static void free_case_nodes PARAMS ((case_node_ptr));
435 \f
436 void
437 using_eh_for_cleanups ()
438 {
439 using_eh_for_cleanups_p = 1;
440 }
441
442 /* Mark N (known to be a cond-nesting) for GC. */
443
444 static void
445 mark_cond_nesting (n)
446 struct nesting *n;
447 {
448 while (n)
449 {
450 ggc_mark_rtx (n->exit_label);
451 ggc_mark_rtx (n->data.cond.endif_label);
452 ggc_mark_rtx (n->data.cond.next_label);
453
454 n = n->next;
455 }
456 }
457
458 /* Mark N (known to be a loop-nesting) for GC. */
459
460 static void
461 mark_loop_nesting (n)
462 struct nesting *n;
463 {
464
465 while (n)
466 {
467 ggc_mark_rtx (n->exit_label);
468 ggc_mark_rtx (n->data.loop.start_label);
469 ggc_mark_rtx (n->data.loop.end_label);
470 ggc_mark_rtx (n->data.loop.alt_end_label);
471 ggc_mark_rtx (n->data.loop.continue_label);
472
473 n = n->next;
474 }
475 }
476
477 /* Mark N (known to be a block-nesting) for GC. */
478
479 static void
480 mark_block_nesting (n)
481 struct nesting *n;
482 {
483 while (n)
484 {
485 struct label_chain *l;
486
487 ggc_mark_rtx (n->exit_label);
488 ggc_mark_rtx (n->data.block.stack_level);
489 ggc_mark_rtx (n->data.block.first_insn);
490 ggc_mark_tree (n->data.block.cleanups);
491 ggc_mark_tree (n->data.block.outer_cleanups);
492
493 for (l = n->data.block.label_chain; l != NULL; l = l->next)
494 {
495 ggc_mark (l);
496 ggc_mark_tree (l->label);
497 }
498
499 ggc_mark_rtx (n->data.block.last_unconditional_cleanup);
500
501 /* ??? cleanup_ptr never points outside the stack, does it? */
502
503 n = n->next;
504 }
505 }
506
507 /* Mark N (known to be a case-nesting) for GC. */
508
509 static void
510 mark_case_nesting (n)
511 struct nesting *n;
512 {
513 while (n)
514 {
515 ggc_mark_rtx (n->exit_label);
516 ggc_mark_rtx (n->data.case_stmt.start);
517
518 ggc_mark_tree (n->data.case_stmt.default_label);
519 ggc_mark_tree (n->data.case_stmt.index_expr);
520 ggc_mark_tree (n->data.case_stmt.nominal_type);
521
522 mark_case_node (n->data.case_stmt.case_list);
523 n = n->next;
524 }
525 }
526
527 /* Mark C for GC. */
528
529 static void
530 mark_case_node (c)
531 struct case_node *c;
532 {
533 if (c != 0)
534 {
535 ggc_mark_tree (c->low);
536 ggc_mark_tree (c->high);
537 ggc_mark_tree (c->code_label);
538
539 mark_case_node (c->right);
540 mark_case_node (c->left);
541 }
542 }
543
544 /* Mark G for GC. */
545
546 static void
547 mark_goto_fixup (g)
548 struct goto_fixup *g;
549 {
550 while (g)
551 {
552 ggc_mark (g);
553 ggc_mark_rtx (g->before_jump);
554 ggc_mark_tree (g->target);
555 ggc_mark_tree (g->context);
556 ggc_mark_rtx (g->target_rtl);
557 ggc_mark_rtx (g->stack_level);
558 ggc_mark_tree (g->cleanup_list_list);
559
560 g = g->next;
561 }
562 }
563
564 /* Clear out all parts of the state in F that can safely be discarded
565 after the function has been compiled, to let garbage collection
566 reclaim the memory. */
567
568 void
569 free_stmt_status (f)
570 struct function *f;
571 {
572 /* We're about to free the function obstack. If we hold pointers to
573 things allocated there, then we'll try to mark them when we do
574 GC. So, we clear them out here explicitly. */
575 if (f->stmt)
576 free (f->stmt);
577 f->stmt = NULL;
578 }
579
580 /* Mark P for GC. */
581
582 void
583 mark_stmt_status (p)
584 struct stmt_status *p;
585 {
586 if (p == 0)
587 return;
588
589 mark_block_nesting (p->x_block_stack);
590 mark_cond_nesting (p->x_cond_stack);
591 mark_loop_nesting (p->x_loop_stack);
592 mark_case_nesting (p->x_case_stack);
593
594 ggc_mark_tree (p->x_last_expr_type);
595 /* last_epxr_value is only valid if last_expr_type is nonzero. */
596 if (p->x_last_expr_type)
597 ggc_mark_rtx (p->x_last_expr_value);
598
599 mark_goto_fixup (p->x_goto_fixup_chain);
600 }
601
602 void
603 init_stmt ()
604 {
605 gcc_obstack_init (&stmt_obstack);
606 }
607
608 void
609 init_stmt_for_function ()
610 {
611 cfun->stmt = (struct stmt_status *) xmalloc (sizeof (struct stmt_status));
612
613 /* We are not currently within any block, conditional, loop or case. */
614 block_stack = 0;
615 stack_block_stack = 0;
616 loop_stack = 0;
617 case_stack = 0;
618 cond_stack = 0;
619 nesting_stack = 0;
620 nesting_depth = 0;
621
622 current_block_start_count = 0;
623
624 /* No gotos have been expanded yet. */
625 goto_fixup_chain = 0;
626
627 /* We are not processing a ({...}) grouping. */
628 expr_stmts_for_value = 0;
629 last_expr_type = 0;
630 last_expr_value = NULL_RTX;
631 }
632 \f
633 /* Return nonzero if anything is pushed on the loop, condition, or case
634 stack. */
635 int
636 in_control_zone_p ()
637 {
638 return cond_stack || loop_stack || case_stack;
639 }
640
641 /* Record the current file and line. Called from emit_line_note. */
642 void
643 set_file_and_line_for_stmt (file, line)
644 const char *file;
645 int line;
646 {
647 /* If we're outputting an inline function, and we add a line note,
648 there may be no CFUN->STMT information. So, there's no need to
649 update it. */
650 if (cfun->stmt)
651 {
652 emit_filename = file;
653 emit_lineno = line;
654 }
655 }
656
657 /* Emit a no-op instruction. */
658
659 void
660 emit_nop ()
661 {
662 rtx last_insn;
663
664 last_insn = get_last_insn ();
665 if (!optimize
666 && (GET_CODE (last_insn) == CODE_LABEL
667 || (GET_CODE (last_insn) == NOTE
668 && prev_real_insn (last_insn) == 0)))
669 emit_insn (gen_nop ());
670 }
671 \f
672 /* Return the rtx-label that corresponds to a LABEL_DECL,
673 creating it if necessary. */
674
675 rtx
676 label_rtx (label)
677 tree label;
678 {
679 if (TREE_CODE (label) != LABEL_DECL)
680 abort ();
681
682 if (!DECL_RTL_SET_P (label))
683 SET_DECL_RTL (label, gen_label_rtx ());
684
685 return DECL_RTL (label);
686 }
687
688
689 /* Add an unconditional jump to LABEL as the next sequential instruction. */
690
691 void
692 emit_jump (label)
693 rtx label;
694 {
695 do_pending_stack_adjust ();
696 emit_jump_insn (gen_jump (label));
697 emit_barrier ();
698 }
699
700 /* Emit code to jump to the address
701 specified by the pointer expression EXP. */
702
703 void
704 expand_computed_goto (exp)
705 tree exp;
706 {
707 rtx x = expand_expr (exp, NULL_RTX, VOIDmode, 0);
708
709 #ifdef POINTERS_EXTEND_UNSIGNED
710 if (GET_MODE (x) != Pmode)
711 x = convert_memory_address (Pmode, x);
712 #endif
713
714 emit_queue ();
715 do_pending_stack_adjust ();
716 emit_indirect_jump (x);
717
718 current_function_has_computed_jump = 1;
719 }
720 \f
721 /* Handle goto statements and the labels that they can go to. */
722
723 /* Specify the location in the RTL code of a label LABEL,
724 which is a LABEL_DECL tree node.
725
726 This is used for the kind of label that the user can jump to with a
727 goto statement, and for alternatives of a switch or case statement.
728 RTL labels generated for loops and conditionals don't go through here;
729 they are generated directly at the RTL level, by other functions below.
730
731 Note that this has nothing to do with defining label *names*.
732 Languages vary in how they do that and what that even means. */
733
734 void
735 expand_label (label)
736 tree label;
737 {
738 struct label_chain *p;
739
740 do_pending_stack_adjust ();
741 emit_label (label_rtx (label));
742 if (DECL_NAME (label))
743 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
744
745 if (stack_block_stack != 0)
746 {
747 p = (struct label_chain *) ggc_alloc (sizeof (struct label_chain));
748 p->next = stack_block_stack->data.block.label_chain;
749 stack_block_stack->data.block.label_chain = p;
750 p->label = label;
751 }
752 }
753
754 /* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos
755 from nested functions. */
756
757 void
758 declare_nonlocal_label (label)
759 tree label;
760 {
761 rtx slot = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
762
763 nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels);
764 LABEL_PRESERVE_P (label_rtx (label)) = 1;
765 if (nonlocal_goto_handler_slots == 0)
766 {
767 emit_stack_save (SAVE_NONLOCAL,
768 &nonlocal_goto_stack_level,
769 PREV_INSN (tail_recursion_reentry));
770 }
771 nonlocal_goto_handler_slots
772 = gen_rtx_EXPR_LIST (VOIDmode, slot, nonlocal_goto_handler_slots);
773 }
774
775 /* Generate RTL code for a `goto' statement with target label LABEL.
776 LABEL should be a LABEL_DECL tree node that was or will later be
777 defined with `expand_label'. */
778
779 void
780 expand_goto (label)
781 tree label;
782 {
783 tree context;
784
785 /* Check for a nonlocal goto to a containing function. */
786 context = decl_function_context (label);
787 if (context != 0 && context != current_function_decl)
788 {
789 struct function *p = find_function_data (context);
790 rtx label_ref = gen_rtx_LABEL_REF (Pmode, label_rtx (label));
791 rtx handler_slot, static_chain, save_area, insn;
792 tree link;
793
794 /* Find the corresponding handler slot for this label. */
795 handler_slot = p->x_nonlocal_goto_handler_slots;
796 for (link = p->x_nonlocal_labels; TREE_VALUE (link) != label;
797 link = TREE_CHAIN (link))
798 handler_slot = XEXP (handler_slot, 1);
799 handler_slot = XEXP (handler_slot, 0);
800
801 p->has_nonlocal_label = 1;
802 current_function_has_nonlocal_goto = 1;
803 LABEL_REF_NONLOCAL_P (label_ref) = 1;
804
805 /* Copy the rtl for the slots so that they won't be shared in
806 case the virtual stack vars register gets instantiated differently
807 in the parent than in the child. */
808
809 static_chain = copy_to_reg (lookup_static_chain (label));
810
811 /* Get addr of containing function's current nonlocal goto handler,
812 which will do any cleanups and then jump to the label. */
813 handler_slot = copy_to_reg (replace_rtx (copy_rtx (handler_slot),
814 virtual_stack_vars_rtx,
815 static_chain));
816
817 /* Get addr of containing function's nonlocal save area. */
818 save_area = p->x_nonlocal_goto_stack_level;
819 if (save_area)
820 save_area = replace_rtx (copy_rtx (save_area),
821 virtual_stack_vars_rtx, static_chain);
822
823 #if HAVE_nonlocal_goto
824 if (HAVE_nonlocal_goto)
825 emit_insn (gen_nonlocal_goto (static_chain, handler_slot,
826 save_area, label_ref));
827 else
828 #endif
829 {
830 /* Restore frame pointer for containing function.
831 This sets the actual hard register used for the frame pointer
832 to the location of the function's incoming static chain info.
833 The non-local goto handler will then adjust it to contain the
834 proper value and reload the argument pointer, if needed. */
835 emit_move_insn (hard_frame_pointer_rtx, static_chain);
836 emit_stack_restore (SAVE_NONLOCAL, save_area, NULL_RTX);
837
838 /* USE of hard_frame_pointer_rtx added for consistency;
839 not clear if really needed. */
840 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
841 emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
842 emit_indirect_jump (handler_slot);
843 }
844
845 /* Search backwards to the jump insn and mark it as a
846 non-local goto. */
847 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
848 {
849 if (GET_CODE (insn) == JUMP_INSN)
850 {
851 REG_NOTES (insn) = alloc_EXPR_LIST (REG_NON_LOCAL_GOTO,
852 const0_rtx, REG_NOTES (insn));
853 break;
854 }
855 else if (GET_CODE (insn) == CALL_INSN)
856 break;
857 }
858 }
859 else
860 expand_goto_internal (label, label_rtx (label), NULL_RTX);
861 }
862
863 /* Generate RTL code for a `goto' statement with target label BODY.
864 LABEL should be a LABEL_REF.
865 LAST_INSN, if non-0, is the rtx we should consider as the last
866 insn emitted (for the purposes of cleaning up a return). */
867
868 static void
869 expand_goto_internal (body, label, last_insn)
870 tree body;
871 rtx label;
872 rtx last_insn;
873 {
874 struct nesting *block;
875 rtx stack_level = 0;
876
877 if (GET_CODE (label) != CODE_LABEL)
878 abort ();
879
880 /* If label has already been defined, we can tell now
881 whether and how we must alter the stack level. */
882
883 if (PREV_INSN (label) != 0)
884 {
885 /* Find the innermost pending block that contains the label.
886 (Check containment by comparing insn-uids.)
887 Then restore the outermost stack level within that block,
888 and do cleanups of all blocks contained in it. */
889 for (block = block_stack; block; block = block->next)
890 {
891 if (INSN_UID (block->data.block.first_insn) < INSN_UID (label))
892 break;
893 if (block->data.block.stack_level != 0)
894 stack_level = block->data.block.stack_level;
895 /* Execute the cleanups for blocks we are exiting. */
896 if (block->data.block.cleanups != 0)
897 {
898 expand_cleanups (block->data.block.cleanups, NULL_TREE, 1, 1);
899 do_pending_stack_adjust ();
900 }
901 }
902
903 if (stack_level)
904 {
905 /* Ensure stack adjust isn't done by emit_jump, as this
906 would clobber the stack pointer. This one should be
907 deleted as dead by flow. */
908 clear_pending_stack_adjust ();
909 do_pending_stack_adjust ();
910
911 /* Don't do this adjust if it's to the end label and this function
912 is to return with a depressed stack pointer. */
913 if (label == return_label
914 && (((TREE_CODE (TREE_TYPE (current_function_decl))
915 == FUNCTION_TYPE)
916 && (TYPE_RETURNS_STACK_DEPRESSED
917 (TREE_TYPE (current_function_decl))))))
918 ;
919 else
920 emit_stack_restore (SAVE_BLOCK, stack_level, NULL_RTX);
921 }
922
923 if (body != 0 && DECL_TOO_LATE (body))
924 error ("jump to `%s' invalidly jumps into binding contour",
925 IDENTIFIER_POINTER (DECL_NAME (body)));
926 }
927 /* Label not yet defined: may need to put this goto
928 on the fixup list. */
929 else if (! expand_fixup (body, label, last_insn))
930 {
931 /* No fixup needed. Record that the label is the target
932 of at least one goto that has no fixup. */
933 if (body != 0)
934 TREE_ADDRESSABLE (body) = 1;
935 }
936
937 emit_jump (label);
938 }
939 \f
940 /* Generate if necessary a fixup for a goto
941 whose target label in tree structure (if any) is TREE_LABEL
942 and whose target in rtl is RTL_LABEL.
943
944 If LAST_INSN is nonzero, we pretend that the jump appears
945 after insn LAST_INSN instead of at the current point in the insn stream.
946
947 The fixup will be used later to insert insns just before the goto.
948 Those insns will restore the stack level as appropriate for the
949 target label, and will (in the case of C++) also invoke any object
950 destructors which have to be invoked when we exit the scopes which
951 are exited by the goto.
952
953 Value is nonzero if a fixup is made. */
954
955 static int
956 expand_fixup (tree_label, rtl_label, last_insn)
957 tree tree_label;
958 rtx rtl_label;
959 rtx last_insn;
960 {
961 struct nesting *block, *end_block;
962
963 /* See if we can recognize which block the label will be output in.
964 This is possible in some very common cases.
965 If we succeed, set END_BLOCK to that block.
966 Otherwise, set it to 0. */
967
968 if (cond_stack
969 && (rtl_label == cond_stack->data.cond.endif_label
970 || rtl_label == cond_stack->data.cond.next_label))
971 end_block = cond_stack;
972 /* If we are in a loop, recognize certain labels which
973 are likely targets. This reduces the number of fixups
974 we need to create. */
975 else if (loop_stack
976 && (rtl_label == loop_stack->data.loop.start_label
977 || rtl_label == loop_stack->data.loop.end_label
978 || rtl_label == loop_stack->data.loop.continue_label))
979 end_block = loop_stack;
980 else
981 end_block = 0;
982
983 /* Now set END_BLOCK to the binding level to which we will return. */
984
985 if (end_block)
986 {
987 struct nesting *next_block = end_block->all;
988 block = block_stack;
989
990 /* First see if the END_BLOCK is inside the innermost binding level.
991 If so, then no cleanups or stack levels are relevant. */
992 while (next_block && next_block != block)
993 next_block = next_block->all;
994
995 if (next_block)
996 return 0;
997
998 /* Otherwise, set END_BLOCK to the innermost binding level
999 which is outside the relevant control-structure nesting. */
1000 next_block = block_stack->next;
1001 for (block = block_stack; block != end_block; block = block->all)
1002 if (block == next_block)
1003 next_block = next_block->next;
1004 end_block = next_block;
1005 }
1006
1007 /* Does any containing block have a stack level or cleanups?
1008 If not, no fixup is needed, and that is the normal case
1009 (the only case, for standard C). */
1010 for (block = block_stack; block != end_block; block = block->next)
1011 if (block->data.block.stack_level != 0
1012 || block->data.block.cleanups != 0)
1013 break;
1014
1015 if (block != end_block)
1016 {
1017 /* Ok, a fixup is needed. Add a fixup to the list of such. */
1018 struct goto_fixup *fixup
1019 = (struct goto_fixup *) ggc_alloc (sizeof (struct goto_fixup));
1020 /* In case an old stack level is restored, make sure that comes
1021 after any pending stack adjust. */
1022 /* ?? If the fixup isn't to come at the present position,
1023 doing the stack adjust here isn't useful. Doing it with our
1024 settings at that location isn't useful either. Let's hope
1025 someone does it! */
1026 if (last_insn == 0)
1027 do_pending_stack_adjust ();
1028 fixup->target = tree_label;
1029 fixup->target_rtl = rtl_label;
1030
1031 /* Create a BLOCK node and a corresponding matched set of
1032 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes at
1033 this point. The notes will encapsulate any and all fixup
1034 code which we might later insert at this point in the insn
1035 stream. Also, the BLOCK node will be the parent (i.e. the
1036 `SUPERBLOCK') of any other BLOCK nodes which we might create
1037 later on when we are expanding the fixup code.
1038
1039 Note that optimization passes (including expand_end_loop)
1040 might move the *_BLOCK notes away, so we use a NOTE_INSN_DELETED
1041 as a placeholder. */
1042
1043 {
1044 rtx original_before_jump
1045 = last_insn ? last_insn : get_last_insn ();
1046 rtx start;
1047 rtx end;
1048 tree block;
1049
1050 block = make_node (BLOCK);
1051 TREE_USED (block) = 1;
1052
1053 if (!cfun->x_whole_function_mode_p)
1054 insert_block (block);
1055 else
1056 {
1057 BLOCK_CHAIN (block)
1058 = BLOCK_CHAIN (DECL_INITIAL (current_function_decl));
1059 BLOCK_CHAIN (DECL_INITIAL (current_function_decl))
1060 = block;
1061 }
1062
1063 start_sequence ();
1064 start = emit_note (NULL, NOTE_INSN_BLOCK_BEG);
1065 if (cfun->x_whole_function_mode_p)
1066 NOTE_BLOCK (start) = block;
1067 fixup->before_jump = emit_note (NULL, NOTE_INSN_DELETED);
1068 end = emit_note (NULL, NOTE_INSN_BLOCK_END);
1069 if (cfun->x_whole_function_mode_p)
1070 NOTE_BLOCK (end) = block;
1071 fixup->context = block;
1072 end_sequence ();
1073 emit_insns_after (start, original_before_jump);
1074 }
1075
1076 fixup->block_start_count = current_block_start_count;
1077 fixup->stack_level = 0;
1078 fixup->cleanup_list_list
1079 = ((block->data.block.outer_cleanups
1080 || block->data.block.cleanups)
1081 ? tree_cons (NULL_TREE, block->data.block.cleanups,
1082 block->data.block.outer_cleanups)
1083 : 0);
1084 fixup->next = goto_fixup_chain;
1085 goto_fixup_chain = fixup;
1086 }
1087
1088 return block != 0;
1089 }
1090 \f
1091 /* Expand any needed fixups in the outputmost binding level of the
1092 function. FIRST_INSN is the first insn in the function. */
1093
1094 void
1095 expand_fixups (first_insn)
1096 rtx first_insn;
1097 {
1098 fixup_gotos (NULL, NULL_RTX, NULL_TREE, first_insn, 0);
1099 }
1100
1101 /* When exiting a binding contour, process all pending gotos requiring fixups.
1102 THISBLOCK is the structure that describes the block being exited.
1103 STACK_LEVEL is the rtx for the stack level to restore exiting this contour.
1104 CLEANUP_LIST is a list of expressions to evaluate on exiting this contour.
1105 FIRST_INSN is the insn that began this contour.
1106
1107 Gotos that jump out of this contour must restore the
1108 stack level and do the cleanups before actually jumping.
1109
1110 DONT_JUMP_IN nonzero means report error there is a jump into this
1111 contour from before the beginning of the contour.
1112 This is also done if STACK_LEVEL is nonzero. */
1113
1114 static void
1115 fixup_gotos (thisblock, stack_level, cleanup_list, first_insn, dont_jump_in)
1116 struct nesting *thisblock;
1117 rtx stack_level;
1118 tree cleanup_list;
1119 rtx first_insn;
1120 int dont_jump_in;
1121 {
1122 struct goto_fixup *f, *prev;
1123
1124 /* F is the fixup we are considering; PREV is the previous one. */
1125 /* We run this loop in two passes so that cleanups of exited blocks
1126 are run first, and blocks that are exited are marked so
1127 afterwards. */
1128
1129 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1130 {
1131 /* Test for a fixup that is inactive because it is already handled. */
1132 if (f->before_jump == 0)
1133 {
1134 /* Delete inactive fixup from the chain, if that is easy to do. */
1135 if (prev != 0)
1136 prev->next = f->next;
1137 }
1138 /* Has this fixup's target label been defined?
1139 If so, we can finalize it. */
1140 else if (PREV_INSN (f->target_rtl) != 0)
1141 {
1142 rtx cleanup_insns;
1143
1144 /* If this fixup jumped into this contour from before the beginning
1145 of this contour, report an error. This code used to use
1146 the first non-label insn after f->target_rtl, but that's
1147 wrong since such can be added, by things like put_var_into_stack
1148 and have INSN_UIDs that are out of the range of the block. */
1149 /* ??? Bug: this does not detect jumping in through intermediate
1150 blocks that have stack levels or cleanups.
1151 It detects only a problem with the innermost block
1152 around the label. */
1153 if (f->target != 0
1154 && (dont_jump_in || stack_level || cleanup_list)
1155 && INSN_UID (first_insn) < INSN_UID (f->target_rtl)
1156 && INSN_UID (first_insn) > INSN_UID (f->before_jump)
1157 && ! DECL_ERROR_ISSUED (f->target))
1158 {
1159 error_with_decl (f->target,
1160 "label `%s' used before containing binding contour");
1161 /* Prevent multiple errors for one label. */
1162 DECL_ERROR_ISSUED (f->target) = 1;
1163 }
1164
1165 /* We will expand the cleanups into a sequence of their own and
1166 then later on we will attach this new sequence to the insn
1167 stream just ahead of the actual jump insn. */
1168
1169 start_sequence ();
1170
1171 /* Temporarily restore the lexical context where we will
1172 logically be inserting the fixup code. We do this for the
1173 sake of getting the debugging information right. */
1174
1175 pushlevel (0);
1176 set_block (f->context);
1177
1178 /* Expand the cleanups for blocks this jump exits. */
1179 if (f->cleanup_list_list)
1180 {
1181 tree lists;
1182 for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists))
1183 /* Marked elements correspond to blocks that have been closed.
1184 Do their cleanups. */
1185 if (TREE_ADDRESSABLE (lists)
1186 && TREE_VALUE (lists) != 0)
1187 {
1188 expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1);
1189 /* Pop any pushes done in the cleanups,
1190 in case function is about to return. */
1191 do_pending_stack_adjust ();
1192 }
1193 }
1194
1195 /* Restore stack level for the biggest contour that this
1196 jump jumps out of. */
1197 if (f->stack_level
1198 && ! (f->target_rtl == return_label
1199 && ((TREE_CODE (TREE_TYPE (current_function_decl))
1200 == FUNCTION_TYPE)
1201 && (TYPE_RETURNS_STACK_DEPRESSED
1202 (TREE_TYPE (current_function_decl))))))
1203 emit_stack_restore (SAVE_BLOCK, f->stack_level, f->before_jump);
1204
1205 /* Finish up the sequence containing the insns which implement the
1206 necessary cleanups, and then attach that whole sequence to the
1207 insn stream just ahead of the actual jump insn. Attaching it
1208 at that point insures that any cleanups which are in fact
1209 implicit C++ object destructions (which must be executed upon
1210 leaving the block) appear (to the debugger) to be taking place
1211 in an area of the generated code where the object(s) being
1212 destructed are still "in scope". */
1213
1214 cleanup_insns = get_insns ();
1215 poplevel (1, 0, 0);
1216
1217 end_sequence ();
1218 emit_insns_after (cleanup_insns, f->before_jump);
1219
1220 f->before_jump = 0;
1221 }
1222 }
1223
1224 /* For any still-undefined labels, do the cleanups for this block now.
1225 We must do this now since items in the cleanup list may go out
1226 of scope when the block ends. */
1227 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1228 if (f->before_jump != 0
1229 && PREV_INSN (f->target_rtl) == 0
1230 /* Label has still not appeared. If we are exiting a block with
1231 a stack level to restore, that started before the fixup,
1232 mark this stack level as needing restoration
1233 when the fixup is later finalized. */
1234 && thisblock != 0
1235 /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared, it
1236 means the label is undefined. That's erroneous, but possible. */
1237 && (thisblock->data.block.block_start_count
1238 <= f->block_start_count))
1239 {
1240 tree lists = f->cleanup_list_list;
1241 rtx cleanup_insns;
1242
1243 for (; lists; lists = TREE_CHAIN (lists))
1244 /* If the following elt. corresponds to our containing block
1245 then the elt. must be for this block. */
1246 if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups)
1247 {
1248 start_sequence ();
1249 pushlevel (0);
1250 set_block (f->context);
1251 expand_cleanups (TREE_VALUE (lists), NULL_TREE, 1, 1);
1252 do_pending_stack_adjust ();
1253 cleanup_insns = get_insns ();
1254 poplevel (1, 0, 0);
1255 end_sequence ();
1256 if (cleanup_insns != 0)
1257 f->before_jump
1258 = emit_insns_after (cleanup_insns, f->before_jump);
1259
1260 f->cleanup_list_list = TREE_CHAIN (lists);
1261 }
1262
1263 if (stack_level)
1264 f->stack_level = stack_level;
1265 }
1266 }
1267 \f
1268 /* Return the number of times character C occurs in string S. */
1269 static int
1270 n_occurrences (c, s)
1271 int c;
1272 const char *s;
1273 {
1274 int n = 0;
1275 while (*s)
1276 n += (*s++ == c);
1277 return n;
1278 }
1279 \f
1280 /* Generate RTL for an asm statement (explicit assembler code).
1281 BODY is a STRING_CST node containing the assembler code text,
1282 or an ADDR_EXPR containing a STRING_CST. */
1283
1284 void
1285 expand_asm (body)
1286 tree body;
1287 {
1288 if (TREE_CODE (body) == ADDR_EXPR)
1289 body = TREE_OPERAND (body, 0);
1290
1291 emit_insn (gen_rtx_ASM_INPUT (VOIDmode,
1292 TREE_STRING_POINTER (body)));
1293 last_expr_type = 0;
1294 }
1295
1296 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
1297 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
1298 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
1299 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
1300 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
1301 constraint allows the use of a register operand. And, *IS_INOUT
1302 will be true if the operand is read-write, i.e., if it is used as
1303 an input as well as an output. If *CONSTRAINT_P is not in
1304 canonical form, it will be made canonical. (Note that `+' will be
1305 rpelaced with `=' as part of this process.)
1306
1307 Returns TRUE if all went well; FALSE if an error occurred. */
1308
1309 bool
1310 parse_output_constraint (constraint_p,
1311 operand_num,
1312 ninputs,
1313 noutputs,
1314 allows_mem,
1315 allows_reg,
1316 is_inout)
1317 const char **constraint_p;
1318 int operand_num;
1319 int ninputs;
1320 int noutputs;
1321 bool *allows_mem;
1322 bool *allows_reg;
1323 bool *is_inout;
1324 {
1325 const char *constraint = *constraint_p;
1326 const char *p;
1327
1328 /* Assume the constraint doesn't allow the use of either a register
1329 or memory. */
1330 *allows_mem = false;
1331 *allows_reg = false;
1332
1333 /* Allow the `=' or `+' to not be at the beginning of the string,
1334 since it wasn't explicitly documented that way, and there is a
1335 large body of code that puts it last. Swap the character to
1336 the front, so as not to uglify any place else. */
1337 p = strchr (constraint, '=');
1338 if (!p)
1339 p = strchr (constraint, '+');
1340
1341 /* If the string doesn't contain an `=', issue an error
1342 message. */
1343 if (!p)
1344 {
1345 error ("output operand constraint lacks `='");
1346 return false;
1347 }
1348
1349 /* If the constraint begins with `+', then the operand is both read
1350 from and written to. */
1351 *is_inout = (*p == '+');
1352
1353 /* Canonicalize the output constraint so that it begins with `='. */
1354 if (p != constraint || is_inout)
1355 {
1356 char *buf;
1357 size_t c_len = strlen (constraint);
1358
1359 if (p != constraint)
1360 warning ("output constraint `%c' for operand %d is not at the beginning",
1361 *p, operand_num);
1362
1363 /* Make a copy of the constraint. */
1364 buf = alloca (c_len + 1);
1365 strcpy (buf, constraint);
1366 /* Swap the first character and the `=' or `+'. */
1367 buf[p - constraint] = buf[0];
1368 /* Make sure the first character is an `='. (Until we do this,
1369 it might be a `+'.) */
1370 buf[0] = '=';
1371 /* Replace the constraint with the canonicalized string. */
1372 *constraint_p = ggc_alloc_string (buf, c_len);
1373 constraint = *constraint_p;
1374 }
1375
1376 /* Loop through the constraint string. */
1377 for (p = constraint + 1; *p; ++p)
1378 switch (*p)
1379 {
1380 case '+':
1381 case '=':
1382 error ("operand constraint contains incorrectly positioned '+' or '='");
1383 return false;
1384
1385 case '%':
1386 if (operand_num + 1 == ninputs + noutputs)
1387 {
1388 error ("`%%' constraint used with last operand");
1389 return false;
1390 }
1391 break;
1392
1393 case 'V': case 'm': case 'o':
1394 *allows_mem = true;
1395 break;
1396
1397 case '?': case '!': case '*': case '&': case '#':
1398 case 'E': case 'F': case 'G': case 'H':
1399 case 's': case 'i': case 'n':
1400 case 'I': case 'J': case 'K': case 'L': case 'M':
1401 case 'N': case 'O': case 'P': case ',':
1402 break;
1403
1404 case '0': case '1': case '2': case '3': case '4':
1405 case '5': case '6': case '7': case '8': case '9':
1406 case '[':
1407 error ("matching constraint not valid in output operand");
1408 return false;
1409
1410 case '<': case '>':
1411 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1412 excepting those that expand_call created. So match memory
1413 and hope. */
1414 *allows_mem = true;
1415 break;
1416
1417 case 'g': case 'X':
1418 *allows_reg = true;
1419 *allows_mem = true;
1420 break;
1421
1422 case 'p': case 'r':
1423 *allows_reg = true;
1424 break;
1425
1426 default:
1427 if (!ISALPHA (*p))
1428 break;
1429 if (REG_CLASS_FROM_LETTER (*p) != NO_REGS)
1430 *allows_reg = true;
1431 #ifdef EXTRA_CONSTRAINT
1432 else
1433 {
1434 /* Otherwise we can't assume anything about the nature of
1435 the constraint except that it isn't purely registers.
1436 Treat it like "g" and hope for the best. */
1437 *allows_reg = true;
1438 *allows_mem = true;
1439 }
1440 #endif
1441 break;
1442 }
1443
1444 return true;
1445 }
1446
1447 /* Generate RTL for an asm statement with arguments.
1448 STRING is the instruction template.
1449 OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
1450 Each output or input has an expression in the TREE_VALUE and
1451 and a tree list in TREE_PURPOSE which in turn contains a constraint
1452 name in TREE_VALUE (or NULL_TREE) and a constraint string
1453 in TREE_PURPOSE.
1454 CLOBBERS is a list of STRING_CST nodes each naming a hard register
1455 that is clobbered by this insn.
1456
1457 Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
1458 Some elements of OUTPUTS may be replaced with trees representing temporary
1459 values. The caller should copy those temporary values to the originally
1460 specified lvalues.
1461
1462 VOL nonzero means the insn is volatile; don't optimize it. */
1463
1464 void
1465 expand_asm_operands (string, outputs, inputs, clobbers, vol, filename, line)
1466 tree string, outputs, inputs, clobbers;
1467 int vol;
1468 const char *filename;
1469 int line;
1470 {
1471 rtvec argvec, constraintvec;
1472 rtx body;
1473 int ninputs = list_length (inputs);
1474 int noutputs = list_length (outputs);
1475 int ninout = 0;
1476 int nclobbers;
1477 tree tail;
1478 int i;
1479 /* Vector of RTX's of evaluated output operands. */
1480 rtx *output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1481 int *inout_opnum = (int *) alloca (noutputs * sizeof (int));
1482 rtx *real_output_rtx = (rtx *) alloca (noutputs * sizeof (rtx));
1483 enum machine_mode *inout_mode
1484 = (enum machine_mode *) alloca (noutputs * sizeof (enum machine_mode));
1485 const char **constraints
1486 = (const char **) alloca ((noutputs + ninputs) * sizeof (const char *));
1487 /* The insn we have emitted. */
1488 rtx insn;
1489 int old_generating_concat_p = generating_concat_p;
1490
1491 /* An ASM with no outputs needs to be treated as volatile, for now. */
1492 if (noutputs == 0)
1493 vol = 1;
1494
1495 if (! check_operand_nalternatives (outputs, inputs))
1496 return;
1497
1498 if (! check_unique_operand_names (outputs, inputs))
1499 return;
1500
1501 string = resolve_operand_names (string, outputs, inputs, constraints);
1502
1503 #ifdef MD_ASM_CLOBBERS
1504 /* Sometimes we wish to automatically clobber registers across an asm.
1505 Case in point is when the i386 backend moved from cc0 to a hard reg --
1506 maintaining source-level compatibility means automatically clobbering
1507 the flags register. */
1508 MD_ASM_CLOBBERS (clobbers);
1509 #endif
1510
1511 /* Count the number of meaningful clobbered registers, ignoring what
1512 we would ignore later. */
1513 nclobbers = 0;
1514 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1515 {
1516 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1517
1518 i = decode_reg_name (regname);
1519 if (i >= 0 || i == -4)
1520 ++nclobbers;
1521 else if (i == -2)
1522 error ("unknown register name `%s' in `asm'", regname);
1523 }
1524
1525 last_expr_type = 0;
1526
1527 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1528 {
1529 tree val = TREE_VALUE (tail);
1530 tree type = TREE_TYPE (val);
1531 bool is_inout;
1532 bool allows_reg;
1533 bool allows_mem;
1534
1535 /* If there's an erroneous arg, emit no insn. */
1536 if (type == error_mark_node)
1537 return;
1538
1539 /* Make sure constraint has `=' and does not have `+'. Also, see
1540 if it allows any register. Be liberal on the latter test, since
1541 the worst that happens if we get it wrong is we issue an error
1542 message. */
1543
1544 /* Try to parse the output constraint. If that fails, there's
1545 no point in going further. */
1546 if (!parse_output_constraint (&constraints[i],
1547 i,
1548 ninputs,
1549 noutputs,
1550 &allows_mem,
1551 &allows_reg,
1552 &is_inout))
1553 return;
1554
1555 /* If an output operand is not a decl or indirect ref and our constraint
1556 allows a register, make a temporary to act as an intermediate.
1557 Make the asm insn write into that, then our caller will copy it to
1558 the real output operand. Likewise for promoted variables. */
1559
1560 generating_concat_p = 0;
1561
1562 real_output_rtx[i] = NULL_RTX;
1563 if ((TREE_CODE (val) == INDIRECT_REF
1564 && allows_mem)
1565 || (DECL_P (val)
1566 && (allows_mem || GET_CODE (DECL_RTL (val)) == REG)
1567 && ! (GET_CODE (DECL_RTL (val)) == REG
1568 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type)))
1569 || ! allows_reg
1570 || is_inout)
1571 {
1572 if (! allows_reg)
1573 mark_addressable (TREE_VALUE (tail));
1574
1575 output_rtx[i]
1576 = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode,
1577 EXPAND_WRITE);
1578
1579 if (! allows_reg && GET_CODE (output_rtx[i]) != MEM)
1580 error ("output number %d not directly addressable", i);
1581 if ((! allows_mem && GET_CODE (output_rtx[i]) == MEM)
1582 || GET_CODE (output_rtx[i]) == CONCAT)
1583 {
1584 real_output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1585 output_rtx[i] = gen_reg_rtx (GET_MODE (output_rtx[i]));
1586 if (is_inout)
1587 emit_move_insn (output_rtx[i], real_output_rtx[i]);
1588 }
1589 }
1590 else
1591 {
1592 output_rtx[i] = assign_temp (type, 0, 0, 1);
1593 TREE_VALUE (tail) = make_tree (type, output_rtx[i]);
1594 }
1595
1596 generating_concat_p = old_generating_concat_p;
1597
1598 if (is_inout)
1599 {
1600 inout_mode[ninout] = TYPE_MODE (TREE_TYPE (TREE_VALUE (tail)));
1601 inout_opnum[ninout++] = i;
1602 }
1603 }
1604
1605 ninputs += ninout;
1606 if (ninputs + noutputs > MAX_RECOG_OPERANDS)
1607 {
1608 error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS);
1609 return;
1610 }
1611
1612 /* Make vectors for the expression-rtx, constraint strings,
1613 and named operands. */
1614
1615 argvec = rtvec_alloc (ninputs);
1616 constraintvec = rtvec_alloc (ninputs);
1617
1618 body = gen_rtx_ASM_OPERANDS ((noutputs == 0 ? VOIDmode
1619 : GET_MODE (output_rtx[0])),
1620 TREE_STRING_POINTER (string),
1621 empty_string, 0, argvec, constraintvec,
1622 filename, line);
1623
1624 MEM_VOLATILE_P (body) = vol;
1625
1626 /* Eval the inputs and put them into ARGVEC.
1627 Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
1628
1629 for (i = 0, tail = inputs; tail; tail = TREE_CHAIN (tail), ++i)
1630 {
1631 int j;
1632 int allows_reg = 0, allows_mem = 0;
1633 const char *constraint, *orig_constraint;
1634 int c_len;
1635 rtx op;
1636
1637 /* If there's an erroneous arg, emit no insn,
1638 because the ASM_INPUT would get VOIDmode
1639 and that could cause a crash in reload. */
1640 if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
1641 return;
1642
1643 /* ??? Can this happen, and does the error message make any sense? */
1644 if (TREE_PURPOSE (tail) == NULL_TREE)
1645 {
1646 error ("hard register `%s' listed as input operand to `asm'",
1647 TREE_STRING_POINTER (TREE_VALUE (tail)) );
1648 return;
1649 }
1650
1651 orig_constraint = constraint = constraints[i + noutputs];
1652 c_len = strlen (constraint);
1653
1654 /* Make sure constraint has neither `=', `+', nor '&'. */
1655
1656 for (j = 0; j < c_len; j++)
1657 switch (constraint[j])
1658 {
1659 case '+': case '=': case '&':
1660 if (constraint == orig_constraint)
1661 {
1662 error ("input operand constraint contains `%c'",
1663 constraint[j]);
1664 return;
1665 }
1666 break;
1667
1668 case '%':
1669 if (constraint == orig_constraint
1670 && i + 1 == ninputs - ninout)
1671 {
1672 error ("`%%' constraint used with last operand");
1673 return;
1674 }
1675 break;
1676
1677 case 'V': case 'm': case 'o':
1678 allows_mem = 1;
1679 break;
1680
1681 case '<': case '>':
1682 case '?': case '!': case '*': case '#':
1683 case 'E': case 'F': case 'G': case 'H':
1684 case 's': case 'i': case 'n':
1685 case 'I': case 'J': case 'K': case 'L': case 'M':
1686 case 'N': case 'O': case 'P': case ',':
1687 break;
1688
1689 /* Whether or not a numeric constraint allows a register is
1690 decided by the matching constraint, and so there is no need
1691 to do anything special with them. We must handle them in
1692 the default case, so that we don't unnecessarily force
1693 operands to memory. */
1694 case '0': case '1': case '2': case '3': case '4':
1695 case '5': case '6': case '7': case '8': case '9':
1696 {
1697 char *end;
1698 unsigned long match;
1699
1700 match = strtoul (constraint + j, &end, 10);
1701 if (match >= (unsigned long) noutputs)
1702 {
1703 error ("matching constraint references invalid operand number");
1704 return;
1705 }
1706
1707 /* Try and find the real constraint for this dup. Only do
1708 this if the matching constraint is the only alternative. */
1709 if (*end == '\0'
1710 && (j == 0 || (j == 1 && constraint[0] == '%')))
1711 {
1712 constraint = constraints[match];
1713 c_len = strlen (constraint);
1714 j = 0;
1715 break;
1716 }
1717 else
1718 j = end - constraint;
1719 }
1720 /* Fall through. */
1721
1722 case 'p': case 'r':
1723 allows_reg = 1;
1724 break;
1725
1726 case 'g': case 'X':
1727 allows_reg = 1;
1728 allows_mem = 1;
1729 break;
1730
1731 default:
1732 if (! ISALPHA (constraint[j]))
1733 {
1734 error ("invalid punctuation `%c' in constraint",
1735 constraint[j]);
1736 return;
1737 }
1738 if (REG_CLASS_FROM_LETTER (constraint[j]) != NO_REGS)
1739 allows_reg = 1;
1740 #ifdef EXTRA_CONSTRAINT
1741 else
1742 {
1743 /* Otherwise we can't assume anything about the nature of
1744 the constraint except that it isn't purely registers.
1745 Treat it like "g" and hope for the best. */
1746 allows_reg = 1;
1747 allows_mem = 1;
1748 }
1749 #endif
1750 break;
1751 }
1752
1753 if (! allows_reg && allows_mem)
1754 mark_addressable (TREE_VALUE (tail));
1755
1756 op = expand_expr (TREE_VALUE (tail), NULL_RTX, VOIDmode, 0);
1757
1758 /* Never pass a CONCAT to an ASM. */
1759 generating_concat_p = 0;
1760 if (GET_CODE (op) == CONCAT)
1761 op = force_reg (GET_MODE (op), op);
1762
1763 if (asm_operand_ok (op, constraint) <= 0)
1764 {
1765 if (allows_reg)
1766 op = force_reg (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))), op);
1767 else if (!allows_mem)
1768 warning ("asm operand %d probably doesn't match constraints",
1769 i + noutputs);
1770 else if (CONSTANT_P (op))
1771 op = force_const_mem (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
1772 op);
1773 else if (GET_CODE (op) == REG
1774 || GET_CODE (op) == SUBREG
1775 || GET_CODE (op) == ADDRESSOF
1776 || GET_CODE (op) == CONCAT)
1777 {
1778 tree type = TREE_TYPE (TREE_VALUE (tail));
1779 tree qual_type = build_qualified_type (type,
1780 (TYPE_QUALS (type)
1781 | TYPE_QUAL_CONST));
1782 rtx memloc = assign_temp (qual_type, 1, 1, 1);
1783
1784 emit_move_insn (memloc, op);
1785 op = memloc;
1786 }
1787
1788 else if (GET_CODE (op) == MEM && MEM_VOLATILE_P (op))
1789 /* We won't recognize volatile memory as available a
1790 memory_operand at this point. Ignore it. */
1791 ;
1792 else if (queued_subexp_p (op))
1793 ;
1794 else
1795 /* ??? Leave this only until we have experience with what
1796 happens in combine and elsewhere when constraints are
1797 not satisfied. */
1798 warning ("asm operand %d probably doesn't match constraints",
1799 i + noutputs);
1800 }
1801 generating_concat_p = old_generating_concat_p;
1802 ASM_OPERANDS_INPUT (body, i) = op;
1803
1804 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, i)
1805 = gen_rtx_ASM_INPUT (TYPE_MODE (TREE_TYPE (TREE_VALUE (tail))),
1806 orig_constraint);
1807 }
1808
1809 /* Protect all the operands from the queue now that they have all been
1810 evaluated. */
1811
1812 generating_concat_p = 0;
1813
1814 for (i = 0; i < ninputs - ninout; i++)
1815 ASM_OPERANDS_INPUT (body, i)
1816 = protect_from_queue (ASM_OPERANDS_INPUT (body, i), 0);
1817
1818 for (i = 0; i < noutputs; i++)
1819 output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1820
1821 /* For in-out operands, copy output rtx to input rtx. */
1822 for (i = 0; i < ninout; i++)
1823 {
1824 int j = inout_opnum[i];
1825 char buffer[16];
1826
1827 ASM_OPERANDS_INPUT (body, ninputs - ninout + i)
1828 = output_rtx[j];
1829
1830 sprintf (buffer, "%d", j);
1831 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, ninputs - ninout + i)
1832 = gen_rtx_ASM_INPUT (inout_mode[i], ggc_alloc_string (buffer, -1));
1833 }
1834
1835 generating_concat_p = old_generating_concat_p;
1836
1837 /* Now, for each output, construct an rtx
1838 (set OUTPUT (asm_operands INSN OUTPUTCONSTRAINT OUTPUTNUMBER
1839 ARGVEC CONSTRAINTS OPNAMES))
1840 If there is more than one, put them inside a PARALLEL. */
1841
1842 if (noutputs == 1 && nclobbers == 0)
1843 {
1844 ASM_OPERANDS_OUTPUT_CONSTRAINT (body) = constraints[0];
1845 insn = emit_insn (gen_rtx_SET (VOIDmode, output_rtx[0], body));
1846 }
1847
1848 else if (noutputs == 0 && nclobbers == 0)
1849 {
1850 /* No output operands: put in a raw ASM_OPERANDS rtx. */
1851 insn = emit_insn (body);
1852 }
1853
1854 else
1855 {
1856 rtx obody = body;
1857 int num = noutputs;
1858
1859 if (num == 0)
1860 num = 1;
1861
1862 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num + nclobbers));
1863
1864 /* For each output operand, store a SET. */
1865 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1866 {
1867 XVECEXP (body, 0, i)
1868 = gen_rtx_SET (VOIDmode,
1869 output_rtx[i],
1870 gen_rtx_ASM_OPERANDS
1871 (GET_MODE (output_rtx[i]),
1872 TREE_STRING_POINTER (string),
1873 constraints[i], i, argvec, constraintvec,
1874 filename, line));
1875
1876 MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
1877 }
1878
1879 /* If there are no outputs (but there are some clobbers)
1880 store the bare ASM_OPERANDS into the PARALLEL. */
1881
1882 if (i == 0)
1883 XVECEXP (body, 0, i++) = obody;
1884
1885 /* Store (clobber REG) for each clobbered register specified. */
1886
1887 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1888 {
1889 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1890 int j = decode_reg_name (regname);
1891
1892 if (j < 0)
1893 {
1894 if (j == -3) /* `cc', which is not a register */
1895 continue;
1896
1897 if (j == -4) /* `memory', don't cache memory across asm */
1898 {
1899 XVECEXP (body, 0, i++)
1900 = gen_rtx_CLOBBER (VOIDmode,
1901 gen_rtx_MEM
1902 (BLKmode,
1903 gen_rtx_SCRATCH (VOIDmode)));
1904 continue;
1905 }
1906
1907 /* Ignore unknown register, error already signaled. */
1908 continue;
1909 }
1910
1911 /* Use QImode since that's guaranteed to clobber just one reg. */
1912 XVECEXP (body, 0, i++)
1913 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (QImode, j));
1914 }
1915
1916 insn = emit_insn (body);
1917 }
1918
1919 /* For any outputs that needed reloading into registers, spill them
1920 back to where they belong. */
1921 for (i = 0; i < noutputs; ++i)
1922 if (real_output_rtx[i])
1923 emit_move_insn (real_output_rtx[i], output_rtx[i]);
1924
1925 free_temp_slots ();
1926 }
1927
1928 /* A subroutine of expand_asm_operands. Check that all operands have
1929 the same number of alternatives. Return true if so. */
1930
1931 static bool
1932 check_operand_nalternatives (outputs, inputs)
1933 tree outputs, inputs;
1934 {
1935 if (outputs || inputs)
1936 {
1937 tree tmp = TREE_PURPOSE (outputs ? outputs : inputs);
1938 int nalternatives
1939 = n_occurrences (',', TREE_STRING_POINTER (TREE_VALUE (tmp)));
1940 tree next = inputs;
1941
1942 if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES)
1943 {
1944 error ("too many alternatives in `asm'");
1945 return false;
1946 }
1947
1948 tmp = outputs;
1949 while (tmp)
1950 {
1951 const char *constraint
1952 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tmp)));
1953
1954 if (n_occurrences (',', constraint) != nalternatives)
1955 {
1956 error ("operand constraints for `asm' differ in number of alternatives");
1957 return false;
1958 }
1959
1960 if (TREE_CHAIN (tmp))
1961 tmp = TREE_CHAIN (tmp);
1962 else
1963 tmp = next, next = 0;
1964 }
1965 }
1966
1967 return true;
1968 }
1969
1970 /* A subroutine of expand_asm_operands. Check that all operand names
1971 are unique. Return true if so. We rely on the fact that these names
1972 are identifiers, and so have been canonicalized by get_identifier,
1973 so all we need are pointer comparisons. */
1974
1975 static bool
1976 check_unique_operand_names (outputs, inputs)
1977 tree outputs, inputs;
1978 {
1979 tree i, j;
1980
1981 for (i = outputs; i ; i = TREE_CHAIN (i))
1982 {
1983 tree i_name = TREE_PURPOSE (TREE_PURPOSE (i));
1984 if (! i_name)
1985 continue;
1986
1987 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
1988 if (i_name == TREE_PURPOSE (TREE_PURPOSE (j)))
1989 goto failure;
1990 }
1991
1992 for (i = inputs; i ; i = TREE_CHAIN (i))
1993 {
1994 tree i_name = TREE_PURPOSE (TREE_PURPOSE (i));
1995 if (! i_name)
1996 continue;
1997
1998 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
1999 if (i_name == TREE_PURPOSE (TREE_PURPOSE (j)))
2000 goto failure;
2001 for (j = outputs; j ; j = TREE_CHAIN (j))
2002 if (i_name == TREE_PURPOSE (TREE_PURPOSE (j)))
2003 goto failure;
2004 }
2005
2006 return true;
2007
2008 failure:
2009 error ("duplicate asm operand name '%s'",
2010 IDENTIFIER_POINTER (TREE_PURPOSE (TREE_PURPOSE (i))));
2011 return false;
2012 }
2013
2014 /* A subroutine of expand_asm_operands. Resolve the names of the operands
2015 in *POUTPUTS and *PINPUTS to numbers, and replace the name expansions in
2016 STRING and in the constraints to those numbers. */
2017
2018 static tree
2019 resolve_operand_names (string, outputs, inputs, pconstraints)
2020 tree string;
2021 tree outputs, inputs;
2022 const char **pconstraints;
2023 {
2024 char *buffer = xstrdup (TREE_STRING_POINTER (string));
2025 char *p;
2026 tree t;
2027
2028 /* Assume that we will not need extra space to perform the substitution.
2029 This because we get to remove '[' and ']', which means we cannot have
2030 a problem until we have more than 999 operands. */
2031
2032 p = buffer;
2033 while ((p = strchr (p, '%')) != NULL)
2034 {
2035 if (*++p != '[')
2036 continue;
2037 p = resolve_operand_name_1 (p, outputs, inputs);
2038 }
2039
2040 string = build_string (strlen (buffer), buffer);
2041 free (buffer);
2042
2043 /* Collect output constraints here because it's convenient.
2044 There should be no named operands here; this is verified
2045 in expand_asm_operand. */
2046 for (t = outputs; t ; t = TREE_CHAIN (t), pconstraints++)
2047 *pconstraints = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
2048
2049 /* Substitute [<name>] in input constraint strings. */
2050 for (t = inputs; t ; t = TREE_CHAIN (t), pconstraints++)
2051 {
2052 const char *c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
2053 if (strchr (c, '[') == NULL)
2054 *pconstraints = c;
2055 else
2056 {
2057 p = buffer = xstrdup (c);
2058 while ((p = strchr (p, '[')) != NULL)
2059 p = resolve_operand_name_1 (p, outputs, inputs);
2060
2061 *pconstraints = ggc_alloc_string (buffer, -1);
2062 free (buffer);
2063 }
2064 }
2065
2066 return string;
2067 }
2068
2069 /* A subroutine of resolve_operand_names. P points to the '[' for a
2070 potential named operand of the form [<name>]. In place, replace
2071 the name and brackets with a number. Return a pointer to the
2072 balance of the string after substitution. */
2073
2074 static char *
2075 resolve_operand_name_1 (p, outputs, inputs)
2076 char *p;
2077 tree outputs, inputs;
2078 {
2079 char *q;
2080 int op;
2081 tree t;
2082 size_t len;
2083
2084 /* Collect the operand name. */
2085 q = strchr (p, ']');
2086 if (!q)
2087 {
2088 error ("missing close brace for named operand");
2089 return strchr (p, '\0');
2090 }
2091 len = q - p - 1;
2092
2093 /* Resolve the name to a number. */
2094 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
2095 {
2096 const char *c = IDENTIFIER_POINTER (TREE_PURPOSE (TREE_PURPOSE (t)));
2097 if (strncmp (c, p + 1, len) == 0 && c[len] == '\0')
2098 goto found;
2099 }
2100 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
2101 {
2102 const char *c = IDENTIFIER_POINTER (TREE_PURPOSE (TREE_PURPOSE (t)));
2103 if (strncmp (c, p + 1, len) == 0 && c[len] == '\0')
2104 goto found;
2105 }
2106
2107 *q = '\0';
2108 error ("undefined named operand '%s'", p + 1);
2109 op = 0;
2110 found:
2111
2112 /* Replace the name with the number. Unfortunately, not all libraries
2113 get the return value of sprintf correct, so search for the end of the
2114 generated string by hand. */
2115 sprintf (p, "%d", op);
2116 p = strchr (p, '\0');
2117
2118 /* Verify the no extra buffer space assumption. */
2119 if (p > q)
2120 abort ();
2121
2122 /* Shift the rest of the buffer down to fill the gap. */
2123 memmove (p, q + 1, strlen (q + 1) + 1);
2124
2125 return p;
2126 }
2127 \f
2128 /* Generate RTL to evaluate the expression EXP
2129 and remember it in case this is the VALUE in a ({... VALUE; }) constr. */
2130
2131 void
2132 expand_expr_stmt (exp)
2133 tree exp;
2134 {
2135 /* If -W, warn about statements with no side effects,
2136 except for an explicit cast to void (e.g. for assert()), and
2137 except inside a ({...}) where they may be useful. */
2138 if (expr_stmts_for_value == 0 && exp != error_mark_node)
2139 {
2140 if (! TREE_SIDE_EFFECTS (exp))
2141 {
2142 if ((extra_warnings || warn_unused_value)
2143 && !(TREE_CODE (exp) == CONVERT_EXPR
2144 && VOID_TYPE_P (TREE_TYPE (exp))))
2145 warning_with_file_and_line (emit_filename, emit_lineno,
2146 "statement with no effect");
2147 }
2148 else if (warn_unused_value)
2149 warn_if_unused_value (exp);
2150 }
2151
2152 /* If EXP is of function type and we are expanding statements for
2153 value, convert it to pointer-to-function. */
2154 if (expr_stmts_for_value && TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE)
2155 exp = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (exp)), exp);
2156
2157 /* The call to `expand_expr' could cause last_expr_type and
2158 last_expr_value to get reset. Therefore, we set last_expr_value
2159 and last_expr_type *after* calling expand_expr. */
2160 last_expr_value = expand_expr (exp,
2161 (expr_stmts_for_value
2162 ? NULL_RTX : const0_rtx),
2163 VOIDmode, 0);
2164 last_expr_type = TREE_TYPE (exp);
2165
2166 /* If all we do is reference a volatile value in memory,
2167 copy it to a register to be sure it is actually touched. */
2168 if (last_expr_value != 0 && GET_CODE (last_expr_value) == MEM
2169 && TREE_THIS_VOLATILE (exp))
2170 {
2171 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode)
2172 ;
2173 else if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
2174 copy_to_reg (last_expr_value);
2175 else
2176 {
2177 rtx lab = gen_label_rtx ();
2178
2179 /* Compare the value with itself to reference it. */
2180 emit_cmp_and_jump_insns (last_expr_value, last_expr_value, EQ,
2181 expand_expr (TYPE_SIZE (last_expr_type),
2182 NULL_RTX, VOIDmode, 0),
2183 BLKmode, 0, lab);
2184 emit_label (lab);
2185 }
2186 }
2187
2188 /* If this expression is part of a ({...}) and is in memory, we may have
2189 to preserve temporaries. */
2190 preserve_temp_slots (last_expr_value);
2191
2192 /* Free any temporaries used to evaluate this expression. Any temporary
2193 used as a result of this expression will already have been preserved
2194 above. */
2195 free_temp_slots ();
2196
2197 emit_queue ();
2198 }
2199
2200 /* Warn if EXP contains any computations whose results are not used.
2201 Return 1 if a warning is printed; 0 otherwise. */
2202
2203 int
2204 warn_if_unused_value (exp)
2205 tree exp;
2206 {
2207 if (TREE_USED (exp))
2208 return 0;
2209
2210 /* Don't warn about void constructs. This includes casting to void,
2211 void function calls, and statement expressions with a final cast
2212 to void. */
2213 if (VOID_TYPE_P (TREE_TYPE (exp)))
2214 return 0;
2215
2216 /* If this is an expression with side effects, don't warn. */
2217 if (TREE_SIDE_EFFECTS (exp))
2218 return 0;
2219
2220 switch (TREE_CODE (exp))
2221 {
2222 case PREINCREMENT_EXPR:
2223 case POSTINCREMENT_EXPR:
2224 case PREDECREMENT_EXPR:
2225 case POSTDECREMENT_EXPR:
2226 case MODIFY_EXPR:
2227 case INIT_EXPR:
2228 case TARGET_EXPR:
2229 case CALL_EXPR:
2230 case METHOD_CALL_EXPR:
2231 case RTL_EXPR:
2232 case TRY_CATCH_EXPR:
2233 case WITH_CLEANUP_EXPR:
2234 case EXIT_EXPR:
2235 return 0;
2236
2237 case BIND_EXPR:
2238 /* For a binding, warn if no side effect within it. */
2239 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2240
2241 case SAVE_EXPR:
2242 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2243
2244 case TRUTH_ORIF_EXPR:
2245 case TRUTH_ANDIF_EXPR:
2246 /* In && or ||, warn if 2nd operand has no side effect. */
2247 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2248
2249 case COMPOUND_EXPR:
2250 if (TREE_NO_UNUSED_WARNING (exp))
2251 return 0;
2252 if (warn_if_unused_value (TREE_OPERAND (exp, 0)))
2253 return 1;
2254 /* Let people do `(foo (), 0)' without a warning. */
2255 if (TREE_CONSTANT (TREE_OPERAND (exp, 1)))
2256 return 0;
2257 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2258
2259 case NOP_EXPR:
2260 case CONVERT_EXPR:
2261 case NON_LVALUE_EXPR:
2262 /* Don't warn about conversions not explicit in the user's program. */
2263 if (TREE_NO_UNUSED_WARNING (exp))
2264 return 0;
2265 /* Assignment to a cast usually results in a cast of a modify.
2266 Don't complain about that. There can be an arbitrary number of
2267 casts before the modify, so we must loop until we find the first
2268 non-cast expression and then test to see if that is a modify. */
2269 {
2270 tree tem = TREE_OPERAND (exp, 0);
2271
2272 while (TREE_CODE (tem) == CONVERT_EXPR || TREE_CODE (tem) == NOP_EXPR)
2273 tem = TREE_OPERAND (tem, 0);
2274
2275 if (TREE_CODE (tem) == MODIFY_EXPR || TREE_CODE (tem) == INIT_EXPR
2276 || TREE_CODE (tem) == CALL_EXPR)
2277 return 0;
2278 }
2279 goto warn;
2280
2281 case INDIRECT_REF:
2282 /* Don't warn about automatic dereferencing of references, since
2283 the user cannot control it. */
2284 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == REFERENCE_TYPE)
2285 return warn_if_unused_value (TREE_OPERAND (exp, 0));
2286 /* Fall through. */
2287
2288 default:
2289 /* Referencing a volatile value is a side effect, so don't warn. */
2290 if ((DECL_P (exp)
2291 || TREE_CODE_CLASS (TREE_CODE (exp)) == 'r')
2292 && TREE_THIS_VOLATILE (exp))
2293 return 0;
2294
2295 /* If this is an expression which has no operands, there is no value
2296 to be unused. There are no such language-independent codes,
2297 but front ends may define such. */
2298 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'e'
2299 && TREE_CODE_LENGTH (TREE_CODE (exp)) == 0)
2300 return 0;
2301
2302 warn:
2303 warning_with_file_and_line (emit_filename, emit_lineno,
2304 "value computed is not used");
2305 return 1;
2306 }
2307 }
2308
2309 /* Clear out the memory of the last expression evaluated. */
2310
2311 void
2312 clear_last_expr ()
2313 {
2314 last_expr_type = 0;
2315 }
2316
2317 /* Begin a statement which will return a value.
2318 Return the RTL_EXPR for this statement expr.
2319 The caller must save that value and pass it to expand_end_stmt_expr. */
2320
2321 tree
2322 expand_start_stmt_expr ()
2323 {
2324 tree t;
2325
2326 /* Make the RTL_EXPR node temporary, not momentary,
2327 so that rtl_expr_chain doesn't become garbage. */
2328 t = make_node (RTL_EXPR);
2329 do_pending_stack_adjust ();
2330 start_sequence_for_rtl_expr (t);
2331 NO_DEFER_POP;
2332 expr_stmts_for_value++;
2333 return t;
2334 }
2335
2336 /* Restore the previous state at the end of a statement that returns a value.
2337 Returns a tree node representing the statement's value and the
2338 insns to compute the value.
2339
2340 The nodes of that expression have been freed by now, so we cannot use them.
2341 But we don't want to do that anyway; the expression has already been
2342 evaluated and now we just want to use the value. So generate a RTL_EXPR
2343 with the proper type and RTL value.
2344
2345 If the last substatement was not an expression,
2346 return something with type `void'. */
2347
2348 tree
2349 expand_end_stmt_expr (t)
2350 tree t;
2351 {
2352 OK_DEFER_POP;
2353
2354 if (last_expr_type == 0)
2355 {
2356 last_expr_type = void_type_node;
2357 last_expr_value = const0_rtx;
2358 }
2359 else if (last_expr_value == 0)
2360 /* There are some cases where this can happen, such as when the
2361 statement is void type. */
2362 last_expr_value = const0_rtx;
2363 else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value))
2364 /* Remove any possible QUEUED. */
2365 last_expr_value = protect_from_queue (last_expr_value, 0);
2366
2367 emit_queue ();
2368
2369 TREE_TYPE (t) = last_expr_type;
2370 RTL_EXPR_RTL (t) = last_expr_value;
2371 RTL_EXPR_SEQUENCE (t) = get_insns ();
2372
2373 rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain);
2374
2375 end_sequence ();
2376
2377 /* Don't consider deleting this expr or containing exprs at tree level. */
2378 TREE_SIDE_EFFECTS (t) = 1;
2379 /* Propagate volatility of the actual RTL expr. */
2380 TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value);
2381
2382 last_expr_type = 0;
2383 expr_stmts_for_value--;
2384
2385 return t;
2386 }
2387 \f
2388 /* Generate RTL for the start of an if-then. COND is the expression
2389 whose truth should be tested.
2390
2391 If EXITFLAG is nonzero, this conditional is visible to
2392 `exit_something'. */
2393
2394 void
2395 expand_start_cond (cond, exitflag)
2396 tree cond;
2397 int exitflag;
2398 {
2399 struct nesting *thiscond = ALLOC_NESTING ();
2400
2401 /* Make an entry on cond_stack for the cond we are entering. */
2402
2403 thiscond->next = cond_stack;
2404 thiscond->all = nesting_stack;
2405 thiscond->depth = ++nesting_depth;
2406 thiscond->data.cond.next_label = gen_label_rtx ();
2407 /* Before we encounter an `else', we don't need a separate exit label
2408 unless there are supposed to be exit statements
2409 to exit this conditional. */
2410 thiscond->exit_label = exitflag ? gen_label_rtx () : 0;
2411 thiscond->data.cond.endif_label = thiscond->exit_label;
2412 cond_stack = thiscond;
2413 nesting_stack = thiscond;
2414
2415 do_jump (cond, thiscond->data.cond.next_label, NULL_RTX);
2416 }
2417
2418 /* Generate RTL between then-clause and the elseif-clause
2419 of an if-then-elseif-.... */
2420
2421 void
2422 expand_start_elseif (cond)
2423 tree cond;
2424 {
2425 if (cond_stack->data.cond.endif_label == 0)
2426 cond_stack->data.cond.endif_label = gen_label_rtx ();
2427 emit_jump (cond_stack->data.cond.endif_label);
2428 emit_label (cond_stack->data.cond.next_label);
2429 cond_stack->data.cond.next_label = gen_label_rtx ();
2430 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2431 }
2432
2433 /* Generate RTL between the then-clause and the else-clause
2434 of an if-then-else. */
2435
2436 void
2437 expand_start_else ()
2438 {
2439 if (cond_stack->data.cond.endif_label == 0)
2440 cond_stack->data.cond.endif_label = gen_label_rtx ();
2441
2442 emit_jump (cond_stack->data.cond.endif_label);
2443 emit_label (cond_stack->data.cond.next_label);
2444 cond_stack->data.cond.next_label = 0; /* No more _else or _elseif calls. */
2445 }
2446
2447 /* After calling expand_start_else, turn this "else" into an "else if"
2448 by providing another condition. */
2449
2450 void
2451 expand_elseif (cond)
2452 tree cond;
2453 {
2454 cond_stack->data.cond.next_label = gen_label_rtx ();
2455 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2456 }
2457
2458 /* Generate RTL for the end of an if-then.
2459 Pop the record for it off of cond_stack. */
2460
2461 void
2462 expand_end_cond ()
2463 {
2464 struct nesting *thiscond = cond_stack;
2465
2466 do_pending_stack_adjust ();
2467 if (thiscond->data.cond.next_label)
2468 emit_label (thiscond->data.cond.next_label);
2469 if (thiscond->data.cond.endif_label)
2470 emit_label (thiscond->data.cond.endif_label);
2471
2472 POPSTACK (cond_stack);
2473 last_expr_type = 0;
2474 }
2475 \f
2476 /* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this
2477 loop should be exited by `exit_something'. This is a loop for which
2478 `expand_continue' will jump to the top of the loop.
2479
2480 Make an entry on loop_stack to record the labels associated with
2481 this loop. */
2482
2483 struct nesting *
2484 expand_start_loop (exit_flag)
2485 int exit_flag;
2486 {
2487 struct nesting *thisloop = ALLOC_NESTING ();
2488
2489 /* Make an entry on loop_stack for the loop we are entering. */
2490
2491 thisloop->next = loop_stack;
2492 thisloop->all = nesting_stack;
2493 thisloop->depth = ++nesting_depth;
2494 thisloop->data.loop.start_label = gen_label_rtx ();
2495 thisloop->data.loop.end_label = gen_label_rtx ();
2496 thisloop->data.loop.alt_end_label = 0;
2497 thisloop->data.loop.continue_label = thisloop->data.loop.start_label;
2498 thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0;
2499 loop_stack = thisloop;
2500 nesting_stack = thisloop;
2501
2502 do_pending_stack_adjust ();
2503 emit_queue ();
2504 emit_note (NULL, NOTE_INSN_LOOP_BEG);
2505 emit_label (thisloop->data.loop.start_label);
2506
2507 return thisloop;
2508 }
2509
2510 /* Like expand_start_loop but for a loop where the continuation point
2511 (for expand_continue_loop) will be specified explicitly. */
2512
2513 struct nesting *
2514 expand_start_loop_continue_elsewhere (exit_flag)
2515 int exit_flag;
2516 {
2517 struct nesting *thisloop = expand_start_loop (exit_flag);
2518 loop_stack->data.loop.continue_label = gen_label_rtx ();
2519 return thisloop;
2520 }
2521
2522 /* Begin a null, aka do { } while (0) "loop". But since the contents
2523 of said loop can still contain a break, we must frob the loop nest. */
2524
2525 struct nesting *
2526 expand_start_null_loop ()
2527 {
2528 struct nesting *thisloop = ALLOC_NESTING ();
2529
2530 /* Make an entry on loop_stack for the loop we are entering. */
2531
2532 thisloop->next = loop_stack;
2533 thisloop->all = nesting_stack;
2534 thisloop->depth = ++nesting_depth;
2535 thisloop->data.loop.start_label = emit_note (NULL, NOTE_INSN_DELETED);
2536 thisloop->data.loop.end_label = gen_label_rtx ();
2537 thisloop->data.loop.alt_end_label = NULL_RTX;
2538 thisloop->data.loop.continue_label = thisloop->data.loop.end_label;
2539 thisloop->exit_label = thisloop->data.loop.end_label;
2540 loop_stack = thisloop;
2541 nesting_stack = thisloop;
2542
2543 return thisloop;
2544 }
2545
2546 /* Specify the continuation point for a loop started with
2547 expand_start_loop_continue_elsewhere.
2548 Use this at the point in the code to which a continue statement
2549 should jump. */
2550
2551 void
2552 expand_loop_continue_here ()
2553 {
2554 do_pending_stack_adjust ();
2555 emit_note (NULL, NOTE_INSN_LOOP_CONT);
2556 emit_label (loop_stack->data.loop.continue_label);
2557 }
2558
2559 /* Finish a loop. Generate a jump back to the top and the loop-exit label.
2560 Pop the block off of loop_stack. */
2561
2562 void
2563 expand_end_loop ()
2564 {
2565 rtx start_label = loop_stack->data.loop.start_label;
2566 rtx insn = get_last_insn ();
2567 int needs_end_jump = 1;
2568
2569 /* Mark the continue-point at the top of the loop if none elsewhere. */
2570 if (start_label == loop_stack->data.loop.continue_label)
2571 emit_note_before (NOTE_INSN_LOOP_CONT, start_label);
2572
2573 do_pending_stack_adjust ();
2574
2575 /* If optimizing, perhaps reorder the loop.
2576 First, try to use a condjump near the end.
2577 expand_exit_loop_if_false ends loops with unconditional jumps,
2578 like this:
2579
2580 if (test) goto label;
2581 optional: cleanup
2582 goto loop_stack->data.loop.end_label
2583 barrier
2584 label:
2585
2586 If we find such a pattern, we can end the loop earlier. */
2587
2588 if (optimize
2589 && GET_CODE (insn) == CODE_LABEL
2590 && LABEL_NAME (insn) == NULL
2591 && GET_CODE (PREV_INSN (insn)) == BARRIER)
2592 {
2593 rtx label = insn;
2594 rtx jump = PREV_INSN (PREV_INSN (label));
2595
2596 if (GET_CODE (jump) == JUMP_INSN
2597 && GET_CODE (PATTERN (jump)) == SET
2598 && SET_DEST (PATTERN (jump)) == pc_rtx
2599 && GET_CODE (SET_SRC (PATTERN (jump))) == LABEL_REF
2600 && (XEXP (SET_SRC (PATTERN (jump)), 0)
2601 == loop_stack->data.loop.end_label))
2602 {
2603 rtx prev;
2604
2605 /* The test might be complex and reference LABEL multiple times,
2606 like the loop in loop_iterations to set vtop. To handle this,
2607 we move LABEL. */
2608 insn = PREV_INSN (label);
2609 reorder_insns (label, label, start_label);
2610
2611 for (prev = PREV_INSN (jump);; prev = PREV_INSN (prev))
2612 {
2613 /* We ignore line number notes, but if we see any other note,
2614 in particular NOTE_INSN_BLOCK_*, NOTE_INSN_EH_REGION_*,
2615 NOTE_INSN_LOOP_*, we disable this optimization. */
2616 if (GET_CODE (prev) == NOTE)
2617 {
2618 if (NOTE_LINE_NUMBER (prev) < 0)
2619 break;
2620 continue;
2621 }
2622 if (GET_CODE (prev) == CODE_LABEL)
2623 break;
2624 if (GET_CODE (prev) == JUMP_INSN)
2625 {
2626 if (GET_CODE (PATTERN (prev)) == SET
2627 && SET_DEST (PATTERN (prev)) == pc_rtx
2628 && GET_CODE (SET_SRC (PATTERN (prev))) == IF_THEN_ELSE
2629 && (GET_CODE (XEXP (SET_SRC (PATTERN (prev)), 1))
2630 == LABEL_REF)
2631 && XEXP (XEXP (SET_SRC (PATTERN (prev)), 1), 0) == label)
2632 {
2633 XEXP (XEXP (SET_SRC (PATTERN (prev)), 1), 0)
2634 = start_label;
2635 emit_note_after (NOTE_INSN_LOOP_END, prev);
2636 needs_end_jump = 0;
2637 }
2638 break;
2639 }
2640 }
2641 }
2642 }
2643
2644 /* If the loop starts with a loop exit, roll that to the end where
2645 it will optimize together with the jump back.
2646
2647 We look for the conditional branch to the exit, except that once
2648 we find such a branch, we don't look past 30 instructions.
2649
2650 In more detail, if the loop presently looks like this (in pseudo-C):
2651
2652 start_label:
2653 if (test) goto end_label;
2654 body;
2655 goto start_label;
2656 end_label:
2657
2658 transform it to look like:
2659
2660 goto start_label;
2661 newstart_label:
2662 body;
2663 start_label:
2664 if (test) goto end_label;
2665 goto newstart_label;
2666 end_label:
2667
2668 Here, the `test' may actually consist of some reasonably complex
2669 code, terminating in a test. */
2670
2671 if (optimize
2672 && needs_end_jump
2673 &&
2674 ! (GET_CODE (insn) == JUMP_INSN
2675 && GET_CODE (PATTERN (insn)) == SET
2676 && SET_DEST (PATTERN (insn)) == pc_rtx
2677 && GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE))
2678 {
2679 int eh_regions = 0;
2680 int num_insns = 0;
2681 rtx last_test_insn = NULL_RTX;
2682
2683 /* Scan insns from the top of the loop looking for a qualified
2684 conditional exit. */
2685 for (insn = NEXT_INSN (loop_stack->data.loop.start_label); insn;
2686 insn = NEXT_INSN (insn))
2687 {
2688 if (GET_CODE (insn) == NOTE)
2689 {
2690 if (optimize < 2
2691 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2692 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2693 /* The code that actually moves the exit test will
2694 carefully leave BLOCK notes in their original
2695 location. That means, however, that we can't debug
2696 the exit test itself. So, we refuse to move code
2697 containing BLOCK notes at low optimization levels. */
2698 break;
2699
2700 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2701 ++eh_regions;
2702 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
2703 {
2704 --eh_regions;
2705 if (eh_regions < 0)
2706 /* We've come to the end of an EH region, but
2707 never saw the beginning of that region. That
2708 means that an EH region begins before the top
2709 of the loop, and ends in the middle of it. The
2710 existence of such a situation violates a basic
2711 assumption in this code, since that would imply
2712 that even when EH_REGIONS is zero, we might
2713 move code out of an exception region. */
2714 abort ();
2715 }
2716
2717 /* We must not walk into a nested loop. */
2718 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2719 break;
2720
2721 /* We already know this INSN is a NOTE, so there's no
2722 point in looking at it to see if it's a JUMP. */
2723 continue;
2724 }
2725
2726 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == INSN)
2727 num_insns++;
2728
2729 if (last_test_insn && num_insns > 30)
2730 break;
2731
2732 if (eh_regions > 0)
2733 /* We don't want to move a partial EH region. Consider:
2734
2735 while ( ( { try {
2736 if (cond ()) 0;
2737 else {
2738 bar();
2739 1;
2740 }
2741 } catch (...) {
2742 1;
2743 } )) {
2744 body;
2745 }
2746
2747 This isn't legal C++, but here's what it's supposed to
2748 mean: if cond() is true, stop looping. Otherwise,
2749 call bar, and keep looping. In addition, if cond
2750 throws an exception, catch it and keep looping. Such
2751 constructs are certainy legal in LISP.
2752
2753 We should not move the `if (cond()) 0' test since then
2754 the EH-region for the try-block would be broken up.
2755 (In this case we would the EH_BEG note for the `try'
2756 and `if cond()' but not the call to bar() or the
2757 EH_END note.)
2758
2759 So we don't look for tests within an EH region. */
2760 continue;
2761
2762 if (GET_CODE (insn) == JUMP_INSN
2763 && GET_CODE (PATTERN (insn)) == SET
2764 && SET_DEST (PATTERN (insn)) == pc_rtx)
2765 {
2766 /* This is indeed a jump. */
2767 rtx dest1 = NULL_RTX;
2768 rtx dest2 = NULL_RTX;
2769 rtx potential_last_test;
2770 if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2771 {
2772 /* A conditional jump. */
2773 dest1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2774 dest2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2775 potential_last_test = insn;
2776 }
2777 else
2778 {
2779 /* An unconditional jump. */
2780 dest1 = SET_SRC (PATTERN (insn));
2781 /* Include the BARRIER after the JUMP. */
2782 potential_last_test = NEXT_INSN (insn);
2783 }
2784
2785 do {
2786 if (dest1 && GET_CODE (dest1) == LABEL_REF
2787 && ((XEXP (dest1, 0)
2788 == loop_stack->data.loop.alt_end_label)
2789 || (XEXP (dest1, 0)
2790 == loop_stack->data.loop.end_label)))
2791 {
2792 last_test_insn = potential_last_test;
2793 break;
2794 }
2795
2796 /* If this was a conditional jump, there may be
2797 another label at which we should look. */
2798 dest1 = dest2;
2799 dest2 = NULL_RTX;
2800 } while (dest1);
2801 }
2802 }
2803
2804 if (last_test_insn != 0 && last_test_insn != get_last_insn ())
2805 {
2806 /* We found one. Move everything from there up
2807 to the end of the loop, and add a jump into the loop
2808 to jump to there. */
2809 rtx newstart_label = gen_label_rtx ();
2810 rtx start_move = start_label;
2811 rtx next_insn;
2812
2813 /* If the start label is preceded by a NOTE_INSN_LOOP_CONT note,
2814 then we want to move this note also. */
2815 if (GET_CODE (PREV_INSN (start_move)) == NOTE
2816 && (NOTE_LINE_NUMBER (PREV_INSN (start_move))
2817 == NOTE_INSN_LOOP_CONT))
2818 start_move = PREV_INSN (start_move);
2819
2820 emit_label_after (newstart_label, PREV_INSN (start_move));
2821
2822 /* Actually move the insns. Start at the beginning, and
2823 keep copying insns until we've copied the
2824 last_test_insn. */
2825 for (insn = start_move; insn; insn = next_insn)
2826 {
2827 /* Figure out which insn comes after this one. We have
2828 to do this before we move INSN. */
2829 if (insn == last_test_insn)
2830 /* We've moved all the insns. */
2831 next_insn = NULL_RTX;
2832 else
2833 next_insn = NEXT_INSN (insn);
2834
2835 if (GET_CODE (insn) == NOTE
2836 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2837 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2838 /* We don't want to move NOTE_INSN_BLOCK_BEGs or
2839 NOTE_INSN_BLOCK_ENDs because the correct generation
2840 of debugging information depends on these appearing
2841 in the same order in the RTL and in the tree
2842 structure, where they are represented as BLOCKs.
2843 So, we don't move block notes. Of course, moving
2844 the code inside the block is likely to make it
2845 impossible to debug the instructions in the exit
2846 test, but such is the price of optimization. */
2847 continue;
2848
2849 /* Move the INSN. */
2850 reorder_insns (insn, insn, get_last_insn ());
2851 }
2852
2853 emit_jump_insn_after (gen_jump (start_label),
2854 PREV_INSN (newstart_label));
2855 emit_barrier_after (PREV_INSN (newstart_label));
2856 start_label = newstart_label;
2857 }
2858 }
2859
2860 if (needs_end_jump)
2861 {
2862 emit_jump (start_label);
2863 emit_note (NULL, NOTE_INSN_LOOP_END);
2864 }
2865 emit_label (loop_stack->data.loop.end_label);
2866
2867 POPSTACK (loop_stack);
2868
2869 last_expr_type = 0;
2870 }
2871
2872 /* Finish a null loop, aka do { } while (0). */
2873
2874 void
2875 expand_end_null_loop ()
2876 {
2877 do_pending_stack_adjust ();
2878 emit_label (loop_stack->data.loop.end_label);
2879
2880 POPSTACK (loop_stack);
2881
2882 last_expr_type = 0;
2883 }
2884
2885 /* Generate a jump to the current loop's continue-point.
2886 This is usually the top of the loop, but may be specified
2887 explicitly elsewhere. If not currently inside a loop,
2888 return 0 and do nothing; caller will print an error message. */
2889
2890 int
2891 expand_continue_loop (whichloop)
2892 struct nesting *whichloop;
2893 {
2894 last_expr_type = 0;
2895 if (whichloop == 0)
2896 whichloop = loop_stack;
2897 if (whichloop == 0)
2898 return 0;
2899 expand_goto_internal (NULL_TREE, whichloop->data.loop.continue_label,
2900 NULL_RTX);
2901 return 1;
2902 }
2903
2904 /* Generate a jump to exit the current loop. If not currently inside a loop,
2905 return 0 and do nothing; caller will print an error message. */
2906
2907 int
2908 expand_exit_loop (whichloop)
2909 struct nesting *whichloop;
2910 {
2911 last_expr_type = 0;
2912 if (whichloop == 0)
2913 whichloop = loop_stack;
2914 if (whichloop == 0)
2915 return 0;
2916 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, NULL_RTX);
2917 return 1;
2918 }
2919
2920 /* Generate a conditional jump to exit the current loop if COND
2921 evaluates to zero. If not currently inside a loop,
2922 return 0 and do nothing; caller will print an error message. */
2923
2924 int
2925 expand_exit_loop_if_false (whichloop, cond)
2926 struct nesting *whichloop;
2927 tree cond;
2928 {
2929 rtx label = gen_label_rtx ();
2930 rtx last_insn;
2931 last_expr_type = 0;
2932
2933 if (whichloop == 0)
2934 whichloop = loop_stack;
2935 if (whichloop == 0)
2936 return 0;
2937 /* In order to handle fixups, we actually create a conditional jump
2938 around an unconditional branch to exit the loop. If fixups are
2939 necessary, they go before the unconditional branch. */
2940
2941 do_jump (cond, NULL_RTX, label);
2942 last_insn = get_last_insn ();
2943 if (GET_CODE (last_insn) == CODE_LABEL)
2944 whichloop->data.loop.alt_end_label = last_insn;
2945 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label,
2946 NULL_RTX);
2947 emit_label (label);
2948
2949 return 1;
2950 }
2951
2952 /* Return nonzero if the loop nest is empty. Else return zero. */
2953
2954 int
2955 stmt_loop_nest_empty ()
2956 {
2957 /* cfun->stmt can be NULL if we are building a call to get the
2958 EH context for a setjmp/longjmp EH target and the current
2959 function was a deferred inline function. */
2960 return (cfun->stmt == NULL || loop_stack == NULL);
2961 }
2962
2963 /* Return non-zero if we should preserve sub-expressions as separate
2964 pseudos. We never do so if we aren't optimizing. We always do so
2965 if -fexpensive-optimizations.
2966
2967 Otherwise, we only do so if we are in the "early" part of a loop. I.e.,
2968 the loop may still be a small one. */
2969
2970 int
2971 preserve_subexpressions_p ()
2972 {
2973 rtx insn;
2974
2975 if (flag_expensive_optimizations)
2976 return 1;
2977
2978 if (optimize == 0 || cfun == 0 || cfun->stmt == 0 || loop_stack == 0)
2979 return 0;
2980
2981 insn = get_last_insn_anywhere ();
2982
2983 return (insn
2984 && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label)
2985 < n_non_fixed_regs * 3));
2986
2987 }
2988
2989 /* Generate a jump to exit the current loop, conditional, binding contour
2990 or case statement. Not all such constructs are visible to this function,
2991 only those started with EXIT_FLAG nonzero. Individual languages use
2992 the EXIT_FLAG parameter to control which kinds of constructs you can
2993 exit this way.
2994
2995 If not currently inside anything that can be exited,
2996 return 0 and do nothing; caller will print an error message. */
2997
2998 int
2999 expand_exit_something ()
3000 {
3001 struct nesting *n;
3002 last_expr_type = 0;
3003 for (n = nesting_stack; n; n = n->all)
3004 if (n->exit_label != 0)
3005 {
3006 expand_goto_internal (NULL_TREE, n->exit_label, NULL_RTX);
3007 return 1;
3008 }
3009
3010 return 0;
3011 }
3012 \f
3013 /* Generate RTL to return from the current function, with no value.
3014 (That is, we do not do anything about returning any value.) */
3015
3016 void
3017 expand_null_return ()
3018 {
3019 rtx last_insn = get_last_insn ();
3020
3021 /* If this function was declared to return a value, but we
3022 didn't, clobber the return registers so that they are not
3023 propagated live to the rest of the function. */
3024 clobber_return_register ();
3025
3026 expand_null_return_1 (last_insn);
3027 }
3028
3029 /* Generate RTL to return from the current function, with value VAL. */
3030
3031 static void
3032 expand_value_return (val)
3033 rtx val;
3034 {
3035 rtx last_insn = get_last_insn ();
3036 rtx return_reg = DECL_RTL (DECL_RESULT (current_function_decl));
3037
3038 /* Copy the value to the return location
3039 unless it's already there. */
3040
3041 if (return_reg != val)
3042 {
3043 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
3044 #ifdef PROMOTE_FUNCTION_RETURN
3045 int unsignedp = TREE_UNSIGNED (type);
3046 enum machine_mode old_mode
3047 = DECL_MODE (DECL_RESULT (current_function_decl));
3048 enum machine_mode mode
3049 = promote_mode (type, old_mode, &unsignedp, 1);
3050
3051 if (mode != old_mode)
3052 val = convert_modes (mode, old_mode, val, unsignedp);
3053 #endif
3054 if (GET_CODE (return_reg) == PARALLEL)
3055 emit_group_load (return_reg, val, int_size_in_bytes (type));
3056 else
3057 emit_move_insn (return_reg, val);
3058 }
3059
3060 expand_null_return_1 (last_insn);
3061 }
3062
3063 /* Output a return with no value. If LAST_INSN is nonzero,
3064 pretend that the return takes place after LAST_INSN. */
3065
3066 static void
3067 expand_null_return_1 (last_insn)
3068 rtx last_insn;
3069 {
3070 rtx end_label = cleanup_label ? cleanup_label : return_label;
3071
3072 clear_pending_stack_adjust ();
3073 do_pending_stack_adjust ();
3074 last_expr_type = 0;
3075
3076 if (end_label == 0)
3077 end_label = return_label = gen_label_rtx ();
3078 expand_goto_internal (NULL_TREE, end_label, last_insn);
3079 }
3080 \f
3081 /* Generate RTL to evaluate the expression RETVAL and return it
3082 from the current function. */
3083
3084 void
3085 expand_return (retval)
3086 tree retval;
3087 {
3088 /* If there are any cleanups to be performed, then they will
3089 be inserted following LAST_INSN. It is desirable
3090 that the last_insn, for such purposes, should be the
3091 last insn before computing the return value. Otherwise, cleanups
3092 which call functions can clobber the return value. */
3093 /* ??? rms: I think that is erroneous, because in C++ it would
3094 run destructors on variables that might be used in the subsequent
3095 computation of the return value. */
3096 rtx last_insn = 0;
3097 rtx result_rtl;
3098 rtx val = 0;
3099 tree retval_rhs;
3100
3101 /* If function wants no value, give it none. */
3102 if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
3103 {
3104 expand_expr (retval, NULL_RTX, VOIDmode, 0);
3105 emit_queue ();
3106 expand_null_return ();
3107 return;
3108 }
3109
3110 if (retval == error_mark_node)
3111 {
3112 /* Treat this like a return of no value from a function that
3113 returns a value. */
3114 expand_null_return ();
3115 return;
3116 }
3117 else if (TREE_CODE (retval) == RESULT_DECL)
3118 retval_rhs = retval;
3119 else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR)
3120 && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
3121 retval_rhs = TREE_OPERAND (retval, 1);
3122 else if (VOID_TYPE_P (TREE_TYPE (retval)))
3123 /* Recognize tail-recursive call to void function. */
3124 retval_rhs = retval;
3125 else
3126 retval_rhs = NULL_TREE;
3127
3128 last_insn = get_last_insn ();
3129
3130 /* Distribute return down conditional expr if either of the sides
3131 may involve tail recursion (see test below). This enhances the number
3132 of tail recursions we see. Don't do this always since it can produce
3133 sub-optimal code in some cases and we distribute assignments into
3134 conditional expressions when it would help. */
3135
3136 if (optimize && retval_rhs != 0
3137 && frame_offset == 0
3138 && TREE_CODE (retval_rhs) == COND_EXPR
3139 && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR
3140 || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR))
3141 {
3142 rtx label = gen_label_rtx ();
3143 tree expr;
3144
3145 do_jump (TREE_OPERAND (retval_rhs, 0), label, NULL_RTX);
3146 start_cleanup_deferral ();
3147 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
3148 DECL_RESULT (current_function_decl),
3149 TREE_OPERAND (retval_rhs, 1));
3150 TREE_SIDE_EFFECTS (expr) = 1;
3151 expand_return (expr);
3152 emit_label (label);
3153
3154 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
3155 DECL_RESULT (current_function_decl),
3156 TREE_OPERAND (retval_rhs, 2));
3157 TREE_SIDE_EFFECTS (expr) = 1;
3158 expand_return (expr);
3159 end_cleanup_deferral ();
3160 return;
3161 }
3162
3163 result_rtl = DECL_RTL (DECL_RESULT (current_function_decl));
3164
3165 /* If the result is an aggregate that is being returned in one (or more)
3166 registers, load the registers here. The compiler currently can't handle
3167 copying a BLKmode value into registers. We could put this code in a
3168 more general area (for use by everyone instead of just function
3169 call/return), but until this feature is generally usable it is kept here
3170 (and in expand_call). The value must go into a pseudo in case there
3171 are cleanups that will clobber the real return register. */
3172
3173 if (retval_rhs != 0
3174 && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode
3175 && GET_CODE (result_rtl) == REG)
3176 {
3177 int i;
3178 unsigned HOST_WIDE_INT bitpos, xbitpos;
3179 unsigned HOST_WIDE_INT big_endian_correction = 0;
3180 unsigned HOST_WIDE_INT bytes
3181 = int_size_in_bytes (TREE_TYPE (retval_rhs));
3182 int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
3183 unsigned int bitsize
3184 = MIN (TYPE_ALIGN (TREE_TYPE (retval_rhs)), BITS_PER_WORD);
3185 rtx *result_pseudos = (rtx *) alloca (sizeof (rtx) * n_regs);
3186 rtx result_reg, src = NULL_RTX, dst = NULL_RTX;
3187 rtx result_val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0);
3188 enum machine_mode tmpmode, result_reg_mode;
3189
3190 if (bytes == 0)
3191 {
3192 expand_null_return ();
3193 return;
3194 }
3195
3196 /* Structures whose size is not a multiple of a word are aligned
3197 to the least significant byte (to the right). On a BYTES_BIG_ENDIAN
3198 machine, this means we must skip the empty high order bytes when
3199 calculating the bit offset. */
3200 if (BYTES_BIG_ENDIAN && bytes % UNITS_PER_WORD)
3201 big_endian_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
3202 * BITS_PER_UNIT));
3203
3204 /* Copy the structure BITSIZE bits at a time. */
3205 for (bitpos = 0, xbitpos = big_endian_correction;
3206 bitpos < bytes * BITS_PER_UNIT;
3207 bitpos += bitsize, xbitpos += bitsize)
3208 {
3209 /* We need a new destination pseudo each time xbitpos is
3210 on a word boundary and when xbitpos == big_endian_correction
3211 (the first time through). */
3212 if (xbitpos % BITS_PER_WORD == 0
3213 || xbitpos == big_endian_correction)
3214 {
3215 /* Generate an appropriate register. */
3216 dst = gen_reg_rtx (word_mode);
3217 result_pseudos[xbitpos / BITS_PER_WORD] = dst;
3218
3219 /* Clear the destination before we move anything into it. */
3220 emit_move_insn (dst, CONST0_RTX (GET_MODE (dst)));
3221 }
3222
3223 /* We need a new source operand each time bitpos is on a word
3224 boundary. */
3225 if (bitpos % BITS_PER_WORD == 0)
3226 src = operand_subword_force (result_val,
3227 bitpos / BITS_PER_WORD,
3228 BLKmode);
3229
3230 /* Use bitpos for the source extraction (left justified) and
3231 xbitpos for the destination store (right justified). */
3232 store_bit_field (dst, bitsize, xbitpos % BITS_PER_WORD, word_mode,
3233 extract_bit_field (src, bitsize,
3234 bitpos % BITS_PER_WORD, 1,
3235 NULL_RTX, word_mode, word_mode,
3236 BITS_PER_WORD),
3237 BITS_PER_WORD);
3238 }
3239
3240 /* Find the smallest integer mode large enough to hold the
3241 entire structure and use that mode instead of BLKmode
3242 on the USE insn for the return register. */
3243 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3244 tmpmode != VOIDmode;
3245 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
3246 /* Have we found a large enough mode? */
3247 if (GET_MODE_SIZE (tmpmode) >= bytes)
3248 break;
3249
3250 /* No suitable mode found. */
3251 if (tmpmode == VOIDmode)
3252 abort ();
3253
3254 PUT_MODE (result_rtl, tmpmode);
3255
3256 if (GET_MODE_SIZE (tmpmode) < GET_MODE_SIZE (word_mode))
3257 result_reg_mode = word_mode;
3258 else
3259 result_reg_mode = tmpmode;
3260 result_reg = gen_reg_rtx (result_reg_mode);
3261
3262 emit_queue ();
3263 for (i = 0; i < n_regs; i++)
3264 emit_move_insn (operand_subword (result_reg, i, 0, result_reg_mode),
3265 result_pseudos[i]);
3266
3267 if (tmpmode != result_reg_mode)
3268 result_reg = gen_lowpart (tmpmode, result_reg);
3269
3270 expand_value_return (result_reg);
3271 }
3272 else if (retval_rhs != 0
3273 && !VOID_TYPE_P (TREE_TYPE (retval_rhs))
3274 && (GET_CODE (result_rtl) == REG
3275 || (GET_CODE (result_rtl) == PARALLEL)))
3276 {
3277 /* Calculate the return value into a temporary (usually a pseudo
3278 reg). */
3279 tree ot = TREE_TYPE (DECL_RESULT (current_function_decl));
3280 tree nt = build_qualified_type (ot, TYPE_QUALS (ot) | TYPE_QUAL_CONST);
3281
3282 val = assign_temp (nt, 0, 0, 1);
3283 val = expand_expr (retval_rhs, val, GET_MODE (val), 0);
3284 val = force_not_mem (val);
3285 emit_queue ();
3286 /* Return the calculated value, doing cleanups first. */
3287 expand_value_return (val);
3288 }
3289 else
3290 {
3291 /* No cleanups or no hard reg used;
3292 calculate value into hard return reg. */
3293 expand_expr (retval, const0_rtx, VOIDmode, 0);
3294 emit_queue ();
3295 expand_value_return (result_rtl);
3296 }
3297 }
3298
3299 /* Return 1 if the end of the generated RTX is not a barrier.
3300 This means code already compiled can drop through. */
3301
3302 int
3303 drop_through_at_end_p ()
3304 {
3305 rtx insn = get_last_insn ();
3306 while (insn && GET_CODE (insn) == NOTE)
3307 insn = PREV_INSN (insn);
3308 return insn && GET_CODE (insn) != BARRIER;
3309 }
3310 \f
3311 /* Attempt to optimize a potential tail recursion call into a goto.
3312 ARGUMENTS are the arguments to a CALL_EXPR; LAST_INSN indicates
3313 where to place the jump to the tail recursion label.
3314
3315 Return TRUE if the call was optimized into a goto. */
3316
3317 int
3318 optimize_tail_recursion (arguments, last_insn)
3319 tree arguments;
3320 rtx last_insn;
3321 {
3322 /* Finish checking validity, and if valid emit code to set the
3323 argument variables for the new call. */
3324 if (tail_recursion_args (arguments, DECL_ARGUMENTS (current_function_decl)))
3325 {
3326 if (tail_recursion_label == 0)
3327 {
3328 tail_recursion_label = gen_label_rtx ();
3329 emit_label_after (tail_recursion_label,
3330 tail_recursion_reentry);
3331 }
3332 emit_queue ();
3333 expand_goto_internal (NULL_TREE, tail_recursion_label, last_insn);
3334 emit_barrier ();
3335 return 1;
3336 }
3337 return 0;
3338 }
3339
3340 /* Emit code to alter this function's formal parms for a tail-recursive call.
3341 ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs).
3342 FORMALS is the chain of decls of formals.
3343 Return 1 if this can be done;
3344 otherwise return 0 and do not emit any code. */
3345
3346 static int
3347 tail_recursion_args (actuals, formals)
3348 tree actuals, formals;
3349 {
3350 tree a = actuals, f = formals;
3351 int i;
3352 rtx *argvec;
3353
3354 /* Check that number and types of actuals are compatible
3355 with the formals. This is not always true in valid C code.
3356 Also check that no formal needs to be addressable
3357 and that all formals are scalars. */
3358
3359 /* Also count the args. */
3360
3361 for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++)
3362 {
3363 if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_VALUE (a)))
3364 != TYPE_MAIN_VARIANT (TREE_TYPE (f)))
3365 return 0;
3366 if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode)
3367 return 0;
3368 }
3369 if (a != 0 || f != 0)
3370 return 0;
3371
3372 /* Compute all the actuals. */
3373
3374 argvec = (rtx *) alloca (i * sizeof (rtx));
3375
3376 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3377 argvec[i] = expand_expr (TREE_VALUE (a), NULL_RTX, VOIDmode, 0);
3378
3379 /* Find which actual values refer to current values of previous formals.
3380 Copy each of them now, before any formal is changed. */
3381
3382 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3383 {
3384 int copy = 0;
3385 int j;
3386 for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++)
3387 if (reg_mentioned_p (DECL_RTL (f), argvec[i]))
3388 {
3389 copy = 1;
3390 break;
3391 }
3392 if (copy)
3393 argvec[i] = copy_to_reg (argvec[i]);
3394 }
3395
3396 /* Store the values of the actuals into the formals. */
3397
3398 for (f = formals, a = actuals, i = 0; f;
3399 f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++)
3400 {
3401 if (GET_MODE (DECL_RTL (f)) == GET_MODE (argvec[i]))
3402 emit_move_insn (DECL_RTL (f), argvec[i]);
3403 else
3404 convert_move (DECL_RTL (f), argvec[i],
3405 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a))));
3406 }
3407
3408 free_temp_slots ();
3409 return 1;
3410 }
3411 \f
3412 /* Generate the RTL code for entering a binding contour.
3413 The variables are declared one by one, by calls to `expand_decl'.
3414
3415 FLAGS is a bitwise or of the following flags:
3416
3417 1 - Nonzero if this construct should be visible to
3418 `exit_something'.
3419
3420 2 - Nonzero if this contour does not require a
3421 NOTE_INSN_BLOCK_BEG note. Virtually all calls from
3422 language-independent code should set this flag because they
3423 will not create corresponding BLOCK nodes. (There should be
3424 a one-to-one correspondence between NOTE_INSN_BLOCK_BEG notes
3425 and BLOCKs.) If this flag is set, MARK_ENDS should be zero
3426 when expand_end_bindings is called.
3427
3428 If we are creating a NOTE_INSN_BLOCK_BEG note, a BLOCK may
3429 optionally be supplied. If so, it becomes the NOTE_BLOCK for the
3430 note. */
3431
3432 void
3433 expand_start_bindings_and_block (flags, block)
3434 int flags;
3435 tree block;
3436 {
3437 struct nesting *thisblock = ALLOC_NESTING ();
3438 rtx note;
3439 int exit_flag = ((flags & 1) != 0);
3440 int block_flag = ((flags & 2) == 0);
3441
3442 /* If a BLOCK is supplied, then the caller should be requesting a
3443 NOTE_INSN_BLOCK_BEG note. */
3444 if (!block_flag && block)
3445 abort ();
3446
3447 /* Create a note to mark the beginning of the block. */
3448 if (block_flag)
3449 {
3450 note = emit_note (NULL, NOTE_INSN_BLOCK_BEG);
3451 NOTE_BLOCK (note) = block;
3452 }
3453 else
3454 note = emit_note (NULL, NOTE_INSN_DELETED);
3455
3456 /* Make an entry on block_stack for the block we are entering. */
3457
3458 thisblock->next = block_stack;
3459 thisblock->all = nesting_stack;
3460 thisblock->depth = ++nesting_depth;
3461 thisblock->data.block.stack_level = 0;
3462 thisblock->data.block.cleanups = 0;
3463 thisblock->data.block.n_function_calls = 0;
3464 thisblock->data.block.exception_region = 0;
3465 thisblock->data.block.block_target_temp_slot_level = target_temp_slot_level;
3466
3467 thisblock->data.block.conditional_code = 0;
3468 thisblock->data.block.last_unconditional_cleanup = note;
3469 /* When we insert instructions after the last unconditional cleanup,
3470 we don't adjust last_insn. That means that a later add_insn will
3471 clobber the instructions we've just added. The easiest way to
3472 fix this is to just insert another instruction here, so that the
3473 instructions inserted after the last unconditional cleanup are
3474 never the last instruction. */
3475 emit_note (NULL, NOTE_INSN_DELETED);
3476 thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups;
3477
3478 if (block_stack
3479 && !(block_stack->data.block.cleanups == NULL_TREE
3480 && block_stack->data.block.outer_cleanups == NULL_TREE))
3481 thisblock->data.block.outer_cleanups
3482 = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
3483 block_stack->data.block.outer_cleanups);
3484 else
3485 thisblock->data.block.outer_cleanups = 0;
3486 thisblock->data.block.label_chain = 0;
3487 thisblock->data.block.innermost_stack_block = stack_block_stack;
3488 thisblock->data.block.first_insn = note;
3489 thisblock->data.block.block_start_count = ++current_block_start_count;
3490 thisblock->exit_label = exit_flag ? gen_label_rtx () : 0;
3491 block_stack = thisblock;
3492 nesting_stack = thisblock;
3493
3494 /* Make a new level for allocating stack slots. */
3495 push_temp_slots ();
3496 }
3497
3498 /* Specify the scope of temporaries created by TARGET_EXPRs. Similar
3499 to CLEANUP_POINT_EXPR, but handles cases when a series of calls to
3500 expand_expr are made. After we end the region, we know that all
3501 space for all temporaries that were created by TARGET_EXPRs will be
3502 destroyed and their space freed for reuse. */
3503
3504 void
3505 expand_start_target_temps ()
3506 {
3507 /* This is so that even if the result is preserved, the space
3508 allocated will be freed, as we know that it is no longer in use. */
3509 push_temp_slots ();
3510
3511 /* Start a new binding layer that will keep track of all cleanup
3512 actions to be performed. */
3513 expand_start_bindings (2);
3514
3515 target_temp_slot_level = temp_slot_level;
3516 }
3517
3518 void
3519 expand_end_target_temps ()
3520 {
3521 expand_end_bindings (NULL_TREE, 0, 0);
3522
3523 /* This is so that even if the result is preserved, the space
3524 allocated will be freed, as we know that it is no longer in use. */
3525 pop_temp_slots ();
3526 }
3527
3528 /* Given a pointer to a BLOCK node return non-zero if (and only if) the node
3529 in question represents the outermost pair of curly braces (i.e. the "body
3530 block") of a function or method.
3531
3532 For any BLOCK node representing a "body block" of a function or method, the
3533 BLOCK_SUPERCONTEXT of the node will point to another BLOCK node which
3534 represents the outermost (function) scope for the function or method (i.e.
3535 the one which includes the formal parameters). The BLOCK_SUPERCONTEXT of
3536 *that* node in turn will point to the relevant FUNCTION_DECL node. */
3537
3538 int
3539 is_body_block (stmt)
3540 tree stmt;
3541 {
3542 if (TREE_CODE (stmt) == BLOCK)
3543 {
3544 tree parent = BLOCK_SUPERCONTEXT (stmt);
3545
3546 if (parent && TREE_CODE (parent) == BLOCK)
3547 {
3548 tree grandparent = BLOCK_SUPERCONTEXT (parent);
3549
3550 if (grandparent && TREE_CODE (grandparent) == FUNCTION_DECL)
3551 return 1;
3552 }
3553 }
3554
3555 return 0;
3556 }
3557
3558 /* True if we are currently emitting insns in an area of output code
3559 that is controlled by a conditional expression. This is used by
3560 the cleanup handling code to generate conditional cleanup actions. */
3561
3562 int
3563 conditional_context ()
3564 {
3565 return block_stack && block_stack->data.block.conditional_code;
3566 }
3567
3568 /* Return an opaque pointer to the current nesting level, so frontend code
3569 can check its own sanity. */
3570
3571 struct nesting *
3572 current_nesting_level ()
3573 {
3574 return cfun ? block_stack : 0;
3575 }
3576
3577 /* Emit a handler label for a nonlocal goto handler.
3578 Also emit code to store the handler label in SLOT before BEFORE_INSN. */
3579
3580 static rtx
3581 expand_nl_handler_label (slot, before_insn)
3582 rtx slot, before_insn;
3583 {
3584 rtx insns;
3585 rtx handler_label = gen_label_rtx ();
3586
3587 /* Don't let cleanup_cfg delete the handler. */
3588 LABEL_PRESERVE_P (handler_label) = 1;
3589
3590 start_sequence ();
3591 emit_move_insn (slot, gen_rtx_LABEL_REF (Pmode, handler_label));
3592 insns = get_insns ();
3593 end_sequence ();
3594 emit_insns_before (insns, before_insn);
3595
3596 emit_label (handler_label);
3597
3598 return handler_label;
3599 }
3600
3601 /* Emit code to restore vital registers at the beginning of a nonlocal goto
3602 handler. */
3603 static void
3604 expand_nl_goto_receiver ()
3605 {
3606 #ifdef HAVE_nonlocal_goto
3607 if (! HAVE_nonlocal_goto)
3608 #endif
3609 /* First adjust our frame pointer to its actual value. It was
3610 previously set to the start of the virtual area corresponding to
3611 the stacked variables when we branched here and now needs to be
3612 adjusted to the actual hardware fp value.
3613
3614 Assignments are to virtual registers are converted by
3615 instantiate_virtual_regs into the corresponding assignment
3616 to the underlying register (fp in this case) that makes
3617 the original assignment true.
3618 So the following insn will actually be
3619 decrementing fp by STARTING_FRAME_OFFSET. */
3620 emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
3621
3622 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3623 if (fixed_regs[ARG_POINTER_REGNUM])
3624 {
3625 #ifdef ELIMINABLE_REGS
3626 /* If the argument pointer can be eliminated in favor of the
3627 frame pointer, we don't need to restore it. We assume here
3628 that if such an elimination is present, it can always be used.
3629 This is the case on all known machines; if we don't make this
3630 assumption, we do unnecessary saving on many machines. */
3631 static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS;
3632 size_t i;
3633
3634 for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
3635 if (elim_regs[i].from == ARG_POINTER_REGNUM
3636 && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
3637 break;
3638
3639 if (i == ARRAY_SIZE (elim_regs))
3640 #endif
3641 {
3642 /* Now restore our arg pointer from the address at which it
3643 was saved in our stack frame. */
3644 emit_move_insn (virtual_incoming_args_rtx,
3645 copy_to_reg (get_arg_pointer_save_area (cfun)));
3646 }
3647 }
3648 #endif
3649
3650 #ifdef HAVE_nonlocal_goto_receiver
3651 if (HAVE_nonlocal_goto_receiver)
3652 emit_insn (gen_nonlocal_goto_receiver ());
3653 #endif
3654 }
3655
3656 /* Make handlers for nonlocal gotos taking place in the function calls in
3657 block THISBLOCK. */
3658
3659 static void
3660 expand_nl_goto_receivers (thisblock)
3661 struct nesting *thisblock;
3662 {
3663 tree link;
3664 rtx afterward = gen_label_rtx ();
3665 rtx insns, slot;
3666 rtx label_list;
3667 int any_invalid;
3668
3669 /* Record the handler address in the stack slot for that purpose,
3670 during this block, saving and restoring the outer value. */
3671 if (thisblock->next != 0)
3672 for (slot = nonlocal_goto_handler_slots; slot; slot = XEXP (slot, 1))
3673 {
3674 rtx save_receiver = gen_reg_rtx (Pmode);
3675 emit_move_insn (XEXP (slot, 0), save_receiver);
3676
3677 start_sequence ();
3678 emit_move_insn (save_receiver, XEXP (slot, 0));
3679 insns = get_insns ();
3680 end_sequence ();
3681 emit_insns_before (insns, thisblock->data.block.first_insn);
3682 }
3683
3684 /* Jump around the handlers; they run only when specially invoked. */
3685 emit_jump (afterward);
3686
3687 /* Make a separate handler for each label. */
3688 link = nonlocal_labels;
3689 slot = nonlocal_goto_handler_slots;
3690 label_list = NULL_RTX;
3691 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3692 /* Skip any labels we shouldn't be able to jump to from here,
3693 we generate one special handler for all of them below which just calls
3694 abort. */
3695 if (! DECL_TOO_LATE (TREE_VALUE (link)))
3696 {
3697 rtx lab;
3698 lab = expand_nl_handler_label (XEXP (slot, 0),
3699 thisblock->data.block.first_insn);
3700 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3701
3702 expand_nl_goto_receiver ();
3703
3704 /* Jump to the "real" nonlocal label. */
3705 expand_goto (TREE_VALUE (link));
3706 }
3707
3708 /* A second pass over all nonlocal labels; this time we handle those
3709 we should not be able to jump to at this point. */
3710 link = nonlocal_labels;
3711 slot = nonlocal_goto_handler_slots;
3712 any_invalid = 0;
3713 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3714 if (DECL_TOO_LATE (TREE_VALUE (link)))
3715 {
3716 rtx lab;
3717 lab = expand_nl_handler_label (XEXP (slot, 0),
3718 thisblock->data.block.first_insn);
3719 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3720 any_invalid = 1;
3721 }
3722
3723 if (any_invalid)
3724 {
3725 expand_nl_goto_receiver ();
3726 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "abort"), LCT_NORETURN,
3727 VOIDmode, 0);
3728 emit_barrier ();
3729 }
3730
3731 nonlocal_goto_handler_labels = label_list;
3732 emit_label (afterward);
3733 }
3734
3735 /* Warn about any unused VARS (which may contain nodes other than
3736 VAR_DECLs, but such nodes are ignored). The nodes are connected
3737 via the TREE_CHAIN field. */
3738
3739 void
3740 warn_about_unused_variables (vars)
3741 tree vars;
3742 {
3743 tree decl;
3744
3745 if (warn_unused_variable)
3746 for (decl = vars; decl; decl = TREE_CHAIN (decl))
3747 if (TREE_CODE (decl) == VAR_DECL
3748 && ! TREE_USED (decl)
3749 && ! DECL_IN_SYSTEM_HEADER (decl)
3750 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
3751 warning_with_decl (decl, "unused variable `%s'");
3752 }
3753
3754 /* Generate RTL code to terminate a binding contour.
3755
3756 VARS is the chain of VAR_DECL nodes for the variables bound in this
3757 contour. There may actually be other nodes in this chain, but any
3758 nodes other than VAR_DECLS are ignored.
3759
3760 MARK_ENDS is nonzero if we should put a note at the beginning
3761 and end of this binding contour.
3762
3763 DONT_JUMP_IN is nonzero if it is not valid to jump into this contour.
3764 (That is true automatically if the contour has a saved stack level.) */
3765
3766 void
3767 expand_end_bindings (vars, mark_ends, dont_jump_in)
3768 tree vars;
3769 int mark_ends;
3770 int dont_jump_in;
3771 {
3772 struct nesting *thisblock = block_stack;
3773
3774 /* If any of the variables in this scope were not used, warn the
3775 user. */
3776 warn_about_unused_variables (vars);
3777
3778 if (thisblock->exit_label)
3779 {
3780 do_pending_stack_adjust ();
3781 emit_label (thisblock->exit_label);
3782 }
3783
3784 /* If necessary, make handlers for nonlocal gotos taking
3785 place in the function calls in this block. */
3786 if (function_call_count != thisblock->data.block.n_function_calls
3787 && nonlocal_labels
3788 /* Make handler for outermost block
3789 if there were any nonlocal gotos to this function. */
3790 && (thisblock->next == 0 ? current_function_has_nonlocal_label
3791 /* Make handler for inner block if it has something
3792 special to do when you jump out of it. */
3793 : (thisblock->data.block.cleanups != 0
3794 || thisblock->data.block.stack_level != 0)))
3795 expand_nl_goto_receivers (thisblock);
3796
3797 /* Don't allow jumping into a block that has a stack level.
3798 Cleanups are allowed, though. */
3799 if (dont_jump_in
3800 || thisblock->data.block.stack_level != 0)
3801 {
3802 struct label_chain *chain;
3803
3804 /* Any labels in this block are no longer valid to go to.
3805 Mark them to cause an error message. */
3806 for (chain = thisblock->data.block.label_chain; chain; chain = chain->next)
3807 {
3808 DECL_TOO_LATE (chain->label) = 1;
3809 /* If any goto without a fixup came to this label,
3810 that must be an error, because gotos without fixups
3811 come from outside all saved stack-levels. */
3812 if (TREE_ADDRESSABLE (chain->label))
3813 error_with_decl (chain->label,
3814 "label `%s' used before containing binding contour");
3815 }
3816 }
3817
3818 /* Restore stack level in effect before the block
3819 (only if variable-size objects allocated). */
3820 /* Perform any cleanups associated with the block. */
3821
3822 if (thisblock->data.block.stack_level != 0
3823 || thisblock->data.block.cleanups != 0)
3824 {
3825 int reachable;
3826 rtx insn;
3827
3828 /* Don't let cleanups affect ({...}) constructs. */
3829 int old_expr_stmts_for_value = expr_stmts_for_value;
3830 rtx old_last_expr_value = last_expr_value;
3831 tree old_last_expr_type = last_expr_type;
3832 expr_stmts_for_value = 0;
3833
3834 /* Only clean up here if this point can actually be reached. */
3835 insn = get_last_insn ();
3836 if (GET_CODE (insn) == NOTE)
3837 insn = prev_nonnote_insn (insn);
3838 reachable = (! insn || GET_CODE (insn) != BARRIER);
3839
3840 /* Do the cleanups. */
3841 expand_cleanups (thisblock->data.block.cleanups, NULL_TREE, 0, reachable);
3842 if (reachable)
3843 do_pending_stack_adjust ();
3844
3845 expr_stmts_for_value = old_expr_stmts_for_value;
3846 last_expr_value = old_last_expr_value;
3847 last_expr_type = old_last_expr_type;
3848
3849 /* Restore the stack level. */
3850
3851 if (reachable && thisblock->data.block.stack_level != 0)
3852 {
3853 emit_stack_restore (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3854 thisblock->data.block.stack_level, NULL_RTX);
3855 if (nonlocal_goto_handler_slots != 0)
3856 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level,
3857 NULL_RTX);
3858 }
3859
3860 /* Any gotos out of this block must also do these things.
3861 Also report any gotos with fixups that came to labels in this
3862 level. */
3863 fixup_gotos (thisblock,
3864 thisblock->data.block.stack_level,
3865 thisblock->data.block.cleanups,
3866 thisblock->data.block.first_insn,
3867 dont_jump_in);
3868 }
3869
3870 /* Mark the beginning and end of the scope if requested.
3871 We do this now, after running cleanups on the variables
3872 just going out of scope, so they are in scope for their cleanups. */
3873
3874 if (mark_ends)
3875 {
3876 rtx note = emit_note (NULL, NOTE_INSN_BLOCK_END);
3877 NOTE_BLOCK (note) = NOTE_BLOCK (thisblock->data.block.first_insn);
3878 }
3879 else
3880 /* Get rid of the beginning-mark if we don't make an end-mark. */
3881 NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED;
3882
3883 /* Restore the temporary level of TARGET_EXPRs. */
3884 target_temp_slot_level = thisblock->data.block.block_target_temp_slot_level;
3885
3886 /* Restore block_stack level for containing block. */
3887
3888 stack_block_stack = thisblock->data.block.innermost_stack_block;
3889 POPSTACK (block_stack);
3890
3891 /* Pop the stack slot nesting and free any slots at this level. */
3892 pop_temp_slots ();
3893 }
3894 \f
3895 /* Generate code to save the stack pointer at the start of the current block
3896 and set up to restore it on exit. */
3897
3898 void
3899 save_stack_pointer ()
3900 {
3901 struct nesting *thisblock = block_stack;
3902
3903 if (thisblock->data.block.stack_level == 0)
3904 {
3905 emit_stack_save (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3906 &thisblock->data.block.stack_level,
3907 thisblock->data.block.first_insn);
3908 stack_block_stack = thisblock;
3909 }
3910 }
3911 \f
3912 /* Generate RTL for the automatic variable declaration DECL.
3913 (Other kinds of declarations are simply ignored if seen here.) */
3914
3915 void
3916 expand_decl (decl)
3917 tree decl;
3918 {
3919 struct nesting *thisblock;
3920 tree type;
3921
3922 type = TREE_TYPE (decl);
3923
3924 /* For a CONST_DECL, set mode, alignment, and sizes from those of the
3925 type in case this node is used in a reference. */
3926 if (TREE_CODE (decl) == CONST_DECL)
3927 {
3928 DECL_MODE (decl) = TYPE_MODE (type);
3929 DECL_ALIGN (decl) = TYPE_ALIGN (type);
3930 DECL_SIZE (decl) = TYPE_SIZE (type);
3931 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
3932 return;
3933 }
3934
3935 /* Otherwise, only automatic variables need any expansion done. Static and
3936 external variables, and external functions, will be handled by
3937 `assemble_variable' (called from finish_decl). TYPE_DECL requires
3938 nothing. PARM_DECLs are handled in `assign_parms'. */
3939 if (TREE_CODE (decl) != VAR_DECL)
3940 return;
3941
3942 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
3943 return;
3944
3945 thisblock = block_stack;
3946
3947 /* Create the RTL representation for the variable. */
3948
3949 if (type == error_mark_node)
3950 SET_DECL_RTL (decl, gen_rtx_MEM (BLKmode, const0_rtx));
3951
3952 else if (DECL_SIZE (decl) == 0)
3953 /* Variable with incomplete type. */
3954 {
3955 rtx x;
3956 if (DECL_INITIAL (decl) == 0)
3957 /* Error message was already done; now avoid a crash. */
3958 x = gen_rtx_MEM (BLKmode, const0_rtx);
3959 else
3960 /* An initializer is going to decide the size of this array.
3961 Until we know the size, represent its address with a reg. */
3962 x = gen_rtx_MEM (BLKmode, gen_reg_rtx (Pmode));
3963
3964 set_mem_attributes (x, decl, 1);
3965 SET_DECL_RTL (decl, x);
3966 }
3967 else if (DECL_MODE (decl) != BLKmode
3968 /* If -ffloat-store, don't put explicit float vars
3969 into regs. */
3970 && !(flag_float_store
3971 && TREE_CODE (type) == REAL_TYPE)
3972 && ! TREE_THIS_VOLATILE (decl)
3973 && (DECL_REGISTER (decl) || optimize))
3974 {
3975 /* Automatic variable that can go in a register. */
3976 int unsignedp = TREE_UNSIGNED (type);
3977 enum machine_mode reg_mode
3978 = promote_mode (type, DECL_MODE (decl), &unsignedp, 0);
3979
3980 SET_DECL_RTL (decl, gen_reg_rtx (reg_mode));
3981
3982 if (GET_CODE (DECL_RTL (decl)) == REG)
3983 REGNO_DECL (REGNO (DECL_RTL (decl))) = decl;
3984 else if (GET_CODE (DECL_RTL (decl)) == CONCAT)
3985 {
3986 REGNO_DECL (REGNO (XEXP (DECL_RTL (decl), 0))) = decl;
3987 REGNO_DECL (REGNO (XEXP (DECL_RTL (decl), 1))) = decl;
3988 }
3989
3990 mark_user_reg (DECL_RTL (decl));
3991
3992 if (POINTER_TYPE_P (type))
3993 mark_reg_pointer (DECL_RTL (decl),
3994 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl))));
3995
3996 maybe_set_unchanging (DECL_RTL (decl), decl);
3997
3998 /* If something wants our address, try to use ADDRESSOF. */
3999 if (TREE_ADDRESSABLE (decl))
4000 put_var_into_stack (decl);
4001 }
4002
4003 else if (TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST
4004 && ! (flag_stack_check && ! STACK_CHECK_BUILTIN
4005 && 0 < compare_tree_int (DECL_SIZE_UNIT (decl),
4006 STACK_CHECK_MAX_VAR_SIZE)))
4007 {
4008 /* Variable of fixed size that goes on the stack. */
4009 rtx oldaddr = 0;
4010 rtx addr;
4011 rtx x;
4012
4013 /* If we previously made RTL for this decl, it must be an array
4014 whose size was determined by the initializer.
4015 The old address was a register; set that register now
4016 to the proper address. */
4017 if (DECL_RTL_SET_P (decl))
4018 {
4019 if (GET_CODE (DECL_RTL (decl)) != MEM
4020 || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG)
4021 abort ();
4022 oldaddr = XEXP (DECL_RTL (decl), 0);
4023 }
4024
4025 /* Set alignment we actually gave this decl. */
4026 DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT
4027 : GET_MODE_BITSIZE (DECL_MODE (decl)));
4028 DECL_USER_ALIGN (decl) = 0;
4029
4030 x = assign_temp (TREE_TYPE (decl), 1, 1, 1);
4031 set_mem_attributes (x, decl, 1);
4032 SET_DECL_RTL (decl, x);
4033
4034 if (oldaddr)
4035 {
4036 addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
4037 if (addr != oldaddr)
4038 emit_move_insn (oldaddr, addr);
4039 }
4040 }
4041 else
4042 /* Dynamic-size object: must push space on the stack. */
4043 {
4044 rtx address, size, x;
4045
4046 /* Record the stack pointer on entry to block, if have
4047 not already done so. */
4048 do_pending_stack_adjust ();
4049 save_stack_pointer ();
4050
4051 /* In function-at-a-time mode, variable_size doesn't expand this,
4052 so do it now. */
4053 if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type))
4054 expand_expr (TYPE_MAX_VALUE (TYPE_DOMAIN (type)),
4055 const0_rtx, VOIDmode, 0);
4056
4057 /* Compute the variable's size, in bytes. */
4058 size = expand_expr (DECL_SIZE_UNIT (decl), NULL_RTX, VOIDmode, 0);
4059 free_temp_slots ();
4060
4061 /* Allocate space on the stack for the variable. Note that
4062 DECL_ALIGN says how the variable is to be aligned and we
4063 cannot use it to conclude anything about the alignment of
4064 the size. */
4065 address = allocate_dynamic_stack_space (size, NULL_RTX,
4066 TYPE_ALIGN (TREE_TYPE (decl)));
4067
4068 /* Reference the variable indirect through that rtx. */
4069 x = gen_rtx_MEM (DECL_MODE (decl), address);
4070 set_mem_attributes (x, decl, 1);
4071 SET_DECL_RTL (decl, x);
4072
4073
4074 /* Indicate the alignment we actually gave this variable. */
4075 #ifdef STACK_BOUNDARY
4076 DECL_ALIGN (decl) = STACK_BOUNDARY;
4077 #else
4078 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
4079 #endif
4080 DECL_USER_ALIGN (decl) = 0;
4081 }
4082 }
4083 \f
4084 /* Emit code to perform the initialization of a declaration DECL. */
4085
4086 void
4087 expand_decl_init (decl)
4088 tree decl;
4089 {
4090 int was_used = TREE_USED (decl);
4091
4092 /* If this is a CONST_DECL, we don't have to generate any code. Likewise
4093 for static decls. */
4094 if (TREE_CODE (decl) == CONST_DECL
4095 || TREE_STATIC (decl))
4096 return;
4097
4098 /* Compute and store the initial value now. */
4099
4100 if (DECL_INITIAL (decl) == error_mark_node)
4101 {
4102 enum tree_code code = TREE_CODE (TREE_TYPE (decl));
4103
4104 if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE
4105 || code == POINTER_TYPE || code == REFERENCE_TYPE)
4106 expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node),
4107 0, 0);
4108 emit_queue ();
4109 }
4110 else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST)
4111 {
4112 emit_line_note (DECL_SOURCE_FILE (decl), DECL_SOURCE_LINE (decl));
4113 expand_assignment (decl, DECL_INITIAL (decl), 0, 0);
4114 emit_queue ();
4115 }
4116
4117 /* Don't let the initialization count as "using" the variable. */
4118 TREE_USED (decl) = was_used;
4119
4120 /* Free any temporaries we made while initializing the decl. */
4121 preserve_temp_slots (NULL_RTX);
4122 free_temp_slots ();
4123 }
4124
4125 /* CLEANUP is an expression to be executed at exit from this binding contour;
4126 for example, in C++, it might call the destructor for this variable.
4127
4128 We wrap CLEANUP in an UNSAVE_EXPR node, so that we can expand the
4129 CLEANUP multiple times, and have the correct semantics. This
4130 happens in exception handling, for gotos, returns, breaks that
4131 leave the current scope.
4132
4133 If CLEANUP is nonzero and DECL is zero, we record a cleanup
4134 that is not associated with any particular variable. */
4135
4136 int
4137 expand_decl_cleanup (decl, cleanup)
4138 tree decl, cleanup;
4139 {
4140 struct nesting *thisblock;
4141
4142 /* Error if we are not in any block. */
4143 if (cfun == 0 || block_stack == 0)
4144 return 0;
4145
4146 thisblock = block_stack;
4147
4148 /* Record the cleanup if there is one. */
4149
4150 if (cleanup != 0)
4151 {
4152 tree t;
4153 rtx seq;
4154 tree *cleanups = &thisblock->data.block.cleanups;
4155 int cond_context = conditional_context ();
4156
4157 if (cond_context)
4158 {
4159 rtx flag = gen_reg_rtx (word_mode);
4160 rtx set_flag_0;
4161 tree cond;
4162
4163 start_sequence ();
4164 emit_move_insn (flag, const0_rtx);
4165 set_flag_0 = get_insns ();
4166 end_sequence ();
4167
4168 thisblock->data.block.last_unconditional_cleanup
4169 = emit_insns_after (set_flag_0,
4170 thisblock->data.block.last_unconditional_cleanup);
4171
4172 emit_move_insn (flag, const1_rtx);
4173
4174 cond = build_decl (VAR_DECL, NULL_TREE, type_for_mode (word_mode, 1));
4175 SET_DECL_RTL (cond, flag);
4176
4177 /* Conditionalize the cleanup. */
4178 cleanup = build (COND_EXPR, void_type_node,
4179 truthvalue_conversion (cond),
4180 cleanup, integer_zero_node);
4181 cleanup = fold (cleanup);
4182
4183 cleanups = thisblock->data.block.cleanup_ptr;
4184 }
4185
4186 cleanup = unsave_expr (cleanup);
4187
4188 t = *cleanups = tree_cons (decl, cleanup, *cleanups);
4189
4190 if (! cond_context)
4191 /* If this block has a cleanup, it belongs in stack_block_stack. */
4192 stack_block_stack = thisblock;
4193
4194 if (cond_context)
4195 {
4196 start_sequence ();
4197 }
4198
4199 if (! using_eh_for_cleanups_p)
4200 TREE_ADDRESSABLE (t) = 1;
4201 else
4202 expand_eh_region_start ();
4203
4204 if (cond_context)
4205 {
4206 seq = get_insns ();
4207 end_sequence ();
4208 if (seq)
4209 thisblock->data.block.last_unconditional_cleanup
4210 = emit_insns_after (seq,
4211 thisblock->data.block.last_unconditional_cleanup);
4212 }
4213 else
4214 {
4215 thisblock->data.block.last_unconditional_cleanup
4216 = get_last_insn ();
4217 /* When we insert instructions after the last unconditional cleanup,
4218 we don't adjust last_insn. That means that a later add_insn will
4219 clobber the instructions we've just added. The easiest way to
4220 fix this is to just insert another instruction here, so that the
4221 instructions inserted after the last unconditional cleanup are
4222 never the last instruction. */
4223 emit_note (NULL, NOTE_INSN_DELETED);
4224 thisblock->data.block.cleanup_ptr = &thisblock->data.block.cleanups;
4225 }
4226 }
4227 return 1;
4228 }
4229 \f
4230 /* DECL is an anonymous union. CLEANUP is a cleanup for DECL.
4231 DECL_ELTS is the list of elements that belong to DECL's type.
4232 In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */
4233
4234 void
4235 expand_anon_union_decl (decl, cleanup, decl_elts)
4236 tree decl, cleanup, decl_elts;
4237 {
4238 struct nesting *thisblock = cfun == 0 ? 0 : block_stack;
4239 rtx x;
4240 tree t;
4241
4242 /* If any of the elements are addressable, so is the entire union. */
4243 for (t = decl_elts; t; t = TREE_CHAIN (t))
4244 if (TREE_ADDRESSABLE (TREE_VALUE (t)))
4245 {
4246 TREE_ADDRESSABLE (decl) = 1;
4247 break;
4248 }
4249
4250 expand_decl (decl);
4251 expand_decl_cleanup (decl, cleanup);
4252 x = DECL_RTL (decl);
4253
4254 /* Go through the elements, assigning RTL to each. */
4255 for (t = decl_elts; t; t = TREE_CHAIN (t))
4256 {
4257 tree decl_elt = TREE_VALUE (t);
4258 tree cleanup_elt = TREE_PURPOSE (t);
4259 enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt));
4260
4261 /* Propagate the union's alignment to the elements. */
4262 DECL_ALIGN (decl_elt) = DECL_ALIGN (decl);
4263 DECL_USER_ALIGN (decl_elt) = DECL_USER_ALIGN (decl);
4264
4265 /* If the element has BLKmode and the union doesn't, the union is
4266 aligned such that the element doesn't need to have BLKmode, so
4267 change the element's mode to the appropriate one for its size. */
4268 if (mode == BLKmode && DECL_MODE (decl) != BLKmode)
4269 DECL_MODE (decl_elt) = mode
4270 = mode_for_size_tree (DECL_SIZE (decl_elt), MODE_INT, 1);
4271
4272 /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we
4273 instead create a new MEM rtx with the proper mode. */
4274 if (GET_CODE (x) == MEM)
4275 {
4276 if (mode == GET_MODE (x))
4277 SET_DECL_RTL (decl_elt, x);
4278 else
4279 SET_DECL_RTL (decl_elt, adjust_address_nv (x, mode, 0));
4280 }
4281 else if (GET_CODE (x) == REG)
4282 {
4283 if (mode == GET_MODE (x))
4284 SET_DECL_RTL (decl_elt, x);
4285 else
4286 SET_DECL_RTL (decl_elt, gen_lowpart_SUBREG (mode, x));
4287 }
4288 else
4289 abort ();
4290
4291 /* Record the cleanup if there is one. */
4292
4293 if (cleanup != 0)
4294 thisblock->data.block.cleanups
4295 = tree_cons (decl_elt, cleanup_elt,
4296 thisblock->data.block.cleanups);
4297 }
4298 }
4299 \f
4300 /* Expand a list of cleanups LIST.
4301 Elements may be expressions or may be nested lists.
4302
4303 If DONT_DO is nonnull, then any list-element
4304 whose TREE_PURPOSE matches DONT_DO is omitted.
4305 This is sometimes used to avoid a cleanup associated with
4306 a value that is being returned out of the scope.
4307
4308 If IN_FIXUP is non-zero, we are generating this cleanup for a fixup
4309 goto and handle protection regions specially in that case.
4310
4311 If REACHABLE, we emit code, otherwise just inform the exception handling
4312 code about this finalization. */
4313
4314 static void
4315 expand_cleanups (list, dont_do, in_fixup, reachable)
4316 tree list;
4317 tree dont_do;
4318 int in_fixup;
4319 int reachable;
4320 {
4321 tree tail;
4322 for (tail = list; tail; tail = TREE_CHAIN (tail))
4323 if (dont_do == 0 || TREE_PURPOSE (tail) != dont_do)
4324 {
4325 if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
4326 expand_cleanups (TREE_VALUE (tail), dont_do, in_fixup, reachable);
4327 else
4328 {
4329 if (! in_fixup && using_eh_for_cleanups_p)
4330 expand_eh_region_end_cleanup (TREE_VALUE (tail));
4331
4332 if (reachable)
4333 {
4334 /* Cleanups may be run multiple times. For example,
4335 when exiting a binding contour, we expand the
4336 cleanups associated with that contour. When a goto
4337 within that binding contour has a target outside that
4338 contour, it will expand all cleanups from its scope to
4339 the target. Though the cleanups are expanded multiple
4340 times, the control paths are non-overlapping so the
4341 cleanups will not be executed twice. */
4342
4343 /* We may need to protect from outer cleanups. */
4344 if (in_fixup && using_eh_for_cleanups_p)
4345 {
4346 expand_eh_region_start ();
4347
4348 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
4349
4350 expand_eh_region_end_fixup (TREE_VALUE (tail));
4351 }
4352 else
4353 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
4354
4355 free_temp_slots ();
4356 }
4357 }
4358 }
4359 }
4360
4361 /* Mark when the context we are emitting RTL for as a conditional
4362 context, so that any cleanup actions we register with
4363 expand_decl_init will be properly conditionalized when those
4364 cleanup actions are later performed. Must be called before any
4365 expression (tree) is expanded that is within a conditional context. */
4366
4367 void
4368 start_cleanup_deferral ()
4369 {
4370 /* block_stack can be NULL if we are inside the parameter list. It is
4371 OK to do nothing, because cleanups aren't possible here. */
4372 if (block_stack)
4373 ++block_stack->data.block.conditional_code;
4374 }
4375
4376 /* Mark the end of a conditional region of code. Because cleanup
4377 deferrals may be nested, we may still be in a conditional region
4378 after we end the currently deferred cleanups, only after we end all
4379 deferred cleanups, are we back in unconditional code. */
4380
4381 void
4382 end_cleanup_deferral ()
4383 {
4384 /* block_stack can be NULL if we are inside the parameter list. It is
4385 OK to do nothing, because cleanups aren't possible here. */
4386 if (block_stack)
4387 --block_stack->data.block.conditional_code;
4388 }
4389
4390 /* Move all cleanups from the current block_stack
4391 to the containing block_stack, where they are assumed to
4392 have been created. If anything can cause a temporary to
4393 be created, but not expanded for more than one level of
4394 block_stacks, then this code will have to change. */
4395
4396 void
4397 move_cleanups_up ()
4398 {
4399 struct nesting *block = block_stack;
4400 struct nesting *outer = block->next;
4401
4402 outer->data.block.cleanups
4403 = chainon (block->data.block.cleanups,
4404 outer->data.block.cleanups);
4405 block->data.block.cleanups = 0;
4406 }
4407
4408 tree
4409 last_cleanup_this_contour ()
4410 {
4411 if (block_stack == 0)
4412 return 0;
4413
4414 return block_stack->data.block.cleanups;
4415 }
4416
4417 /* Return 1 if there are any pending cleanups at this point.
4418 If THIS_CONTOUR is nonzero, check the current contour as well.
4419 Otherwise, look only at the contours that enclose this one. */
4420
4421 int
4422 any_pending_cleanups (this_contour)
4423 int this_contour;
4424 {
4425 struct nesting *block;
4426
4427 if (cfun == NULL || cfun->stmt == NULL || block_stack == 0)
4428 return 0;
4429
4430 if (this_contour && block_stack->data.block.cleanups != NULL)
4431 return 1;
4432 if (block_stack->data.block.cleanups == 0
4433 && block_stack->data.block.outer_cleanups == 0)
4434 return 0;
4435
4436 for (block = block_stack->next; block; block = block->next)
4437 if (block->data.block.cleanups != 0)
4438 return 1;
4439
4440 return 0;
4441 }
4442 \f
4443 /* Enter a case (Pascal) or switch (C) statement.
4444 Push a block onto case_stack and nesting_stack
4445 to accumulate the case-labels that are seen
4446 and to record the labels generated for the statement.
4447
4448 EXIT_FLAG is nonzero if `exit_something' should exit this case stmt.
4449 Otherwise, this construct is transparent for `exit_something'.
4450
4451 EXPR is the index-expression to be dispatched on.
4452 TYPE is its nominal type. We could simply convert EXPR to this type,
4453 but instead we take short cuts. */
4454
4455 void
4456 expand_start_case (exit_flag, expr, type, printname)
4457 int exit_flag;
4458 tree expr;
4459 tree type;
4460 const char *printname;
4461 {
4462 struct nesting *thiscase = ALLOC_NESTING ();
4463
4464 /* Make an entry on case_stack for the case we are entering. */
4465
4466 thiscase->next = case_stack;
4467 thiscase->all = nesting_stack;
4468 thiscase->depth = ++nesting_depth;
4469 thiscase->exit_label = exit_flag ? gen_label_rtx () : 0;
4470 thiscase->data.case_stmt.case_list = 0;
4471 thiscase->data.case_stmt.index_expr = expr;
4472 thiscase->data.case_stmt.nominal_type = type;
4473 thiscase->data.case_stmt.default_label = 0;
4474 thiscase->data.case_stmt.printname = printname;
4475 thiscase->data.case_stmt.line_number_status = force_line_numbers ();
4476 case_stack = thiscase;
4477 nesting_stack = thiscase;
4478
4479 do_pending_stack_adjust ();
4480
4481 /* Make sure case_stmt.start points to something that won't
4482 need any transformation before expand_end_case. */
4483 if (GET_CODE (get_last_insn ()) != NOTE)
4484 emit_note (NULL, NOTE_INSN_DELETED);
4485
4486 thiscase->data.case_stmt.start = get_last_insn ();
4487
4488 start_cleanup_deferral ();
4489 }
4490
4491 /* Start a "dummy case statement" within which case labels are invalid
4492 and are not connected to any larger real case statement.
4493 This can be used if you don't want to let a case statement jump
4494 into the middle of certain kinds of constructs. */
4495
4496 void
4497 expand_start_case_dummy ()
4498 {
4499 struct nesting *thiscase = ALLOC_NESTING ();
4500
4501 /* Make an entry on case_stack for the dummy. */
4502
4503 thiscase->next = case_stack;
4504 thiscase->all = nesting_stack;
4505 thiscase->depth = ++nesting_depth;
4506 thiscase->exit_label = 0;
4507 thiscase->data.case_stmt.case_list = 0;
4508 thiscase->data.case_stmt.start = 0;
4509 thiscase->data.case_stmt.nominal_type = 0;
4510 thiscase->data.case_stmt.default_label = 0;
4511 case_stack = thiscase;
4512 nesting_stack = thiscase;
4513 start_cleanup_deferral ();
4514 }
4515
4516 /* End a dummy case statement. */
4517
4518 void
4519 expand_end_case_dummy ()
4520 {
4521 end_cleanup_deferral ();
4522 POPSTACK (case_stack);
4523 }
4524
4525 /* Return the data type of the index-expression
4526 of the innermost case statement, or null if none. */
4527
4528 tree
4529 case_index_expr_type ()
4530 {
4531 if (case_stack)
4532 return TREE_TYPE (case_stack->data.case_stmt.index_expr);
4533 return 0;
4534 }
4535 \f
4536 static void
4537 check_seenlabel ()
4538 {
4539 /* If this is the first label, warn if any insns have been emitted. */
4540 if (case_stack->data.case_stmt.line_number_status >= 0)
4541 {
4542 rtx insn;
4543
4544 restore_line_number_status
4545 (case_stack->data.case_stmt.line_number_status);
4546 case_stack->data.case_stmt.line_number_status = -1;
4547
4548 for (insn = case_stack->data.case_stmt.start;
4549 insn;
4550 insn = NEXT_INSN (insn))
4551 {
4552 if (GET_CODE (insn) == CODE_LABEL)
4553 break;
4554 if (GET_CODE (insn) != NOTE
4555 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE))
4556 {
4557 do
4558 insn = PREV_INSN (insn);
4559 while (insn && (GET_CODE (insn) != NOTE || NOTE_LINE_NUMBER (insn) < 0));
4560
4561 /* If insn is zero, then there must have been a syntax error. */
4562 if (insn)
4563 warning_with_file_and_line (NOTE_SOURCE_FILE (insn),
4564 NOTE_LINE_NUMBER (insn),
4565 "unreachable code at beginning of %s",
4566 case_stack->data.case_stmt.printname);
4567 break;
4568 }
4569 }
4570 }
4571 }
4572
4573 /* Accumulate one case or default label inside a case or switch statement.
4574 VALUE is the value of the case (a null pointer, for a default label).
4575 The function CONVERTER, when applied to arguments T and V,
4576 converts the value V to the type T.
4577
4578 If not currently inside a case or switch statement, return 1 and do
4579 nothing. The caller will print a language-specific error message.
4580 If VALUE is a duplicate or overlaps, return 2 and do nothing
4581 except store the (first) duplicate node in *DUPLICATE.
4582 If VALUE is out of range, return 3 and do nothing.
4583 If we are jumping into the scope of a cleanup or var-sized array, return 5.
4584 Return 0 on success.
4585
4586 Extended to handle range statements. */
4587
4588 int
4589 pushcase (value, converter, label, duplicate)
4590 tree value;
4591 tree (*converter) PARAMS ((tree, tree));
4592 tree label;
4593 tree *duplicate;
4594 {
4595 tree index_type;
4596 tree nominal_type;
4597
4598 /* Fail if not inside a real case statement. */
4599 if (! (case_stack && case_stack->data.case_stmt.start))
4600 return 1;
4601
4602 if (stack_block_stack
4603 && stack_block_stack->depth > case_stack->depth)
4604 return 5;
4605
4606 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4607 nominal_type = case_stack->data.case_stmt.nominal_type;
4608
4609 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4610 if (index_type == error_mark_node)
4611 return 0;
4612
4613 /* Convert VALUE to the type in which the comparisons are nominally done. */
4614 if (value != 0)
4615 value = (*converter) (nominal_type, value);
4616
4617 check_seenlabel ();
4618
4619 /* Fail if this value is out of range for the actual type of the index
4620 (which may be narrower than NOMINAL_TYPE). */
4621 if (value != 0
4622 && (TREE_CONSTANT_OVERFLOW (value)
4623 || ! int_fits_type_p (value, index_type)))
4624 return 3;
4625
4626 return add_case_node (value, value, label, duplicate);
4627 }
4628
4629 /* Like pushcase but this case applies to all values between VALUE1 and
4630 VALUE2 (inclusive). If VALUE1 is NULL, the range starts at the lowest
4631 value of the index type and ends at VALUE2. If VALUE2 is NULL, the range
4632 starts at VALUE1 and ends at the highest value of the index type.
4633 If both are NULL, this case applies to all values.
4634
4635 The return value is the same as that of pushcase but there is one
4636 additional error code: 4 means the specified range was empty. */
4637
4638 int
4639 pushcase_range (value1, value2, converter, label, duplicate)
4640 tree value1, value2;
4641 tree (*converter) PARAMS ((tree, tree));
4642 tree label;
4643 tree *duplicate;
4644 {
4645 tree index_type;
4646 tree nominal_type;
4647
4648 /* Fail if not inside a real case statement. */
4649 if (! (case_stack && case_stack->data.case_stmt.start))
4650 return 1;
4651
4652 if (stack_block_stack
4653 && stack_block_stack->depth > case_stack->depth)
4654 return 5;
4655
4656 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4657 nominal_type = case_stack->data.case_stmt.nominal_type;
4658
4659 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4660 if (index_type == error_mark_node)
4661 return 0;
4662
4663 check_seenlabel ();
4664
4665 /* Convert VALUEs to type in which the comparisons are nominally done
4666 and replace any unspecified value with the corresponding bound. */
4667 if (value1 == 0)
4668 value1 = TYPE_MIN_VALUE (index_type);
4669 if (value2 == 0)
4670 value2 = TYPE_MAX_VALUE (index_type);
4671
4672 /* Fail if the range is empty. Do this before any conversion since
4673 we want to allow out-of-range empty ranges. */
4674 if (value2 != 0 && tree_int_cst_lt (value2, value1))
4675 return 4;
4676
4677 /* If the max was unbounded, use the max of the nominal_type we are
4678 converting to. Do this after the < check above to suppress false
4679 positives. */
4680 if (value2 == 0)
4681 value2 = TYPE_MAX_VALUE (nominal_type);
4682
4683 value1 = (*converter) (nominal_type, value1);
4684 value2 = (*converter) (nominal_type, value2);
4685
4686 /* Fail if these values are out of range. */
4687 if (TREE_CONSTANT_OVERFLOW (value1)
4688 || ! int_fits_type_p (value1, index_type))
4689 return 3;
4690
4691 if (TREE_CONSTANT_OVERFLOW (value2)
4692 || ! int_fits_type_p (value2, index_type))
4693 return 3;
4694
4695 return add_case_node (value1, value2, label, duplicate);
4696 }
4697
4698 /* Do the actual insertion of a case label for pushcase and pushcase_range
4699 into case_stack->data.case_stmt.case_list. Use an AVL tree to avoid
4700 slowdown for large switch statements. */
4701
4702 int
4703 add_case_node (low, high, label, duplicate)
4704 tree low, high;
4705 tree label;
4706 tree *duplicate;
4707 {
4708 struct case_node *p, **q, *r;
4709
4710 /* If there's no HIGH value, then this is not a case range; it's
4711 just a simple case label. But that's just a degenerate case
4712 range. */
4713 if (!high)
4714 high = low;
4715
4716 /* Handle default labels specially. */
4717 if (!high && !low)
4718 {
4719 if (case_stack->data.case_stmt.default_label != 0)
4720 {
4721 *duplicate = case_stack->data.case_stmt.default_label;
4722 return 2;
4723 }
4724 case_stack->data.case_stmt.default_label = label;
4725 expand_label (label);
4726 return 0;
4727 }
4728
4729 q = &case_stack->data.case_stmt.case_list;
4730 p = *q;
4731
4732 while ((r = *q))
4733 {
4734 p = r;
4735
4736 /* Keep going past elements distinctly greater than HIGH. */
4737 if (tree_int_cst_lt (high, p->low))
4738 q = &p->left;
4739
4740 /* or distinctly less than LOW. */
4741 else if (tree_int_cst_lt (p->high, low))
4742 q = &p->right;
4743
4744 else
4745 {
4746 /* We have an overlap; this is an error. */
4747 *duplicate = p->code_label;
4748 return 2;
4749 }
4750 }
4751
4752 /* Add this label to the chain, and succeed. */
4753
4754 r = (struct case_node *) xmalloc (sizeof (struct case_node));
4755 r->low = low;
4756
4757 /* If the bounds are equal, turn this into the one-value case. */
4758 if (tree_int_cst_equal (low, high))
4759 r->high = r->low;
4760 else
4761 r->high = high;
4762
4763 r->code_label = label;
4764 expand_label (label);
4765
4766 *q = r;
4767 r->parent = p;
4768 r->left = 0;
4769 r->right = 0;
4770 r->balance = 0;
4771
4772 while (p)
4773 {
4774 struct case_node *s;
4775
4776 if (r == p->left)
4777 {
4778 int b;
4779
4780 if (! (b = p->balance))
4781 /* Growth propagation from left side. */
4782 p->balance = -1;
4783 else if (b < 0)
4784 {
4785 if (r->balance < 0)
4786 {
4787 /* R-Rotation */
4788 if ((p->left = s = r->right))
4789 s->parent = p;
4790
4791 r->right = p;
4792 p->balance = 0;
4793 r->balance = 0;
4794 s = p->parent;
4795 p->parent = r;
4796
4797 if ((r->parent = s))
4798 {
4799 if (s->left == p)
4800 s->left = r;
4801 else
4802 s->right = r;
4803 }
4804 else
4805 case_stack->data.case_stmt.case_list = r;
4806 }
4807 else
4808 /* r->balance == +1 */
4809 {
4810 /* LR-Rotation */
4811
4812 int b2;
4813 struct case_node *t = r->right;
4814
4815 if ((p->left = s = t->right))
4816 s->parent = p;
4817
4818 t->right = p;
4819 if ((r->right = s = t->left))
4820 s->parent = r;
4821
4822 t->left = r;
4823 b = t->balance;
4824 b2 = b < 0;
4825 p->balance = b2;
4826 b2 = -b2 - b;
4827 r->balance = b2;
4828 t->balance = 0;
4829 s = p->parent;
4830 p->parent = t;
4831 r->parent = t;
4832
4833 if ((t->parent = s))
4834 {
4835 if (s->left == p)
4836 s->left = t;
4837 else
4838 s->right = t;
4839 }
4840 else
4841 case_stack->data.case_stmt.case_list = t;
4842 }
4843 break;
4844 }
4845
4846 else
4847 {
4848 /* p->balance == +1; growth of left side balances the node. */
4849 p->balance = 0;
4850 break;
4851 }
4852 }
4853 else
4854 /* r == p->right */
4855 {
4856 int b;
4857
4858 if (! (b = p->balance))
4859 /* Growth propagation from right side. */
4860 p->balance++;
4861 else if (b > 0)
4862 {
4863 if (r->balance > 0)
4864 {
4865 /* L-Rotation */
4866
4867 if ((p->right = s = r->left))
4868 s->parent = p;
4869
4870 r->left = p;
4871 p->balance = 0;
4872 r->balance = 0;
4873 s = p->parent;
4874 p->parent = r;
4875 if ((r->parent = s))
4876 {
4877 if (s->left == p)
4878 s->left = r;
4879 else
4880 s->right = r;
4881 }
4882
4883 else
4884 case_stack->data.case_stmt.case_list = r;
4885 }
4886
4887 else
4888 /* r->balance == -1 */
4889 {
4890 /* RL-Rotation */
4891 int b2;
4892 struct case_node *t = r->left;
4893
4894 if ((p->right = s = t->left))
4895 s->parent = p;
4896
4897 t->left = p;
4898
4899 if ((r->left = s = t->right))
4900 s->parent = r;
4901
4902 t->right = r;
4903 b = t->balance;
4904 b2 = b < 0;
4905 r->balance = b2;
4906 b2 = -b2 - b;
4907 p->balance = b2;
4908 t->balance = 0;
4909 s = p->parent;
4910 p->parent = t;
4911 r->parent = t;
4912
4913 if ((t->parent = s))
4914 {
4915 if (s->left == p)
4916 s->left = t;
4917 else
4918 s->right = t;
4919 }
4920
4921 else
4922 case_stack->data.case_stmt.case_list = t;
4923 }
4924 break;
4925 }
4926 else
4927 {
4928 /* p->balance == -1; growth of right side balances the node. */
4929 p->balance = 0;
4930 break;
4931 }
4932 }
4933
4934 r = p;
4935 p = p->parent;
4936 }
4937
4938 return 0;
4939 }
4940 \f
4941 /* Returns the number of possible values of TYPE.
4942 Returns -1 if the number is unknown, variable, or if the number does not
4943 fit in a HOST_WIDE_INT.
4944 Sets *SPARENESS to 2 if TYPE is an ENUMERAL_TYPE whose values
4945 do not increase monotonically (there may be duplicates);
4946 to 1 if the values increase monotonically, but not always by 1;
4947 otherwise sets it to 0. */
4948
4949 HOST_WIDE_INT
4950 all_cases_count (type, spareness)
4951 tree type;
4952 int *spareness;
4953 {
4954 tree t;
4955 HOST_WIDE_INT count, minval, lastval;
4956
4957 *spareness = 0;
4958
4959 switch (TREE_CODE (type))
4960 {
4961 case BOOLEAN_TYPE:
4962 count = 2;
4963 break;
4964
4965 case CHAR_TYPE:
4966 count = 1 << BITS_PER_UNIT;
4967 break;
4968
4969 default:
4970 case INTEGER_TYPE:
4971 if (TYPE_MAX_VALUE (type) != 0
4972 && 0 != (t = fold (build (MINUS_EXPR, type, TYPE_MAX_VALUE (type),
4973 TYPE_MIN_VALUE (type))))
4974 && 0 != (t = fold (build (PLUS_EXPR, type, t,
4975 convert (type, integer_zero_node))))
4976 && host_integerp (t, 1))
4977 count = tree_low_cst (t, 1);
4978 else
4979 return -1;
4980 break;
4981
4982 case ENUMERAL_TYPE:
4983 /* Don't waste time with enumeral types with huge values. */
4984 if (! host_integerp (TYPE_MIN_VALUE (type), 0)
4985 || TYPE_MAX_VALUE (type) == 0
4986 || ! host_integerp (TYPE_MAX_VALUE (type), 0))
4987 return -1;
4988
4989 lastval = minval = tree_low_cst (TYPE_MIN_VALUE (type), 0);
4990 count = 0;
4991
4992 for (t = TYPE_VALUES (type); t != NULL_TREE; t = TREE_CHAIN (t))
4993 {
4994 HOST_WIDE_INT thisval = tree_low_cst (TREE_VALUE (t), 0);
4995
4996 if (*spareness == 2 || thisval < lastval)
4997 *spareness = 2;
4998 else if (thisval != minval + count)
4999 *spareness = 1;
5000
5001 count++;
5002 }
5003 }
5004
5005 return count;
5006 }
5007
5008 #define BITARRAY_TEST(ARRAY, INDEX) \
5009 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
5010 & (1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR)))
5011 #define BITARRAY_SET(ARRAY, INDEX) \
5012 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
5013 |= 1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR))
5014
5015 /* Set the elements of the bitstring CASES_SEEN (which has length COUNT),
5016 with the case values we have seen, assuming the case expression
5017 has the given TYPE.
5018 SPARSENESS is as determined by all_cases_count.
5019
5020 The time needed is proportional to COUNT, unless
5021 SPARSENESS is 2, in which case quadratic time is needed. */
5022
5023 void
5024 mark_seen_cases (type, cases_seen, count, sparseness)
5025 tree type;
5026 unsigned char *cases_seen;
5027 HOST_WIDE_INT count;
5028 int sparseness;
5029 {
5030 tree next_node_to_try = NULL_TREE;
5031 HOST_WIDE_INT next_node_offset = 0;
5032
5033 struct case_node *n, *root = case_stack->data.case_stmt.case_list;
5034 tree val = make_node (INTEGER_CST);
5035
5036 TREE_TYPE (val) = type;
5037 if (! root)
5038 /* Do nothing. */
5039 ;
5040 else if (sparseness == 2)
5041 {
5042 tree t;
5043 unsigned HOST_WIDE_INT xlo;
5044
5045 /* This less efficient loop is only needed to handle
5046 duplicate case values (multiple enum constants
5047 with the same value). */
5048 TREE_TYPE (val) = TREE_TYPE (root->low);
5049 for (t = TYPE_VALUES (type), xlo = 0; t != NULL_TREE;
5050 t = TREE_CHAIN (t), xlo++)
5051 {
5052 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (TREE_VALUE (t));
5053 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (TREE_VALUE (t));
5054 n = root;
5055 do
5056 {
5057 /* Keep going past elements distinctly greater than VAL. */
5058 if (tree_int_cst_lt (val, n->low))
5059 n = n->left;
5060
5061 /* or distinctly less than VAL. */
5062 else if (tree_int_cst_lt (n->high, val))
5063 n = n->right;
5064
5065 else
5066 {
5067 /* We have found a matching range. */
5068 BITARRAY_SET (cases_seen, xlo);
5069 break;
5070 }
5071 }
5072 while (n);
5073 }
5074 }
5075 else
5076 {
5077 if (root->left)
5078 case_stack->data.case_stmt.case_list = root = case_tree2list (root, 0);
5079
5080 for (n = root; n; n = n->right)
5081 {
5082 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (n->low);
5083 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (n->low);
5084 while (! tree_int_cst_lt (n->high, val))
5085 {
5086 /* Calculate (into xlo) the "offset" of the integer (val).
5087 The element with lowest value has offset 0, the next smallest
5088 element has offset 1, etc. */
5089
5090 unsigned HOST_WIDE_INT xlo;
5091 HOST_WIDE_INT xhi;
5092 tree t;
5093
5094 if (sparseness && TYPE_VALUES (type) != NULL_TREE)
5095 {
5096 /* The TYPE_VALUES will be in increasing order, so
5097 starting searching where we last ended. */
5098 t = next_node_to_try;
5099 xlo = next_node_offset;
5100 xhi = 0;
5101 for (;;)
5102 {
5103 if (t == NULL_TREE)
5104 {
5105 t = TYPE_VALUES (type);
5106 xlo = 0;
5107 }
5108 if (tree_int_cst_equal (val, TREE_VALUE (t)))
5109 {
5110 next_node_to_try = TREE_CHAIN (t);
5111 next_node_offset = xlo + 1;
5112 break;
5113 }
5114 xlo++;
5115 t = TREE_CHAIN (t);
5116 if (t == next_node_to_try)
5117 {
5118 xlo = -1;
5119 break;
5120 }
5121 }
5122 }
5123 else
5124 {
5125 t = TYPE_MIN_VALUE (type);
5126 if (t)
5127 neg_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t),
5128 &xlo, &xhi);
5129 else
5130 xlo = xhi = 0;
5131 add_double (xlo, xhi,
5132 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5133 &xlo, &xhi);
5134 }
5135
5136 if (xhi == 0 && xlo < (unsigned HOST_WIDE_INT) count)
5137 BITARRAY_SET (cases_seen, xlo);
5138
5139 add_double (TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5140 1, 0,
5141 &TREE_INT_CST_LOW (val), &TREE_INT_CST_HIGH (val));
5142 }
5143 }
5144 }
5145 }
5146
5147 /* Called when the index of a switch statement is an enumerated type
5148 and there is no default label.
5149
5150 Checks that all enumeration literals are covered by the case
5151 expressions of a switch. Also, warn if there are any extra
5152 switch cases that are *not* elements of the enumerated type.
5153
5154 If all enumeration literals were covered by the case expressions,
5155 turn one of the expressions into the default expression since it should
5156 not be possible to fall through such a switch. */
5157
5158 void
5159 check_for_full_enumeration_handling (type)
5160 tree type;
5161 {
5162 struct case_node *n;
5163 tree chain;
5164
5165 /* True iff the selector type is a numbered set mode. */
5166 int sparseness = 0;
5167
5168 /* The number of possible selector values. */
5169 HOST_WIDE_INT size;
5170
5171 /* For each possible selector value. a one iff it has been matched
5172 by a case value alternative. */
5173 unsigned char *cases_seen;
5174
5175 /* The allocated size of cases_seen, in chars. */
5176 HOST_WIDE_INT bytes_needed;
5177
5178 if (! warn_switch)
5179 return;
5180
5181 size = all_cases_count (type, &sparseness);
5182 bytes_needed = (size + HOST_BITS_PER_CHAR) / HOST_BITS_PER_CHAR;
5183
5184 if (size > 0 && size < 600000
5185 /* We deliberately use calloc here, not cmalloc, so that we can suppress
5186 this optimization if we don't have enough memory rather than
5187 aborting, as xmalloc would do. */
5188 && (cases_seen =
5189 (unsigned char *) really_call_calloc (bytes_needed, 1)) != NULL)
5190 {
5191 HOST_WIDE_INT i;
5192 tree v = TYPE_VALUES (type);
5193
5194 /* The time complexity of this code is normally O(N), where
5195 N being the number of members in the enumerated type.
5196 However, if type is a ENUMERAL_TYPE whose values do not
5197 increase monotonically, O(N*log(N)) time may be needed. */
5198
5199 mark_seen_cases (type, cases_seen, size, sparseness);
5200
5201 for (i = 0; v != NULL_TREE && i < size; i++, v = TREE_CHAIN (v))
5202 if (BITARRAY_TEST (cases_seen, i) == 0)
5203 warning ("enumeration value `%s' not handled in switch",
5204 IDENTIFIER_POINTER (TREE_PURPOSE (v)));
5205
5206 free (cases_seen);
5207 }
5208
5209 /* Now we go the other way around; we warn if there are case
5210 expressions that don't correspond to enumerators. This can
5211 occur since C and C++ don't enforce type-checking of
5212 assignments to enumeration variables. */
5213
5214 if (case_stack->data.case_stmt.case_list
5215 && case_stack->data.case_stmt.case_list->left)
5216 case_stack->data.case_stmt.case_list
5217 = case_tree2list (case_stack->data.case_stmt.case_list, 0);
5218 if (warn_switch)
5219 for (n = case_stack->data.case_stmt.case_list; n; n = n->right)
5220 {
5221 for (chain = TYPE_VALUES (type);
5222 chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain));
5223 chain = TREE_CHAIN (chain))
5224 ;
5225
5226 if (!chain)
5227 {
5228 if (TYPE_NAME (type) == 0)
5229 warning ("case value `%ld' not in enumerated type",
5230 (long) TREE_INT_CST_LOW (n->low));
5231 else
5232 warning ("case value `%ld' not in enumerated type `%s'",
5233 (long) TREE_INT_CST_LOW (n->low),
5234 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5235 == IDENTIFIER_NODE)
5236 ? TYPE_NAME (type)
5237 : DECL_NAME (TYPE_NAME (type))));
5238 }
5239 if (!tree_int_cst_equal (n->low, n->high))
5240 {
5241 for (chain = TYPE_VALUES (type);
5242 chain && !tree_int_cst_equal (n->high, TREE_VALUE (chain));
5243 chain = TREE_CHAIN (chain))
5244 ;
5245
5246 if (!chain)
5247 {
5248 if (TYPE_NAME (type) == 0)
5249 warning ("case value `%ld' not in enumerated type",
5250 (long) TREE_INT_CST_LOW (n->high));
5251 else
5252 warning ("case value `%ld' not in enumerated type `%s'",
5253 (long) TREE_INT_CST_LOW (n->high),
5254 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5255 == IDENTIFIER_NODE)
5256 ? TYPE_NAME (type)
5257 : DECL_NAME (TYPE_NAME (type))));
5258 }
5259 }
5260 }
5261 }
5262
5263 /* Free CN, and its children. */
5264
5265 static void
5266 free_case_nodes (cn)
5267 case_node_ptr cn;
5268 {
5269 if (cn)
5270 {
5271 free_case_nodes (cn->left);
5272 free_case_nodes (cn->right);
5273 free (cn);
5274 }
5275 }
5276
5277 \f
5278
5279 /* Terminate a case (Pascal) or switch (C) statement
5280 in which ORIG_INDEX is the expression to be tested.
5281 Generate the code to test it and jump to the right place. */
5282
5283 void
5284 expand_end_case (orig_index)
5285 tree orig_index;
5286 {
5287 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
5288 rtx default_label = 0;
5289 struct case_node *n;
5290 unsigned int count;
5291 rtx index;
5292 rtx table_label;
5293 int ncases;
5294 rtx *labelvec;
5295 int i;
5296 rtx before_case, end;
5297 struct nesting *thiscase = case_stack;
5298 tree index_expr, index_type;
5299 int unsignedp;
5300
5301 /* Don't crash due to previous errors. */
5302 if (thiscase == NULL)
5303 return;
5304
5305 table_label = gen_label_rtx ();
5306 index_expr = thiscase->data.case_stmt.index_expr;
5307 index_type = TREE_TYPE (index_expr);
5308 unsignedp = TREE_UNSIGNED (index_type);
5309
5310 do_pending_stack_adjust ();
5311
5312 /* This might get an spurious warning in the presence of a syntax error;
5313 it could be fixed by moving the call to check_seenlabel after the
5314 check for error_mark_node, and copying the code of check_seenlabel that
5315 deals with case_stack->data.case_stmt.line_number_status /
5316 restore_line_number_status in front of the call to end_cleanup_deferral;
5317 However, this might miss some useful warnings in the presence of
5318 non-syntax errors. */
5319 check_seenlabel ();
5320
5321 /* An ERROR_MARK occurs for various reasons including invalid data type. */
5322 if (index_type != error_mark_node)
5323 {
5324 /* If switch expression was an enumerated type, check that all
5325 enumeration literals are covered by the cases.
5326 No sense trying this if there's a default case, however. */
5327
5328 if (!thiscase->data.case_stmt.default_label
5329 && TREE_CODE (TREE_TYPE (orig_index)) == ENUMERAL_TYPE
5330 && TREE_CODE (index_expr) != INTEGER_CST)
5331 check_for_full_enumeration_handling (TREE_TYPE (orig_index));
5332
5333 /* If we don't have a default-label, create one here,
5334 after the body of the switch. */
5335 if (thiscase->data.case_stmt.default_label == 0)
5336 {
5337 thiscase->data.case_stmt.default_label
5338 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
5339 expand_label (thiscase->data.case_stmt.default_label);
5340 }
5341 default_label = label_rtx (thiscase->data.case_stmt.default_label);
5342
5343 before_case = get_last_insn ();
5344
5345 if (thiscase->data.case_stmt.case_list
5346 && thiscase->data.case_stmt.case_list->left)
5347 thiscase->data.case_stmt.case_list
5348 = case_tree2list (thiscase->data.case_stmt.case_list, 0);
5349
5350 /* Simplify the case-list before we count it. */
5351 group_case_nodes (thiscase->data.case_stmt.case_list);
5352
5353 /* Get upper and lower bounds of case values.
5354 Also convert all the case values to the index expr's data type. */
5355
5356 count = 0;
5357 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5358 {
5359 /* Check low and high label values are integers. */
5360 if (TREE_CODE (n->low) != INTEGER_CST)
5361 abort ();
5362 if (TREE_CODE (n->high) != INTEGER_CST)
5363 abort ();
5364
5365 n->low = convert (index_type, n->low);
5366 n->high = convert (index_type, n->high);
5367
5368 /* Count the elements and track the largest and smallest
5369 of them (treating them as signed even if they are not). */
5370 if (count++ == 0)
5371 {
5372 minval = n->low;
5373 maxval = n->high;
5374 }
5375 else
5376 {
5377 if (INT_CST_LT (n->low, minval))
5378 minval = n->low;
5379 if (INT_CST_LT (maxval, n->high))
5380 maxval = n->high;
5381 }
5382 /* A range counts double, since it requires two compares. */
5383 if (! tree_int_cst_equal (n->low, n->high))
5384 count++;
5385 }
5386
5387 /* Compute span of values. */
5388 if (count != 0)
5389 range = fold (build (MINUS_EXPR, index_type, maxval, minval));
5390
5391 end_cleanup_deferral ();
5392
5393 if (count == 0)
5394 {
5395 expand_expr (index_expr, const0_rtx, VOIDmode, 0);
5396 emit_queue ();
5397 emit_jump (default_label);
5398 }
5399
5400 /* If range of values is much bigger than number of values,
5401 make a sequence of conditional branches instead of a dispatch.
5402 If the switch-index is a constant, do it this way
5403 because we can optimize it. */
5404
5405 else if (count < case_values_threshold ()
5406 || compare_tree_int (range, 10 * count) > 0
5407 /* RANGE may be signed, and really large ranges will show up
5408 as negative numbers. */
5409 || compare_tree_int (range, 0) < 0
5410 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
5411 || flag_pic
5412 #endif
5413 || TREE_CODE (index_expr) == INTEGER_CST
5414 || (TREE_CODE (index_expr) == COMPOUND_EXPR
5415 && TREE_CODE (TREE_OPERAND (index_expr, 1)) == INTEGER_CST))
5416 {
5417 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5418
5419 /* If the index is a short or char that we do not have
5420 an insn to handle comparisons directly, convert it to
5421 a full integer now, rather than letting each comparison
5422 generate the conversion. */
5423
5424 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
5425 && ! have_insn_for (COMPARE, GET_MODE (index)))
5426 {
5427 enum machine_mode wider_mode;
5428 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
5429 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5430 if (have_insn_for (COMPARE, wider_mode))
5431 {
5432 index = convert_to_mode (wider_mode, index, unsignedp);
5433 break;
5434 }
5435 }
5436
5437 emit_queue ();
5438 do_pending_stack_adjust ();
5439
5440 index = protect_from_queue (index, 0);
5441 if (GET_CODE (index) == MEM)
5442 index = copy_to_reg (index);
5443 if (GET_CODE (index) == CONST_INT
5444 || TREE_CODE (index_expr) == INTEGER_CST)
5445 {
5446 /* Make a tree node with the proper constant value
5447 if we don't already have one. */
5448 if (TREE_CODE (index_expr) != INTEGER_CST)
5449 {
5450 index_expr
5451 = build_int_2 (INTVAL (index),
5452 unsignedp || INTVAL (index) >= 0 ? 0 : -1);
5453 index_expr = convert (index_type, index_expr);
5454 }
5455
5456 /* For constant index expressions we need only
5457 issue an unconditional branch to the appropriate
5458 target code. The job of removing any unreachable
5459 code is left to the optimisation phase if the
5460 "-O" option is specified. */
5461 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5462 if (! tree_int_cst_lt (index_expr, n->low)
5463 && ! tree_int_cst_lt (n->high, index_expr))
5464 break;
5465
5466 if (n)
5467 emit_jump (label_rtx (n->code_label));
5468 else
5469 emit_jump (default_label);
5470 }
5471 else
5472 {
5473 /* If the index expression is not constant we generate
5474 a binary decision tree to select the appropriate
5475 target code. This is done as follows:
5476
5477 The list of cases is rearranged into a binary tree,
5478 nearly optimal assuming equal probability for each case.
5479
5480 The tree is transformed into RTL, eliminating
5481 redundant test conditions at the same time.
5482
5483 If program flow could reach the end of the
5484 decision tree an unconditional jump to the
5485 default code is emitted. */
5486
5487 use_cost_table
5488 = (TREE_CODE (TREE_TYPE (orig_index)) != ENUMERAL_TYPE
5489 && estimate_case_costs (thiscase->data.case_stmt.case_list));
5490 balance_case_nodes (&thiscase->data.case_stmt.case_list, NULL);
5491 emit_case_nodes (index, thiscase->data.case_stmt.case_list,
5492 default_label, index_type);
5493 emit_jump_if_reachable (default_label);
5494 }
5495 }
5496 else
5497 {
5498 if (! try_casesi (index_type, index_expr, minval, range,
5499 table_label, default_label))
5500 {
5501 index_type = thiscase->data.case_stmt.nominal_type;
5502
5503 /* Index jumptables from zero for suitable values of
5504 minval to avoid a subtraction. */
5505 if (! optimize_size
5506 && compare_tree_int (minval, 0) > 0
5507 && compare_tree_int (minval, 3) < 0)
5508 {
5509 minval = integer_zero_node;
5510 range = maxval;
5511 }
5512
5513 if (! try_tablejump (index_type, index_expr, minval, range,
5514 table_label, default_label))
5515 abort ();
5516 }
5517
5518 /* Get table of labels to jump to, in order of case index. */
5519
5520 ncases = tree_low_cst (range, 0) + 1;
5521 labelvec = (rtx *) alloca (ncases * sizeof (rtx));
5522 memset ((char *) labelvec, 0, ncases * sizeof (rtx));
5523
5524 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5525 {
5526 HOST_WIDE_INT i
5527 = tree_low_cst (n->low, 0) - tree_low_cst (minval, 0);
5528
5529 while (1)
5530 {
5531 labelvec[i]
5532 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
5533 if (i + tree_low_cst (minval, 0)
5534 == tree_low_cst (n->high, 0))
5535 break;
5536 i++;
5537 }
5538 }
5539
5540 /* Fill in the gaps with the default. */
5541 for (i = 0; i < ncases; i++)
5542 if (labelvec[i] == 0)
5543 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
5544
5545 /* Output the table */
5546 emit_label (table_label);
5547
5548 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
5549 emit_jump_insn (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
5550 gen_rtx_LABEL_REF (Pmode, table_label),
5551 gen_rtvec_v (ncases, labelvec),
5552 const0_rtx, const0_rtx));
5553 else
5554 emit_jump_insn (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
5555 gen_rtvec_v (ncases, labelvec)));
5556
5557 /* If the case insn drops through the table,
5558 after the table we must jump to the default-label.
5559 Otherwise record no drop-through after the table. */
5560 #ifdef CASE_DROPS_THROUGH
5561 emit_jump (default_label);
5562 #else
5563 emit_barrier ();
5564 #endif
5565 }
5566
5567 before_case = NEXT_INSN (before_case);
5568 end = get_last_insn ();
5569 if (squeeze_notes (&before_case, &end))
5570 abort ();
5571 reorder_insns (before_case, end,
5572 thiscase->data.case_stmt.start);
5573 }
5574 else
5575 end_cleanup_deferral ();
5576
5577 if (thiscase->exit_label)
5578 emit_label (thiscase->exit_label);
5579
5580 free_case_nodes (case_stack->data.case_stmt.case_list);
5581 POPSTACK (case_stack);
5582
5583 free_temp_slots ();
5584 }
5585
5586 /* Convert the tree NODE into a list linked by the right field, with the left
5587 field zeroed. RIGHT is used for recursion; it is a list to be placed
5588 rightmost in the resulting list. */
5589
5590 static struct case_node *
5591 case_tree2list (node, right)
5592 struct case_node *node, *right;
5593 {
5594 struct case_node *left;
5595
5596 if (node->right)
5597 right = case_tree2list (node->right, right);
5598
5599 node->right = right;
5600 if ((left = node->left))
5601 {
5602 node->left = 0;
5603 return case_tree2list (left, node);
5604 }
5605
5606 return node;
5607 }
5608
5609 /* Generate code to jump to LABEL if OP1 and OP2 are equal. */
5610
5611 static void
5612 do_jump_if_equal (op1, op2, label, unsignedp)
5613 rtx op1, op2, label;
5614 int unsignedp;
5615 {
5616 if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
5617 {
5618 if (INTVAL (op1) == INTVAL (op2))
5619 emit_jump (label);
5620 }
5621 else
5622 emit_cmp_and_jump_insns (op1, op2, EQ, NULL_RTX,
5623 (GET_MODE (op1) == VOIDmode
5624 ? GET_MODE (op2) : GET_MODE (op1)),
5625 unsignedp, label);
5626 }
5627 \f
5628 /* Not all case values are encountered equally. This function
5629 uses a heuristic to weight case labels, in cases where that
5630 looks like a reasonable thing to do.
5631
5632 Right now, all we try to guess is text, and we establish the
5633 following weights:
5634
5635 chars above space: 16
5636 digits: 16
5637 default: 12
5638 space, punct: 8
5639 tab: 4
5640 newline: 2
5641 other "\" chars: 1
5642 remaining chars: 0
5643
5644 If we find any cases in the switch that are not either -1 or in the range
5645 of valid ASCII characters, or are control characters other than those
5646 commonly used with "\", don't treat this switch scanning text.
5647
5648 Return 1 if these nodes are suitable for cost estimation, otherwise
5649 return 0. */
5650
5651 static int
5652 estimate_case_costs (node)
5653 case_node_ptr node;
5654 {
5655 tree min_ascii = integer_minus_one_node;
5656 tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0));
5657 case_node_ptr n;
5658 int i;
5659
5660 /* If we haven't already made the cost table, make it now. Note that the
5661 lower bound of the table is -1, not zero. */
5662
5663 if (! cost_table_initialized)
5664 {
5665 cost_table_initialized = 1;
5666
5667 for (i = 0; i < 128; i++)
5668 {
5669 if (ISALNUM (i))
5670 COST_TABLE (i) = 16;
5671 else if (ISPUNCT (i))
5672 COST_TABLE (i) = 8;
5673 else if (ISCNTRL (i))
5674 COST_TABLE (i) = -1;
5675 }
5676
5677 COST_TABLE (' ') = 8;
5678 COST_TABLE ('\t') = 4;
5679 COST_TABLE ('\0') = 4;
5680 COST_TABLE ('\n') = 2;
5681 COST_TABLE ('\f') = 1;
5682 COST_TABLE ('\v') = 1;
5683 COST_TABLE ('\b') = 1;
5684 }
5685
5686 /* See if all the case expressions look like text. It is text if the
5687 constant is >= -1 and the highest constant is <= 127. Do all comparisons
5688 as signed arithmetic since we don't want to ever access cost_table with a
5689 value less than -1. Also check that none of the constants in a range
5690 are strange control characters. */
5691
5692 for (n = node; n; n = n->right)
5693 {
5694 if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high))
5695 return 0;
5696
5697 for (i = (HOST_WIDE_INT) TREE_INT_CST_LOW (n->low);
5698 i <= (HOST_WIDE_INT) TREE_INT_CST_LOW (n->high); i++)
5699 if (COST_TABLE (i) < 0)
5700 return 0;
5701 }
5702
5703 /* All interesting values are within the range of interesting
5704 ASCII characters. */
5705 return 1;
5706 }
5707
5708 /* Scan an ordered list of case nodes
5709 combining those with consecutive values or ranges.
5710
5711 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
5712
5713 static void
5714 group_case_nodes (head)
5715 case_node_ptr head;
5716 {
5717 case_node_ptr node = head;
5718
5719 while (node)
5720 {
5721 rtx lb = next_real_insn (label_rtx (node->code_label));
5722 rtx lb2;
5723 case_node_ptr np = node;
5724
5725 /* Try to group the successors of NODE with NODE. */
5726 while (((np = np->right) != 0)
5727 /* Do they jump to the same place? */
5728 && ((lb2 = next_real_insn (label_rtx (np->code_label))) == lb
5729 || (lb != 0 && lb2 != 0
5730 && simplejump_p (lb)
5731 && simplejump_p (lb2)
5732 && rtx_equal_p (SET_SRC (PATTERN (lb)),
5733 SET_SRC (PATTERN (lb2)))))
5734 /* Are their ranges consecutive? */
5735 && tree_int_cst_equal (np->low,
5736 fold (build (PLUS_EXPR,
5737 TREE_TYPE (node->high),
5738 node->high,
5739 integer_one_node)))
5740 /* An overflow is not consecutive. */
5741 && tree_int_cst_lt (node->high,
5742 fold (build (PLUS_EXPR,
5743 TREE_TYPE (node->high),
5744 node->high,
5745 integer_one_node))))
5746 {
5747 node->high = np->high;
5748 }
5749 /* NP is the first node after NODE which can't be grouped with it.
5750 Delete the nodes in between, and move on to that node. */
5751 node->right = np;
5752 node = np;
5753 }
5754 }
5755
5756 /* Take an ordered list of case nodes
5757 and transform them into a near optimal binary tree,
5758 on the assumption that any target code selection value is as
5759 likely as any other.
5760
5761 The transformation is performed by splitting the ordered
5762 list into two equal sections plus a pivot. The parts are
5763 then attached to the pivot as left and right branches. Each
5764 branch is then transformed recursively. */
5765
5766 static void
5767 balance_case_nodes (head, parent)
5768 case_node_ptr *head;
5769 case_node_ptr parent;
5770 {
5771 case_node_ptr np;
5772
5773 np = *head;
5774 if (np)
5775 {
5776 int cost = 0;
5777 int i = 0;
5778 int ranges = 0;
5779 case_node_ptr *npp;
5780 case_node_ptr left;
5781
5782 /* Count the number of entries on branch. Also count the ranges. */
5783
5784 while (np)
5785 {
5786 if (!tree_int_cst_equal (np->low, np->high))
5787 {
5788 ranges++;
5789 if (use_cost_table)
5790 cost += COST_TABLE (TREE_INT_CST_LOW (np->high));
5791 }
5792
5793 if (use_cost_table)
5794 cost += COST_TABLE (TREE_INT_CST_LOW (np->low));
5795
5796 i++;
5797 np = np->right;
5798 }
5799
5800 if (i > 2)
5801 {
5802 /* Split this list if it is long enough for that to help. */
5803 npp = head;
5804 left = *npp;
5805 if (use_cost_table)
5806 {
5807 /* Find the place in the list that bisects the list's total cost,
5808 Here I gets half the total cost. */
5809 int n_moved = 0;
5810 i = (cost + 1) / 2;
5811 while (1)
5812 {
5813 /* Skip nodes while their cost does not reach that amount. */
5814 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5815 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->high));
5816 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->low));
5817 if (i <= 0)
5818 break;
5819 npp = &(*npp)->right;
5820 n_moved += 1;
5821 }
5822 if (n_moved == 0)
5823 {
5824 /* Leave this branch lopsided, but optimize left-hand
5825 side and fill in `parent' fields for right-hand side. */
5826 np = *head;
5827 np->parent = parent;
5828 balance_case_nodes (&np->left, np);
5829 for (; np->right; np = np->right)
5830 np->right->parent = np;
5831 return;
5832 }
5833 }
5834 /* If there are just three nodes, split at the middle one. */
5835 else if (i == 3)
5836 npp = &(*npp)->right;
5837 else
5838 {
5839 /* Find the place in the list that bisects the list's total cost,
5840 where ranges count as 2.
5841 Here I gets half the total cost. */
5842 i = (i + ranges + 1) / 2;
5843 while (1)
5844 {
5845 /* Skip nodes while their cost does not reach that amount. */
5846 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5847 i--;
5848 i--;
5849 if (i <= 0)
5850 break;
5851 npp = &(*npp)->right;
5852 }
5853 }
5854 *head = np = *npp;
5855 *npp = 0;
5856 np->parent = parent;
5857 np->left = left;
5858
5859 /* Optimize each of the two split parts. */
5860 balance_case_nodes (&np->left, np);
5861 balance_case_nodes (&np->right, np);
5862 }
5863 else
5864 {
5865 /* Else leave this branch as one level,
5866 but fill in `parent' fields. */
5867 np = *head;
5868 np->parent = parent;
5869 for (; np->right; np = np->right)
5870 np->right->parent = np;
5871 }
5872 }
5873 }
5874 \f
5875 /* Search the parent sections of the case node tree
5876 to see if a test for the lower bound of NODE would be redundant.
5877 INDEX_TYPE is the type of the index expression.
5878
5879 The instructions to generate the case decision tree are
5880 output in the same order as nodes are processed so it is
5881 known that if a parent node checks the range of the current
5882 node minus one that the current node is bounded at its lower
5883 span. Thus the test would be redundant. */
5884
5885 static int
5886 node_has_low_bound (node, index_type)
5887 case_node_ptr node;
5888 tree index_type;
5889 {
5890 tree low_minus_one;
5891 case_node_ptr pnode;
5892
5893 /* If the lower bound of this node is the lowest value in the index type,
5894 we need not test it. */
5895
5896 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
5897 return 1;
5898
5899 /* If this node has a left branch, the value at the left must be less
5900 than that at this node, so it cannot be bounded at the bottom and
5901 we need not bother testing any further. */
5902
5903 if (node->left)
5904 return 0;
5905
5906 low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low),
5907 node->low, integer_one_node));
5908
5909 /* If the subtraction above overflowed, we can't verify anything.
5910 Otherwise, look for a parent that tests our value - 1. */
5911
5912 if (! tree_int_cst_lt (low_minus_one, node->low))
5913 return 0;
5914
5915 for (pnode = node->parent; pnode; pnode = pnode->parent)
5916 if (tree_int_cst_equal (low_minus_one, pnode->high))
5917 return 1;
5918
5919 return 0;
5920 }
5921
5922 /* Search the parent sections of the case node tree
5923 to see if a test for the upper bound of NODE would be redundant.
5924 INDEX_TYPE is the type of the index expression.
5925
5926 The instructions to generate the case decision tree are
5927 output in the same order as nodes are processed so it is
5928 known that if a parent node checks the range of the current
5929 node plus one that the current node is bounded at its upper
5930 span. Thus the test would be redundant. */
5931
5932 static int
5933 node_has_high_bound (node, index_type)
5934 case_node_ptr node;
5935 tree index_type;
5936 {
5937 tree high_plus_one;
5938 case_node_ptr pnode;
5939
5940 /* If there is no upper bound, obviously no test is needed. */
5941
5942 if (TYPE_MAX_VALUE (index_type) == NULL)
5943 return 1;
5944
5945 /* If the upper bound of this node is the highest value in the type
5946 of the index expression, we need not test against it. */
5947
5948 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
5949 return 1;
5950
5951 /* If this node has a right branch, the value at the right must be greater
5952 than that at this node, so it cannot be bounded at the top and
5953 we need not bother testing any further. */
5954
5955 if (node->right)
5956 return 0;
5957
5958 high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high),
5959 node->high, integer_one_node));
5960
5961 /* If the addition above overflowed, we can't verify anything.
5962 Otherwise, look for a parent that tests our value + 1. */
5963
5964 if (! tree_int_cst_lt (node->high, high_plus_one))
5965 return 0;
5966
5967 for (pnode = node->parent; pnode; pnode = pnode->parent)
5968 if (tree_int_cst_equal (high_plus_one, pnode->low))
5969 return 1;
5970
5971 return 0;
5972 }
5973
5974 /* Search the parent sections of the
5975 case node tree to see if both tests for the upper and lower
5976 bounds of NODE would be redundant. */
5977
5978 static int
5979 node_is_bounded (node, index_type)
5980 case_node_ptr node;
5981 tree index_type;
5982 {
5983 return (node_has_low_bound (node, index_type)
5984 && node_has_high_bound (node, index_type));
5985 }
5986
5987 /* Emit an unconditional jump to LABEL unless it would be dead code. */
5988
5989 static void
5990 emit_jump_if_reachable (label)
5991 rtx label;
5992 {
5993 if (GET_CODE (get_last_insn ()) != BARRIER)
5994 emit_jump (label);
5995 }
5996 \f
5997 /* Emit step-by-step code to select a case for the value of INDEX.
5998 The thus generated decision tree follows the form of the
5999 case-node binary tree NODE, whose nodes represent test conditions.
6000 INDEX_TYPE is the type of the index of the switch.
6001
6002 Care is taken to prune redundant tests from the decision tree
6003 by detecting any boundary conditions already checked by
6004 emitted rtx. (See node_has_high_bound, node_has_low_bound
6005 and node_is_bounded, above.)
6006
6007 Where the test conditions can be shown to be redundant we emit
6008 an unconditional jump to the target code. As a further
6009 optimization, the subordinates of a tree node are examined to
6010 check for bounded nodes. In this case conditional and/or
6011 unconditional jumps as a result of the boundary check for the
6012 current node are arranged to target the subordinates associated
6013 code for out of bound conditions on the current node.
6014
6015 We can assume that when control reaches the code generated here,
6016 the index value has already been compared with the parents
6017 of this node, and determined to be on the same side of each parent
6018 as this node is. Thus, if this node tests for the value 51,
6019 and a parent tested for 52, we don't need to consider
6020 the possibility of a value greater than 51. If another parent
6021 tests for the value 50, then this node need not test anything. */
6022
6023 static void
6024 emit_case_nodes (index, node, default_label, index_type)
6025 rtx index;
6026 case_node_ptr node;
6027 rtx default_label;
6028 tree index_type;
6029 {
6030 /* If INDEX has an unsigned type, we must make unsigned branches. */
6031 int unsignedp = TREE_UNSIGNED (index_type);
6032 enum machine_mode mode = GET_MODE (index);
6033 enum machine_mode imode = TYPE_MODE (index_type);
6034
6035 /* See if our parents have already tested everything for us.
6036 If they have, emit an unconditional jump for this node. */
6037 if (node_is_bounded (node, index_type))
6038 emit_jump (label_rtx (node->code_label));
6039
6040 else if (tree_int_cst_equal (node->low, node->high))
6041 {
6042 /* Node is single valued. First see if the index expression matches
6043 this node and then check our children, if any. */
6044
6045 do_jump_if_equal (index,
6046 convert_modes (mode, imode,
6047 expand_expr (node->low, NULL_RTX,
6048 VOIDmode, 0),
6049 unsignedp),
6050 label_rtx (node->code_label), unsignedp);
6051
6052 if (node->right != 0 && node->left != 0)
6053 {
6054 /* This node has children on both sides.
6055 Dispatch to one side or the other
6056 by comparing the index value with this node's value.
6057 If one subtree is bounded, check that one first,
6058 so we can avoid real branches in the tree. */
6059
6060 if (node_is_bounded (node->right, index_type))
6061 {
6062 emit_cmp_and_jump_insns (index,
6063 convert_modes
6064 (mode, imode,
6065 expand_expr (node->high, NULL_RTX,
6066 VOIDmode, 0),
6067 unsignedp),
6068 GT, NULL_RTX, mode, unsignedp,
6069 label_rtx (node->right->code_label));
6070 emit_case_nodes (index, node->left, default_label, index_type);
6071 }
6072
6073 else if (node_is_bounded (node->left, index_type))
6074 {
6075 emit_cmp_and_jump_insns (index,
6076 convert_modes
6077 (mode, imode,
6078 expand_expr (node->high, NULL_RTX,
6079 VOIDmode, 0),
6080 unsignedp),
6081 LT, NULL_RTX, mode, unsignedp,
6082 label_rtx (node->left->code_label));
6083 emit_case_nodes (index, node->right, default_label, index_type);
6084 }
6085
6086 else
6087 {
6088 /* Neither node is bounded. First distinguish the two sides;
6089 then emit the code for one side at a time. */
6090
6091 tree test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6092
6093 /* See if the value is on the right. */
6094 emit_cmp_and_jump_insns (index,
6095 convert_modes
6096 (mode, imode,
6097 expand_expr (node->high, NULL_RTX,
6098 VOIDmode, 0),
6099 unsignedp),
6100 GT, NULL_RTX, mode, unsignedp,
6101 label_rtx (test_label));
6102
6103 /* Value must be on the left.
6104 Handle the left-hand subtree. */
6105 emit_case_nodes (index, node->left, default_label, index_type);
6106 /* If left-hand subtree does nothing,
6107 go to default. */
6108 emit_jump_if_reachable (default_label);
6109
6110 /* Code branches here for the right-hand subtree. */
6111 expand_label (test_label);
6112 emit_case_nodes (index, node->right, default_label, index_type);
6113 }
6114 }
6115
6116 else if (node->right != 0 && node->left == 0)
6117 {
6118 /* Here we have a right child but no left so we issue conditional
6119 branch to default and process the right child.
6120
6121 Omit the conditional branch to default if we it avoid only one
6122 right child; it costs too much space to save so little time. */
6123
6124 if (node->right->right || node->right->left
6125 || !tree_int_cst_equal (node->right->low, node->right->high))
6126 {
6127 if (!node_has_low_bound (node, index_type))
6128 {
6129 emit_cmp_and_jump_insns (index,
6130 convert_modes
6131 (mode, imode,
6132 expand_expr (node->high, NULL_RTX,
6133 VOIDmode, 0),
6134 unsignedp),
6135 LT, NULL_RTX, mode, unsignedp,
6136 default_label);
6137 }
6138
6139 emit_case_nodes (index, node->right, default_label, index_type);
6140 }
6141 else
6142 /* We cannot process node->right normally
6143 since we haven't ruled out the numbers less than
6144 this node's value. So handle node->right explicitly. */
6145 do_jump_if_equal (index,
6146 convert_modes
6147 (mode, imode,
6148 expand_expr (node->right->low, NULL_RTX,
6149 VOIDmode, 0),
6150 unsignedp),
6151 label_rtx (node->right->code_label), unsignedp);
6152 }
6153
6154 else if (node->right == 0 && node->left != 0)
6155 {
6156 /* Just one subtree, on the left. */
6157 if (node->left->left || node->left->right
6158 || !tree_int_cst_equal (node->left->low, node->left->high))
6159 {
6160 if (!node_has_high_bound (node, index_type))
6161 {
6162 emit_cmp_and_jump_insns (index,
6163 convert_modes
6164 (mode, imode,
6165 expand_expr (node->high, NULL_RTX,
6166 VOIDmode, 0),
6167 unsignedp),
6168 GT, NULL_RTX, mode, unsignedp,
6169 default_label);
6170 }
6171
6172 emit_case_nodes (index, node->left, default_label, index_type);
6173 }
6174 else
6175 /* We cannot process node->left normally
6176 since we haven't ruled out the numbers less than
6177 this node's value. So handle node->left explicitly. */
6178 do_jump_if_equal (index,
6179 convert_modes
6180 (mode, imode,
6181 expand_expr (node->left->low, NULL_RTX,
6182 VOIDmode, 0),
6183 unsignedp),
6184 label_rtx (node->left->code_label), unsignedp);
6185 }
6186 }
6187 else
6188 {
6189 /* Node is a range. These cases are very similar to those for a single
6190 value, except that we do not start by testing whether this node
6191 is the one to branch to. */
6192
6193 if (node->right != 0 && node->left != 0)
6194 {
6195 /* Node has subtrees on both sides.
6196 If the right-hand subtree is bounded,
6197 test for it first, since we can go straight there.
6198 Otherwise, we need to make a branch in the control structure,
6199 then handle the two subtrees. */
6200 tree test_label = 0;
6201
6202 if (node_is_bounded (node->right, index_type))
6203 /* Right hand node is fully bounded so we can eliminate any
6204 testing and branch directly to the target code. */
6205 emit_cmp_and_jump_insns (index,
6206 convert_modes
6207 (mode, imode,
6208 expand_expr (node->high, NULL_RTX,
6209 VOIDmode, 0),
6210 unsignedp),
6211 GT, NULL_RTX, mode, unsignedp,
6212 label_rtx (node->right->code_label));
6213 else
6214 {
6215 /* Right hand node requires testing.
6216 Branch to a label where we will handle it later. */
6217
6218 test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6219 emit_cmp_and_jump_insns (index,
6220 convert_modes
6221 (mode, imode,
6222 expand_expr (node->high, NULL_RTX,
6223 VOIDmode, 0),
6224 unsignedp),
6225 GT, NULL_RTX, mode, unsignedp,
6226 label_rtx (test_label));
6227 }
6228
6229 /* Value belongs to this node or to the left-hand subtree. */
6230
6231 emit_cmp_and_jump_insns (index,
6232 convert_modes
6233 (mode, imode,
6234 expand_expr (node->low, NULL_RTX,
6235 VOIDmode, 0),
6236 unsignedp),
6237 GE, NULL_RTX, mode, unsignedp,
6238 label_rtx (node->code_label));
6239
6240 /* Handle the left-hand subtree. */
6241 emit_case_nodes (index, node->left, default_label, index_type);
6242
6243 /* If right node had to be handled later, do that now. */
6244
6245 if (test_label)
6246 {
6247 /* If the left-hand subtree fell through,
6248 don't let it fall into the right-hand subtree. */
6249 emit_jump_if_reachable (default_label);
6250
6251 expand_label (test_label);
6252 emit_case_nodes (index, node->right, default_label, index_type);
6253 }
6254 }
6255
6256 else if (node->right != 0 && node->left == 0)
6257 {
6258 /* Deal with values to the left of this node,
6259 if they are possible. */
6260 if (!node_has_low_bound (node, index_type))
6261 {
6262 emit_cmp_and_jump_insns (index,
6263 convert_modes
6264 (mode, imode,
6265 expand_expr (node->low, NULL_RTX,
6266 VOIDmode, 0),
6267 unsignedp),
6268 LT, NULL_RTX, mode, unsignedp,
6269 default_label);
6270 }
6271
6272 /* Value belongs to this node or to the right-hand subtree. */
6273
6274 emit_cmp_and_jump_insns (index,
6275 convert_modes
6276 (mode, imode,
6277 expand_expr (node->high, NULL_RTX,
6278 VOIDmode, 0),
6279 unsignedp),
6280 LE, NULL_RTX, mode, unsignedp,
6281 label_rtx (node->code_label));
6282
6283 emit_case_nodes (index, node->right, default_label, index_type);
6284 }
6285
6286 else if (node->right == 0 && node->left != 0)
6287 {
6288 /* Deal with values to the right of this node,
6289 if they are possible. */
6290 if (!node_has_high_bound (node, index_type))
6291 {
6292 emit_cmp_and_jump_insns (index,
6293 convert_modes
6294 (mode, imode,
6295 expand_expr (node->high, NULL_RTX,
6296 VOIDmode, 0),
6297 unsignedp),
6298 GT, NULL_RTX, mode, unsignedp,
6299 default_label);
6300 }
6301
6302 /* Value belongs to this node or to the left-hand subtree. */
6303
6304 emit_cmp_and_jump_insns (index,
6305 convert_modes
6306 (mode, imode,
6307 expand_expr (node->low, NULL_RTX,
6308 VOIDmode, 0),
6309 unsignedp),
6310 GE, NULL_RTX, mode, unsignedp,
6311 label_rtx (node->code_label));
6312
6313 emit_case_nodes (index, node->left, default_label, index_type);
6314 }
6315
6316 else
6317 {
6318 /* Node has no children so we check low and high bounds to remove
6319 redundant tests. Only one of the bounds can exist,
6320 since otherwise this node is bounded--a case tested already. */
6321 int high_bound = node_has_high_bound (node, index_type);
6322 int low_bound = node_has_low_bound (node, index_type);
6323
6324 if (!high_bound && low_bound)
6325 {
6326 emit_cmp_and_jump_insns (index,
6327 convert_modes
6328 (mode, imode,
6329 expand_expr (node->high, NULL_RTX,
6330 VOIDmode, 0),
6331 unsignedp),
6332 GT, NULL_RTX, mode, unsignedp,
6333 default_label);
6334 }
6335
6336 else if (!low_bound && high_bound)
6337 {
6338 emit_cmp_and_jump_insns (index,
6339 convert_modes
6340 (mode, imode,
6341 expand_expr (node->low, NULL_RTX,
6342 VOIDmode, 0),
6343 unsignedp),
6344 LT, NULL_RTX, mode, unsignedp,
6345 default_label);
6346 }
6347 else if (!low_bound && !high_bound)
6348 {
6349 /* Widen LOW and HIGH to the same width as INDEX. */
6350 tree type = type_for_mode (mode, unsignedp);
6351 tree low = build1 (CONVERT_EXPR, type, node->low);
6352 tree high = build1 (CONVERT_EXPR, type, node->high);
6353 rtx low_rtx, new_index, new_bound;
6354
6355 /* Instead of doing two branches, emit one unsigned branch for
6356 (index-low) > (high-low). */
6357 low_rtx = expand_expr (low, NULL_RTX, mode, 0);
6358 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
6359 NULL_RTX, unsignedp,
6360 OPTAB_WIDEN);
6361 new_bound = expand_expr (fold (build (MINUS_EXPR, type,
6362 high, low)),
6363 NULL_RTX, mode, 0);
6364
6365 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
6366 mode, 1, default_label);
6367 }
6368
6369 emit_jump (label_rtx (node->code_label));
6370 }
6371 }
6372 }