[multiple changes]
[gcc.git] / gcc / stmt.c
1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
24 It also creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 The functions whose names start with `expand_' are called by the
28 parser to generate RTL instructions for various kinds of constructs.
29
30 Some control and binding constructs require calling several such
31 functions at different times. For example, a simple if-then
32 is expanded by calling `expand_start_cond' (with the condition-expression
33 as argument) before parsing the then-clause and calling `expand_end_cond'
34 after parsing the then-clause. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "except.h"
46 #include "function.h"
47 #include "insn-config.h"
48 #include "expr.h"
49 #include "libfuncs.h"
50 #include "hard-reg-set.h"
51 #include "loop.h"
52 #include "recog.h"
53 #include "machmode.h"
54 #include "toplev.h"
55 #include "output.h"
56 #include "ggc.h"
57 #include "langhooks.h"
58 #include "predict.h"
59 #include "optabs.h"
60 #include "target.h"
61
62 /* Assume that case vectors are not pc-relative. */
63 #ifndef CASE_VECTOR_PC_RELATIVE
64 #define CASE_VECTOR_PC_RELATIVE 0
65 #endif
66 \f
67 /* Functions and data structures for expanding case statements. */
68
69 /* Case label structure, used to hold info on labels within case
70 statements. We handle "range" labels; for a single-value label
71 as in C, the high and low limits are the same.
72
73 An AVL tree of case nodes is initially created, and later transformed
74 to a list linked via the RIGHT fields in the nodes. Nodes with
75 higher case values are later in the list.
76
77 Switch statements can be output in one of two forms. A branch table
78 is used if there are more than a few labels and the labels are dense
79 within the range between the smallest and largest case value. If a
80 branch table is used, no further manipulations are done with the case
81 node chain.
82
83 The alternative to the use of a branch table is to generate a series
84 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
85 and PARENT fields to hold a binary tree. Initially the tree is
86 totally unbalanced, with everything on the right. We balance the tree
87 with nodes on the left having lower case values than the parent
88 and nodes on the right having higher values. We then output the tree
89 in order. */
90
91 struct case_node GTY(())
92 {
93 struct case_node *left; /* Left son in binary tree */
94 struct case_node *right; /* Right son in binary tree; also node chain */
95 struct case_node *parent; /* Parent of node in binary tree */
96 tree low; /* Lowest index value for this label */
97 tree high; /* Highest index value for this label */
98 tree code_label; /* Label to jump to when node matches */
99 int balance;
100 };
101
102 typedef struct case_node case_node;
103 typedef struct case_node *case_node_ptr;
104
105 /* These are used by estimate_case_costs and balance_case_nodes. */
106
107 /* This must be a signed type, and non-ANSI compilers lack signed char. */
108 static short cost_table_[129];
109 static int use_cost_table;
110 static int cost_table_initialized;
111
112 /* Special care is needed because we allow -1, but TREE_INT_CST_LOW
113 is unsigned. */
114 #define COST_TABLE(I) cost_table_[(unsigned HOST_WIDE_INT) ((I) + 1)]
115 \f
116 /* Stack of control and binding constructs we are currently inside.
117
118 These constructs begin when you call `expand_start_WHATEVER'
119 and end when you call `expand_end_WHATEVER'. This stack records
120 info about how the construct began that tells the end-function
121 what to do. It also may provide information about the construct
122 to alter the behavior of other constructs within the body.
123 For example, they may affect the behavior of C `break' and `continue'.
124
125 Each construct gets one `struct nesting' object.
126 All of these objects are chained through the `all' field.
127 `nesting_stack' points to the first object (innermost construct).
128 The position of an entry on `nesting_stack' is in its `depth' field.
129
130 Each type of construct has its own individual stack.
131 For example, loops have `loop_stack'. Each object points to the
132 next object of the same type through the `next' field.
133
134 Some constructs are visible to `break' exit-statements and others
135 are not. Which constructs are visible depends on the language.
136 Therefore, the data structure allows each construct to be visible
137 or not, according to the args given when the construct is started.
138 The construct is visible if the `exit_label' field is non-null.
139 In that case, the value should be a CODE_LABEL rtx. */
140
141 struct nesting GTY(())
142 {
143 struct nesting *all;
144 struct nesting *next;
145 int depth;
146 rtx exit_label;
147 enum nesting_desc {
148 COND_NESTING,
149 LOOP_NESTING,
150 BLOCK_NESTING,
151 CASE_NESTING
152 } desc;
153 union nesting_u
154 {
155 /* For conds (if-then and if-then-else statements). */
156 struct nesting_cond
157 {
158 /* Label for the end of the if construct.
159 There is none if EXITFLAG was not set
160 and no `else' has been seen yet. */
161 rtx endif_label;
162 /* Label for the end of this alternative.
163 This may be the end of the if or the next else/elseif. */
164 rtx next_label;
165 } GTY ((tag ("COND_NESTING"))) cond;
166 /* For loops. */
167 struct nesting_loop
168 {
169 /* Label at the top of the loop; place to loop back to. */
170 rtx start_label;
171 /* Label at the end of the whole construct. */
172 rtx end_label;
173 /* Label for `continue' statement to jump to;
174 this is in front of the stepper of the loop. */
175 rtx continue_label;
176 } GTY ((tag ("LOOP_NESTING"))) loop;
177 /* For variable binding contours. */
178 struct nesting_block
179 {
180 /* Sequence number of this binding contour within the function,
181 in order of entry. */
182 int block_start_count;
183 /* Nonzero => value to restore stack to on exit. */
184 rtx stack_level;
185 /* The NOTE that starts this contour.
186 Used by expand_goto to check whether the destination
187 is within each contour or not. */
188 rtx first_insn;
189 /* Innermost containing binding contour that has a stack level. */
190 struct nesting *innermost_stack_block;
191 /* List of cleanups to be run on exit from this contour.
192 This is a list of expressions to be evaluated.
193 The TREE_PURPOSE of each link is the ..._DECL node
194 which the cleanup pertains to. */
195 tree cleanups;
196 /* List of cleanup-lists of blocks containing this block,
197 as they were at the locus where this block appears.
198 There is an element for each containing block,
199 ordered innermost containing block first.
200 The tail of this list can be 0,
201 if all remaining elements would be empty lists.
202 The element's TREE_VALUE is the cleanup-list of that block,
203 which may be null. */
204 tree outer_cleanups;
205 /* Chain of labels defined inside this binding contour.
206 For contours that have stack levels or cleanups. */
207 struct label_chain *label_chain;
208 /* Nonzero if this is associated with an EH region. */
209 int exception_region;
210 /* The saved target_temp_slot_level from our outer block.
211 We may reset target_temp_slot_level to be the level of
212 this block, if that is done, target_temp_slot_level
213 reverts to the saved target_temp_slot_level at the very
214 end of the block. */
215 int block_target_temp_slot_level;
216 /* True if we are currently emitting insns in an area of
217 output code that is controlled by a conditional
218 expression. This is used by the cleanup handling code to
219 generate conditional cleanup actions. */
220 int conditional_code;
221 /* A place to move the start of the exception region for any
222 of the conditional cleanups, must be at the end or after
223 the start of the last unconditional cleanup, and before any
224 conditional branch points. */
225 rtx last_unconditional_cleanup;
226 } GTY ((tag ("BLOCK_NESTING"))) block;
227 /* For switch (C) or case (Pascal) statements,
228 and also for dummies (see `expand_start_case_dummy'). */
229 struct nesting_case
230 {
231 /* The insn after which the case dispatch should finally
232 be emitted. Zero for a dummy. */
233 rtx start;
234 /* A list of case labels; it is first built as an AVL tree.
235 During expand_end_case, this is converted to a list, and may be
236 rearranged into a nearly balanced binary tree. */
237 struct case_node *case_list;
238 /* Label to jump to if no case matches. */
239 tree default_label;
240 /* The expression to be dispatched on. */
241 tree index_expr;
242 /* Type that INDEX_EXPR should be converted to. */
243 tree nominal_type;
244 /* Name of this kind of statement, for warnings. */
245 const char *printname;
246 /* Used to save no_line_numbers till we see the first case label.
247 We set this to -1 when we see the first case label in this
248 case statement. */
249 int line_number_status;
250 } GTY ((tag ("CASE_NESTING"))) case_stmt;
251 } GTY ((desc ("%1.desc"))) data;
252 };
253
254 /* Allocate and return a new `struct nesting'. */
255
256 #define ALLOC_NESTING() ggc_alloc (sizeof (struct nesting))
257
258 /* Pop the nesting stack element by element until we pop off
259 the element which is at the top of STACK.
260 Update all the other stacks, popping off elements from them
261 as we pop them from nesting_stack. */
262
263 #define POPSTACK(STACK) \
264 do { struct nesting *target = STACK; \
265 struct nesting *this; \
266 do { this = nesting_stack; \
267 if (loop_stack == this) \
268 loop_stack = loop_stack->next; \
269 if (cond_stack == this) \
270 cond_stack = cond_stack->next; \
271 if (block_stack == this) \
272 block_stack = block_stack->next; \
273 if (stack_block_stack == this) \
274 stack_block_stack = stack_block_stack->next; \
275 if (case_stack == this) \
276 case_stack = case_stack->next; \
277 nesting_depth = nesting_stack->depth - 1; \
278 nesting_stack = this->all; } \
279 while (this != target); } while (0)
280 \f
281 /* In some cases it is impossible to generate code for a forward goto
282 until the label definition is seen. This happens when it may be necessary
283 for the goto to reset the stack pointer: we don't yet know how to do that.
284 So expand_goto puts an entry on this fixup list.
285 Each time a binding contour that resets the stack is exited,
286 we check each fixup.
287 If the target label has now been defined, we can insert the proper code. */
288
289 struct goto_fixup GTY(())
290 {
291 /* Points to following fixup. */
292 struct goto_fixup *next;
293 /* Points to the insn before the jump insn.
294 If more code must be inserted, it goes after this insn. */
295 rtx before_jump;
296 /* The LABEL_DECL that this jump is jumping to, or 0
297 for break, continue or return. */
298 tree target;
299 /* The BLOCK for the place where this goto was found. */
300 tree context;
301 /* The CODE_LABEL rtx that this is jumping to. */
302 rtx target_rtl;
303 /* Number of binding contours started in current function
304 before the label reference. */
305 int block_start_count;
306 /* The outermost stack level that should be restored for this jump.
307 Each time a binding contour that resets the stack is exited,
308 if the target label is *not* yet defined, this slot is updated. */
309 rtx stack_level;
310 /* List of lists of cleanup expressions to be run by this goto.
311 There is one element for each block that this goto is within.
312 The tail of this list can be 0,
313 if all remaining elements would be empty.
314 The TREE_VALUE contains the cleanup list of that block as of the
315 time this goto was seen.
316 The TREE_ADDRESSABLE flag is 1 for a block that has been exited. */
317 tree cleanup_list_list;
318 };
319
320 /* Within any binding contour that must restore a stack level,
321 all labels are recorded with a chain of these structures. */
322
323 struct label_chain GTY(())
324 {
325 /* Points to following fixup. */
326 struct label_chain *next;
327 tree label;
328 };
329
330 struct stmt_status GTY(())
331 {
332 /* Chain of all pending binding contours. */
333 struct nesting * x_block_stack;
334
335 /* If any new stacks are added here, add them to POPSTACKS too. */
336
337 /* Chain of all pending binding contours that restore stack levels
338 or have cleanups. */
339 struct nesting * x_stack_block_stack;
340
341 /* Chain of all pending conditional statements. */
342 struct nesting * x_cond_stack;
343
344 /* Chain of all pending loops. */
345 struct nesting * x_loop_stack;
346
347 /* Chain of all pending case or switch statements. */
348 struct nesting * x_case_stack;
349
350 /* Separate chain including all of the above,
351 chained through the `all' field. */
352 struct nesting * x_nesting_stack;
353
354 /* Number of entries on nesting_stack now. */
355 int x_nesting_depth;
356
357 /* Number of binding contours started so far in this function. */
358 int x_block_start_count;
359
360 /* Each time we expand an expression-statement,
361 record the expr's type and its RTL value here. */
362 tree x_last_expr_type;
363 rtx x_last_expr_value;
364
365 /* Nonzero if within a ({...}) grouping, in which case we must
366 always compute a value for each expr-stmt in case it is the last one. */
367 int x_expr_stmts_for_value;
368
369 /* Location of last line-number note, whether we actually
370 emitted it or not. */
371 location_t x_emit_locus;
372
373 struct goto_fixup *x_goto_fixup_chain;
374 };
375
376 #define block_stack (cfun->stmt->x_block_stack)
377 #define stack_block_stack (cfun->stmt->x_stack_block_stack)
378 #define cond_stack (cfun->stmt->x_cond_stack)
379 #define loop_stack (cfun->stmt->x_loop_stack)
380 #define case_stack (cfun->stmt->x_case_stack)
381 #define nesting_stack (cfun->stmt->x_nesting_stack)
382 #define nesting_depth (cfun->stmt->x_nesting_depth)
383 #define current_block_start_count (cfun->stmt->x_block_start_count)
384 #define last_expr_type (cfun->stmt->x_last_expr_type)
385 #define last_expr_value (cfun->stmt->x_last_expr_value)
386 #define expr_stmts_for_value (cfun->stmt->x_expr_stmts_for_value)
387 #define emit_locus (cfun->stmt->x_emit_locus)
388 #define goto_fixup_chain (cfun->stmt->x_goto_fixup_chain)
389
390 /* Nonzero if we are using EH to handle cleanups. */
391 static int using_eh_for_cleanups_p = 0;
392
393 static int n_occurrences (int, const char *);
394 static bool decl_conflicts_with_clobbers_p (tree, const HARD_REG_SET);
395 static void expand_goto_internal (tree, rtx, rtx);
396 static int expand_fixup (tree, rtx, rtx);
397 static rtx expand_nl_handler_label (rtx, rtx);
398 static void expand_nl_goto_receiver (void);
399 static void expand_nl_goto_receivers (struct nesting *);
400 static void fixup_gotos (struct nesting *, rtx, tree, rtx, int);
401 static bool check_operand_nalternatives (tree, tree);
402 static bool check_unique_operand_names (tree, tree);
403 static char *resolve_operand_name_1 (char *, tree, tree);
404 static void expand_null_return_1 (rtx);
405 static enum br_predictor return_prediction (rtx);
406 static rtx shift_return_value (rtx);
407 static void expand_value_return (rtx);
408 static int tail_recursion_args (tree, tree);
409 static void expand_cleanups (tree, int, int);
410 static void check_seenlabel (void);
411 static void do_jump_if_equal (rtx, rtx, rtx, int);
412 static int estimate_case_costs (case_node_ptr);
413 static bool same_case_target_p (rtx, rtx);
414 static void strip_default_case_nodes (case_node_ptr *, rtx);
415 static bool lshift_cheap_p (void);
416 static int case_bit_test_cmp (const void *, const void *);
417 static void emit_case_bit_tests (tree, tree, tree, tree, case_node_ptr, rtx);
418 static void group_case_nodes (case_node_ptr);
419 static void balance_case_nodes (case_node_ptr *, case_node_ptr);
420 static int node_has_low_bound (case_node_ptr, tree);
421 static int node_has_high_bound (case_node_ptr, tree);
422 static int node_is_bounded (case_node_ptr, tree);
423 static void emit_jump_if_reachable (rtx);
424 static void emit_case_nodes (rtx, case_node_ptr, rtx, tree);
425 static struct case_node *case_tree2list (case_node *, case_node *);
426 \f
427 void
428 using_eh_for_cleanups (void)
429 {
430 using_eh_for_cleanups_p = 1;
431 }
432
433 void
434 init_stmt_for_function (void)
435 {
436 cfun->stmt = ggc_alloc_cleared (sizeof (struct stmt_status));
437 }
438 \f
439 /* Record the current file and line. Called from emit_line_note. */
440
441 void
442 set_file_and_line_for_stmt (location_t location)
443 {
444 /* If we're outputting an inline function, and we add a line note,
445 there may be no CFUN->STMT information. So, there's no need to
446 update it. */
447 if (cfun->stmt)
448 emit_locus = location;
449 }
450
451 /* Emit a no-op instruction. */
452
453 void
454 emit_nop (void)
455 {
456 rtx last_insn;
457
458 last_insn = get_last_insn ();
459 if (!optimize
460 && (GET_CODE (last_insn) == CODE_LABEL
461 || (GET_CODE (last_insn) == NOTE
462 && prev_real_insn (last_insn) == 0)))
463 emit_insn (gen_nop ());
464 }
465 \f
466 /* Return the rtx-label that corresponds to a LABEL_DECL,
467 creating it if necessary. */
468
469 rtx
470 label_rtx (tree label)
471 {
472 if (TREE_CODE (label) != LABEL_DECL)
473 abort ();
474
475 if (!DECL_RTL_SET_P (label))
476 SET_DECL_RTL (label, gen_label_rtx ());
477
478 return DECL_RTL (label);
479 }
480
481 /* As above, but also put it on the forced-reference list of the
482 function that contains it. */
483 rtx
484 force_label_rtx (tree label)
485 {
486 rtx ref = label_rtx (label);
487 tree function = decl_function_context (label);
488 struct function *p;
489
490 if (!function)
491 abort ();
492
493 if (function != current_function_decl
494 && function != inline_function_decl)
495 p = find_function_data (function);
496 else
497 p = cfun;
498
499 p->expr->x_forced_labels = gen_rtx_EXPR_LIST (VOIDmode, ref,
500 p->expr->x_forced_labels);
501 return ref;
502 }
503
504 /* Add an unconditional jump to LABEL as the next sequential instruction. */
505
506 void
507 emit_jump (rtx label)
508 {
509 do_pending_stack_adjust ();
510 emit_jump_insn (gen_jump (label));
511 emit_barrier ();
512 }
513
514 /* Emit code to jump to the address
515 specified by the pointer expression EXP. */
516
517 void
518 expand_computed_goto (tree exp)
519 {
520 rtx x = expand_expr (exp, NULL_RTX, VOIDmode, 0);
521
522 x = convert_memory_address (Pmode, x);
523
524 emit_queue ();
525
526 if (! cfun->computed_goto_common_label)
527 {
528 cfun->computed_goto_common_reg = copy_to_mode_reg (Pmode, x);
529 cfun->computed_goto_common_label = gen_label_rtx ();
530 emit_label (cfun->computed_goto_common_label);
531
532 do_pending_stack_adjust ();
533 emit_indirect_jump (cfun->computed_goto_common_reg);
534
535 current_function_has_computed_jump = 1;
536 }
537 else
538 {
539 emit_move_insn (cfun->computed_goto_common_reg, x);
540 emit_jump (cfun->computed_goto_common_label);
541 }
542 }
543 \f
544 /* Handle goto statements and the labels that they can go to. */
545
546 /* Specify the location in the RTL code of a label LABEL,
547 which is a LABEL_DECL tree node.
548
549 This is used for the kind of label that the user can jump to with a
550 goto statement, and for alternatives of a switch or case statement.
551 RTL labels generated for loops and conditionals don't go through here;
552 they are generated directly at the RTL level, by other functions below.
553
554 Note that this has nothing to do with defining label *names*.
555 Languages vary in how they do that and what that even means. */
556
557 void
558 expand_label (tree label)
559 {
560 struct label_chain *p;
561
562 do_pending_stack_adjust ();
563 emit_label (label_rtx (label));
564 if (DECL_NAME (label))
565 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
566
567 if (stack_block_stack != 0)
568 {
569 p = ggc_alloc (sizeof (struct label_chain));
570 p->next = stack_block_stack->data.block.label_chain;
571 stack_block_stack->data.block.label_chain = p;
572 p->label = label;
573 }
574 }
575
576 /* Declare that LABEL (a LABEL_DECL) may be used for nonlocal gotos
577 from nested functions. */
578
579 void
580 declare_nonlocal_label (tree label)
581 {
582 rtx slot = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
583
584 nonlocal_labels = tree_cons (NULL_TREE, label, nonlocal_labels);
585 LABEL_PRESERVE_P (label_rtx (label)) = 1;
586 if (nonlocal_goto_handler_slots == 0)
587 {
588 emit_stack_save (SAVE_NONLOCAL,
589 &nonlocal_goto_stack_level,
590 PREV_INSN (tail_recursion_reentry));
591 }
592 nonlocal_goto_handler_slots
593 = gen_rtx_EXPR_LIST (VOIDmode, slot, nonlocal_goto_handler_slots);
594 }
595
596 /* Generate RTL code for a `goto' statement with target label LABEL.
597 LABEL should be a LABEL_DECL tree node that was or will later be
598 defined with `expand_label'. */
599
600 void
601 expand_goto (tree label)
602 {
603 tree context;
604
605 /* Check for a nonlocal goto to a containing function. */
606 context = decl_function_context (label);
607 if (context != 0 && context != current_function_decl)
608 {
609 struct function *p = find_function_data (context);
610 rtx label_ref = gen_rtx_LABEL_REF (Pmode, label_rtx (label));
611 rtx handler_slot, static_chain, save_area, insn;
612 tree link;
613
614 /* Find the corresponding handler slot for this label. */
615 handler_slot = p->x_nonlocal_goto_handler_slots;
616 for (link = p->x_nonlocal_labels; TREE_VALUE (link) != label;
617 link = TREE_CHAIN (link))
618 handler_slot = XEXP (handler_slot, 1);
619 handler_slot = XEXP (handler_slot, 0);
620
621 p->has_nonlocal_label = 1;
622 current_function_has_nonlocal_goto = 1;
623 LABEL_REF_NONLOCAL_P (label_ref) = 1;
624
625 /* Copy the rtl for the slots so that they won't be shared in
626 case the virtual stack vars register gets instantiated differently
627 in the parent than in the child. */
628
629 static_chain = copy_to_reg (lookup_static_chain (label));
630
631 /* Get addr of containing function's current nonlocal goto handler,
632 which will do any cleanups and then jump to the label. */
633 handler_slot = copy_to_reg (replace_rtx (copy_rtx (handler_slot),
634 virtual_stack_vars_rtx,
635 static_chain));
636
637 /* Get addr of containing function's nonlocal save area. */
638 save_area = p->x_nonlocal_goto_stack_level;
639 if (save_area)
640 save_area = replace_rtx (copy_rtx (save_area),
641 virtual_stack_vars_rtx, static_chain);
642
643 #if HAVE_nonlocal_goto
644 if (HAVE_nonlocal_goto)
645 emit_insn (gen_nonlocal_goto (static_chain, handler_slot,
646 save_area, label_ref));
647 else
648 #endif
649 {
650 emit_insn (gen_rtx_CLOBBER (VOIDmode,
651 gen_rtx_MEM (BLKmode,
652 gen_rtx_SCRATCH (VOIDmode))));
653 emit_insn (gen_rtx_CLOBBER (VOIDmode,
654 gen_rtx_MEM (BLKmode,
655 hard_frame_pointer_rtx)));
656
657 /* Restore frame pointer for containing function.
658 This sets the actual hard register used for the frame pointer
659 to the location of the function's incoming static chain info.
660 The non-local goto handler will then adjust it to contain the
661 proper value and reload the argument pointer, if needed. */
662 emit_move_insn (hard_frame_pointer_rtx, static_chain);
663 emit_stack_restore (SAVE_NONLOCAL, save_area, NULL_RTX);
664
665 /* USE of hard_frame_pointer_rtx added for consistency;
666 not clear if really needed. */
667 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
668 emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
669 emit_indirect_jump (handler_slot);
670 }
671
672 /* Search backwards to the jump insn and mark it as a
673 non-local goto. */
674 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
675 {
676 if (GET_CODE (insn) == JUMP_INSN)
677 {
678 REG_NOTES (insn) = alloc_EXPR_LIST (REG_NON_LOCAL_GOTO,
679 const0_rtx, REG_NOTES (insn));
680 break;
681 }
682 else if (GET_CODE (insn) == CALL_INSN)
683 break;
684 }
685 }
686 else
687 expand_goto_internal (label, label_rtx (label), NULL_RTX);
688 }
689
690 /* Generate RTL code for a `goto' statement with target label BODY.
691 LABEL should be a LABEL_REF.
692 LAST_INSN, if non-0, is the rtx we should consider as the last
693 insn emitted (for the purposes of cleaning up a return). */
694
695 static void
696 expand_goto_internal (tree body, rtx label, rtx last_insn)
697 {
698 struct nesting *block;
699 rtx stack_level = 0;
700
701 if (GET_CODE (label) != CODE_LABEL)
702 abort ();
703
704 /* If label has already been defined, we can tell now
705 whether and how we must alter the stack level. */
706
707 if (PREV_INSN (label) != 0)
708 {
709 /* Find the innermost pending block that contains the label.
710 (Check containment by comparing insn-uids.)
711 Then restore the outermost stack level within that block,
712 and do cleanups of all blocks contained in it. */
713 for (block = block_stack; block; block = block->next)
714 {
715 if (INSN_UID (block->data.block.first_insn) < INSN_UID (label))
716 break;
717 if (block->data.block.stack_level != 0)
718 stack_level = block->data.block.stack_level;
719 /* Execute the cleanups for blocks we are exiting. */
720 if (block->data.block.cleanups != 0)
721 {
722 expand_cleanups (block->data.block.cleanups, 1, 1);
723 do_pending_stack_adjust ();
724 }
725 }
726
727 if (stack_level)
728 {
729 /* Ensure stack adjust isn't done by emit_jump, as this
730 would clobber the stack pointer. This one should be
731 deleted as dead by flow. */
732 clear_pending_stack_adjust ();
733 do_pending_stack_adjust ();
734
735 /* Don't do this adjust if it's to the end label and this function
736 is to return with a depressed stack pointer. */
737 if (label == return_label
738 && (((TREE_CODE (TREE_TYPE (current_function_decl))
739 == FUNCTION_TYPE)
740 && (TYPE_RETURNS_STACK_DEPRESSED
741 (TREE_TYPE (current_function_decl))))))
742 ;
743 else
744 emit_stack_restore (SAVE_BLOCK, stack_level, NULL_RTX);
745 }
746
747 if (body != 0 && DECL_TOO_LATE (body))
748 error ("jump to `%s' invalidly jumps into binding contour",
749 IDENTIFIER_POINTER (DECL_NAME (body)));
750 }
751 /* Label not yet defined: may need to put this goto
752 on the fixup list. */
753 else if (! expand_fixup (body, label, last_insn))
754 {
755 /* No fixup needed. Record that the label is the target
756 of at least one goto that has no fixup. */
757 if (body != 0)
758 TREE_ADDRESSABLE (body) = 1;
759 }
760
761 emit_jump (label);
762 }
763 \f
764 /* Generate if necessary a fixup for a goto
765 whose target label in tree structure (if any) is TREE_LABEL
766 and whose target in rtl is RTL_LABEL.
767
768 If LAST_INSN is nonzero, we pretend that the jump appears
769 after insn LAST_INSN instead of at the current point in the insn stream.
770
771 The fixup will be used later to insert insns just before the goto.
772 Those insns will restore the stack level as appropriate for the
773 target label, and will (in the case of C++) also invoke any object
774 destructors which have to be invoked when we exit the scopes which
775 are exited by the goto.
776
777 Value is nonzero if a fixup is made. */
778
779 static int
780 expand_fixup (tree tree_label, rtx rtl_label, rtx last_insn)
781 {
782 struct nesting *block, *end_block;
783
784 /* See if we can recognize which block the label will be output in.
785 This is possible in some very common cases.
786 If we succeed, set END_BLOCK to that block.
787 Otherwise, set it to 0. */
788
789 if (cond_stack
790 && (rtl_label == cond_stack->data.cond.endif_label
791 || rtl_label == cond_stack->data.cond.next_label))
792 end_block = cond_stack;
793 /* If we are in a loop, recognize certain labels which
794 are likely targets. This reduces the number of fixups
795 we need to create. */
796 else if (loop_stack
797 && (rtl_label == loop_stack->data.loop.start_label
798 || rtl_label == loop_stack->data.loop.end_label
799 || rtl_label == loop_stack->data.loop.continue_label))
800 end_block = loop_stack;
801 else
802 end_block = 0;
803
804 /* Now set END_BLOCK to the binding level to which we will return. */
805
806 if (end_block)
807 {
808 struct nesting *next_block = end_block->all;
809 block = block_stack;
810
811 /* First see if the END_BLOCK is inside the innermost binding level.
812 If so, then no cleanups or stack levels are relevant. */
813 while (next_block && next_block != block)
814 next_block = next_block->all;
815
816 if (next_block)
817 return 0;
818
819 /* Otherwise, set END_BLOCK to the innermost binding level
820 which is outside the relevant control-structure nesting. */
821 next_block = block_stack->next;
822 for (block = block_stack; block != end_block; block = block->all)
823 if (block == next_block)
824 next_block = next_block->next;
825 end_block = next_block;
826 }
827
828 /* Does any containing block have a stack level or cleanups?
829 If not, no fixup is needed, and that is the normal case
830 (the only case, for standard C). */
831 for (block = block_stack; block != end_block; block = block->next)
832 if (block->data.block.stack_level != 0
833 || block->data.block.cleanups != 0)
834 break;
835
836 if (block != end_block)
837 {
838 /* Ok, a fixup is needed. Add a fixup to the list of such. */
839 struct goto_fixup *fixup = ggc_alloc (sizeof (struct goto_fixup));
840 /* In case an old stack level is restored, make sure that comes
841 after any pending stack adjust. */
842 /* ?? If the fixup isn't to come at the present position,
843 doing the stack adjust here isn't useful. Doing it with our
844 settings at that location isn't useful either. Let's hope
845 someone does it! */
846 if (last_insn == 0)
847 do_pending_stack_adjust ();
848 fixup->target = tree_label;
849 fixup->target_rtl = rtl_label;
850
851 /* Create a BLOCK node and a corresponding matched set of
852 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes at
853 this point. The notes will encapsulate any and all fixup
854 code which we might later insert at this point in the insn
855 stream. Also, the BLOCK node will be the parent (i.e. the
856 `SUPERBLOCK') of any other BLOCK nodes which we might create
857 later on when we are expanding the fixup code.
858
859 Note that optimization passes (including expand_end_loop)
860 might move the *_BLOCK notes away, so we use a NOTE_INSN_DELETED
861 as a placeholder. */
862
863 {
864 rtx original_before_jump
865 = last_insn ? last_insn : get_last_insn ();
866 rtx start;
867 rtx end;
868 tree block;
869
870 block = make_node (BLOCK);
871 TREE_USED (block) = 1;
872
873 if (!cfun->x_whole_function_mode_p)
874 (*lang_hooks.decls.insert_block) (block);
875 else
876 {
877 BLOCK_CHAIN (block)
878 = BLOCK_CHAIN (DECL_INITIAL (current_function_decl));
879 BLOCK_CHAIN (DECL_INITIAL (current_function_decl))
880 = block;
881 }
882
883 start_sequence ();
884 start = emit_note (NOTE_INSN_BLOCK_BEG);
885 if (cfun->x_whole_function_mode_p)
886 NOTE_BLOCK (start) = block;
887 fixup->before_jump = emit_note (NOTE_INSN_DELETED);
888 end = emit_note (NOTE_INSN_BLOCK_END);
889 if (cfun->x_whole_function_mode_p)
890 NOTE_BLOCK (end) = block;
891 fixup->context = block;
892 end_sequence ();
893 emit_insn_after (start, original_before_jump);
894 }
895
896 fixup->block_start_count = current_block_start_count;
897 fixup->stack_level = 0;
898 fixup->cleanup_list_list
899 = ((block->data.block.outer_cleanups
900 || block->data.block.cleanups)
901 ? tree_cons (NULL_TREE, block->data.block.cleanups,
902 block->data.block.outer_cleanups)
903 : 0);
904 fixup->next = goto_fixup_chain;
905 goto_fixup_chain = fixup;
906 }
907
908 return block != 0;
909 }
910 \f
911 /* Expand any needed fixups in the outputmost binding level of the
912 function. FIRST_INSN is the first insn in the function. */
913
914 void
915 expand_fixups (rtx first_insn)
916 {
917 fixup_gotos (NULL, NULL_RTX, NULL_TREE, first_insn, 0);
918 }
919
920 /* When exiting a binding contour, process all pending gotos requiring fixups.
921 THISBLOCK is the structure that describes the block being exited.
922 STACK_LEVEL is the rtx for the stack level to restore exiting this contour.
923 CLEANUP_LIST is a list of expressions to evaluate on exiting this contour.
924 FIRST_INSN is the insn that began this contour.
925
926 Gotos that jump out of this contour must restore the
927 stack level and do the cleanups before actually jumping.
928
929 DONT_JUMP_IN positive means report error if there is a jump into this
930 contour from before the beginning of the contour. This is also done if
931 STACK_LEVEL is nonzero unless DONT_JUMP_IN is negative. */
932
933 static void
934 fixup_gotos (struct nesting *thisblock, rtx stack_level,
935 tree cleanup_list, rtx first_insn, int dont_jump_in)
936 {
937 struct goto_fixup *f, *prev;
938
939 /* F is the fixup we are considering; PREV is the previous one. */
940 /* We run this loop in two passes so that cleanups of exited blocks
941 are run first, and blocks that are exited are marked so
942 afterwards. */
943
944 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
945 {
946 /* Test for a fixup that is inactive because it is already handled. */
947 if (f->before_jump == 0)
948 {
949 /* Delete inactive fixup from the chain, if that is easy to do. */
950 if (prev != 0)
951 prev->next = f->next;
952 }
953 /* Has this fixup's target label been defined?
954 If so, we can finalize it. */
955 else if (PREV_INSN (f->target_rtl) != 0)
956 {
957 rtx cleanup_insns;
958
959 /* If this fixup jumped into this contour from before the beginning
960 of this contour, report an error. This code used to use
961 the first non-label insn after f->target_rtl, but that's
962 wrong since such can be added, by things like put_var_into_stack
963 and have INSN_UIDs that are out of the range of the block. */
964 /* ??? Bug: this does not detect jumping in through intermediate
965 blocks that have stack levels or cleanups.
966 It detects only a problem with the innermost block
967 around the label. */
968 if (f->target != 0
969 && (dont_jump_in > 0 || (dont_jump_in == 0 && stack_level)
970 || cleanup_list)
971 && INSN_UID (first_insn) < INSN_UID (f->target_rtl)
972 && INSN_UID (first_insn) > INSN_UID (f->before_jump)
973 && ! DECL_ERROR_ISSUED (f->target))
974 {
975 error ("%Jlabel '%D' used before containing binding contour",
976 f->target, f->target);
977 /* Prevent multiple errors for one label. */
978 DECL_ERROR_ISSUED (f->target) = 1;
979 }
980
981 /* We will expand the cleanups into a sequence of their own and
982 then later on we will attach this new sequence to the insn
983 stream just ahead of the actual jump insn. */
984
985 start_sequence ();
986
987 /* Temporarily restore the lexical context where we will
988 logically be inserting the fixup code. We do this for the
989 sake of getting the debugging information right. */
990
991 (*lang_hooks.decls.pushlevel) (0);
992 (*lang_hooks.decls.set_block) (f->context);
993
994 /* Expand the cleanups for blocks this jump exits. */
995 if (f->cleanup_list_list)
996 {
997 tree lists;
998 for (lists = f->cleanup_list_list; lists; lists = TREE_CHAIN (lists))
999 /* Marked elements correspond to blocks that have been closed.
1000 Do their cleanups. */
1001 if (TREE_ADDRESSABLE (lists)
1002 && TREE_VALUE (lists) != 0)
1003 {
1004 expand_cleanups (TREE_VALUE (lists), 1, 1);
1005 /* Pop any pushes done in the cleanups,
1006 in case function is about to return. */
1007 do_pending_stack_adjust ();
1008 }
1009 }
1010
1011 /* Restore stack level for the biggest contour that this
1012 jump jumps out of. */
1013 if (f->stack_level
1014 && ! (f->target_rtl == return_label
1015 && ((TREE_CODE (TREE_TYPE (current_function_decl))
1016 == FUNCTION_TYPE)
1017 && (TYPE_RETURNS_STACK_DEPRESSED
1018 (TREE_TYPE (current_function_decl))))))
1019 emit_stack_restore (SAVE_BLOCK, f->stack_level, f->before_jump);
1020
1021 /* Finish up the sequence containing the insns which implement the
1022 necessary cleanups, and then attach that whole sequence to the
1023 insn stream just ahead of the actual jump insn. Attaching it
1024 at that point insures that any cleanups which are in fact
1025 implicit C++ object destructions (which must be executed upon
1026 leaving the block) appear (to the debugger) to be taking place
1027 in an area of the generated code where the object(s) being
1028 destructed are still "in scope". */
1029
1030 cleanup_insns = get_insns ();
1031 (*lang_hooks.decls.poplevel) (1, 0, 0);
1032
1033 end_sequence ();
1034 emit_insn_after (cleanup_insns, f->before_jump);
1035
1036 f->before_jump = 0;
1037 }
1038 }
1039
1040 /* For any still-undefined labels, do the cleanups for this block now.
1041 We must do this now since items in the cleanup list may go out
1042 of scope when the block ends. */
1043 for (prev = 0, f = goto_fixup_chain; f; prev = f, f = f->next)
1044 if (f->before_jump != 0
1045 && PREV_INSN (f->target_rtl) == 0
1046 /* Label has still not appeared. If we are exiting a block with
1047 a stack level to restore, that started before the fixup,
1048 mark this stack level as needing restoration
1049 when the fixup is later finalized. */
1050 && thisblock != 0
1051 /* Note: if THISBLOCK == 0 and we have a label that hasn't appeared, it
1052 means the label is undefined. That's erroneous, but possible. */
1053 && (thisblock->data.block.block_start_count
1054 <= f->block_start_count))
1055 {
1056 tree lists = f->cleanup_list_list;
1057 rtx cleanup_insns;
1058
1059 for (; lists; lists = TREE_CHAIN (lists))
1060 /* If the following elt. corresponds to our containing block
1061 then the elt. must be for this block. */
1062 if (TREE_CHAIN (lists) == thisblock->data.block.outer_cleanups)
1063 {
1064 start_sequence ();
1065 (*lang_hooks.decls.pushlevel) (0);
1066 (*lang_hooks.decls.set_block) (f->context);
1067 expand_cleanups (TREE_VALUE (lists), 1, 1);
1068 do_pending_stack_adjust ();
1069 cleanup_insns = get_insns ();
1070 (*lang_hooks.decls.poplevel) (1, 0, 0);
1071 end_sequence ();
1072 if (cleanup_insns != 0)
1073 f->before_jump
1074 = emit_insn_after (cleanup_insns, f->before_jump);
1075
1076 f->cleanup_list_list = TREE_CHAIN (lists);
1077 }
1078
1079 if (stack_level)
1080 f->stack_level = stack_level;
1081 }
1082 }
1083 \f
1084 /* Return the number of times character C occurs in string S. */
1085 static int
1086 n_occurrences (int c, const char *s)
1087 {
1088 int n = 0;
1089 while (*s)
1090 n += (*s++ == c);
1091 return n;
1092 }
1093 \f
1094 /* Generate RTL for an asm statement (explicit assembler code).
1095 STRING is a STRING_CST node containing the assembler code text,
1096 or an ADDR_EXPR containing a STRING_CST. VOL nonzero means the
1097 insn is volatile; don't optimize it. */
1098
1099 void
1100 expand_asm (tree string, int vol)
1101 {
1102 rtx body;
1103
1104 if (TREE_CODE (string) == ADDR_EXPR)
1105 string = TREE_OPERAND (string, 0);
1106
1107 body = gen_rtx_ASM_INPUT (VOIDmode, TREE_STRING_POINTER (string));
1108
1109 MEM_VOLATILE_P (body) = vol;
1110
1111 emit_insn (body);
1112
1113 clear_last_expr ();
1114 }
1115
1116 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
1117 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
1118 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
1119 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
1120 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
1121 constraint allows the use of a register operand. And, *IS_INOUT
1122 will be true if the operand is read-write, i.e., if it is used as
1123 an input as well as an output. If *CONSTRAINT_P is not in
1124 canonical form, it will be made canonical. (Note that `+' will be
1125 replaced with `=' as part of this process.)
1126
1127 Returns TRUE if all went well; FALSE if an error occurred. */
1128
1129 bool
1130 parse_output_constraint (const char **constraint_p, int operand_num,
1131 int ninputs, int noutputs, bool *allows_mem,
1132 bool *allows_reg, bool *is_inout)
1133 {
1134 const char *constraint = *constraint_p;
1135 const char *p;
1136
1137 /* Assume the constraint doesn't allow the use of either a register
1138 or memory. */
1139 *allows_mem = false;
1140 *allows_reg = false;
1141
1142 /* Allow the `=' or `+' to not be at the beginning of the string,
1143 since it wasn't explicitly documented that way, and there is a
1144 large body of code that puts it last. Swap the character to
1145 the front, so as not to uglify any place else. */
1146 p = strchr (constraint, '=');
1147 if (!p)
1148 p = strchr (constraint, '+');
1149
1150 /* If the string doesn't contain an `=', issue an error
1151 message. */
1152 if (!p)
1153 {
1154 error ("output operand constraint lacks `='");
1155 return false;
1156 }
1157
1158 /* If the constraint begins with `+', then the operand is both read
1159 from and written to. */
1160 *is_inout = (*p == '+');
1161
1162 /* Canonicalize the output constraint so that it begins with `='. */
1163 if (p != constraint || is_inout)
1164 {
1165 char *buf;
1166 size_t c_len = strlen (constraint);
1167
1168 if (p != constraint)
1169 warning ("output constraint `%c' for operand %d is not at the beginning",
1170 *p, operand_num);
1171
1172 /* Make a copy of the constraint. */
1173 buf = alloca (c_len + 1);
1174 strcpy (buf, constraint);
1175 /* Swap the first character and the `=' or `+'. */
1176 buf[p - constraint] = buf[0];
1177 /* Make sure the first character is an `='. (Until we do this,
1178 it might be a `+'.) */
1179 buf[0] = '=';
1180 /* Replace the constraint with the canonicalized string. */
1181 *constraint_p = ggc_alloc_string (buf, c_len);
1182 constraint = *constraint_p;
1183 }
1184
1185 /* Loop through the constraint string. */
1186 for (p = constraint + 1; *p; p += CONSTRAINT_LEN (*p, p))
1187 switch (*p)
1188 {
1189 case '+':
1190 case '=':
1191 error ("operand constraint contains incorrectly positioned '+' or '='");
1192 return false;
1193
1194 case '%':
1195 if (operand_num + 1 == ninputs + noutputs)
1196 {
1197 error ("`%%' constraint used with last operand");
1198 return false;
1199 }
1200 break;
1201
1202 case 'V': case 'm': case 'o':
1203 *allows_mem = true;
1204 break;
1205
1206 case '?': case '!': case '*': case '&': case '#':
1207 case 'E': case 'F': case 'G': case 'H':
1208 case 's': case 'i': case 'n':
1209 case 'I': case 'J': case 'K': case 'L': case 'M':
1210 case 'N': case 'O': case 'P': case ',':
1211 break;
1212
1213 case '0': case '1': case '2': case '3': case '4':
1214 case '5': case '6': case '7': case '8': case '9':
1215 case '[':
1216 error ("matching constraint not valid in output operand");
1217 return false;
1218
1219 case '<': case '>':
1220 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1221 excepting those that expand_call created. So match memory
1222 and hope. */
1223 *allows_mem = true;
1224 break;
1225
1226 case 'g': case 'X':
1227 *allows_reg = true;
1228 *allows_mem = true;
1229 break;
1230
1231 case 'p': case 'r':
1232 *allows_reg = true;
1233 break;
1234
1235 default:
1236 if (!ISALPHA (*p))
1237 break;
1238 if (REG_CLASS_FROM_CONSTRAINT (*p, p) != NO_REGS)
1239 *allows_reg = true;
1240 #ifdef EXTRA_CONSTRAINT_STR
1241 else if (EXTRA_ADDRESS_CONSTRAINT (*p, p))
1242 *allows_reg = true;
1243 else if (EXTRA_MEMORY_CONSTRAINT (*p, p))
1244 *allows_mem = true;
1245 else
1246 {
1247 /* Otherwise we can't assume anything about the nature of
1248 the constraint except that it isn't purely registers.
1249 Treat it like "g" and hope for the best. */
1250 *allows_reg = true;
1251 *allows_mem = true;
1252 }
1253 #endif
1254 break;
1255 }
1256
1257 return true;
1258 }
1259
1260 /* Similar, but for input constraints. */
1261
1262 bool
1263 parse_input_constraint (const char **constraint_p, int input_num,
1264 int ninputs, int noutputs, int ninout,
1265 const char * const * constraints,
1266 bool *allows_mem, bool *allows_reg)
1267 {
1268 const char *constraint = *constraint_p;
1269 const char *orig_constraint = constraint;
1270 size_t c_len = strlen (constraint);
1271 size_t j;
1272
1273 /* Assume the constraint doesn't allow the use of either
1274 a register or memory. */
1275 *allows_mem = false;
1276 *allows_reg = false;
1277
1278 /* Make sure constraint has neither `=', `+', nor '&'. */
1279
1280 for (j = 0; j < c_len; j += CONSTRAINT_LEN (constraint[j], constraint+j))
1281 switch (constraint[j])
1282 {
1283 case '+': case '=': case '&':
1284 if (constraint == orig_constraint)
1285 {
1286 error ("input operand constraint contains `%c'", constraint[j]);
1287 return false;
1288 }
1289 break;
1290
1291 case '%':
1292 if (constraint == orig_constraint
1293 && input_num + 1 == ninputs - ninout)
1294 {
1295 error ("`%%' constraint used with last operand");
1296 return false;
1297 }
1298 break;
1299
1300 case 'V': case 'm': case 'o':
1301 *allows_mem = true;
1302 break;
1303
1304 case '<': case '>':
1305 case '?': case '!': case '*': case '#':
1306 case 'E': case 'F': case 'G': case 'H':
1307 case 's': case 'i': case 'n':
1308 case 'I': case 'J': case 'K': case 'L': case 'M':
1309 case 'N': case 'O': case 'P': case ',':
1310 break;
1311
1312 /* Whether or not a numeric constraint allows a register is
1313 decided by the matching constraint, and so there is no need
1314 to do anything special with them. We must handle them in
1315 the default case, so that we don't unnecessarily force
1316 operands to memory. */
1317 case '0': case '1': case '2': case '3': case '4':
1318 case '5': case '6': case '7': case '8': case '9':
1319 {
1320 char *end;
1321 unsigned long match;
1322
1323 match = strtoul (constraint + j, &end, 10);
1324 if (match >= (unsigned long) noutputs)
1325 {
1326 error ("matching constraint references invalid operand number");
1327 return false;
1328 }
1329
1330 /* Try and find the real constraint for this dup. Only do this
1331 if the matching constraint is the only alternative. */
1332 if (*end == '\0'
1333 && (j == 0 || (j == 1 && constraint[0] == '%')))
1334 {
1335 constraint = constraints[match];
1336 *constraint_p = constraint;
1337 c_len = strlen (constraint);
1338 j = 0;
1339 /* ??? At the end of the loop, we will skip the first part of
1340 the matched constraint. This assumes not only that the
1341 other constraint is an output constraint, but also that
1342 the '=' or '+' come first. */
1343 break;
1344 }
1345 else
1346 j = end - constraint;
1347 /* Anticipate increment at end of loop. */
1348 j--;
1349 }
1350 /* Fall through. */
1351
1352 case 'p': case 'r':
1353 *allows_reg = true;
1354 break;
1355
1356 case 'g': case 'X':
1357 *allows_reg = true;
1358 *allows_mem = true;
1359 break;
1360
1361 default:
1362 if (! ISALPHA (constraint[j]))
1363 {
1364 error ("invalid punctuation `%c' in constraint", constraint[j]);
1365 return false;
1366 }
1367 if (REG_CLASS_FROM_CONSTRAINT (constraint[j], constraint + j)
1368 != NO_REGS)
1369 *allows_reg = true;
1370 #ifdef EXTRA_CONSTRAINT_STR
1371 else if (EXTRA_ADDRESS_CONSTRAINT (constraint[j], constraint + j))
1372 *allows_reg = true;
1373 else if (EXTRA_MEMORY_CONSTRAINT (constraint[j], constraint + j))
1374 *allows_mem = true;
1375 else
1376 {
1377 /* Otherwise we can't assume anything about the nature of
1378 the constraint except that it isn't purely registers.
1379 Treat it like "g" and hope for the best. */
1380 *allows_reg = true;
1381 *allows_mem = true;
1382 }
1383 #endif
1384 break;
1385 }
1386
1387 return true;
1388 }
1389
1390 /* Check for overlap between registers marked in CLOBBERED_REGS and
1391 anything inappropriate in DECL. Emit error and return TRUE for error,
1392 FALSE for ok. */
1393
1394 static bool
1395 decl_conflicts_with_clobbers_p (tree decl, const HARD_REG_SET clobbered_regs)
1396 {
1397 /* Conflicts between asm-declared register variables and the clobber
1398 list are not allowed. */
1399 if ((TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL)
1400 && DECL_REGISTER (decl)
1401 && REG_P (DECL_RTL (decl))
1402 && REGNO (DECL_RTL (decl)) < FIRST_PSEUDO_REGISTER)
1403 {
1404 rtx reg = DECL_RTL (decl);
1405 unsigned int regno;
1406
1407 for (regno = REGNO (reg);
1408 regno < (REGNO (reg)
1409 + HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)));
1410 regno++)
1411 if (TEST_HARD_REG_BIT (clobbered_regs, regno))
1412 {
1413 error ("asm-specifier for variable `%s' conflicts with asm clobber list",
1414 IDENTIFIER_POINTER (DECL_NAME (decl)));
1415
1416 /* Reset registerness to stop multiple errors emitted for a
1417 single variable. */
1418 DECL_REGISTER (decl) = 0;
1419 return true;
1420 }
1421 }
1422 return false;
1423 }
1424
1425 /* Generate RTL for an asm statement with arguments.
1426 STRING is the instruction template.
1427 OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
1428 Each output or input has an expression in the TREE_VALUE and
1429 and a tree list in TREE_PURPOSE which in turn contains a constraint
1430 name in TREE_VALUE (or NULL_TREE) and a constraint string
1431 in TREE_PURPOSE.
1432 CLOBBERS is a list of STRING_CST nodes each naming a hard register
1433 that is clobbered by this insn.
1434
1435 Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
1436 Some elements of OUTPUTS may be replaced with trees representing temporary
1437 values. The caller should copy those temporary values to the originally
1438 specified lvalues.
1439
1440 VOL nonzero means the insn is volatile; don't optimize it. */
1441
1442 void
1443 expand_asm_operands (tree string, tree outputs, tree inputs,
1444 tree clobbers, int vol, location_t locus)
1445 {
1446 rtvec argvec, constraintvec;
1447 rtx body;
1448 int ninputs = list_length (inputs);
1449 int noutputs = list_length (outputs);
1450 int ninout;
1451 int nclobbers;
1452 HARD_REG_SET clobbered_regs;
1453 int clobber_conflict_found = 0;
1454 tree tail;
1455 tree t;
1456 int i;
1457 /* Vector of RTX's of evaluated output operands. */
1458 rtx *output_rtx = alloca (noutputs * sizeof (rtx));
1459 int *inout_opnum = alloca (noutputs * sizeof (int));
1460 rtx *real_output_rtx = alloca (noutputs * sizeof (rtx));
1461 enum machine_mode *inout_mode
1462 = alloca (noutputs * sizeof (enum machine_mode));
1463 const char **constraints
1464 = alloca ((noutputs + ninputs) * sizeof (const char *));
1465 int old_generating_concat_p = generating_concat_p;
1466
1467 /* An ASM with no outputs needs to be treated as volatile, for now. */
1468 if (noutputs == 0)
1469 vol = 1;
1470
1471 if (! check_operand_nalternatives (outputs, inputs))
1472 return;
1473
1474 string = resolve_asm_operand_names (string, outputs, inputs);
1475
1476 /* Collect constraints. */
1477 i = 0;
1478 for (t = outputs; t ; t = TREE_CHAIN (t), i++)
1479 constraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1480 for (t = inputs; t ; t = TREE_CHAIN (t), i++)
1481 constraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1482
1483 #ifdef MD_ASM_CLOBBERS
1484 /* Sometimes we wish to automatically clobber registers across an asm.
1485 Case in point is when the i386 backend moved from cc0 to a hard reg --
1486 maintaining source-level compatibility means automatically clobbering
1487 the flags register. */
1488 MD_ASM_CLOBBERS (clobbers);
1489 #endif
1490
1491 /* Count the number of meaningful clobbered registers, ignoring what
1492 we would ignore later. */
1493 nclobbers = 0;
1494 CLEAR_HARD_REG_SET (clobbered_regs);
1495 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1496 {
1497 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1498
1499 i = decode_reg_name (regname);
1500 if (i >= 0 || i == -4)
1501 ++nclobbers;
1502 else if (i == -2)
1503 error ("unknown register name `%s' in `asm'", regname);
1504
1505 /* Mark clobbered registers. */
1506 if (i >= 0)
1507 {
1508 /* Clobbering the PIC register is an error */
1509 if (i == (int) PIC_OFFSET_TABLE_REGNUM)
1510 {
1511 error ("PIC register `%s' clobbered in `asm'", regname);
1512 return;
1513 }
1514
1515 SET_HARD_REG_BIT (clobbered_regs, i);
1516 }
1517 }
1518
1519 clear_last_expr ();
1520
1521 /* First pass over inputs and outputs checks validity and sets
1522 mark_addressable if needed. */
1523
1524 ninout = 0;
1525 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1526 {
1527 tree val = TREE_VALUE (tail);
1528 tree type = TREE_TYPE (val);
1529 const char *constraint;
1530 bool is_inout;
1531 bool allows_reg;
1532 bool allows_mem;
1533
1534 /* If there's an erroneous arg, emit no insn. */
1535 if (type == error_mark_node)
1536 return;
1537
1538 /* Try to parse the output constraint. If that fails, there's
1539 no point in going further. */
1540 constraint = constraints[i];
1541 if (!parse_output_constraint (&constraint, i, ninputs, noutputs,
1542 &allows_mem, &allows_reg, &is_inout))
1543 return;
1544
1545 if (! allows_reg
1546 && (allows_mem
1547 || is_inout
1548 || (DECL_P (val)
1549 && GET_CODE (DECL_RTL (val)) == REG
1550 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type))))
1551 (*lang_hooks.mark_addressable) (val);
1552
1553 if (is_inout)
1554 ninout++;
1555 }
1556
1557 ninputs += ninout;
1558 if (ninputs + noutputs > MAX_RECOG_OPERANDS)
1559 {
1560 error ("more than %d operands in `asm'", MAX_RECOG_OPERANDS);
1561 return;
1562 }
1563
1564 for (i = 0, tail = inputs; tail; i++, tail = TREE_CHAIN (tail))
1565 {
1566 bool allows_reg, allows_mem;
1567 const char *constraint;
1568
1569 /* If there's an erroneous arg, emit no insn, because the ASM_INPUT
1570 would get VOIDmode and that could cause a crash in reload. */
1571 if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
1572 return;
1573
1574 constraint = constraints[i + noutputs];
1575 if (! parse_input_constraint (&constraint, i, ninputs, noutputs, ninout,
1576 constraints, &allows_mem, &allows_reg))
1577 return;
1578
1579 if (! allows_reg && allows_mem)
1580 (*lang_hooks.mark_addressable) (TREE_VALUE (tail));
1581 }
1582
1583 /* Second pass evaluates arguments. */
1584
1585 ninout = 0;
1586 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1587 {
1588 tree val = TREE_VALUE (tail);
1589 tree type = TREE_TYPE (val);
1590 bool is_inout;
1591 bool allows_reg;
1592 bool allows_mem;
1593 rtx op;
1594
1595 if (!parse_output_constraint (&constraints[i], i, ninputs,
1596 noutputs, &allows_mem, &allows_reg,
1597 &is_inout))
1598 abort ();
1599
1600 /* If an output operand is not a decl or indirect ref and our constraint
1601 allows a register, make a temporary to act as an intermediate.
1602 Make the asm insn write into that, then our caller will copy it to
1603 the real output operand. Likewise for promoted variables. */
1604
1605 generating_concat_p = 0;
1606
1607 real_output_rtx[i] = NULL_RTX;
1608 if ((TREE_CODE (val) == INDIRECT_REF
1609 && allows_mem)
1610 || (DECL_P (val)
1611 && (allows_mem || GET_CODE (DECL_RTL (val)) == REG)
1612 && ! (GET_CODE (DECL_RTL (val)) == REG
1613 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type)))
1614 || ! allows_reg
1615 || is_inout)
1616 {
1617 op = expand_expr (val, NULL_RTX, VOIDmode, EXPAND_WRITE);
1618 if (GET_CODE (op) == MEM)
1619 op = validize_mem (op);
1620
1621 if (! allows_reg && GET_CODE (op) != MEM)
1622 error ("output number %d not directly addressable", i);
1623 if ((! allows_mem && GET_CODE (op) == MEM)
1624 || GET_CODE (op) == CONCAT)
1625 {
1626 real_output_rtx[i] = protect_from_queue (op, 1);
1627 op = gen_reg_rtx (GET_MODE (op));
1628 if (is_inout)
1629 emit_move_insn (op, real_output_rtx[i]);
1630 }
1631 }
1632 else
1633 {
1634 op = assign_temp (type, 0, 0, 1);
1635 op = validize_mem (op);
1636 TREE_VALUE (tail) = make_tree (type, op);
1637 }
1638 output_rtx[i] = op;
1639
1640 generating_concat_p = old_generating_concat_p;
1641
1642 if (is_inout)
1643 {
1644 inout_mode[ninout] = TYPE_MODE (type);
1645 inout_opnum[ninout++] = i;
1646 }
1647
1648 if (decl_conflicts_with_clobbers_p (val, clobbered_regs))
1649 clobber_conflict_found = 1;
1650 }
1651
1652 /* Make vectors for the expression-rtx, constraint strings,
1653 and named operands. */
1654
1655 argvec = rtvec_alloc (ninputs);
1656 constraintvec = rtvec_alloc (ninputs);
1657
1658 body = gen_rtx_ASM_OPERANDS ((noutputs == 0 ? VOIDmode
1659 : GET_MODE (output_rtx[0])),
1660 TREE_STRING_POINTER (string),
1661 empty_string, 0, argvec, constraintvec,
1662 locus.file, locus.line);
1663
1664 MEM_VOLATILE_P (body) = vol;
1665
1666 /* Eval the inputs and put them into ARGVEC.
1667 Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
1668
1669 for (i = 0, tail = inputs; tail; tail = TREE_CHAIN (tail), ++i)
1670 {
1671 bool allows_reg, allows_mem;
1672 const char *constraint;
1673 tree val, type;
1674 rtx op;
1675
1676 constraint = constraints[i + noutputs];
1677 if (! parse_input_constraint (&constraint, i, ninputs, noutputs, ninout,
1678 constraints, &allows_mem, &allows_reg))
1679 abort ();
1680
1681 generating_concat_p = 0;
1682
1683 val = TREE_VALUE (tail);
1684 type = TREE_TYPE (val);
1685 op = expand_expr (val, NULL_RTX, VOIDmode,
1686 (allows_mem && !allows_reg
1687 ? EXPAND_MEMORY : EXPAND_NORMAL));
1688
1689 /* Never pass a CONCAT to an ASM. */
1690 if (GET_CODE (op) == CONCAT)
1691 op = force_reg (GET_MODE (op), op);
1692 else if (GET_CODE (op) == MEM)
1693 op = validize_mem (op);
1694
1695 if (asm_operand_ok (op, constraint) <= 0)
1696 {
1697 if (allows_reg)
1698 op = force_reg (TYPE_MODE (type), op);
1699 else if (!allows_mem)
1700 warning ("asm operand %d probably doesn't match constraints",
1701 i + noutputs);
1702 else if (GET_CODE (op) == MEM)
1703 {
1704 /* We won't recognize either volatile memory or memory
1705 with a queued address as available a memory_operand
1706 at this point. Ignore it: clearly this *is* a memory. */
1707 }
1708 else
1709 {
1710 warning ("use of memory input without lvalue in "
1711 "asm operand %d is deprecated", i + noutputs);
1712
1713 if (CONSTANT_P (op))
1714 {
1715 rtx mem = force_const_mem (TYPE_MODE (type), op);
1716 if (mem)
1717 op = validize_mem (mem);
1718 else
1719 op = force_reg (TYPE_MODE (type), op);
1720 }
1721 if (GET_CODE (op) == REG
1722 || GET_CODE (op) == SUBREG
1723 || GET_CODE (op) == ADDRESSOF
1724 || GET_CODE (op) == CONCAT)
1725 {
1726 tree qual_type = build_qualified_type (type,
1727 (TYPE_QUALS (type)
1728 | TYPE_QUAL_CONST));
1729 rtx memloc = assign_temp (qual_type, 1, 1, 1);
1730 memloc = validize_mem (memloc);
1731 emit_move_insn (memloc, op);
1732 op = memloc;
1733 }
1734 }
1735 }
1736
1737 generating_concat_p = old_generating_concat_p;
1738 ASM_OPERANDS_INPUT (body, i) = op;
1739
1740 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, i)
1741 = gen_rtx_ASM_INPUT (TYPE_MODE (type), constraints[i + noutputs]);
1742
1743 if (decl_conflicts_with_clobbers_p (val, clobbered_regs))
1744 clobber_conflict_found = 1;
1745 }
1746
1747 /* Protect all the operands from the queue now that they have all been
1748 evaluated. */
1749
1750 generating_concat_p = 0;
1751
1752 for (i = 0; i < ninputs - ninout; i++)
1753 ASM_OPERANDS_INPUT (body, i)
1754 = protect_from_queue (ASM_OPERANDS_INPUT (body, i), 0);
1755
1756 for (i = 0; i < noutputs; i++)
1757 output_rtx[i] = protect_from_queue (output_rtx[i], 1);
1758
1759 /* For in-out operands, copy output rtx to input rtx. */
1760 for (i = 0; i < ninout; i++)
1761 {
1762 int j = inout_opnum[i];
1763 char buffer[16];
1764
1765 ASM_OPERANDS_INPUT (body, ninputs - ninout + i)
1766 = output_rtx[j];
1767
1768 sprintf (buffer, "%d", j);
1769 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, ninputs - ninout + i)
1770 = gen_rtx_ASM_INPUT (inout_mode[i], ggc_strdup (buffer));
1771 }
1772
1773 generating_concat_p = old_generating_concat_p;
1774
1775 /* Now, for each output, construct an rtx
1776 (set OUTPUT (asm_operands INSN OUTPUTCONSTRAINT OUTPUTNUMBER
1777 ARGVEC CONSTRAINTS OPNAMES))
1778 If there is more than one, put them inside a PARALLEL. */
1779
1780 if (noutputs == 1 && nclobbers == 0)
1781 {
1782 ASM_OPERANDS_OUTPUT_CONSTRAINT (body) = constraints[0];
1783 emit_insn (gen_rtx_SET (VOIDmode, output_rtx[0], body));
1784 }
1785
1786 else if (noutputs == 0 && nclobbers == 0)
1787 {
1788 /* No output operands: put in a raw ASM_OPERANDS rtx. */
1789 emit_insn (body);
1790 }
1791
1792 else
1793 {
1794 rtx obody = body;
1795 int num = noutputs;
1796
1797 if (num == 0)
1798 num = 1;
1799
1800 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num + nclobbers));
1801
1802 /* For each output operand, store a SET. */
1803 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1804 {
1805 XVECEXP (body, 0, i)
1806 = gen_rtx_SET (VOIDmode,
1807 output_rtx[i],
1808 gen_rtx_ASM_OPERANDS
1809 (GET_MODE (output_rtx[i]),
1810 TREE_STRING_POINTER (string),
1811 constraints[i], i, argvec, constraintvec,
1812 locus.file, locus.line));
1813
1814 MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
1815 }
1816
1817 /* If there are no outputs (but there are some clobbers)
1818 store the bare ASM_OPERANDS into the PARALLEL. */
1819
1820 if (i == 0)
1821 XVECEXP (body, 0, i++) = obody;
1822
1823 /* Store (clobber REG) for each clobbered register specified. */
1824
1825 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1826 {
1827 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1828 int j = decode_reg_name (regname);
1829 rtx clobbered_reg;
1830
1831 if (j < 0)
1832 {
1833 if (j == -3) /* `cc', which is not a register */
1834 continue;
1835
1836 if (j == -4) /* `memory', don't cache memory across asm */
1837 {
1838 XVECEXP (body, 0, i++)
1839 = gen_rtx_CLOBBER (VOIDmode,
1840 gen_rtx_MEM
1841 (BLKmode,
1842 gen_rtx_SCRATCH (VOIDmode)));
1843 continue;
1844 }
1845
1846 /* Ignore unknown register, error already signaled. */
1847 continue;
1848 }
1849
1850 /* Use QImode since that's guaranteed to clobber just one reg. */
1851 clobbered_reg = gen_rtx_REG (QImode, j);
1852
1853 /* Do sanity check for overlap between clobbers and respectively
1854 input and outputs that hasn't been handled. Such overlap
1855 should have been detected and reported above. */
1856 if (!clobber_conflict_found)
1857 {
1858 int opno;
1859
1860 /* We test the old body (obody) contents to avoid tripping
1861 over the under-construction body. */
1862 for (opno = 0; opno < noutputs; opno++)
1863 if (reg_overlap_mentioned_p (clobbered_reg, output_rtx[opno]))
1864 internal_error ("asm clobber conflict with output operand");
1865
1866 for (opno = 0; opno < ninputs - ninout; opno++)
1867 if (reg_overlap_mentioned_p (clobbered_reg,
1868 ASM_OPERANDS_INPUT (obody, opno)))
1869 internal_error ("asm clobber conflict with input operand");
1870 }
1871
1872 XVECEXP (body, 0, i++)
1873 = gen_rtx_CLOBBER (VOIDmode, clobbered_reg);
1874 }
1875
1876 emit_insn (body);
1877 }
1878
1879 /* For any outputs that needed reloading into registers, spill them
1880 back to where they belong. */
1881 for (i = 0; i < noutputs; ++i)
1882 if (real_output_rtx[i])
1883 emit_move_insn (real_output_rtx[i], output_rtx[i]);
1884
1885 free_temp_slots ();
1886 }
1887
1888 /* A subroutine of expand_asm_operands. Check that all operands have
1889 the same number of alternatives. Return true if so. */
1890
1891 static bool
1892 check_operand_nalternatives (tree outputs, tree inputs)
1893 {
1894 if (outputs || inputs)
1895 {
1896 tree tmp = TREE_PURPOSE (outputs ? outputs : inputs);
1897 int nalternatives
1898 = n_occurrences (',', TREE_STRING_POINTER (TREE_VALUE (tmp)));
1899 tree next = inputs;
1900
1901 if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES)
1902 {
1903 error ("too many alternatives in `asm'");
1904 return false;
1905 }
1906
1907 tmp = outputs;
1908 while (tmp)
1909 {
1910 const char *constraint
1911 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tmp)));
1912
1913 if (n_occurrences (',', constraint) != nalternatives)
1914 {
1915 error ("operand constraints for `asm' differ in number of alternatives");
1916 return false;
1917 }
1918
1919 if (TREE_CHAIN (tmp))
1920 tmp = TREE_CHAIN (tmp);
1921 else
1922 tmp = next, next = 0;
1923 }
1924 }
1925
1926 return true;
1927 }
1928
1929 /* A subroutine of expand_asm_operands. Check that all operand names
1930 are unique. Return true if so. We rely on the fact that these names
1931 are identifiers, and so have been canonicalized by get_identifier,
1932 so all we need are pointer comparisons. */
1933
1934 static bool
1935 check_unique_operand_names (tree outputs, tree inputs)
1936 {
1937 tree i, j;
1938
1939 for (i = outputs; i ; i = TREE_CHAIN (i))
1940 {
1941 tree i_name = TREE_PURPOSE (TREE_PURPOSE (i));
1942 if (! i_name)
1943 continue;
1944
1945 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
1946 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1947 goto failure;
1948 }
1949
1950 for (i = inputs; i ; i = TREE_CHAIN (i))
1951 {
1952 tree i_name = TREE_PURPOSE (TREE_PURPOSE (i));
1953 if (! i_name)
1954 continue;
1955
1956 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
1957 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1958 goto failure;
1959 for (j = outputs; j ; j = TREE_CHAIN (j))
1960 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1961 goto failure;
1962 }
1963
1964 return true;
1965
1966 failure:
1967 error ("duplicate asm operand name '%s'",
1968 TREE_STRING_POINTER (TREE_PURPOSE (TREE_PURPOSE (i))));
1969 return false;
1970 }
1971
1972 /* A subroutine of expand_asm_operands. Resolve the names of the operands
1973 in *POUTPUTS and *PINPUTS to numbers, and replace the name expansions in
1974 STRING and in the constraints to those numbers. */
1975
1976 tree
1977 resolve_asm_operand_names (tree string, tree outputs, tree inputs)
1978 {
1979 char *buffer;
1980 char *p;
1981 const char *c;
1982 tree t;
1983
1984 check_unique_operand_names (outputs, inputs);
1985
1986 /* Substitute [<name>] in input constraint strings. There should be no
1987 named operands in output constraints. */
1988 for (t = inputs; t ; t = TREE_CHAIN (t))
1989 {
1990 c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1991 if (strchr (c, '[') != NULL)
1992 {
1993 p = buffer = xstrdup (c);
1994 while ((p = strchr (p, '[')) != NULL)
1995 p = resolve_operand_name_1 (p, outputs, inputs);
1996 TREE_VALUE (TREE_PURPOSE (t))
1997 = build_string (strlen (buffer), buffer);
1998 free (buffer);
1999 }
2000 }
2001
2002 /* Now check for any needed substitutions in the template. */
2003 c = TREE_STRING_POINTER (string);
2004 while ((c = strchr (c, '%')) != NULL)
2005 {
2006 if (c[1] == '[')
2007 break;
2008 else if (ISALPHA (c[1]) && c[2] == '[')
2009 break;
2010 else
2011 {
2012 c += 1;
2013 continue;
2014 }
2015 }
2016
2017 if (c)
2018 {
2019 /* OK, we need to make a copy so we can perform the substitutions.
2020 Assume that we will not need extra space--we get to remove '['
2021 and ']', which means we cannot have a problem until we have more
2022 than 999 operands. */
2023 buffer = xstrdup (TREE_STRING_POINTER (string));
2024 p = buffer + (c - TREE_STRING_POINTER (string));
2025
2026 while ((p = strchr (p, '%')) != NULL)
2027 {
2028 if (p[1] == '[')
2029 p += 1;
2030 else if (ISALPHA (p[1]) && p[2] == '[')
2031 p += 2;
2032 else
2033 {
2034 p += 1;
2035 continue;
2036 }
2037
2038 p = resolve_operand_name_1 (p, outputs, inputs);
2039 }
2040
2041 string = build_string (strlen (buffer), buffer);
2042 free (buffer);
2043 }
2044
2045 return string;
2046 }
2047
2048 /* A subroutine of resolve_operand_names. P points to the '[' for a
2049 potential named operand of the form [<name>]. In place, replace
2050 the name and brackets with a number. Return a pointer to the
2051 balance of the string after substitution. */
2052
2053 static char *
2054 resolve_operand_name_1 (char *p, tree outputs, tree inputs)
2055 {
2056 char *q;
2057 int op;
2058 tree t;
2059 size_t len;
2060
2061 /* Collect the operand name. */
2062 q = strchr (p, ']');
2063 if (!q)
2064 {
2065 error ("missing close brace for named operand");
2066 return strchr (p, '\0');
2067 }
2068 len = q - p - 1;
2069
2070 /* Resolve the name to a number. */
2071 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
2072 {
2073 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
2074 if (name)
2075 {
2076 const char *c = TREE_STRING_POINTER (name);
2077 if (strncmp (c, p + 1, len) == 0 && c[len] == '\0')
2078 goto found;
2079 }
2080 }
2081 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
2082 {
2083 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
2084 if (name)
2085 {
2086 const char *c = TREE_STRING_POINTER (name);
2087 if (strncmp (c, p + 1, len) == 0 && c[len] == '\0')
2088 goto found;
2089 }
2090 }
2091
2092 *q = '\0';
2093 error ("undefined named operand '%s'", p + 1);
2094 op = 0;
2095 found:
2096
2097 /* Replace the name with the number. Unfortunately, not all libraries
2098 get the return value of sprintf correct, so search for the end of the
2099 generated string by hand. */
2100 sprintf (p, "%d", op);
2101 p = strchr (p, '\0');
2102
2103 /* Verify the no extra buffer space assumption. */
2104 if (p > q)
2105 abort ();
2106
2107 /* Shift the rest of the buffer down to fill the gap. */
2108 memmove (p, q + 1, strlen (q + 1) + 1);
2109
2110 return p;
2111 }
2112 \f
2113 /* Generate RTL to evaluate the expression EXP
2114 and remember it in case this is the VALUE in a ({... VALUE; }) constr.
2115 Provided just for backward-compatibility. expand_expr_stmt_value()
2116 should be used for new code. */
2117
2118 void
2119 expand_expr_stmt (tree exp)
2120 {
2121 expand_expr_stmt_value (exp, -1, 1);
2122 }
2123
2124 /* Generate RTL to evaluate the expression EXP. WANT_VALUE tells
2125 whether to (1) save the value of the expression, (0) discard it or
2126 (-1) use expr_stmts_for_value to tell. The use of -1 is
2127 deprecated, and retained only for backward compatibility. */
2128
2129 void
2130 expand_expr_stmt_value (tree exp, int want_value, int maybe_last)
2131 {
2132 rtx value;
2133 tree type;
2134
2135 if (want_value == -1)
2136 want_value = expr_stmts_for_value != 0;
2137
2138 /* If -Wextra, warn about statements with no side effects,
2139 except for an explicit cast to void (e.g. for assert()), and
2140 except for last statement in ({...}) where they may be useful. */
2141 if (! want_value
2142 && (expr_stmts_for_value == 0 || ! maybe_last)
2143 && exp != error_mark_node
2144 && warn_unused_value)
2145 {
2146 if (TREE_SIDE_EFFECTS (exp))
2147 warn_if_unused_value (exp);
2148 else if (!VOID_TYPE_P (TREE_TYPE (exp)))
2149 warning ("%Hstatement with no effect", &emit_locus);
2150 }
2151
2152 /* If EXP is of function type and we are expanding statements for
2153 value, convert it to pointer-to-function. */
2154 if (want_value && TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE)
2155 exp = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (exp)), exp);
2156
2157 /* The call to `expand_expr' could cause last_expr_type and
2158 last_expr_value to get reset. Therefore, we set last_expr_value
2159 and last_expr_type *after* calling expand_expr. */
2160 value = expand_expr (exp, want_value ? NULL_RTX : const0_rtx,
2161 VOIDmode, 0);
2162 type = TREE_TYPE (exp);
2163
2164 /* If all we do is reference a volatile value in memory,
2165 copy it to a register to be sure it is actually touched. */
2166 if (value && GET_CODE (value) == MEM && TREE_THIS_VOLATILE (exp))
2167 {
2168 if (TYPE_MODE (type) == VOIDmode)
2169 ;
2170 else if (TYPE_MODE (type) != BLKmode)
2171 value = copy_to_reg (value);
2172 else
2173 {
2174 rtx lab = gen_label_rtx ();
2175
2176 /* Compare the value with itself to reference it. */
2177 emit_cmp_and_jump_insns (value, value, EQ,
2178 expand_expr (TYPE_SIZE (type),
2179 NULL_RTX, VOIDmode, 0),
2180 BLKmode, 0, lab);
2181 emit_label (lab);
2182 }
2183 }
2184
2185 /* If this expression is part of a ({...}) and is in memory, we may have
2186 to preserve temporaries. */
2187 preserve_temp_slots (value);
2188
2189 /* Free any temporaries used to evaluate this expression. Any temporary
2190 used as a result of this expression will already have been preserved
2191 above. */
2192 free_temp_slots ();
2193
2194 if (want_value)
2195 {
2196 last_expr_value = value;
2197 last_expr_type = type;
2198 }
2199
2200 emit_queue ();
2201 }
2202
2203 /* Warn if EXP contains any computations whose results are not used.
2204 Return 1 if a warning is printed; 0 otherwise. */
2205
2206 int
2207 warn_if_unused_value (tree exp)
2208 {
2209 if (TREE_USED (exp))
2210 return 0;
2211
2212 /* Don't warn about void constructs. This includes casting to void,
2213 void function calls, and statement expressions with a final cast
2214 to void. */
2215 if (VOID_TYPE_P (TREE_TYPE (exp)))
2216 return 0;
2217
2218 switch (TREE_CODE (exp))
2219 {
2220 case PREINCREMENT_EXPR:
2221 case POSTINCREMENT_EXPR:
2222 case PREDECREMENT_EXPR:
2223 case POSTDECREMENT_EXPR:
2224 case MODIFY_EXPR:
2225 case INIT_EXPR:
2226 case TARGET_EXPR:
2227 case CALL_EXPR:
2228 case RTL_EXPR:
2229 case TRY_CATCH_EXPR:
2230 case WITH_CLEANUP_EXPR:
2231 case EXIT_EXPR:
2232 return 0;
2233
2234 case BIND_EXPR:
2235 /* For a binding, warn if no side effect within it. */
2236 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2237
2238 case SAVE_EXPR:
2239 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2240
2241 case TRUTH_ORIF_EXPR:
2242 case TRUTH_ANDIF_EXPR:
2243 /* In && or ||, warn if 2nd operand has no side effect. */
2244 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2245
2246 case COMPOUND_EXPR:
2247 if (TREE_NO_UNUSED_WARNING (exp))
2248 return 0;
2249 if (warn_if_unused_value (TREE_OPERAND (exp, 0)))
2250 return 1;
2251 /* Let people do `(foo (), 0)' without a warning. */
2252 if (TREE_CONSTANT (TREE_OPERAND (exp, 1)))
2253 return 0;
2254 return warn_if_unused_value (TREE_OPERAND (exp, 1));
2255
2256 case NOP_EXPR:
2257 case CONVERT_EXPR:
2258 case NON_LVALUE_EXPR:
2259 /* Don't warn about conversions not explicit in the user's program. */
2260 if (TREE_NO_UNUSED_WARNING (exp))
2261 return 0;
2262 /* Assignment to a cast usually results in a cast of a modify.
2263 Don't complain about that. There can be an arbitrary number of
2264 casts before the modify, so we must loop until we find the first
2265 non-cast expression and then test to see if that is a modify. */
2266 {
2267 tree tem = TREE_OPERAND (exp, 0);
2268
2269 while (TREE_CODE (tem) == CONVERT_EXPR || TREE_CODE (tem) == NOP_EXPR)
2270 tem = TREE_OPERAND (tem, 0);
2271
2272 if (TREE_CODE (tem) == MODIFY_EXPR || TREE_CODE (tem) == INIT_EXPR
2273 || TREE_CODE (tem) == CALL_EXPR)
2274 return 0;
2275 }
2276 goto maybe_warn;
2277
2278 case INDIRECT_REF:
2279 /* Don't warn about automatic dereferencing of references, since
2280 the user cannot control it. */
2281 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == REFERENCE_TYPE)
2282 return warn_if_unused_value (TREE_OPERAND (exp, 0));
2283 /* Fall through. */
2284
2285 default:
2286 /* Referencing a volatile value is a side effect, so don't warn. */
2287 if ((DECL_P (exp)
2288 || TREE_CODE_CLASS (TREE_CODE (exp)) == 'r')
2289 && TREE_THIS_VOLATILE (exp))
2290 return 0;
2291
2292 /* If this is an expression which has no operands, there is no value
2293 to be unused. There are no such language-independent codes,
2294 but front ends may define such. */
2295 if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'e'
2296 && TREE_CODE_LENGTH (TREE_CODE (exp)) == 0)
2297 return 0;
2298
2299 maybe_warn:
2300 /* If this is an expression with side effects, don't warn. */
2301 if (TREE_SIDE_EFFECTS (exp))
2302 return 0;
2303
2304 warning ("%Hvalue computed is not used", &emit_locus);
2305 return 1;
2306 }
2307 }
2308
2309 /* Clear out the memory of the last expression evaluated. */
2310
2311 void
2312 clear_last_expr (void)
2313 {
2314 last_expr_type = NULL_TREE;
2315 last_expr_value = NULL_RTX;
2316 }
2317
2318 /* Begin a statement-expression, i.e., a series of statements which
2319 may return a value. Return the RTL_EXPR for this statement expr.
2320 The caller must save that value and pass it to
2321 expand_end_stmt_expr. If HAS_SCOPE is nonzero, temporaries created
2322 in the statement-expression are deallocated at the end of the
2323 expression. */
2324
2325 tree
2326 expand_start_stmt_expr (int has_scope)
2327 {
2328 tree t;
2329
2330 /* Make the RTL_EXPR node temporary, not momentary,
2331 so that rtl_expr_chain doesn't become garbage. */
2332 t = make_node (RTL_EXPR);
2333 do_pending_stack_adjust ();
2334 if (has_scope)
2335 start_sequence_for_rtl_expr (t);
2336 else
2337 start_sequence ();
2338 NO_DEFER_POP;
2339 expr_stmts_for_value++;
2340 return t;
2341 }
2342
2343 /* Restore the previous state at the end of a statement that returns a value.
2344 Returns a tree node representing the statement's value and the
2345 insns to compute the value.
2346
2347 The nodes of that expression have been freed by now, so we cannot use them.
2348 But we don't want to do that anyway; the expression has already been
2349 evaluated and now we just want to use the value. So generate a RTL_EXPR
2350 with the proper type and RTL value.
2351
2352 If the last substatement was not an expression,
2353 return something with type `void'. */
2354
2355 tree
2356 expand_end_stmt_expr (tree t)
2357 {
2358 OK_DEFER_POP;
2359
2360 if (! last_expr_value || ! last_expr_type)
2361 {
2362 last_expr_value = const0_rtx;
2363 last_expr_type = void_type_node;
2364 }
2365 else if (GET_CODE (last_expr_value) != REG && ! CONSTANT_P (last_expr_value))
2366 /* Remove any possible QUEUED. */
2367 last_expr_value = protect_from_queue (last_expr_value, 0);
2368
2369 emit_queue ();
2370
2371 TREE_TYPE (t) = last_expr_type;
2372 RTL_EXPR_RTL (t) = last_expr_value;
2373 RTL_EXPR_SEQUENCE (t) = get_insns ();
2374
2375 rtl_expr_chain = tree_cons (NULL_TREE, t, rtl_expr_chain);
2376
2377 end_sequence ();
2378
2379 /* Don't consider deleting this expr or containing exprs at tree level. */
2380 TREE_SIDE_EFFECTS (t) = 1;
2381 /* Propagate volatility of the actual RTL expr. */
2382 TREE_THIS_VOLATILE (t) = volatile_refs_p (last_expr_value);
2383
2384 clear_last_expr ();
2385 expr_stmts_for_value--;
2386
2387 return t;
2388 }
2389 \f
2390 /* Generate RTL for the start of an if-then. COND is the expression
2391 whose truth should be tested.
2392
2393 If EXITFLAG is nonzero, this conditional is visible to
2394 `exit_something'. */
2395
2396 void
2397 expand_start_cond (tree cond, int exitflag)
2398 {
2399 struct nesting *thiscond = ALLOC_NESTING ();
2400
2401 /* Make an entry on cond_stack for the cond we are entering. */
2402
2403 thiscond->desc = COND_NESTING;
2404 thiscond->next = cond_stack;
2405 thiscond->all = nesting_stack;
2406 thiscond->depth = ++nesting_depth;
2407 thiscond->data.cond.next_label = gen_label_rtx ();
2408 /* Before we encounter an `else', we don't need a separate exit label
2409 unless there are supposed to be exit statements
2410 to exit this conditional. */
2411 thiscond->exit_label = exitflag ? gen_label_rtx () : 0;
2412 thiscond->data.cond.endif_label = thiscond->exit_label;
2413 cond_stack = thiscond;
2414 nesting_stack = thiscond;
2415
2416 do_jump (cond, thiscond->data.cond.next_label, NULL_RTX);
2417 }
2418
2419 /* Generate RTL between then-clause and the elseif-clause
2420 of an if-then-elseif-.... */
2421
2422 void
2423 expand_start_elseif (tree cond)
2424 {
2425 if (cond_stack->data.cond.endif_label == 0)
2426 cond_stack->data.cond.endif_label = gen_label_rtx ();
2427 emit_jump (cond_stack->data.cond.endif_label);
2428 emit_label (cond_stack->data.cond.next_label);
2429 cond_stack->data.cond.next_label = gen_label_rtx ();
2430 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2431 }
2432
2433 /* Generate RTL between the then-clause and the else-clause
2434 of an if-then-else. */
2435
2436 void
2437 expand_start_else (void)
2438 {
2439 if (cond_stack->data.cond.endif_label == 0)
2440 cond_stack->data.cond.endif_label = gen_label_rtx ();
2441
2442 emit_jump (cond_stack->data.cond.endif_label);
2443 emit_label (cond_stack->data.cond.next_label);
2444 cond_stack->data.cond.next_label = 0; /* No more _else or _elseif calls. */
2445 }
2446
2447 /* After calling expand_start_else, turn this "else" into an "else if"
2448 by providing another condition. */
2449
2450 void
2451 expand_elseif (tree cond)
2452 {
2453 cond_stack->data.cond.next_label = gen_label_rtx ();
2454 do_jump (cond, cond_stack->data.cond.next_label, NULL_RTX);
2455 }
2456
2457 /* Generate RTL for the end of an if-then.
2458 Pop the record for it off of cond_stack. */
2459
2460 void
2461 expand_end_cond (void)
2462 {
2463 struct nesting *thiscond = cond_stack;
2464
2465 do_pending_stack_adjust ();
2466 if (thiscond->data.cond.next_label)
2467 emit_label (thiscond->data.cond.next_label);
2468 if (thiscond->data.cond.endif_label)
2469 emit_label (thiscond->data.cond.endif_label);
2470
2471 POPSTACK (cond_stack);
2472 clear_last_expr ();
2473 }
2474 \f
2475 /* Generate RTL for the start of a loop. EXIT_FLAG is nonzero if this
2476 loop should be exited by `exit_something'. This is a loop for which
2477 `expand_continue' will jump to the top of the loop.
2478
2479 Make an entry on loop_stack to record the labels associated with
2480 this loop. */
2481
2482 struct nesting *
2483 expand_start_loop (int exit_flag)
2484 {
2485 struct nesting *thisloop = ALLOC_NESTING ();
2486
2487 /* Make an entry on loop_stack for the loop we are entering. */
2488
2489 thisloop->desc = LOOP_NESTING;
2490 thisloop->next = loop_stack;
2491 thisloop->all = nesting_stack;
2492 thisloop->depth = ++nesting_depth;
2493 thisloop->data.loop.start_label = gen_label_rtx ();
2494 thisloop->data.loop.end_label = gen_label_rtx ();
2495 thisloop->data.loop.continue_label = thisloop->data.loop.start_label;
2496 thisloop->exit_label = exit_flag ? thisloop->data.loop.end_label : 0;
2497 loop_stack = thisloop;
2498 nesting_stack = thisloop;
2499
2500 do_pending_stack_adjust ();
2501 emit_queue ();
2502 emit_note (NOTE_INSN_LOOP_BEG);
2503 emit_label (thisloop->data.loop.start_label);
2504
2505 return thisloop;
2506 }
2507
2508 /* Like expand_start_loop but for a loop where the continuation point
2509 (for expand_continue_loop) will be specified explicitly. */
2510
2511 struct nesting *
2512 expand_start_loop_continue_elsewhere (int exit_flag)
2513 {
2514 struct nesting *thisloop = expand_start_loop (exit_flag);
2515 loop_stack->data.loop.continue_label = gen_label_rtx ();
2516 return thisloop;
2517 }
2518
2519 /* Begin a null, aka do { } while (0) "loop". But since the contents
2520 of said loop can still contain a break, we must frob the loop nest. */
2521
2522 struct nesting *
2523 expand_start_null_loop (void)
2524 {
2525 struct nesting *thisloop = ALLOC_NESTING ();
2526
2527 /* Make an entry on loop_stack for the loop we are entering. */
2528
2529 thisloop->desc = LOOP_NESTING;
2530 thisloop->next = loop_stack;
2531 thisloop->all = nesting_stack;
2532 thisloop->depth = ++nesting_depth;
2533 thisloop->data.loop.start_label = emit_note (NOTE_INSN_DELETED);
2534 thisloop->data.loop.end_label = gen_label_rtx ();
2535 thisloop->data.loop.continue_label = thisloop->data.loop.end_label;
2536 thisloop->exit_label = thisloop->data.loop.end_label;
2537 loop_stack = thisloop;
2538 nesting_stack = thisloop;
2539
2540 return thisloop;
2541 }
2542
2543 /* Specify the continuation point for a loop started with
2544 expand_start_loop_continue_elsewhere.
2545 Use this at the point in the code to which a continue statement
2546 should jump. */
2547
2548 void
2549 expand_loop_continue_here (void)
2550 {
2551 do_pending_stack_adjust ();
2552 emit_note (NOTE_INSN_LOOP_CONT);
2553 emit_label (loop_stack->data.loop.continue_label);
2554 }
2555
2556 /* Finish a loop. Generate a jump back to the top and the loop-exit label.
2557 Pop the block off of loop_stack. */
2558
2559 void
2560 expand_end_loop (void)
2561 {
2562 rtx start_label = loop_stack->data.loop.start_label;
2563 rtx etc_note;
2564 int eh_regions, debug_blocks;
2565 bool empty_test;
2566
2567 /* Mark the continue-point at the top of the loop if none elsewhere. */
2568 if (start_label == loop_stack->data.loop.continue_label)
2569 emit_note_before (NOTE_INSN_LOOP_CONT, start_label);
2570
2571 do_pending_stack_adjust ();
2572
2573 /* If the loop starts with a loop exit, roll that to the end where
2574 it will optimize together with the jump back.
2575
2576 If the loop presently looks like this (in pseudo-C):
2577
2578 LOOP_BEG
2579 start_label:
2580 if (test) goto end_label;
2581 LOOP_END_TOP_COND
2582 body;
2583 goto start_label;
2584 end_label:
2585
2586 transform it to look like:
2587
2588 LOOP_BEG
2589 goto start_label;
2590 top_label:
2591 body;
2592 start_label:
2593 if (test) goto end_label;
2594 goto top_label;
2595 end_label:
2596
2597 We rely on the presence of NOTE_INSN_LOOP_END_TOP_COND to mark
2598 the end of the entry conditional. Without this, our lexical scan
2599 can't tell the difference between an entry conditional and a
2600 body conditional that exits the loop. Mistaking the two means
2601 that we can misplace the NOTE_INSN_LOOP_CONT note, which can
2602 screw up loop unrolling.
2603
2604 Things will be oh so much better when loop optimization is done
2605 off of a proper control flow graph... */
2606
2607 /* Scan insns from the top of the loop looking for the END_TOP_COND note. */
2608
2609 empty_test = true;
2610 eh_regions = debug_blocks = 0;
2611 for (etc_note = start_label; etc_note ; etc_note = NEXT_INSN (etc_note))
2612 if (GET_CODE (etc_note) == NOTE)
2613 {
2614 if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_LOOP_END_TOP_COND)
2615 break;
2616
2617 /* We must not walk into a nested loop. */
2618 else if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_LOOP_BEG)
2619 {
2620 etc_note = NULL_RTX;
2621 break;
2622 }
2623
2624 /* At the same time, scan for EH region notes, as we don't want
2625 to scrog region nesting. This shouldn't happen, but... */
2626 else if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_EH_REGION_BEG)
2627 eh_regions++;
2628 else if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_EH_REGION_END)
2629 {
2630 if (--eh_regions < 0)
2631 /* We've come to the end of an EH region, but never saw the
2632 beginning of that region. That means that an EH region
2633 begins before the top of the loop, and ends in the middle
2634 of it. The existence of such a situation violates a basic
2635 assumption in this code, since that would imply that even
2636 when EH_REGIONS is zero, we might move code out of an
2637 exception region. */
2638 abort ();
2639 }
2640
2641 /* Likewise for debug scopes. In this case we'll either (1) move
2642 all of the notes if they are properly nested or (2) leave the
2643 notes alone and only rotate the loop at high optimization
2644 levels when we expect to scrog debug info. */
2645 else if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_BLOCK_BEG)
2646 debug_blocks++;
2647 else if (NOTE_LINE_NUMBER (etc_note) == NOTE_INSN_BLOCK_END)
2648 debug_blocks--;
2649 }
2650 else if (INSN_P (etc_note))
2651 empty_test = false;
2652
2653 if (etc_note
2654 && optimize
2655 && ! empty_test
2656 && eh_regions == 0
2657 && (debug_blocks == 0 || optimize >= 2)
2658 && NEXT_INSN (etc_note) != NULL_RTX
2659 && ! any_condjump_p (get_last_insn ()))
2660 {
2661 /* We found one. Move everything from START to ETC to the end
2662 of the loop, and add a jump from the top of the loop. */
2663 rtx top_label = gen_label_rtx ();
2664 rtx start_move = start_label;
2665
2666 /* If the start label is preceded by a NOTE_INSN_LOOP_CONT note,
2667 then we want to move this note also. */
2668 if (GET_CODE (PREV_INSN (start_move)) == NOTE
2669 && NOTE_LINE_NUMBER (PREV_INSN (start_move)) == NOTE_INSN_LOOP_CONT)
2670 start_move = PREV_INSN (start_move);
2671
2672 emit_label_before (top_label, start_move);
2673
2674 /* Actually move the insns. If the debug scopes are nested, we
2675 can move everything at once. Otherwise we have to move them
2676 one by one and squeeze out the block notes. */
2677 if (debug_blocks == 0)
2678 reorder_insns (start_move, etc_note, get_last_insn ());
2679 else
2680 {
2681 rtx insn, next_insn;
2682 for (insn = start_move; insn; insn = next_insn)
2683 {
2684 /* Figure out which insn comes after this one. We have
2685 to do this before we move INSN. */
2686 next_insn = (insn == etc_note ? NULL : NEXT_INSN (insn));
2687
2688 if (GET_CODE (insn) == NOTE
2689 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
2690 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
2691 continue;
2692
2693 reorder_insns (insn, insn, get_last_insn ());
2694 }
2695 }
2696
2697 /* Add the jump from the top of the loop. */
2698 emit_jump_insn_before (gen_jump (start_label), top_label);
2699 emit_barrier_before (top_label);
2700 start_label = top_label;
2701 }
2702
2703 emit_jump (start_label);
2704 emit_note (NOTE_INSN_LOOP_END);
2705 emit_label (loop_stack->data.loop.end_label);
2706
2707 POPSTACK (loop_stack);
2708
2709 clear_last_expr ();
2710 }
2711
2712 /* Finish a null loop, aka do { } while (0). */
2713
2714 void
2715 expand_end_null_loop (void)
2716 {
2717 do_pending_stack_adjust ();
2718 emit_label (loop_stack->data.loop.end_label);
2719
2720 POPSTACK (loop_stack);
2721
2722 clear_last_expr ();
2723 }
2724
2725 /* Generate a jump to the current loop's continue-point.
2726 This is usually the top of the loop, but may be specified
2727 explicitly elsewhere. If not currently inside a loop,
2728 return 0 and do nothing; caller will print an error message. */
2729
2730 int
2731 expand_continue_loop (struct nesting *whichloop)
2732 {
2733 /* Emit information for branch prediction. */
2734 rtx note;
2735
2736 if (flag_guess_branch_prob)
2737 {
2738 note = emit_note (NOTE_INSN_PREDICTION);
2739 NOTE_PREDICTION (note) = NOTE_PREDICT (PRED_CONTINUE, IS_TAKEN);
2740 }
2741 clear_last_expr ();
2742 if (whichloop == 0)
2743 whichloop = loop_stack;
2744 if (whichloop == 0)
2745 return 0;
2746 expand_goto_internal (NULL_TREE, whichloop->data.loop.continue_label,
2747 NULL_RTX);
2748 return 1;
2749 }
2750
2751 /* Generate a jump to exit the current loop. If not currently inside a loop,
2752 return 0 and do nothing; caller will print an error message. */
2753
2754 int
2755 expand_exit_loop (struct nesting *whichloop)
2756 {
2757 clear_last_expr ();
2758 if (whichloop == 0)
2759 whichloop = loop_stack;
2760 if (whichloop == 0)
2761 return 0;
2762 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label, NULL_RTX);
2763 return 1;
2764 }
2765
2766 /* Generate a conditional jump to exit the current loop if COND
2767 evaluates to zero. If not currently inside a loop,
2768 return 0 and do nothing; caller will print an error message. */
2769
2770 int
2771 expand_exit_loop_if_false (struct nesting *whichloop, tree cond)
2772 {
2773 rtx label;
2774 clear_last_expr ();
2775
2776 if (whichloop == 0)
2777 whichloop = loop_stack;
2778 if (whichloop == 0)
2779 return 0;
2780
2781 if (integer_nonzerop (cond))
2782 return 1;
2783 if (integer_zerop (cond))
2784 return expand_exit_loop (whichloop);
2785
2786 /* Check if we definitely won't need a fixup. */
2787 if (whichloop == nesting_stack)
2788 {
2789 jumpifnot (cond, whichloop->data.loop.end_label);
2790 return 1;
2791 }
2792
2793 /* In order to handle fixups, we actually create a conditional jump
2794 around an unconditional branch to exit the loop. If fixups are
2795 necessary, they go before the unconditional branch. */
2796
2797 label = gen_label_rtx ();
2798 jumpif (cond, label);
2799 expand_goto_internal (NULL_TREE, whichloop->data.loop.end_label,
2800 NULL_RTX);
2801 emit_label (label);
2802
2803 return 1;
2804 }
2805
2806 /* Like expand_exit_loop_if_false except also emit a note marking
2807 the end of the conditional. Should only be used immediately
2808 after expand_loop_start. */
2809
2810 int
2811 expand_exit_loop_top_cond (struct nesting *whichloop, tree cond)
2812 {
2813 if (! expand_exit_loop_if_false (whichloop, cond))
2814 return 0;
2815
2816 emit_note (NOTE_INSN_LOOP_END_TOP_COND);
2817 return 1;
2818 }
2819
2820 /* Return nonzero if we should preserve sub-expressions as separate
2821 pseudos. We never do so if we aren't optimizing. We always do so
2822 if -fexpensive-optimizations.
2823
2824 Otherwise, we only do so if we are in the "early" part of a loop. I.e.,
2825 the loop may still be a small one. */
2826
2827 int
2828 preserve_subexpressions_p (void)
2829 {
2830 rtx insn;
2831
2832 if (flag_expensive_optimizations)
2833 return 1;
2834
2835 if (optimize == 0 || cfun == 0 || cfun->stmt == 0 || loop_stack == 0)
2836 return 0;
2837
2838 insn = get_last_insn_anywhere ();
2839
2840 return (insn
2841 && (INSN_UID (insn) - INSN_UID (loop_stack->data.loop.start_label)
2842 < n_non_fixed_regs * 3));
2843
2844 }
2845
2846 /* Generate a jump to exit the current loop, conditional, binding contour
2847 or case statement. Not all such constructs are visible to this function,
2848 only those started with EXIT_FLAG nonzero. Individual languages use
2849 the EXIT_FLAG parameter to control which kinds of constructs you can
2850 exit this way.
2851
2852 If not currently inside anything that can be exited,
2853 return 0 and do nothing; caller will print an error message. */
2854
2855 int
2856 expand_exit_something (void)
2857 {
2858 struct nesting *n;
2859 clear_last_expr ();
2860 for (n = nesting_stack; n; n = n->all)
2861 if (n->exit_label != 0)
2862 {
2863 expand_goto_internal (NULL_TREE, n->exit_label, NULL_RTX);
2864 return 1;
2865 }
2866
2867 return 0;
2868 }
2869 \f
2870 /* Generate RTL to return from the current function, with no value.
2871 (That is, we do not do anything about returning any value.) */
2872
2873 void
2874 expand_null_return (void)
2875 {
2876 rtx last_insn;
2877
2878 last_insn = get_last_insn ();
2879
2880 /* If this function was declared to return a value, but we
2881 didn't, clobber the return registers so that they are not
2882 propagated live to the rest of the function. */
2883 clobber_return_register ();
2884
2885 expand_null_return_1 (last_insn);
2886 }
2887
2888 /* Generate RTL to return directly from the current function.
2889 (That is, we bypass any return value.) */
2890
2891 void
2892 expand_naked_return (void)
2893 {
2894 rtx last_insn, end_label;
2895
2896 last_insn = get_last_insn ();
2897 end_label = naked_return_label;
2898
2899 clear_pending_stack_adjust ();
2900 do_pending_stack_adjust ();
2901 clear_last_expr ();
2902
2903 if (end_label == 0)
2904 end_label = naked_return_label = gen_label_rtx ();
2905 expand_goto_internal (NULL_TREE, end_label, last_insn);
2906 }
2907
2908 /* Try to guess whether the value of return means error code. */
2909 static enum br_predictor
2910 return_prediction (rtx val)
2911 {
2912 /* Different heuristics for pointers and scalars. */
2913 if (POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
2914 {
2915 /* NULL is usually not returned. */
2916 if (val == const0_rtx)
2917 return PRED_NULL_RETURN;
2918 }
2919 else
2920 {
2921 /* Negative return values are often used to indicate
2922 errors. */
2923 if (GET_CODE (val) == CONST_INT
2924 && INTVAL (val) < 0)
2925 return PRED_NEGATIVE_RETURN;
2926 /* Constant return values are also usually erors,
2927 zero/one often mean booleans so exclude them from the
2928 heuristics. */
2929 if (CONSTANT_P (val)
2930 && (val != const0_rtx && val != const1_rtx))
2931 return PRED_CONST_RETURN;
2932 }
2933 return PRED_NO_PREDICTION;
2934 }
2935
2936
2937 /* If the current function returns values in the most significant part
2938 of a register, shift return value VAL appropriately. The mode of
2939 the function's return type is known not to be BLKmode. */
2940
2941 static rtx
2942 shift_return_value (rtx val)
2943 {
2944 tree type;
2945
2946 type = TREE_TYPE (DECL_RESULT (current_function_decl));
2947 if (targetm.calls.return_in_msb (type))
2948 {
2949 rtx target;
2950 HOST_WIDE_INT shift;
2951
2952 target = DECL_RTL (DECL_RESULT (current_function_decl));
2953 shift = (GET_MODE_BITSIZE (GET_MODE (target))
2954 - BITS_PER_UNIT * int_size_in_bytes (type));
2955 if (shift > 0)
2956 val = expand_binop (GET_MODE (target), ashl_optab,
2957 gen_lowpart (GET_MODE (target), val),
2958 GEN_INT (shift), target, 1, OPTAB_WIDEN);
2959 }
2960 return val;
2961 }
2962
2963
2964 /* Generate RTL to return from the current function, with value VAL. */
2965
2966 static void
2967 expand_value_return (rtx val)
2968 {
2969 rtx last_insn;
2970 rtx return_reg;
2971 enum br_predictor pred;
2972
2973 if (flag_guess_branch_prob
2974 && (pred = return_prediction (val)) != PRED_NO_PREDICTION)
2975 {
2976 /* Emit information for branch prediction. */
2977 rtx note;
2978
2979 note = emit_note (NOTE_INSN_PREDICTION);
2980
2981 NOTE_PREDICTION (note) = NOTE_PREDICT (pred, NOT_TAKEN);
2982
2983 }
2984
2985 last_insn = get_last_insn ();
2986 return_reg = DECL_RTL (DECL_RESULT (current_function_decl));
2987
2988 /* Copy the value to the return location
2989 unless it's already there. */
2990
2991 if (return_reg != val)
2992 {
2993 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
2994 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
2995 {
2996 int unsignedp = TREE_UNSIGNED (type);
2997 enum machine_mode old_mode
2998 = DECL_MODE (DECL_RESULT (current_function_decl));
2999 enum machine_mode mode
3000 = promote_mode (type, old_mode, &unsignedp, 1);
3001
3002 if (mode != old_mode)
3003 val = convert_modes (mode, old_mode, val, unsignedp);
3004 }
3005 if (GET_CODE (return_reg) == PARALLEL)
3006 emit_group_load (return_reg, val, type, int_size_in_bytes (type));
3007 else
3008 emit_move_insn (return_reg, val);
3009 }
3010
3011 expand_null_return_1 (last_insn);
3012 }
3013
3014 /* Output a return with no value. If LAST_INSN is nonzero,
3015 pretend that the return takes place after LAST_INSN. */
3016
3017 static void
3018 expand_null_return_1 (rtx last_insn)
3019 {
3020 rtx end_label = cleanup_label ? cleanup_label : return_label;
3021
3022 clear_pending_stack_adjust ();
3023 do_pending_stack_adjust ();
3024 clear_last_expr ();
3025
3026 if (end_label == 0)
3027 end_label = return_label = gen_label_rtx ();
3028 expand_goto_internal (NULL_TREE, end_label, last_insn);
3029 }
3030 \f
3031 /* Generate RTL to evaluate the expression RETVAL and return it
3032 from the current function. */
3033
3034 void
3035 expand_return (tree retval)
3036 {
3037 /* If there are any cleanups to be performed, then they will
3038 be inserted following LAST_INSN. It is desirable
3039 that the last_insn, for such purposes, should be the
3040 last insn before computing the return value. Otherwise, cleanups
3041 which call functions can clobber the return value. */
3042 /* ??? rms: I think that is erroneous, because in C++ it would
3043 run destructors on variables that might be used in the subsequent
3044 computation of the return value. */
3045 rtx last_insn = 0;
3046 rtx result_rtl;
3047 rtx val = 0;
3048 tree retval_rhs;
3049
3050 /* If function wants no value, give it none. */
3051 if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
3052 {
3053 expand_expr (retval, NULL_RTX, VOIDmode, 0);
3054 emit_queue ();
3055 expand_null_return ();
3056 return;
3057 }
3058
3059 if (retval == error_mark_node)
3060 {
3061 /* Treat this like a return of no value from a function that
3062 returns a value. */
3063 expand_null_return ();
3064 return;
3065 }
3066 else if (TREE_CODE (retval) == RESULT_DECL)
3067 retval_rhs = retval;
3068 else if ((TREE_CODE (retval) == MODIFY_EXPR || TREE_CODE (retval) == INIT_EXPR)
3069 && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
3070 retval_rhs = TREE_OPERAND (retval, 1);
3071 else if (VOID_TYPE_P (TREE_TYPE (retval)))
3072 /* Recognize tail-recursive call to void function. */
3073 retval_rhs = retval;
3074 else
3075 retval_rhs = NULL_TREE;
3076
3077 last_insn = get_last_insn ();
3078
3079 /* Distribute return down conditional expr if either of the sides
3080 may involve tail recursion (see test below). This enhances the number
3081 of tail recursions we see. Don't do this always since it can produce
3082 sub-optimal code in some cases and we distribute assignments into
3083 conditional expressions when it would help. */
3084
3085 if (optimize && retval_rhs != 0
3086 && frame_offset == 0
3087 && TREE_CODE (retval_rhs) == COND_EXPR
3088 && (TREE_CODE (TREE_OPERAND (retval_rhs, 1)) == CALL_EXPR
3089 || TREE_CODE (TREE_OPERAND (retval_rhs, 2)) == CALL_EXPR))
3090 {
3091 rtx label = gen_label_rtx ();
3092 tree expr;
3093
3094 do_jump (TREE_OPERAND (retval_rhs, 0), label, NULL_RTX);
3095 start_cleanup_deferral ();
3096 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
3097 DECL_RESULT (current_function_decl),
3098 TREE_OPERAND (retval_rhs, 1));
3099 TREE_SIDE_EFFECTS (expr) = 1;
3100 expand_return (expr);
3101 emit_label (label);
3102
3103 expr = build (MODIFY_EXPR, TREE_TYPE (TREE_TYPE (current_function_decl)),
3104 DECL_RESULT (current_function_decl),
3105 TREE_OPERAND (retval_rhs, 2));
3106 TREE_SIDE_EFFECTS (expr) = 1;
3107 expand_return (expr);
3108 end_cleanup_deferral ();
3109 return;
3110 }
3111
3112 result_rtl = DECL_RTL (DECL_RESULT (current_function_decl));
3113
3114 /* If the result is an aggregate that is being returned in one (or more)
3115 registers, load the registers here. The compiler currently can't handle
3116 copying a BLKmode value into registers. We could put this code in a
3117 more general area (for use by everyone instead of just function
3118 call/return), but until this feature is generally usable it is kept here
3119 (and in expand_call). The value must go into a pseudo in case there
3120 are cleanups that will clobber the real return register. */
3121
3122 if (retval_rhs != 0
3123 && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode
3124 && GET_CODE (result_rtl) == REG)
3125 {
3126 int i;
3127 unsigned HOST_WIDE_INT bitpos, xbitpos;
3128 unsigned HOST_WIDE_INT padding_correction = 0;
3129 unsigned HOST_WIDE_INT bytes
3130 = int_size_in_bytes (TREE_TYPE (retval_rhs));
3131 int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
3132 unsigned int bitsize
3133 = MIN (TYPE_ALIGN (TREE_TYPE (retval_rhs)), BITS_PER_WORD);
3134 rtx *result_pseudos = alloca (sizeof (rtx) * n_regs);
3135 rtx result_reg, src = NULL_RTX, dst = NULL_RTX;
3136 rtx result_val = expand_expr (retval_rhs, NULL_RTX, VOIDmode, 0);
3137 enum machine_mode tmpmode, result_reg_mode;
3138
3139 if (bytes == 0)
3140 {
3141 expand_null_return ();
3142 return;
3143 }
3144
3145 /* If the structure doesn't take up a whole number of words, see
3146 whether the register value should be padded on the left or on
3147 the right. Set PADDING_CORRECTION to the number of padding
3148 bits needed on the left side.
3149
3150 In most ABIs, the structure will be returned at the least end of
3151 the register, which translates to right padding on little-endian
3152 targets and left padding on big-endian targets. The opposite
3153 holds if the structure is returned at the most significant
3154 end of the register. */
3155 if (bytes % UNITS_PER_WORD != 0
3156 && (targetm.calls.return_in_msb (TREE_TYPE (retval_rhs))
3157 ? !BYTES_BIG_ENDIAN
3158 : BYTES_BIG_ENDIAN))
3159 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
3160 * BITS_PER_UNIT));
3161
3162 /* Copy the structure BITSIZE bits at a time. */
3163 for (bitpos = 0, xbitpos = padding_correction;
3164 bitpos < bytes * BITS_PER_UNIT;
3165 bitpos += bitsize, xbitpos += bitsize)
3166 {
3167 /* We need a new destination pseudo each time xbitpos is
3168 on a word boundary and when xbitpos == padding_correction
3169 (the first time through). */
3170 if (xbitpos % BITS_PER_WORD == 0
3171 || xbitpos == padding_correction)
3172 {
3173 /* Generate an appropriate register. */
3174 dst = gen_reg_rtx (word_mode);
3175 result_pseudos[xbitpos / BITS_PER_WORD] = dst;
3176
3177 /* Clear the destination before we move anything into it. */
3178 emit_move_insn (dst, CONST0_RTX (GET_MODE (dst)));
3179 }
3180
3181 /* We need a new source operand each time bitpos is on a word
3182 boundary. */
3183 if (bitpos % BITS_PER_WORD == 0)
3184 src = operand_subword_force (result_val,
3185 bitpos / BITS_PER_WORD,
3186 BLKmode);
3187
3188 /* Use bitpos for the source extraction (left justified) and
3189 xbitpos for the destination store (right justified). */
3190 store_bit_field (dst, bitsize, xbitpos % BITS_PER_WORD, word_mode,
3191 extract_bit_field (src, bitsize,
3192 bitpos % BITS_PER_WORD, 1,
3193 NULL_RTX, word_mode, word_mode,
3194 BITS_PER_WORD),
3195 BITS_PER_WORD);
3196 }
3197
3198 tmpmode = GET_MODE (result_rtl);
3199 if (tmpmode == BLKmode)
3200 {
3201 /* Find the smallest integer mode large enough to hold the
3202 entire structure and use that mode instead of BLKmode
3203 on the USE insn for the return register. */
3204 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3205 tmpmode != VOIDmode;
3206 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
3207 /* Have we found a large enough mode? */
3208 if (GET_MODE_SIZE (tmpmode) >= bytes)
3209 break;
3210
3211 /* No suitable mode found. */
3212 if (tmpmode == VOIDmode)
3213 abort ();
3214
3215 PUT_MODE (result_rtl, tmpmode);
3216 }
3217
3218 if (GET_MODE_SIZE (tmpmode) < GET_MODE_SIZE (word_mode))
3219 result_reg_mode = word_mode;
3220 else
3221 result_reg_mode = tmpmode;
3222 result_reg = gen_reg_rtx (result_reg_mode);
3223
3224 emit_queue ();
3225 for (i = 0; i < n_regs; i++)
3226 emit_move_insn (operand_subword (result_reg, i, 0, result_reg_mode),
3227 result_pseudos[i]);
3228
3229 if (tmpmode != result_reg_mode)
3230 result_reg = gen_lowpart (tmpmode, result_reg);
3231
3232 expand_value_return (result_reg);
3233 }
3234 else if (retval_rhs != 0
3235 && !VOID_TYPE_P (TREE_TYPE (retval_rhs))
3236 && (GET_CODE (result_rtl) == REG
3237 || (GET_CODE (result_rtl) == PARALLEL)))
3238 {
3239 /* Calculate the return value into a temporary (usually a pseudo
3240 reg). */
3241 tree ot = TREE_TYPE (DECL_RESULT (current_function_decl));
3242 tree nt = build_qualified_type (ot, TYPE_QUALS (ot) | TYPE_QUAL_CONST);
3243
3244 val = assign_temp (nt, 0, 0, 1);
3245 val = expand_expr (retval_rhs, val, GET_MODE (val), 0);
3246 val = force_not_mem (val);
3247 emit_queue ();
3248 /* Return the calculated value, doing cleanups first. */
3249 expand_value_return (shift_return_value (val));
3250 }
3251 else
3252 {
3253 /* No cleanups or no hard reg used;
3254 calculate value into hard return reg. */
3255 expand_expr (retval, const0_rtx, VOIDmode, 0);
3256 emit_queue ();
3257 expand_value_return (result_rtl);
3258 }
3259 }
3260 \f
3261 /* Attempt to optimize a potential tail recursion call into a goto.
3262 ARGUMENTS are the arguments to a CALL_EXPR; LAST_INSN indicates
3263 where to place the jump to the tail recursion label.
3264
3265 Return TRUE if the call was optimized into a goto. */
3266
3267 int
3268 optimize_tail_recursion (tree arguments, rtx last_insn)
3269 {
3270 /* Finish checking validity, and if valid emit code to set the
3271 argument variables for the new call. */
3272 if (tail_recursion_args (arguments, DECL_ARGUMENTS (current_function_decl)))
3273 {
3274 if (tail_recursion_label == 0)
3275 {
3276 tail_recursion_label = gen_label_rtx ();
3277 emit_label_after (tail_recursion_label,
3278 tail_recursion_reentry);
3279 }
3280 emit_queue ();
3281 expand_goto_internal (NULL_TREE, tail_recursion_label, last_insn);
3282 emit_barrier ();
3283 return 1;
3284 }
3285 return 0;
3286 }
3287
3288 /* Emit code to alter this function's formal parms for a tail-recursive call.
3289 ACTUALS is a list of actual parameter expressions (chain of TREE_LISTs).
3290 FORMALS is the chain of decls of formals.
3291 Return 1 if this can be done;
3292 otherwise return 0 and do not emit any code. */
3293
3294 static int
3295 tail_recursion_args (tree actuals, tree formals)
3296 {
3297 tree a = actuals, f = formals;
3298 int i;
3299 rtx *argvec;
3300
3301 /* Check that number and types of actuals are compatible
3302 with the formals. This is not always true in valid C code.
3303 Also check that no formal needs to be addressable
3304 and that all formals are scalars. */
3305
3306 /* Also count the args. */
3307
3308 for (a = actuals, f = formals, i = 0; a && f; a = TREE_CHAIN (a), f = TREE_CHAIN (f), i++)
3309 {
3310 if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_VALUE (a)))
3311 != TYPE_MAIN_VARIANT (TREE_TYPE (f)))
3312 return 0;
3313 if (GET_CODE (DECL_RTL (f)) != REG || DECL_MODE (f) == BLKmode)
3314 return 0;
3315 }
3316 if (a != 0 || f != 0)
3317 return 0;
3318
3319 /* Compute all the actuals. */
3320
3321 argvec = alloca (i * sizeof (rtx));
3322
3323 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3324 argvec[i] = expand_expr (TREE_VALUE (a), NULL_RTX, VOIDmode, 0);
3325
3326 /* Find which actual values refer to current values of previous formals.
3327 Copy each of them now, before any formal is changed. */
3328
3329 for (a = actuals, i = 0; a; a = TREE_CHAIN (a), i++)
3330 {
3331 int copy = 0;
3332 int j;
3333 for (f = formals, j = 0; j < i; f = TREE_CHAIN (f), j++)
3334 if (reg_mentioned_p (DECL_RTL (f), argvec[i]))
3335 {
3336 copy = 1;
3337 break;
3338 }
3339 if (copy)
3340 argvec[i] = copy_to_reg (argvec[i]);
3341 }
3342
3343 /* Store the values of the actuals into the formals. */
3344
3345 for (f = formals, a = actuals, i = 0; f;
3346 f = TREE_CHAIN (f), a = TREE_CHAIN (a), i++)
3347 {
3348 if (GET_MODE (DECL_RTL (f)) == GET_MODE (argvec[i]))
3349 emit_move_insn (DECL_RTL (f), argvec[i]);
3350 else
3351 {
3352 rtx tmp = argvec[i];
3353 int unsignedp = TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (a)));
3354 promote_mode(TREE_TYPE (TREE_VALUE (a)), GET_MODE (tmp),
3355 &unsignedp, 0);
3356 if (DECL_MODE (f) != GET_MODE (DECL_RTL (f)))
3357 {
3358 tmp = gen_reg_rtx (DECL_MODE (f));
3359 convert_move (tmp, argvec[i], unsignedp);
3360 }
3361 convert_move (DECL_RTL (f), tmp, unsignedp);
3362 }
3363 }
3364
3365 free_temp_slots ();
3366 return 1;
3367 }
3368 \f
3369 /* Generate the RTL code for entering a binding contour.
3370 The variables are declared one by one, by calls to `expand_decl'.
3371
3372 FLAGS is a bitwise or of the following flags:
3373
3374 1 - Nonzero if this construct should be visible to
3375 `exit_something'.
3376
3377 2 - Nonzero if this contour does not require a
3378 NOTE_INSN_BLOCK_BEG note. Virtually all calls from
3379 language-independent code should set this flag because they
3380 will not create corresponding BLOCK nodes. (There should be
3381 a one-to-one correspondence between NOTE_INSN_BLOCK_BEG notes
3382 and BLOCKs.) If this flag is set, MARK_ENDS should be zero
3383 when expand_end_bindings is called.
3384
3385 If we are creating a NOTE_INSN_BLOCK_BEG note, a BLOCK may
3386 optionally be supplied. If so, it becomes the NOTE_BLOCK for the
3387 note. */
3388
3389 void
3390 expand_start_bindings_and_block (int flags, tree block)
3391 {
3392 struct nesting *thisblock = ALLOC_NESTING ();
3393 rtx note;
3394 int exit_flag = ((flags & 1) != 0);
3395 int block_flag = ((flags & 2) == 0);
3396
3397 /* If a BLOCK is supplied, then the caller should be requesting a
3398 NOTE_INSN_BLOCK_BEG note. */
3399 if (!block_flag && block)
3400 abort ();
3401
3402 /* Create a note to mark the beginning of the block. */
3403 if (block_flag)
3404 {
3405 note = emit_note (NOTE_INSN_BLOCK_BEG);
3406 NOTE_BLOCK (note) = block;
3407 }
3408 else
3409 note = emit_note (NOTE_INSN_DELETED);
3410
3411 /* Make an entry on block_stack for the block we are entering. */
3412
3413 thisblock->desc = BLOCK_NESTING;
3414 thisblock->next = block_stack;
3415 thisblock->all = nesting_stack;
3416 thisblock->depth = ++nesting_depth;
3417 thisblock->data.block.stack_level = 0;
3418 thisblock->data.block.cleanups = 0;
3419 thisblock->data.block.exception_region = 0;
3420 thisblock->data.block.block_target_temp_slot_level = target_temp_slot_level;
3421
3422 thisblock->data.block.conditional_code = 0;
3423 thisblock->data.block.last_unconditional_cleanup = note;
3424 /* When we insert instructions after the last unconditional cleanup,
3425 we don't adjust last_insn. That means that a later add_insn will
3426 clobber the instructions we've just added. The easiest way to
3427 fix this is to just insert another instruction here, so that the
3428 instructions inserted after the last unconditional cleanup are
3429 never the last instruction. */
3430 emit_note (NOTE_INSN_DELETED);
3431
3432 if (block_stack
3433 && !(block_stack->data.block.cleanups == NULL_TREE
3434 && block_stack->data.block.outer_cleanups == NULL_TREE))
3435 thisblock->data.block.outer_cleanups
3436 = tree_cons (NULL_TREE, block_stack->data.block.cleanups,
3437 block_stack->data.block.outer_cleanups);
3438 else
3439 thisblock->data.block.outer_cleanups = 0;
3440 thisblock->data.block.label_chain = 0;
3441 thisblock->data.block.innermost_stack_block = stack_block_stack;
3442 thisblock->data.block.first_insn = note;
3443 thisblock->data.block.block_start_count = ++current_block_start_count;
3444 thisblock->exit_label = exit_flag ? gen_label_rtx () : 0;
3445 block_stack = thisblock;
3446 nesting_stack = thisblock;
3447
3448 /* Make a new level for allocating stack slots. */
3449 push_temp_slots ();
3450 }
3451
3452 /* Specify the scope of temporaries created by TARGET_EXPRs. Similar
3453 to CLEANUP_POINT_EXPR, but handles cases when a series of calls to
3454 expand_expr are made. After we end the region, we know that all
3455 space for all temporaries that were created by TARGET_EXPRs will be
3456 destroyed and their space freed for reuse. */
3457
3458 void
3459 expand_start_target_temps (void)
3460 {
3461 /* This is so that even if the result is preserved, the space
3462 allocated will be freed, as we know that it is no longer in use. */
3463 push_temp_slots ();
3464
3465 /* Start a new binding layer that will keep track of all cleanup
3466 actions to be performed. */
3467 expand_start_bindings (2);
3468
3469 target_temp_slot_level = temp_slot_level;
3470 }
3471
3472 void
3473 expand_end_target_temps (void)
3474 {
3475 expand_end_bindings (NULL_TREE, 0, 0);
3476
3477 /* This is so that even if the result is preserved, the space
3478 allocated will be freed, as we know that it is no longer in use. */
3479 pop_temp_slots ();
3480 }
3481
3482 /* Given a pointer to a BLOCK node return nonzero if (and only if) the node
3483 in question represents the outermost pair of curly braces (i.e. the "body
3484 block") of a function or method.
3485
3486 For any BLOCK node representing a "body block" of a function or method, the
3487 BLOCK_SUPERCONTEXT of the node will point to another BLOCK node which
3488 represents the outermost (function) scope for the function or method (i.e.
3489 the one which includes the formal parameters). The BLOCK_SUPERCONTEXT of
3490 *that* node in turn will point to the relevant FUNCTION_DECL node. */
3491
3492 int
3493 is_body_block (tree stmt)
3494 {
3495 if (lang_hooks.no_body_blocks)
3496 return 0;
3497
3498 if (TREE_CODE (stmt) == BLOCK)
3499 {
3500 tree parent = BLOCK_SUPERCONTEXT (stmt);
3501
3502 if (parent && TREE_CODE (parent) == BLOCK)
3503 {
3504 tree grandparent = BLOCK_SUPERCONTEXT (parent);
3505
3506 if (grandparent && TREE_CODE (grandparent) == FUNCTION_DECL)
3507 return 1;
3508 }
3509 }
3510
3511 return 0;
3512 }
3513
3514 /* True if we are currently emitting insns in an area of output code
3515 that is controlled by a conditional expression. This is used by
3516 the cleanup handling code to generate conditional cleanup actions. */
3517
3518 int
3519 conditional_context (void)
3520 {
3521 return block_stack && block_stack->data.block.conditional_code;
3522 }
3523
3524 /* Return an opaque pointer to the current nesting level, so frontend code
3525 can check its own sanity. */
3526
3527 struct nesting *
3528 current_nesting_level (void)
3529 {
3530 return cfun ? block_stack : 0;
3531 }
3532
3533 /* Emit a handler label for a nonlocal goto handler.
3534 Also emit code to store the handler label in SLOT before BEFORE_INSN. */
3535
3536 static rtx
3537 expand_nl_handler_label (rtx slot, rtx before_insn)
3538 {
3539 rtx insns;
3540 rtx handler_label = gen_label_rtx ();
3541
3542 /* Don't let cleanup_cfg delete the handler. */
3543 LABEL_PRESERVE_P (handler_label) = 1;
3544
3545 start_sequence ();
3546 emit_move_insn (slot, gen_rtx_LABEL_REF (Pmode, handler_label));
3547 insns = get_insns ();
3548 end_sequence ();
3549 emit_insn_before (insns, before_insn);
3550
3551 emit_label (handler_label);
3552
3553 return handler_label;
3554 }
3555
3556 /* Emit code to restore vital registers at the beginning of a nonlocal goto
3557 handler. */
3558 static void
3559 expand_nl_goto_receiver (void)
3560 {
3561 /* Clobber the FP when we get here, so we have to make sure it's
3562 marked as used by this function. */
3563 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
3564
3565 /* Mark the static chain as clobbered here so life information
3566 doesn't get messed up for it. */
3567 emit_insn (gen_rtx_CLOBBER (VOIDmode, static_chain_rtx));
3568
3569 #ifdef HAVE_nonlocal_goto
3570 if (! HAVE_nonlocal_goto)
3571 #endif
3572 /* First adjust our frame pointer to its actual value. It was
3573 previously set to the start of the virtual area corresponding to
3574 the stacked variables when we branched here and now needs to be
3575 adjusted to the actual hardware fp value.
3576
3577 Assignments are to virtual registers are converted by
3578 instantiate_virtual_regs into the corresponding assignment
3579 to the underlying register (fp in this case) that makes
3580 the original assignment true.
3581 So the following insn will actually be
3582 decrementing fp by STARTING_FRAME_OFFSET. */
3583 emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
3584
3585 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3586 if (fixed_regs[ARG_POINTER_REGNUM])
3587 {
3588 #ifdef ELIMINABLE_REGS
3589 /* If the argument pointer can be eliminated in favor of the
3590 frame pointer, we don't need to restore it. We assume here
3591 that if such an elimination is present, it can always be used.
3592 This is the case on all known machines; if we don't make this
3593 assumption, we do unnecessary saving on many machines. */
3594 static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS;
3595 size_t i;
3596
3597 for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
3598 if (elim_regs[i].from == ARG_POINTER_REGNUM
3599 && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
3600 break;
3601
3602 if (i == ARRAY_SIZE (elim_regs))
3603 #endif
3604 {
3605 /* Now restore our arg pointer from the address at which it
3606 was saved in our stack frame. */
3607 emit_move_insn (virtual_incoming_args_rtx,
3608 copy_to_reg (get_arg_pointer_save_area (cfun)));
3609 }
3610 }
3611 #endif
3612
3613 #ifdef HAVE_nonlocal_goto_receiver
3614 if (HAVE_nonlocal_goto_receiver)
3615 emit_insn (gen_nonlocal_goto_receiver ());
3616 #endif
3617
3618 /* @@@ This is a kludge. Not all machine descriptions define a blockage
3619 insn, but we must not allow the code we just generated to be reordered
3620 by scheduling. Specifically, the update of the frame pointer must
3621 happen immediately, not later. So emit an ASM_INPUT to act as blockage
3622 insn. */
3623 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
3624 }
3625
3626 /* Make handlers for nonlocal gotos taking place in the function calls in
3627 block THISBLOCK. */
3628
3629 static void
3630 expand_nl_goto_receivers (struct nesting *thisblock)
3631 {
3632 tree link;
3633 rtx afterward = gen_label_rtx ();
3634 rtx insns, slot;
3635 rtx label_list;
3636 int any_invalid;
3637
3638 /* Record the handler address in the stack slot for that purpose,
3639 during this block, saving and restoring the outer value. */
3640 if (thisblock->next != 0)
3641 for (slot = nonlocal_goto_handler_slots; slot; slot = XEXP (slot, 1))
3642 {
3643 rtx save_receiver = gen_reg_rtx (Pmode);
3644 emit_move_insn (XEXP (slot, 0), save_receiver);
3645
3646 start_sequence ();
3647 emit_move_insn (save_receiver, XEXP (slot, 0));
3648 insns = get_insns ();
3649 end_sequence ();
3650 emit_insn_before (insns, thisblock->data.block.first_insn);
3651 }
3652
3653 /* Jump around the handlers; they run only when specially invoked. */
3654 emit_jump (afterward);
3655
3656 /* Make a separate handler for each label. */
3657 link = nonlocal_labels;
3658 slot = nonlocal_goto_handler_slots;
3659 label_list = NULL_RTX;
3660 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3661 /* Skip any labels we shouldn't be able to jump to from here,
3662 we generate one special handler for all of them below which just calls
3663 abort. */
3664 if (! DECL_TOO_LATE (TREE_VALUE (link)))
3665 {
3666 rtx lab;
3667 lab = expand_nl_handler_label (XEXP (slot, 0),
3668 thisblock->data.block.first_insn);
3669 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3670
3671 expand_nl_goto_receiver ();
3672
3673 /* Jump to the "real" nonlocal label. */
3674 expand_goto (TREE_VALUE (link));
3675 }
3676
3677 /* A second pass over all nonlocal labels; this time we handle those
3678 we should not be able to jump to at this point. */
3679 link = nonlocal_labels;
3680 slot = nonlocal_goto_handler_slots;
3681 any_invalid = 0;
3682 for (; link; link = TREE_CHAIN (link), slot = XEXP (slot, 1))
3683 if (DECL_TOO_LATE (TREE_VALUE (link)))
3684 {
3685 rtx lab;
3686 lab = expand_nl_handler_label (XEXP (slot, 0),
3687 thisblock->data.block.first_insn);
3688 label_list = gen_rtx_EXPR_LIST (VOIDmode, lab, label_list);
3689 any_invalid = 1;
3690 }
3691
3692 if (any_invalid)
3693 {
3694 expand_nl_goto_receiver ();
3695 expand_builtin_trap ();
3696 }
3697
3698 nonlocal_goto_handler_labels = label_list;
3699 emit_label (afterward);
3700 }
3701
3702 /* Warn about any unused VARS (which may contain nodes other than
3703 VAR_DECLs, but such nodes are ignored). The nodes are connected
3704 via the TREE_CHAIN field. */
3705
3706 void
3707 warn_about_unused_variables (tree vars)
3708 {
3709 tree decl;
3710
3711 if (warn_unused_variable)
3712 for (decl = vars; decl; decl = TREE_CHAIN (decl))
3713 if (TREE_CODE (decl) == VAR_DECL
3714 && ! TREE_USED (decl)
3715 && ! DECL_IN_SYSTEM_HEADER (decl)
3716 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
3717 warning ("%Junused variable '%D'", decl, decl);
3718 }
3719
3720 /* Generate RTL code to terminate a binding contour.
3721
3722 VARS is the chain of VAR_DECL nodes for the variables bound in this
3723 contour. There may actually be other nodes in this chain, but any
3724 nodes other than VAR_DECLS are ignored.
3725
3726 MARK_ENDS is nonzero if we should put a note at the beginning
3727 and end of this binding contour.
3728
3729 DONT_JUMP_IN is positive if it is not valid to jump into this contour,
3730 zero if we can jump into this contour only if it does not have a saved
3731 stack level, and negative if we are not to check for invalid use of
3732 labels (because the front end does that). */
3733
3734 void
3735 expand_end_bindings (tree vars, int mark_ends, int dont_jump_in)
3736 {
3737 struct nesting *thisblock = block_stack;
3738
3739 /* If any of the variables in this scope were not used, warn the
3740 user. */
3741 warn_about_unused_variables (vars);
3742
3743 if (thisblock->exit_label)
3744 {
3745 do_pending_stack_adjust ();
3746 emit_label (thisblock->exit_label);
3747 }
3748
3749 /* If necessary, make handlers for nonlocal gotos taking
3750 place in the function calls in this block. */
3751 if (function_call_count != 0 && nonlocal_labels
3752 /* Make handler for outermost block
3753 if there were any nonlocal gotos to this function. */
3754 && (thisblock->next == 0 ? current_function_has_nonlocal_label
3755 /* Make handler for inner block if it has something
3756 special to do when you jump out of it. */
3757 : (thisblock->data.block.cleanups != 0
3758 || thisblock->data.block.stack_level != 0)))
3759 expand_nl_goto_receivers (thisblock);
3760
3761 /* Don't allow jumping into a block that has a stack level.
3762 Cleanups are allowed, though. */
3763 if (dont_jump_in > 0
3764 || (dont_jump_in == 0 && thisblock->data.block.stack_level != 0))
3765 {
3766 struct label_chain *chain;
3767
3768 /* Any labels in this block are no longer valid to go to.
3769 Mark them to cause an error message. */
3770 for (chain = thisblock->data.block.label_chain; chain; chain = chain->next)
3771 {
3772 DECL_TOO_LATE (chain->label) = 1;
3773 /* If any goto without a fixup came to this label,
3774 that must be an error, because gotos without fixups
3775 come from outside all saved stack-levels. */
3776 if (TREE_ADDRESSABLE (chain->label))
3777 error ("%Jlabel '%D' used before containing binding contour",
3778 chain->label, chain->label);
3779 }
3780 }
3781
3782 /* Restore stack level in effect before the block
3783 (only if variable-size objects allocated). */
3784 /* Perform any cleanups associated with the block. */
3785
3786 if (thisblock->data.block.stack_level != 0
3787 || thisblock->data.block.cleanups != 0)
3788 {
3789 int reachable;
3790 rtx insn;
3791
3792 /* Don't let cleanups affect ({...}) constructs. */
3793 int old_expr_stmts_for_value = expr_stmts_for_value;
3794 rtx old_last_expr_value = last_expr_value;
3795 tree old_last_expr_type = last_expr_type;
3796 expr_stmts_for_value = 0;
3797
3798 /* Only clean up here if this point can actually be reached. */
3799 insn = get_last_insn ();
3800 if (GET_CODE (insn) == NOTE)
3801 insn = prev_nonnote_insn (insn);
3802 reachable = (! insn || GET_CODE (insn) != BARRIER);
3803
3804 /* Do the cleanups. */
3805 expand_cleanups (thisblock->data.block.cleanups, 0, reachable);
3806 if (reachable)
3807 do_pending_stack_adjust ();
3808
3809 expr_stmts_for_value = old_expr_stmts_for_value;
3810 last_expr_value = old_last_expr_value;
3811 last_expr_type = old_last_expr_type;
3812
3813 /* Restore the stack level. */
3814
3815 if (reachable && thisblock->data.block.stack_level != 0)
3816 {
3817 emit_stack_restore (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3818 thisblock->data.block.stack_level, NULL_RTX);
3819 if (nonlocal_goto_handler_slots != 0)
3820 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level,
3821 NULL_RTX);
3822 }
3823
3824 /* Any gotos out of this block must also do these things.
3825 Also report any gotos with fixups that came to labels in this
3826 level. */
3827 fixup_gotos (thisblock,
3828 thisblock->data.block.stack_level,
3829 thisblock->data.block.cleanups,
3830 thisblock->data.block.first_insn,
3831 dont_jump_in);
3832 }
3833
3834 /* Mark the beginning and end of the scope if requested.
3835 We do this now, after running cleanups on the variables
3836 just going out of scope, so they are in scope for their cleanups. */
3837
3838 if (mark_ends)
3839 {
3840 rtx note = emit_note (NOTE_INSN_BLOCK_END);
3841 NOTE_BLOCK (note) = NOTE_BLOCK (thisblock->data.block.first_insn);
3842 }
3843 else
3844 /* Get rid of the beginning-mark if we don't make an end-mark. */
3845 NOTE_LINE_NUMBER (thisblock->data.block.first_insn) = NOTE_INSN_DELETED;
3846
3847 /* Restore the temporary level of TARGET_EXPRs. */
3848 target_temp_slot_level = thisblock->data.block.block_target_temp_slot_level;
3849
3850 /* Restore block_stack level for containing block. */
3851
3852 stack_block_stack = thisblock->data.block.innermost_stack_block;
3853 POPSTACK (block_stack);
3854
3855 /* Pop the stack slot nesting and free any slots at this level. */
3856 pop_temp_slots ();
3857 }
3858 \f
3859 /* Generate code to save the stack pointer at the start of the current block
3860 and set up to restore it on exit. */
3861
3862 void
3863 save_stack_pointer (void)
3864 {
3865 struct nesting *thisblock = block_stack;
3866
3867 if (thisblock->data.block.stack_level == 0)
3868 {
3869 emit_stack_save (thisblock->next ? SAVE_BLOCK : SAVE_FUNCTION,
3870 &thisblock->data.block.stack_level,
3871 thisblock->data.block.first_insn);
3872 stack_block_stack = thisblock;
3873 }
3874 }
3875 \f
3876 /* Generate RTL for the automatic variable declaration DECL.
3877 (Other kinds of declarations are simply ignored if seen here.) */
3878
3879 void
3880 expand_decl (tree decl)
3881 {
3882 tree type;
3883
3884 type = TREE_TYPE (decl);
3885
3886 /* For a CONST_DECL, set mode, alignment, and sizes from those of the
3887 type in case this node is used in a reference. */
3888 if (TREE_CODE (decl) == CONST_DECL)
3889 {
3890 DECL_MODE (decl) = TYPE_MODE (type);
3891 DECL_ALIGN (decl) = TYPE_ALIGN (type);
3892 DECL_SIZE (decl) = TYPE_SIZE (type);
3893 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
3894 return;
3895 }
3896
3897 /* Otherwise, only automatic variables need any expansion done. Static and
3898 external variables, and external functions, will be handled by
3899 `assemble_variable' (called from finish_decl). TYPE_DECL requires
3900 nothing. PARM_DECLs are handled in `assign_parms'. */
3901 if (TREE_CODE (decl) != VAR_DECL)
3902 return;
3903
3904 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
3905 return;
3906
3907 /* Create the RTL representation for the variable. */
3908
3909 if (type == error_mark_node)
3910 SET_DECL_RTL (decl, gen_rtx_MEM (BLKmode, const0_rtx));
3911
3912 else if (DECL_SIZE (decl) == 0)
3913 /* Variable with incomplete type. */
3914 {
3915 rtx x;
3916 if (DECL_INITIAL (decl) == 0)
3917 /* Error message was already done; now avoid a crash. */
3918 x = gen_rtx_MEM (BLKmode, const0_rtx);
3919 else
3920 /* An initializer is going to decide the size of this array.
3921 Until we know the size, represent its address with a reg. */
3922 x = gen_rtx_MEM (BLKmode, gen_reg_rtx (Pmode));
3923
3924 set_mem_attributes (x, decl, 1);
3925 SET_DECL_RTL (decl, x);
3926 }
3927 else if (DECL_MODE (decl) != BLKmode
3928 /* If -ffloat-store, don't put explicit float vars
3929 into regs. */
3930 && !(flag_float_store
3931 && TREE_CODE (type) == REAL_TYPE)
3932 && ! TREE_THIS_VOLATILE (decl)
3933 && ! DECL_NONLOCAL (decl)
3934 && (DECL_REGISTER (decl) || DECL_ARTIFICIAL (decl) || optimize))
3935 {
3936 /* Automatic variable that can go in a register. */
3937 int unsignedp = TREE_UNSIGNED (type);
3938 enum machine_mode reg_mode
3939 = promote_mode (type, DECL_MODE (decl), &unsignedp, 0);
3940
3941 SET_DECL_RTL (decl, gen_reg_rtx (reg_mode));
3942
3943 if (!DECL_ARTIFICIAL (decl))
3944 mark_user_reg (DECL_RTL (decl));
3945
3946 if (POINTER_TYPE_P (type))
3947 mark_reg_pointer (DECL_RTL (decl),
3948 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl))));
3949
3950 maybe_set_unchanging (DECL_RTL (decl), decl);
3951
3952 /* If something wants our address, try to use ADDRESSOF. */
3953 if (TREE_ADDRESSABLE (decl))
3954 put_var_into_stack (decl, /*rescan=*/false);
3955 }
3956
3957 else if (TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST
3958 && ! (flag_stack_check && ! STACK_CHECK_BUILTIN
3959 && 0 < compare_tree_int (DECL_SIZE_UNIT (decl),
3960 STACK_CHECK_MAX_VAR_SIZE)))
3961 {
3962 /* Variable of fixed size that goes on the stack. */
3963 rtx oldaddr = 0;
3964 rtx addr;
3965 rtx x;
3966
3967 /* If we previously made RTL for this decl, it must be an array
3968 whose size was determined by the initializer.
3969 The old address was a register; set that register now
3970 to the proper address. */
3971 if (DECL_RTL_SET_P (decl))
3972 {
3973 if (GET_CODE (DECL_RTL (decl)) != MEM
3974 || GET_CODE (XEXP (DECL_RTL (decl), 0)) != REG)
3975 abort ();
3976 oldaddr = XEXP (DECL_RTL (decl), 0);
3977 }
3978
3979 /* Set alignment we actually gave this decl. */
3980 DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT
3981 : GET_MODE_BITSIZE (DECL_MODE (decl)));
3982 DECL_USER_ALIGN (decl) = 0;
3983
3984 x = assign_temp (decl, 1, 1, 1);
3985 set_mem_attributes (x, decl, 1);
3986 SET_DECL_RTL (decl, x);
3987
3988 if (oldaddr)
3989 {
3990 addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
3991 if (addr != oldaddr)
3992 emit_move_insn (oldaddr, addr);
3993 }
3994 }
3995 else
3996 /* Dynamic-size object: must push space on the stack. */
3997 {
3998 rtx address, size, x;
3999
4000 /* Record the stack pointer on entry to block, if have
4001 not already done so. */
4002 do_pending_stack_adjust ();
4003 save_stack_pointer ();
4004
4005 /* In function-at-a-time mode, variable_size doesn't expand this,
4006 so do it now. */
4007 if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type))
4008 expand_expr (TYPE_MAX_VALUE (TYPE_DOMAIN (type)),
4009 const0_rtx, VOIDmode, 0);
4010
4011 /* Compute the variable's size, in bytes. */
4012 size = expand_expr (DECL_SIZE_UNIT (decl), NULL_RTX, VOIDmode, 0);
4013 free_temp_slots ();
4014
4015 /* Allocate space on the stack for the variable. Note that
4016 DECL_ALIGN says how the variable is to be aligned and we
4017 cannot use it to conclude anything about the alignment of
4018 the size. */
4019 address = allocate_dynamic_stack_space (size, NULL_RTX,
4020 TYPE_ALIGN (TREE_TYPE (decl)));
4021
4022 /* Reference the variable indirect through that rtx. */
4023 x = gen_rtx_MEM (DECL_MODE (decl), address);
4024 set_mem_attributes (x, decl, 1);
4025 SET_DECL_RTL (decl, x);
4026
4027
4028 /* Indicate the alignment we actually gave this variable. */
4029 #ifdef STACK_BOUNDARY
4030 DECL_ALIGN (decl) = STACK_BOUNDARY;
4031 #else
4032 DECL_ALIGN (decl) = BIGGEST_ALIGNMENT;
4033 #endif
4034 DECL_USER_ALIGN (decl) = 0;
4035 }
4036 }
4037 \f
4038 /* Emit code to perform the initialization of a declaration DECL. */
4039
4040 void
4041 expand_decl_init (tree decl)
4042 {
4043 int was_used = TREE_USED (decl);
4044
4045 /* If this is a CONST_DECL, we don't have to generate any code. Likewise
4046 for static decls. */
4047 if (TREE_CODE (decl) == CONST_DECL
4048 || TREE_STATIC (decl))
4049 return;
4050
4051 /* Compute and store the initial value now. */
4052
4053 push_temp_slots ();
4054
4055 if (DECL_INITIAL (decl) == error_mark_node)
4056 {
4057 enum tree_code code = TREE_CODE (TREE_TYPE (decl));
4058
4059 if (code == INTEGER_TYPE || code == REAL_TYPE || code == ENUMERAL_TYPE
4060 || code == POINTER_TYPE || code == REFERENCE_TYPE)
4061 expand_assignment (decl, convert (TREE_TYPE (decl), integer_zero_node),
4062 0);
4063 emit_queue ();
4064 }
4065 else if (DECL_INITIAL (decl) && TREE_CODE (DECL_INITIAL (decl)) != TREE_LIST)
4066 {
4067 emit_line_note (DECL_SOURCE_LOCATION (decl));
4068 expand_assignment (decl, DECL_INITIAL (decl), 0);
4069 emit_queue ();
4070 }
4071
4072 /* Don't let the initialization count as "using" the variable. */
4073 TREE_USED (decl) = was_used;
4074
4075 /* Free any temporaries we made while initializing the decl. */
4076 preserve_temp_slots (NULL_RTX);
4077 free_temp_slots ();
4078 pop_temp_slots ();
4079 }
4080
4081 /* CLEANUP is an expression to be executed at exit from this binding contour;
4082 for example, in C++, it might call the destructor for this variable.
4083
4084 We wrap CLEANUP in an UNSAVE_EXPR node, so that we can expand the
4085 CLEANUP multiple times, and have the correct semantics. This
4086 happens in exception handling, for gotos, returns, breaks that
4087 leave the current scope.
4088
4089 If CLEANUP is nonzero and DECL is zero, we record a cleanup
4090 that is not associated with any particular variable. */
4091
4092 int
4093 expand_decl_cleanup (tree decl, tree cleanup)
4094 {
4095 struct nesting *thisblock;
4096
4097 /* Error if we are not in any block. */
4098 if (cfun == 0 || block_stack == 0)
4099 return 0;
4100
4101 thisblock = block_stack;
4102
4103 /* Record the cleanup if there is one. */
4104
4105 if (cleanup != 0)
4106 {
4107 tree t;
4108 rtx seq;
4109 tree *cleanups = &thisblock->data.block.cleanups;
4110 int cond_context = conditional_context ();
4111
4112 if (cond_context)
4113 {
4114 rtx flag = gen_reg_rtx (word_mode);
4115 rtx set_flag_0;
4116 tree cond;
4117
4118 start_sequence ();
4119 emit_move_insn (flag, const0_rtx);
4120 set_flag_0 = get_insns ();
4121 end_sequence ();
4122
4123 thisblock->data.block.last_unconditional_cleanup
4124 = emit_insn_after (set_flag_0,
4125 thisblock->data.block.last_unconditional_cleanup);
4126
4127 emit_move_insn (flag, const1_rtx);
4128
4129 cond = build_decl (VAR_DECL, NULL_TREE,
4130 (*lang_hooks.types.type_for_mode) (word_mode, 1));
4131 SET_DECL_RTL (cond, flag);
4132
4133 /* Conditionalize the cleanup. */
4134 cleanup = build (COND_EXPR, void_type_node,
4135 (*lang_hooks.truthvalue_conversion) (cond),
4136 cleanup, integer_zero_node);
4137 cleanup = fold (cleanup);
4138
4139 cleanups = &thisblock->data.block.cleanups;
4140 }
4141
4142 cleanup = unsave_expr (cleanup);
4143
4144 t = *cleanups = tree_cons (decl, cleanup, *cleanups);
4145
4146 if (! cond_context)
4147 /* If this block has a cleanup, it belongs in stack_block_stack. */
4148 stack_block_stack = thisblock;
4149
4150 if (cond_context)
4151 {
4152 start_sequence ();
4153 }
4154
4155 if (! using_eh_for_cleanups_p)
4156 TREE_ADDRESSABLE (t) = 1;
4157 else
4158 expand_eh_region_start ();
4159
4160 if (cond_context)
4161 {
4162 seq = get_insns ();
4163 end_sequence ();
4164 if (seq)
4165 thisblock->data.block.last_unconditional_cleanup
4166 = emit_insn_after (seq,
4167 thisblock->data.block.last_unconditional_cleanup);
4168 }
4169 else
4170 {
4171 thisblock->data.block.last_unconditional_cleanup
4172 = get_last_insn ();
4173 /* When we insert instructions after the last unconditional cleanup,
4174 we don't adjust last_insn. That means that a later add_insn will
4175 clobber the instructions we've just added. The easiest way to
4176 fix this is to just insert another instruction here, so that the
4177 instructions inserted after the last unconditional cleanup are
4178 never the last instruction. */
4179 emit_note (NOTE_INSN_DELETED);
4180 }
4181 }
4182 return 1;
4183 }
4184
4185 /* Like expand_decl_cleanup, but maybe only run the cleanup if an exception
4186 is thrown. */
4187
4188 int
4189 expand_decl_cleanup_eh (tree decl, tree cleanup, int eh_only)
4190 {
4191 int ret = expand_decl_cleanup (decl, cleanup);
4192 if (cleanup && ret)
4193 {
4194 tree node = block_stack->data.block.cleanups;
4195 CLEANUP_EH_ONLY (node) = eh_only;
4196 }
4197 return ret;
4198 }
4199 \f
4200 /* DECL is an anonymous union. CLEANUP is a cleanup for DECL.
4201 DECL_ELTS is the list of elements that belong to DECL's type.
4202 In each, the TREE_VALUE is a VAR_DECL, and the TREE_PURPOSE a cleanup. */
4203
4204 void
4205 expand_anon_union_decl (tree decl, tree cleanup, tree decl_elts)
4206 {
4207 struct nesting *thisblock = cfun == 0 ? 0 : block_stack;
4208 rtx x;
4209 tree t;
4210
4211 /* If any of the elements are addressable, so is the entire union. */
4212 for (t = decl_elts; t; t = TREE_CHAIN (t))
4213 if (TREE_ADDRESSABLE (TREE_VALUE (t)))
4214 {
4215 TREE_ADDRESSABLE (decl) = 1;
4216 break;
4217 }
4218
4219 expand_decl (decl);
4220 expand_decl_cleanup (decl, cleanup);
4221 x = DECL_RTL (decl);
4222
4223 /* Go through the elements, assigning RTL to each. */
4224 for (t = decl_elts; t; t = TREE_CHAIN (t))
4225 {
4226 tree decl_elt = TREE_VALUE (t);
4227 tree cleanup_elt = TREE_PURPOSE (t);
4228 enum machine_mode mode = TYPE_MODE (TREE_TYPE (decl_elt));
4229
4230 /* If any of the elements are addressable, so is the entire
4231 union. */
4232 if (TREE_USED (decl_elt))
4233 TREE_USED (decl) = 1;
4234
4235 /* Propagate the union's alignment to the elements. */
4236 DECL_ALIGN (decl_elt) = DECL_ALIGN (decl);
4237 DECL_USER_ALIGN (decl_elt) = DECL_USER_ALIGN (decl);
4238
4239 /* If the element has BLKmode and the union doesn't, the union is
4240 aligned such that the element doesn't need to have BLKmode, so
4241 change the element's mode to the appropriate one for its size. */
4242 if (mode == BLKmode && DECL_MODE (decl) != BLKmode)
4243 DECL_MODE (decl_elt) = mode
4244 = mode_for_size_tree (DECL_SIZE (decl_elt), MODE_INT, 1);
4245
4246 /* (SUBREG (MEM ...)) at RTL generation time is invalid, so we
4247 instead create a new MEM rtx with the proper mode. */
4248 if (GET_CODE (x) == MEM)
4249 {
4250 if (mode == GET_MODE (x))
4251 SET_DECL_RTL (decl_elt, x);
4252 else
4253 SET_DECL_RTL (decl_elt, adjust_address_nv (x, mode, 0));
4254 }
4255 else if (GET_CODE (x) == REG)
4256 {
4257 if (mode == GET_MODE (x))
4258 SET_DECL_RTL (decl_elt, x);
4259 else
4260 SET_DECL_RTL (decl_elt, gen_lowpart_SUBREG (mode, x));
4261 }
4262 else
4263 abort ();
4264
4265 /* Record the cleanup if there is one. */
4266
4267 if (cleanup != 0)
4268 thisblock->data.block.cleanups
4269 = tree_cons (decl_elt, cleanup_elt,
4270 thisblock->data.block.cleanups);
4271 }
4272 }
4273 \f
4274 /* Expand a list of cleanups LIST.
4275 Elements may be expressions or may be nested lists.
4276
4277 If IN_FIXUP is nonzero, we are generating this cleanup for a fixup
4278 goto and handle protection regions specially in that case.
4279
4280 If REACHABLE, we emit code, otherwise just inform the exception handling
4281 code about this finalization. */
4282
4283 static void
4284 expand_cleanups (tree list, int in_fixup, int reachable)
4285 {
4286 tree tail;
4287 for (tail = list; tail; tail = TREE_CHAIN (tail))
4288 if (TREE_CODE (TREE_VALUE (tail)) == TREE_LIST)
4289 expand_cleanups (TREE_VALUE (tail), in_fixup, reachable);
4290 else
4291 {
4292 if (! in_fixup && using_eh_for_cleanups_p)
4293 expand_eh_region_end_cleanup (TREE_VALUE (tail));
4294
4295 if (reachable && !CLEANUP_EH_ONLY (tail))
4296 {
4297 /* Cleanups may be run multiple times. For example,
4298 when exiting a binding contour, we expand the
4299 cleanups associated with that contour. When a goto
4300 within that binding contour has a target outside that
4301 contour, it will expand all cleanups from its scope to
4302 the target. Though the cleanups are expanded multiple
4303 times, the control paths are non-overlapping so the
4304 cleanups will not be executed twice. */
4305
4306 /* We may need to protect from outer cleanups. */
4307 if (in_fixup && using_eh_for_cleanups_p)
4308 {
4309 expand_eh_region_start ();
4310
4311 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
4312
4313 expand_eh_region_end_fixup (TREE_VALUE (tail));
4314 }
4315 else
4316 expand_expr (TREE_VALUE (tail), const0_rtx, VOIDmode, 0);
4317
4318 free_temp_slots ();
4319 }
4320 }
4321 }
4322
4323 /* Mark when the context we are emitting RTL for as a conditional
4324 context, so that any cleanup actions we register with
4325 expand_decl_init will be properly conditionalized when those
4326 cleanup actions are later performed. Must be called before any
4327 expression (tree) is expanded that is within a conditional context. */
4328
4329 void
4330 start_cleanup_deferral (void)
4331 {
4332 /* block_stack can be NULL if we are inside the parameter list. It is
4333 OK to do nothing, because cleanups aren't possible here. */
4334 if (block_stack)
4335 ++block_stack->data.block.conditional_code;
4336 }
4337
4338 /* Mark the end of a conditional region of code. Because cleanup
4339 deferrals may be nested, we may still be in a conditional region
4340 after we end the currently deferred cleanups, only after we end all
4341 deferred cleanups, are we back in unconditional code. */
4342
4343 void
4344 end_cleanup_deferral (void)
4345 {
4346 /* block_stack can be NULL if we are inside the parameter list. It is
4347 OK to do nothing, because cleanups aren't possible here. */
4348 if (block_stack)
4349 --block_stack->data.block.conditional_code;
4350 }
4351
4352 tree
4353 last_cleanup_this_contour (void)
4354 {
4355 if (block_stack == 0)
4356 return 0;
4357
4358 return block_stack->data.block.cleanups;
4359 }
4360
4361 /* Return 1 if there are any pending cleanups at this point.
4362 Check the current contour as well as contours that enclose
4363 the current contour. */
4364
4365 int
4366 any_pending_cleanups (void)
4367 {
4368 struct nesting *block;
4369
4370 if (cfun == NULL || cfun->stmt == NULL || block_stack == 0)
4371 return 0;
4372
4373 if (block_stack->data.block.cleanups != NULL)
4374 return 1;
4375
4376 if (block_stack->data.block.outer_cleanups == 0)
4377 return 0;
4378
4379 for (block = block_stack->next; block; block = block->next)
4380 if (block->data.block.cleanups != 0)
4381 return 1;
4382
4383 return 0;
4384 }
4385 \f
4386 /* Enter a case (Pascal) or switch (C) statement.
4387 Push a block onto case_stack and nesting_stack
4388 to accumulate the case-labels that are seen
4389 and to record the labels generated for the statement.
4390
4391 EXIT_FLAG is nonzero if `exit_something' should exit this case stmt.
4392 Otherwise, this construct is transparent for `exit_something'.
4393
4394 EXPR is the index-expression to be dispatched on.
4395 TYPE is its nominal type. We could simply convert EXPR to this type,
4396 but instead we take short cuts. */
4397
4398 void
4399 expand_start_case (int exit_flag, tree expr, tree type,
4400 const char *printname)
4401 {
4402 struct nesting *thiscase = ALLOC_NESTING ();
4403
4404 /* Make an entry on case_stack for the case we are entering. */
4405
4406 thiscase->desc = CASE_NESTING;
4407 thiscase->next = case_stack;
4408 thiscase->all = nesting_stack;
4409 thiscase->depth = ++nesting_depth;
4410 thiscase->exit_label = exit_flag ? gen_label_rtx () : 0;
4411 thiscase->data.case_stmt.case_list = 0;
4412 thiscase->data.case_stmt.index_expr = expr;
4413 thiscase->data.case_stmt.nominal_type = type;
4414 thiscase->data.case_stmt.default_label = 0;
4415 thiscase->data.case_stmt.printname = printname;
4416 thiscase->data.case_stmt.line_number_status = force_line_numbers ();
4417 case_stack = thiscase;
4418 nesting_stack = thiscase;
4419
4420 do_pending_stack_adjust ();
4421 emit_queue ();
4422
4423 /* Make sure case_stmt.start points to something that won't
4424 need any transformation before expand_end_case. */
4425 if (GET_CODE (get_last_insn ()) != NOTE)
4426 emit_note (NOTE_INSN_DELETED);
4427
4428 thiscase->data.case_stmt.start = get_last_insn ();
4429
4430 start_cleanup_deferral ();
4431 }
4432
4433 /* Start a "dummy case statement" within which case labels are invalid
4434 and are not connected to any larger real case statement.
4435 This can be used if you don't want to let a case statement jump
4436 into the middle of certain kinds of constructs. */
4437
4438 void
4439 expand_start_case_dummy (void)
4440 {
4441 struct nesting *thiscase = ALLOC_NESTING ();
4442
4443 /* Make an entry on case_stack for the dummy. */
4444
4445 thiscase->desc = CASE_NESTING;
4446 thiscase->next = case_stack;
4447 thiscase->all = nesting_stack;
4448 thiscase->depth = ++nesting_depth;
4449 thiscase->exit_label = 0;
4450 thiscase->data.case_stmt.case_list = 0;
4451 thiscase->data.case_stmt.start = 0;
4452 thiscase->data.case_stmt.nominal_type = 0;
4453 thiscase->data.case_stmt.default_label = 0;
4454 case_stack = thiscase;
4455 nesting_stack = thiscase;
4456 start_cleanup_deferral ();
4457 }
4458 \f
4459 static void
4460 check_seenlabel (void)
4461 {
4462 /* If this is the first label, warn if any insns have been emitted. */
4463 if (case_stack->data.case_stmt.line_number_status >= 0)
4464 {
4465 rtx insn;
4466
4467 restore_line_number_status
4468 (case_stack->data.case_stmt.line_number_status);
4469 case_stack->data.case_stmt.line_number_status = -1;
4470
4471 for (insn = case_stack->data.case_stmt.start;
4472 insn;
4473 insn = NEXT_INSN (insn))
4474 {
4475 if (GET_CODE (insn) == CODE_LABEL)
4476 break;
4477 if (GET_CODE (insn) != NOTE
4478 && (GET_CODE (insn) != INSN || GET_CODE (PATTERN (insn)) != USE))
4479 {
4480 do
4481 insn = PREV_INSN (insn);
4482 while (insn && (GET_CODE (insn) != NOTE || NOTE_LINE_NUMBER (insn) < 0));
4483
4484 /* If insn is zero, then there must have been a syntax error. */
4485 if (insn)
4486 {
4487 location_t locus;
4488 locus.file = NOTE_SOURCE_FILE (insn);
4489 locus.line = NOTE_LINE_NUMBER (insn);
4490 warning ("%Hunreachable code at beginning of %s", &locus,
4491 case_stack->data.case_stmt.printname);
4492 }
4493 break;
4494 }
4495 }
4496 }
4497 }
4498
4499 /* Accumulate one case or default label inside a case or switch statement.
4500 VALUE is the value of the case (a null pointer, for a default label).
4501 The function CONVERTER, when applied to arguments T and V,
4502 converts the value V to the type T.
4503
4504 If not currently inside a case or switch statement, return 1 and do
4505 nothing. The caller will print a language-specific error message.
4506 If VALUE is a duplicate or overlaps, return 2 and do nothing
4507 except store the (first) duplicate node in *DUPLICATE.
4508 If VALUE is out of range, return 3 and do nothing.
4509 If we are jumping into the scope of a cleanup or var-sized array, return 5.
4510 Return 0 on success.
4511
4512 Extended to handle range statements. */
4513
4514 int
4515 pushcase (tree value, tree (*converter) (tree, tree), tree label,
4516 tree *duplicate)
4517 {
4518 tree index_type;
4519 tree nominal_type;
4520
4521 /* Fail if not inside a real case statement. */
4522 if (! (case_stack && case_stack->data.case_stmt.start))
4523 return 1;
4524
4525 if (stack_block_stack
4526 && stack_block_stack->depth > case_stack->depth)
4527 return 5;
4528
4529 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4530 nominal_type = case_stack->data.case_stmt.nominal_type;
4531
4532 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4533 if (index_type == error_mark_node)
4534 return 0;
4535
4536 /* Convert VALUE to the type in which the comparisons are nominally done. */
4537 if (value != 0)
4538 value = (*converter) (nominal_type, value);
4539
4540 check_seenlabel ();
4541
4542 /* Fail if this value is out of range for the actual type of the index
4543 (which may be narrower than NOMINAL_TYPE). */
4544 if (value != 0
4545 && (TREE_CONSTANT_OVERFLOW (value)
4546 || ! int_fits_type_p (value, index_type)))
4547 return 3;
4548
4549 return add_case_node (value, value, label, duplicate);
4550 }
4551
4552 /* Like pushcase but this case applies to all values between VALUE1 and
4553 VALUE2 (inclusive). If VALUE1 is NULL, the range starts at the lowest
4554 value of the index type and ends at VALUE2. If VALUE2 is NULL, the range
4555 starts at VALUE1 and ends at the highest value of the index type.
4556 If both are NULL, this case applies to all values.
4557
4558 The return value is the same as that of pushcase but there is one
4559 additional error code: 4 means the specified range was empty. */
4560
4561 int
4562 pushcase_range (tree value1, tree value2, tree (*converter) (tree, tree),
4563 tree label, tree *duplicate)
4564 {
4565 tree index_type;
4566 tree nominal_type;
4567
4568 /* Fail if not inside a real case statement. */
4569 if (! (case_stack && case_stack->data.case_stmt.start))
4570 return 1;
4571
4572 if (stack_block_stack
4573 && stack_block_stack->depth > case_stack->depth)
4574 return 5;
4575
4576 index_type = TREE_TYPE (case_stack->data.case_stmt.index_expr);
4577 nominal_type = case_stack->data.case_stmt.nominal_type;
4578
4579 /* If the index is erroneous, avoid more problems: pretend to succeed. */
4580 if (index_type == error_mark_node)
4581 return 0;
4582
4583 check_seenlabel ();
4584
4585 /* Convert VALUEs to type in which the comparisons are nominally done
4586 and replace any unspecified value with the corresponding bound. */
4587 if (value1 == 0)
4588 value1 = TYPE_MIN_VALUE (index_type);
4589 if (value2 == 0)
4590 value2 = TYPE_MAX_VALUE (index_type);
4591
4592 /* Fail if the range is empty. Do this before any conversion since
4593 we want to allow out-of-range empty ranges. */
4594 if (value2 != 0 && tree_int_cst_lt (value2, value1))
4595 return 4;
4596
4597 /* If the max was unbounded, use the max of the nominal_type we are
4598 converting to. Do this after the < check above to suppress false
4599 positives. */
4600 if (value2 == 0)
4601 value2 = TYPE_MAX_VALUE (nominal_type);
4602
4603 value1 = (*converter) (nominal_type, value1);
4604 value2 = (*converter) (nominal_type, value2);
4605
4606 /* Fail if these values are out of range. */
4607 if (TREE_CONSTANT_OVERFLOW (value1)
4608 || ! int_fits_type_p (value1, index_type))
4609 return 3;
4610
4611 if (TREE_CONSTANT_OVERFLOW (value2)
4612 || ! int_fits_type_p (value2, index_type))
4613 return 3;
4614
4615 return add_case_node (value1, value2, label, duplicate);
4616 }
4617
4618 /* Do the actual insertion of a case label for pushcase and pushcase_range
4619 into case_stack->data.case_stmt.case_list. Use an AVL tree to avoid
4620 slowdown for large switch statements. */
4621
4622 int
4623 add_case_node (tree low, tree high, tree label, tree *duplicate)
4624 {
4625 struct case_node *p, **q, *r;
4626
4627 /* If there's no HIGH value, then this is not a case range; it's
4628 just a simple case label. But that's just a degenerate case
4629 range. */
4630 if (!high)
4631 high = low;
4632
4633 /* Handle default labels specially. */
4634 if (!high && !low)
4635 {
4636 if (case_stack->data.case_stmt.default_label != 0)
4637 {
4638 *duplicate = case_stack->data.case_stmt.default_label;
4639 return 2;
4640 }
4641 case_stack->data.case_stmt.default_label = label;
4642 expand_label (label);
4643 return 0;
4644 }
4645
4646 q = &case_stack->data.case_stmt.case_list;
4647 p = *q;
4648
4649 while ((r = *q))
4650 {
4651 p = r;
4652
4653 /* Keep going past elements distinctly greater than HIGH. */
4654 if (tree_int_cst_lt (high, p->low))
4655 q = &p->left;
4656
4657 /* or distinctly less than LOW. */
4658 else if (tree_int_cst_lt (p->high, low))
4659 q = &p->right;
4660
4661 else
4662 {
4663 /* We have an overlap; this is an error. */
4664 *duplicate = p->code_label;
4665 return 2;
4666 }
4667 }
4668
4669 /* Add this label to the chain, and succeed. */
4670
4671 r = ggc_alloc (sizeof (struct case_node));
4672 r->low = low;
4673
4674 /* If the bounds are equal, turn this into the one-value case. */
4675 if (tree_int_cst_equal (low, high))
4676 r->high = r->low;
4677 else
4678 r->high = high;
4679
4680 r->code_label = label;
4681 expand_label (label);
4682
4683 *q = r;
4684 r->parent = p;
4685 r->left = 0;
4686 r->right = 0;
4687 r->balance = 0;
4688
4689 while (p)
4690 {
4691 struct case_node *s;
4692
4693 if (r == p->left)
4694 {
4695 int b;
4696
4697 if (! (b = p->balance))
4698 /* Growth propagation from left side. */
4699 p->balance = -1;
4700 else if (b < 0)
4701 {
4702 if (r->balance < 0)
4703 {
4704 /* R-Rotation */
4705 if ((p->left = s = r->right))
4706 s->parent = p;
4707
4708 r->right = p;
4709 p->balance = 0;
4710 r->balance = 0;
4711 s = p->parent;
4712 p->parent = r;
4713
4714 if ((r->parent = s))
4715 {
4716 if (s->left == p)
4717 s->left = r;
4718 else
4719 s->right = r;
4720 }
4721 else
4722 case_stack->data.case_stmt.case_list = r;
4723 }
4724 else
4725 /* r->balance == +1 */
4726 {
4727 /* LR-Rotation */
4728
4729 int b2;
4730 struct case_node *t = r->right;
4731
4732 if ((p->left = s = t->right))
4733 s->parent = p;
4734
4735 t->right = p;
4736 if ((r->right = s = t->left))
4737 s->parent = r;
4738
4739 t->left = r;
4740 b = t->balance;
4741 b2 = b < 0;
4742 p->balance = b2;
4743 b2 = -b2 - b;
4744 r->balance = b2;
4745 t->balance = 0;
4746 s = p->parent;
4747 p->parent = t;
4748 r->parent = t;
4749
4750 if ((t->parent = s))
4751 {
4752 if (s->left == p)
4753 s->left = t;
4754 else
4755 s->right = t;
4756 }
4757 else
4758 case_stack->data.case_stmt.case_list = t;
4759 }
4760 break;
4761 }
4762
4763 else
4764 {
4765 /* p->balance == +1; growth of left side balances the node. */
4766 p->balance = 0;
4767 break;
4768 }
4769 }
4770 else
4771 /* r == p->right */
4772 {
4773 int b;
4774
4775 if (! (b = p->balance))
4776 /* Growth propagation from right side. */
4777 p->balance++;
4778 else if (b > 0)
4779 {
4780 if (r->balance > 0)
4781 {
4782 /* L-Rotation */
4783
4784 if ((p->right = s = r->left))
4785 s->parent = p;
4786
4787 r->left = p;
4788 p->balance = 0;
4789 r->balance = 0;
4790 s = p->parent;
4791 p->parent = r;
4792 if ((r->parent = s))
4793 {
4794 if (s->left == p)
4795 s->left = r;
4796 else
4797 s->right = r;
4798 }
4799
4800 else
4801 case_stack->data.case_stmt.case_list = r;
4802 }
4803
4804 else
4805 /* r->balance == -1 */
4806 {
4807 /* RL-Rotation */
4808 int b2;
4809 struct case_node *t = r->left;
4810
4811 if ((p->right = s = t->left))
4812 s->parent = p;
4813
4814 t->left = p;
4815
4816 if ((r->left = s = t->right))
4817 s->parent = r;
4818
4819 t->right = r;
4820 b = t->balance;
4821 b2 = b < 0;
4822 r->balance = b2;
4823 b2 = -b2 - b;
4824 p->balance = b2;
4825 t->balance = 0;
4826 s = p->parent;
4827 p->parent = t;
4828 r->parent = t;
4829
4830 if ((t->parent = s))
4831 {
4832 if (s->left == p)
4833 s->left = t;
4834 else
4835 s->right = t;
4836 }
4837
4838 else
4839 case_stack->data.case_stmt.case_list = t;
4840 }
4841 break;
4842 }
4843 else
4844 {
4845 /* p->balance == -1; growth of right side balances the node. */
4846 p->balance = 0;
4847 break;
4848 }
4849 }
4850
4851 r = p;
4852 p = p->parent;
4853 }
4854
4855 return 0;
4856 }
4857 \f
4858 /* Returns the number of possible values of TYPE.
4859 Returns -1 if the number is unknown, variable, or if the number does not
4860 fit in a HOST_WIDE_INT.
4861 Sets *SPARSENESS to 2 if TYPE is an ENUMERAL_TYPE whose values
4862 do not increase monotonically (there may be duplicates);
4863 to 1 if the values increase monotonically, but not always by 1;
4864 otherwise sets it to 0. */
4865
4866 HOST_WIDE_INT
4867 all_cases_count (tree type, int *sparseness)
4868 {
4869 tree t;
4870 HOST_WIDE_INT count, minval, lastval;
4871
4872 *sparseness = 0;
4873
4874 switch (TREE_CODE (type))
4875 {
4876 case BOOLEAN_TYPE:
4877 count = 2;
4878 break;
4879
4880 case CHAR_TYPE:
4881 count = 1 << BITS_PER_UNIT;
4882 break;
4883
4884 default:
4885 case INTEGER_TYPE:
4886 if (TYPE_MAX_VALUE (type) != 0
4887 && 0 != (t = fold (build (MINUS_EXPR, type, TYPE_MAX_VALUE (type),
4888 TYPE_MIN_VALUE (type))))
4889 && 0 != (t = fold (build (PLUS_EXPR, type, t,
4890 convert (type, integer_zero_node))))
4891 && host_integerp (t, 1))
4892 count = tree_low_cst (t, 1);
4893 else
4894 return -1;
4895 break;
4896
4897 case ENUMERAL_TYPE:
4898 /* Don't waste time with enumeral types with huge values. */
4899 if (! host_integerp (TYPE_MIN_VALUE (type), 0)
4900 || TYPE_MAX_VALUE (type) == 0
4901 || ! host_integerp (TYPE_MAX_VALUE (type), 0))
4902 return -1;
4903
4904 lastval = minval = tree_low_cst (TYPE_MIN_VALUE (type), 0);
4905 count = 0;
4906
4907 for (t = TYPE_VALUES (type); t != NULL_TREE; t = TREE_CHAIN (t))
4908 {
4909 HOST_WIDE_INT thisval = tree_low_cst (TREE_VALUE (t), 0);
4910
4911 if (*sparseness == 2 || thisval <= lastval)
4912 *sparseness = 2;
4913 else if (thisval != minval + count)
4914 *sparseness = 1;
4915
4916 lastval = thisval;
4917 count++;
4918 }
4919 }
4920
4921 return count;
4922 }
4923
4924 #define BITARRAY_TEST(ARRAY, INDEX) \
4925 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4926 & (1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR)))
4927 #define BITARRAY_SET(ARRAY, INDEX) \
4928 ((ARRAY)[(unsigned) (INDEX) / HOST_BITS_PER_CHAR]\
4929 |= 1 << ((unsigned) (INDEX) % HOST_BITS_PER_CHAR))
4930
4931 /* Set the elements of the bitstring CASES_SEEN (which has length COUNT),
4932 with the case values we have seen, assuming the case expression
4933 has the given TYPE.
4934 SPARSENESS is as determined by all_cases_count.
4935
4936 The time needed is proportional to COUNT, unless
4937 SPARSENESS is 2, in which case quadratic time is needed. */
4938
4939 void
4940 mark_seen_cases (tree type, unsigned char *cases_seen, HOST_WIDE_INT count,
4941 int sparseness)
4942 {
4943 tree next_node_to_try = NULL_TREE;
4944 HOST_WIDE_INT next_node_offset = 0;
4945
4946 struct case_node *n, *root = case_stack->data.case_stmt.case_list;
4947 tree val = make_node (INTEGER_CST);
4948
4949 TREE_TYPE (val) = type;
4950 if (! root)
4951 /* Do nothing. */
4952 ;
4953 else if (sparseness == 2)
4954 {
4955 tree t;
4956 unsigned HOST_WIDE_INT xlo;
4957
4958 /* This less efficient loop is only needed to handle
4959 duplicate case values (multiple enum constants
4960 with the same value). */
4961 TREE_TYPE (val) = TREE_TYPE (root->low);
4962 for (t = TYPE_VALUES (type), xlo = 0; t != NULL_TREE;
4963 t = TREE_CHAIN (t), xlo++)
4964 {
4965 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (TREE_VALUE (t));
4966 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (TREE_VALUE (t));
4967 n = root;
4968 do
4969 {
4970 /* Keep going past elements distinctly greater than VAL. */
4971 if (tree_int_cst_lt (val, n->low))
4972 n = n->left;
4973
4974 /* or distinctly less than VAL. */
4975 else if (tree_int_cst_lt (n->high, val))
4976 n = n->right;
4977
4978 else
4979 {
4980 /* We have found a matching range. */
4981 BITARRAY_SET (cases_seen, xlo);
4982 break;
4983 }
4984 }
4985 while (n);
4986 }
4987 }
4988 else
4989 {
4990 if (root->left)
4991 case_stack->data.case_stmt.case_list = root = case_tree2list (root, 0);
4992
4993 for (n = root; n; n = n->right)
4994 {
4995 TREE_INT_CST_LOW (val) = TREE_INT_CST_LOW (n->low);
4996 TREE_INT_CST_HIGH (val) = TREE_INT_CST_HIGH (n->low);
4997 while (! tree_int_cst_lt (n->high, val))
4998 {
4999 /* Calculate (into xlo) the "offset" of the integer (val).
5000 The element with lowest value has offset 0, the next smallest
5001 element has offset 1, etc. */
5002
5003 unsigned HOST_WIDE_INT xlo;
5004 HOST_WIDE_INT xhi;
5005 tree t;
5006
5007 if (sparseness && TYPE_VALUES (type) != NULL_TREE)
5008 {
5009 /* The TYPE_VALUES will be in increasing order, so
5010 starting searching where we last ended. */
5011 t = next_node_to_try;
5012 xlo = next_node_offset;
5013 xhi = 0;
5014 for (;;)
5015 {
5016 if (t == NULL_TREE)
5017 {
5018 t = TYPE_VALUES (type);
5019 xlo = 0;
5020 }
5021 if (tree_int_cst_equal (val, TREE_VALUE (t)))
5022 {
5023 next_node_to_try = TREE_CHAIN (t);
5024 next_node_offset = xlo + 1;
5025 break;
5026 }
5027 xlo++;
5028 t = TREE_CHAIN (t);
5029 if (t == next_node_to_try)
5030 {
5031 xlo = -1;
5032 break;
5033 }
5034 }
5035 }
5036 else
5037 {
5038 t = TYPE_MIN_VALUE (type);
5039 if (t)
5040 neg_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t),
5041 &xlo, &xhi);
5042 else
5043 xlo = xhi = 0;
5044 add_double (xlo, xhi,
5045 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5046 &xlo, &xhi);
5047 }
5048
5049 if (xhi == 0 && xlo < (unsigned HOST_WIDE_INT) count)
5050 BITARRAY_SET (cases_seen, xlo);
5051
5052 add_double (TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val),
5053 1, 0,
5054 &TREE_INT_CST_LOW (val), &TREE_INT_CST_HIGH (val));
5055 }
5056 }
5057 }
5058 }
5059
5060 /* Given a switch statement with an expression that is an enumeration
5061 type, warn if any of the enumeration type's literals are not
5062 covered by the case expressions of the switch. Also, warn if there
5063 are any extra switch cases that are *not* elements of the
5064 enumerated type.
5065
5066 Historical note:
5067
5068 At one stage this function would: ``If all enumeration literals
5069 were covered by the case expressions, turn one of the expressions
5070 into the default expression since it should not be possible to fall
5071 through such a switch.''
5072
5073 That code has since been removed as: ``This optimization is
5074 disabled because it causes valid programs to fail. ANSI C does not
5075 guarantee that an expression with enum type will have a value that
5076 is the same as one of the enumeration literals.'' */
5077
5078 void
5079 check_for_full_enumeration_handling (tree type)
5080 {
5081 struct case_node *n;
5082 tree chain;
5083
5084 /* True iff the selector type is a numbered set mode. */
5085 int sparseness = 0;
5086
5087 /* The number of possible selector values. */
5088 HOST_WIDE_INT size;
5089
5090 /* For each possible selector value. a one iff it has been matched
5091 by a case value alternative. */
5092 unsigned char *cases_seen;
5093
5094 /* The allocated size of cases_seen, in chars. */
5095 HOST_WIDE_INT bytes_needed;
5096
5097 size = all_cases_count (type, &sparseness);
5098 bytes_needed = (size + HOST_BITS_PER_CHAR) / HOST_BITS_PER_CHAR;
5099
5100 if (size > 0 && size < 600000
5101 /* We deliberately use calloc here, not cmalloc, so that we can suppress
5102 this optimization if we don't have enough memory rather than
5103 aborting, as xmalloc would do. */
5104 && (cases_seen = really_call_calloc (bytes_needed, 1)) != NULL)
5105 {
5106 HOST_WIDE_INT i;
5107 tree v = TYPE_VALUES (type);
5108
5109 /* The time complexity of this code is normally O(N), where
5110 N being the number of members in the enumerated type.
5111 However, if type is an ENUMERAL_TYPE whose values do not
5112 increase monotonically, O(N*log(N)) time may be needed. */
5113
5114 mark_seen_cases (type, cases_seen, size, sparseness);
5115
5116 for (i = 0; v != NULL_TREE && i < size; i++, v = TREE_CHAIN (v))
5117 if (BITARRAY_TEST (cases_seen, i) == 0)
5118 warning ("enumeration value `%s' not handled in switch",
5119 IDENTIFIER_POINTER (TREE_PURPOSE (v)));
5120
5121 free (cases_seen);
5122 }
5123
5124 /* Now we go the other way around; we warn if there are case
5125 expressions that don't correspond to enumerators. This can
5126 occur since C and C++ don't enforce type-checking of
5127 assignments to enumeration variables. */
5128
5129 if (case_stack->data.case_stmt.case_list
5130 && case_stack->data.case_stmt.case_list->left)
5131 case_stack->data.case_stmt.case_list
5132 = case_tree2list (case_stack->data.case_stmt.case_list, 0);
5133 for (n = case_stack->data.case_stmt.case_list; n; n = n->right)
5134 {
5135 for (chain = TYPE_VALUES (type);
5136 chain && !tree_int_cst_equal (n->low, TREE_VALUE (chain));
5137 chain = TREE_CHAIN (chain))
5138 ;
5139
5140 if (!chain)
5141 {
5142 if (TYPE_NAME (type) == 0)
5143 warning ("case value `%ld' not in enumerated type",
5144 (long) TREE_INT_CST_LOW (n->low));
5145 else
5146 warning ("case value `%ld' not in enumerated type `%s'",
5147 (long) TREE_INT_CST_LOW (n->low),
5148 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5149 == IDENTIFIER_NODE)
5150 ? TYPE_NAME (type)
5151 : DECL_NAME (TYPE_NAME (type))));
5152 }
5153 if (!tree_int_cst_equal (n->low, n->high))
5154 {
5155 for (chain = TYPE_VALUES (type);
5156 chain && !tree_int_cst_equal (n->high, TREE_VALUE (chain));
5157 chain = TREE_CHAIN (chain))
5158 ;
5159
5160 if (!chain)
5161 {
5162 if (TYPE_NAME (type) == 0)
5163 warning ("case value `%ld' not in enumerated type",
5164 (long) TREE_INT_CST_LOW (n->high));
5165 else
5166 warning ("case value `%ld' not in enumerated type `%s'",
5167 (long) TREE_INT_CST_LOW (n->high),
5168 IDENTIFIER_POINTER ((TREE_CODE (TYPE_NAME (type))
5169 == IDENTIFIER_NODE)
5170 ? TYPE_NAME (type)
5171 : DECL_NAME (TYPE_NAME (type))));
5172 }
5173 }
5174 }
5175 }
5176
5177 \f
5178 /* Maximum number of case bit tests. */
5179 #define MAX_CASE_BIT_TESTS 3
5180
5181 /* By default, enable case bit tests on targets with ashlsi3. */
5182 #ifndef CASE_USE_BIT_TESTS
5183 #define CASE_USE_BIT_TESTS (ashl_optab->handlers[word_mode].insn_code \
5184 != CODE_FOR_nothing)
5185 #endif
5186
5187
5188 /* A case_bit_test represents a set of case nodes that may be
5189 selected from using a bit-wise comparison. HI and LO hold
5190 the integer to be tested against, LABEL contains the label
5191 to jump to upon success and BITS counts the number of case
5192 nodes handled by this test, typically the number of bits
5193 set in HI:LO. */
5194
5195 struct case_bit_test
5196 {
5197 HOST_WIDE_INT hi;
5198 HOST_WIDE_INT lo;
5199 rtx label;
5200 int bits;
5201 };
5202
5203 /* Determine whether "1 << x" is relatively cheap in word_mode. */
5204
5205 static
5206 bool lshift_cheap_p (void)
5207 {
5208 static bool init = false;
5209 static bool cheap = true;
5210
5211 if (!init)
5212 {
5213 rtx reg = gen_rtx_REG (word_mode, 10000);
5214 int cost = rtx_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg), SET);
5215 cheap = cost < COSTS_N_INSNS (3);
5216 init = true;
5217 }
5218
5219 return cheap;
5220 }
5221
5222 /* Comparison function for qsort to order bit tests by decreasing
5223 number of case nodes, i.e. the node with the most cases gets
5224 tested first. */
5225
5226 static
5227 int case_bit_test_cmp (const void *p1, const void *p2)
5228 {
5229 const struct case_bit_test *d1 = p1;
5230 const struct case_bit_test *d2 = p2;
5231
5232 return d2->bits - d1->bits;
5233 }
5234
5235 /* Expand a switch statement by a short sequence of bit-wise
5236 comparisons. "switch(x)" is effectively converted into
5237 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
5238 integer constants.
5239
5240 INDEX_EXPR is the value being switched on, which is of
5241 type INDEX_TYPE. MINVAL is the lowest case value of in
5242 the case nodes, of INDEX_TYPE type, and RANGE is highest
5243 value minus MINVAL, also of type INDEX_TYPE. NODES is
5244 the set of case nodes, and DEFAULT_LABEL is the label to
5245 branch to should none of the cases match.
5246
5247 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
5248 node targets. */
5249
5250 static void
5251 emit_case_bit_tests (tree index_type, tree index_expr, tree minval,
5252 tree range, case_node_ptr nodes, rtx default_label)
5253 {
5254 struct case_bit_test test[MAX_CASE_BIT_TESTS];
5255 enum machine_mode mode;
5256 rtx expr, index, label;
5257 unsigned int i,j,lo,hi;
5258 struct case_node *n;
5259 unsigned int count;
5260
5261 count = 0;
5262 for (n = nodes; n; n = n->right)
5263 {
5264 label = label_rtx (n->code_label);
5265 for (i = 0; i < count; i++)
5266 if (same_case_target_p (label, test[i].label))
5267 break;
5268
5269 if (i == count)
5270 {
5271 if (count >= MAX_CASE_BIT_TESTS)
5272 abort ();
5273 test[i].hi = 0;
5274 test[i].lo = 0;
5275 test[i].label = label;
5276 test[i].bits = 1;
5277 count++;
5278 }
5279 else
5280 test[i].bits++;
5281
5282 lo = tree_low_cst (fold (build (MINUS_EXPR, index_type,
5283 n->low, minval)), 1);
5284 hi = tree_low_cst (fold (build (MINUS_EXPR, index_type,
5285 n->high, minval)), 1);
5286 for (j = lo; j <= hi; j++)
5287 if (j >= HOST_BITS_PER_WIDE_INT)
5288 test[i].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT);
5289 else
5290 test[i].lo |= (HOST_WIDE_INT) 1 << j;
5291 }
5292
5293 qsort (test, count, sizeof(*test), case_bit_test_cmp);
5294
5295 index_expr = fold (build (MINUS_EXPR, index_type,
5296 convert (index_type, index_expr),
5297 convert (index_type, minval)));
5298 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5299 emit_queue ();
5300 index = protect_from_queue (index, 0);
5301 do_pending_stack_adjust ();
5302
5303 mode = TYPE_MODE (index_type);
5304 expr = expand_expr (range, NULL_RTX, VOIDmode, 0);
5305 emit_cmp_and_jump_insns (index, expr, GTU, NULL_RTX, mode, 1,
5306 default_label);
5307
5308 index = convert_to_mode (word_mode, index, 0);
5309 index = expand_binop (word_mode, ashl_optab, const1_rtx,
5310 index, NULL_RTX, 1, OPTAB_WIDEN);
5311
5312 for (i = 0; i < count; i++)
5313 {
5314 expr = immed_double_const (test[i].lo, test[i].hi, word_mode);
5315 expr = expand_binop (word_mode, and_optab, index, expr,
5316 NULL_RTX, 1, OPTAB_WIDEN);
5317 emit_cmp_and_jump_insns (expr, const0_rtx, NE, NULL_RTX,
5318 word_mode, 1, test[i].label);
5319 }
5320
5321 emit_jump (default_label);
5322 }
5323
5324 /* Terminate a case (Pascal) or switch (C) statement
5325 in which ORIG_INDEX is the expression to be tested.
5326 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
5327 type as given in the source before any compiler conversions.
5328 Generate the code to test it and jump to the right place. */
5329
5330 void
5331 expand_end_case_type (tree orig_index, tree orig_type)
5332 {
5333 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
5334 rtx default_label = 0;
5335 struct case_node *n, *m;
5336 unsigned int count, uniq;
5337 rtx index;
5338 rtx table_label;
5339 int ncases;
5340 rtx *labelvec;
5341 int i;
5342 rtx before_case, end, lab;
5343 struct nesting *thiscase = case_stack;
5344 tree index_expr, index_type;
5345 bool exit_done = false;
5346 int unsignedp;
5347
5348 /* Don't crash due to previous errors. */
5349 if (thiscase == NULL)
5350 return;
5351
5352 index_expr = thiscase->data.case_stmt.index_expr;
5353 index_type = TREE_TYPE (index_expr);
5354 unsignedp = TREE_UNSIGNED (index_type);
5355 if (orig_type == NULL)
5356 orig_type = TREE_TYPE (orig_index);
5357
5358 do_pending_stack_adjust ();
5359
5360 /* This might get a spurious warning in the presence of a syntax error;
5361 it could be fixed by moving the call to check_seenlabel after the
5362 check for error_mark_node, and copying the code of check_seenlabel that
5363 deals with case_stack->data.case_stmt.line_number_status /
5364 restore_line_number_status in front of the call to end_cleanup_deferral;
5365 However, this might miss some useful warnings in the presence of
5366 non-syntax errors. */
5367 check_seenlabel ();
5368
5369 /* An ERROR_MARK occurs for various reasons including invalid data type. */
5370 if (index_type != error_mark_node)
5371 {
5372 /* If the switch expression was an enumerated type, check that
5373 exactly all enumeration literals are covered by the cases.
5374 The check is made when -Wswitch was specified and there is no
5375 default case, or when -Wswitch-enum was specified. */
5376 if (((warn_switch && !thiscase->data.case_stmt.default_label)
5377 || warn_switch_enum)
5378 && TREE_CODE (orig_type) == ENUMERAL_TYPE
5379 && TREE_CODE (index_expr) != INTEGER_CST)
5380 check_for_full_enumeration_handling (orig_type);
5381
5382 if (warn_switch_default && !thiscase->data.case_stmt.default_label)
5383 warning ("switch missing default case");
5384
5385 /* If we don't have a default-label, create one here,
5386 after the body of the switch. */
5387 if (thiscase->data.case_stmt.default_label == 0)
5388 {
5389 thiscase->data.case_stmt.default_label
5390 = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
5391 /* Share the exit label if possible. */
5392 if (thiscase->exit_label)
5393 {
5394 SET_DECL_RTL (thiscase->data.case_stmt.default_label,
5395 thiscase->exit_label);
5396 exit_done = true;
5397 }
5398 expand_label (thiscase->data.case_stmt.default_label);
5399 }
5400 default_label = label_rtx (thiscase->data.case_stmt.default_label);
5401
5402 before_case = get_last_insn ();
5403
5404 if (thiscase->data.case_stmt.case_list
5405 && thiscase->data.case_stmt.case_list->left)
5406 thiscase->data.case_stmt.case_list
5407 = case_tree2list (thiscase->data.case_stmt.case_list, 0);
5408
5409 /* Simplify the case-list before we count it. */
5410 group_case_nodes (thiscase->data.case_stmt.case_list);
5411 strip_default_case_nodes (&thiscase->data.case_stmt.case_list,
5412 default_label);
5413
5414 /* Get upper and lower bounds of case values.
5415 Also convert all the case values to the index expr's data type. */
5416
5417 uniq = 0;
5418 count = 0;
5419 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5420 {
5421 /* Check low and high label values are integers. */
5422 if (TREE_CODE (n->low) != INTEGER_CST)
5423 abort ();
5424 if (TREE_CODE (n->high) != INTEGER_CST)
5425 abort ();
5426
5427 n->low = convert (index_type, n->low);
5428 n->high = convert (index_type, n->high);
5429
5430 /* Count the elements and track the largest and smallest
5431 of them (treating them as signed even if they are not). */
5432 if (count++ == 0)
5433 {
5434 minval = n->low;
5435 maxval = n->high;
5436 }
5437 else
5438 {
5439 if (INT_CST_LT (n->low, minval))
5440 minval = n->low;
5441 if (INT_CST_LT (maxval, n->high))
5442 maxval = n->high;
5443 }
5444 /* A range counts double, since it requires two compares. */
5445 if (! tree_int_cst_equal (n->low, n->high))
5446 count++;
5447
5448 /* Count the number of unique case node targets. */
5449 uniq++;
5450 lab = label_rtx (n->code_label);
5451 for (m = thiscase->data.case_stmt.case_list; m != n; m = m->right)
5452 if (same_case_target_p (label_rtx (m->code_label), lab))
5453 {
5454 uniq--;
5455 break;
5456 }
5457 }
5458
5459 /* Compute span of values. */
5460 if (count != 0)
5461 range = fold (build (MINUS_EXPR, index_type, maxval, minval));
5462
5463 end_cleanup_deferral ();
5464
5465 if (count == 0)
5466 {
5467 expand_expr (index_expr, const0_rtx, VOIDmode, 0);
5468 emit_queue ();
5469 emit_jump (default_label);
5470 }
5471
5472 /* Try implementing this switch statement by a short sequence of
5473 bit-wise comparisons. However, we let the binary-tree case
5474 below handle constant index expressions. */
5475 else if (CASE_USE_BIT_TESTS
5476 && ! TREE_CONSTANT (index_expr)
5477 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
5478 && compare_tree_int (range, 0) > 0
5479 && lshift_cheap_p ()
5480 && ((uniq == 1 && count >= 3)
5481 || (uniq == 2 && count >= 5)
5482 || (uniq == 3 && count >= 6)))
5483 {
5484 /* Optimize the case where all the case values fit in a
5485 word without having to subtract MINVAL. In this case,
5486 we can optimize away the subtraction. */
5487 if (compare_tree_int (minval, 0) > 0
5488 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
5489 {
5490 minval = integer_zero_node;
5491 range = maxval;
5492 }
5493 emit_case_bit_tests (index_type, index_expr, minval, range,
5494 thiscase->data.case_stmt.case_list,
5495 default_label);
5496 }
5497
5498 /* If range of values is much bigger than number of values,
5499 make a sequence of conditional branches instead of a dispatch.
5500 If the switch-index is a constant, do it this way
5501 because we can optimize it. */
5502
5503 else if (count < case_values_threshold ()
5504 || compare_tree_int (range,
5505 (optimize_size ? 3 : 10) * count) > 0
5506 /* RANGE may be signed, and really large ranges will show up
5507 as negative numbers. */
5508 || compare_tree_int (range, 0) < 0
5509 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
5510 || flag_pic
5511 #endif
5512 || TREE_CONSTANT (index_expr))
5513 {
5514 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
5515
5516 /* If the index is a short or char that we do not have
5517 an insn to handle comparisons directly, convert it to
5518 a full integer now, rather than letting each comparison
5519 generate the conversion. */
5520
5521 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
5522 && ! have_insn_for (COMPARE, GET_MODE (index)))
5523 {
5524 enum machine_mode wider_mode;
5525 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
5526 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5527 if (have_insn_for (COMPARE, wider_mode))
5528 {
5529 index = convert_to_mode (wider_mode, index, unsignedp);
5530 break;
5531 }
5532 }
5533
5534 emit_queue ();
5535 do_pending_stack_adjust ();
5536
5537 index = protect_from_queue (index, 0);
5538 if (GET_CODE (index) == MEM)
5539 index = copy_to_reg (index);
5540 if (GET_CODE (index) == CONST_INT
5541 || TREE_CODE (index_expr) == INTEGER_CST)
5542 {
5543 /* Make a tree node with the proper constant value
5544 if we don't already have one. */
5545 if (TREE_CODE (index_expr) != INTEGER_CST)
5546 {
5547 index_expr
5548 = build_int_2 (INTVAL (index),
5549 unsignedp || INTVAL (index) >= 0 ? 0 : -1);
5550 index_expr = convert (index_type, index_expr);
5551 }
5552
5553 /* For constant index expressions we need only
5554 issue an unconditional branch to the appropriate
5555 target code. The job of removing any unreachable
5556 code is left to the optimization phase if the
5557 "-O" option is specified. */
5558 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5559 if (! tree_int_cst_lt (index_expr, n->low)
5560 && ! tree_int_cst_lt (n->high, index_expr))
5561 break;
5562
5563 if (n)
5564 emit_jump (label_rtx (n->code_label));
5565 else
5566 emit_jump (default_label);
5567 }
5568 else
5569 {
5570 /* If the index expression is not constant we generate
5571 a binary decision tree to select the appropriate
5572 target code. This is done as follows:
5573
5574 The list of cases is rearranged into a binary tree,
5575 nearly optimal assuming equal probability for each case.
5576
5577 The tree is transformed into RTL, eliminating
5578 redundant test conditions at the same time.
5579
5580 If program flow could reach the end of the
5581 decision tree an unconditional jump to the
5582 default code is emitted. */
5583
5584 use_cost_table
5585 = (TREE_CODE (orig_type) != ENUMERAL_TYPE
5586 && estimate_case_costs (thiscase->data.case_stmt.case_list));
5587 balance_case_nodes (&thiscase->data.case_stmt.case_list, NULL);
5588 emit_case_nodes (index, thiscase->data.case_stmt.case_list,
5589 default_label, index_type);
5590 emit_jump_if_reachable (default_label);
5591 }
5592 }
5593 else
5594 {
5595 table_label = gen_label_rtx ();
5596 if (! try_casesi (index_type, index_expr, minval, range,
5597 table_label, default_label))
5598 {
5599 index_type = thiscase->data.case_stmt.nominal_type;
5600
5601 /* Index jumptables from zero for suitable values of
5602 minval to avoid a subtraction. */
5603 if (! optimize_size
5604 && compare_tree_int (minval, 0) > 0
5605 && compare_tree_int (minval, 3) < 0)
5606 {
5607 minval = integer_zero_node;
5608 range = maxval;
5609 }
5610
5611 if (! try_tablejump (index_type, index_expr, minval, range,
5612 table_label, default_label))
5613 abort ();
5614 }
5615
5616 /* Get table of labels to jump to, in order of case index. */
5617
5618 ncases = tree_low_cst (range, 0) + 1;
5619 labelvec = alloca (ncases * sizeof (rtx));
5620 memset (labelvec, 0, ncases * sizeof (rtx));
5621
5622 for (n = thiscase->data.case_stmt.case_list; n; n = n->right)
5623 {
5624 /* Compute the low and high bounds relative to the minimum
5625 value since that should fit in a HOST_WIDE_INT while the
5626 actual values may not. */
5627 HOST_WIDE_INT i_low
5628 = tree_low_cst (fold (build (MINUS_EXPR, index_type,
5629 n->low, minval)), 1);
5630 HOST_WIDE_INT i_high
5631 = tree_low_cst (fold (build (MINUS_EXPR, index_type,
5632 n->high, minval)), 1);
5633 HOST_WIDE_INT i;
5634
5635 for (i = i_low; i <= i_high; i ++)
5636 labelvec[i]
5637 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
5638 }
5639
5640 /* Fill in the gaps with the default. */
5641 for (i = 0; i < ncases; i++)
5642 if (labelvec[i] == 0)
5643 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
5644
5645 /* Output the table. */
5646 emit_label (table_label);
5647
5648 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
5649 emit_jump_insn (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
5650 gen_rtx_LABEL_REF (Pmode, table_label),
5651 gen_rtvec_v (ncases, labelvec),
5652 const0_rtx, const0_rtx));
5653 else
5654 emit_jump_insn (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
5655 gen_rtvec_v (ncases, labelvec)));
5656
5657 /* If the case insn drops through the table,
5658 after the table we must jump to the default-label.
5659 Otherwise record no drop-through after the table. */
5660 #ifdef CASE_DROPS_THROUGH
5661 emit_jump (default_label);
5662 #else
5663 emit_barrier ();
5664 #endif
5665 }
5666
5667 before_case = NEXT_INSN (before_case);
5668 end = get_last_insn ();
5669 if (squeeze_notes (&before_case, &end))
5670 abort ();
5671 reorder_insns (before_case, end,
5672 thiscase->data.case_stmt.start);
5673 }
5674 else
5675 end_cleanup_deferral ();
5676
5677 if (thiscase->exit_label && !exit_done)
5678 emit_label (thiscase->exit_label);
5679
5680 POPSTACK (case_stack);
5681
5682 free_temp_slots ();
5683 }
5684
5685 /* Convert the tree NODE into a list linked by the right field, with the left
5686 field zeroed. RIGHT is used for recursion; it is a list to be placed
5687 rightmost in the resulting list. */
5688
5689 static struct case_node *
5690 case_tree2list (struct case_node *node, struct case_node *right)
5691 {
5692 struct case_node *left;
5693
5694 if (node->right)
5695 right = case_tree2list (node->right, right);
5696
5697 node->right = right;
5698 if ((left = node->left))
5699 {
5700 node->left = 0;
5701 return case_tree2list (left, node);
5702 }
5703
5704 return node;
5705 }
5706
5707 /* Generate code to jump to LABEL if OP1 and OP2 are equal. */
5708
5709 static void
5710 do_jump_if_equal (rtx op1, rtx op2, rtx label, int unsignedp)
5711 {
5712 if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
5713 {
5714 if (op1 == op2)
5715 emit_jump (label);
5716 }
5717 else
5718 emit_cmp_and_jump_insns (op1, op2, EQ, NULL_RTX,
5719 (GET_MODE (op1) == VOIDmode
5720 ? GET_MODE (op2) : GET_MODE (op1)),
5721 unsignedp, label);
5722 }
5723 \f
5724 /* Not all case values are encountered equally. This function
5725 uses a heuristic to weight case labels, in cases where that
5726 looks like a reasonable thing to do.
5727
5728 Right now, all we try to guess is text, and we establish the
5729 following weights:
5730
5731 chars above space: 16
5732 digits: 16
5733 default: 12
5734 space, punct: 8
5735 tab: 4
5736 newline: 2
5737 other "\" chars: 1
5738 remaining chars: 0
5739
5740 If we find any cases in the switch that are not either -1 or in the range
5741 of valid ASCII characters, or are control characters other than those
5742 commonly used with "\", don't treat this switch scanning text.
5743
5744 Return 1 if these nodes are suitable for cost estimation, otherwise
5745 return 0. */
5746
5747 static int
5748 estimate_case_costs (case_node_ptr node)
5749 {
5750 tree min_ascii = integer_minus_one_node;
5751 tree max_ascii = convert (TREE_TYPE (node->high), build_int_2 (127, 0));
5752 case_node_ptr n;
5753 int i;
5754
5755 /* If we haven't already made the cost table, make it now. Note that the
5756 lower bound of the table is -1, not zero. */
5757
5758 if (! cost_table_initialized)
5759 {
5760 cost_table_initialized = 1;
5761
5762 for (i = 0; i < 128; i++)
5763 {
5764 if (ISALNUM (i))
5765 COST_TABLE (i) = 16;
5766 else if (ISPUNCT (i))
5767 COST_TABLE (i) = 8;
5768 else if (ISCNTRL (i))
5769 COST_TABLE (i) = -1;
5770 }
5771
5772 COST_TABLE (' ') = 8;
5773 COST_TABLE ('\t') = 4;
5774 COST_TABLE ('\0') = 4;
5775 COST_TABLE ('\n') = 2;
5776 COST_TABLE ('\f') = 1;
5777 COST_TABLE ('\v') = 1;
5778 COST_TABLE ('\b') = 1;
5779 }
5780
5781 /* See if all the case expressions look like text. It is text if the
5782 constant is >= -1 and the highest constant is <= 127. Do all comparisons
5783 as signed arithmetic since we don't want to ever access cost_table with a
5784 value less than -1. Also check that none of the constants in a range
5785 are strange control characters. */
5786
5787 for (n = node; n; n = n->right)
5788 {
5789 if ((INT_CST_LT (n->low, min_ascii)) || INT_CST_LT (max_ascii, n->high))
5790 return 0;
5791
5792 for (i = (HOST_WIDE_INT) TREE_INT_CST_LOW (n->low);
5793 i <= (HOST_WIDE_INT) TREE_INT_CST_LOW (n->high); i++)
5794 if (COST_TABLE (i) < 0)
5795 return 0;
5796 }
5797
5798 /* All interesting values are within the range of interesting
5799 ASCII characters. */
5800 return 1;
5801 }
5802
5803 /* Determine whether two case labels branch to the same target. */
5804
5805 static bool
5806 same_case_target_p (rtx l1, rtx l2)
5807 {
5808 rtx i1, i2;
5809
5810 if (l1 == l2)
5811 return true;
5812
5813 i1 = next_real_insn (l1);
5814 i2 = next_real_insn (l2);
5815 if (i1 == i2)
5816 return true;
5817
5818 if (i1 && simplejump_p (i1))
5819 {
5820 l1 = XEXP (SET_SRC (PATTERN (i1)), 0);
5821 }
5822
5823 if (i2 && simplejump_p (i2))
5824 {
5825 l2 = XEXP (SET_SRC (PATTERN (i2)), 0);
5826 }
5827 return l1 == l2;
5828 }
5829
5830 /* Delete nodes that branch to the default label from a list of
5831 case nodes. Eg. case 5: default: becomes just default: */
5832
5833 static void
5834 strip_default_case_nodes (case_node_ptr *prev, rtx deflab)
5835 {
5836 case_node_ptr ptr;
5837
5838 while (*prev)
5839 {
5840 ptr = *prev;
5841 if (same_case_target_p (label_rtx (ptr->code_label), deflab))
5842 *prev = ptr->right;
5843 else
5844 prev = &ptr->right;
5845 }
5846 }
5847
5848 /* Scan an ordered list of case nodes
5849 combining those with consecutive values or ranges.
5850
5851 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
5852
5853 static void
5854 group_case_nodes (case_node_ptr head)
5855 {
5856 case_node_ptr node = head;
5857
5858 while (node)
5859 {
5860 rtx lab = label_rtx (node->code_label);
5861 case_node_ptr np = node;
5862
5863 /* Try to group the successors of NODE with NODE. */
5864 while (((np = np->right) != 0)
5865 /* Do they jump to the same place? */
5866 && same_case_target_p (label_rtx (np->code_label), lab)
5867 /* Are their ranges consecutive? */
5868 && tree_int_cst_equal (np->low,
5869 fold (build (PLUS_EXPR,
5870 TREE_TYPE (node->high),
5871 node->high,
5872 integer_one_node)))
5873 /* An overflow is not consecutive. */
5874 && tree_int_cst_lt (node->high,
5875 fold (build (PLUS_EXPR,
5876 TREE_TYPE (node->high),
5877 node->high,
5878 integer_one_node))))
5879 {
5880 node->high = np->high;
5881 }
5882 /* NP is the first node after NODE which can't be grouped with it.
5883 Delete the nodes in between, and move on to that node. */
5884 node->right = np;
5885 node = np;
5886 }
5887 }
5888
5889 /* Take an ordered list of case nodes
5890 and transform them into a near optimal binary tree,
5891 on the assumption that any target code selection value is as
5892 likely as any other.
5893
5894 The transformation is performed by splitting the ordered
5895 list into two equal sections plus a pivot. The parts are
5896 then attached to the pivot as left and right branches. Each
5897 branch is then transformed recursively. */
5898
5899 static void
5900 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
5901 {
5902 case_node_ptr np;
5903
5904 np = *head;
5905 if (np)
5906 {
5907 int cost = 0;
5908 int i = 0;
5909 int ranges = 0;
5910 case_node_ptr *npp;
5911 case_node_ptr left;
5912
5913 /* Count the number of entries on branch. Also count the ranges. */
5914
5915 while (np)
5916 {
5917 if (!tree_int_cst_equal (np->low, np->high))
5918 {
5919 ranges++;
5920 if (use_cost_table)
5921 cost += COST_TABLE (TREE_INT_CST_LOW (np->high));
5922 }
5923
5924 if (use_cost_table)
5925 cost += COST_TABLE (TREE_INT_CST_LOW (np->low));
5926
5927 i++;
5928 np = np->right;
5929 }
5930
5931 if (i > 2)
5932 {
5933 /* Split this list if it is long enough for that to help. */
5934 npp = head;
5935 left = *npp;
5936 if (use_cost_table)
5937 {
5938 /* Find the place in the list that bisects the list's total cost,
5939 Here I gets half the total cost. */
5940 int n_moved = 0;
5941 i = (cost + 1) / 2;
5942 while (1)
5943 {
5944 /* Skip nodes while their cost does not reach that amount. */
5945 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5946 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->high));
5947 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->low));
5948 if (i <= 0)
5949 break;
5950 npp = &(*npp)->right;
5951 n_moved += 1;
5952 }
5953 if (n_moved == 0)
5954 {
5955 /* Leave this branch lopsided, but optimize left-hand
5956 side and fill in `parent' fields for right-hand side. */
5957 np = *head;
5958 np->parent = parent;
5959 balance_case_nodes (&np->left, np);
5960 for (; np->right; np = np->right)
5961 np->right->parent = np;
5962 return;
5963 }
5964 }
5965 /* If there are just three nodes, split at the middle one. */
5966 else if (i == 3)
5967 npp = &(*npp)->right;
5968 else
5969 {
5970 /* Find the place in the list that bisects the list's total cost,
5971 where ranges count as 2.
5972 Here I gets half the total cost. */
5973 i = (i + ranges + 1) / 2;
5974 while (1)
5975 {
5976 /* Skip nodes while their cost does not reach that amount. */
5977 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
5978 i--;
5979 i--;
5980 if (i <= 0)
5981 break;
5982 npp = &(*npp)->right;
5983 }
5984 }
5985 *head = np = *npp;
5986 *npp = 0;
5987 np->parent = parent;
5988 np->left = left;
5989
5990 /* Optimize each of the two split parts. */
5991 balance_case_nodes (&np->left, np);
5992 balance_case_nodes (&np->right, np);
5993 }
5994 else
5995 {
5996 /* Else leave this branch as one level,
5997 but fill in `parent' fields. */
5998 np = *head;
5999 np->parent = parent;
6000 for (; np->right; np = np->right)
6001 np->right->parent = np;
6002 }
6003 }
6004 }
6005 \f
6006 /* Search the parent sections of the case node tree
6007 to see if a test for the lower bound of NODE would be redundant.
6008 INDEX_TYPE is the type of the index expression.
6009
6010 The instructions to generate the case decision tree are
6011 output in the same order as nodes are processed so it is
6012 known that if a parent node checks the range of the current
6013 node minus one that the current node is bounded at its lower
6014 span. Thus the test would be redundant. */
6015
6016 static int
6017 node_has_low_bound (case_node_ptr node, tree index_type)
6018 {
6019 tree low_minus_one;
6020 case_node_ptr pnode;
6021
6022 /* If the lower bound of this node is the lowest value in the index type,
6023 we need not test it. */
6024
6025 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
6026 return 1;
6027
6028 /* If this node has a left branch, the value at the left must be less
6029 than that at this node, so it cannot be bounded at the bottom and
6030 we need not bother testing any further. */
6031
6032 if (node->left)
6033 return 0;
6034
6035 low_minus_one = fold (build (MINUS_EXPR, TREE_TYPE (node->low),
6036 node->low, integer_one_node));
6037
6038 /* If the subtraction above overflowed, we can't verify anything.
6039 Otherwise, look for a parent that tests our value - 1. */
6040
6041 if (! tree_int_cst_lt (low_minus_one, node->low))
6042 return 0;
6043
6044 for (pnode = node->parent; pnode; pnode = pnode->parent)
6045 if (tree_int_cst_equal (low_minus_one, pnode->high))
6046 return 1;
6047
6048 return 0;
6049 }
6050
6051 /* Search the parent sections of the case node tree
6052 to see if a test for the upper bound of NODE would be redundant.
6053 INDEX_TYPE is the type of the index expression.
6054
6055 The instructions to generate the case decision tree are
6056 output in the same order as nodes are processed so it is
6057 known that if a parent node checks the range of the current
6058 node plus one that the current node is bounded at its upper
6059 span. Thus the test would be redundant. */
6060
6061 static int
6062 node_has_high_bound (case_node_ptr node, tree index_type)
6063 {
6064 tree high_plus_one;
6065 case_node_ptr pnode;
6066
6067 /* If there is no upper bound, obviously no test is needed. */
6068
6069 if (TYPE_MAX_VALUE (index_type) == NULL)
6070 return 1;
6071
6072 /* If the upper bound of this node is the highest value in the type
6073 of the index expression, we need not test against it. */
6074
6075 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
6076 return 1;
6077
6078 /* If this node has a right branch, the value at the right must be greater
6079 than that at this node, so it cannot be bounded at the top and
6080 we need not bother testing any further. */
6081
6082 if (node->right)
6083 return 0;
6084
6085 high_plus_one = fold (build (PLUS_EXPR, TREE_TYPE (node->high),
6086 node->high, integer_one_node));
6087
6088 /* If the addition above overflowed, we can't verify anything.
6089 Otherwise, look for a parent that tests our value + 1. */
6090
6091 if (! tree_int_cst_lt (node->high, high_plus_one))
6092 return 0;
6093
6094 for (pnode = node->parent; pnode; pnode = pnode->parent)
6095 if (tree_int_cst_equal (high_plus_one, pnode->low))
6096 return 1;
6097
6098 return 0;
6099 }
6100
6101 /* Search the parent sections of the
6102 case node tree to see if both tests for the upper and lower
6103 bounds of NODE would be redundant. */
6104
6105 static int
6106 node_is_bounded (case_node_ptr node, tree index_type)
6107 {
6108 return (node_has_low_bound (node, index_type)
6109 && node_has_high_bound (node, index_type));
6110 }
6111
6112 /* Emit an unconditional jump to LABEL unless it would be dead code. */
6113
6114 static void
6115 emit_jump_if_reachable (rtx label)
6116 {
6117 if (GET_CODE (get_last_insn ()) != BARRIER)
6118 emit_jump (label);
6119 }
6120 \f
6121 /* Emit step-by-step code to select a case for the value of INDEX.
6122 The thus generated decision tree follows the form of the
6123 case-node binary tree NODE, whose nodes represent test conditions.
6124 INDEX_TYPE is the type of the index of the switch.
6125
6126 Care is taken to prune redundant tests from the decision tree
6127 by detecting any boundary conditions already checked by
6128 emitted rtx. (See node_has_high_bound, node_has_low_bound
6129 and node_is_bounded, above.)
6130
6131 Where the test conditions can be shown to be redundant we emit
6132 an unconditional jump to the target code. As a further
6133 optimization, the subordinates of a tree node are examined to
6134 check for bounded nodes. In this case conditional and/or
6135 unconditional jumps as a result of the boundary check for the
6136 current node are arranged to target the subordinates associated
6137 code for out of bound conditions on the current node.
6138
6139 We can assume that when control reaches the code generated here,
6140 the index value has already been compared with the parents
6141 of this node, and determined to be on the same side of each parent
6142 as this node is. Thus, if this node tests for the value 51,
6143 and a parent tested for 52, we don't need to consider
6144 the possibility of a value greater than 51. If another parent
6145 tests for the value 50, then this node need not test anything. */
6146
6147 static void
6148 emit_case_nodes (rtx index, case_node_ptr node, rtx default_label,
6149 tree index_type)
6150 {
6151 /* If INDEX has an unsigned type, we must make unsigned branches. */
6152 int unsignedp = TREE_UNSIGNED (index_type);
6153 enum machine_mode mode = GET_MODE (index);
6154 enum machine_mode imode = TYPE_MODE (index_type);
6155
6156 /* See if our parents have already tested everything for us.
6157 If they have, emit an unconditional jump for this node. */
6158 if (node_is_bounded (node, index_type))
6159 emit_jump (label_rtx (node->code_label));
6160
6161 else if (tree_int_cst_equal (node->low, node->high))
6162 {
6163 /* Node is single valued. First see if the index expression matches
6164 this node and then check our children, if any. */
6165
6166 do_jump_if_equal (index,
6167 convert_modes (mode, imode,
6168 expand_expr (node->low, NULL_RTX,
6169 VOIDmode, 0),
6170 unsignedp),
6171 label_rtx (node->code_label), unsignedp);
6172
6173 if (node->right != 0 && node->left != 0)
6174 {
6175 /* This node has children on both sides.
6176 Dispatch to one side or the other
6177 by comparing the index value with this node's value.
6178 If one subtree is bounded, check that one first,
6179 so we can avoid real branches in the tree. */
6180
6181 if (node_is_bounded (node->right, index_type))
6182 {
6183 emit_cmp_and_jump_insns (index,
6184 convert_modes
6185 (mode, imode,
6186 expand_expr (node->high, NULL_RTX,
6187 VOIDmode, 0),
6188 unsignedp),
6189 GT, NULL_RTX, mode, unsignedp,
6190 label_rtx (node->right->code_label));
6191 emit_case_nodes (index, node->left, default_label, index_type);
6192 }
6193
6194 else if (node_is_bounded (node->left, index_type))
6195 {
6196 emit_cmp_and_jump_insns (index,
6197 convert_modes
6198 (mode, imode,
6199 expand_expr (node->high, NULL_RTX,
6200 VOIDmode, 0),
6201 unsignedp),
6202 LT, NULL_RTX, mode, unsignedp,
6203 label_rtx (node->left->code_label));
6204 emit_case_nodes (index, node->right, default_label, index_type);
6205 }
6206
6207 else
6208 {
6209 /* Neither node is bounded. First distinguish the two sides;
6210 then emit the code for one side at a time. */
6211
6212 tree test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6213
6214 /* See if the value is on the right. */
6215 emit_cmp_and_jump_insns (index,
6216 convert_modes
6217 (mode, imode,
6218 expand_expr (node->high, NULL_RTX,
6219 VOIDmode, 0),
6220 unsignedp),
6221 GT, NULL_RTX, mode, unsignedp,
6222 label_rtx (test_label));
6223
6224 /* Value must be on the left.
6225 Handle the left-hand subtree. */
6226 emit_case_nodes (index, node->left, default_label, index_type);
6227 /* If left-hand subtree does nothing,
6228 go to default. */
6229 emit_jump_if_reachable (default_label);
6230
6231 /* Code branches here for the right-hand subtree. */
6232 expand_label (test_label);
6233 emit_case_nodes (index, node->right, default_label, index_type);
6234 }
6235 }
6236
6237 else if (node->right != 0 && node->left == 0)
6238 {
6239 /* Here we have a right child but no left so we issue conditional
6240 branch to default and process the right child.
6241
6242 Omit the conditional branch to default if we it avoid only one
6243 right child; it costs too much space to save so little time. */
6244
6245 if (node->right->right || node->right->left
6246 || !tree_int_cst_equal (node->right->low, node->right->high))
6247 {
6248 if (!node_has_low_bound (node, index_type))
6249 {
6250 emit_cmp_and_jump_insns (index,
6251 convert_modes
6252 (mode, imode,
6253 expand_expr (node->high, NULL_RTX,
6254 VOIDmode, 0),
6255 unsignedp),
6256 LT, NULL_RTX, mode, unsignedp,
6257 default_label);
6258 }
6259
6260 emit_case_nodes (index, node->right, default_label, index_type);
6261 }
6262 else
6263 /* We cannot process node->right normally
6264 since we haven't ruled out the numbers less than
6265 this node's value. So handle node->right explicitly. */
6266 do_jump_if_equal (index,
6267 convert_modes
6268 (mode, imode,
6269 expand_expr (node->right->low, NULL_RTX,
6270 VOIDmode, 0),
6271 unsignedp),
6272 label_rtx (node->right->code_label), unsignedp);
6273 }
6274
6275 else if (node->right == 0 && node->left != 0)
6276 {
6277 /* Just one subtree, on the left. */
6278 if (node->left->left || node->left->right
6279 || !tree_int_cst_equal (node->left->low, node->left->high))
6280 {
6281 if (!node_has_high_bound (node, index_type))
6282 {
6283 emit_cmp_and_jump_insns (index,
6284 convert_modes
6285 (mode, imode,
6286 expand_expr (node->high, NULL_RTX,
6287 VOIDmode, 0),
6288 unsignedp),
6289 GT, NULL_RTX, mode, unsignedp,
6290 default_label);
6291 }
6292
6293 emit_case_nodes (index, node->left, default_label, index_type);
6294 }
6295 else
6296 /* We cannot process node->left normally
6297 since we haven't ruled out the numbers less than
6298 this node's value. So handle node->left explicitly. */
6299 do_jump_if_equal (index,
6300 convert_modes
6301 (mode, imode,
6302 expand_expr (node->left->low, NULL_RTX,
6303 VOIDmode, 0),
6304 unsignedp),
6305 label_rtx (node->left->code_label), unsignedp);
6306 }
6307 }
6308 else
6309 {
6310 /* Node is a range. These cases are very similar to those for a single
6311 value, except that we do not start by testing whether this node
6312 is the one to branch to. */
6313
6314 if (node->right != 0 && node->left != 0)
6315 {
6316 /* Node has subtrees on both sides.
6317 If the right-hand subtree is bounded,
6318 test for it first, since we can go straight there.
6319 Otherwise, we need to make a branch in the control structure,
6320 then handle the two subtrees. */
6321 tree test_label = 0;
6322
6323 if (node_is_bounded (node->right, index_type))
6324 /* Right hand node is fully bounded so we can eliminate any
6325 testing and branch directly to the target code. */
6326 emit_cmp_and_jump_insns (index,
6327 convert_modes
6328 (mode, imode,
6329 expand_expr (node->high, NULL_RTX,
6330 VOIDmode, 0),
6331 unsignedp),
6332 GT, NULL_RTX, mode, unsignedp,
6333 label_rtx (node->right->code_label));
6334 else
6335 {
6336 /* Right hand node requires testing.
6337 Branch to a label where we will handle it later. */
6338
6339 test_label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
6340 emit_cmp_and_jump_insns (index,
6341 convert_modes
6342 (mode, imode,
6343 expand_expr (node->high, NULL_RTX,
6344 VOIDmode, 0),
6345 unsignedp),
6346 GT, NULL_RTX, mode, unsignedp,
6347 label_rtx (test_label));
6348 }
6349
6350 /* Value belongs to this node or to the left-hand subtree. */
6351
6352 emit_cmp_and_jump_insns (index,
6353 convert_modes
6354 (mode, imode,
6355 expand_expr (node->low, NULL_RTX,
6356 VOIDmode, 0),
6357 unsignedp),
6358 GE, NULL_RTX, mode, unsignedp,
6359 label_rtx (node->code_label));
6360
6361 /* Handle the left-hand subtree. */
6362 emit_case_nodes (index, node->left, default_label, index_type);
6363
6364 /* If right node had to be handled later, do that now. */
6365
6366 if (test_label)
6367 {
6368 /* If the left-hand subtree fell through,
6369 don't let it fall into the right-hand subtree. */
6370 emit_jump_if_reachable (default_label);
6371
6372 expand_label (test_label);
6373 emit_case_nodes (index, node->right, default_label, index_type);
6374 }
6375 }
6376
6377 else if (node->right != 0 && node->left == 0)
6378 {
6379 /* Deal with values to the left of this node,
6380 if they are possible. */
6381 if (!node_has_low_bound (node, index_type))
6382 {
6383 emit_cmp_and_jump_insns (index,
6384 convert_modes
6385 (mode, imode,
6386 expand_expr (node->low, NULL_RTX,
6387 VOIDmode, 0),
6388 unsignedp),
6389 LT, NULL_RTX, mode, unsignedp,
6390 default_label);
6391 }
6392
6393 /* Value belongs to this node or to the right-hand subtree. */
6394
6395 emit_cmp_and_jump_insns (index,
6396 convert_modes
6397 (mode, imode,
6398 expand_expr (node->high, NULL_RTX,
6399 VOIDmode, 0),
6400 unsignedp),
6401 LE, NULL_RTX, mode, unsignedp,
6402 label_rtx (node->code_label));
6403
6404 emit_case_nodes (index, node->right, default_label, index_type);
6405 }
6406
6407 else if (node->right == 0 && node->left != 0)
6408 {
6409 /* Deal with values to the right of this node,
6410 if they are possible. */
6411 if (!node_has_high_bound (node, index_type))
6412 {
6413 emit_cmp_and_jump_insns (index,
6414 convert_modes
6415 (mode, imode,
6416 expand_expr (node->high, NULL_RTX,
6417 VOIDmode, 0),
6418 unsignedp),
6419 GT, NULL_RTX, mode, unsignedp,
6420 default_label);
6421 }
6422
6423 /* Value belongs to this node or to the left-hand subtree. */
6424
6425 emit_cmp_and_jump_insns (index,
6426 convert_modes
6427 (mode, imode,
6428 expand_expr (node->low, NULL_RTX,
6429 VOIDmode, 0),
6430 unsignedp),
6431 GE, NULL_RTX, mode, unsignedp,
6432 label_rtx (node->code_label));
6433
6434 emit_case_nodes (index, node->left, default_label, index_type);
6435 }
6436
6437 else
6438 {
6439 /* Node has no children so we check low and high bounds to remove
6440 redundant tests. Only one of the bounds can exist,
6441 since otherwise this node is bounded--a case tested already. */
6442 int high_bound = node_has_high_bound (node, index_type);
6443 int low_bound = node_has_low_bound (node, index_type);
6444
6445 if (!high_bound && low_bound)
6446 {
6447 emit_cmp_and_jump_insns (index,
6448 convert_modes
6449 (mode, imode,
6450 expand_expr (node->high, NULL_RTX,
6451 VOIDmode, 0),
6452 unsignedp),
6453 GT, NULL_RTX, mode, unsignedp,
6454 default_label);
6455 }
6456
6457 else if (!low_bound && high_bound)
6458 {
6459 emit_cmp_and_jump_insns (index,
6460 convert_modes
6461 (mode, imode,
6462 expand_expr (node->low, NULL_RTX,
6463 VOIDmode, 0),
6464 unsignedp),
6465 LT, NULL_RTX, mode, unsignedp,
6466 default_label);
6467 }
6468 else if (!low_bound && !high_bound)
6469 {
6470 /* Widen LOW and HIGH to the same width as INDEX. */
6471 tree type = (*lang_hooks.types.type_for_mode) (mode, unsignedp);
6472 tree low = build1 (CONVERT_EXPR, type, node->low);
6473 tree high = build1 (CONVERT_EXPR, type, node->high);
6474 rtx low_rtx, new_index, new_bound;
6475
6476 /* Instead of doing two branches, emit one unsigned branch for
6477 (index-low) > (high-low). */
6478 low_rtx = expand_expr (low, NULL_RTX, mode, 0);
6479 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
6480 NULL_RTX, unsignedp,
6481 OPTAB_WIDEN);
6482 new_bound = expand_expr (fold (build (MINUS_EXPR, type,
6483 high, low)),
6484 NULL_RTX, mode, 0);
6485
6486 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
6487 mode, 1, default_label);
6488 }
6489
6490 emit_jump (label_rtx (node->code_label));
6491 }
6492 }
6493 }
6494
6495 #include "gt-stmt.h"