inclhack.def (hpux_imaginary_i): Remove spaces.
[gcc.git] / gcc / stmt.c
1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file handles the generation of rtl code from tree structure
23 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
24 The functions whose names start with `expand_' are called by the
25 expander to generate RTL instructions for various kinds of constructs. */
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31
32 #include "rtl.h"
33 #include "hard-reg-set.h"
34 #include "tree.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "except.h"
38 #include "function.h"
39 #include "insn-config.h"
40 #include "expr.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "machmode.h"
44 #include "toplev.h"
45 #include "output.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "predict.h"
49 #include "optabs.h"
50 #include "target.h"
51 #include "regs.h"
52 #include "alloc-pool.h"
53 #include "pretty-print.h"
54 \f
55 /* Functions and data structures for expanding case statements. */
56
57 /* Case label structure, used to hold info on labels within case
58 statements. We handle "range" labels; for a single-value label
59 as in C, the high and low limits are the same.
60
61 We start with a vector of case nodes sorted in ascending order, and
62 the default label as the last element in the vector. Before expanding
63 to RTL, we transform this vector into a list linked via the RIGHT
64 fields in the case_node struct. Nodes with higher case values are
65 later in the list.
66
67 Switch statements can be output in three forms. A branch table is
68 used if there are more than a few labels and the labels are dense
69 within the range between the smallest and largest case value. If a
70 branch table is used, no further manipulations are done with the case
71 node chain.
72
73 The alternative to the use of a branch table is to generate a series
74 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
75 and PARENT fields to hold a binary tree. Initially the tree is
76 totally unbalanced, with everything on the right. We balance the tree
77 with nodes on the left having lower case values than the parent
78 and nodes on the right having higher values. We then output the tree
79 in order.
80
81 For very small, suitable switch statements, we can generate a series
82 of simple bit test and branches instead. */
83
84 struct case_node
85 {
86 struct case_node *left; /* Left son in binary tree */
87 struct case_node *right; /* Right son in binary tree; also node chain */
88 struct case_node *parent; /* Parent of node in binary tree */
89 tree low; /* Lowest index value for this label */
90 tree high; /* Highest index value for this label */
91 tree code_label; /* Label to jump to when node matches */
92 };
93
94 typedef struct case_node case_node;
95 typedef struct case_node *case_node_ptr;
96
97 /* These are used by estimate_case_costs and balance_case_nodes. */
98
99 /* This must be a signed type, and non-ANSI compilers lack signed char. */
100 static short cost_table_[129];
101 static int use_cost_table;
102 static int cost_table_initialized;
103
104 /* Special care is needed because we allow -1, but TREE_INT_CST_LOW
105 is unsigned. */
106 #define COST_TABLE(I) cost_table_[(unsigned HOST_WIDE_INT) ((I) + 1)]
107 \f
108 static int n_occurrences (int, const char *);
109 static bool tree_conflicts_with_clobbers_p (tree, HARD_REG_SET *);
110 static void expand_nl_goto_receiver (void);
111 static bool check_operand_nalternatives (tree, tree);
112 static bool check_unique_operand_names (tree, tree);
113 static char *resolve_operand_name_1 (char *, tree, tree);
114 static void expand_null_return_1 (void);
115 static void expand_value_return (rtx);
116 static int estimate_case_costs (case_node_ptr);
117 static bool lshift_cheap_p (void);
118 static int case_bit_test_cmp (const void *, const void *);
119 static void emit_case_bit_tests (tree, tree, tree, tree, case_node_ptr, rtx);
120 static void balance_case_nodes (case_node_ptr *, case_node_ptr);
121 static int node_has_low_bound (case_node_ptr, tree);
122 static int node_has_high_bound (case_node_ptr, tree);
123 static int node_is_bounded (case_node_ptr, tree);
124 static void emit_case_nodes (rtx, case_node_ptr, rtx, tree);
125 static struct case_node *add_case_node (struct case_node *, tree,
126 tree, tree, tree, alloc_pool);
127
128 \f
129 /* Return the rtx-label that corresponds to a LABEL_DECL,
130 creating it if necessary. */
131
132 rtx
133 label_rtx (tree label)
134 {
135 gcc_assert (TREE_CODE (label) == LABEL_DECL);
136
137 if (!DECL_RTL_SET_P (label))
138 {
139 rtx r = gen_label_rtx ();
140 SET_DECL_RTL (label, r);
141 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
142 LABEL_PRESERVE_P (r) = 1;
143 }
144
145 return DECL_RTL (label);
146 }
147
148 /* As above, but also put it on the forced-reference list of the
149 function that contains it. */
150 rtx
151 force_label_rtx (tree label)
152 {
153 rtx ref = label_rtx (label);
154 tree function = decl_function_context (label);
155
156 gcc_assert (function);
157
158 forced_labels = gen_rtx_EXPR_LIST (VOIDmode, ref, forced_labels);
159 return ref;
160 }
161
162 /* Add an unconditional jump to LABEL as the next sequential instruction. */
163
164 void
165 emit_jump (rtx label)
166 {
167 do_pending_stack_adjust ();
168 emit_jump_insn (gen_jump (label));
169 emit_barrier ();
170 }
171
172 /* Emit code to jump to the address
173 specified by the pointer expression EXP. */
174
175 void
176 expand_computed_goto (tree exp)
177 {
178 rtx x = expand_normal (exp);
179
180 x = convert_memory_address (Pmode, x);
181
182 do_pending_stack_adjust ();
183 emit_indirect_jump (x);
184 }
185 \f
186 /* Handle goto statements and the labels that they can go to. */
187
188 /* Specify the location in the RTL code of a label LABEL,
189 which is a LABEL_DECL tree node.
190
191 This is used for the kind of label that the user can jump to with a
192 goto statement, and for alternatives of a switch or case statement.
193 RTL labels generated for loops and conditionals don't go through here;
194 they are generated directly at the RTL level, by other functions below.
195
196 Note that this has nothing to do with defining label *names*.
197 Languages vary in how they do that and what that even means. */
198
199 void
200 expand_label (tree label)
201 {
202 rtx label_r = label_rtx (label);
203
204 do_pending_stack_adjust ();
205 emit_label (label_r);
206 if (DECL_NAME (label))
207 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
208
209 if (DECL_NONLOCAL (label))
210 {
211 expand_nl_goto_receiver ();
212 nonlocal_goto_handler_labels
213 = gen_rtx_EXPR_LIST (VOIDmode, label_r,
214 nonlocal_goto_handler_labels);
215 }
216
217 if (FORCED_LABEL (label))
218 forced_labels = gen_rtx_EXPR_LIST (VOIDmode, label_r, forced_labels);
219
220 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
221 maybe_set_first_label_num (label_r);
222 }
223
224 /* Generate RTL code for a `goto' statement with target label LABEL.
225 LABEL should be a LABEL_DECL tree node that was or will later be
226 defined with `expand_label'. */
227
228 void
229 expand_goto (tree label)
230 {
231 #ifdef ENABLE_CHECKING
232 /* Check for a nonlocal goto to a containing function. Should have
233 gotten translated to __builtin_nonlocal_goto. */
234 tree context = decl_function_context (label);
235 gcc_assert (!context || context == current_function_decl);
236 #endif
237
238 emit_jump (label_rtx (label));
239 }
240 \f
241 /* Return the number of times character C occurs in string S. */
242 static int
243 n_occurrences (int c, const char *s)
244 {
245 int n = 0;
246 while (*s)
247 n += (*s++ == c);
248 return n;
249 }
250 \f
251 /* Generate RTL for an asm statement (explicit assembler code).
252 STRING is a STRING_CST node containing the assembler code text,
253 or an ADDR_EXPR containing a STRING_CST. VOL nonzero means the
254 insn is volatile; don't optimize it. */
255
256 static void
257 expand_asm_loc (tree string, int vol, location_t locus)
258 {
259 rtx body;
260
261 if (TREE_CODE (string) == ADDR_EXPR)
262 string = TREE_OPERAND (string, 0);
263
264 body = gen_rtx_ASM_INPUT_loc (VOIDmode,
265 ggc_strdup (TREE_STRING_POINTER (string)),
266 locus);
267
268 MEM_VOLATILE_P (body) = vol;
269
270 emit_insn (body);
271 }
272
273 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
274 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
275 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
276 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
277 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
278 constraint allows the use of a register operand. And, *IS_INOUT
279 will be true if the operand is read-write, i.e., if it is used as
280 an input as well as an output. If *CONSTRAINT_P is not in
281 canonical form, it will be made canonical. (Note that `+' will be
282 replaced with `=' as part of this process.)
283
284 Returns TRUE if all went well; FALSE if an error occurred. */
285
286 bool
287 parse_output_constraint (const char **constraint_p, int operand_num,
288 int ninputs, int noutputs, bool *allows_mem,
289 bool *allows_reg, bool *is_inout)
290 {
291 const char *constraint = *constraint_p;
292 const char *p;
293
294 /* Assume the constraint doesn't allow the use of either a register
295 or memory. */
296 *allows_mem = false;
297 *allows_reg = false;
298
299 /* Allow the `=' or `+' to not be at the beginning of the string,
300 since it wasn't explicitly documented that way, and there is a
301 large body of code that puts it last. Swap the character to
302 the front, so as not to uglify any place else. */
303 p = strchr (constraint, '=');
304 if (!p)
305 p = strchr (constraint, '+');
306
307 /* If the string doesn't contain an `=', issue an error
308 message. */
309 if (!p)
310 {
311 error ("output operand constraint lacks %<=%>");
312 return false;
313 }
314
315 /* If the constraint begins with `+', then the operand is both read
316 from and written to. */
317 *is_inout = (*p == '+');
318
319 /* Canonicalize the output constraint so that it begins with `='. */
320 if (p != constraint || *is_inout)
321 {
322 char *buf;
323 size_t c_len = strlen (constraint);
324
325 if (p != constraint)
326 warning (0, "output constraint %qc for operand %d "
327 "is not at the beginning",
328 *p, operand_num);
329
330 /* Make a copy of the constraint. */
331 buf = XALLOCAVEC (char, c_len + 1);
332 strcpy (buf, constraint);
333 /* Swap the first character and the `=' or `+'. */
334 buf[p - constraint] = buf[0];
335 /* Make sure the first character is an `='. (Until we do this,
336 it might be a `+'.) */
337 buf[0] = '=';
338 /* Replace the constraint with the canonicalized string. */
339 *constraint_p = ggc_alloc_string (buf, c_len);
340 constraint = *constraint_p;
341 }
342
343 /* Loop through the constraint string. */
344 for (p = constraint + 1; *p; p += CONSTRAINT_LEN (*p, p))
345 switch (*p)
346 {
347 case '+':
348 case '=':
349 error ("operand constraint contains incorrectly positioned "
350 "%<+%> or %<=%>");
351 return false;
352
353 case '%':
354 if (operand_num + 1 == ninputs + noutputs)
355 {
356 error ("%<%%%> constraint used with last operand");
357 return false;
358 }
359 break;
360
361 case 'V': case TARGET_MEM_CONSTRAINT: case 'o':
362 *allows_mem = true;
363 break;
364
365 case '?': case '!': case '*': case '&': case '#':
366 case 'E': case 'F': case 'G': case 'H':
367 case 's': case 'i': case 'n':
368 case 'I': case 'J': case 'K': case 'L': case 'M':
369 case 'N': case 'O': case 'P': case ',':
370 break;
371
372 case '0': case '1': case '2': case '3': case '4':
373 case '5': case '6': case '7': case '8': case '9':
374 case '[':
375 error ("matching constraint not valid in output operand");
376 return false;
377
378 case '<': case '>':
379 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
380 excepting those that expand_call created. So match memory
381 and hope. */
382 *allows_mem = true;
383 break;
384
385 case 'g': case 'X':
386 *allows_reg = true;
387 *allows_mem = true;
388 break;
389
390 case 'p': case 'r':
391 *allows_reg = true;
392 break;
393
394 default:
395 if (!ISALPHA (*p))
396 break;
397 if (REG_CLASS_FROM_CONSTRAINT (*p, p) != NO_REGS)
398 *allows_reg = true;
399 #ifdef EXTRA_CONSTRAINT_STR
400 else if (EXTRA_ADDRESS_CONSTRAINT (*p, p))
401 *allows_reg = true;
402 else if (EXTRA_MEMORY_CONSTRAINT (*p, p))
403 *allows_mem = true;
404 else
405 {
406 /* Otherwise we can't assume anything about the nature of
407 the constraint except that it isn't purely registers.
408 Treat it like "g" and hope for the best. */
409 *allows_reg = true;
410 *allows_mem = true;
411 }
412 #endif
413 break;
414 }
415
416 return true;
417 }
418
419 /* Similar, but for input constraints. */
420
421 bool
422 parse_input_constraint (const char **constraint_p, int input_num,
423 int ninputs, int noutputs, int ninout,
424 const char * const * constraints,
425 bool *allows_mem, bool *allows_reg)
426 {
427 const char *constraint = *constraint_p;
428 const char *orig_constraint = constraint;
429 size_t c_len = strlen (constraint);
430 size_t j;
431 bool saw_match = false;
432
433 /* Assume the constraint doesn't allow the use of either
434 a register or memory. */
435 *allows_mem = false;
436 *allows_reg = false;
437
438 /* Make sure constraint has neither `=', `+', nor '&'. */
439
440 for (j = 0; j < c_len; j += CONSTRAINT_LEN (constraint[j], constraint+j))
441 switch (constraint[j])
442 {
443 case '+': case '=': case '&':
444 if (constraint == orig_constraint)
445 {
446 error ("input operand constraint contains %qc", constraint[j]);
447 return false;
448 }
449 break;
450
451 case '%':
452 if (constraint == orig_constraint
453 && input_num + 1 == ninputs - ninout)
454 {
455 error ("%<%%%> constraint used with last operand");
456 return false;
457 }
458 break;
459
460 case 'V': case TARGET_MEM_CONSTRAINT: case 'o':
461 *allows_mem = true;
462 break;
463
464 case '<': case '>':
465 case '?': case '!': case '*': case '#':
466 case 'E': case 'F': case 'G': case 'H':
467 case 's': case 'i': case 'n':
468 case 'I': case 'J': case 'K': case 'L': case 'M':
469 case 'N': case 'O': case 'P': case ',':
470 break;
471
472 /* Whether or not a numeric constraint allows a register is
473 decided by the matching constraint, and so there is no need
474 to do anything special with them. We must handle them in
475 the default case, so that we don't unnecessarily force
476 operands to memory. */
477 case '0': case '1': case '2': case '3': case '4':
478 case '5': case '6': case '7': case '8': case '9':
479 {
480 char *end;
481 unsigned long match;
482
483 saw_match = true;
484
485 match = strtoul (constraint + j, &end, 10);
486 if (match >= (unsigned long) noutputs)
487 {
488 error ("matching constraint references invalid operand number");
489 return false;
490 }
491
492 /* Try and find the real constraint for this dup. Only do this
493 if the matching constraint is the only alternative. */
494 if (*end == '\0'
495 && (j == 0 || (j == 1 && constraint[0] == '%')))
496 {
497 constraint = constraints[match];
498 *constraint_p = constraint;
499 c_len = strlen (constraint);
500 j = 0;
501 /* ??? At the end of the loop, we will skip the first part of
502 the matched constraint. This assumes not only that the
503 other constraint is an output constraint, but also that
504 the '=' or '+' come first. */
505 break;
506 }
507 else
508 j = end - constraint;
509 /* Anticipate increment at end of loop. */
510 j--;
511 }
512 /* Fall through. */
513
514 case 'p': case 'r':
515 *allows_reg = true;
516 break;
517
518 case 'g': case 'X':
519 *allows_reg = true;
520 *allows_mem = true;
521 break;
522
523 default:
524 if (! ISALPHA (constraint[j]))
525 {
526 error ("invalid punctuation %qc in constraint", constraint[j]);
527 return false;
528 }
529 if (REG_CLASS_FROM_CONSTRAINT (constraint[j], constraint + j)
530 != NO_REGS)
531 *allows_reg = true;
532 #ifdef EXTRA_CONSTRAINT_STR
533 else if (EXTRA_ADDRESS_CONSTRAINT (constraint[j], constraint + j))
534 *allows_reg = true;
535 else if (EXTRA_MEMORY_CONSTRAINT (constraint[j], constraint + j))
536 *allows_mem = true;
537 else
538 {
539 /* Otherwise we can't assume anything about the nature of
540 the constraint except that it isn't purely registers.
541 Treat it like "g" and hope for the best. */
542 *allows_reg = true;
543 *allows_mem = true;
544 }
545 #endif
546 break;
547 }
548
549 if (saw_match && !*allows_reg)
550 warning (0, "matching constraint does not allow a register");
551
552 return true;
553 }
554
555 /* Return DECL iff there's an overlap between *REGS and DECL, where DECL
556 can be an asm-declared register. Called via walk_tree. */
557
558 static tree
559 decl_overlaps_hard_reg_set_p (tree *declp, int *walk_subtrees ATTRIBUTE_UNUSED,
560 void *data)
561 {
562 tree decl = *declp;
563 const HARD_REG_SET *const regs = (const HARD_REG_SET *) data;
564
565 if (TREE_CODE (decl) == VAR_DECL)
566 {
567 if (DECL_HARD_REGISTER (decl)
568 && REG_P (DECL_RTL (decl))
569 && REGNO (DECL_RTL (decl)) < FIRST_PSEUDO_REGISTER)
570 {
571 rtx reg = DECL_RTL (decl);
572
573 if (overlaps_hard_reg_set_p (*regs, GET_MODE (reg), REGNO (reg)))
574 return decl;
575 }
576 walk_subtrees = 0;
577 }
578 else if (TYPE_P (decl) || TREE_CODE (decl) == PARM_DECL)
579 walk_subtrees = 0;
580 return NULL_TREE;
581 }
582
583 /* If there is an overlap between *REGS and DECL, return the first overlap
584 found. */
585 tree
586 tree_overlaps_hard_reg_set (tree decl, HARD_REG_SET *regs)
587 {
588 return walk_tree (&decl, decl_overlaps_hard_reg_set_p, regs, NULL);
589 }
590
591 /* Check for overlap between registers marked in CLOBBERED_REGS and
592 anything inappropriate in T. Emit error and return the register
593 variable definition for error, NULL_TREE for ok. */
594
595 static bool
596 tree_conflicts_with_clobbers_p (tree t, HARD_REG_SET *clobbered_regs)
597 {
598 /* Conflicts between asm-declared register variables and the clobber
599 list are not allowed. */
600 tree overlap = tree_overlaps_hard_reg_set (t, clobbered_regs);
601
602 if (overlap)
603 {
604 error ("asm-specifier for variable %qE conflicts with asm clobber list",
605 DECL_NAME (overlap));
606
607 /* Reset registerness to stop multiple errors emitted for a single
608 variable. */
609 DECL_REGISTER (overlap) = 0;
610 return true;
611 }
612
613 return false;
614 }
615
616 /* Generate RTL for an asm statement with arguments.
617 STRING is the instruction template.
618 OUTPUTS is a list of output arguments (lvalues); INPUTS a list of inputs.
619 Each output or input has an expression in the TREE_VALUE and
620 a tree list in TREE_PURPOSE which in turn contains a constraint
621 name in TREE_VALUE (or NULL_TREE) and a constraint string
622 in TREE_PURPOSE.
623 CLOBBERS is a list of STRING_CST nodes each naming a hard register
624 that is clobbered by this insn.
625
626 Not all kinds of lvalue that may appear in OUTPUTS can be stored directly.
627 Some elements of OUTPUTS may be replaced with trees representing temporary
628 values. The caller should copy those temporary values to the originally
629 specified lvalues.
630
631 VOL nonzero means the insn is volatile; don't optimize it. */
632
633 static void
634 expand_asm_operands (tree string, tree outputs, tree inputs,
635 tree clobbers, int vol, location_t locus)
636 {
637 rtvec argvec, constraintvec;
638 rtx body;
639 int ninputs = list_length (inputs);
640 int noutputs = list_length (outputs);
641 int ninout;
642 int nclobbers;
643 HARD_REG_SET clobbered_regs;
644 int clobber_conflict_found = 0;
645 tree tail;
646 tree t;
647 int i;
648 /* Vector of RTX's of evaluated output operands. */
649 rtx *output_rtx = XALLOCAVEC (rtx, noutputs);
650 int *inout_opnum = XALLOCAVEC (int, noutputs);
651 rtx *real_output_rtx = XALLOCAVEC (rtx, noutputs);
652 enum machine_mode *inout_mode = XALLOCAVEC (enum machine_mode, noutputs);
653 const char **constraints = XALLOCAVEC (const char *, noutputs + ninputs);
654 int old_generating_concat_p = generating_concat_p;
655
656 /* An ASM with no outputs needs to be treated as volatile, for now. */
657 if (noutputs == 0)
658 vol = 1;
659
660 if (! check_operand_nalternatives (outputs, inputs))
661 return;
662
663 string = resolve_asm_operand_names (string, outputs, inputs);
664
665 /* Collect constraints. */
666 i = 0;
667 for (t = outputs; t ; t = TREE_CHAIN (t), i++)
668 constraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
669 for (t = inputs; t ; t = TREE_CHAIN (t), i++)
670 constraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
671
672 /* Sometimes we wish to automatically clobber registers across an asm.
673 Case in point is when the i386 backend moved from cc0 to a hard reg --
674 maintaining source-level compatibility means automatically clobbering
675 the flags register. */
676 clobbers = targetm.md_asm_clobbers (outputs, inputs, clobbers);
677
678 /* Count the number of meaningful clobbered registers, ignoring what
679 we would ignore later. */
680 nclobbers = 0;
681 CLEAR_HARD_REG_SET (clobbered_regs);
682 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
683 {
684 const char *regname;
685
686 if (TREE_VALUE (tail) == error_mark_node)
687 return;
688 regname = TREE_STRING_POINTER (TREE_VALUE (tail));
689
690 i = decode_reg_name (regname);
691 if (i >= 0 || i == -4)
692 ++nclobbers;
693 else if (i == -2)
694 error ("unknown register name %qs in %<asm%>", regname);
695
696 /* Mark clobbered registers. */
697 if (i >= 0)
698 {
699 /* Clobbering the PIC register is an error. */
700 if (i == (int) PIC_OFFSET_TABLE_REGNUM)
701 {
702 error ("PIC register %qs clobbered in %<asm%>", regname);
703 return;
704 }
705
706 SET_HARD_REG_BIT (clobbered_regs, i);
707 }
708 }
709
710 /* First pass over inputs and outputs checks validity and sets
711 mark_addressable if needed. */
712
713 ninout = 0;
714 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
715 {
716 tree val = TREE_VALUE (tail);
717 tree type = TREE_TYPE (val);
718 const char *constraint;
719 bool is_inout;
720 bool allows_reg;
721 bool allows_mem;
722
723 /* If there's an erroneous arg, emit no insn. */
724 if (type == error_mark_node)
725 return;
726
727 /* Try to parse the output constraint. If that fails, there's
728 no point in going further. */
729 constraint = constraints[i];
730 if (!parse_output_constraint (&constraint, i, ninputs, noutputs,
731 &allows_mem, &allows_reg, &is_inout))
732 return;
733
734 if (! allows_reg
735 && (allows_mem
736 || is_inout
737 || (DECL_P (val)
738 && REG_P (DECL_RTL (val))
739 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type))))
740 lang_hooks.mark_addressable (val);
741
742 if (is_inout)
743 ninout++;
744 }
745
746 ninputs += ninout;
747 if (ninputs + noutputs > MAX_RECOG_OPERANDS)
748 {
749 error ("more than %d operands in %<asm%>", MAX_RECOG_OPERANDS);
750 return;
751 }
752
753 for (i = 0, tail = inputs; tail; i++, tail = TREE_CHAIN (tail))
754 {
755 bool allows_reg, allows_mem;
756 const char *constraint;
757
758 /* If there's an erroneous arg, emit no insn, because the ASM_INPUT
759 would get VOIDmode and that could cause a crash in reload. */
760 if (TREE_TYPE (TREE_VALUE (tail)) == error_mark_node)
761 return;
762
763 constraint = constraints[i + noutputs];
764 if (! parse_input_constraint (&constraint, i, ninputs, noutputs, ninout,
765 constraints, &allows_mem, &allows_reg))
766 return;
767
768 if (! allows_reg && allows_mem)
769 lang_hooks.mark_addressable (TREE_VALUE (tail));
770 }
771
772 /* Second pass evaluates arguments. */
773
774 ninout = 0;
775 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
776 {
777 tree val = TREE_VALUE (tail);
778 tree type = TREE_TYPE (val);
779 bool is_inout;
780 bool allows_reg;
781 bool allows_mem;
782 rtx op;
783 bool ok;
784
785 ok = parse_output_constraint (&constraints[i], i, ninputs,
786 noutputs, &allows_mem, &allows_reg,
787 &is_inout);
788 gcc_assert (ok);
789
790 /* If an output operand is not a decl or indirect ref and our constraint
791 allows a register, make a temporary to act as an intermediate.
792 Make the asm insn write into that, then our caller will copy it to
793 the real output operand. Likewise for promoted variables. */
794
795 generating_concat_p = 0;
796
797 real_output_rtx[i] = NULL_RTX;
798 if ((TREE_CODE (val) == INDIRECT_REF
799 && allows_mem)
800 || (DECL_P (val)
801 && (allows_mem || REG_P (DECL_RTL (val)))
802 && ! (REG_P (DECL_RTL (val))
803 && GET_MODE (DECL_RTL (val)) != TYPE_MODE (type)))
804 || ! allows_reg
805 || is_inout)
806 {
807 op = expand_expr (val, NULL_RTX, VOIDmode, EXPAND_WRITE);
808 if (MEM_P (op))
809 op = validize_mem (op);
810
811 if (! allows_reg && !MEM_P (op))
812 error ("output number %d not directly addressable", i);
813 if ((! allows_mem && MEM_P (op))
814 || GET_CODE (op) == CONCAT)
815 {
816 real_output_rtx[i] = op;
817 op = gen_reg_rtx (GET_MODE (op));
818 if (is_inout)
819 emit_move_insn (op, real_output_rtx[i]);
820 }
821 }
822 else
823 {
824 op = assign_temp (type, 0, 0, 1);
825 op = validize_mem (op);
826 TREE_VALUE (tail) = make_tree (type, op);
827 }
828 output_rtx[i] = op;
829
830 generating_concat_p = old_generating_concat_p;
831
832 if (is_inout)
833 {
834 inout_mode[ninout] = TYPE_MODE (type);
835 inout_opnum[ninout++] = i;
836 }
837
838 if (tree_conflicts_with_clobbers_p (val, &clobbered_regs))
839 clobber_conflict_found = 1;
840 }
841
842 /* Make vectors for the expression-rtx, constraint strings,
843 and named operands. */
844
845 argvec = rtvec_alloc (ninputs);
846 constraintvec = rtvec_alloc (ninputs);
847
848 body = gen_rtx_ASM_OPERANDS ((noutputs == 0 ? VOIDmode
849 : GET_MODE (output_rtx[0])),
850 ggc_strdup (TREE_STRING_POINTER (string)),
851 empty_string, 0, argvec, constraintvec,
852 locus);
853
854 MEM_VOLATILE_P (body) = vol;
855
856 /* Eval the inputs and put them into ARGVEC.
857 Put their constraints into ASM_INPUTs and store in CONSTRAINTS. */
858
859 for (i = 0, tail = inputs; tail; tail = TREE_CHAIN (tail), ++i)
860 {
861 bool allows_reg, allows_mem;
862 const char *constraint;
863 tree val, type;
864 rtx op;
865 bool ok;
866
867 constraint = constraints[i + noutputs];
868 ok = parse_input_constraint (&constraint, i, ninputs, noutputs, ninout,
869 constraints, &allows_mem, &allows_reg);
870 gcc_assert (ok);
871
872 generating_concat_p = 0;
873
874 val = TREE_VALUE (tail);
875 type = TREE_TYPE (val);
876 /* EXPAND_INITIALIZER will not generate code for valid initializer
877 constants, but will still generate code for other types of operand.
878 This is the behavior we want for constant constraints. */
879 op = expand_expr (val, NULL_RTX, VOIDmode,
880 allows_reg ? EXPAND_NORMAL
881 : allows_mem ? EXPAND_MEMORY
882 : EXPAND_INITIALIZER);
883
884 /* Never pass a CONCAT to an ASM. */
885 if (GET_CODE (op) == CONCAT)
886 op = force_reg (GET_MODE (op), op);
887 else if (MEM_P (op))
888 op = validize_mem (op);
889
890 if (asm_operand_ok (op, constraint, NULL) <= 0)
891 {
892 if (allows_reg && TYPE_MODE (type) != BLKmode)
893 op = force_reg (TYPE_MODE (type), op);
894 else if (!allows_mem)
895 warning (0, "asm operand %d probably doesn%'t match constraints",
896 i + noutputs);
897 else if (MEM_P (op))
898 {
899 /* We won't recognize either volatile memory or memory
900 with a queued address as available a memory_operand
901 at this point. Ignore it: clearly this *is* a memory. */
902 }
903 else
904 {
905 warning (0, "use of memory input without lvalue in "
906 "asm operand %d is deprecated", i + noutputs);
907
908 if (CONSTANT_P (op))
909 {
910 rtx mem = force_const_mem (TYPE_MODE (type), op);
911 if (mem)
912 op = validize_mem (mem);
913 else
914 op = force_reg (TYPE_MODE (type), op);
915 }
916 if (REG_P (op)
917 || GET_CODE (op) == SUBREG
918 || GET_CODE (op) == CONCAT)
919 {
920 tree qual_type = build_qualified_type (type,
921 (TYPE_QUALS (type)
922 | TYPE_QUAL_CONST));
923 rtx memloc = assign_temp (qual_type, 1, 1, 1);
924 memloc = validize_mem (memloc);
925 emit_move_insn (memloc, op);
926 op = memloc;
927 }
928 }
929 }
930
931 generating_concat_p = old_generating_concat_p;
932 ASM_OPERANDS_INPUT (body, i) = op;
933
934 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, i)
935 = gen_rtx_ASM_INPUT (TYPE_MODE (type),
936 ggc_strdup (constraints[i + noutputs]));
937
938 if (tree_conflicts_with_clobbers_p (val, &clobbered_regs))
939 clobber_conflict_found = 1;
940 }
941
942 /* Protect all the operands from the queue now that they have all been
943 evaluated. */
944
945 generating_concat_p = 0;
946
947 /* For in-out operands, copy output rtx to input rtx. */
948 for (i = 0; i < ninout; i++)
949 {
950 int j = inout_opnum[i];
951 char buffer[16];
952
953 ASM_OPERANDS_INPUT (body, ninputs - ninout + i)
954 = output_rtx[j];
955
956 sprintf (buffer, "%d", j);
957 ASM_OPERANDS_INPUT_CONSTRAINT_EXP (body, ninputs - ninout + i)
958 = gen_rtx_ASM_INPUT (inout_mode[i], ggc_strdup (buffer));
959 }
960
961 generating_concat_p = old_generating_concat_p;
962
963 /* Now, for each output, construct an rtx
964 (set OUTPUT (asm_operands INSN OUTPUTCONSTRAINT OUTPUTNUMBER
965 ARGVEC CONSTRAINTS OPNAMES))
966 If there is more than one, put them inside a PARALLEL. */
967
968 if (noutputs == 1 && nclobbers == 0)
969 {
970 ASM_OPERANDS_OUTPUT_CONSTRAINT (body) = ggc_strdup (constraints[0]);
971 emit_insn (gen_rtx_SET (VOIDmode, output_rtx[0], body));
972 }
973
974 else if (noutputs == 0 && nclobbers == 0)
975 {
976 /* No output operands: put in a raw ASM_OPERANDS rtx. */
977 emit_insn (body);
978 }
979
980 else
981 {
982 rtx obody = body;
983 int num = noutputs;
984
985 if (num == 0)
986 num = 1;
987
988 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num + nclobbers));
989
990 /* For each output operand, store a SET. */
991 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
992 {
993 XVECEXP (body, 0, i)
994 = gen_rtx_SET (VOIDmode,
995 output_rtx[i],
996 gen_rtx_ASM_OPERANDS
997 (GET_MODE (output_rtx[i]),
998 ggc_strdup (TREE_STRING_POINTER (string)),
999 ggc_strdup (constraints[i]),
1000 i, argvec, constraintvec, locus));
1001
1002 MEM_VOLATILE_P (SET_SRC (XVECEXP (body, 0, i))) = vol;
1003 }
1004
1005 /* If there are no outputs (but there are some clobbers)
1006 store the bare ASM_OPERANDS into the PARALLEL. */
1007
1008 if (i == 0)
1009 XVECEXP (body, 0, i++) = obody;
1010
1011 /* Store (clobber REG) for each clobbered register specified. */
1012
1013 for (tail = clobbers; tail; tail = TREE_CHAIN (tail))
1014 {
1015 const char *regname = TREE_STRING_POINTER (TREE_VALUE (tail));
1016 int j = decode_reg_name (regname);
1017 rtx clobbered_reg;
1018
1019 if (j < 0)
1020 {
1021 if (j == -3) /* `cc', which is not a register */
1022 continue;
1023
1024 if (j == -4) /* `memory', don't cache memory across asm */
1025 {
1026 XVECEXP (body, 0, i++)
1027 = gen_rtx_CLOBBER (VOIDmode,
1028 gen_rtx_MEM
1029 (BLKmode,
1030 gen_rtx_SCRATCH (VOIDmode)));
1031 continue;
1032 }
1033
1034 /* Ignore unknown register, error already signaled. */
1035 continue;
1036 }
1037
1038 /* Use QImode since that's guaranteed to clobber just one reg. */
1039 clobbered_reg = gen_rtx_REG (QImode, j);
1040
1041 /* Do sanity check for overlap between clobbers and respectively
1042 input and outputs that hasn't been handled. Such overlap
1043 should have been detected and reported above. */
1044 if (!clobber_conflict_found)
1045 {
1046 int opno;
1047
1048 /* We test the old body (obody) contents to avoid tripping
1049 over the under-construction body. */
1050 for (opno = 0; opno < noutputs; opno++)
1051 if (reg_overlap_mentioned_p (clobbered_reg, output_rtx[opno]))
1052 internal_error ("asm clobber conflict with output operand");
1053
1054 for (opno = 0; opno < ninputs - ninout; opno++)
1055 if (reg_overlap_mentioned_p (clobbered_reg,
1056 ASM_OPERANDS_INPUT (obody, opno)))
1057 internal_error ("asm clobber conflict with input operand");
1058 }
1059
1060 XVECEXP (body, 0, i++)
1061 = gen_rtx_CLOBBER (VOIDmode, clobbered_reg);
1062 }
1063
1064 emit_insn (body);
1065 }
1066
1067 /* For any outputs that needed reloading into registers, spill them
1068 back to where they belong. */
1069 for (i = 0; i < noutputs; ++i)
1070 if (real_output_rtx[i])
1071 emit_move_insn (real_output_rtx[i], output_rtx[i]);
1072
1073 crtl->has_asm_statement = 1;
1074 free_temp_slots ();
1075 }
1076
1077 void
1078 expand_asm_expr (tree exp)
1079 {
1080 int noutputs, i;
1081 tree outputs, tail;
1082 tree *o;
1083
1084 if (ASM_INPUT_P (exp))
1085 {
1086 expand_asm_loc (ASM_STRING (exp), ASM_VOLATILE_P (exp), input_location);
1087 return;
1088 }
1089
1090 outputs = ASM_OUTPUTS (exp);
1091 noutputs = list_length (outputs);
1092 /* o[I] is the place that output number I should be written. */
1093 o = (tree *) alloca (noutputs * sizeof (tree));
1094
1095 /* Record the contents of OUTPUTS before it is modified. */
1096 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1097 o[i] = TREE_VALUE (tail);
1098
1099 /* Generate the ASM_OPERANDS insn; store into the TREE_VALUEs of
1100 OUTPUTS some trees for where the values were actually stored. */
1101 expand_asm_operands (ASM_STRING (exp), outputs, ASM_INPUTS (exp),
1102 ASM_CLOBBERS (exp), ASM_VOLATILE_P (exp),
1103 input_location);
1104
1105 /* Copy all the intermediate outputs into the specified outputs. */
1106 for (i = 0, tail = outputs; tail; tail = TREE_CHAIN (tail), i++)
1107 {
1108 if (o[i] != TREE_VALUE (tail))
1109 {
1110 expand_assignment (o[i], TREE_VALUE (tail), false);
1111 free_temp_slots ();
1112
1113 /* Restore the original value so that it's correct the next
1114 time we expand this function. */
1115 TREE_VALUE (tail) = o[i];
1116 }
1117 }
1118 }
1119
1120 /* A subroutine of expand_asm_operands. Check that all operands have
1121 the same number of alternatives. Return true if so. */
1122
1123 static bool
1124 check_operand_nalternatives (tree outputs, tree inputs)
1125 {
1126 if (outputs || inputs)
1127 {
1128 tree tmp = TREE_PURPOSE (outputs ? outputs : inputs);
1129 int nalternatives
1130 = n_occurrences (',', TREE_STRING_POINTER (TREE_VALUE (tmp)));
1131 tree next = inputs;
1132
1133 if (nalternatives + 1 > MAX_RECOG_ALTERNATIVES)
1134 {
1135 error ("too many alternatives in %<asm%>");
1136 return false;
1137 }
1138
1139 tmp = outputs;
1140 while (tmp)
1141 {
1142 const char *constraint
1143 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tmp)));
1144
1145 if (n_occurrences (',', constraint) != nalternatives)
1146 {
1147 error ("operand constraints for %<asm%> differ "
1148 "in number of alternatives");
1149 return false;
1150 }
1151
1152 if (TREE_CHAIN (tmp))
1153 tmp = TREE_CHAIN (tmp);
1154 else
1155 tmp = next, next = 0;
1156 }
1157 }
1158
1159 return true;
1160 }
1161
1162 /* A subroutine of expand_asm_operands. Check that all operand names
1163 are unique. Return true if so. We rely on the fact that these names
1164 are identifiers, and so have been canonicalized by get_identifier,
1165 so all we need are pointer comparisons. */
1166
1167 static bool
1168 check_unique_operand_names (tree outputs, tree inputs)
1169 {
1170 tree i, j;
1171
1172 for (i = outputs; i ; i = TREE_CHAIN (i))
1173 {
1174 tree i_name = TREE_PURPOSE (TREE_PURPOSE (i));
1175 if (! i_name)
1176 continue;
1177
1178 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
1179 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1180 goto failure;
1181 }
1182
1183 for (i = inputs; i ; i = TREE_CHAIN (i))
1184 {
1185 tree i_name = TREE_PURPOSE (TREE_PURPOSE (i));
1186 if (! i_name)
1187 continue;
1188
1189 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
1190 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1191 goto failure;
1192 for (j = outputs; j ; j = TREE_CHAIN (j))
1193 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
1194 goto failure;
1195 }
1196
1197 return true;
1198
1199 failure:
1200 error ("duplicate asm operand name %qs",
1201 TREE_STRING_POINTER (TREE_PURPOSE (TREE_PURPOSE (i))));
1202 return false;
1203 }
1204
1205 /* A subroutine of expand_asm_operands. Resolve the names of the operands
1206 in *POUTPUTS and *PINPUTS to numbers, and replace the name expansions in
1207 STRING and in the constraints to those numbers. */
1208
1209 tree
1210 resolve_asm_operand_names (tree string, tree outputs, tree inputs)
1211 {
1212 char *buffer;
1213 char *p;
1214 const char *c;
1215 tree t;
1216
1217 check_unique_operand_names (outputs, inputs);
1218
1219 /* Substitute [<name>] in input constraint strings. There should be no
1220 named operands in output constraints. */
1221 for (t = inputs; t ; t = TREE_CHAIN (t))
1222 {
1223 c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1224 if (strchr (c, '[') != NULL)
1225 {
1226 p = buffer = xstrdup (c);
1227 while ((p = strchr (p, '[')) != NULL)
1228 p = resolve_operand_name_1 (p, outputs, inputs);
1229 TREE_VALUE (TREE_PURPOSE (t))
1230 = build_string (strlen (buffer), buffer);
1231 free (buffer);
1232 }
1233 }
1234
1235 /* Now check for any needed substitutions in the template. */
1236 c = TREE_STRING_POINTER (string);
1237 while ((c = strchr (c, '%')) != NULL)
1238 {
1239 if (c[1] == '[')
1240 break;
1241 else if (ISALPHA (c[1]) && c[2] == '[')
1242 break;
1243 else
1244 {
1245 c += 1;
1246 continue;
1247 }
1248 }
1249
1250 if (c)
1251 {
1252 /* OK, we need to make a copy so we can perform the substitutions.
1253 Assume that we will not need extra space--we get to remove '['
1254 and ']', which means we cannot have a problem until we have more
1255 than 999 operands. */
1256 buffer = xstrdup (TREE_STRING_POINTER (string));
1257 p = buffer + (c - TREE_STRING_POINTER (string));
1258
1259 while ((p = strchr (p, '%')) != NULL)
1260 {
1261 if (p[1] == '[')
1262 p += 1;
1263 else if (ISALPHA (p[1]) && p[2] == '[')
1264 p += 2;
1265 else
1266 {
1267 p += 1;
1268 continue;
1269 }
1270
1271 p = resolve_operand_name_1 (p, outputs, inputs);
1272 }
1273
1274 string = build_string (strlen (buffer), buffer);
1275 free (buffer);
1276 }
1277
1278 return string;
1279 }
1280
1281 /* A subroutine of resolve_operand_names. P points to the '[' for a
1282 potential named operand of the form [<name>]. In place, replace
1283 the name and brackets with a number. Return a pointer to the
1284 balance of the string after substitution. */
1285
1286 static char *
1287 resolve_operand_name_1 (char *p, tree outputs, tree inputs)
1288 {
1289 char *q;
1290 int op;
1291 tree t;
1292 size_t len;
1293
1294 /* Collect the operand name. */
1295 q = strchr (p, ']');
1296 if (!q)
1297 {
1298 error ("missing close brace for named operand");
1299 return strchr (p, '\0');
1300 }
1301 len = q - p - 1;
1302
1303 /* Resolve the name to a number. */
1304 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
1305 {
1306 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
1307 if (name)
1308 {
1309 const char *c = TREE_STRING_POINTER (name);
1310 if (strncmp (c, p + 1, len) == 0 && c[len] == '\0')
1311 goto found;
1312 }
1313 }
1314 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
1315 {
1316 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
1317 if (name)
1318 {
1319 const char *c = TREE_STRING_POINTER (name);
1320 if (strncmp (c, p + 1, len) == 0 && c[len] == '\0')
1321 goto found;
1322 }
1323 }
1324
1325 *q = '\0';
1326 error ("undefined named operand %qs", identifier_to_locale (p + 1));
1327 op = 0;
1328 found:
1329
1330 /* Replace the name with the number. Unfortunately, not all libraries
1331 get the return value of sprintf correct, so search for the end of the
1332 generated string by hand. */
1333 sprintf (p, "%d", op);
1334 p = strchr (p, '\0');
1335
1336 /* Verify the no extra buffer space assumption. */
1337 gcc_assert (p <= q);
1338
1339 /* Shift the rest of the buffer down to fill the gap. */
1340 memmove (p, q + 1, strlen (q + 1) + 1);
1341
1342 return p;
1343 }
1344 \f
1345 /* Generate RTL to evaluate the expression EXP. */
1346
1347 void
1348 expand_expr_stmt (tree exp)
1349 {
1350 rtx value;
1351 tree type;
1352
1353 value = expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
1354 type = TREE_TYPE (exp);
1355
1356 /* If all we do is reference a volatile value in memory,
1357 copy it to a register to be sure it is actually touched. */
1358 if (value && MEM_P (value) && TREE_THIS_VOLATILE (exp))
1359 {
1360 if (TYPE_MODE (type) == VOIDmode)
1361 ;
1362 else if (TYPE_MODE (type) != BLKmode)
1363 value = copy_to_reg (value);
1364 else
1365 {
1366 rtx lab = gen_label_rtx ();
1367
1368 /* Compare the value with itself to reference it. */
1369 emit_cmp_and_jump_insns (value, value, EQ,
1370 expand_normal (TYPE_SIZE (type)),
1371 BLKmode, 0, lab);
1372 emit_label (lab);
1373 }
1374 }
1375
1376 /* Free any temporaries used to evaluate this expression. */
1377 free_temp_slots ();
1378 }
1379
1380 /* Warn if EXP contains any computations whose results are not used.
1381 Return 1 if a warning is printed; 0 otherwise. LOCUS is the
1382 (potential) location of the expression. */
1383
1384 int
1385 warn_if_unused_value (const_tree exp, location_t locus)
1386 {
1387 restart:
1388 if (TREE_USED (exp) || TREE_NO_WARNING (exp))
1389 return 0;
1390
1391 /* Don't warn about void constructs. This includes casting to void,
1392 void function calls, and statement expressions with a final cast
1393 to void. */
1394 if (VOID_TYPE_P (TREE_TYPE (exp)))
1395 return 0;
1396
1397 if (EXPR_HAS_LOCATION (exp))
1398 locus = EXPR_LOCATION (exp);
1399
1400 switch (TREE_CODE (exp))
1401 {
1402 case PREINCREMENT_EXPR:
1403 case POSTINCREMENT_EXPR:
1404 case PREDECREMENT_EXPR:
1405 case POSTDECREMENT_EXPR:
1406 case MODIFY_EXPR:
1407 case INIT_EXPR:
1408 case TARGET_EXPR:
1409 case CALL_EXPR:
1410 case TRY_CATCH_EXPR:
1411 case WITH_CLEANUP_EXPR:
1412 case EXIT_EXPR:
1413 case VA_ARG_EXPR:
1414 return 0;
1415
1416 case BIND_EXPR:
1417 /* For a binding, warn if no side effect within it. */
1418 exp = BIND_EXPR_BODY (exp);
1419 goto restart;
1420
1421 case SAVE_EXPR:
1422 case NON_LVALUE_EXPR:
1423 exp = TREE_OPERAND (exp, 0);
1424 goto restart;
1425
1426 case TRUTH_ORIF_EXPR:
1427 case TRUTH_ANDIF_EXPR:
1428 /* In && or ||, warn if 2nd operand has no side effect. */
1429 exp = TREE_OPERAND (exp, 1);
1430 goto restart;
1431
1432 case COMPOUND_EXPR:
1433 if (warn_if_unused_value (TREE_OPERAND (exp, 0), locus))
1434 return 1;
1435 /* Let people do `(foo (), 0)' without a warning. */
1436 if (TREE_CONSTANT (TREE_OPERAND (exp, 1)))
1437 return 0;
1438 exp = TREE_OPERAND (exp, 1);
1439 goto restart;
1440
1441 case COND_EXPR:
1442 /* If this is an expression with side effects, don't warn; this
1443 case commonly appears in macro expansions. */
1444 if (TREE_SIDE_EFFECTS (exp))
1445 return 0;
1446 goto warn;
1447
1448 case INDIRECT_REF:
1449 /* Don't warn about automatic dereferencing of references, since
1450 the user cannot control it. */
1451 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == REFERENCE_TYPE)
1452 {
1453 exp = TREE_OPERAND (exp, 0);
1454 goto restart;
1455 }
1456 /* Fall through. */
1457
1458 default:
1459 /* Referencing a volatile value is a side effect, so don't warn. */
1460 if ((DECL_P (exp) || REFERENCE_CLASS_P (exp))
1461 && TREE_THIS_VOLATILE (exp))
1462 return 0;
1463
1464 /* If this is an expression which has no operands, there is no value
1465 to be unused. There are no such language-independent codes,
1466 but front ends may define such. */
1467 if (EXPRESSION_CLASS_P (exp) && TREE_OPERAND_LENGTH (exp) == 0)
1468 return 0;
1469
1470 warn:
1471 warning_at (locus, OPT_Wunused_value, "value computed is not used");
1472 return 1;
1473 }
1474 }
1475
1476 \f
1477 /* Generate RTL to return from the current function, with no value.
1478 (That is, we do not do anything about returning any value.) */
1479
1480 void
1481 expand_null_return (void)
1482 {
1483 /* If this function was declared to return a value, but we
1484 didn't, clobber the return registers so that they are not
1485 propagated live to the rest of the function. */
1486 clobber_return_register ();
1487
1488 expand_null_return_1 ();
1489 }
1490
1491 /* Generate RTL to return directly from the current function.
1492 (That is, we bypass any return value.) */
1493
1494 void
1495 expand_naked_return (void)
1496 {
1497 rtx end_label;
1498
1499 clear_pending_stack_adjust ();
1500 do_pending_stack_adjust ();
1501
1502 end_label = naked_return_label;
1503 if (end_label == 0)
1504 end_label = naked_return_label = gen_label_rtx ();
1505
1506 emit_jump (end_label);
1507 }
1508
1509 /* Generate RTL to return from the current function, with value VAL. */
1510
1511 static void
1512 expand_value_return (rtx val)
1513 {
1514 /* Copy the value to the return location unless it's already there. */
1515
1516 tree decl = DECL_RESULT (current_function_decl);
1517 rtx return_reg = DECL_RTL (decl);
1518 if (return_reg != val)
1519 {
1520 tree funtype = TREE_TYPE (current_function_decl);
1521 tree type = TREE_TYPE (decl);
1522 int unsignedp = TYPE_UNSIGNED (type);
1523 enum machine_mode old_mode = DECL_MODE (decl);
1524 enum machine_mode mode = promote_function_mode (type, old_mode,
1525 &unsignedp, funtype, 1);
1526
1527 if (mode != old_mode)
1528 val = convert_modes (mode, old_mode, val, unsignedp);
1529
1530 if (GET_CODE (return_reg) == PARALLEL)
1531 emit_group_load (return_reg, val, type, int_size_in_bytes (type));
1532 else
1533 emit_move_insn (return_reg, val);
1534 }
1535
1536 expand_null_return_1 ();
1537 }
1538
1539 /* Output a return with no value. */
1540
1541 static void
1542 expand_null_return_1 (void)
1543 {
1544 clear_pending_stack_adjust ();
1545 do_pending_stack_adjust ();
1546 emit_jump (return_label);
1547 }
1548 \f
1549 /* Generate RTL to evaluate the expression RETVAL and return it
1550 from the current function. */
1551
1552 void
1553 expand_return (tree retval)
1554 {
1555 rtx result_rtl;
1556 rtx val = 0;
1557 tree retval_rhs;
1558
1559 /* If function wants no value, give it none. */
1560 if (TREE_CODE (TREE_TYPE (TREE_TYPE (current_function_decl))) == VOID_TYPE)
1561 {
1562 expand_normal (retval);
1563 expand_null_return ();
1564 return;
1565 }
1566
1567 if (retval == error_mark_node)
1568 {
1569 /* Treat this like a return of no value from a function that
1570 returns a value. */
1571 expand_null_return ();
1572 return;
1573 }
1574 else if ((TREE_CODE (retval) == MODIFY_EXPR
1575 || TREE_CODE (retval) == INIT_EXPR)
1576 && TREE_CODE (TREE_OPERAND (retval, 0)) == RESULT_DECL)
1577 retval_rhs = TREE_OPERAND (retval, 1);
1578 else
1579 retval_rhs = retval;
1580
1581 result_rtl = DECL_RTL (DECL_RESULT (current_function_decl));
1582
1583 /* If we are returning the RESULT_DECL, then the value has already
1584 been stored into it, so we don't have to do anything special. */
1585 if (TREE_CODE (retval_rhs) == RESULT_DECL)
1586 expand_value_return (result_rtl);
1587
1588 /* If the result is an aggregate that is being returned in one (or more)
1589 registers, load the registers here. The compiler currently can't handle
1590 copying a BLKmode value into registers. We could put this code in a
1591 more general area (for use by everyone instead of just function
1592 call/return), but until this feature is generally usable it is kept here
1593 (and in expand_call). */
1594
1595 else if (retval_rhs != 0
1596 && TYPE_MODE (TREE_TYPE (retval_rhs)) == BLKmode
1597 && REG_P (result_rtl))
1598 {
1599 int i;
1600 unsigned HOST_WIDE_INT bitpos, xbitpos;
1601 unsigned HOST_WIDE_INT padding_correction = 0;
1602 unsigned HOST_WIDE_INT bytes
1603 = int_size_in_bytes (TREE_TYPE (retval_rhs));
1604 int n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1605 unsigned int bitsize
1606 = MIN (TYPE_ALIGN (TREE_TYPE (retval_rhs)), BITS_PER_WORD);
1607 rtx *result_pseudos = XALLOCAVEC (rtx, n_regs);
1608 rtx result_reg, src = NULL_RTX, dst = NULL_RTX;
1609 rtx result_val = expand_normal (retval_rhs);
1610 enum machine_mode tmpmode, result_reg_mode;
1611
1612 if (bytes == 0)
1613 {
1614 expand_null_return ();
1615 return;
1616 }
1617
1618 /* If the structure doesn't take up a whole number of words, see
1619 whether the register value should be padded on the left or on
1620 the right. Set PADDING_CORRECTION to the number of padding
1621 bits needed on the left side.
1622
1623 In most ABIs, the structure will be returned at the least end of
1624 the register, which translates to right padding on little-endian
1625 targets and left padding on big-endian targets. The opposite
1626 holds if the structure is returned at the most significant
1627 end of the register. */
1628 if (bytes % UNITS_PER_WORD != 0
1629 && (targetm.calls.return_in_msb (TREE_TYPE (retval_rhs))
1630 ? !BYTES_BIG_ENDIAN
1631 : BYTES_BIG_ENDIAN))
1632 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
1633 * BITS_PER_UNIT));
1634
1635 /* Copy the structure BITSIZE bits at a time. */
1636 for (bitpos = 0, xbitpos = padding_correction;
1637 bitpos < bytes * BITS_PER_UNIT;
1638 bitpos += bitsize, xbitpos += bitsize)
1639 {
1640 /* We need a new destination pseudo each time xbitpos is
1641 on a word boundary and when xbitpos == padding_correction
1642 (the first time through). */
1643 if (xbitpos % BITS_PER_WORD == 0
1644 || xbitpos == padding_correction)
1645 {
1646 /* Generate an appropriate register. */
1647 dst = gen_reg_rtx (word_mode);
1648 result_pseudos[xbitpos / BITS_PER_WORD] = dst;
1649
1650 /* Clear the destination before we move anything into it. */
1651 emit_move_insn (dst, CONST0_RTX (GET_MODE (dst)));
1652 }
1653
1654 /* We need a new source operand each time bitpos is on a word
1655 boundary. */
1656 if (bitpos % BITS_PER_WORD == 0)
1657 src = operand_subword_force (result_val,
1658 bitpos / BITS_PER_WORD,
1659 BLKmode);
1660
1661 /* Use bitpos for the source extraction (left justified) and
1662 xbitpos for the destination store (right justified). */
1663 store_bit_field (dst, bitsize, xbitpos % BITS_PER_WORD, word_mode,
1664 extract_bit_field (src, bitsize,
1665 bitpos % BITS_PER_WORD, 1,
1666 NULL_RTX, word_mode, word_mode));
1667 }
1668
1669 tmpmode = GET_MODE (result_rtl);
1670 if (tmpmode == BLKmode)
1671 {
1672 /* Find the smallest integer mode large enough to hold the
1673 entire structure and use that mode instead of BLKmode
1674 on the USE insn for the return register. */
1675 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1676 tmpmode != VOIDmode;
1677 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1678 /* Have we found a large enough mode? */
1679 if (GET_MODE_SIZE (tmpmode) >= bytes)
1680 break;
1681
1682 /* A suitable mode should have been found. */
1683 gcc_assert (tmpmode != VOIDmode);
1684
1685 PUT_MODE (result_rtl, tmpmode);
1686 }
1687
1688 if (GET_MODE_SIZE (tmpmode) < GET_MODE_SIZE (word_mode))
1689 result_reg_mode = word_mode;
1690 else
1691 result_reg_mode = tmpmode;
1692 result_reg = gen_reg_rtx (result_reg_mode);
1693
1694 for (i = 0; i < n_regs; i++)
1695 emit_move_insn (operand_subword (result_reg, i, 0, result_reg_mode),
1696 result_pseudos[i]);
1697
1698 if (tmpmode != result_reg_mode)
1699 result_reg = gen_lowpart (tmpmode, result_reg);
1700
1701 expand_value_return (result_reg);
1702 }
1703 else if (retval_rhs != 0
1704 && !VOID_TYPE_P (TREE_TYPE (retval_rhs))
1705 && (REG_P (result_rtl)
1706 || (GET_CODE (result_rtl) == PARALLEL)))
1707 {
1708 /* Calculate the return value into a temporary (usually a pseudo
1709 reg). */
1710 tree ot = TREE_TYPE (DECL_RESULT (current_function_decl));
1711 tree nt = build_qualified_type (ot, TYPE_QUALS (ot) | TYPE_QUAL_CONST);
1712
1713 val = assign_temp (nt, 0, 0, 1);
1714 val = expand_expr (retval_rhs, val, GET_MODE (val), EXPAND_NORMAL);
1715 val = force_not_mem (val);
1716 /* Return the calculated value. */
1717 expand_value_return (val);
1718 }
1719 else
1720 {
1721 /* No hard reg used; calculate value into hard return reg. */
1722 expand_expr (retval, const0_rtx, VOIDmode, EXPAND_NORMAL);
1723 expand_value_return (result_rtl);
1724 }
1725 }
1726 \f
1727 /* Emit code to restore vital registers at the beginning of a nonlocal goto
1728 handler. */
1729 static void
1730 expand_nl_goto_receiver (void)
1731 {
1732 /* Clobber the FP when we get here, so we have to make sure it's
1733 marked as used by this function. */
1734 emit_use (hard_frame_pointer_rtx);
1735
1736 /* Mark the static chain as clobbered here so life information
1737 doesn't get messed up for it. */
1738 emit_clobber (static_chain_rtx);
1739
1740 #ifdef HAVE_nonlocal_goto
1741 if (! HAVE_nonlocal_goto)
1742 #endif
1743 /* First adjust our frame pointer to its actual value. It was
1744 previously set to the start of the virtual area corresponding to
1745 the stacked variables when we branched here and now needs to be
1746 adjusted to the actual hardware fp value.
1747
1748 Assignments are to virtual registers are converted by
1749 instantiate_virtual_regs into the corresponding assignment
1750 to the underlying register (fp in this case) that makes
1751 the original assignment true.
1752 So the following insn will actually be
1753 decrementing fp by STARTING_FRAME_OFFSET. */
1754 emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
1755
1756 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1757 if (fixed_regs[ARG_POINTER_REGNUM])
1758 {
1759 #ifdef ELIMINABLE_REGS
1760 /* If the argument pointer can be eliminated in favor of the
1761 frame pointer, we don't need to restore it. We assume here
1762 that if such an elimination is present, it can always be used.
1763 This is the case on all known machines; if we don't make this
1764 assumption, we do unnecessary saving on many machines. */
1765 static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS;
1766 size_t i;
1767
1768 for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
1769 if (elim_regs[i].from == ARG_POINTER_REGNUM
1770 && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
1771 break;
1772
1773 if (i == ARRAY_SIZE (elim_regs))
1774 #endif
1775 {
1776 /* Now restore our arg pointer from the address at which it
1777 was saved in our stack frame. */
1778 emit_move_insn (crtl->args.internal_arg_pointer,
1779 copy_to_reg (get_arg_pointer_save_area ()));
1780 }
1781 }
1782 #endif
1783
1784 #ifdef HAVE_nonlocal_goto_receiver
1785 if (HAVE_nonlocal_goto_receiver)
1786 emit_insn (gen_nonlocal_goto_receiver ());
1787 #endif
1788
1789 /* We must not allow the code we just generated to be reordered by
1790 scheduling. Specifically, the update of the frame pointer must
1791 happen immediately, not later. */
1792 emit_insn (gen_blockage ());
1793 }
1794 \f
1795 /* Generate RTL for the automatic variable declaration DECL.
1796 (Other kinds of declarations are simply ignored if seen here.) */
1797
1798 void
1799 expand_decl (tree decl)
1800 {
1801 tree type;
1802
1803 type = TREE_TYPE (decl);
1804
1805 /* For a CONST_DECL, set mode, alignment, and sizes from those of the
1806 type in case this node is used in a reference. */
1807 if (TREE_CODE (decl) == CONST_DECL)
1808 {
1809 DECL_MODE (decl) = TYPE_MODE (type);
1810 DECL_ALIGN (decl) = TYPE_ALIGN (type);
1811 DECL_SIZE (decl) = TYPE_SIZE (type);
1812 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
1813 return;
1814 }
1815
1816 /* Otherwise, only automatic variables need any expansion done. Static and
1817 external variables, and external functions, will be handled by
1818 `assemble_variable' (called from finish_decl). TYPE_DECL requires
1819 nothing. PARM_DECLs are handled in `assign_parms'. */
1820 if (TREE_CODE (decl) != VAR_DECL)
1821 return;
1822
1823 if (TREE_STATIC (decl) || DECL_EXTERNAL (decl))
1824 return;
1825
1826 /* Create the RTL representation for the variable. */
1827
1828 if (type == error_mark_node)
1829 SET_DECL_RTL (decl, gen_rtx_MEM (BLKmode, const0_rtx));
1830
1831 else if (DECL_SIZE (decl) == 0)
1832 {
1833 /* Variable with incomplete type. */
1834 rtx x;
1835 if (DECL_INITIAL (decl) == 0)
1836 /* Error message was already done; now avoid a crash. */
1837 x = gen_rtx_MEM (BLKmode, const0_rtx);
1838 else
1839 /* An initializer is going to decide the size of this array.
1840 Until we know the size, represent its address with a reg. */
1841 x = gen_rtx_MEM (BLKmode, gen_reg_rtx (Pmode));
1842
1843 set_mem_attributes (x, decl, 1);
1844 SET_DECL_RTL (decl, x);
1845 }
1846 else if (use_register_for_decl (decl))
1847 {
1848 /* Automatic variable that can go in a register. */
1849 enum machine_mode reg_mode = promote_decl_mode (decl, NULL);
1850
1851 SET_DECL_RTL (decl, gen_reg_rtx (reg_mode));
1852
1853 /* Note if the object is a user variable. */
1854 if (!DECL_ARTIFICIAL (decl))
1855 mark_user_reg (DECL_RTL (decl));
1856
1857 if (POINTER_TYPE_P (type))
1858 mark_reg_pointer (DECL_RTL (decl),
1859 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (decl))));
1860 }
1861
1862 else
1863 {
1864 rtx oldaddr = 0;
1865 rtx addr;
1866 rtx x;
1867
1868 /* Variable-sized decls are dealt with in the gimplifier. */
1869 gcc_assert (TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST);
1870
1871 /* If we previously made RTL for this decl, it must be an array
1872 whose size was determined by the initializer.
1873 The old address was a register; set that register now
1874 to the proper address. */
1875 if (DECL_RTL_SET_P (decl))
1876 {
1877 gcc_assert (MEM_P (DECL_RTL (decl)));
1878 gcc_assert (REG_P (XEXP (DECL_RTL (decl), 0)));
1879 oldaddr = XEXP (DECL_RTL (decl), 0);
1880 }
1881
1882 /* Set alignment we actually gave this decl. */
1883 DECL_ALIGN (decl) = (DECL_MODE (decl) == BLKmode ? BIGGEST_ALIGNMENT
1884 : GET_MODE_BITSIZE (DECL_MODE (decl)));
1885 DECL_USER_ALIGN (decl) = 0;
1886
1887 x = assign_temp (decl, 1, 1, 1);
1888 set_mem_attributes (x, decl, 1);
1889 SET_DECL_RTL (decl, x);
1890
1891 if (oldaddr)
1892 {
1893 addr = force_operand (XEXP (DECL_RTL (decl), 0), oldaddr);
1894 if (addr != oldaddr)
1895 emit_move_insn (oldaddr, addr);
1896 }
1897 }
1898 }
1899 \f
1900 /* Emit code to save the current value of stack. */
1901 rtx
1902 expand_stack_save (void)
1903 {
1904 rtx ret = NULL_RTX;
1905
1906 do_pending_stack_adjust ();
1907 emit_stack_save (SAVE_BLOCK, &ret, NULL_RTX);
1908 return ret;
1909 }
1910
1911 /* Emit code to restore the current value of stack. */
1912 void
1913 expand_stack_restore (tree var)
1914 {
1915 rtx sa = expand_normal (var);
1916
1917 sa = convert_memory_address (Pmode, sa);
1918 emit_stack_restore (SAVE_BLOCK, sa, NULL_RTX);
1919 }
1920 \f
1921 /* Do the insertion of a case label into case_list. The labels are
1922 fed to us in descending order from the sorted vector of case labels used
1923 in the tree part of the middle end. So the list we construct is
1924 sorted in ascending order. The bounds on the case range, LOW and HIGH,
1925 are converted to case's index type TYPE. */
1926
1927 static struct case_node *
1928 add_case_node (struct case_node *head, tree type, tree low, tree high,
1929 tree label, alloc_pool case_node_pool)
1930 {
1931 tree min_value, max_value;
1932 struct case_node *r;
1933
1934 gcc_assert (TREE_CODE (low) == INTEGER_CST);
1935 gcc_assert (!high || TREE_CODE (high) == INTEGER_CST);
1936
1937 min_value = TYPE_MIN_VALUE (type);
1938 max_value = TYPE_MAX_VALUE (type);
1939
1940 /* If there's no HIGH value, then this is not a case range; it's
1941 just a simple case label. But that's just a degenerate case
1942 range.
1943 If the bounds are equal, turn this into the one-value case. */
1944 if (!high || tree_int_cst_equal (low, high))
1945 {
1946 /* If the simple case value is unreachable, ignore it. */
1947 if ((TREE_CODE (min_value) == INTEGER_CST
1948 && tree_int_cst_compare (low, min_value) < 0)
1949 || (TREE_CODE (max_value) == INTEGER_CST
1950 && tree_int_cst_compare (low, max_value) > 0))
1951 return head;
1952 low = fold_convert (type, low);
1953 high = low;
1954 }
1955 else
1956 {
1957 /* If the entire case range is unreachable, ignore it. */
1958 if ((TREE_CODE (min_value) == INTEGER_CST
1959 && tree_int_cst_compare (high, min_value) < 0)
1960 || (TREE_CODE (max_value) == INTEGER_CST
1961 && tree_int_cst_compare (low, max_value) > 0))
1962 return head;
1963
1964 /* If the lower bound is less than the index type's minimum
1965 value, truncate the range bounds. */
1966 if (TREE_CODE (min_value) == INTEGER_CST
1967 && tree_int_cst_compare (low, min_value) < 0)
1968 low = min_value;
1969 low = fold_convert (type, low);
1970
1971 /* If the upper bound is greater than the index type's maximum
1972 value, truncate the range bounds. */
1973 if (TREE_CODE (max_value) == INTEGER_CST
1974 && tree_int_cst_compare (high, max_value) > 0)
1975 high = max_value;
1976 high = fold_convert (type, high);
1977 }
1978
1979
1980 /* Add this label to the chain. Make sure to drop overflow flags. */
1981 r = (struct case_node *) pool_alloc (case_node_pool);
1982 r->low = build_int_cst_wide (TREE_TYPE (low), TREE_INT_CST_LOW (low),
1983 TREE_INT_CST_HIGH (low));
1984 r->high = build_int_cst_wide (TREE_TYPE (high), TREE_INT_CST_LOW (high),
1985 TREE_INT_CST_HIGH (high));
1986 r->code_label = label;
1987 r->parent = r->left = NULL;
1988 r->right = head;
1989 return r;
1990 }
1991 \f
1992 /* Maximum number of case bit tests. */
1993 #define MAX_CASE_BIT_TESTS 3
1994
1995 /* By default, enable case bit tests on targets with ashlsi3. */
1996 #ifndef CASE_USE_BIT_TESTS
1997 #define CASE_USE_BIT_TESTS (optab_handler (ashl_optab, word_mode)->insn_code \
1998 != CODE_FOR_nothing)
1999 #endif
2000
2001
2002 /* A case_bit_test represents a set of case nodes that may be
2003 selected from using a bit-wise comparison. HI and LO hold
2004 the integer to be tested against, LABEL contains the label
2005 to jump to upon success and BITS counts the number of case
2006 nodes handled by this test, typically the number of bits
2007 set in HI:LO. */
2008
2009 struct case_bit_test
2010 {
2011 HOST_WIDE_INT hi;
2012 HOST_WIDE_INT lo;
2013 rtx label;
2014 int bits;
2015 };
2016
2017 /* Determine whether "1 << x" is relatively cheap in word_mode. */
2018
2019 static
2020 bool lshift_cheap_p (void)
2021 {
2022 static bool init = false;
2023 static bool cheap = true;
2024
2025 if (!init)
2026 {
2027 rtx reg = gen_rtx_REG (word_mode, 10000);
2028 int cost = rtx_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg), SET,
2029 optimize_insn_for_speed_p ());
2030 cheap = cost < COSTS_N_INSNS (3);
2031 init = true;
2032 }
2033
2034 return cheap;
2035 }
2036
2037 /* Comparison function for qsort to order bit tests by decreasing
2038 number of case nodes, i.e. the node with the most cases gets
2039 tested first. */
2040
2041 static int
2042 case_bit_test_cmp (const void *p1, const void *p2)
2043 {
2044 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
2045 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
2046
2047 if (d2->bits != d1->bits)
2048 return d2->bits - d1->bits;
2049
2050 /* Stabilize the sort. */
2051 return CODE_LABEL_NUMBER (d2->label) - CODE_LABEL_NUMBER (d1->label);
2052 }
2053
2054 /* Expand a switch statement by a short sequence of bit-wise
2055 comparisons. "switch(x)" is effectively converted into
2056 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
2057 integer constants.
2058
2059 INDEX_EXPR is the value being switched on, which is of
2060 type INDEX_TYPE. MINVAL is the lowest case value of in
2061 the case nodes, of INDEX_TYPE type, and RANGE is highest
2062 value minus MINVAL, also of type INDEX_TYPE. NODES is
2063 the set of case nodes, and DEFAULT_LABEL is the label to
2064 branch to should none of the cases match.
2065
2066 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
2067 node targets. */
2068
2069 static void
2070 emit_case_bit_tests (tree index_type, tree index_expr, tree minval,
2071 tree range, case_node_ptr nodes, rtx default_label)
2072 {
2073 struct case_bit_test test[MAX_CASE_BIT_TESTS];
2074 enum machine_mode mode;
2075 rtx expr, index, label;
2076 unsigned int i,j,lo,hi;
2077 struct case_node *n;
2078 unsigned int count;
2079
2080 count = 0;
2081 for (n = nodes; n; n = n->right)
2082 {
2083 label = label_rtx (n->code_label);
2084 for (i = 0; i < count; i++)
2085 if (label == test[i].label)
2086 break;
2087
2088 if (i == count)
2089 {
2090 gcc_assert (count < MAX_CASE_BIT_TESTS);
2091 test[i].hi = 0;
2092 test[i].lo = 0;
2093 test[i].label = label;
2094 test[i].bits = 1;
2095 count++;
2096 }
2097 else
2098 test[i].bits++;
2099
2100 lo = tree_low_cst (fold_build2 (MINUS_EXPR, index_type,
2101 n->low, minval), 1);
2102 hi = tree_low_cst (fold_build2 (MINUS_EXPR, index_type,
2103 n->high, minval), 1);
2104 for (j = lo; j <= hi; j++)
2105 if (j >= HOST_BITS_PER_WIDE_INT)
2106 test[i].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT);
2107 else
2108 test[i].lo |= (HOST_WIDE_INT) 1 << j;
2109 }
2110
2111 qsort (test, count, sizeof(*test), case_bit_test_cmp);
2112
2113 index_expr = fold_build2 (MINUS_EXPR, index_type,
2114 fold_convert (index_type, index_expr),
2115 fold_convert (index_type, minval));
2116 index = expand_normal (index_expr);
2117 do_pending_stack_adjust ();
2118
2119 mode = TYPE_MODE (index_type);
2120 expr = expand_normal (range);
2121 if (default_label)
2122 emit_cmp_and_jump_insns (index, expr, GTU, NULL_RTX, mode, 1,
2123 default_label);
2124
2125 index = convert_to_mode (word_mode, index, 0);
2126 index = expand_binop (word_mode, ashl_optab, const1_rtx,
2127 index, NULL_RTX, 1, OPTAB_WIDEN);
2128
2129 for (i = 0; i < count; i++)
2130 {
2131 expr = immed_double_const (test[i].lo, test[i].hi, word_mode);
2132 expr = expand_binop (word_mode, and_optab, index, expr,
2133 NULL_RTX, 1, OPTAB_WIDEN);
2134 emit_cmp_and_jump_insns (expr, const0_rtx, NE, NULL_RTX,
2135 word_mode, 1, test[i].label);
2136 }
2137
2138 if (default_label)
2139 emit_jump (default_label);
2140 }
2141
2142 #ifndef HAVE_casesi
2143 #define HAVE_casesi 0
2144 #endif
2145
2146 #ifndef HAVE_tablejump
2147 #define HAVE_tablejump 0
2148 #endif
2149
2150 /* Terminate a case (Pascal/Ada) or switch (C) statement
2151 in which ORIG_INDEX is the expression to be tested.
2152 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
2153 type as given in the source before any compiler conversions.
2154 Generate the code to test it and jump to the right place. */
2155
2156 void
2157 expand_case (tree exp)
2158 {
2159 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
2160 rtx default_label = 0;
2161 struct case_node *n;
2162 unsigned int count, uniq;
2163 rtx index;
2164 rtx table_label;
2165 int ncases;
2166 rtx *labelvec;
2167 int i;
2168 rtx before_case, end, lab;
2169
2170 tree vec = SWITCH_LABELS (exp);
2171 tree orig_type = TREE_TYPE (exp);
2172 tree index_expr = SWITCH_COND (exp);
2173 tree index_type = TREE_TYPE (index_expr);
2174 int unsignedp = TYPE_UNSIGNED (index_type);
2175
2176 /* The insn after which the case dispatch should finally
2177 be emitted. Zero for a dummy. */
2178 rtx start;
2179
2180 /* A list of case labels; it is first built as a list and it may then
2181 be rearranged into a nearly balanced binary tree. */
2182 struct case_node *case_list = 0;
2183
2184 /* Label to jump to if no case matches. */
2185 tree default_label_decl = NULL_TREE;
2186
2187 alloc_pool case_node_pool = create_alloc_pool ("struct case_node pool",
2188 sizeof (struct case_node),
2189 100);
2190
2191 /* The switch body is lowered in gimplify.c, we should never have
2192 switches with a non-NULL SWITCH_BODY here. */
2193 gcc_assert (!SWITCH_BODY (exp));
2194 gcc_assert (SWITCH_LABELS (exp));
2195
2196 do_pending_stack_adjust ();
2197
2198 /* An ERROR_MARK occurs for various reasons including invalid data type. */
2199 if (index_type != error_mark_node)
2200 {
2201 tree elt;
2202 bitmap label_bitmap;
2203 int vl = TREE_VEC_LENGTH (vec);
2204
2205 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
2206 expressions being INTEGER_CST. */
2207 gcc_assert (TREE_CODE (index_expr) != INTEGER_CST);
2208
2209 /* The default case, if ever taken, is at the end of TREE_VEC. */
2210 elt = TREE_VEC_ELT (vec, vl - 1);
2211 if (!CASE_LOW (elt) && !CASE_HIGH (elt))
2212 {
2213 default_label_decl = CASE_LABEL (elt);
2214 --vl;
2215 }
2216
2217 for (i = vl - 1; i >= 0; --i)
2218 {
2219 tree low, high;
2220 elt = TREE_VEC_ELT (vec, i);
2221
2222 low = CASE_LOW (elt);
2223 gcc_assert (low);
2224 high = CASE_HIGH (elt);
2225
2226 /* Discard empty ranges. */
2227 if (high && tree_int_cst_lt (high, low))
2228 continue;
2229
2230 case_list = add_case_node (case_list, index_type, low, high,
2231 CASE_LABEL (elt), case_node_pool);
2232 }
2233
2234
2235 before_case = start = get_last_insn ();
2236 if (default_label_decl)
2237 default_label = label_rtx (default_label_decl);
2238
2239 /* Get upper and lower bounds of case values. */
2240
2241 uniq = 0;
2242 count = 0;
2243 label_bitmap = BITMAP_ALLOC (NULL);
2244 for (n = case_list; n; n = n->right)
2245 {
2246 /* Count the elements and track the largest and smallest
2247 of them (treating them as signed even if they are not). */
2248 if (count++ == 0)
2249 {
2250 minval = n->low;
2251 maxval = n->high;
2252 }
2253 else
2254 {
2255 if (tree_int_cst_lt (n->low, minval))
2256 minval = n->low;
2257 if (tree_int_cst_lt (maxval, n->high))
2258 maxval = n->high;
2259 }
2260 /* A range counts double, since it requires two compares. */
2261 if (! tree_int_cst_equal (n->low, n->high))
2262 count++;
2263
2264 /* If we have not seen this label yet, then increase the
2265 number of unique case node targets seen. */
2266 lab = label_rtx (n->code_label);
2267 if (!bitmap_bit_p (label_bitmap, CODE_LABEL_NUMBER (lab)))
2268 {
2269 bitmap_set_bit (label_bitmap, CODE_LABEL_NUMBER (lab));
2270 uniq++;
2271 }
2272 }
2273
2274 BITMAP_FREE (label_bitmap);
2275
2276 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
2277 destination, such as one with a default case only. However,
2278 it doesn't remove cases that are out of range for the switch
2279 type, so we may still get a zero here. */
2280 if (count == 0)
2281 {
2282 if (default_label)
2283 emit_jump (default_label);
2284 free_alloc_pool (case_node_pool);
2285 return;
2286 }
2287
2288 /* Compute span of values. */
2289 range = fold_build2 (MINUS_EXPR, index_type, maxval, minval);
2290
2291 /* Try implementing this switch statement by a short sequence of
2292 bit-wise comparisons. However, we let the binary-tree case
2293 below handle constant index expressions. */
2294 if (CASE_USE_BIT_TESTS
2295 && ! TREE_CONSTANT (index_expr)
2296 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
2297 && compare_tree_int (range, 0) > 0
2298 && lshift_cheap_p ()
2299 && ((uniq == 1 && count >= 3)
2300 || (uniq == 2 && count >= 5)
2301 || (uniq == 3 && count >= 6)))
2302 {
2303 /* Optimize the case where all the case values fit in a
2304 word without having to subtract MINVAL. In this case,
2305 we can optimize away the subtraction. */
2306 if (compare_tree_int (minval, 0) > 0
2307 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
2308 {
2309 minval = build_int_cst (index_type, 0);
2310 range = maxval;
2311 }
2312 emit_case_bit_tests (index_type, index_expr, minval, range,
2313 case_list, default_label);
2314 }
2315
2316 /* If range of values is much bigger than number of values,
2317 make a sequence of conditional branches instead of a dispatch.
2318 If the switch-index is a constant, do it this way
2319 because we can optimize it. */
2320
2321 else if (count < targetm.case_values_threshold ()
2322 || compare_tree_int (range,
2323 (optimize_insn_for_size_p () ? 3 : 10) * count) > 0
2324 /* RANGE may be signed, and really large ranges will show up
2325 as negative numbers. */
2326 || compare_tree_int (range, 0) < 0
2327 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
2328 || flag_pic
2329 #endif
2330 || !flag_jump_tables
2331 || TREE_CONSTANT (index_expr)
2332 /* If neither casesi or tablejump is available, we can
2333 only go this way. */
2334 || (!HAVE_casesi && !HAVE_tablejump))
2335 {
2336 index = expand_normal (index_expr);
2337
2338 /* If the index is a short or char that we do not have
2339 an insn to handle comparisons directly, convert it to
2340 a full integer now, rather than letting each comparison
2341 generate the conversion. */
2342
2343 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
2344 && ! have_insn_for (COMPARE, GET_MODE (index)))
2345 {
2346 enum machine_mode wider_mode;
2347 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
2348 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2349 if (have_insn_for (COMPARE, wider_mode))
2350 {
2351 index = convert_to_mode (wider_mode, index, unsignedp);
2352 break;
2353 }
2354 }
2355
2356 do_pending_stack_adjust ();
2357
2358 if (MEM_P (index))
2359 index = copy_to_reg (index);
2360
2361 /* We generate a binary decision tree to select the
2362 appropriate target code. This is done as follows:
2363
2364 The list of cases is rearranged into a binary tree,
2365 nearly optimal assuming equal probability for each case.
2366
2367 The tree is transformed into RTL, eliminating
2368 redundant test conditions at the same time.
2369
2370 If program flow could reach the end of the
2371 decision tree an unconditional jump to the
2372 default code is emitted. */
2373
2374 use_cost_table
2375 = (TREE_CODE (orig_type) != ENUMERAL_TYPE
2376 && estimate_case_costs (case_list));
2377 balance_case_nodes (&case_list, NULL);
2378 emit_case_nodes (index, case_list, default_label, index_type);
2379 if (default_label)
2380 emit_jump (default_label);
2381 }
2382 else
2383 {
2384 rtx fallback_label = label_rtx (case_list->code_label);
2385 table_label = gen_label_rtx ();
2386 if (! try_casesi (index_type, index_expr, minval, range,
2387 table_label, default_label, fallback_label))
2388 {
2389 bool ok;
2390
2391 /* Index jumptables from zero for suitable values of
2392 minval to avoid a subtraction. */
2393 if (optimize_insn_for_speed_p ()
2394 && compare_tree_int (minval, 0) > 0
2395 && compare_tree_int (minval, 3) < 0)
2396 {
2397 minval = build_int_cst (index_type, 0);
2398 range = maxval;
2399 }
2400
2401 ok = try_tablejump (index_type, index_expr, minval, range,
2402 table_label, default_label);
2403 gcc_assert (ok);
2404 }
2405
2406 /* Get table of labels to jump to, in order of case index. */
2407
2408 ncases = tree_low_cst (range, 0) + 1;
2409 labelvec = XALLOCAVEC (rtx, ncases);
2410 memset (labelvec, 0, ncases * sizeof (rtx));
2411
2412 for (n = case_list; n; n = n->right)
2413 {
2414 /* Compute the low and high bounds relative to the minimum
2415 value since that should fit in a HOST_WIDE_INT while the
2416 actual values may not. */
2417 HOST_WIDE_INT i_low
2418 = tree_low_cst (fold_build2 (MINUS_EXPR, index_type,
2419 n->low, minval), 1);
2420 HOST_WIDE_INT i_high
2421 = tree_low_cst (fold_build2 (MINUS_EXPR, index_type,
2422 n->high, minval), 1);
2423 HOST_WIDE_INT i;
2424
2425 for (i = i_low; i <= i_high; i ++)
2426 labelvec[i]
2427 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
2428 }
2429
2430 /* Fill in the gaps with the default. We may have gaps at
2431 the beginning if we tried to avoid the minval subtraction,
2432 so substitute some label even if the default label was
2433 deemed unreachable. */
2434 if (!default_label)
2435 default_label = fallback_label;
2436 for (i = 0; i < ncases; i++)
2437 if (labelvec[i] == 0)
2438 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
2439
2440 /* Output the table. */
2441 emit_label (table_label);
2442
2443 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
2444 emit_jump_insn (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
2445 gen_rtx_LABEL_REF (Pmode, table_label),
2446 gen_rtvec_v (ncases, labelvec),
2447 const0_rtx, const0_rtx));
2448 else
2449 emit_jump_insn (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
2450 gen_rtvec_v (ncases, labelvec)));
2451
2452 /* Record no drop-through after the table. */
2453 emit_barrier ();
2454 }
2455
2456 before_case = NEXT_INSN (before_case);
2457 end = get_last_insn ();
2458 reorder_insns (before_case, end, start);
2459 }
2460
2461 free_temp_slots ();
2462 free_alloc_pool (case_node_pool);
2463 }
2464
2465 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. */
2466
2467 static void
2468 do_jump_if_equal (enum machine_mode mode, rtx op0, rtx op1, rtx label,
2469 int unsignedp)
2470 {
2471 do_compare_rtx_and_jump (op0, op1, EQ, unsignedp, mode,
2472 NULL_RTX, NULL_RTX, label);
2473 }
2474 \f
2475 /* Not all case values are encountered equally. This function
2476 uses a heuristic to weight case labels, in cases where that
2477 looks like a reasonable thing to do.
2478
2479 Right now, all we try to guess is text, and we establish the
2480 following weights:
2481
2482 chars above space: 16
2483 digits: 16
2484 default: 12
2485 space, punct: 8
2486 tab: 4
2487 newline: 2
2488 other "\" chars: 1
2489 remaining chars: 0
2490
2491 If we find any cases in the switch that are not either -1 or in the range
2492 of valid ASCII characters, or are control characters other than those
2493 commonly used with "\", don't treat this switch scanning text.
2494
2495 Return 1 if these nodes are suitable for cost estimation, otherwise
2496 return 0. */
2497
2498 static int
2499 estimate_case_costs (case_node_ptr node)
2500 {
2501 tree min_ascii = integer_minus_one_node;
2502 tree max_ascii = build_int_cst (TREE_TYPE (node->high), 127);
2503 case_node_ptr n;
2504 int i;
2505
2506 /* If we haven't already made the cost table, make it now. Note that the
2507 lower bound of the table is -1, not zero. */
2508
2509 if (! cost_table_initialized)
2510 {
2511 cost_table_initialized = 1;
2512
2513 for (i = 0; i < 128; i++)
2514 {
2515 if (ISALNUM (i))
2516 COST_TABLE (i) = 16;
2517 else if (ISPUNCT (i))
2518 COST_TABLE (i) = 8;
2519 else if (ISCNTRL (i))
2520 COST_TABLE (i) = -1;
2521 }
2522
2523 COST_TABLE (' ') = 8;
2524 COST_TABLE ('\t') = 4;
2525 COST_TABLE ('\0') = 4;
2526 COST_TABLE ('\n') = 2;
2527 COST_TABLE ('\f') = 1;
2528 COST_TABLE ('\v') = 1;
2529 COST_TABLE ('\b') = 1;
2530 }
2531
2532 /* See if all the case expressions look like text. It is text if the
2533 constant is >= -1 and the highest constant is <= 127. Do all comparisons
2534 as signed arithmetic since we don't want to ever access cost_table with a
2535 value less than -1. Also check that none of the constants in a range
2536 are strange control characters. */
2537
2538 for (n = node; n; n = n->right)
2539 {
2540 if (tree_int_cst_lt (n->low, min_ascii)
2541 || tree_int_cst_lt (max_ascii, n->high))
2542 return 0;
2543
2544 for (i = (HOST_WIDE_INT) TREE_INT_CST_LOW (n->low);
2545 i <= (HOST_WIDE_INT) TREE_INT_CST_LOW (n->high); i++)
2546 if (COST_TABLE (i) < 0)
2547 return 0;
2548 }
2549
2550 /* All interesting values are within the range of interesting
2551 ASCII characters. */
2552 return 1;
2553 }
2554
2555 /* Take an ordered list of case nodes
2556 and transform them into a near optimal binary tree,
2557 on the assumption that any target code selection value is as
2558 likely as any other.
2559
2560 The transformation is performed by splitting the ordered
2561 list into two equal sections plus a pivot. The parts are
2562 then attached to the pivot as left and right branches. Each
2563 branch is then transformed recursively. */
2564
2565 static void
2566 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
2567 {
2568 case_node_ptr np;
2569
2570 np = *head;
2571 if (np)
2572 {
2573 int cost = 0;
2574 int i = 0;
2575 int ranges = 0;
2576 case_node_ptr *npp;
2577 case_node_ptr left;
2578
2579 /* Count the number of entries on branch. Also count the ranges. */
2580
2581 while (np)
2582 {
2583 if (!tree_int_cst_equal (np->low, np->high))
2584 {
2585 ranges++;
2586 if (use_cost_table)
2587 cost += COST_TABLE (TREE_INT_CST_LOW (np->high));
2588 }
2589
2590 if (use_cost_table)
2591 cost += COST_TABLE (TREE_INT_CST_LOW (np->low));
2592
2593 i++;
2594 np = np->right;
2595 }
2596
2597 if (i > 2)
2598 {
2599 /* Split this list if it is long enough for that to help. */
2600 npp = head;
2601 left = *npp;
2602 if (use_cost_table)
2603 {
2604 /* Find the place in the list that bisects the list's total cost,
2605 Here I gets half the total cost. */
2606 int n_moved = 0;
2607 i = (cost + 1) / 2;
2608 while (1)
2609 {
2610 /* Skip nodes while their cost does not reach that amount. */
2611 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
2612 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->high));
2613 i -= COST_TABLE (TREE_INT_CST_LOW ((*npp)->low));
2614 if (i <= 0)
2615 break;
2616 npp = &(*npp)->right;
2617 n_moved += 1;
2618 }
2619 if (n_moved == 0)
2620 {
2621 /* Leave this branch lopsided, but optimize left-hand
2622 side and fill in `parent' fields for right-hand side. */
2623 np = *head;
2624 np->parent = parent;
2625 balance_case_nodes (&np->left, np);
2626 for (; np->right; np = np->right)
2627 np->right->parent = np;
2628 return;
2629 }
2630 }
2631 /* If there are just three nodes, split at the middle one. */
2632 else if (i == 3)
2633 npp = &(*npp)->right;
2634 else
2635 {
2636 /* Find the place in the list that bisects the list's total cost,
2637 where ranges count as 2.
2638 Here I gets half the total cost. */
2639 i = (i + ranges + 1) / 2;
2640 while (1)
2641 {
2642 /* Skip nodes while their cost does not reach that amount. */
2643 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
2644 i--;
2645 i--;
2646 if (i <= 0)
2647 break;
2648 npp = &(*npp)->right;
2649 }
2650 }
2651 *head = np = *npp;
2652 *npp = 0;
2653 np->parent = parent;
2654 np->left = left;
2655
2656 /* Optimize each of the two split parts. */
2657 balance_case_nodes (&np->left, np);
2658 balance_case_nodes (&np->right, np);
2659 }
2660 else
2661 {
2662 /* Else leave this branch as one level,
2663 but fill in `parent' fields. */
2664 np = *head;
2665 np->parent = parent;
2666 for (; np->right; np = np->right)
2667 np->right->parent = np;
2668 }
2669 }
2670 }
2671 \f
2672 /* Search the parent sections of the case node tree
2673 to see if a test for the lower bound of NODE would be redundant.
2674 INDEX_TYPE is the type of the index expression.
2675
2676 The instructions to generate the case decision tree are
2677 output in the same order as nodes are processed so it is
2678 known that if a parent node checks the range of the current
2679 node minus one that the current node is bounded at its lower
2680 span. Thus the test would be redundant. */
2681
2682 static int
2683 node_has_low_bound (case_node_ptr node, tree index_type)
2684 {
2685 tree low_minus_one;
2686 case_node_ptr pnode;
2687
2688 /* If the lower bound of this node is the lowest value in the index type,
2689 we need not test it. */
2690
2691 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
2692 return 1;
2693
2694 /* If this node has a left branch, the value at the left must be less
2695 than that at this node, so it cannot be bounded at the bottom and
2696 we need not bother testing any further. */
2697
2698 if (node->left)
2699 return 0;
2700
2701 low_minus_one = fold_build2 (MINUS_EXPR, TREE_TYPE (node->low),
2702 node->low,
2703 build_int_cst (TREE_TYPE (node->low), 1));
2704
2705 /* If the subtraction above overflowed, we can't verify anything.
2706 Otherwise, look for a parent that tests our value - 1. */
2707
2708 if (! tree_int_cst_lt (low_minus_one, node->low))
2709 return 0;
2710
2711 for (pnode = node->parent; pnode; pnode = pnode->parent)
2712 if (tree_int_cst_equal (low_minus_one, pnode->high))
2713 return 1;
2714
2715 return 0;
2716 }
2717
2718 /* Search the parent sections of the case node tree
2719 to see if a test for the upper bound of NODE would be redundant.
2720 INDEX_TYPE is the type of the index expression.
2721
2722 The instructions to generate the case decision tree are
2723 output in the same order as nodes are processed so it is
2724 known that if a parent node checks the range of the current
2725 node plus one that the current node is bounded at its upper
2726 span. Thus the test would be redundant. */
2727
2728 static int
2729 node_has_high_bound (case_node_ptr node, tree index_type)
2730 {
2731 tree high_plus_one;
2732 case_node_ptr pnode;
2733
2734 /* If there is no upper bound, obviously no test is needed. */
2735
2736 if (TYPE_MAX_VALUE (index_type) == NULL)
2737 return 1;
2738
2739 /* If the upper bound of this node is the highest value in the type
2740 of the index expression, we need not test against it. */
2741
2742 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
2743 return 1;
2744
2745 /* If this node has a right branch, the value at the right must be greater
2746 than that at this node, so it cannot be bounded at the top and
2747 we need not bother testing any further. */
2748
2749 if (node->right)
2750 return 0;
2751
2752 high_plus_one = fold_build2 (PLUS_EXPR, TREE_TYPE (node->high),
2753 node->high,
2754 build_int_cst (TREE_TYPE (node->high), 1));
2755
2756 /* If the addition above overflowed, we can't verify anything.
2757 Otherwise, look for a parent that tests our value + 1. */
2758
2759 if (! tree_int_cst_lt (node->high, high_plus_one))
2760 return 0;
2761
2762 for (pnode = node->parent; pnode; pnode = pnode->parent)
2763 if (tree_int_cst_equal (high_plus_one, pnode->low))
2764 return 1;
2765
2766 return 0;
2767 }
2768
2769 /* Search the parent sections of the
2770 case node tree to see if both tests for the upper and lower
2771 bounds of NODE would be redundant. */
2772
2773 static int
2774 node_is_bounded (case_node_ptr node, tree index_type)
2775 {
2776 return (node_has_low_bound (node, index_type)
2777 && node_has_high_bound (node, index_type));
2778 }
2779 \f
2780 /* Emit step-by-step code to select a case for the value of INDEX.
2781 The thus generated decision tree follows the form of the
2782 case-node binary tree NODE, whose nodes represent test conditions.
2783 INDEX_TYPE is the type of the index of the switch.
2784
2785 Care is taken to prune redundant tests from the decision tree
2786 by detecting any boundary conditions already checked by
2787 emitted rtx. (See node_has_high_bound, node_has_low_bound
2788 and node_is_bounded, above.)
2789
2790 Where the test conditions can be shown to be redundant we emit
2791 an unconditional jump to the target code. As a further
2792 optimization, the subordinates of a tree node are examined to
2793 check for bounded nodes. In this case conditional and/or
2794 unconditional jumps as a result of the boundary check for the
2795 current node are arranged to target the subordinates associated
2796 code for out of bound conditions on the current node.
2797
2798 We can assume that when control reaches the code generated here,
2799 the index value has already been compared with the parents
2800 of this node, and determined to be on the same side of each parent
2801 as this node is. Thus, if this node tests for the value 51,
2802 and a parent tested for 52, we don't need to consider
2803 the possibility of a value greater than 51. If another parent
2804 tests for the value 50, then this node need not test anything. */
2805
2806 static void
2807 emit_case_nodes (rtx index, case_node_ptr node, rtx default_label,
2808 tree index_type)
2809 {
2810 /* If INDEX has an unsigned type, we must make unsigned branches. */
2811 int unsignedp = TYPE_UNSIGNED (index_type);
2812 enum machine_mode mode = GET_MODE (index);
2813 enum machine_mode imode = TYPE_MODE (index_type);
2814
2815 /* Handle indices detected as constant during RTL expansion. */
2816 if (mode == VOIDmode)
2817 mode = imode;
2818
2819 /* See if our parents have already tested everything for us.
2820 If they have, emit an unconditional jump for this node. */
2821 if (node_is_bounded (node, index_type))
2822 emit_jump (label_rtx (node->code_label));
2823
2824 else if (tree_int_cst_equal (node->low, node->high))
2825 {
2826 /* Node is single valued. First see if the index expression matches
2827 this node and then check our children, if any. */
2828
2829 do_jump_if_equal (mode, index,
2830 convert_modes (mode, imode,
2831 expand_normal (node->low),
2832 unsignedp),
2833 label_rtx (node->code_label), unsignedp);
2834
2835 if (node->right != 0 && node->left != 0)
2836 {
2837 /* This node has children on both sides.
2838 Dispatch to one side or the other
2839 by comparing the index value with this node's value.
2840 If one subtree is bounded, check that one first,
2841 so we can avoid real branches in the tree. */
2842
2843 if (node_is_bounded (node->right, index_type))
2844 {
2845 emit_cmp_and_jump_insns (index,
2846 convert_modes
2847 (mode, imode,
2848 expand_normal (node->high),
2849 unsignedp),
2850 GT, NULL_RTX, mode, unsignedp,
2851 label_rtx (node->right->code_label));
2852 emit_case_nodes (index, node->left, default_label, index_type);
2853 }
2854
2855 else if (node_is_bounded (node->left, index_type))
2856 {
2857 emit_cmp_and_jump_insns (index,
2858 convert_modes
2859 (mode, imode,
2860 expand_normal (node->high),
2861 unsignedp),
2862 LT, NULL_RTX, mode, unsignedp,
2863 label_rtx (node->left->code_label));
2864 emit_case_nodes (index, node->right, default_label, index_type);
2865 }
2866
2867 /* If both children are single-valued cases with no
2868 children, finish up all the work. This way, we can save
2869 one ordered comparison. */
2870 else if (tree_int_cst_equal (node->right->low, node->right->high)
2871 && node->right->left == 0
2872 && node->right->right == 0
2873 && tree_int_cst_equal (node->left->low, node->left->high)
2874 && node->left->left == 0
2875 && node->left->right == 0)
2876 {
2877 /* Neither node is bounded. First distinguish the two sides;
2878 then emit the code for one side at a time. */
2879
2880 /* See if the value matches what the right hand side
2881 wants. */
2882 do_jump_if_equal (mode, index,
2883 convert_modes (mode, imode,
2884 expand_normal (node->right->low),
2885 unsignedp),
2886 label_rtx (node->right->code_label),
2887 unsignedp);
2888
2889 /* See if the value matches what the left hand side
2890 wants. */
2891 do_jump_if_equal (mode, index,
2892 convert_modes (mode, imode,
2893 expand_normal (node->left->low),
2894 unsignedp),
2895 label_rtx (node->left->code_label),
2896 unsignedp);
2897 }
2898
2899 else
2900 {
2901 /* Neither node is bounded. First distinguish the two sides;
2902 then emit the code for one side at a time. */
2903
2904 tree test_label
2905 = build_decl (CURR_INSN_LOCATION,
2906 LABEL_DECL, NULL_TREE, NULL_TREE);
2907
2908 /* See if the value is on the right. */
2909 emit_cmp_and_jump_insns (index,
2910 convert_modes
2911 (mode, imode,
2912 expand_normal (node->high),
2913 unsignedp),
2914 GT, NULL_RTX, mode, unsignedp,
2915 label_rtx (test_label));
2916
2917 /* Value must be on the left.
2918 Handle the left-hand subtree. */
2919 emit_case_nodes (index, node->left, default_label, index_type);
2920 /* If left-hand subtree does nothing,
2921 go to default. */
2922 if (default_label)
2923 emit_jump (default_label);
2924
2925 /* Code branches here for the right-hand subtree. */
2926 expand_label (test_label);
2927 emit_case_nodes (index, node->right, default_label, index_type);
2928 }
2929 }
2930
2931 else if (node->right != 0 && node->left == 0)
2932 {
2933 /* Here we have a right child but no left so we issue a conditional
2934 branch to default and process the right child.
2935
2936 Omit the conditional branch to default if the right child
2937 does not have any children and is single valued; it would
2938 cost too much space to save so little time. */
2939
2940 if (node->right->right || node->right->left
2941 || !tree_int_cst_equal (node->right->low, node->right->high))
2942 {
2943 if (!node_has_low_bound (node, index_type))
2944 {
2945 emit_cmp_and_jump_insns (index,
2946 convert_modes
2947 (mode, imode,
2948 expand_normal (node->high),
2949 unsignedp),
2950 LT, NULL_RTX, mode, unsignedp,
2951 default_label);
2952 }
2953
2954 emit_case_nodes (index, node->right, default_label, index_type);
2955 }
2956 else
2957 /* We cannot process node->right normally
2958 since we haven't ruled out the numbers less than
2959 this node's value. So handle node->right explicitly. */
2960 do_jump_if_equal (mode, index,
2961 convert_modes
2962 (mode, imode,
2963 expand_normal (node->right->low),
2964 unsignedp),
2965 label_rtx (node->right->code_label), unsignedp);
2966 }
2967
2968 else if (node->right == 0 && node->left != 0)
2969 {
2970 /* Just one subtree, on the left. */
2971 if (node->left->left || node->left->right
2972 || !tree_int_cst_equal (node->left->low, node->left->high))
2973 {
2974 if (!node_has_high_bound (node, index_type))
2975 {
2976 emit_cmp_and_jump_insns (index,
2977 convert_modes
2978 (mode, imode,
2979 expand_normal (node->high),
2980 unsignedp),
2981 GT, NULL_RTX, mode, unsignedp,
2982 default_label);
2983 }
2984
2985 emit_case_nodes (index, node->left, default_label, index_type);
2986 }
2987 else
2988 /* We cannot process node->left normally
2989 since we haven't ruled out the numbers less than
2990 this node's value. So handle node->left explicitly. */
2991 do_jump_if_equal (mode, index,
2992 convert_modes
2993 (mode, imode,
2994 expand_normal (node->left->low),
2995 unsignedp),
2996 label_rtx (node->left->code_label), unsignedp);
2997 }
2998 }
2999 else
3000 {
3001 /* Node is a range. These cases are very similar to those for a single
3002 value, except that we do not start by testing whether this node
3003 is the one to branch to. */
3004
3005 if (node->right != 0 && node->left != 0)
3006 {
3007 /* Node has subtrees on both sides.
3008 If the right-hand subtree is bounded,
3009 test for it first, since we can go straight there.
3010 Otherwise, we need to make a branch in the control structure,
3011 then handle the two subtrees. */
3012 tree test_label = 0;
3013
3014 if (node_is_bounded (node->right, index_type))
3015 /* Right hand node is fully bounded so we can eliminate any
3016 testing and branch directly to the target code. */
3017 emit_cmp_and_jump_insns (index,
3018 convert_modes
3019 (mode, imode,
3020 expand_normal (node->high),
3021 unsignedp),
3022 GT, NULL_RTX, mode, unsignedp,
3023 label_rtx (node->right->code_label));
3024 else
3025 {
3026 /* Right hand node requires testing.
3027 Branch to a label where we will handle it later. */
3028
3029 test_label = build_decl (CURR_INSN_LOCATION,
3030 LABEL_DECL, NULL_TREE, NULL_TREE);
3031 emit_cmp_and_jump_insns (index,
3032 convert_modes
3033 (mode, imode,
3034 expand_normal (node->high),
3035 unsignedp),
3036 GT, NULL_RTX, mode, unsignedp,
3037 label_rtx (test_label));
3038 }
3039
3040 /* Value belongs to this node or to the left-hand subtree. */
3041
3042 emit_cmp_and_jump_insns (index,
3043 convert_modes
3044 (mode, imode,
3045 expand_normal (node->low),
3046 unsignedp),
3047 GE, NULL_RTX, mode, unsignedp,
3048 label_rtx (node->code_label));
3049
3050 /* Handle the left-hand subtree. */
3051 emit_case_nodes (index, node->left, default_label, index_type);
3052
3053 /* If right node had to be handled later, do that now. */
3054
3055 if (test_label)
3056 {
3057 /* If the left-hand subtree fell through,
3058 don't let it fall into the right-hand subtree. */
3059 if (default_label)
3060 emit_jump (default_label);
3061
3062 expand_label (test_label);
3063 emit_case_nodes (index, node->right, default_label, index_type);
3064 }
3065 }
3066
3067 else if (node->right != 0 && node->left == 0)
3068 {
3069 /* Deal with values to the left of this node,
3070 if they are possible. */
3071 if (!node_has_low_bound (node, index_type))
3072 {
3073 emit_cmp_and_jump_insns (index,
3074 convert_modes
3075 (mode, imode,
3076 expand_normal (node->low),
3077 unsignedp),
3078 LT, NULL_RTX, mode, unsignedp,
3079 default_label);
3080 }
3081
3082 /* Value belongs to this node or to the right-hand subtree. */
3083
3084 emit_cmp_and_jump_insns (index,
3085 convert_modes
3086 (mode, imode,
3087 expand_normal (node->high),
3088 unsignedp),
3089 LE, NULL_RTX, mode, unsignedp,
3090 label_rtx (node->code_label));
3091
3092 emit_case_nodes (index, node->right, default_label, index_type);
3093 }
3094
3095 else if (node->right == 0 && node->left != 0)
3096 {
3097 /* Deal with values to the right of this node,
3098 if they are possible. */
3099 if (!node_has_high_bound (node, index_type))
3100 {
3101 emit_cmp_and_jump_insns (index,
3102 convert_modes
3103 (mode, imode,
3104 expand_normal (node->high),
3105 unsignedp),
3106 GT, NULL_RTX, mode, unsignedp,
3107 default_label);
3108 }
3109
3110 /* Value belongs to this node or to the left-hand subtree. */
3111
3112 emit_cmp_and_jump_insns (index,
3113 convert_modes
3114 (mode, imode,
3115 expand_normal (node->low),
3116 unsignedp),
3117 GE, NULL_RTX, mode, unsignedp,
3118 label_rtx (node->code_label));
3119
3120 emit_case_nodes (index, node->left, default_label, index_type);
3121 }
3122
3123 else
3124 {
3125 /* Node has no children so we check low and high bounds to remove
3126 redundant tests. Only one of the bounds can exist,
3127 since otherwise this node is bounded--a case tested already. */
3128 int high_bound = node_has_high_bound (node, index_type);
3129 int low_bound = node_has_low_bound (node, index_type);
3130
3131 if (!high_bound && low_bound)
3132 {
3133 emit_cmp_and_jump_insns (index,
3134 convert_modes
3135 (mode, imode,
3136 expand_normal (node->high),
3137 unsignedp),
3138 GT, NULL_RTX, mode, unsignedp,
3139 default_label);
3140 }
3141
3142 else if (!low_bound && high_bound)
3143 {
3144 emit_cmp_and_jump_insns (index,
3145 convert_modes
3146 (mode, imode,
3147 expand_normal (node->low),
3148 unsignedp),
3149 LT, NULL_RTX, mode, unsignedp,
3150 default_label);
3151 }
3152 else if (!low_bound && !high_bound)
3153 {
3154 /* Widen LOW and HIGH to the same width as INDEX. */
3155 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
3156 tree low = build1 (CONVERT_EXPR, type, node->low);
3157 tree high = build1 (CONVERT_EXPR, type, node->high);
3158 rtx low_rtx, new_index, new_bound;
3159
3160 /* Instead of doing two branches, emit one unsigned branch for
3161 (index-low) > (high-low). */
3162 low_rtx = expand_expr (low, NULL_RTX, mode, EXPAND_NORMAL);
3163 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
3164 NULL_RTX, unsignedp,
3165 OPTAB_WIDEN);
3166 new_bound = expand_expr (fold_build2 (MINUS_EXPR, type,
3167 high, low),
3168 NULL_RTX, mode, EXPAND_NORMAL);
3169
3170 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
3171 mode, 1, default_label);
3172 }
3173
3174 emit_jump (label_rtx (node->code_label));
3175 }
3176 }
3177 }