bind_c_array_params_2.f90: Add "-mno-explicit-relocs" for alpha*-*-* targets.
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "diagnostic-core.h"
34 #include "ggc.h"
35 #include "target.h"
36 #include "langhooks.h"
37 #include "regs.h"
38 #include "params.h"
39 #include "cgraph.h"
40 #include "tree-inline.h"
41 #include "tree-dump.h"
42 #include "gimple.h"
43
44 /* Data type for the expressions representing sizes of data types.
45 It is the first integer type laid out. */
46 tree sizetype_tab[(int) stk_type_kind_last];
47
48 /* If nonzero, this is an upper limit on alignment of structure fields.
49 The value is measured in bits. */
50 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
51
52 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
53 in the address spaces' address_mode, not pointer_mode. Set only by
54 internal_reference_types called only by a front end. */
55 static int reference_types_internal = 0;
56
57 static tree self_referential_size (tree);
58 static void finalize_record_size (record_layout_info);
59 static void finalize_type_size (tree);
60 static void place_union_field (record_layout_info, tree);
61 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
62 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
63 HOST_WIDE_INT, tree);
64 #endif
65 extern void debug_rli (record_layout_info);
66 \f
67 /* Show that REFERENCE_TYPES are internal and should use address_mode.
68 Called only by front end. */
69
70 void
71 internal_reference_types (void)
72 {
73 reference_types_internal = 1;
74 }
75
76 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
77 to serve as the actual size-expression for a type or decl. */
78
79 tree
80 variable_size (tree size)
81 {
82 /* Obviously. */
83 if (TREE_CONSTANT (size))
84 return size;
85
86 /* If the size is self-referential, we can't make a SAVE_EXPR (see
87 save_expr for the rationale). But we can do something else. */
88 if (CONTAINS_PLACEHOLDER_P (size))
89 return self_referential_size (size);
90
91 /* If we are in the global binding level, we can't make a SAVE_EXPR
92 since it may end up being shared across functions, so it is up
93 to the front-end to deal with this case. */
94 if (lang_hooks.decls.global_bindings_p ())
95 return size;
96
97 return save_expr (size);
98 }
99
100 /* An array of functions used for self-referential size computation. */
101 static GTY(()) VEC (tree, gc) *size_functions;
102
103 /* Look inside EXPR into simple arithmetic operations involving constants.
104 Return the outermost non-arithmetic or non-constant node. */
105
106 static tree
107 skip_simple_constant_arithmetic (tree expr)
108 {
109 while (true)
110 {
111 if (UNARY_CLASS_P (expr))
112 expr = TREE_OPERAND (expr, 0);
113 else if (BINARY_CLASS_P (expr))
114 {
115 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
116 expr = TREE_OPERAND (expr, 0);
117 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
118 expr = TREE_OPERAND (expr, 1);
119 else
120 break;
121 }
122 else
123 break;
124 }
125
126 return expr;
127 }
128
129 /* Similar to copy_tree_r but do not copy component references involving
130 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
131 and substituted in substitute_in_expr. */
132
133 static tree
134 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
135 {
136 enum tree_code code = TREE_CODE (*tp);
137
138 /* Stop at types, decls, constants like copy_tree_r. */
139 if (TREE_CODE_CLASS (code) == tcc_type
140 || TREE_CODE_CLASS (code) == tcc_declaration
141 || TREE_CODE_CLASS (code) == tcc_constant)
142 {
143 *walk_subtrees = 0;
144 return NULL_TREE;
145 }
146
147 /* This is the pattern built in ada/make_aligning_type. */
148 else if (code == ADDR_EXPR
149 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
150 {
151 *walk_subtrees = 0;
152 return NULL_TREE;
153 }
154
155 /* Default case: the component reference. */
156 else if (code == COMPONENT_REF)
157 {
158 tree inner;
159 for (inner = TREE_OPERAND (*tp, 0);
160 REFERENCE_CLASS_P (inner);
161 inner = TREE_OPERAND (inner, 0))
162 ;
163
164 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
165 {
166 *walk_subtrees = 0;
167 return NULL_TREE;
168 }
169 }
170
171 /* We're not supposed to have them in self-referential size trees
172 because we wouldn't properly control when they are evaluated.
173 However, not creating superfluous SAVE_EXPRs requires accurate
174 tracking of readonly-ness all the way down to here, which we
175 cannot always guarantee in practice. So punt in this case. */
176 else if (code == SAVE_EXPR)
177 return error_mark_node;
178
179 else if (code == STATEMENT_LIST)
180 gcc_unreachable ();
181
182 return copy_tree_r (tp, walk_subtrees, data);
183 }
184
185 /* Given a SIZE expression that is self-referential, return an equivalent
186 expression to serve as the actual size expression for a type. */
187
188 static tree
189 self_referential_size (tree size)
190 {
191 static unsigned HOST_WIDE_INT fnno = 0;
192 VEC (tree, heap) *self_refs = NULL;
193 tree param_type_list = NULL, param_decl_list = NULL;
194 tree t, ref, return_type, fntype, fnname, fndecl;
195 unsigned int i;
196 char buf[128];
197 VEC(tree,gc) *args = NULL;
198
199 /* Do not factor out simple operations. */
200 t = skip_simple_constant_arithmetic (size);
201 if (TREE_CODE (t) == CALL_EXPR)
202 return size;
203
204 /* Collect the list of self-references in the expression. */
205 find_placeholder_in_expr (size, &self_refs);
206 gcc_assert (VEC_length (tree, self_refs) > 0);
207
208 /* Obtain a private copy of the expression. */
209 t = size;
210 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
211 return size;
212 size = t;
213
214 /* Build the parameter and argument lists in parallel; also
215 substitute the former for the latter in the expression. */
216 args = VEC_alloc (tree, gc, VEC_length (tree, self_refs));
217 FOR_EACH_VEC_ELT (tree, self_refs, i, ref)
218 {
219 tree subst, param_name, param_type, param_decl;
220
221 if (DECL_P (ref))
222 {
223 /* We shouldn't have true variables here. */
224 gcc_assert (TREE_READONLY (ref));
225 subst = ref;
226 }
227 /* This is the pattern built in ada/make_aligning_type. */
228 else if (TREE_CODE (ref) == ADDR_EXPR)
229 subst = ref;
230 /* Default case: the component reference. */
231 else
232 subst = TREE_OPERAND (ref, 1);
233
234 sprintf (buf, "p%d", i);
235 param_name = get_identifier (buf);
236 param_type = TREE_TYPE (ref);
237 param_decl
238 = build_decl (input_location, PARM_DECL, param_name, param_type);
239 if (targetm.calls.promote_prototypes (NULL_TREE)
240 && INTEGRAL_TYPE_P (param_type)
241 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
242 DECL_ARG_TYPE (param_decl) = integer_type_node;
243 else
244 DECL_ARG_TYPE (param_decl) = param_type;
245 DECL_ARTIFICIAL (param_decl) = 1;
246 TREE_READONLY (param_decl) = 1;
247
248 size = substitute_in_expr (size, subst, param_decl);
249
250 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
251 param_decl_list = chainon (param_decl, param_decl_list);
252 VEC_quick_push (tree, args, ref);
253 }
254
255 VEC_free (tree, heap, self_refs);
256
257 /* Append 'void' to indicate that the number of parameters is fixed. */
258 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
259
260 /* The 3 lists have been created in reverse order. */
261 param_type_list = nreverse (param_type_list);
262 param_decl_list = nreverse (param_decl_list);
263
264 /* Build the function type. */
265 return_type = TREE_TYPE (size);
266 fntype = build_function_type (return_type, param_type_list);
267
268 /* Build the function declaration. */
269 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
270 fnname = get_file_function_name (buf);
271 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
272 for (t = param_decl_list; t; t = DECL_CHAIN (t))
273 DECL_CONTEXT (t) = fndecl;
274 DECL_ARGUMENTS (fndecl) = param_decl_list;
275 DECL_RESULT (fndecl)
276 = build_decl (input_location, RESULT_DECL, 0, return_type);
277 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
278
279 /* The function has been created by the compiler and we don't
280 want to emit debug info for it. */
281 DECL_ARTIFICIAL (fndecl) = 1;
282 DECL_IGNORED_P (fndecl) = 1;
283
284 /* It is supposed to be "const" and never throw. */
285 TREE_READONLY (fndecl) = 1;
286 TREE_NOTHROW (fndecl) = 1;
287
288 /* We want it to be inlined when this is deemed profitable, as
289 well as discarded if every call has been integrated. */
290 DECL_DECLARED_INLINE_P (fndecl) = 1;
291
292 /* It is made up of a unique return statement. */
293 DECL_INITIAL (fndecl) = make_node (BLOCK);
294 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
295 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
296 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
297 TREE_STATIC (fndecl) = 1;
298
299 /* Put it onto the list of size functions. */
300 VEC_safe_push (tree, gc, size_functions, fndecl);
301
302 /* Replace the original expression with a call to the size function. */
303 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
304 }
305
306 /* Take, queue and compile all the size functions. It is essential that
307 the size functions be gimplified at the very end of the compilation
308 in order to guarantee transparent handling of self-referential sizes.
309 Otherwise the GENERIC inliner would not be able to inline them back
310 at each of their call sites, thus creating artificial non-constant
311 size expressions which would trigger nasty problems later on. */
312
313 void
314 finalize_size_functions (void)
315 {
316 unsigned int i;
317 tree fndecl;
318
319 for (i = 0; VEC_iterate(tree, size_functions, i, fndecl); i++)
320 {
321 dump_function (TDI_original, fndecl);
322 gimplify_function_tree (fndecl);
323 dump_function (TDI_generic, fndecl);
324 cgraph_finalize_function (fndecl, false);
325 }
326
327 VEC_free (tree, gc, size_functions);
328 }
329 \f
330 /* Return the machine mode to use for a nonscalar of SIZE bits. The
331 mode must be in class MCLASS, and have exactly that many value bits;
332 it may have padding as well. If LIMIT is nonzero, modes of wider
333 than MAX_FIXED_MODE_SIZE will not be used. */
334
335 enum machine_mode
336 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
337 {
338 enum machine_mode mode;
339
340 if (limit && size > MAX_FIXED_MODE_SIZE)
341 return BLKmode;
342
343 /* Get the first mode which has this size, in the specified class. */
344 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
345 mode = GET_MODE_WIDER_MODE (mode))
346 if (GET_MODE_PRECISION (mode) == size)
347 return mode;
348
349 return BLKmode;
350 }
351
352 /* Similar, except passed a tree node. */
353
354 enum machine_mode
355 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
356 {
357 unsigned HOST_WIDE_INT uhwi;
358 unsigned int ui;
359
360 if (!host_integerp (size, 1))
361 return BLKmode;
362 uhwi = tree_low_cst (size, 1);
363 ui = uhwi;
364 if (uhwi != ui)
365 return BLKmode;
366 return mode_for_size (ui, mclass, limit);
367 }
368
369 /* Similar, but never return BLKmode; return the narrowest mode that
370 contains at least the requested number of value bits. */
371
372 enum machine_mode
373 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
374 {
375 enum machine_mode mode;
376
377 /* Get the first mode which has at least this size, in the
378 specified class. */
379 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
380 mode = GET_MODE_WIDER_MODE (mode))
381 if (GET_MODE_PRECISION (mode) >= size)
382 return mode;
383
384 gcc_unreachable ();
385 }
386
387 /* Find an integer mode of the exact same size, or BLKmode on failure. */
388
389 enum machine_mode
390 int_mode_for_mode (enum machine_mode mode)
391 {
392 switch (GET_MODE_CLASS (mode))
393 {
394 case MODE_INT:
395 case MODE_PARTIAL_INT:
396 break;
397
398 case MODE_COMPLEX_INT:
399 case MODE_COMPLEX_FLOAT:
400 case MODE_FLOAT:
401 case MODE_DECIMAL_FLOAT:
402 case MODE_VECTOR_INT:
403 case MODE_VECTOR_FLOAT:
404 case MODE_FRACT:
405 case MODE_ACCUM:
406 case MODE_UFRACT:
407 case MODE_UACCUM:
408 case MODE_VECTOR_FRACT:
409 case MODE_VECTOR_ACCUM:
410 case MODE_VECTOR_UFRACT:
411 case MODE_VECTOR_UACCUM:
412 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
413 break;
414
415 case MODE_RANDOM:
416 if (mode == BLKmode)
417 break;
418
419 /* ... fall through ... */
420
421 case MODE_CC:
422 default:
423 gcc_unreachable ();
424 }
425
426 return mode;
427 }
428
429 /* Find a mode that is suitable for representing a vector with
430 NUNITS elements of mode INNERMODE. Returns BLKmode if there
431 is no suitable mode. */
432
433 enum machine_mode
434 mode_for_vector (enum machine_mode innermode, unsigned nunits)
435 {
436 enum machine_mode mode;
437
438 /* First, look for a supported vector type. */
439 if (SCALAR_FLOAT_MODE_P (innermode))
440 mode = MIN_MODE_VECTOR_FLOAT;
441 else if (SCALAR_FRACT_MODE_P (innermode))
442 mode = MIN_MODE_VECTOR_FRACT;
443 else if (SCALAR_UFRACT_MODE_P (innermode))
444 mode = MIN_MODE_VECTOR_UFRACT;
445 else if (SCALAR_ACCUM_MODE_P (innermode))
446 mode = MIN_MODE_VECTOR_ACCUM;
447 else if (SCALAR_UACCUM_MODE_P (innermode))
448 mode = MIN_MODE_VECTOR_UACCUM;
449 else
450 mode = MIN_MODE_VECTOR_INT;
451
452 /* Do not check vector_mode_supported_p here. We'll do that
453 later in vector_type_mode. */
454 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
455 if (GET_MODE_NUNITS (mode) == nunits
456 && GET_MODE_INNER (mode) == innermode)
457 break;
458
459 /* For integers, try mapping it to a same-sized scalar mode. */
460 if (mode == VOIDmode
461 && GET_MODE_CLASS (innermode) == MODE_INT)
462 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
463 MODE_INT, 0);
464
465 if (mode == VOIDmode
466 || (GET_MODE_CLASS (mode) == MODE_INT
467 && !have_regs_of_mode[mode]))
468 return BLKmode;
469
470 return mode;
471 }
472
473 /* Return the alignment of MODE. This will be bounded by 1 and
474 BIGGEST_ALIGNMENT. */
475
476 unsigned int
477 get_mode_alignment (enum machine_mode mode)
478 {
479 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
480 }
481
482 /* Return the natural mode of an array, given that it is SIZE bytes in
483 total and has elements of type ELEM_TYPE. */
484
485 static enum machine_mode
486 mode_for_array (tree elem_type, tree size)
487 {
488 tree elem_size;
489 unsigned HOST_WIDE_INT int_size, int_elem_size;
490 bool limit_p;
491
492 /* One-element arrays get the component type's mode. */
493 elem_size = TYPE_SIZE (elem_type);
494 if (simple_cst_equal (size, elem_size))
495 return TYPE_MODE (elem_type);
496
497 limit_p = true;
498 if (host_integerp (size, 1) && host_integerp (elem_size, 1))
499 {
500 int_size = tree_low_cst (size, 1);
501 int_elem_size = tree_low_cst (elem_size, 1);
502 if (int_elem_size > 0
503 && int_size % int_elem_size == 0
504 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
505 int_size / int_elem_size))
506 limit_p = false;
507 }
508 return mode_for_size_tree (size, MODE_INT, limit_p);
509 }
510 \f
511 /* Subroutine of layout_decl: Force alignment required for the data type.
512 But if the decl itself wants greater alignment, don't override that. */
513
514 static inline void
515 do_type_align (tree type, tree decl)
516 {
517 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
518 {
519 DECL_ALIGN (decl) = TYPE_ALIGN (type);
520 if (TREE_CODE (decl) == FIELD_DECL)
521 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
522 }
523 }
524
525 /* Set the size, mode and alignment of a ..._DECL node.
526 TYPE_DECL does need this for C++.
527 Note that LABEL_DECL and CONST_DECL nodes do not need this,
528 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
529 Don't call layout_decl for them.
530
531 KNOWN_ALIGN is the amount of alignment we can assume this
532 decl has with no special effort. It is relevant only for FIELD_DECLs
533 and depends on the previous fields.
534 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
535 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
536 the record will be aligned to suit. */
537
538 void
539 layout_decl (tree decl, unsigned int known_align)
540 {
541 tree type = TREE_TYPE (decl);
542 enum tree_code code = TREE_CODE (decl);
543 rtx rtl = NULL_RTX;
544 location_t loc = DECL_SOURCE_LOCATION (decl);
545
546 if (code == CONST_DECL)
547 return;
548
549 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
550 || code == TYPE_DECL ||code == FIELD_DECL);
551
552 rtl = DECL_RTL_IF_SET (decl);
553
554 if (type == error_mark_node)
555 type = void_type_node;
556
557 /* Usually the size and mode come from the data type without change,
558 however, the front-end may set the explicit width of the field, so its
559 size may not be the same as the size of its type. This happens with
560 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
561 also happens with other fields. For example, the C++ front-end creates
562 zero-sized fields corresponding to empty base classes, and depends on
563 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
564 size in bytes from the size in bits. If we have already set the mode,
565 don't set it again since we can be called twice for FIELD_DECLs. */
566
567 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
568 if (DECL_MODE (decl) == VOIDmode)
569 DECL_MODE (decl) = TYPE_MODE (type);
570
571 if (DECL_SIZE (decl) == 0)
572 {
573 DECL_SIZE (decl) = TYPE_SIZE (type);
574 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
575 }
576 else if (DECL_SIZE_UNIT (decl) == 0)
577 DECL_SIZE_UNIT (decl)
578 = fold_convert_loc (loc, sizetype,
579 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
580 bitsize_unit_node));
581
582 if (code != FIELD_DECL)
583 /* For non-fields, update the alignment from the type. */
584 do_type_align (type, decl);
585 else
586 /* For fields, it's a bit more complicated... */
587 {
588 bool old_user_align = DECL_USER_ALIGN (decl);
589 bool zero_bitfield = false;
590 bool packed_p = DECL_PACKED (decl);
591 unsigned int mfa;
592
593 if (DECL_BIT_FIELD (decl))
594 {
595 DECL_BIT_FIELD_TYPE (decl) = type;
596
597 /* A zero-length bit-field affects the alignment of the next
598 field. In essence such bit-fields are not influenced by
599 any packing due to #pragma pack or attribute packed. */
600 if (integer_zerop (DECL_SIZE (decl))
601 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
602 {
603 zero_bitfield = true;
604 packed_p = false;
605 #ifdef PCC_BITFIELD_TYPE_MATTERS
606 if (PCC_BITFIELD_TYPE_MATTERS)
607 do_type_align (type, decl);
608 else
609 #endif
610 {
611 #ifdef EMPTY_FIELD_BOUNDARY
612 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
613 {
614 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
615 DECL_USER_ALIGN (decl) = 0;
616 }
617 #endif
618 }
619 }
620
621 /* See if we can use an ordinary integer mode for a bit-field.
622 Conditions are: a fixed size that is correct for another mode,
623 occupying a complete byte or bytes on proper boundary,
624 and not -fstrict-volatile-bitfields. If the latter is set,
625 we unfortunately can't check TREE_THIS_VOLATILE, as a cast
626 may make a volatile object later. */
627 if (TYPE_SIZE (type) != 0
628 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
629 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT
630 && flag_strict_volatile_bitfields <= 0)
631 {
632 enum machine_mode xmode
633 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
634 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
635
636 if (xmode != BLKmode
637 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
638 && (known_align == 0 || known_align >= xalign))
639 {
640 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
641 DECL_MODE (decl) = xmode;
642 DECL_BIT_FIELD (decl) = 0;
643 }
644 }
645
646 /* Turn off DECL_BIT_FIELD if we won't need it set. */
647 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
648 && known_align >= TYPE_ALIGN (type)
649 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
650 DECL_BIT_FIELD (decl) = 0;
651 }
652 else if (packed_p && DECL_USER_ALIGN (decl))
653 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
654 round up; we'll reduce it again below. We want packing to
655 supersede USER_ALIGN inherited from the type, but defer to
656 alignment explicitly specified on the field decl. */;
657 else
658 do_type_align (type, decl);
659
660 /* If the field is packed and not explicitly aligned, give it the
661 minimum alignment. Note that do_type_align may set
662 DECL_USER_ALIGN, so we need to check old_user_align instead. */
663 if (packed_p
664 && !old_user_align)
665 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
666
667 if (! packed_p && ! DECL_USER_ALIGN (decl))
668 {
669 /* Some targets (i.e. i386, VMS) limit struct field alignment
670 to a lower boundary than alignment of variables unless
671 it was overridden by attribute aligned. */
672 #ifdef BIGGEST_FIELD_ALIGNMENT
673 DECL_ALIGN (decl)
674 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
675 #endif
676 #ifdef ADJUST_FIELD_ALIGN
677 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
678 #endif
679 }
680
681 if (zero_bitfield)
682 mfa = initial_max_fld_align * BITS_PER_UNIT;
683 else
684 mfa = maximum_field_alignment;
685 /* Should this be controlled by DECL_USER_ALIGN, too? */
686 if (mfa != 0)
687 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
688 }
689
690 /* Evaluate nonconstant size only once, either now or as soon as safe. */
691 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
692 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
693 if (DECL_SIZE_UNIT (decl) != 0
694 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
695 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
696
697 /* If requested, warn about definitions of large data objects. */
698 if (warn_larger_than
699 && (code == VAR_DECL || code == PARM_DECL)
700 && ! DECL_EXTERNAL (decl))
701 {
702 tree size = DECL_SIZE_UNIT (decl);
703
704 if (size != 0 && TREE_CODE (size) == INTEGER_CST
705 && compare_tree_int (size, larger_than_size) > 0)
706 {
707 int size_as_int = TREE_INT_CST_LOW (size);
708
709 if (compare_tree_int (size, size_as_int) == 0)
710 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
711 else
712 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
713 decl, larger_than_size);
714 }
715 }
716
717 /* If the RTL was already set, update its mode and mem attributes. */
718 if (rtl)
719 {
720 PUT_MODE (rtl, DECL_MODE (decl));
721 SET_DECL_RTL (decl, 0);
722 set_mem_attributes (rtl, decl, 1);
723 SET_DECL_RTL (decl, rtl);
724 }
725 }
726
727 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
728 a previous call to layout_decl and calls it again. */
729
730 void
731 relayout_decl (tree decl)
732 {
733 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
734 DECL_MODE (decl) = VOIDmode;
735 if (!DECL_USER_ALIGN (decl))
736 DECL_ALIGN (decl) = 0;
737 SET_DECL_RTL (decl, 0);
738
739 layout_decl (decl, 0);
740 }
741 \f
742 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
743 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
744 is to be passed to all other layout functions for this record. It is the
745 responsibility of the caller to call `free' for the storage returned.
746 Note that garbage collection is not permitted until we finish laying
747 out the record. */
748
749 record_layout_info
750 start_record_layout (tree t)
751 {
752 record_layout_info rli = XNEW (struct record_layout_info_s);
753
754 rli->t = t;
755
756 /* If the type has a minimum specified alignment (via an attribute
757 declaration, for example) use it -- otherwise, start with a
758 one-byte alignment. */
759 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
760 rli->unpacked_align = rli->record_align;
761 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
762
763 #ifdef STRUCTURE_SIZE_BOUNDARY
764 /* Packed structures don't need to have minimum size. */
765 if (! TYPE_PACKED (t))
766 {
767 unsigned tmp;
768
769 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
770 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
771 if (maximum_field_alignment != 0)
772 tmp = MIN (tmp, maximum_field_alignment);
773 rli->record_align = MAX (rli->record_align, tmp);
774 }
775 #endif
776
777 rli->offset = size_zero_node;
778 rli->bitpos = bitsize_zero_node;
779 rli->prev_field = 0;
780 rli->pending_statics = NULL;
781 rli->packed_maybe_necessary = 0;
782 rli->remaining_in_alignment = 0;
783
784 return rli;
785 }
786
787 /* Return the combined bit position for the byte offset OFFSET and the
788 bit position BITPOS.
789
790 These functions operate on byte and bit positions present in FIELD_DECLs
791 and assume that these expressions result in no (intermediate) overflow.
792 This assumption is necessary to fold the expressions as much as possible,
793 so as to avoid creating artificially variable-sized types in languages
794 supporting variable-sized types like Ada. */
795
796 tree
797 bit_from_pos (tree offset, tree bitpos)
798 {
799 if (TREE_CODE (offset) == PLUS_EXPR)
800 offset = size_binop (PLUS_EXPR,
801 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
802 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
803 else
804 offset = fold_convert (bitsizetype, offset);
805 return size_binop (PLUS_EXPR, bitpos,
806 size_binop (MULT_EXPR, offset, bitsize_unit_node));
807 }
808
809 /* Return the combined truncated byte position for the byte offset OFFSET and
810 the bit position BITPOS. */
811
812 tree
813 byte_from_pos (tree offset, tree bitpos)
814 {
815 tree bytepos;
816 if (TREE_CODE (bitpos) == MULT_EXPR
817 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
818 bytepos = TREE_OPERAND (bitpos, 0);
819 else
820 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
821 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
822 }
823
824 /* Split the bit position POS into a byte offset *POFFSET and a bit
825 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
826
827 void
828 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
829 tree pos)
830 {
831 tree toff_align = bitsize_int (off_align);
832 if (TREE_CODE (pos) == MULT_EXPR
833 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
834 {
835 *poffset = size_binop (MULT_EXPR,
836 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
837 size_int (off_align / BITS_PER_UNIT));
838 *pbitpos = bitsize_zero_node;
839 }
840 else
841 {
842 *poffset = size_binop (MULT_EXPR,
843 fold_convert (sizetype,
844 size_binop (FLOOR_DIV_EXPR, pos,
845 toff_align)),
846 size_int (off_align / BITS_PER_UNIT));
847 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
848 }
849 }
850
851 /* Given a pointer to bit and byte offsets and an offset alignment,
852 normalize the offsets so they are within the alignment. */
853
854 void
855 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
856 {
857 /* If the bit position is now larger than it should be, adjust it
858 downwards. */
859 if (compare_tree_int (*pbitpos, off_align) >= 0)
860 {
861 tree offset, bitpos;
862 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
863 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
864 *pbitpos = bitpos;
865 }
866 }
867
868 /* Print debugging information about the information in RLI. */
869
870 DEBUG_FUNCTION void
871 debug_rli (record_layout_info rli)
872 {
873 print_node_brief (stderr, "type", rli->t, 0);
874 print_node_brief (stderr, "\noffset", rli->offset, 0);
875 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
876
877 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
878 rli->record_align, rli->unpacked_align,
879 rli->offset_align);
880
881 /* The ms_struct code is the only that uses this. */
882 if (targetm.ms_bitfield_layout_p (rli->t))
883 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
884
885 if (rli->packed_maybe_necessary)
886 fprintf (stderr, "packed may be necessary\n");
887
888 if (!VEC_empty (tree, rli->pending_statics))
889 {
890 fprintf (stderr, "pending statics:\n");
891 debug_vec_tree (rli->pending_statics);
892 }
893 }
894
895 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
896 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
897
898 void
899 normalize_rli (record_layout_info rli)
900 {
901 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
902 }
903
904 /* Returns the size in bytes allocated so far. */
905
906 tree
907 rli_size_unit_so_far (record_layout_info rli)
908 {
909 return byte_from_pos (rli->offset, rli->bitpos);
910 }
911
912 /* Returns the size in bits allocated so far. */
913
914 tree
915 rli_size_so_far (record_layout_info rli)
916 {
917 return bit_from_pos (rli->offset, rli->bitpos);
918 }
919
920 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
921 the next available location within the record is given by KNOWN_ALIGN.
922 Update the variable alignment fields in RLI, and return the alignment
923 to give the FIELD. */
924
925 unsigned int
926 update_alignment_for_field (record_layout_info rli, tree field,
927 unsigned int known_align)
928 {
929 /* The alignment required for FIELD. */
930 unsigned int desired_align;
931 /* The type of this field. */
932 tree type = TREE_TYPE (field);
933 /* True if the field was explicitly aligned by the user. */
934 bool user_align;
935 bool is_bitfield;
936
937 /* Do not attempt to align an ERROR_MARK node */
938 if (TREE_CODE (type) == ERROR_MARK)
939 return 0;
940
941 /* Lay out the field so we know what alignment it needs. */
942 layout_decl (field, known_align);
943 desired_align = DECL_ALIGN (field);
944 user_align = DECL_USER_ALIGN (field);
945
946 is_bitfield = (type != error_mark_node
947 && DECL_BIT_FIELD_TYPE (field)
948 && ! integer_zerop (TYPE_SIZE (type)));
949
950 /* Record must have at least as much alignment as any field.
951 Otherwise, the alignment of the field within the record is
952 meaningless. */
953 if (targetm.ms_bitfield_layout_p (rli->t))
954 {
955 /* Here, the alignment of the underlying type of a bitfield can
956 affect the alignment of a record; even a zero-sized field
957 can do this. The alignment should be to the alignment of
958 the type, except that for zero-size bitfields this only
959 applies if there was an immediately prior, nonzero-size
960 bitfield. (That's the way it is, experimentally.) */
961 if ((!is_bitfield && !DECL_PACKED (field))
962 || ((DECL_SIZE (field) == NULL_TREE
963 || !integer_zerop (DECL_SIZE (field)))
964 ? !DECL_PACKED (field)
965 : (rli->prev_field
966 && DECL_BIT_FIELD_TYPE (rli->prev_field)
967 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
968 {
969 unsigned int type_align = TYPE_ALIGN (type);
970 type_align = MAX (type_align, desired_align);
971 if (maximum_field_alignment != 0)
972 type_align = MIN (type_align, maximum_field_alignment);
973 rli->record_align = MAX (rli->record_align, type_align);
974 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
975 }
976 }
977 #ifdef PCC_BITFIELD_TYPE_MATTERS
978 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
979 {
980 /* Named bit-fields cause the entire structure to have the
981 alignment implied by their type. Some targets also apply the same
982 rules to unnamed bitfields. */
983 if (DECL_NAME (field) != 0
984 || targetm.align_anon_bitfield ())
985 {
986 unsigned int type_align = TYPE_ALIGN (type);
987
988 #ifdef ADJUST_FIELD_ALIGN
989 if (! TYPE_USER_ALIGN (type))
990 type_align = ADJUST_FIELD_ALIGN (field, type_align);
991 #endif
992
993 /* Targets might chose to handle unnamed and hence possibly
994 zero-width bitfield. Those are not influenced by #pragmas
995 or packed attributes. */
996 if (integer_zerop (DECL_SIZE (field)))
997 {
998 if (initial_max_fld_align)
999 type_align = MIN (type_align,
1000 initial_max_fld_align * BITS_PER_UNIT);
1001 }
1002 else if (maximum_field_alignment != 0)
1003 type_align = MIN (type_align, maximum_field_alignment);
1004 else if (DECL_PACKED (field))
1005 type_align = MIN (type_align, BITS_PER_UNIT);
1006
1007 /* The alignment of the record is increased to the maximum
1008 of the current alignment, the alignment indicated on the
1009 field (i.e., the alignment specified by an __aligned__
1010 attribute), and the alignment indicated by the type of
1011 the field. */
1012 rli->record_align = MAX (rli->record_align, desired_align);
1013 rli->record_align = MAX (rli->record_align, type_align);
1014
1015 if (warn_packed)
1016 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1017 user_align |= TYPE_USER_ALIGN (type);
1018 }
1019 }
1020 #endif
1021 else
1022 {
1023 rli->record_align = MAX (rli->record_align, desired_align);
1024 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1025 }
1026
1027 TYPE_USER_ALIGN (rli->t) |= user_align;
1028
1029 return desired_align;
1030 }
1031
1032 /* Called from place_field to handle unions. */
1033
1034 static void
1035 place_union_field (record_layout_info rli, tree field)
1036 {
1037 update_alignment_for_field (rli, field, /*known_align=*/0);
1038
1039 DECL_FIELD_OFFSET (field) = size_zero_node;
1040 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1041 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1042
1043 /* If this is an ERROR_MARK return *after* having set the
1044 field at the start of the union. This helps when parsing
1045 invalid fields. */
1046 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1047 return;
1048
1049 /* We assume the union's size will be a multiple of a byte so we don't
1050 bother with BITPOS. */
1051 if (TREE_CODE (rli->t) == UNION_TYPE)
1052 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1053 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1054 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1055 DECL_SIZE_UNIT (field), rli->offset);
1056 }
1057
1058 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1059 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1060 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1061 units of alignment than the underlying TYPE. */
1062 static int
1063 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1064 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1065 {
1066 /* Note that the calculation of OFFSET might overflow; we calculate it so
1067 that we still get the right result as long as ALIGN is a power of two. */
1068 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1069
1070 offset = offset % align;
1071 return ((offset + size + align - 1) / align
1072 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
1073 / align));
1074 }
1075 #endif
1076
1077 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1078 is a FIELD_DECL to be added after those fields already present in
1079 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1080 callers that desire that behavior must manually perform that step.) */
1081
1082 void
1083 place_field (record_layout_info rli, tree field)
1084 {
1085 /* The alignment required for FIELD. */
1086 unsigned int desired_align;
1087 /* The alignment FIELD would have if we just dropped it into the
1088 record as it presently stands. */
1089 unsigned int known_align;
1090 unsigned int actual_align;
1091 /* The type of this field. */
1092 tree type = TREE_TYPE (field);
1093
1094 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1095
1096 /* If FIELD is static, then treat it like a separate variable, not
1097 really like a structure field. If it is a FUNCTION_DECL, it's a
1098 method. In both cases, all we do is lay out the decl, and we do
1099 it *after* the record is laid out. */
1100 if (TREE_CODE (field) == VAR_DECL)
1101 {
1102 VEC_safe_push (tree, gc, rli->pending_statics, field);
1103 return;
1104 }
1105
1106 /* Enumerators and enum types which are local to this class need not
1107 be laid out. Likewise for initialized constant fields. */
1108 else if (TREE_CODE (field) != FIELD_DECL)
1109 return;
1110
1111 /* Unions are laid out very differently than records, so split
1112 that code off to another function. */
1113 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1114 {
1115 place_union_field (rli, field);
1116 return;
1117 }
1118
1119 else if (TREE_CODE (type) == ERROR_MARK)
1120 {
1121 /* Place this field at the current allocation position, so we
1122 maintain monotonicity. */
1123 DECL_FIELD_OFFSET (field) = rli->offset;
1124 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1125 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1126 return;
1127 }
1128
1129 /* Work out the known alignment so far. Note that A & (-A) is the
1130 value of the least-significant bit in A that is one. */
1131 if (! integer_zerop (rli->bitpos))
1132 known_align = (tree_low_cst (rli->bitpos, 1)
1133 & - tree_low_cst (rli->bitpos, 1));
1134 else if (integer_zerop (rli->offset))
1135 known_align = 0;
1136 else if (host_integerp (rli->offset, 1))
1137 known_align = (BITS_PER_UNIT
1138 * (tree_low_cst (rli->offset, 1)
1139 & - tree_low_cst (rli->offset, 1)));
1140 else
1141 known_align = rli->offset_align;
1142
1143 desired_align = update_alignment_for_field (rli, field, known_align);
1144 if (known_align == 0)
1145 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1146
1147 if (warn_packed && DECL_PACKED (field))
1148 {
1149 if (known_align >= TYPE_ALIGN (type))
1150 {
1151 if (TYPE_ALIGN (type) > desired_align)
1152 {
1153 if (STRICT_ALIGNMENT)
1154 warning (OPT_Wattributes, "packed attribute causes "
1155 "inefficient alignment for %q+D", field);
1156 /* Don't warn if DECL_PACKED was set by the type. */
1157 else if (!TYPE_PACKED (rli->t))
1158 warning (OPT_Wattributes, "packed attribute is "
1159 "unnecessary for %q+D", field);
1160 }
1161 }
1162 else
1163 rli->packed_maybe_necessary = 1;
1164 }
1165
1166 /* Does this field automatically have alignment it needs by virtue
1167 of the fields that precede it and the record's own alignment? */
1168 if (known_align < desired_align)
1169 {
1170 /* No, we need to skip space before this field.
1171 Bump the cumulative size to multiple of field alignment. */
1172
1173 if (!targetm.ms_bitfield_layout_p (rli->t)
1174 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1175 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1176
1177 /* If the alignment is still within offset_align, just align
1178 the bit position. */
1179 if (desired_align < rli->offset_align)
1180 rli->bitpos = round_up (rli->bitpos, desired_align);
1181 else
1182 {
1183 /* First adjust OFFSET by the partial bits, then align. */
1184 rli->offset
1185 = size_binop (PLUS_EXPR, rli->offset,
1186 fold_convert (sizetype,
1187 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1188 bitsize_unit_node)));
1189 rli->bitpos = bitsize_zero_node;
1190
1191 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1192 }
1193
1194 if (! TREE_CONSTANT (rli->offset))
1195 rli->offset_align = desired_align;
1196 if (targetm.ms_bitfield_layout_p (rli->t))
1197 rli->prev_field = NULL;
1198 }
1199
1200 /* Handle compatibility with PCC. Note that if the record has any
1201 variable-sized fields, we need not worry about compatibility. */
1202 #ifdef PCC_BITFIELD_TYPE_MATTERS
1203 if (PCC_BITFIELD_TYPE_MATTERS
1204 && ! targetm.ms_bitfield_layout_p (rli->t)
1205 && TREE_CODE (field) == FIELD_DECL
1206 && type != error_mark_node
1207 && DECL_BIT_FIELD (field)
1208 && (! DECL_PACKED (field)
1209 /* Enter for these packed fields only to issue a warning. */
1210 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1211 && maximum_field_alignment == 0
1212 && ! integer_zerop (DECL_SIZE (field))
1213 && host_integerp (DECL_SIZE (field), 1)
1214 && host_integerp (rli->offset, 1)
1215 && host_integerp (TYPE_SIZE (type), 1))
1216 {
1217 unsigned int type_align = TYPE_ALIGN (type);
1218 tree dsize = DECL_SIZE (field);
1219 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1220 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1221 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1222
1223 #ifdef ADJUST_FIELD_ALIGN
1224 if (! TYPE_USER_ALIGN (type))
1225 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1226 #endif
1227
1228 /* A bit field may not span more units of alignment of its type
1229 than its type itself. Advance to next boundary if necessary. */
1230 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1231 {
1232 if (DECL_PACKED (field))
1233 {
1234 if (warn_packed_bitfield_compat == 1)
1235 inform
1236 (input_location,
1237 "offset of packed bit-field %qD has changed in GCC 4.4",
1238 field);
1239 }
1240 else
1241 rli->bitpos = round_up (rli->bitpos, type_align);
1242 }
1243
1244 if (! DECL_PACKED (field))
1245 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1246 }
1247 #endif
1248
1249 #ifdef BITFIELD_NBYTES_LIMITED
1250 if (BITFIELD_NBYTES_LIMITED
1251 && ! targetm.ms_bitfield_layout_p (rli->t)
1252 && TREE_CODE (field) == FIELD_DECL
1253 && type != error_mark_node
1254 && DECL_BIT_FIELD_TYPE (field)
1255 && ! DECL_PACKED (field)
1256 && ! integer_zerop (DECL_SIZE (field))
1257 && host_integerp (DECL_SIZE (field), 1)
1258 && host_integerp (rli->offset, 1)
1259 && host_integerp (TYPE_SIZE (type), 1))
1260 {
1261 unsigned int type_align = TYPE_ALIGN (type);
1262 tree dsize = DECL_SIZE (field);
1263 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1264 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1265 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1266
1267 #ifdef ADJUST_FIELD_ALIGN
1268 if (! TYPE_USER_ALIGN (type))
1269 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1270 #endif
1271
1272 if (maximum_field_alignment != 0)
1273 type_align = MIN (type_align, maximum_field_alignment);
1274 /* ??? This test is opposite the test in the containing if
1275 statement, so this code is unreachable currently. */
1276 else if (DECL_PACKED (field))
1277 type_align = MIN (type_align, BITS_PER_UNIT);
1278
1279 /* A bit field may not span the unit of alignment of its type.
1280 Advance to next boundary if necessary. */
1281 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1282 rli->bitpos = round_up (rli->bitpos, type_align);
1283
1284 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1285 }
1286 #endif
1287
1288 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1289 A subtlety:
1290 When a bit field is inserted into a packed record, the whole
1291 size of the underlying type is used by one or more same-size
1292 adjacent bitfields. (That is, if its long:3, 32 bits is
1293 used in the record, and any additional adjacent long bitfields are
1294 packed into the same chunk of 32 bits. However, if the size
1295 changes, a new field of that size is allocated.) In an unpacked
1296 record, this is the same as using alignment, but not equivalent
1297 when packing.
1298
1299 Note: for compatibility, we use the type size, not the type alignment
1300 to determine alignment, since that matches the documentation */
1301
1302 if (targetm.ms_bitfield_layout_p (rli->t))
1303 {
1304 tree prev_saved = rli->prev_field;
1305 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1306
1307 /* This is a bitfield if it exists. */
1308 if (rli->prev_field)
1309 {
1310 /* If both are bitfields, nonzero, and the same size, this is
1311 the middle of a run. Zero declared size fields are special
1312 and handled as "end of run". (Note: it's nonzero declared
1313 size, but equal type sizes!) (Since we know that both
1314 the current and previous fields are bitfields by the
1315 time we check it, DECL_SIZE must be present for both.) */
1316 if (DECL_BIT_FIELD_TYPE (field)
1317 && !integer_zerop (DECL_SIZE (field))
1318 && !integer_zerop (DECL_SIZE (rli->prev_field))
1319 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1320 && host_integerp (TYPE_SIZE (type), 0)
1321 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1322 {
1323 /* We're in the middle of a run of equal type size fields; make
1324 sure we realign if we run out of bits. (Not decl size,
1325 type size!) */
1326 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
1327
1328 if (rli->remaining_in_alignment < bitsize)
1329 {
1330 HOST_WIDE_INT typesize = tree_low_cst (TYPE_SIZE (type), 1);
1331
1332 /* out of bits; bump up to next 'word'. */
1333 rli->bitpos
1334 = size_binop (PLUS_EXPR, rli->bitpos,
1335 bitsize_int (rli->remaining_in_alignment));
1336 rli->prev_field = field;
1337 if (typesize < bitsize)
1338 rli->remaining_in_alignment = 0;
1339 else
1340 rli->remaining_in_alignment = typesize - bitsize;
1341 }
1342 else
1343 rli->remaining_in_alignment -= bitsize;
1344 }
1345 else
1346 {
1347 /* End of a run: if leaving a run of bitfields of the same type
1348 size, we have to "use up" the rest of the bits of the type
1349 size.
1350
1351 Compute the new position as the sum of the size for the prior
1352 type and where we first started working on that type.
1353 Note: since the beginning of the field was aligned then
1354 of course the end will be too. No round needed. */
1355
1356 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1357 {
1358 rli->bitpos
1359 = size_binop (PLUS_EXPR, rli->bitpos,
1360 bitsize_int (rli->remaining_in_alignment));
1361 }
1362 else
1363 /* We "use up" size zero fields; the code below should behave
1364 as if the prior field was not a bitfield. */
1365 prev_saved = NULL;
1366
1367 /* Cause a new bitfield to be captured, either this time (if
1368 currently a bitfield) or next time we see one. */
1369 if (!DECL_BIT_FIELD_TYPE(field)
1370 || integer_zerop (DECL_SIZE (field)))
1371 rli->prev_field = NULL;
1372 }
1373
1374 normalize_rli (rli);
1375 }
1376
1377 /* If we're starting a new run of same size type bitfields
1378 (or a run of non-bitfields), set up the "first of the run"
1379 fields.
1380
1381 That is, if the current field is not a bitfield, or if there
1382 was a prior bitfield the type sizes differ, or if there wasn't
1383 a prior bitfield the size of the current field is nonzero.
1384
1385 Note: we must be sure to test ONLY the type size if there was
1386 a prior bitfield and ONLY for the current field being zero if
1387 there wasn't. */
1388
1389 if (!DECL_BIT_FIELD_TYPE (field)
1390 || (prev_saved != NULL
1391 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1392 : !integer_zerop (DECL_SIZE (field)) ))
1393 {
1394 /* Never smaller than a byte for compatibility. */
1395 unsigned int type_align = BITS_PER_UNIT;
1396
1397 /* (When not a bitfield), we could be seeing a flex array (with
1398 no DECL_SIZE). Since we won't be using remaining_in_alignment
1399 until we see a bitfield (and come by here again) we just skip
1400 calculating it. */
1401 if (DECL_SIZE (field) != NULL
1402 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 1)
1403 && host_integerp (DECL_SIZE (field), 1))
1404 {
1405 unsigned HOST_WIDE_INT bitsize
1406 = tree_low_cst (DECL_SIZE (field), 1);
1407 unsigned HOST_WIDE_INT typesize
1408 = tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 1);
1409
1410 if (typesize < bitsize)
1411 rli->remaining_in_alignment = 0;
1412 else
1413 rli->remaining_in_alignment = typesize - bitsize;
1414 }
1415
1416 /* Now align (conventionally) for the new type. */
1417 type_align = TYPE_ALIGN (TREE_TYPE (field));
1418
1419 if (maximum_field_alignment != 0)
1420 type_align = MIN (type_align, maximum_field_alignment);
1421
1422 rli->bitpos = round_up (rli->bitpos, type_align);
1423
1424 /* If we really aligned, don't allow subsequent bitfields
1425 to undo that. */
1426 rli->prev_field = NULL;
1427 }
1428 }
1429
1430 /* Offset so far becomes the position of this field after normalizing. */
1431 normalize_rli (rli);
1432 DECL_FIELD_OFFSET (field) = rli->offset;
1433 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1434 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1435
1436 /* If this field ended up more aligned than we thought it would be (we
1437 approximate this by seeing if its position changed), lay out the field
1438 again; perhaps we can use an integral mode for it now. */
1439 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1440 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1441 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1442 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1443 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1444 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1445 actual_align = (BITS_PER_UNIT
1446 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1447 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1448 else
1449 actual_align = DECL_OFFSET_ALIGN (field);
1450 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1451 store / extract bit field operations will check the alignment of the
1452 record against the mode of bit fields. */
1453
1454 if (known_align != actual_align)
1455 layout_decl (field, actual_align);
1456
1457 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1458 rli->prev_field = field;
1459
1460 /* Now add size of this field to the size of the record. If the size is
1461 not constant, treat the field as being a multiple of bytes and just
1462 adjust the offset, resetting the bit position. Otherwise, apportion the
1463 size amongst the bit position and offset. First handle the case of an
1464 unspecified size, which can happen when we have an invalid nested struct
1465 definition, such as struct j { struct j { int i; } }. The error message
1466 is printed in finish_struct. */
1467 if (DECL_SIZE (field) == 0)
1468 /* Do nothing. */;
1469 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1470 || TREE_OVERFLOW (DECL_SIZE (field)))
1471 {
1472 rli->offset
1473 = size_binop (PLUS_EXPR, rli->offset,
1474 fold_convert (sizetype,
1475 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1476 bitsize_unit_node)));
1477 rli->offset
1478 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1479 rli->bitpos = bitsize_zero_node;
1480 rli->offset_align = MIN (rli->offset_align, desired_align);
1481 }
1482 else if (targetm.ms_bitfield_layout_p (rli->t))
1483 {
1484 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1485
1486 /* If we ended a bitfield before the full length of the type then
1487 pad the struct out to the full length of the last type. */
1488 if ((DECL_CHAIN (field) == NULL
1489 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1490 && DECL_BIT_FIELD_TYPE (field)
1491 && !integer_zerop (DECL_SIZE (field)))
1492 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1493 bitsize_int (rli->remaining_in_alignment));
1494
1495 normalize_rli (rli);
1496 }
1497 else
1498 {
1499 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1500 normalize_rli (rli);
1501 }
1502 }
1503
1504 /* Assuming that all the fields have been laid out, this function uses
1505 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1506 indicated by RLI. */
1507
1508 static void
1509 finalize_record_size (record_layout_info rli)
1510 {
1511 tree unpadded_size, unpadded_size_unit;
1512
1513 /* Now we want just byte and bit offsets, so set the offset alignment
1514 to be a byte and then normalize. */
1515 rli->offset_align = BITS_PER_UNIT;
1516 normalize_rli (rli);
1517
1518 /* Determine the desired alignment. */
1519 #ifdef ROUND_TYPE_ALIGN
1520 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1521 rli->record_align);
1522 #else
1523 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1524 #endif
1525
1526 /* Compute the size so far. Be sure to allow for extra bits in the
1527 size in bytes. We have guaranteed above that it will be no more
1528 than a single byte. */
1529 unpadded_size = rli_size_so_far (rli);
1530 unpadded_size_unit = rli_size_unit_so_far (rli);
1531 if (! integer_zerop (rli->bitpos))
1532 unpadded_size_unit
1533 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1534
1535 /* Round the size up to be a multiple of the required alignment. */
1536 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1537 TYPE_SIZE_UNIT (rli->t)
1538 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1539
1540 if (TREE_CONSTANT (unpadded_size)
1541 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1542 && input_location != BUILTINS_LOCATION)
1543 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1544
1545 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1546 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1547 && TREE_CONSTANT (unpadded_size))
1548 {
1549 tree unpacked_size;
1550
1551 #ifdef ROUND_TYPE_ALIGN
1552 rli->unpacked_align
1553 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1554 #else
1555 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1556 #endif
1557
1558 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1559 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1560 {
1561 if (TYPE_NAME (rli->t))
1562 {
1563 tree name;
1564
1565 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1566 name = TYPE_NAME (rli->t);
1567 else
1568 name = DECL_NAME (TYPE_NAME (rli->t));
1569
1570 if (STRICT_ALIGNMENT)
1571 warning (OPT_Wpacked, "packed attribute causes inefficient "
1572 "alignment for %qE", name);
1573 else
1574 warning (OPT_Wpacked,
1575 "packed attribute is unnecessary for %qE", name);
1576 }
1577 else
1578 {
1579 if (STRICT_ALIGNMENT)
1580 warning (OPT_Wpacked,
1581 "packed attribute causes inefficient alignment");
1582 else
1583 warning (OPT_Wpacked, "packed attribute is unnecessary");
1584 }
1585 }
1586 }
1587 }
1588
1589 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1590
1591 void
1592 compute_record_mode (tree type)
1593 {
1594 tree field;
1595 enum machine_mode mode = VOIDmode;
1596
1597 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1598 However, if possible, we use a mode that fits in a register
1599 instead, in order to allow for better optimization down the
1600 line. */
1601 SET_TYPE_MODE (type, BLKmode);
1602
1603 if (! host_integerp (TYPE_SIZE (type), 1))
1604 return;
1605
1606 /* A record which has any BLKmode members must itself be
1607 BLKmode; it can't go in a register. Unless the member is
1608 BLKmode only because it isn't aligned. */
1609 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1610 {
1611 if (TREE_CODE (field) != FIELD_DECL)
1612 continue;
1613
1614 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1615 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1616 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1617 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1618 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1619 || ! host_integerp (bit_position (field), 1)
1620 || DECL_SIZE (field) == 0
1621 || ! host_integerp (DECL_SIZE (field), 1))
1622 return;
1623
1624 /* If this field is the whole struct, remember its mode so
1625 that, say, we can put a double in a class into a DF
1626 register instead of forcing it to live in the stack. */
1627 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1628 mode = DECL_MODE (field);
1629
1630 #ifdef MEMBER_TYPE_FORCES_BLK
1631 /* With some targets, eg. c4x, it is sub-optimal
1632 to access an aligned BLKmode structure as a scalar. */
1633
1634 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1635 return;
1636 #endif /* MEMBER_TYPE_FORCES_BLK */
1637 }
1638
1639 /* If we only have one real field; use its mode if that mode's size
1640 matches the type's size. This only applies to RECORD_TYPE. This
1641 does not apply to unions. */
1642 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1643 && host_integerp (TYPE_SIZE (type), 1)
1644 && GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
1645 SET_TYPE_MODE (type, mode);
1646 else
1647 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1648
1649 /* If structure's known alignment is less than what the scalar
1650 mode would need, and it matters, then stick with BLKmode. */
1651 if (TYPE_MODE (type) != BLKmode
1652 && STRICT_ALIGNMENT
1653 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1654 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1655 {
1656 /* If this is the only reason this type is BLKmode, then
1657 don't force containing types to be BLKmode. */
1658 TYPE_NO_FORCE_BLK (type) = 1;
1659 SET_TYPE_MODE (type, BLKmode);
1660 }
1661 }
1662
1663 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1664 out. */
1665
1666 static void
1667 finalize_type_size (tree type)
1668 {
1669 /* Normally, use the alignment corresponding to the mode chosen.
1670 However, where strict alignment is not required, avoid
1671 over-aligning structures, since most compilers do not do this
1672 alignment. */
1673
1674 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1675 && (STRICT_ALIGNMENT
1676 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1677 && TREE_CODE (type) != QUAL_UNION_TYPE
1678 && TREE_CODE (type) != ARRAY_TYPE)))
1679 {
1680 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1681
1682 /* Don't override a larger alignment requirement coming from a user
1683 alignment of one of the fields. */
1684 if (mode_align >= TYPE_ALIGN (type))
1685 {
1686 TYPE_ALIGN (type) = mode_align;
1687 TYPE_USER_ALIGN (type) = 0;
1688 }
1689 }
1690
1691 /* Do machine-dependent extra alignment. */
1692 #ifdef ROUND_TYPE_ALIGN
1693 TYPE_ALIGN (type)
1694 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1695 #endif
1696
1697 /* If we failed to find a simple way to calculate the unit size
1698 of the type, find it by division. */
1699 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1700 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1701 result will fit in sizetype. We will get more efficient code using
1702 sizetype, so we force a conversion. */
1703 TYPE_SIZE_UNIT (type)
1704 = fold_convert (sizetype,
1705 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1706 bitsize_unit_node));
1707
1708 if (TYPE_SIZE (type) != 0)
1709 {
1710 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1711 TYPE_SIZE_UNIT (type)
1712 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1713 }
1714
1715 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1716 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1717 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1718 if (TYPE_SIZE_UNIT (type) != 0
1719 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1720 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1721
1722 /* Also layout any other variants of the type. */
1723 if (TYPE_NEXT_VARIANT (type)
1724 || type != TYPE_MAIN_VARIANT (type))
1725 {
1726 tree variant;
1727 /* Record layout info of this variant. */
1728 tree size = TYPE_SIZE (type);
1729 tree size_unit = TYPE_SIZE_UNIT (type);
1730 unsigned int align = TYPE_ALIGN (type);
1731 unsigned int user_align = TYPE_USER_ALIGN (type);
1732 enum machine_mode mode = TYPE_MODE (type);
1733
1734 /* Copy it into all variants. */
1735 for (variant = TYPE_MAIN_VARIANT (type);
1736 variant != 0;
1737 variant = TYPE_NEXT_VARIANT (variant))
1738 {
1739 TYPE_SIZE (variant) = size;
1740 TYPE_SIZE_UNIT (variant) = size_unit;
1741 TYPE_ALIGN (variant) = align;
1742 TYPE_USER_ALIGN (variant) = user_align;
1743 SET_TYPE_MODE (variant, mode);
1744 }
1745 }
1746 }
1747
1748 /* Return a new underlying object for a bitfield started with FIELD. */
1749
1750 static tree
1751 start_bitfield_representative (tree field)
1752 {
1753 tree repr = make_node (FIELD_DECL);
1754 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1755 /* Force the representative to begin at a BITS_PER_UNIT aligned
1756 boundary - C++ may use tail-padding of a base object to
1757 continue packing bits so the bitfield region does not start
1758 at bit zero (see g++.dg/abi/bitfield5.C for example).
1759 Unallocated bits may happen for other reasons as well,
1760 for example Ada which allows explicit bit-granular structure layout. */
1761 DECL_FIELD_BIT_OFFSET (repr)
1762 = size_binop (BIT_AND_EXPR,
1763 DECL_FIELD_BIT_OFFSET (field),
1764 bitsize_int (~(BITS_PER_UNIT - 1)));
1765 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1766 DECL_SIZE (repr) = DECL_SIZE (field);
1767 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1768 DECL_PACKED (repr) = DECL_PACKED (field);
1769 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1770 return repr;
1771 }
1772
1773 /* Finish up a bitfield group that was started by creating the underlying
1774 object REPR with the last field in the bitfield group FIELD. */
1775
1776 static void
1777 finish_bitfield_representative (tree repr, tree field)
1778 {
1779 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1780 enum machine_mode mode;
1781 tree nextf, size;
1782
1783 size = size_diffop (DECL_FIELD_OFFSET (field),
1784 DECL_FIELD_OFFSET (repr));
1785 gcc_assert (host_integerp (size, 1));
1786 bitsize = (tree_low_cst (size, 1) * BITS_PER_UNIT
1787 + tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1788 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1)
1789 + tree_low_cst (DECL_SIZE (field), 1));
1790
1791 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1792 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1793
1794 /* Now nothing tells us how to pad out bitsize ... */
1795 nextf = DECL_CHAIN (field);
1796 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1797 nextf = DECL_CHAIN (nextf);
1798 if (nextf)
1799 {
1800 tree maxsize;
1801 /* If there was an error, the field may be not laid out
1802 correctly. Don't bother to do anything. */
1803 if (TREE_TYPE (nextf) == error_mark_node)
1804 return;
1805 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1806 DECL_FIELD_OFFSET (repr));
1807 if (host_integerp (maxsize, 1))
1808 {
1809 maxbitsize = (tree_low_cst (maxsize, 1) * BITS_PER_UNIT
1810 + tree_low_cst (DECL_FIELD_BIT_OFFSET (nextf), 1)
1811 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1));
1812 /* If the group ends within a bitfield nextf does not need to be
1813 aligned to BITS_PER_UNIT. Thus round up. */
1814 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1815 }
1816 else
1817 maxbitsize = bitsize;
1818 }
1819 else
1820 {
1821 /* ??? If you consider that tail-padding of this struct might be
1822 re-used when deriving from it we cannot really do the following
1823 and thus need to set maxsize to bitsize? Also we cannot
1824 generally rely on maxsize to fold to an integer constant, so
1825 use bitsize as fallback for this case. */
1826 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1827 DECL_FIELD_OFFSET (repr));
1828 if (host_integerp (maxsize, 1))
1829 maxbitsize = (tree_low_cst (maxsize, 1) * BITS_PER_UNIT
1830 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1));
1831 else
1832 maxbitsize = bitsize;
1833 }
1834
1835 /* Only if we don't artificially break up the representative in
1836 the middle of a large bitfield with different possibly
1837 overlapping representatives. And all representatives start
1838 at byte offset. */
1839 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1840
1841 /* Find the smallest nice mode to use. */
1842 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1843 mode = GET_MODE_WIDER_MODE (mode))
1844 if (GET_MODE_BITSIZE (mode) >= bitsize)
1845 break;
1846 if (mode != VOIDmode
1847 && (GET_MODE_BITSIZE (mode) > maxbitsize
1848 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1849 mode = VOIDmode;
1850
1851 if (mode == VOIDmode)
1852 {
1853 /* We really want a BLKmode representative only as a last resort,
1854 considering the member b in
1855 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1856 Otherwise we simply want to split the representative up
1857 allowing for overlaps within the bitfield region as required for
1858 struct { int a : 7; int b : 7;
1859 int c : 10; int d; } __attribute__((packed));
1860 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1861 DECL_SIZE (repr) = bitsize_int (bitsize);
1862 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1863 DECL_MODE (repr) = BLKmode;
1864 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1865 bitsize / BITS_PER_UNIT);
1866 }
1867 else
1868 {
1869 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1870 DECL_SIZE (repr) = bitsize_int (modesize);
1871 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1872 DECL_MODE (repr) = mode;
1873 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1874 }
1875
1876 /* Remember whether the bitfield group is at the end of the
1877 structure or not. */
1878 DECL_CHAIN (repr) = nextf;
1879 }
1880
1881 /* Compute and set FIELD_DECLs for the underlying objects we should
1882 use for bitfield access for the structure laid out with RLI. */
1883
1884 static void
1885 finish_bitfield_layout (record_layout_info rli)
1886 {
1887 tree field, prev;
1888 tree repr = NULL_TREE;
1889
1890 /* Unions would be special, for the ease of type-punning optimizations
1891 we could use the underlying type as hint for the representative
1892 if the bitfield would fit and the representative would not exceed
1893 the union in size. */
1894 if (TREE_CODE (rli->t) != RECORD_TYPE)
1895 return;
1896
1897 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1898 field; field = DECL_CHAIN (field))
1899 {
1900 if (TREE_CODE (field) != FIELD_DECL)
1901 continue;
1902
1903 /* In the C++ memory model, consecutive bit fields in a structure are
1904 considered one memory location and updating a memory location
1905 may not store into adjacent memory locations. */
1906 if (!repr
1907 && DECL_BIT_FIELD_TYPE (field))
1908 {
1909 /* Start new representative. */
1910 repr = start_bitfield_representative (field);
1911 }
1912 else if (repr
1913 && ! DECL_BIT_FIELD_TYPE (field))
1914 {
1915 /* Finish off new representative. */
1916 finish_bitfield_representative (repr, prev);
1917 repr = NULL_TREE;
1918 }
1919 else if (DECL_BIT_FIELD_TYPE (field))
1920 {
1921 gcc_assert (repr != NULL_TREE);
1922
1923 /* Zero-size bitfields finish off a representative and
1924 do not have a representative themselves. This is
1925 required by the C++ memory model. */
1926 if (integer_zerop (DECL_SIZE (field)))
1927 {
1928 finish_bitfield_representative (repr, prev);
1929 repr = NULL_TREE;
1930 }
1931
1932 /* We assume that either DECL_FIELD_OFFSET of the representative
1933 and each bitfield member is a constant or they are equal.
1934 This is because we need to be able to compute the bit-offset
1935 of each field relative to the representative in get_bit_range
1936 during RTL expansion.
1937 If these constraints are not met, simply force a new
1938 representative to be generated. That will at most
1939 generate worse code but still maintain correctness with
1940 respect to the C++ memory model. */
1941 else if (!((host_integerp (DECL_FIELD_OFFSET (repr), 1)
1942 && host_integerp (DECL_FIELD_OFFSET (field), 1))
1943 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1944 DECL_FIELD_OFFSET (field), 0)))
1945 {
1946 finish_bitfield_representative (repr, prev);
1947 repr = start_bitfield_representative (field);
1948 }
1949 }
1950 else
1951 continue;
1952
1953 if (repr)
1954 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
1955
1956 prev = field;
1957 }
1958
1959 if (repr)
1960 finish_bitfield_representative (repr, prev);
1961 }
1962
1963 /* Do all of the work required to layout the type indicated by RLI,
1964 once the fields have been laid out. This function will call `free'
1965 for RLI, unless FREE_P is false. Passing a value other than false
1966 for FREE_P is bad practice; this option only exists to support the
1967 G++ 3.2 ABI. */
1968
1969 void
1970 finish_record_layout (record_layout_info rli, int free_p)
1971 {
1972 tree variant;
1973
1974 /* Compute the final size. */
1975 finalize_record_size (rli);
1976
1977 /* Compute the TYPE_MODE for the record. */
1978 compute_record_mode (rli->t);
1979
1980 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1981 finalize_type_size (rli->t);
1982
1983 /* Compute bitfield representatives. */
1984 finish_bitfield_layout (rli);
1985
1986 /* Propagate TYPE_PACKED to variants. With C++ templates,
1987 handle_packed_attribute is too early to do this. */
1988 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
1989 variant = TYPE_NEXT_VARIANT (variant))
1990 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
1991
1992 /* Lay out any static members. This is done now because their type
1993 may use the record's type. */
1994 while (!VEC_empty (tree, rli->pending_statics))
1995 layout_decl (VEC_pop (tree, rli->pending_statics), 0);
1996
1997 /* Clean up. */
1998 if (free_p)
1999 {
2000 VEC_free (tree, gc, rli->pending_statics);
2001 free (rli);
2002 }
2003 }
2004 \f
2005
2006 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2007 NAME, its fields are chained in reverse on FIELDS.
2008
2009 If ALIGN_TYPE is non-null, it is given the same alignment as
2010 ALIGN_TYPE. */
2011
2012 void
2013 finish_builtin_struct (tree type, const char *name, tree fields,
2014 tree align_type)
2015 {
2016 tree tail, next;
2017
2018 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2019 {
2020 DECL_FIELD_CONTEXT (fields) = type;
2021 next = DECL_CHAIN (fields);
2022 DECL_CHAIN (fields) = tail;
2023 }
2024 TYPE_FIELDS (type) = tail;
2025
2026 if (align_type)
2027 {
2028 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2029 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2030 }
2031
2032 layout_type (type);
2033 #if 0 /* not yet, should get fixed properly later */
2034 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2035 #else
2036 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2037 TYPE_DECL, get_identifier (name), type);
2038 #endif
2039 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2040 layout_decl (TYPE_NAME (type), 0);
2041 }
2042
2043 /* Calculate the mode, size, and alignment for TYPE.
2044 For an array type, calculate the element separation as well.
2045 Record TYPE on the chain of permanent or temporary types
2046 so that dbxout will find out about it.
2047
2048 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2049 layout_type does nothing on such a type.
2050
2051 If the type is incomplete, its TYPE_SIZE remains zero. */
2052
2053 void
2054 layout_type (tree type)
2055 {
2056 gcc_assert (type);
2057
2058 if (type == error_mark_node)
2059 return;
2060
2061 /* Do nothing if type has been laid out before. */
2062 if (TYPE_SIZE (type))
2063 return;
2064
2065 switch (TREE_CODE (type))
2066 {
2067 case LANG_TYPE:
2068 /* This kind of type is the responsibility
2069 of the language-specific code. */
2070 gcc_unreachable ();
2071
2072 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
2073 if (TYPE_PRECISION (type) == 0)
2074 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
2075
2076 /* ... fall through ... */
2077
2078 case INTEGER_TYPE:
2079 case ENUMERAL_TYPE:
2080 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
2081 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
2082 TYPE_UNSIGNED (type) = 1;
2083
2084 SET_TYPE_MODE (type,
2085 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2086 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2087 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2088 break;
2089
2090 case REAL_TYPE:
2091 SET_TYPE_MODE (type,
2092 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2093 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2094 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2095 break;
2096
2097 case FIXED_POINT_TYPE:
2098 /* TYPE_MODE (type) has been set already. */
2099 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2100 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2101 break;
2102
2103 case COMPLEX_TYPE:
2104 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2105 SET_TYPE_MODE (type,
2106 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2107 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2108 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2109 0));
2110 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2111 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2112 break;
2113
2114 case VECTOR_TYPE:
2115 {
2116 int nunits = TYPE_VECTOR_SUBPARTS (type);
2117 tree innertype = TREE_TYPE (type);
2118
2119 gcc_assert (!(nunits & (nunits - 1)));
2120
2121 /* Find an appropriate mode for the vector type. */
2122 if (TYPE_MODE (type) == VOIDmode)
2123 SET_TYPE_MODE (type,
2124 mode_for_vector (TYPE_MODE (innertype), nunits));
2125
2126 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2127 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2128 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2129 TYPE_SIZE_UNIT (innertype),
2130 size_int (nunits));
2131 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2132 bitsize_int (nunits));
2133
2134 /* Always naturally align vectors. This prevents ABI changes
2135 depending on whether or not native vector modes are supported. */
2136 TYPE_ALIGN (type) = tree_low_cst (TYPE_SIZE (type), 0);
2137 break;
2138 }
2139
2140 case VOID_TYPE:
2141 /* This is an incomplete type and so doesn't have a size. */
2142 TYPE_ALIGN (type) = 1;
2143 TYPE_USER_ALIGN (type) = 0;
2144 SET_TYPE_MODE (type, VOIDmode);
2145 break;
2146
2147 case OFFSET_TYPE:
2148 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2149 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
2150 /* A pointer might be MODE_PARTIAL_INT,
2151 but ptrdiff_t must be integral. */
2152 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2153 TYPE_PRECISION (type) = POINTER_SIZE;
2154 break;
2155
2156 case FUNCTION_TYPE:
2157 case METHOD_TYPE:
2158 /* It's hard to see what the mode and size of a function ought to
2159 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2160 make it consistent with that. */
2161 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2162 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2163 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2164 break;
2165
2166 case POINTER_TYPE:
2167 case REFERENCE_TYPE:
2168 {
2169 enum machine_mode mode = TYPE_MODE (type);
2170 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2171 {
2172 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2173 mode = targetm.addr_space.address_mode (as);
2174 }
2175
2176 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2177 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2178 TYPE_UNSIGNED (type) = 1;
2179 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
2180 }
2181 break;
2182
2183 case ARRAY_TYPE:
2184 {
2185 tree index = TYPE_DOMAIN (type);
2186 tree element = TREE_TYPE (type);
2187
2188 build_pointer_type (element);
2189
2190 /* We need to know both bounds in order to compute the size. */
2191 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2192 && TYPE_SIZE (element))
2193 {
2194 tree ub = TYPE_MAX_VALUE (index);
2195 tree lb = TYPE_MIN_VALUE (index);
2196 tree element_size = TYPE_SIZE (element);
2197 tree length;
2198
2199 /* Make sure that an array of zero-sized element is zero-sized
2200 regardless of its extent. */
2201 if (integer_zerop (element_size))
2202 length = size_zero_node;
2203
2204 /* The computation should happen in the original signedness so
2205 that (possible) negative values are handled appropriately
2206 when determining overflow. */
2207 else
2208 {
2209 /* ??? When it is obvious that the range is signed
2210 represent it using ssizetype. */
2211 if (TREE_CODE (lb) == INTEGER_CST
2212 && TREE_CODE (ub) == INTEGER_CST
2213 && TYPE_UNSIGNED (TREE_TYPE (lb))
2214 && tree_int_cst_lt (ub, lb))
2215 {
2216 lb = double_int_to_tree
2217 (ssizetype,
2218 double_int_sext (tree_to_double_int (lb),
2219 TYPE_PRECISION (TREE_TYPE (lb))));
2220 ub = double_int_to_tree
2221 (ssizetype,
2222 double_int_sext (tree_to_double_int (ub),
2223 TYPE_PRECISION (TREE_TYPE (ub))));
2224 }
2225 length
2226 = fold_convert (sizetype,
2227 size_binop (PLUS_EXPR,
2228 build_int_cst (TREE_TYPE (lb), 1),
2229 size_binop (MINUS_EXPR, ub, lb)));
2230 }
2231
2232 /* If we arrived at a length of zero ignore any overflow
2233 that occurred as part of the calculation. There exists
2234 an association of the plus one where that overflow would
2235 not happen. */
2236 if (integer_zerop (length)
2237 && TREE_OVERFLOW (length))
2238 length = size_zero_node;
2239
2240 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2241 fold_convert (bitsizetype,
2242 length));
2243
2244 /* If we know the size of the element, calculate the total size
2245 directly, rather than do some division thing below. This
2246 optimization helps Fortran assumed-size arrays (where the
2247 size of the array is determined at runtime) substantially. */
2248 if (TYPE_SIZE_UNIT (element))
2249 TYPE_SIZE_UNIT (type)
2250 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2251 }
2252
2253 /* Now round the alignment and size,
2254 using machine-dependent criteria if any. */
2255
2256 #ifdef ROUND_TYPE_ALIGN
2257 TYPE_ALIGN (type)
2258 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2259 #else
2260 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2261 #endif
2262 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2263 SET_TYPE_MODE (type, BLKmode);
2264 if (TYPE_SIZE (type) != 0
2265 #ifdef MEMBER_TYPE_FORCES_BLK
2266 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
2267 #endif
2268 /* BLKmode elements force BLKmode aggregate;
2269 else extract/store fields may lose. */
2270 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2271 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2272 {
2273 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2274 TYPE_SIZE (type)));
2275 if (TYPE_MODE (type) != BLKmode
2276 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2277 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2278 {
2279 TYPE_NO_FORCE_BLK (type) = 1;
2280 SET_TYPE_MODE (type, BLKmode);
2281 }
2282 }
2283 /* When the element size is constant, check that it is at least as
2284 large as the element alignment. */
2285 if (TYPE_SIZE_UNIT (element)
2286 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2287 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2288 TYPE_ALIGN_UNIT. */
2289 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2290 && !integer_zerop (TYPE_SIZE_UNIT (element))
2291 && compare_tree_int (TYPE_SIZE_UNIT (element),
2292 TYPE_ALIGN_UNIT (element)) < 0)
2293 error ("alignment of array elements is greater than element size");
2294 break;
2295 }
2296
2297 case RECORD_TYPE:
2298 case UNION_TYPE:
2299 case QUAL_UNION_TYPE:
2300 {
2301 tree field;
2302 record_layout_info rli;
2303
2304 /* Initialize the layout information. */
2305 rli = start_record_layout (type);
2306
2307 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2308 in the reverse order in building the COND_EXPR that denotes
2309 its size. We reverse them again later. */
2310 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2311 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2312
2313 /* Place all the fields. */
2314 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2315 place_field (rli, field);
2316
2317 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2318 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2319
2320 /* Finish laying out the record. */
2321 finish_record_layout (rli, /*free_p=*/true);
2322 }
2323 break;
2324
2325 default:
2326 gcc_unreachable ();
2327 }
2328
2329 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2330 records and unions, finish_record_layout already called this
2331 function. */
2332 if (TREE_CODE (type) != RECORD_TYPE
2333 && TREE_CODE (type) != UNION_TYPE
2334 && TREE_CODE (type) != QUAL_UNION_TYPE)
2335 finalize_type_size (type);
2336
2337 /* We should never see alias sets on incomplete aggregates. And we
2338 should not call layout_type on not incomplete aggregates. */
2339 if (AGGREGATE_TYPE_P (type))
2340 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2341 }
2342
2343 /* Vector types need to re-check the target flags each time we report
2344 the machine mode. We need to do this because attribute target can
2345 change the result of vector_mode_supported_p and have_regs_of_mode
2346 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2347 change on a per-function basis. */
2348 /* ??? Possibly a better solution is to run through all the types
2349 referenced by a function and re-compute the TYPE_MODE once, rather
2350 than make the TYPE_MODE macro call a function. */
2351
2352 enum machine_mode
2353 vector_type_mode (const_tree t)
2354 {
2355 enum machine_mode mode;
2356
2357 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2358
2359 mode = t->type_common.mode;
2360 if (VECTOR_MODE_P (mode)
2361 && (!targetm.vector_mode_supported_p (mode)
2362 || !have_regs_of_mode[mode]))
2363 {
2364 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2365
2366 /* For integers, try mapping it to a same-sized scalar mode. */
2367 if (GET_MODE_CLASS (innermode) == MODE_INT)
2368 {
2369 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2370 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2371
2372 if (mode != VOIDmode && have_regs_of_mode[mode])
2373 return mode;
2374 }
2375
2376 return BLKmode;
2377 }
2378
2379 return mode;
2380 }
2381 \f
2382 /* Create and return a type for signed integers of PRECISION bits. */
2383
2384 tree
2385 make_signed_type (int precision)
2386 {
2387 tree type = make_node (INTEGER_TYPE);
2388
2389 TYPE_PRECISION (type) = precision;
2390
2391 fixup_signed_type (type);
2392 return type;
2393 }
2394
2395 /* Create and return a type for unsigned integers of PRECISION bits. */
2396
2397 tree
2398 make_unsigned_type (int precision)
2399 {
2400 tree type = make_node (INTEGER_TYPE);
2401
2402 TYPE_PRECISION (type) = precision;
2403
2404 fixup_unsigned_type (type);
2405 return type;
2406 }
2407 \f
2408 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2409 and SATP. */
2410
2411 tree
2412 make_fract_type (int precision, int unsignedp, int satp)
2413 {
2414 tree type = make_node (FIXED_POINT_TYPE);
2415
2416 TYPE_PRECISION (type) = precision;
2417
2418 if (satp)
2419 TYPE_SATURATING (type) = 1;
2420
2421 /* Lay out the type: set its alignment, size, etc. */
2422 if (unsignedp)
2423 {
2424 TYPE_UNSIGNED (type) = 1;
2425 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2426 }
2427 else
2428 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2429 layout_type (type);
2430
2431 return type;
2432 }
2433
2434 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2435 and SATP. */
2436
2437 tree
2438 make_accum_type (int precision, int unsignedp, int satp)
2439 {
2440 tree type = make_node (FIXED_POINT_TYPE);
2441
2442 TYPE_PRECISION (type) = precision;
2443
2444 if (satp)
2445 TYPE_SATURATING (type) = 1;
2446
2447 /* Lay out the type: set its alignment, size, etc. */
2448 if (unsignedp)
2449 {
2450 TYPE_UNSIGNED (type) = 1;
2451 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2452 }
2453 else
2454 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2455 layout_type (type);
2456
2457 return type;
2458 }
2459
2460 /* Initialize sizetypes so layout_type can use them. */
2461
2462 void
2463 initialize_sizetypes (void)
2464 {
2465 int precision, bprecision;
2466
2467 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2468 if (strcmp (SIZETYPE, "unsigned int") == 0)
2469 precision = INT_TYPE_SIZE;
2470 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2471 precision = LONG_TYPE_SIZE;
2472 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2473 precision = LONG_LONG_TYPE_SIZE;
2474 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2475 precision = SHORT_TYPE_SIZE;
2476 else
2477 gcc_unreachable ();
2478
2479 bprecision
2480 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2481 bprecision
2482 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2483 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2484 bprecision = HOST_BITS_PER_DOUBLE_INT;
2485
2486 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2487 sizetype = make_node (INTEGER_TYPE);
2488 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2489 TYPE_PRECISION (sizetype) = precision;
2490 TYPE_UNSIGNED (sizetype) = 1;
2491 bitsizetype = make_node (INTEGER_TYPE);
2492 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2493 TYPE_PRECISION (bitsizetype) = bprecision;
2494 TYPE_UNSIGNED (bitsizetype) = 1;
2495
2496 /* Now layout both types manually. */
2497 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2498 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2499 TYPE_SIZE (sizetype) = bitsize_int (precision);
2500 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2501 set_min_and_max_values_for_integral_type (sizetype, precision,
2502 /*is_unsigned=*/true);
2503
2504 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2505 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2506 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2507 TYPE_SIZE_UNIT (bitsizetype)
2508 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2509 set_min_and_max_values_for_integral_type (bitsizetype, bprecision,
2510 /*is_unsigned=*/true);
2511
2512 /* Create the signed variants of *sizetype. */
2513 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2514 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2515 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2516 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2517 }
2518 \f
2519 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2520 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2521 for TYPE, based on the PRECISION and whether or not the TYPE
2522 IS_UNSIGNED. PRECISION need not correspond to a width supported
2523 natively by the hardware; for example, on a machine with 8-bit,
2524 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2525 61. */
2526
2527 void
2528 set_min_and_max_values_for_integral_type (tree type,
2529 int precision,
2530 bool is_unsigned)
2531 {
2532 tree min_value;
2533 tree max_value;
2534
2535 if (is_unsigned)
2536 {
2537 min_value = build_int_cst (type, 0);
2538 max_value
2539 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2540 ? -1
2541 : ((HOST_WIDE_INT) 1 << precision) - 1,
2542 precision - HOST_BITS_PER_WIDE_INT > 0
2543 ? ((unsigned HOST_WIDE_INT) ~0
2544 >> (HOST_BITS_PER_WIDE_INT
2545 - (precision - HOST_BITS_PER_WIDE_INT)))
2546 : 0);
2547 }
2548 else
2549 {
2550 min_value
2551 = build_int_cst_wide (type,
2552 (precision - HOST_BITS_PER_WIDE_INT > 0
2553 ? 0
2554 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2555 (((HOST_WIDE_INT) (-1)
2556 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2557 ? precision - HOST_BITS_PER_WIDE_INT - 1
2558 : 0))));
2559 max_value
2560 = build_int_cst_wide (type,
2561 (precision - HOST_BITS_PER_WIDE_INT > 0
2562 ? -1
2563 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2564 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2565 ? (((HOST_WIDE_INT) 1
2566 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2567 : 0));
2568 }
2569
2570 TYPE_MIN_VALUE (type) = min_value;
2571 TYPE_MAX_VALUE (type) = max_value;
2572 }
2573
2574 /* Set the extreme values of TYPE based on its precision in bits,
2575 then lay it out. Used when make_signed_type won't do
2576 because the tree code is not INTEGER_TYPE.
2577 E.g. for Pascal, when the -fsigned-char option is given. */
2578
2579 void
2580 fixup_signed_type (tree type)
2581 {
2582 int precision = TYPE_PRECISION (type);
2583
2584 /* We can not represent properly constants greater then
2585 HOST_BITS_PER_DOUBLE_INT, still we need the types
2586 as they are used by i386 vector extensions and friends. */
2587 if (precision > HOST_BITS_PER_DOUBLE_INT)
2588 precision = HOST_BITS_PER_DOUBLE_INT;
2589
2590 set_min_and_max_values_for_integral_type (type, precision,
2591 /*is_unsigned=*/false);
2592
2593 /* Lay out the type: set its alignment, size, etc. */
2594 layout_type (type);
2595 }
2596
2597 /* Set the extreme values of TYPE based on its precision in bits,
2598 then lay it out. This is used both in `make_unsigned_type'
2599 and for enumeral types. */
2600
2601 void
2602 fixup_unsigned_type (tree type)
2603 {
2604 int precision = TYPE_PRECISION (type);
2605
2606 /* We can not represent properly constants greater then
2607 HOST_BITS_PER_DOUBLE_INT, still we need the types
2608 as they are used by i386 vector extensions and friends. */
2609 if (precision > HOST_BITS_PER_DOUBLE_INT)
2610 precision = HOST_BITS_PER_DOUBLE_INT;
2611
2612 TYPE_UNSIGNED (type) = 1;
2613
2614 set_min_and_max_values_for_integral_type (type, precision,
2615 /*is_unsigned=*/true);
2616
2617 /* Lay out the type: set its alignment, size, etc. */
2618 layout_type (type);
2619 }
2620 \f
2621 /* Find the best machine mode to use when referencing a bit field of length
2622 BITSIZE bits starting at BITPOS.
2623
2624 BITREGION_START is the bit position of the first bit in this
2625 sequence of bit fields. BITREGION_END is the last bit in this
2626 sequence. If these two fields are non-zero, we should restrict the
2627 memory access to a maximum sized chunk of
2628 BITREGION_END - BITREGION_START + 1. Otherwise, we are allowed to touch
2629 any adjacent non bit-fields.
2630
2631 The underlying object is known to be aligned to a boundary of ALIGN bits.
2632 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2633 larger than LARGEST_MODE (usually SImode).
2634
2635 If no mode meets all these conditions, we return VOIDmode.
2636
2637 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2638 smallest mode meeting these conditions.
2639
2640 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2641 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2642 all the conditions.
2643
2644 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2645 decide which of the above modes should be used. */
2646
2647 enum machine_mode
2648 get_best_mode (int bitsize, int bitpos,
2649 unsigned HOST_WIDE_INT bitregion_start,
2650 unsigned HOST_WIDE_INT bitregion_end,
2651 unsigned int align,
2652 enum machine_mode largest_mode, int volatilep)
2653 {
2654 enum machine_mode mode;
2655 unsigned int unit = 0;
2656 unsigned HOST_WIDE_INT maxbits;
2657
2658 /* If unset, no restriction. */
2659 if (!bitregion_end)
2660 maxbits = MAX_FIXED_MODE_SIZE;
2661 else
2662 maxbits = bitregion_end - bitregion_start + 1;
2663
2664 /* Find the narrowest integer mode that contains the bit field. */
2665 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2666 mode = GET_MODE_WIDER_MODE (mode))
2667 {
2668 unit = GET_MODE_BITSIZE (mode);
2669 if (unit == GET_MODE_PRECISION (mode)
2670 && (bitpos % unit) + bitsize <= unit)
2671 break;
2672 }
2673
2674 if (mode == VOIDmode
2675 /* It is tempting to omit the following line
2676 if STRICT_ALIGNMENT is true.
2677 But that is incorrect, since if the bitfield uses part of 3 bytes
2678 and we use a 4-byte mode, we could get a spurious segv
2679 if the extra 4th byte is past the end of memory.
2680 (Though at least one Unix compiler ignores this problem:
2681 that on the Sequent 386 machine. */
2682 || MIN (unit, BIGGEST_ALIGNMENT) > align
2683 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode))
2684 || unit > maxbits
2685 || (bitregion_end
2686 && bitpos - (bitpos % unit) + unit > bitregion_end + 1))
2687 return VOIDmode;
2688
2689 if ((SLOW_BYTE_ACCESS && ! volatilep)
2690 || (volatilep && !targetm.narrow_volatile_bitfield ()))
2691 {
2692 enum machine_mode wide_mode = VOIDmode, tmode;
2693
2694 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2695 tmode = GET_MODE_WIDER_MODE (tmode))
2696 {
2697 unit = GET_MODE_BITSIZE (tmode);
2698 if (unit == GET_MODE_PRECISION (tmode)
2699 && bitpos / unit == (bitpos + bitsize - 1) / unit
2700 && unit <= BITS_PER_WORD
2701 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2702 && unit <= maxbits
2703 && (largest_mode == VOIDmode
2704 || unit <= GET_MODE_BITSIZE (largest_mode))
2705 && (bitregion_end == 0
2706 || bitpos - (bitpos % unit) + unit <= bitregion_end + 1))
2707 wide_mode = tmode;
2708 }
2709
2710 if (wide_mode != VOIDmode)
2711 return wide_mode;
2712 }
2713
2714 return mode;
2715 }
2716
2717 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2718 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2719
2720 void
2721 get_mode_bounds (enum machine_mode mode, int sign,
2722 enum machine_mode target_mode,
2723 rtx *mmin, rtx *mmax)
2724 {
2725 unsigned size = GET_MODE_BITSIZE (mode);
2726 unsigned HOST_WIDE_INT min_val, max_val;
2727
2728 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2729
2730 if (sign)
2731 {
2732 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2733 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2734 }
2735 else
2736 {
2737 min_val = 0;
2738 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2739 }
2740
2741 *mmin = gen_int_mode (min_val, target_mode);
2742 *mmax = gen_int_mode (max_val, target_mode);
2743 }
2744
2745 #include "gt-stor-layout.h"