regmove.c (optimize_reg_copy_1): Undo Aug 18 change.
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 88, 92-97, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include "config.h"
23 #include "system.h"
24
25 #include "tree.h"
26 #include "rtl.h"
27 #include "flags.h"
28 #include "except.h"
29 #include "function.h"
30 #include "expr.h"
31 #include "toplev.h"
32
33 #define CEIL(x,y) (((x) + (y) - 1) / (y))
34
35 /* Data type for the expressions representing sizes of data types.
36 It is the first integer type laid out. */
37
38 struct sizetype_tab sizetype_tab;
39
40 /* An integer constant with value 0 whose type is sizetype. */
41
42 tree size_zero_node;
43
44 /* An integer constant with value 1 whose type is sizetype. */
45
46 tree size_one_node;
47
48 /* If nonzero, this is an upper limit on alignment of structure fields.
49 The value is measured in bits. */
50 int maximum_field_alignment;
51
52 /* If non-zero, the alignment of a bitstring or (power-)set value, in bits.
53 May be overridden by front-ends. */
54 int set_alignment = 0;
55
56 static enum machine_mode smallest_mode_for_size PROTO((unsigned int,
57 enum mode_class));
58 static tree layout_record PROTO((tree));
59 static void layout_union PROTO((tree));
60 \f
61 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
62
63 static tree pending_sizes;
64
65 /* Nonzero means cannot safely call expand_expr now,
66 so put variable sizes onto `pending_sizes' instead. */
67
68 int immediate_size_expand;
69
70 tree
71 get_pending_sizes ()
72 {
73 tree chain = pending_sizes;
74 tree t;
75
76 /* Put each SAVE_EXPR into the current function. */
77 for (t = chain; t; t = TREE_CHAIN (t))
78 SAVE_EXPR_CONTEXT (TREE_VALUE (t)) = current_function_decl;
79 pending_sizes = 0;
80 return chain;
81 }
82
83 void
84 put_pending_sizes (chain)
85 tree chain;
86 {
87 if (pending_sizes)
88 abort ();
89
90 pending_sizes = chain;
91 }
92
93 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
94 to serve as the actual size-expression for a type or decl. */
95
96 tree
97 variable_size (size)
98 tree size;
99 {
100 /* If the language-processor is to take responsibility for variable-sized
101 items (e.g., languages which have elaboration procedures like Ada),
102 just return SIZE unchanged. Likewise for self-referential sizes. */
103 if (TREE_CONSTANT (size)
104 || global_bindings_p () < 0 || contains_placeholder_p (size))
105 return size;
106
107 size = save_expr (size);
108
109 if (global_bindings_p ())
110 {
111 if (TREE_CONSTANT (size))
112 error ("type size can't be explicitly evaluated");
113 else
114 error ("variable-size type declared outside of any function");
115
116 return size_int (1);
117 }
118
119 if (immediate_size_expand)
120 /* NULL_RTX is not defined; neither is the rtx type.
121 Also, we would like to pass const0_rtx here, but don't have it. */
122 expand_expr (size, expand_expr (integer_zero_node, NULL_PTR, VOIDmode, 0),
123 VOIDmode, 0);
124 else
125 pending_sizes = tree_cons (NULL_TREE, size, pending_sizes);
126
127 return size;
128 }
129 \f
130 #ifndef MAX_FIXED_MODE_SIZE
131 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
132 #endif
133
134 /* Return the machine mode to use for a nonscalar of SIZE bits.
135 The mode must be in class CLASS, and have exactly that many bits.
136 If LIMIT is nonzero, modes of wider than MAX_FIXED_MODE_SIZE will not
137 be used. */
138
139 enum machine_mode
140 mode_for_size (size, class, limit)
141 unsigned int size;
142 enum mode_class class;
143 int limit;
144 {
145 register enum machine_mode mode;
146
147 if (limit && size > (unsigned int)(MAX_FIXED_MODE_SIZE))
148 return BLKmode;
149
150 /* Get the first mode which has this size, in the specified class. */
151 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
152 mode = GET_MODE_WIDER_MODE (mode))
153 if ((unsigned int)GET_MODE_BITSIZE (mode) == size)
154 return mode;
155
156 return BLKmode;
157 }
158
159 /* Similar, but never return BLKmode; return the narrowest mode that
160 contains at least the requested number of bits. */
161
162 static enum machine_mode
163 smallest_mode_for_size (size, class)
164 unsigned int size;
165 enum mode_class class;
166 {
167 register enum machine_mode mode;
168
169 /* Get the first mode which has at least this size, in the
170 specified class. */
171 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
172 mode = GET_MODE_WIDER_MODE (mode))
173 if ((unsigned int)GET_MODE_BITSIZE (mode) >= size)
174 return mode;
175
176 abort ();
177 }
178
179 /* Find an integer mode of the exact same size, or BLKmode on failure. */
180
181 enum machine_mode
182 int_mode_for_mode (mode)
183 enum machine_mode mode;
184 {
185 switch (GET_MODE_CLASS (mode))
186 {
187 case MODE_INT:
188 case MODE_PARTIAL_INT:
189 break;
190
191 case MODE_COMPLEX_INT:
192 case MODE_COMPLEX_FLOAT:
193 case MODE_FLOAT:
194 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
195 break;
196
197 case MODE_RANDOM:
198 if (mode == BLKmode)
199 break;
200 /* FALLTHRU */
201
202 case MODE_CC:
203 default:
204 abort();
205 }
206
207 return mode;
208 }
209
210 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
211
212 tree
213 round_up (value, divisor)
214 tree value;
215 int divisor;
216 {
217 return size_binop (MULT_EXPR,
218 size_binop (CEIL_DIV_EXPR, value, size_int (divisor)),
219 size_int (divisor));
220 }
221 \f
222 /* Set the size, mode and alignment of a ..._DECL node.
223 TYPE_DECL does need this for C++.
224 Note that LABEL_DECL and CONST_DECL nodes do not need this,
225 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
226 Don't call layout_decl for them.
227
228 KNOWN_ALIGN is the amount of alignment we can assume this
229 decl has with no special effort. It is relevant only for FIELD_DECLs
230 and depends on the previous fields.
231 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
232 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
233 the record will be aligned to suit. */
234
235 void
236 layout_decl (decl, known_align)
237 tree decl;
238 unsigned known_align;
239 {
240 register tree type = TREE_TYPE (decl);
241 register enum tree_code code = TREE_CODE (decl);
242 int spec_size = DECL_FIELD_SIZE (decl);
243
244 if (code == CONST_DECL)
245 return;
246
247 if (code != VAR_DECL && code != PARM_DECL && code != RESULT_DECL
248 && code != FIELD_DECL && code != TYPE_DECL)
249 abort ();
250
251 if (type == error_mark_node)
252 {
253 type = void_type_node;
254 spec_size = 0;
255 }
256
257 /* Usually the size and mode come from the data type without change. */
258
259 DECL_MODE (decl) = TYPE_MODE (type);
260 TREE_UNSIGNED (decl) = TREE_UNSIGNED (type);
261 if (DECL_SIZE (decl) == 0)
262 DECL_SIZE (decl) = TYPE_SIZE (type);
263
264 if (code == FIELD_DECL && DECL_BIT_FIELD (decl))
265 {
266 if (spec_size == 0 && DECL_NAME (decl) != 0)
267 abort ();
268
269 /* Size is specified number of bits. */
270 DECL_SIZE (decl) = size_int (spec_size);
271 }
272 /* Force alignment required for the data type.
273 But if the decl itself wants greater alignment, don't override that.
274 Likewise, if the decl is packed, don't override it. */
275 else if (DECL_ALIGN (decl) == 0
276 || (! DECL_PACKED (decl) && TYPE_ALIGN (type) > DECL_ALIGN (decl)))
277 DECL_ALIGN (decl) = TYPE_ALIGN (type);
278
279 /* See if we can use an ordinary integer mode for a bit-field. */
280 /* Conditions are: a fixed size that is correct for another mode
281 and occupying a complete byte or bytes on proper boundary. */
282 if (code == FIELD_DECL)
283 {
284 DECL_BIT_FIELD_TYPE (decl) = DECL_BIT_FIELD (decl) ? type : 0;
285 if (maximum_field_alignment != 0)
286 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl),
287 (unsigned)maximum_field_alignment);
288 else if (DECL_PACKED (decl))
289 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
290 }
291
292 if (DECL_BIT_FIELD (decl)
293 && TYPE_SIZE (type) != 0
294 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
295 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
296 {
297 register enum machine_mode xmode
298 = mode_for_size (TREE_INT_CST_LOW (DECL_SIZE (decl)), MODE_INT, 1);
299
300 if (xmode != BLKmode
301 && known_align % GET_MODE_ALIGNMENT (xmode) == 0)
302 {
303 DECL_ALIGN (decl) = MAX ((unsigned) GET_MODE_ALIGNMENT (xmode),
304 DECL_ALIGN (decl));
305 DECL_MODE (decl) = xmode;
306 DECL_SIZE (decl) = size_int (GET_MODE_BITSIZE (xmode));
307 /* This no longer needs to be accessed as a bit field. */
308 DECL_BIT_FIELD (decl) = 0;
309 }
310 }
311
312 /* Turn off DECL_BIT_FIELD if we won't need it set. */
313 if (DECL_BIT_FIELD (decl) && TYPE_MODE (type) == BLKmode
314 && known_align % TYPE_ALIGN (type) == 0
315 && DECL_SIZE (decl) != 0
316 && (TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST
317 || (TREE_INT_CST_LOW (DECL_SIZE (decl)) % BITS_PER_UNIT) == 0)
318 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
319 DECL_BIT_FIELD (decl) = 0;
320
321 /* Evaluate nonconstant size only once, either now or as soon as safe. */
322 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
323 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
324 }
325 \f
326 /* Lay out a RECORD_TYPE type (a C struct).
327 This means laying out the fields, determining their positions,
328 and computing the overall size and required alignment of the record.
329 Note that if you set the TYPE_ALIGN before calling this
330 then the struct is aligned to at least that boundary.
331
332 If the type has basetypes, you must call layout_basetypes
333 before calling this function.
334
335 The return value is a list of static members of the record.
336 They still need to be laid out. */
337
338 static tree
339 layout_record (rec)
340 tree rec;
341 {
342 register tree field;
343 unsigned record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (rec));
344 /* These must be laid out *after* the record is. */
345 tree pending_statics = NULL_TREE;
346 /* Record size so far is CONST_SIZE + VAR_SIZE bits,
347 where CONST_SIZE is an integer
348 and VAR_SIZE is a tree expression.
349 If VAR_SIZE is null, the size is just CONST_SIZE.
350 Naturally we try to avoid using VAR_SIZE. */
351 register HOST_WIDE_INT const_size = 0;
352 register tree var_size = 0;
353 /* Once we start using VAR_SIZE, this is the maximum alignment
354 that we know VAR_SIZE has. */
355 register int var_align = BITS_PER_UNIT;
356
357 #ifdef STRUCTURE_SIZE_BOUNDARY
358 /* Packed structures don't need to have minimum size. */
359 if (! TYPE_PACKED (rec))
360 record_align = MAX (record_align, STRUCTURE_SIZE_BOUNDARY);
361 #endif
362
363 for (field = TYPE_FIELDS (rec); field; field = TREE_CHAIN (field))
364 {
365 register int known_align = var_size ? var_align : const_size;
366 register int desired_align = 0;
367
368 /* If FIELD is static, then treat it like a separate variable,
369 not really like a structure field.
370 If it is a FUNCTION_DECL, it's a method.
371 In both cases, all we do is lay out the decl,
372 and we do it *after* the record is laid out. */
373
374 if (TREE_CODE (field) == VAR_DECL)
375 {
376 pending_statics = tree_cons (NULL_TREE, field, pending_statics);
377 continue;
378 }
379 /* Enumerators and enum types which are local to this class need not
380 be laid out. Likewise for initialized constant fields. */
381 if (TREE_CODE (field) != FIELD_DECL)
382 continue;
383
384 /* Lay out the field so we know what alignment it needs.
385 For a packed field, use the alignment as specified,
386 disregarding what the type would want. */
387 if (DECL_PACKED (field))
388 desired_align = DECL_ALIGN (field);
389 layout_decl (field, known_align);
390 if (! DECL_PACKED (field))
391 desired_align = DECL_ALIGN (field);
392 /* Some targets (i.e. VMS) limit struct field alignment
393 to a lower boundary than alignment of variables. */
394 #ifdef BIGGEST_FIELD_ALIGNMENT
395 desired_align = MIN (desired_align, BIGGEST_FIELD_ALIGNMENT);
396 #endif
397 #ifdef ADJUST_FIELD_ALIGN
398 desired_align = ADJUST_FIELD_ALIGN (field, desired_align);
399 #endif
400
401 /* Record must have at least as much alignment as any field.
402 Otherwise, the alignment of the field within the record
403 is meaningless. */
404
405 #ifndef PCC_BITFIELD_TYPE_MATTERS
406 record_align = MAX (record_align, desired_align);
407 #else
408 if (PCC_BITFIELD_TYPE_MATTERS && TREE_TYPE (field) != error_mark_node
409 && DECL_BIT_FIELD_TYPE (field)
410 && ! integer_zerop (TYPE_SIZE (TREE_TYPE (field))))
411 {
412 /* For these machines, a zero-length field does not
413 affect the alignment of the structure as a whole.
414 It does, however, affect the alignment of the next field
415 within the structure. */
416 if (! integer_zerop (DECL_SIZE (field)))
417 record_align = MAX ((int)record_align, desired_align);
418 else if (! DECL_PACKED (field))
419 desired_align = TYPE_ALIGN (TREE_TYPE (field));
420 /* A named bit field of declared type `int'
421 forces the entire structure to have `int' alignment. */
422 if (DECL_NAME (field) != 0)
423 {
424 int type_align = TYPE_ALIGN (TREE_TYPE (field));
425 if (maximum_field_alignment != 0)
426 type_align = MIN (type_align, maximum_field_alignment);
427 else if (DECL_PACKED (field))
428 type_align = MIN (type_align, BITS_PER_UNIT);
429
430 record_align = MAX ((int)record_align, type_align);
431 }
432 }
433 else
434 record_align = MAX ((int)record_align, desired_align);
435 #endif
436
437 /* Does this field automatically have alignment it needs
438 by virtue of the fields that precede it and the record's
439 own alignment? */
440
441 if (const_size % desired_align != 0
442 || (var_align % desired_align != 0
443 && var_size != 0))
444 {
445 /* No, we need to skip space before this field.
446 Bump the cumulative size to multiple of field alignment. */
447
448 if (var_size == 0
449 || var_align % desired_align == 0)
450 const_size
451 = CEIL (const_size, desired_align) * desired_align;
452 else
453 {
454 if (const_size > 0)
455 var_size = size_binop (PLUS_EXPR, var_size,
456 bitsize_int (const_size, 0L));
457 const_size = 0;
458 var_size = round_up (var_size, desired_align);
459 var_align = MIN (var_align, desired_align);
460 }
461 }
462
463 #ifdef PCC_BITFIELD_TYPE_MATTERS
464 if (PCC_BITFIELD_TYPE_MATTERS
465 && TREE_CODE (field) == FIELD_DECL
466 && TREE_TYPE (field) != error_mark_node
467 && DECL_BIT_FIELD_TYPE (field)
468 && !DECL_PACKED (field)
469 && maximum_field_alignment == 0
470 && !integer_zerop (DECL_SIZE (field)))
471 {
472 int type_align = TYPE_ALIGN (TREE_TYPE (field));
473 register tree dsize = DECL_SIZE (field);
474 int field_size = TREE_INT_CST_LOW (dsize);
475
476 /* A bit field may not span more units of alignment of its type
477 than its type itself. Advance to next boundary if necessary. */
478 if (((const_size + field_size + type_align - 1) / type_align
479 - const_size / type_align)
480 > TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (field))) / type_align)
481 const_size = CEIL (const_size, type_align) * type_align;
482 }
483 #endif
484
485 /* No existing machine description uses this parameter.
486 So I have made it in this aspect identical to PCC_BITFIELD_TYPE_MATTERS. */
487 #ifdef BITFIELD_NBYTES_LIMITED
488 if (BITFIELD_NBYTES_LIMITED
489 && TREE_CODE (field) == FIELD_DECL
490 && TREE_TYPE (field) != error_mark_node
491 && DECL_BIT_FIELD_TYPE (field)
492 && !DECL_PACKED (field)
493 && !integer_zerop (DECL_SIZE (field)))
494 {
495 int type_align = TYPE_ALIGN (TREE_TYPE (field));
496 register tree dsize = DECL_SIZE (field);
497 int field_size = TREE_INT_CST_LOW (dsize);
498
499 if (maximum_field_alignment != 0)
500 type_align = MIN (type_align, maximum_field_alignment);
501 /* ??? This test is opposite the test in the containing if
502 statement, so this code is unreachable currently. */
503 else if (DECL_PACKED (field))
504 type_align = MIN (type_align, BITS_PER_UNIT);
505
506 /* A bit field may not span the unit of alignment of its type.
507 Advance to next boundary if necessary. */
508 /* ??? This code should match the code above for the
509 PCC_BITFIELD_TYPE_MATTERS case. */
510 if (const_size / type_align
511 != (const_size + field_size - 1) / type_align)
512 const_size = CEIL (const_size, type_align) * type_align;
513 }
514 #endif
515
516 /* Size so far becomes the position of this field. */
517
518 if (var_size && const_size)
519 DECL_FIELD_BITPOS (field)
520 = size_binop (PLUS_EXPR, var_size, bitsize_int (const_size, 0L));
521 else if (var_size)
522 DECL_FIELD_BITPOS (field) = var_size;
523 else
524 {
525 DECL_FIELD_BITPOS (field) = size_int (const_size);
526
527 /* If this field ended up more aligned than we thought it
528 would be (we approximate this by seeing if its position
529 changed), lay out the field again; perhaps we can use an
530 integral mode for it now. */
531 if (known_align != const_size)
532 layout_decl (field, const_size);
533 }
534
535 /* Now add size of this field to the size of the record. */
536
537 {
538 register tree dsize = DECL_SIZE (field);
539
540 /* This can happen when we have an invalid nested struct definition,
541 such as struct j { struct j { int i; } }. The error message is
542 printed in finish_struct. */
543 if (dsize == 0)
544 /* Do nothing. */;
545 else if (TREE_CODE (dsize) == INTEGER_CST
546 && ! TREE_CONSTANT_OVERFLOW (dsize)
547 && TREE_INT_CST_HIGH (dsize) == 0
548 && TREE_INT_CST_LOW (dsize) + const_size >= const_size)
549 /* Use const_size if there's no overflow. */
550 const_size += TREE_INT_CST_LOW (dsize);
551 else
552 {
553 if (var_size == 0)
554 var_size = dsize;
555 else
556 var_size = size_binop (PLUS_EXPR, var_size, dsize);
557 }
558 }
559 }
560
561 /* Work out the total size and alignment of the record
562 as one expression and store in the record type.
563 Round it up to a multiple of the record's alignment. */
564
565 if (var_size == 0)
566 {
567 TYPE_SIZE (rec) = size_int (const_size);
568 }
569 else
570 {
571 if (const_size)
572 var_size
573 = size_binop (PLUS_EXPR, var_size, bitsize_int (const_size, 0L));
574 TYPE_SIZE (rec) = var_size;
575 }
576
577 /* Determine the desired alignment. */
578 #ifdef ROUND_TYPE_ALIGN
579 TYPE_ALIGN (rec) = ROUND_TYPE_ALIGN (rec, TYPE_ALIGN (rec), record_align);
580 #else
581 TYPE_ALIGN (rec) = MAX (TYPE_ALIGN (rec), record_align);
582 #endif
583
584 /* Record the un-rounded size in the binfo node. But first we check
585 the size of TYPE_BINFO to make sure that BINFO_SIZE is available. */
586 if (TYPE_BINFO (rec) && TREE_VEC_LENGTH (TYPE_BINFO (rec)) > 6)
587 TYPE_BINFO_SIZE (rec) = TYPE_SIZE (rec);
588
589 #ifdef ROUND_TYPE_SIZE
590 TYPE_SIZE (rec) = ROUND_TYPE_SIZE (rec, TYPE_SIZE (rec), TYPE_ALIGN (rec));
591 #else
592 /* Round the size up to be a multiple of the required alignment */
593 TYPE_SIZE (rec) = round_up (TYPE_SIZE (rec), TYPE_ALIGN (rec));
594 #endif
595
596 return pending_statics;
597 }
598 \f
599 /* Lay out a UNION_TYPE or QUAL_UNION_TYPE type.
600 Lay out all the fields, set their positions to zero,
601 and compute the size and alignment of the union (maximum of any field).
602 Note that if you set the TYPE_ALIGN before calling this
603 then the union align is aligned to at least that boundary. */
604
605 static void
606 layout_union (rec)
607 tree rec;
608 {
609 register tree field;
610 unsigned union_align = BITS_PER_UNIT;
611
612 /* The size of the union, based on the fields scanned so far,
613 is max (CONST_SIZE, VAR_SIZE).
614 VAR_SIZE may be null; then CONST_SIZE by itself is the size. */
615 register int const_size = 0;
616 register tree var_size = 0;
617
618 #ifdef STRUCTURE_SIZE_BOUNDARY
619 /* Packed structures don't need to have minimum size. */
620 if (! TYPE_PACKED (rec))
621 union_align = STRUCTURE_SIZE_BOUNDARY;
622 #endif
623
624 /* If this is a QUAL_UNION_TYPE, we want to process the fields in
625 the reverse order in building the COND_EXPR that denotes its
626 size. We reverse them again later. */
627 if (TREE_CODE (rec) == QUAL_UNION_TYPE)
628 TYPE_FIELDS (rec) = nreverse (TYPE_FIELDS (rec));
629
630 for (field = TYPE_FIELDS (rec); field; field = TREE_CHAIN (field))
631 {
632 /* Enums which are local to this class need not be laid out. */
633 if (TREE_CODE (field) == CONST_DECL || TREE_CODE (field) == TYPE_DECL)
634 continue;
635
636 layout_decl (field, 0);
637 DECL_FIELD_BITPOS (field) = bitsize_int (0L, 0L);
638
639 /* Union must be at least as aligned as any field requires. */
640
641 union_align = MAX (union_align, DECL_ALIGN (field));
642
643 #ifdef PCC_BITFIELD_TYPE_MATTERS
644 /* On the m88000, a bit field of declare type `int'
645 forces the entire union to have `int' alignment. */
646 if (PCC_BITFIELD_TYPE_MATTERS && DECL_BIT_FIELD_TYPE (field))
647 union_align = MAX (union_align, TYPE_ALIGN (TREE_TYPE (field)));
648 #endif
649
650 if (TREE_CODE (rec) == UNION_TYPE)
651 {
652 /* Set union_size to max (decl_size, union_size).
653 There are more and less general ways to do this.
654 Use only CONST_SIZE unless forced to use VAR_SIZE. */
655
656 if (TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
657 const_size
658 = MAX (const_size, TREE_INT_CST_LOW (DECL_SIZE (field)));
659 else if (var_size == 0)
660 var_size = DECL_SIZE (field);
661 else
662 var_size = size_binop (MAX_EXPR, var_size, DECL_SIZE (field));
663 }
664 else if (TREE_CODE (rec) == QUAL_UNION_TYPE)
665 var_size = fold (build (COND_EXPR, sizetype, DECL_QUALIFIER (field),
666 DECL_SIZE (field),
667 var_size ? var_size : bitsize_int (0L, 0L)));
668 }
669
670 if (TREE_CODE (rec) == QUAL_UNION_TYPE)
671 TYPE_FIELDS (rec) = nreverse (TYPE_FIELDS (rec));
672
673 /* Determine the ultimate size of the union (in bytes). */
674 if (NULL == var_size)
675 TYPE_SIZE (rec) = bitsize_int (CEIL (const_size, BITS_PER_UNIT)
676 * BITS_PER_UNIT, 0L);
677 else if (const_size == 0)
678 TYPE_SIZE (rec) = var_size;
679 else
680 TYPE_SIZE (rec) = size_binop (MAX_EXPR, var_size,
681 round_up (bitsize_int (const_size, 0L),
682 BITS_PER_UNIT));
683
684 /* Determine the desired alignment. */
685 #ifdef ROUND_TYPE_ALIGN
686 TYPE_ALIGN (rec) = ROUND_TYPE_ALIGN (rec, TYPE_ALIGN (rec), union_align);
687 #else
688 TYPE_ALIGN (rec) = MAX (TYPE_ALIGN (rec), union_align);
689 #endif
690
691 #ifdef ROUND_TYPE_SIZE
692 TYPE_SIZE (rec) = ROUND_TYPE_SIZE (rec, TYPE_SIZE (rec), TYPE_ALIGN (rec));
693 #else
694 /* Round the size up to be a multiple of the required alignment */
695 TYPE_SIZE (rec) = round_up (TYPE_SIZE (rec), TYPE_ALIGN (rec));
696 #endif
697 }
698 \f
699 /* Calculate the mode, size, and alignment for TYPE.
700 For an array type, calculate the element separation as well.
701 Record TYPE on the chain of permanent or temporary types
702 so that dbxout will find out about it.
703
704 TYPE_SIZE of a type is nonzero if the type has been laid out already.
705 layout_type does nothing on such a type.
706
707 If the type is incomplete, its TYPE_SIZE remains zero. */
708
709 void
710 layout_type (type)
711 tree type;
712 {
713 int old;
714 tree pending_statics;
715
716 if (type == 0)
717 abort ();
718
719 /* Do nothing if type has been laid out before. */
720 if (TYPE_SIZE (type))
721 return;
722
723 /* Make sure all nodes we allocate are not momentary;
724 they must last past the current statement. */
725 old = suspend_momentary ();
726
727 /* Put all our nodes into the same obstack as the type. Also,
728 make expressions saveable (this is a no-op for permanent types). */
729
730 push_obstacks (TYPE_OBSTACK (type), TYPE_OBSTACK (type));
731 saveable_allocation ();
732
733 switch (TREE_CODE (type))
734 {
735 case LANG_TYPE:
736 /* This kind of type is the responsibility
737 of the language-specific code. */
738 abort ();
739
740 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
741 if (TYPE_PRECISION (type) == 0)
742 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
743 /* ... fall through ... */
744
745 case INTEGER_TYPE:
746 case ENUMERAL_TYPE:
747 case CHAR_TYPE:
748 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
749 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
750 TREE_UNSIGNED (type) = 1;
751
752 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
753 MODE_INT);
754 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)), 0L);
755 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
756 break;
757
758 case REAL_TYPE:
759 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
760 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)), 0L);
761 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
762 break;
763
764 case COMPLEX_TYPE:
765 TREE_UNSIGNED (type) = TREE_UNSIGNED (TREE_TYPE (type));
766 TYPE_MODE (type)
767 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
768 (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
769 ? MODE_COMPLEX_INT : MODE_COMPLEX_FLOAT),
770 0);
771 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)), 0L);
772 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
773 break;
774
775 case VOID_TYPE:
776 TYPE_SIZE (type) = size_zero_node;
777 TYPE_SIZE_UNIT (type) = size_zero_node;
778 TYPE_ALIGN (type) = 1;
779 TYPE_MODE (type) = VOIDmode;
780 break;
781
782 case OFFSET_TYPE:
783 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE, 0L);
784 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
785 TYPE_MODE (type) = ptr_mode;
786 break;
787
788 case FUNCTION_TYPE:
789 case METHOD_TYPE:
790 TYPE_MODE (type) = mode_for_size (2 * POINTER_SIZE, MODE_INT, 0);
791 TYPE_SIZE (type) = bitsize_int (2 * POINTER_SIZE, 0);
792 TYPE_SIZE_UNIT (type) = size_int ((2 * POINTER_SIZE) / BITS_PER_UNIT);
793 break;
794
795 case POINTER_TYPE:
796 case REFERENCE_TYPE:
797 TYPE_MODE (type) = ptr_mode;
798 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE, 0L);
799 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
800 TREE_UNSIGNED (type) = 1;
801 TYPE_PRECISION (type) = POINTER_SIZE;
802 break;
803
804 case ARRAY_TYPE:
805 {
806 register tree index = TYPE_DOMAIN (type);
807 register tree element = TREE_TYPE (type);
808
809 build_pointer_type (element);
810
811 /* We need to know both bounds in order to compute the size. */
812 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
813 && TYPE_SIZE (element))
814 {
815 tree ub = TYPE_MAX_VALUE (index);
816 tree lb = TYPE_MIN_VALUE (index);
817 tree length;
818 tree element_size;
819
820 /* If UB is max (lb - 1, x), remove the MAX_EXPR since the
821 test for negative below covers it. */
822 if (TREE_CODE (ub) == MAX_EXPR
823 && TREE_CODE (TREE_OPERAND (ub, 0)) == MINUS_EXPR
824 && integer_onep (TREE_OPERAND (TREE_OPERAND (ub, 0), 1))
825 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (ub, 0), 0),
826 lb, 0))
827 ub = TREE_OPERAND (ub, 1);
828 else if (TREE_CODE (ub) == MAX_EXPR
829 && TREE_CODE (TREE_OPERAND (ub, 1)) == MINUS_EXPR
830 && integer_onep (TREE_OPERAND (TREE_OPERAND (ub, 1), 1))
831 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (ub, 1),
832 0),
833 lb, 0))
834 ub = TREE_OPERAND (ub, 0);
835
836 /* The initial subtraction should happen in the original type so
837 that (possible) negative values are handled appropriately. */
838 length = size_binop (PLUS_EXPR, size_one_node,
839 fold (build (MINUS_EXPR, TREE_TYPE (lb),
840 ub, lb)));
841
842 /* If neither bound is a constant and sizetype is signed, make
843 sure the size is never negative. We should really do this
844 if *either* bound is non-constant, but this is the best
845 compromise between C and Ada. */
846 if (! TREE_UNSIGNED (sizetype)
847 && TREE_CODE (TYPE_MIN_VALUE (index)) != INTEGER_CST
848 && TREE_CODE (TYPE_MAX_VALUE (index)) != INTEGER_CST)
849 length = size_binop (MAX_EXPR, length, size_zero_node);
850
851 /* Special handling for arrays of bits (for Chill). */
852 element_size = TYPE_SIZE (element);
853 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element))
854 {
855 HOST_WIDE_INT maxvalue, minvalue;
856 maxvalue = TREE_INT_CST_LOW (TYPE_MAX_VALUE (element));
857 minvalue = TREE_INT_CST_LOW (TYPE_MIN_VALUE (element));
858 if (maxvalue - minvalue == 1
859 && (maxvalue == 1 || maxvalue == 0))
860 element_size = integer_one_node;
861 }
862
863 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size, length);
864
865 /* If we know the size of the element, calculate the total
866 size directly, rather than do some division thing below.
867 This optimization helps Fortran assumed-size arrays
868 (where the size of the array is determined at runtime)
869 substantially.
870 Note that we can't do this in the case where the size of
871 the elements is one bit since TYPE_SIZE_UNIT cannot be
872 set correctly in that case. */
873 if (TYPE_SIZE_UNIT (element) != 0
874 && element_size != integer_one_node)
875 {
876 TYPE_SIZE_UNIT (type)
877 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
878 }
879 }
880
881 /* Now round the alignment and size,
882 using machine-dependent criteria if any. */
883
884 #ifdef ROUND_TYPE_ALIGN
885 TYPE_ALIGN (type)
886 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
887 #else
888 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
889 #endif
890
891 #ifdef ROUND_TYPE_SIZE
892 if (TYPE_SIZE (type) != 0)
893 {
894 tree tmp;
895 tmp = ROUND_TYPE_SIZE (type, TYPE_SIZE (type), TYPE_ALIGN (type));
896 /* If the rounding changed the size of the type, remove any
897 pre-calculated TYPE_SIZE_UNIT. */
898 if (simple_cst_equal (TYPE_SIZE (type), tmp) != 1)
899 TYPE_SIZE_UNIT (type) = NULL;
900 TYPE_SIZE (type) = tmp;
901 }
902 #endif
903
904 TYPE_MODE (type) = BLKmode;
905 if (TYPE_SIZE (type) != 0
906 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
907 /* BLKmode elements force BLKmode aggregate;
908 else extract/store fields may lose. */
909 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
910 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
911 {
912 TYPE_MODE (type)
913 = mode_for_size (TREE_INT_CST_LOW (TYPE_SIZE (type)),
914 MODE_INT, 1);
915
916 if (STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
917 && (int)TYPE_ALIGN (type) < TREE_INT_CST_LOW (TYPE_SIZE (type))
918 && TYPE_MODE (type) != BLKmode)
919 {
920 TYPE_NO_FORCE_BLK (type) = 1;
921 TYPE_MODE (type) = BLKmode;
922 }
923 }
924 break;
925 }
926
927 case RECORD_TYPE:
928 pending_statics = layout_record (type);
929 TYPE_MODE (type) = BLKmode;
930 if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
931 {
932 tree field;
933 enum machine_mode mode = VOIDmode;
934
935 /* A record which has any BLKmode members must itself be BLKmode;
936 it can't go in a register.
937 Unless the member is BLKmode only because it isn't aligned. */
938 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
939 {
940 int bitpos;
941
942 if (TREE_CODE (field) != FIELD_DECL)
943 continue;
944
945 if (TYPE_MODE (TREE_TYPE (field)) == BLKmode
946 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field)))
947 goto record_lose;
948
949 if (TREE_CODE (DECL_FIELD_BITPOS (field)) != INTEGER_CST)
950 goto record_lose;
951
952 bitpos = TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field));
953
954 /* Must be BLKmode if any field crosses a word boundary,
955 since extract_bit_field can't handle that in registers. */
956 if (bitpos / BITS_PER_WORD
957 != ((TREE_INT_CST_LOW (DECL_SIZE (field)) + bitpos - 1)
958 / BITS_PER_WORD)
959 /* But there is no problem if the field is entire words. */
960 && TREE_INT_CST_LOW (DECL_SIZE (field)) % BITS_PER_WORD != 0)
961 goto record_lose;
962
963 /* If this field is the whole struct, remember its mode so
964 that, say, we can put a double in a class into a DF
965 register instead of forcing it to live in the stack. */
966 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
967 mode = DECL_MODE (field);
968 }
969
970 if (mode != VOIDmode)
971 /* We only have one real field; use its mode. */
972 TYPE_MODE (type) = mode;
973 else
974 TYPE_MODE (type)
975 = mode_for_size (TREE_INT_CST_LOW (TYPE_SIZE (type)),
976 MODE_INT, 1);
977
978 /* If structure's known alignment is less than
979 what the scalar mode would need, and it matters,
980 then stick with BLKmode. */
981 if (STRICT_ALIGNMENT
982 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
983 || ((int)TYPE_ALIGN (type)
984 >= TREE_INT_CST_LOW (TYPE_SIZE (type)))))
985 {
986 if (TYPE_MODE (type) != BLKmode)
987 /* If this is the only reason this type is BLKmode,
988 then don't force containing types to be BLKmode. */
989 TYPE_NO_FORCE_BLK (type) = 1;
990 TYPE_MODE (type) = BLKmode;
991 }
992
993 record_lose: ;
994 }
995
996 /* Lay out any static members. This is done now
997 because their type may use the record's type. */
998 while (pending_statics)
999 {
1000 layout_decl (TREE_VALUE (pending_statics), 0);
1001 pending_statics = TREE_CHAIN (pending_statics);
1002 }
1003 break;
1004
1005 case UNION_TYPE:
1006 case QUAL_UNION_TYPE:
1007 layout_union (type);
1008 TYPE_MODE (type) = BLKmode;
1009 if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
1010 /* If structure's known alignment is less than
1011 what the scalar mode would need, and it matters,
1012 then stick with BLKmode. */
1013 && (! STRICT_ALIGNMENT
1014 || TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1015 || (int)TYPE_ALIGN (type) >= TREE_INT_CST_LOW (TYPE_SIZE (type))))
1016 {
1017 tree field;
1018 /* A union which has any BLKmode members must itself be BLKmode;
1019 it can't go in a register.
1020 Unless the member is BLKmode only because it isn't aligned. */
1021 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1022 {
1023 if (TREE_CODE (field) != FIELD_DECL)
1024 continue;
1025
1026 if (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1027 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field)))
1028 goto union_lose;
1029 }
1030
1031 TYPE_MODE (type)
1032 = mode_for_size (TREE_INT_CST_LOW (TYPE_SIZE (type)),
1033 MODE_INT, 1);
1034
1035 union_lose: ;
1036 }
1037 break;
1038
1039 case SET_TYPE: /* Used by Chill and Pascal. */
1040 if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST
1041 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST)
1042 abort();
1043 else
1044 {
1045 #ifndef SET_WORD_SIZE
1046 #define SET_WORD_SIZE BITS_PER_WORD
1047 #endif
1048 int alignment = set_alignment ? set_alignment : SET_WORD_SIZE;
1049 int size_in_bits
1050 = (TREE_INT_CST_LOW (TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
1051 - TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) + 1);
1052 int rounded_size
1053 = ((size_in_bits + alignment - 1) / alignment) * alignment;
1054 if (rounded_size > alignment)
1055 TYPE_MODE (type) = BLKmode;
1056 else
1057 TYPE_MODE (type) = mode_for_size (alignment, MODE_INT, 1);
1058 TYPE_SIZE (type) = bitsize_int (rounded_size, 0L);
1059 TYPE_SIZE_UNIT (type) = size_int (rounded_size / BITS_PER_UNIT);
1060 TYPE_ALIGN (type) = alignment;
1061 TYPE_PRECISION (type) = size_in_bits;
1062 }
1063 break;
1064
1065 case FILE_TYPE:
1066 /* The size may vary in different languages, so the language front end
1067 should fill in the size. */
1068 TYPE_ALIGN (type) = BIGGEST_ALIGNMENT;
1069 TYPE_MODE (type) = BLKmode;
1070 break;
1071
1072 default:
1073 abort ();
1074 } /* end switch */
1075
1076 /* Normally, use the alignment corresponding to the mode chosen.
1077 However, where strict alignment is not required, avoid
1078 over-aligning structures, since most compilers do not do this
1079 alignment. */
1080
1081 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1082 && (STRICT_ALIGNMENT
1083 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1084 && TREE_CODE (type) != QUAL_UNION_TYPE
1085 && TREE_CODE (type) != ARRAY_TYPE)))
1086 TYPE_ALIGN (type) = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1087
1088 /* Evaluate nonconstant size only once, either now or as soon as safe. */
1089 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1090 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1091
1092 /* If we failed to find a simple way to calculate the unit size
1093 of the type above, find it by division. */
1094 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1095 {
1096 TYPE_SIZE_UNIT (type) = size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1097 size_int (BITS_PER_UNIT));
1098 }
1099
1100 /* Once again evaluate only once, either now or as soon as safe. */
1101 if (TYPE_SIZE_UNIT (type) != 0
1102 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1103 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1104
1105 /* Also layout any other variants of the type. */
1106 if (TYPE_NEXT_VARIANT (type)
1107 || type != TYPE_MAIN_VARIANT (type))
1108 {
1109 tree variant;
1110 /* Record layout info of this variant. */
1111 tree size = TYPE_SIZE (type);
1112 tree size_unit = TYPE_SIZE_UNIT (type);
1113 int align = TYPE_ALIGN (type);
1114 enum machine_mode mode = TYPE_MODE (type);
1115
1116 /* Copy it into all variants. */
1117 for (variant = TYPE_MAIN_VARIANT (type);
1118 variant;
1119 variant = TYPE_NEXT_VARIANT (variant))
1120 {
1121 TYPE_SIZE (variant) = size;
1122 TYPE_SIZE_UNIT (variant) = size_unit;
1123 TYPE_ALIGN (variant) = align;
1124 TYPE_MODE (variant) = mode;
1125 }
1126 }
1127
1128 pop_obstacks ();
1129 resume_momentary (old);
1130 }
1131 \f
1132 /* Create and return a type for signed integers of PRECISION bits. */
1133
1134 tree
1135 make_signed_type (precision)
1136 int precision;
1137 {
1138 register tree type = make_node (INTEGER_TYPE);
1139
1140 TYPE_PRECISION (type) = precision;
1141
1142 /* Create the extreme values based on the number of bits. */
1143
1144 TYPE_MIN_VALUE (type)
1145 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
1146 ? 0 : (HOST_WIDE_INT) (-1) << (precision - 1)),
1147 (((HOST_WIDE_INT) (-1)
1148 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
1149 ? precision - HOST_BITS_PER_WIDE_INT - 1
1150 : 0))));
1151 TYPE_MAX_VALUE (type)
1152 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
1153 ? -1 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
1154 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
1155 ? (((HOST_WIDE_INT) 1
1156 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
1157 : 0));
1158
1159 /* Give this type's extreme values this type as their type. */
1160
1161 TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
1162 TREE_TYPE (TYPE_MAX_VALUE (type)) = type;
1163
1164 /* The first type made with this or `make_unsigned_type'
1165 is the type for size values. */
1166
1167 if (sizetype == 0)
1168 set_sizetype (type);
1169
1170 /* Lay out the type: set its alignment, size, etc. */
1171
1172 layout_type (type);
1173
1174 return type;
1175 }
1176
1177 /* Create and return a type for unsigned integers of PRECISION bits. */
1178
1179 tree
1180 make_unsigned_type (precision)
1181 int precision;
1182 {
1183 register tree type = make_node (INTEGER_TYPE);
1184
1185 TYPE_PRECISION (type) = precision;
1186
1187 /* The first type made with this or `make_signed_type'
1188 is the type for size values. */
1189
1190 if (sizetype == 0)
1191 {
1192 TREE_UNSIGNED (type) = 1;
1193 set_sizetype (type);
1194 }
1195
1196 fixup_unsigned_type (type);
1197 return type;
1198 }
1199
1200 /* Set sizetype to TYPE, and initialize *sizetype accordingly.
1201 Also update the type of any standard type's sizes made so far. */
1202
1203 void
1204 set_sizetype (type)
1205 tree type;
1206 {
1207 int oprecision = TYPE_PRECISION (type), precision;
1208
1209 sizetype = type;
1210
1211 /* The *bitsizetype types use a precision that avoids overflows when
1212 calculating signed sizes / offsets in bits.
1213
1214 We are allocating bitsizetype once and change it in place when
1215 we decide later that we want to change it. This way, we avoid the
1216 hassle of changing all the TYPE_SIZE (TREE_TYPE (sometype))
1217 individually in each front end. */
1218 if (! bitsizetype)
1219 bitsizetype = make_node (INTEGER_TYPE);
1220 if (TYPE_NAME (sizetype) && ! TYPE_NAME (bitsizetype))
1221 TYPE_NAME (bitsizetype) = TYPE_NAME (sizetype);
1222
1223 precision = oprecision + BITS_PER_UNIT_LOG + 1;
1224 /* However, when cross-compiling from a 32 bit to a 64 bit host,
1225 we are limited to 64 bit precision. */
1226 if (precision > 2 * HOST_BITS_PER_WIDE_INT)
1227 precision = 2 * HOST_BITS_PER_WIDE_INT;
1228 TYPE_PRECISION (bitsizetype) = precision;
1229 if (TREE_UNSIGNED (type))
1230 fixup_unsigned_type (bitsizetype);
1231 else
1232 fixup_signed_type (bitsizetype);
1233 layout_type (bitsizetype);
1234
1235 if (TREE_UNSIGNED (type))
1236 {
1237 usizetype = sizetype;
1238 ubitsizetype = bitsizetype;
1239 ssizetype = make_signed_type (oprecision);
1240 sbitsizetype = make_signed_type (precision);
1241 }
1242 else
1243 {
1244 ssizetype = sizetype;
1245 sbitsizetype = bitsizetype;
1246 usizetype = make_unsigned_type (oprecision);
1247 ubitsizetype = make_unsigned_type (precision);
1248 }
1249 }
1250
1251 /* Set the extreme values of TYPE based on its precision in bits,
1252 then lay it out. Used when make_signed_type won't do
1253 because the tree code is not INTEGER_TYPE.
1254 E.g. for Pascal, when the -fsigned-char option is given. */
1255
1256 void
1257 fixup_signed_type (type)
1258 tree type;
1259 {
1260 register int precision = TYPE_PRECISION (type);
1261
1262 TYPE_MIN_VALUE (type)
1263 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
1264 ? 0 : (HOST_WIDE_INT) (-1) << (precision - 1)),
1265 (((HOST_WIDE_INT) (-1)
1266 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
1267 ? precision - HOST_BITS_PER_WIDE_INT - 1
1268 : 0))));
1269 TYPE_MAX_VALUE (type)
1270 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
1271 ? -1 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
1272 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
1273 ? (((HOST_WIDE_INT) 1
1274 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
1275 : 0));
1276
1277 TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
1278 TREE_TYPE (TYPE_MAX_VALUE (type)) = type;
1279
1280 /* Lay out the type: set its alignment, size, etc. */
1281
1282 layout_type (type);
1283 }
1284
1285 /* Set the extreme values of TYPE based on its precision in bits,
1286 then lay it out. This is used both in `make_unsigned_type'
1287 and for enumeral types. */
1288
1289 void
1290 fixup_unsigned_type (type)
1291 tree type;
1292 {
1293 register int precision = TYPE_PRECISION (type);
1294
1295 TYPE_MIN_VALUE (type) = build_int_2 (0, 0);
1296 TYPE_MAX_VALUE (type)
1297 = build_int_2 (precision - HOST_BITS_PER_WIDE_INT >= 0
1298 ? -1 : ((HOST_WIDE_INT) 1 << precision) - 1,
1299 precision - HOST_BITS_PER_WIDE_INT > 0
1300 ? ((unsigned HOST_WIDE_INT) ~0
1301 >> (HOST_BITS_PER_WIDE_INT
1302 - (precision - HOST_BITS_PER_WIDE_INT)))
1303 : 0);
1304 TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
1305 TREE_TYPE (TYPE_MAX_VALUE (type)) = type;
1306
1307 /* Lay out the type: set its alignment, size, etc. */
1308
1309 layout_type (type);
1310 }
1311 \f
1312 /* Find the best machine mode to use when referencing a bit field of length
1313 BITSIZE bits starting at BITPOS.
1314
1315 The underlying object is known to be aligned to a boundary of ALIGN bits.
1316 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
1317 larger than LARGEST_MODE (usually SImode).
1318
1319 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
1320 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
1321 mode meeting these conditions.
1322
1323 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
1324 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
1325 all the conditions. */
1326
1327 enum machine_mode
1328 get_best_mode (bitsize, bitpos, align, largest_mode, volatilep)
1329 int bitsize, bitpos;
1330 int align;
1331 enum machine_mode largest_mode;
1332 int volatilep;
1333 {
1334 enum machine_mode mode;
1335 int unit = 0;
1336
1337 /* Find the narrowest integer mode that contains the bit field. */
1338 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1339 mode = GET_MODE_WIDER_MODE (mode))
1340 {
1341 unit = GET_MODE_BITSIZE (mode);
1342 if ((bitpos % unit) + bitsize <= unit)
1343 break;
1344 }
1345
1346 if (mode == MAX_MACHINE_MODE
1347 /* It is tempting to omit the following line
1348 if STRICT_ALIGNMENT is true.
1349 But that is incorrect, since if the bitfield uses part of 3 bytes
1350 and we use a 4-byte mode, we could get a spurious segv
1351 if the extra 4th byte is past the end of memory.
1352 (Though at least one Unix compiler ignores this problem:
1353 that on the Sequent 386 machine. */
1354 || MIN (unit, BIGGEST_ALIGNMENT) > align
1355 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
1356 return VOIDmode;
1357
1358 if (SLOW_BYTE_ACCESS && ! volatilep)
1359 {
1360 enum machine_mode wide_mode = VOIDmode, tmode;
1361
1362 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
1363 tmode = GET_MODE_WIDER_MODE (tmode))
1364 {
1365 unit = GET_MODE_BITSIZE (tmode);
1366 if (bitpos / unit == (bitpos + bitsize - 1) / unit
1367 && unit <= BITS_PER_WORD
1368 && unit <= MIN (align, BIGGEST_ALIGNMENT)
1369 && (largest_mode == VOIDmode
1370 || unit <= GET_MODE_BITSIZE (largest_mode)))
1371 wide_mode = tmode;
1372 }
1373
1374 if (wide_mode != VOIDmode)
1375 return wide_mode;
1376 }
1377
1378 return mode;
1379 }
1380 \f
1381 /* Save all variables describing the current status into the structure *P.
1382 This is used before starting a nested function. */
1383
1384 void
1385 save_storage_status (p)
1386 struct function *p ATTRIBUTE_UNUSED;
1387 {
1388 #if 0 /* Need not save, since always 0 and non0 (resp.) within a function. */
1389 p->pending_sizes = pending_sizes;
1390 p->immediate_size_expand = immediate_size_expand;
1391 #endif /* 0 */
1392 }
1393
1394 /* Restore all variables describing the current status from the structure *P.
1395 This is used after a nested function. */
1396
1397 void
1398 restore_storage_status (p)
1399 struct function *p ATTRIBUTE_UNUSED;
1400 {
1401 #if 0
1402 pending_sizes = p->pending_sizes;
1403 immediate_size_expand = p->immediate_size_expand;
1404 #endif /* 0 */
1405 }