2e258ce987ebb74ec1f3b07617c572e419512334
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "stringpool.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "cgraph.h"
33 #include "diagnostic-core.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "varasm.h"
37 #include "print-tree.h"
38 #include "langhooks.h"
39 #include "tree-inline.h"
40 #include "tree-dump.h"
41 #include "gimplify.h"
42
43 /* Data type for the expressions representing sizes of data types.
44 It is the first integer type laid out. */
45 tree sizetype_tab[(int) stk_type_kind_last];
46
47 /* If nonzero, this is an upper limit on alignment of structure fields.
48 The value is measured in bits. */
49 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
50
51 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
52 in the address spaces' address_mode, not pointer_mode. Set only by
53 internal_reference_types called only by a front end. */
54 static int reference_types_internal = 0;
55
56 static tree self_referential_size (tree);
57 static void finalize_record_size (record_layout_info);
58 static void finalize_type_size (tree);
59 static void place_union_field (record_layout_info, tree);
60 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
61 HOST_WIDE_INT, tree);
62 extern void debug_rli (record_layout_info);
63 \f
64 /* Show that REFERENCE_TYPES are internal and should use address_mode.
65 Called only by front end. */
66
67 void
68 internal_reference_types (void)
69 {
70 reference_types_internal = 1;
71 }
72
73 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
74 to serve as the actual size-expression for a type or decl. */
75
76 tree
77 variable_size (tree size)
78 {
79 /* Obviously. */
80 if (TREE_CONSTANT (size))
81 return size;
82
83 /* If the size is self-referential, we can't make a SAVE_EXPR (see
84 save_expr for the rationale). But we can do something else. */
85 if (CONTAINS_PLACEHOLDER_P (size))
86 return self_referential_size (size);
87
88 /* If we are in the global binding level, we can't make a SAVE_EXPR
89 since it may end up being shared across functions, so it is up
90 to the front-end to deal with this case. */
91 if (lang_hooks.decls.global_bindings_p ())
92 return size;
93
94 return save_expr (size);
95 }
96
97 /* An array of functions used for self-referential size computation. */
98 static GTY(()) vec<tree, va_gc> *size_functions;
99
100 /* Return true if T is a self-referential component reference. */
101
102 static bool
103 self_referential_component_ref_p (tree t)
104 {
105 if (TREE_CODE (t) != COMPONENT_REF)
106 return false;
107
108 while (REFERENCE_CLASS_P (t))
109 t = TREE_OPERAND (t, 0);
110
111 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
112 }
113
114 /* Similar to copy_tree_r but do not copy component references involving
115 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
116 and substituted in substitute_in_expr. */
117
118 static tree
119 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
120 {
121 enum tree_code code = TREE_CODE (*tp);
122
123 /* Stop at types, decls, constants like copy_tree_r. */
124 if (TREE_CODE_CLASS (code) == tcc_type
125 || TREE_CODE_CLASS (code) == tcc_declaration
126 || TREE_CODE_CLASS (code) == tcc_constant)
127 {
128 *walk_subtrees = 0;
129 return NULL_TREE;
130 }
131
132 /* This is the pattern built in ada/make_aligning_type. */
133 else if (code == ADDR_EXPR
134 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
135 {
136 *walk_subtrees = 0;
137 return NULL_TREE;
138 }
139
140 /* Default case: the component reference. */
141 else if (self_referential_component_ref_p (*tp))
142 {
143 *walk_subtrees = 0;
144 return NULL_TREE;
145 }
146
147 /* We're not supposed to have them in self-referential size trees
148 because we wouldn't properly control when they are evaluated.
149 However, not creating superfluous SAVE_EXPRs requires accurate
150 tracking of readonly-ness all the way down to here, which we
151 cannot always guarantee in practice. So punt in this case. */
152 else if (code == SAVE_EXPR)
153 return error_mark_node;
154
155 else if (code == STATEMENT_LIST)
156 gcc_unreachable ();
157
158 return copy_tree_r (tp, walk_subtrees, data);
159 }
160
161 /* Given a SIZE expression that is self-referential, return an equivalent
162 expression to serve as the actual size expression for a type. */
163
164 static tree
165 self_referential_size (tree size)
166 {
167 static unsigned HOST_WIDE_INT fnno = 0;
168 vec<tree> self_refs = vNULL;
169 tree param_type_list = NULL, param_decl_list = NULL;
170 tree t, ref, return_type, fntype, fnname, fndecl;
171 unsigned int i;
172 char buf[128];
173 vec<tree, va_gc> *args = NULL;
174
175 /* Do not factor out simple operations. */
176 t = skip_simple_constant_arithmetic (size);
177 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
178 return size;
179
180 /* Collect the list of self-references in the expression. */
181 find_placeholder_in_expr (size, &self_refs);
182 gcc_assert (self_refs.length () > 0);
183
184 /* Obtain a private copy of the expression. */
185 t = size;
186 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
187 return size;
188 size = t;
189
190 /* Build the parameter and argument lists in parallel; also
191 substitute the former for the latter in the expression. */
192 vec_alloc (args, self_refs.length ());
193 FOR_EACH_VEC_ELT (self_refs, i, ref)
194 {
195 tree subst, param_name, param_type, param_decl;
196
197 if (DECL_P (ref))
198 {
199 /* We shouldn't have true variables here. */
200 gcc_assert (TREE_READONLY (ref));
201 subst = ref;
202 }
203 /* This is the pattern built in ada/make_aligning_type. */
204 else if (TREE_CODE (ref) == ADDR_EXPR)
205 subst = ref;
206 /* Default case: the component reference. */
207 else
208 subst = TREE_OPERAND (ref, 1);
209
210 sprintf (buf, "p%d", i);
211 param_name = get_identifier (buf);
212 param_type = TREE_TYPE (ref);
213 param_decl
214 = build_decl (input_location, PARM_DECL, param_name, param_type);
215 DECL_ARG_TYPE (param_decl) = param_type;
216 DECL_ARTIFICIAL (param_decl) = 1;
217 TREE_READONLY (param_decl) = 1;
218
219 size = substitute_in_expr (size, subst, param_decl);
220
221 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
222 param_decl_list = chainon (param_decl, param_decl_list);
223 args->quick_push (ref);
224 }
225
226 self_refs.release ();
227
228 /* Append 'void' to indicate that the number of parameters is fixed. */
229 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
230
231 /* The 3 lists have been created in reverse order. */
232 param_type_list = nreverse (param_type_list);
233 param_decl_list = nreverse (param_decl_list);
234
235 /* Build the function type. */
236 return_type = TREE_TYPE (size);
237 fntype = build_function_type (return_type, param_type_list);
238
239 /* Build the function declaration. */
240 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
241 fnname = get_file_function_name (buf);
242 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
243 for (t = param_decl_list; t; t = DECL_CHAIN (t))
244 DECL_CONTEXT (t) = fndecl;
245 DECL_ARGUMENTS (fndecl) = param_decl_list;
246 DECL_RESULT (fndecl)
247 = build_decl (input_location, RESULT_DECL, 0, return_type);
248 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
249
250 /* The function has been created by the compiler and we don't
251 want to emit debug info for it. */
252 DECL_ARTIFICIAL (fndecl) = 1;
253 DECL_IGNORED_P (fndecl) = 1;
254
255 /* It is supposed to be "const" and never throw. */
256 TREE_READONLY (fndecl) = 1;
257 TREE_NOTHROW (fndecl) = 1;
258
259 /* We want it to be inlined when this is deemed profitable, as
260 well as discarded if every call has been integrated. */
261 DECL_DECLARED_INLINE_P (fndecl) = 1;
262
263 /* It is made up of a unique return statement. */
264 DECL_INITIAL (fndecl) = make_node (BLOCK);
265 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
266 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
267 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
268 TREE_STATIC (fndecl) = 1;
269
270 /* Put it onto the list of size functions. */
271 vec_safe_push (size_functions, fndecl);
272
273 /* Replace the original expression with a call to the size function. */
274 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
275 }
276
277 /* Take, queue and compile all the size functions. It is essential that
278 the size functions be gimplified at the very end of the compilation
279 in order to guarantee transparent handling of self-referential sizes.
280 Otherwise the GENERIC inliner would not be able to inline them back
281 at each of their call sites, thus creating artificial non-constant
282 size expressions which would trigger nasty problems later on. */
283
284 void
285 finalize_size_functions (void)
286 {
287 unsigned int i;
288 tree fndecl;
289
290 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
291 {
292 allocate_struct_function (fndecl, false);
293 set_cfun (NULL);
294 dump_function (TDI_original, fndecl);
295 gimplify_function_tree (fndecl);
296 cgraph_node::finalize_function (fndecl, false);
297 }
298
299 vec_free (size_functions);
300 }
301 \f
302 /* Return the machine mode to use for a nonscalar of SIZE bits. The
303 mode must be in class MCLASS, and have exactly that many value bits;
304 it may have padding as well. If LIMIT is nonzero, modes of wider
305 than MAX_FIXED_MODE_SIZE will not be used. */
306
307 machine_mode
308 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
309 {
310 machine_mode mode;
311 int i;
312
313 if (limit && size > MAX_FIXED_MODE_SIZE)
314 return BLKmode;
315
316 /* Get the first mode which has this size, in the specified class. */
317 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
318 mode = GET_MODE_WIDER_MODE (mode))
319 if (GET_MODE_PRECISION (mode) == size)
320 return mode;
321
322 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
323 for (i = 0; i < NUM_INT_N_ENTS; i ++)
324 if (int_n_data[i].bitsize == size
325 && int_n_enabled_p[i])
326 return int_n_data[i].m;
327
328 return BLKmode;
329 }
330
331 /* Similar, except passed a tree node. */
332
333 machine_mode
334 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
335 {
336 unsigned HOST_WIDE_INT uhwi;
337 unsigned int ui;
338
339 if (!tree_fits_uhwi_p (size))
340 return BLKmode;
341 uhwi = tree_to_uhwi (size);
342 ui = uhwi;
343 if (uhwi != ui)
344 return BLKmode;
345 return mode_for_size (ui, mclass, limit);
346 }
347
348 /* Similar, but never return BLKmode; return the narrowest mode that
349 contains at least the requested number of value bits. */
350
351 machine_mode
352 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
353 {
354 machine_mode mode = VOIDmode;
355 int i;
356
357 /* Get the first mode which has at least this size, in the
358 specified class. */
359 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
360 mode = GET_MODE_WIDER_MODE (mode))
361 if (GET_MODE_PRECISION (mode) >= size)
362 break;
363
364 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
365 for (i = 0; i < NUM_INT_N_ENTS; i ++)
366 if (int_n_data[i].bitsize >= size
367 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
368 && int_n_enabled_p[i])
369 mode = int_n_data[i].m;
370
371 if (mode == VOIDmode)
372 gcc_unreachable ();
373
374 return mode;
375 }
376
377 /* Find an integer mode of the exact same size, or BLKmode on failure. */
378
379 machine_mode
380 int_mode_for_mode (machine_mode mode)
381 {
382 switch (GET_MODE_CLASS (mode))
383 {
384 case MODE_INT:
385 case MODE_PARTIAL_INT:
386 break;
387
388 case MODE_COMPLEX_INT:
389 case MODE_COMPLEX_FLOAT:
390 case MODE_FLOAT:
391 case MODE_DECIMAL_FLOAT:
392 case MODE_VECTOR_INT:
393 case MODE_VECTOR_FLOAT:
394 case MODE_FRACT:
395 case MODE_ACCUM:
396 case MODE_UFRACT:
397 case MODE_UACCUM:
398 case MODE_VECTOR_FRACT:
399 case MODE_VECTOR_ACCUM:
400 case MODE_VECTOR_UFRACT:
401 case MODE_VECTOR_UACCUM:
402 case MODE_POINTER_BOUNDS:
403 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
404 break;
405
406 case MODE_RANDOM:
407 if (mode == BLKmode)
408 break;
409
410 /* ... fall through ... */
411
412 case MODE_CC:
413 default:
414 gcc_unreachable ();
415 }
416
417 return mode;
418 }
419
420 /* Find a mode that can be used for efficient bitwise operations on MODE.
421 Return BLKmode if no such mode exists. */
422
423 machine_mode
424 bitwise_mode_for_mode (machine_mode mode)
425 {
426 /* Quick exit if we already have a suitable mode. */
427 unsigned int bitsize = GET_MODE_BITSIZE (mode);
428 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
429 return mode;
430
431 /* Reuse the sanity checks from int_mode_for_mode. */
432 gcc_checking_assert ((int_mode_for_mode (mode), true));
433
434 /* Try to replace complex modes with complex modes. In general we
435 expect both components to be processed independently, so we only
436 care whether there is a register for the inner mode. */
437 if (COMPLEX_MODE_P (mode))
438 {
439 machine_mode trial = mode;
440 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
441 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
442 if (trial != BLKmode
443 && have_regs_of_mode[GET_MODE_INNER (trial)])
444 return trial;
445 }
446
447 /* Try to replace vector modes with vector modes. Also try using vector
448 modes if an integer mode would be too big. */
449 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
450 {
451 machine_mode trial = mode;
452 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
453 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
454 if (trial != BLKmode
455 && have_regs_of_mode[trial]
456 && targetm.vector_mode_supported_p (trial))
457 return trial;
458 }
459
460 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
461 return mode_for_size (bitsize, MODE_INT, true);
462 }
463
464 /* Find a type that can be used for efficient bitwise operations on MODE.
465 Return null if no such mode exists. */
466
467 tree
468 bitwise_type_for_mode (machine_mode mode)
469 {
470 mode = bitwise_mode_for_mode (mode);
471 if (mode == BLKmode)
472 return NULL_TREE;
473
474 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
475 tree inner_type = build_nonstandard_integer_type (inner_size, true);
476
477 if (VECTOR_MODE_P (mode))
478 return build_vector_type_for_mode (inner_type, mode);
479
480 if (COMPLEX_MODE_P (mode))
481 return build_complex_type (inner_type);
482
483 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
484 return inner_type;
485 }
486
487 /* Find a mode that is suitable for representing a vector with
488 NUNITS elements of mode INNERMODE. Returns BLKmode if there
489 is no suitable mode. */
490
491 machine_mode
492 mode_for_vector (machine_mode innermode, unsigned nunits)
493 {
494 machine_mode mode;
495
496 /* First, look for a supported vector type. */
497 if (SCALAR_FLOAT_MODE_P (innermode))
498 mode = MIN_MODE_VECTOR_FLOAT;
499 else if (SCALAR_FRACT_MODE_P (innermode))
500 mode = MIN_MODE_VECTOR_FRACT;
501 else if (SCALAR_UFRACT_MODE_P (innermode))
502 mode = MIN_MODE_VECTOR_UFRACT;
503 else if (SCALAR_ACCUM_MODE_P (innermode))
504 mode = MIN_MODE_VECTOR_ACCUM;
505 else if (SCALAR_UACCUM_MODE_P (innermode))
506 mode = MIN_MODE_VECTOR_UACCUM;
507 else
508 mode = MIN_MODE_VECTOR_INT;
509
510 /* Do not check vector_mode_supported_p here. We'll do that
511 later in vector_type_mode. */
512 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
513 if (GET_MODE_NUNITS (mode) == nunits
514 && GET_MODE_INNER (mode) == innermode)
515 break;
516
517 /* For integers, try mapping it to a same-sized scalar mode. */
518 if (mode == VOIDmode
519 && GET_MODE_CLASS (innermode) == MODE_INT)
520 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
521 MODE_INT, 0);
522
523 if (mode == VOIDmode
524 || (GET_MODE_CLASS (mode) == MODE_INT
525 && !have_regs_of_mode[mode]))
526 return BLKmode;
527
528 return mode;
529 }
530
531 /* Return the alignment of MODE. This will be bounded by 1 and
532 BIGGEST_ALIGNMENT. */
533
534 unsigned int
535 get_mode_alignment (machine_mode mode)
536 {
537 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
538 }
539
540 /* Return the natural mode of an array, given that it is SIZE bytes in
541 total and has elements of type ELEM_TYPE. */
542
543 static machine_mode
544 mode_for_array (tree elem_type, tree size)
545 {
546 tree elem_size;
547 unsigned HOST_WIDE_INT int_size, int_elem_size;
548 bool limit_p;
549
550 /* One-element arrays get the component type's mode. */
551 elem_size = TYPE_SIZE (elem_type);
552 if (simple_cst_equal (size, elem_size))
553 return TYPE_MODE (elem_type);
554
555 limit_p = true;
556 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
557 {
558 int_size = tree_to_uhwi (size);
559 int_elem_size = tree_to_uhwi (elem_size);
560 if (int_elem_size > 0
561 && int_size % int_elem_size == 0
562 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
563 int_size / int_elem_size))
564 limit_p = false;
565 }
566 return mode_for_size_tree (size, MODE_INT, limit_p);
567 }
568 \f
569 /* Subroutine of layout_decl: Force alignment required for the data type.
570 But if the decl itself wants greater alignment, don't override that. */
571
572 static inline void
573 do_type_align (tree type, tree decl)
574 {
575 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
576 {
577 DECL_ALIGN (decl) = TYPE_ALIGN (type);
578 if (TREE_CODE (decl) == FIELD_DECL)
579 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
580 }
581 }
582
583 /* Set the size, mode and alignment of a ..._DECL node.
584 TYPE_DECL does need this for C++.
585 Note that LABEL_DECL and CONST_DECL nodes do not need this,
586 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
587 Don't call layout_decl for them.
588
589 KNOWN_ALIGN is the amount of alignment we can assume this
590 decl has with no special effort. It is relevant only for FIELD_DECLs
591 and depends on the previous fields.
592 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
593 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
594 the record will be aligned to suit. */
595
596 void
597 layout_decl (tree decl, unsigned int known_align)
598 {
599 tree type = TREE_TYPE (decl);
600 enum tree_code code = TREE_CODE (decl);
601 rtx rtl = NULL_RTX;
602 location_t loc = DECL_SOURCE_LOCATION (decl);
603
604 if (code == CONST_DECL)
605 return;
606
607 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
608 || code == TYPE_DECL ||code == FIELD_DECL);
609
610 rtl = DECL_RTL_IF_SET (decl);
611
612 if (type == error_mark_node)
613 type = void_type_node;
614
615 /* Usually the size and mode come from the data type without change,
616 however, the front-end may set the explicit width of the field, so its
617 size may not be the same as the size of its type. This happens with
618 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
619 also happens with other fields. For example, the C++ front-end creates
620 zero-sized fields corresponding to empty base classes, and depends on
621 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
622 size in bytes from the size in bits. If we have already set the mode,
623 don't set it again since we can be called twice for FIELD_DECLs. */
624
625 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
626 if (DECL_MODE (decl) == VOIDmode)
627 DECL_MODE (decl) = TYPE_MODE (type);
628
629 if (DECL_SIZE (decl) == 0)
630 {
631 DECL_SIZE (decl) = TYPE_SIZE (type);
632 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
633 }
634 else if (DECL_SIZE_UNIT (decl) == 0)
635 DECL_SIZE_UNIT (decl)
636 = fold_convert_loc (loc, sizetype,
637 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
638 bitsize_unit_node));
639
640 if (code != FIELD_DECL)
641 /* For non-fields, update the alignment from the type. */
642 do_type_align (type, decl);
643 else
644 /* For fields, it's a bit more complicated... */
645 {
646 bool old_user_align = DECL_USER_ALIGN (decl);
647 bool zero_bitfield = false;
648 bool packed_p = DECL_PACKED (decl);
649 unsigned int mfa;
650
651 if (DECL_BIT_FIELD (decl))
652 {
653 DECL_BIT_FIELD_TYPE (decl) = type;
654
655 /* A zero-length bit-field affects the alignment of the next
656 field. In essence such bit-fields are not influenced by
657 any packing due to #pragma pack or attribute packed. */
658 if (integer_zerop (DECL_SIZE (decl))
659 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
660 {
661 zero_bitfield = true;
662 packed_p = false;
663 if (PCC_BITFIELD_TYPE_MATTERS)
664 do_type_align (type, decl);
665 else
666 {
667 #ifdef EMPTY_FIELD_BOUNDARY
668 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
669 {
670 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
671 DECL_USER_ALIGN (decl) = 0;
672 }
673 #endif
674 }
675 }
676
677 /* See if we can use an ordinary integer mode for a bit-field.
678 Conditions are: a fixed size that is correct for another mode,
679 occupying a complete byte or bytes on proper boundary. */
680 if (TYPE_SIZE (type) != 0
681 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
682 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
683 {
684 machine_mode xmode
685 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
686 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
687
688 if (xmode != BLKmode
689 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
690 && (known_align == 0 || known_align >= xalign))
691 {
692 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
693 DECL_MODE (decl) = xmode;
694 DECL_BIT_FIELD (decl) = 0;
695 }
696 }
697
698 /* Turn off DECL_BIT_FIELD if we won't need it set. */
699 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
700 && known_align >= TYPE_ALIGN (type)
701 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
702 DECL_BIT_FIELD (decl) = 0;
703 }
704 else if (packed_p && DECL_USER_ALIGN (decl))
705 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
706 round up; we'll reduce it again below. We want packing to
707 supersede USER_ALIGN inherited from the type, but defer to
708 alignment explicitly specified on the field decl. */;
709 else
710 do_type_align (type, decl);
711
712 /* If the field is packed and not explicitly aligned, give it the
713 minimum alignment. Note that do_type_align may set
714 DECL_USER_ALIGN, so we need to check old_user_align instead. */
715 if (packed_p
716 && !old_user_align)
717 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
718
719 if (! packed_p && ! DECL_USER_ALIGN (decl))
720 {
721 /* Some targets (i.e. i386, VMS) limit struct field alignment
722 to a lower boundary than alignment of variables unless
723 it was overridden by attribute aligned. */
724 #ifdef BIGGEST_FIELD_ALIGNMENT
725 DECL_ALIGN (decl)
726 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
727 #endif
728 #ifdef ADJUST_FIELD_ALIGN
729 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
730 #endif
731 }
732
733 if (zero_bitfield)
734 mfa = initial_max_fld_align * BITS_PER_UNIT;
735 else
736 mfa = maximum_field_alignment;
737 /* Should this be controlled by DECL_USER_ALIGN, too? */
738 if (mfa != 0)
739 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
740 }
741
742 /* Evaluate nonconstant size only once, either now or as soon as safe. */
743 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
744 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
745 if (DECL_SIZE_UNIT (decl) != 0
746 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
747 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
748
749 /* If requested, warn about definitions of large data objects. */
750 if (warn_larger_than
751 && (code == VAR_DECL || code == PARM_DECL)
752 && ! DECL_EXTERNAL (decl))
753 {
754 tree size = DECL_SIZE_UNIT (decl);
755
756 if (size != 0 && TREE_CODE (size) == INTEGER_CST
757 && compare_tree_int (size, larger_than_size) > 0)
758 {
759 int size_as_int = TREE_INT_CST_LOW (size);
760
761 if (compare_tree_int (size, size_as_int) == 0)
762 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
763 else
764 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
765 decl, larger_than_size);
766 }
767 }
768
769 /* If the RTL was already set, update its mode and mem attributes. */
770 if (rtl)
771 {
772 PUT_MODE (rtl, DECL_MODE (decl));
773 SET_DECL_RTL (decl, 0);
774 if (MEM_P (rtl))
775 set_mem_attributes (rtl, decl, 1);
776 SET_DECL_RTL (decl, rtl);
777 }
778 }
779
780 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
781 a previous call to layout_decl and calls it again. */
782
783 void
784 relayout_decl (tree decl)
785 {
786 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
787 DECL_MODE (decl) = VOIDmode;
788 if (!DECL_USER_ALIGN (decl))
789 DECL_ALIGN (decl) = 0;
790 SET_DECL_RTL (decl, 0);
791
792 layout_decl (decl, 0);
793 }
794 \f
795 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
796 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
797 is to be passed to all other layout functions for this record. It is the
798 responsibility of the caller to call `free' for the storage returned.
799 Note that garbage collection is not permitted until we finish laying
800 out the record. */
801
802 record_layout_info
803 start_record_layout (tree t)
804 {
805 record_layout_info rli = XNEW (struct record_layout_info_s);
806
807 rli->t = t;
808
809 /* If the type has a minimum specified alignment (via an attribute
810 declaration, for example) use it -- otherwise, start with a
811 one-byte alignment. */
812 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
813 rli->unpacked_align = rli->record_align;
814 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
815
816 #ifdef STRUCTURE_SIZE_BOUNDARY
817 /* Packed structures don't need to have minimum size. */
818 if (! TYPE_PACKED (t))
819 {
820 unsigned tmp;
821
822 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
823 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
824 if (maximum_field_alignment != 0)
825 tmp = MIN (tmp, maximum_field_alignment);
826 rli->record_align = MAX (rli->record_align, tmp);
827 }
828 #endif
829
830 rli->offset = size_zero_node;
831 rli->bitpos = bitsize_zero_node;
832 rli->prev_field = 0;
833 rli->pending_statics = 0;
834 rli->packed_maybe_necessary = 0;
835 rli->remaining_in_alignment = 0;
836
837 return rli;
838 }
839
840 /* Return the combined bit position for the byte offset OFFSET and the
841 bit position BITPOS.
842
843 These functions operate on byte and bit positions present in FIELD_DECLs
844 and assume that these expressions result in no (intermediate) overflow.
845 This assumption is necessary to fold the expressions as much as possible,
846 so as to avoid creating artificially variable-sized types in languages
847 supporting variable-sized types like Ada. */
848
849 tree
850 bit_from_pos (tree offset, tree bitpos)
851 {
852 if (TREE_CODE (offset) == PLUS_EXPR)
853 offset = size_binop (PLUS_EXPR,
854 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
855 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
856 else
857 offset = fold_convert (bitsizetype, offset);
858 return size_binop (PLUS_EXPR, bitpos,
859 size_binop (MULT_EXPR, offset, bitsize_unit_node));
860 }
861
862 /* Return the combined truncated byte position for the byte offset OFFSET and
863 the bit position BITPOS. */
864
865 tree
866 byte_from_pos (tree offset, tree bitpos)
867 {
868 tree bytepos;
869 if (TREE_CODE (bitpos) == MULT_EXPR
870 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
871 bytepos = TREE_OPERAND (bitpos, 0);
872 else
873 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
874 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
875 }
876
877 /* Split the bit position POS into a byte offset *POFFSET and a bit
878 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
879
880 void
881 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
882 tree pos)
883 {
884 tree toff_align = bitsize_int (off_align);
885 if (TREE_CODE (pos) == MULT_EXPR
886 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
887 {
888 *poffset = size_binop (MULT_EXPR,
889 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
890 size_int (off_align / BITS_PER_UNIT));
891 *pbitpos = bitsize_zero_node;
892 }
893 else
894 {
895 *poffset = size_binop (MULT_EXPR,
896 fold_convert (sizetype,
897 size_binop (FLOOR_DIV_EXPR, pos,
898 toff_align)),
899 size_int (off_align / BITS_PER_UNIT));
900 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
901 }
902 }
903
904 /* Given a pointer to bit and byte offsets and an offset alignment,
905 normalize the offsets so they are within the alignment. */
906
907 void
908 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
909 {
910 /* If the bit position is now larger than it should be, adjust it
911 downwards. */
912 if (compare_tree_int (*pbitpos, off_align) >= 0)
913 {
914 tree offset, bitpos;
915 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
916 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
917 *pbitpos = bitpos;
918 }
919 }
920
921 /* Print debugging information about the information in RLI. */
922
923 DEBUG_FUNCTION void
924 debug_rli (record_layout_info rli)
925 {
926 print_node_brief (stderr, "type", rli->t, 0);
927 print_node_brief (stderr, "\noffset", rli->offset, 0);
928 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
929
930 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
931 rli->record_align, rli->unpacked_align,
932 rli->offset_align);
933
934 /* The ms_struct code is the only that uses this. */
935 if (targetm.ms_bitfield_layout_p (rli->t))
936 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
937
938 if (rli->packed_maybe_necessary)
939 fprintf (stderr, "packed may be necessary\n");
940
941 if (!vec_safe_is_empty (rli->pending_statics))
942 {
943 fprintf (stderr, "pending statics:\n");
944 debug_vec_tree (rli->pending_statics);
945 }
946 }
947
948 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
949 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
950
951 void
952 normalize_rli (record_layout_info rli)
953 {
954 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
955 }
956
957 /* Returns the size in bytes allocated so far. */
958
959 tree
960 rli_size_unit_so_far (record_layout_info rli)
961 {
962 return byte_from_pos (rli->offset, rli->bitpos);
963 }
964
965 /* Returns the size in bits allocated so far. */
966
967 tree
968 rli_size_so_far (record_layout_info rli)
969 {
970 return bit_from_pos (rli->offset, rli->bitpos);
971 }
972
973 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
974 the next available location within the record is given by KNOWN_ALIGN.
975 Update the variable alignment fields in RLI, and return the alignment
976 to give the FIELD. */
977
978 unsigned int
979 update_alignment_for_field (record_layout_info rli, tree field,
980 unsigned int known_align)
981 {
982 /* The alignment required for FIELD. */
983 unsigned int desired_align;
984 /* The type of this field. */
985 tree type = TREE_TYPE (field);
986 /* True if the field was explicitly aligned by the user. */
987 bool user_align;
988 bool is_bitfield;
989
990 /* Do not attempt to align an ERROR_MARK node */
991 if (TREE_CODE (type) == ERROR_MARK)
992 return 0;
993
994 /* Lay out the field so we know what alignment it needs. */
995 layout_decl (field, known_align);
996 desired_align = DECL_ALIGN (field);
997 user_align = DECL_USER_ALIGN (field);
998
999 is_bitfield = (type != error_mark_node
1000 && DECL_BIT_FIELD_TYPE (field)
1001 && ! integer_zerop (TYPE_SIZE (type)));
1002
1003 /* Record must have at least as much alignment as any field.
1004 Otherwise, the alignment of the field within the record is
1005 meaningless. */
1006 if (targetm.ms_bitfield_layout_p (rli->t))
1007 {
1008 /* Here, the alignment of the underlying type of a bitfield can
1009 affect the alignment of a record; even a zero-sized field
1010 can do this. The alignment should be to the alignment of
1011 the type, except that for zero-size bitfields this only
1012 applies if there was an immediately prior, nonzero-size
1013 bitfield. (That's the way it is, experimentally.) */
1014 if ((!is_bitfield && !DECL_PACKED (field))
1015 || ((DECL_SIZE (field) == NULL_TREE
1016 || !integer_zerop (DECL_SIZE (field)))
1017 ? !DECL_PACKED (field)
1018 : (rli->prev_field
1019 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1020 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1021 {
1022 unsigned int type_align = TYPE_ALIGN (type);
1023 type_align = MAX (type_align, desired_align);
1024 if (maximum_field_alignment != 0)
1025 type_align = MIN (type_align, maximum_field_alignment);
1026 rli->record_align = MAX (rli->record_align, type_align);
1027 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1028 }
1029 }
1030 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1031 {
1032 /* Named bit-fields cause the entire structure to have the
1033 alignment implied by their type. Some targets also apply the same
1034 rules to unnamed bitfields. */
1035 if (DECL_NAME (field) != 0
1036 || targetm.align_anon_bitfield ())
1037 {
1038 unsigned int type_align = TYPE_ALIGN (type);
1039
1040 #ifdef ADJUST_FIELD_ALIGN
1041 if (! TYPE_USER_ALIGN (type))
1042 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1043 #endif
1044
1045 /* Targets might chose to handle unnamed and hence possibly
1046 zero-width bitfield. Those are not influenced by #pragmas
1047 or packed attributes. */
1048 if (integer_zerop (DECL_SIZE (field)))
1049 {
1050 if (initial_max_fld_align)
1051 type_align = MIN (type_align,
1052 initial_max_fld_align * BITS_PER_UNIT);
1053 }
1054 else if (maximum_field_alignment != 0)
1055 type_align = MIN (type_align, maximum_field_alignment);
1056 else if (DECL_PACKED (field))
1057 type_align = MIN (type_align, BITS_PER_UNIT);
1058
1059 /* The alignment of the record is increased to the maximum
1060 of the current alignment, the alignment indicated on the
1061 field (i.e., the alignment specified by an __aligned__
1062 attribute), and the alignment indicated by the type of
1063 the field. */
1064 rli->record_align = MAX (rli->record_align, desired_align);
1065 rli->record_align = MAX (rli->record_align, type_align);
1066
1067 if (warn_packed)
1068 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1069 user_align |= TYPE_USER_ALIGN (type);
1070 }
1071 }
1072 else
1073 {
1074 rli->record_align = MAX (rli->record_align, desired_align);
1075 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1076 }
1077
1078 TYPE_USER_ALIGN (rli->t) |= user_align;
1079
1080 return desired_align;
1081 }
1082
1083 /* Called from place_field to handle unions. */
1084
1085 static void
1086 place_union_field (record_layout_info rli, tree field)
1087 {
1088 update_alignment_for_field (rli, field, /*known_align=*/0);
1089
1090 DECL_FIELD_OFFSET (field) = size_zero_node;
1091 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1092 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1093
1094 /* If this is an ERROR_MARK return *after* having set the
1095 field at the start of the union. This helps when parsing
1096 invalid fields. */
1097 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1098 return;
1099
1100 /* We assume the union's size will be a multiple of a byte so we don't
1101 bother with BITPOS. */
1102 if (TREE_CODE (rli->t) == UNION_TYPE)
1103 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1104 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1105 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1106 DECL_SIZE_UNIT (field), rli->offset);
1107 }
1108
1109 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1110 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1111 units of alignment than the underlying TYPE. */
1112 static int
1113 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1114 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1115 {
1116 /* Note that the calculation of OFFSET might overflow; we calculate it so
1117 that we still get the right result as long as ALIGN is a power of two. */
1118 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1119
1120 offset = offset % align;
1121 return ((offset + size + align - 1) / align
1122 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1123 }
1124
1125 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1126 is a FIELD_DECL to be added after those fields already present in
1127 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1128 callers that desire that behavior must manually perform that step.) */
1129
1130 void
1131 place_field (record_layout_info rli, tree field)
1132 {
1133 /* The alignment required for FIELD. */
1134 unsigned int desired_align;
1135 /* The alignment FIELD would have if we just dropped it into the
1136 record as it presently stands. */
1137 unsigned int known_align;
1138 unsigned int actual_align;
1139 /* The type of this field. */
1140 tree type = TREE_TYPE (field);
1141
1142 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1143
1144 /* If FIELD is static, then treat it like a separate variable, not
1145 really like a structure field. If it is a FUNCTION_DECL, it's a
1146 method. In both cases, all we do is lay out the decl, and we do
1147 it *after* the record is laid out. */
1148 if (TREE_CODE (field) == VAR_DECL)
1149 {
1150 vec_safe_push (rli->pending_statics, field);
1151 return;
1152 }
1153
1154 /* Enumerators and enum types which are local to this class need not
1155 be laid out. Likewise for initialized constant fields. */
1156 else if (TREE_CODE (field) != FIELD_DECL)
1157 return;
1158
1159 /* Unions are laid out very differently than records, so split
1160 that code off to another function. */
1161 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1162 {
1163 place_union_field (rli, field);
1164 return;
1165 }
1166
1167 else if (TREE_CODE (type) == ERROR_MARK)
1168 {
1169 /* Place this field at the current allocation position, so we
1170 maintain monotonicity. */
1171 DECL_FIELD_OFFSET (field) = rli->offset;
1172 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1173 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1174 return;
1175 }
1176
1177 /* Work out the known alignment so far. Note that A & (-A) is the
1178 value of the least-significant bit in A that is one. */
1179 if (! integer_zerop (rli->bitpos))
1180 known_align = (tree_to_uhwi (rli->bitpos)
1181 & - tree_to_uhwi (rli->bitpos));
1182 else if (integer_zerop (rli->offset))
1183 known_align = 0;
1184 else if (tree_fits_uhwi_p (rli->offset))
1185 known_align = (BITS_PER_UNIT
1186 * (tree_to_uhwi (rli->offset)
1187 & - tree_to_uhwi (rli->offset)));
1188 else
1189 known_align = rli->offset_align;
1190
1191 desired_align = update_alignment_for_field (rli, field, known_align);
1192 if (known_align == 0)
1193 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1194
1195 if (warn_packed && DECL_PACKED (field))
1196 {
1197 if (known_align >= TYPE_ALIGN (type))
1198 {
1199 if (TYPE_ALIGN (type) > desired_align)
1200 {
1201 if (STRICT_ALIGNMENT)
1202 warning (OPT_Wattributes, "packed attribute causes "
1203 "inefficient alignment for %q+D", field);
1204 /* Don't warn if DECL_PACKED was set by the type. */
1205 else if (!TYPE_PACKED (rli->t))
1206 warning (OPT_Wattributes, "packed attribute is "
1207 "unnecessary for %q+D", field);
1208 }
1209 }
1210 else
1211 rli->packed_maybe_necessary = 1;
1212 }
1213
1214 /* Does this field automatically have alignment it needs by virtue
1215 of the fields that precede it and the record's own alignment? */
1216 if (known_align < desired_align)
1217 {
1218 /* No, we need to skip space before this field.
1219 Bump the cumulative size to multiple of field alignment. */
1220
1221 if (!targetm.ms_bitfield_layout_p (rli->t)
1222 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1223 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1224
1225 /* If the alignment is still within offset_align, just align
1226 the bit position. */
1227 if (desired_align < rli->offset_align)
1228 rli->bitpos = round_up (rli->bitpos, desired_align);
1229 else
1230 {
1231 /* First adjust OFFSET by the partial bits, then align. */
1232 rli->offset
1233 = size_binop (PLUS_EXPR, rli->offset,
1234 fold_convert (sizetype,
1235 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1236 bitsize_unit_node)));
1237 rli->bitpos = bitsize_zero_node;
1238
1239 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1240 }
1241
1242 if (! TREE_CONSTANT (rli->offset))
1243 rli->offset_align = desired_align;
1244 if (targetm.ms_bitfield_layout_p (rli->t))
1245 rli->prev_field = NULL;
1246 }
1247
1248 /* Handle compatibility with PCC. Note that if the record has any
1249 variable-sized fields, we need not worry about compatibility. */
1250 if (PCC_BITFIELD_TYPE_MATTERS
1251 && ! targetm.ms_bitfield_layout_p (rli->t)
1252 && TREE_CODE (field) == FIELD_DECL
1253 && type != error_mark_node
1254 && DECL_BIT_FIELD (field)
1255 && (! DECL_PACKED (field)
1256 /* Enter for these packed fields only to issue a warning. */
1257 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1258 && maximum_field_alignment == 0
1259 && ! integer_zerop (DECL_SIZE (field))
1260 && tree_fits_uhwi_p (DECL_SIZE (field))
1261 && tree_fits_uhwi_p (rli->offset)
1262 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1263 {
1264 unsigned int type_align = TYPE_ALIGN (type);
1265 tree dsize = DECL_SIZE (field);
1266 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1267 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1268 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1269
1270 #ifdef ADJUST_FIELD_ALIGN
1271 if (! TYPE_USER_ALIGN (type))
1272 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1273 #endif
1274
1275 /* A bit field may not span more units of alignment of its type
1276 than its type itself. Advance to next boundary if necessary. */
1277 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1278 {
1279 if (DECL_PACKED (field))
1280 {
1281 if (warn_packed_bitfield_compat == 1)
1282 inform
1283 (input_location,
1284 "offset of packed bit-field %qD has changed in GCC 4.4",
1285 field);
1286 }
1287 else
1288 rli->bitpos = round_up (rli->bitpos, type_align);
1289 }
1290
1291 if (! DECL_PACKED (field))
1292 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1293 }
1294
1295 #ifdef BITFIELD_NBYTES_LIMITED
1296 if (BITFIELD_NBYTES_LIMITED
1297 && ! targetm.ms_bitfield_layout_p (rli->t)
1298 && TREE_CODE (field) == FIELD_DECL
1299 && type != error_mark_node
1300 && DECL_BIT_FIELD_TYPE (field)
1301 && ! DECL_PACKED (field)
1302 && ! integer_zerop (DECL_SIZE (field))
1303 && tree_fits_uhwi_p (DECL_SIZE (field))
1304 && tree_fits_uhwi_p (rli->offset)
1305 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1306 {
1307 unsigned int type_align = TYPE_ALIGN (type);
1308 tree dsize = DECL_SIZE (field);
1309 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1310 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1311 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1312
1313 #ifdef ADJUST_FIELD_ALIGN
1314 if (! TYPE_USER_ALIGN (type))
1315 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1316 #endif
1317
1318 if (maximum_field_alignment != 0)
1319 type_align = MIN (type_align, maximum_field_alignment);
1320 /* ??? This test is opposite the test in the containing if
1321 statement, so this code is unreachable currently. */
1322 else if (DECL_PACKED (field))
1323 type_align = MIN (type_align, BITS_PER_UNIT);
1324
1325 /* A bit field may not span the unit of alignment of its type.
1326 Advance to next boundary if necessary. */
1327 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1328 rli->bitpos = round_up (rli->bitpos, type_align);
1329
1330 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1331 }
1332 #endif
1333
1334 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1335 A subtlety:
1336 When a bit field is inserted into a packed record, the whole
1337 size of the underlying type is used by one or more same-size
1338 adjacent bitfields. (That is, if its long:3, 32 bits is
1339 used in the record, and any additional adjacent long bitfields are
1340 packed into the same chunk of 32 bits. However, if the size
1341 changes, a new field of that size is allocated.) In an unpacked
1342 record, this is the same as using alignment, but not equivalent
1343 when packing.
1344
1345 Note: for compatibility, we use the type size, not the type alignment
1346 to determine alignment, since that matches the documentation */
1347
1348 if (targetm.ms_bitfield_layout_p (rli->t))
1349 {
1350 tree prev_saved = rli->prev_field;
1351 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1352
1353 /* This is a bitfield if it exists. */
1354 if (rli->prev_field)
1355 {
1356 /* If both are bitfields, nonzero, and the same size, this is
1357 the middle of a run. Zero declared size fields are special
1358 and handled as "end of run". (Note: it's nonzero declared
1359 size, but equal type sizes!) (Since we know that both
1360 the current and previous fields are bitfields by the
1361 time we check it, DECL_SIZE must be present for both.) */
1362 if (DECL_BIT_FIELD_TYPE (field)
1363 && !integer_zerop (DECL_SIZE (field))
1364 && !integer_zerop (DECL_SIZE (rli->prev_field))
1365 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1366 && tree_fits_uhwi_p (TYPE_SIZE (type))
1367 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1368 {
1369 /* We're in the middle of a run of equal type size fields; make
1370 sure we realign if we run out of bits. (Not decl size,
1371 type size!) */
1372 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1373
1374 if (rli->remaining_in_alignment < bitsize)
1375 {
1376 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1377
1378 /* out of bits; bump up to next 'word'. */
1379 rli->bitpos
1380 = size_binop (PLUS_EXPR, rli->bitpos,
1381 bitsize_int (rli->remaining_in_alignment));
1382 rli->prev_field = field;
1383 if (typesize < bitsize)
1384 rli->remaining_in_alignment = 0;
1385 else
1386 rli->remaining_in_alignment = typesize - bitsize;
1387 }
1388 else
1389 rli->remaining_in_alignment -= bitsize;
1390 }
1391 else
1392 {
1393 /* End of a run: if leaving a run of bitfields of the same type
1394 size, we have to "use up" the rest of the bits of the type
1395 size.
1396
1397 Compute the new position as the sum of the size for the prior
1398 type and where we first started working on that type.
1399 Note: since the beginning of the field was aligned then
1400 of course the end will be too. No round needed. */
1401
1402 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1403 {
1404 rli->bitpos
1405 = size_binop (PLUS_EXPR, rli->bitpos,
1406 bitsize_int (rli->remaining_in_alignment));
1407 }
1408 else
1409 /* We "use up" size zero fields; the code below should behave
1410 as if the prior field was not a bitfield. */
1411 prev_saved = NULL;
1412
1413 /* Cause a new bitfield to be captured, either this time (if
1414 currently a bitfield) or next time we see one. */
1415 if (!DECL_BIT_FIELD_TYPE (field)
1416 || integer_zerop (DECL_SIZE (field)))
1417 rli->prev_field = NULL;
1418 }
1419
1420 normalize_rli (rli);
1421 }
1422
1423 /* If we're starting a new run of same type size bitfields
1424 (or a run of non-bitfields), set up the "first of the run"
1425 fields.
1426
1427 That is, if the current field is not a bitfield, or if there
1428 was a prior bitfield the type sizes differ, or if there wasn't
1429 a prior bitfield the size of the current field is nonzero.
1430
1431 Note: we must be sure to test ONLY the type size if there was
1432 a prior bitfield and ONLY for the current field being zero if
1433 there wasn't. */
1434
1435 if (!DECL_BIT_FIELD_TYPE (field)
1436 || (prev_saved != NULL
1437 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1438 : !integer_zerop (DECL_SIZE (field)) ))
1439 {
1440 /* Never smaller than a byte for compatibility. */
1441 unsigned int type_align = BITS_PER_UNIT;
1442
1443 /* (When not a bitfield), we could be seeing a flex array (with
1444 no DECL_SIZE). Since we won't be using remaining_in_alignment
1445 until we see a bitfield (and come by here again) we just skip
1446 calculating it. */
1447 if (DECL_SIZE (field) != NULL
1448 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1449 && tree_fits_uhwi_p (DECL_SIZE (field)))
1450 {
1451 unsigned HOST_WIDE_INT bitsize
1452 = tree_to_uhwi (DECL_SIZE (field));
1453 unsigned HOST_WIDE_INT typesize
1454 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1455
1456 if (typesize < bitsize)
1457 rli->remaining_in_alignment = 0;
1458 else
1459 rli->remaining_in_alignment = typesize - bitsize;
1460 }
1461
1462 /* Now align (conventionally) for the new type. */
1463 type_align = TYPE_ALIGN (TREE_TYPE (field));
1464
1465 if (maximum_field_alignment != 0)
1466 type_align = MIN (type_align, maximum_field_alignment);
1467
1468 rli->bitpos = round_up (rli->bitpos, type_align);
1469
1470 /* If we really aligned, don't allow subsequent bitfields
1471 to undo that. */
1472 rli->prev_field = NULL;
1473 }
1474 }
1475
1476 /* Offset so far becomes the position of this field after normalizing. */
1477 normalize_rli (rli);
1478 DECL_FIELD_OFFSET (field) = rli->offset;
1479 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1480 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1481
1482 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1483 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1484 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1485
1486 /* If this field ended up more aligned than we thought it would be (we
1487 approximate this by seeing if its position changed), lay out the field
1488 again; perhaps we can use an integral mode for it now. */
1489 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1490 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1491 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1492 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1493 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1494 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1495 actual_align = (BITS_PER_UNIT
1496 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1497 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1498 else
1499 actual_align = DECL_OFFSET_ALIGN (field);
1500 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1501 store / extract bit field operations will check the alignment of the
1502 record against the mode of bit fields. */
1503
1504 if (known_align != actual_align)
1505 layout_decl (field, actual_align);
1506
1507 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1508 rli->prev_field = field;
1509
1510 /* Now add size of this field to the size of the record. If the size is
1511 not constant, treat the field as being a multiple of bytes and just
1512 adjust the offset, resetting the bit position. Otherwise, apportion the
1513 size amongst the bit position and offset. First handle the case of an
1514 unspecified size, which can happen when we have an invalid nested struct
1515 definition, such as struct j { struct j { int i; } }. The error message
1516 is printed in finish_struct. */
1517 if (DECL_SIZE (field) == 0)
1518 /* Do nothing. */;
1519 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1520 || TREE_OVERFLOW (DECL_SIZE (field)))
1521 {
1522 rli->offset
1523 = size_binop (PLUS_EXPR, rli->offset,
1524 fold_convert (sizetype,
1525 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1526 bitsize_unit_node)));
1527 rli->offset
1528 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1529 rli->bitpos = bitsize_zero_node;
1530 rli->offset_align = MIN (rli->offset_align, desired_align);
1531 }
1532 else if (targetm.ms_bitfield_layout_p (rli->t))
1533 {
1534 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1535
1536 /* If we ended a bitfield before the full length of the type then
1537 pad the struct out to the full length of the last type. */
1538 if ((DECL_CHAIN (field) == NULL
1539 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1540 && DECL_BIT_FIELD_TYPE (field)
1541 && !integer_zerop (DECL_SIZE (field)))
1542 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1543 bitsize_int (rli->remaining_in_alignment));
1544
1545 normalize_rli (rli);
1546 }
1547 else
1548 {
1549 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1550 normalize_rli (rli);
1551 }
1552 }
1553
1554 /* Assuming that all the fields have been laid out, this function uses
1555 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1556 indicated by RLI. */
1557
1558 static void
1559 finalize_record_size (record_layout_info rli)
1560 {
1561 tree unpadded_size, unpadded_size_unit;
1562
1563 /* Now we want just byte and bit offsets, so set the offset alignment
1564 to be a byte and then normalize. */
1565 rli->offset_align = BITS_PER_UNIT;
1566 normalize_rli (rli);
1567
1568 /* Determine the desired alignment. */
1569 #ifdef ROUND_TYPE_ALIGN
1570 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1571 rli->record_align);
1572 #else
1573 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1574 #endif
1575
1576 /* Compute the size so far. Be sure to allow for extra bits in the
1577 size in bytes. We have guaranteed above that it will be no more
1578 than a single byte. */
1579 unpadded_size = rli_size_so_far (rli);
1580 unpadded_size_unit = rli_size_unit_so_far (rli);
1581 if (! integer_zerop (rli->bitpos))
1582 unpadded_size_unit
1583 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1584
1585 /* Round the size up to be a multiple of the required alignment. */
1586 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1587 TYPE_SIZE_UNIT (rli->t)
1588 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1589
1590 if (TREE_CONSTANT (unpadded_size)
1591 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1592 && input_location != BUILTINS_LOCATION)
1593 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1594
1595 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1596 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1597 && TREE_CONSTANT (unpadded_size))
1598 {
1599 tree unpacked_size;
1600
1601 #ifdef ROUND_TYPE_ALIGN
1602 rli->unpacked_align
1603 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1604 #else
1605 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1606 #endif
1607
1608 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1609 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1610 {
1611 if (TYPE_NAME (rli->t))
1612 {
1613 tree name;
1614
1615 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1616 name = TYPE_NAME (rli->t);
1617 else
1618 name = DECL_NAME (TYPE_NAME (rli->t));
1619
1620 if (STRICT_ALIGNMENT)
1621 warning (OPT_Wpacked, "packed attribute causes inefficient "
1622 "alignment for %qE", name);
1623 else
1624 warning (OPT_Wpacked,
1625 "packed attribute is unnecessary for %qE", name);
1626 }
1627 else
1628 {
1629 if (STRICT_ALIGNMENT)
1630 warning (OPT_Wpacked,
1631 "packed attribute causes inefficient alignment");
1632 else
1633 warning (OPT_Wpacked, "packed attribute is unnecessary");
1634 }
1635 }
1636 }
1637 }
1638
1639 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1640
1641 void
1642 compute_record_mode (tree type)
1643 {
1644 tree field;
1645 machine_mode mode = VOIDmode;
1646
1647 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1648 However, if possible, we use a mode that fits in a register
1649 instead, in order to allow for better optimization down the
1650 line. */
1651 SET_TYPE_MODE (type, BLKmode);
1652
1653 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1654 return;
1655
1656 /* A record which has any BLKmode members must itself be
1657 BLKmode; it can't go in a register. Unless the member is
1658 BLKmode only because it isn't aligned. */
1659 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1660 {
1661 if (TREE_CODE (field) != FIELD_DECL)
1662 continue;
1663
1664 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1665 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1666 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1667 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1668 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1669 || ! tree_fits_uhwi_p (bit_position (field))
1670 || DECL_SIZE (field) == 0
1671 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1672 return;
1673
1674 /* If this field is the whole struct, remember its mode so
1675 that, say, we can put a double in a class into a DF
1676 register instead of forcing it to live in the stack. */
1677 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1678 mode = DECL_MODE (field);
1679
1680 /* With some targets, it is sub-optimal to access an aligned
1681 BLKmode structure as a scalar. */
1682 if (targetm.member_type_forces_blk (field, mode))
1683 return;
1684 }
1685
1686 /* If we only have one real field; use its mode if that mode's size
1687 matches the type's size. This only applies to RECORD_TYPE. This
1688 does not apply to unions. */
1689 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1690 && tree_fits_uhwi_p (TYPE_SIZE (type))
1691 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1692 SET_TYPE_MODE (type, mode);
1693 else
1694 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1695
1696 /* If structure's known alignment is less than what the scalar
1697 mode would need, and it matters, then stick with BLKmode. */
1698 if (TYPE_MODE (type) != BLKmode
1699 && STRICT_ALIGNMENT
1700 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1701 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1702 {
1703 /* If this is the only reason this type is BLKmode, then
1704 don't force containing types to be BLKmode. */
1705 TYPE_NO_FORCE_BLK (type) = 1;
1706 SET_TYPE_MODE (type, BLKmode);
1707 }
1708 }
1709
1710 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1711 out. */
1712
1713 static void
1714 finalize_type_size (tree type)
1715 {
1716 /* Normally, use the alignment corresponding to the mode chosen.
1717 However, where strict alignment is not required, avoid
1718 over-aligning structures, since most compilers do not do this
1719 alignment. */
1720 if (TYPE_MODE (type) != BLKmode
1721 && TYPE_MODE (type) != VOIDmode
1722 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1723 {
1724 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1725
1726 /* Don't override a larger alignment requirement coming from a user
1727 alignment of one of the fields. */
1728 if (mode_align >= TYPE_ALIGN (type))
1729 {
1730 TYPE_ALIGN (type) = mode_align;
1731 TYPE_USER_ALIGN (type) = 0;
1732 }
1733 }
1734
1735 /* Do machine-dependent extra alignment. */
1736 #ifdef ROUND_TYPE_ALIGN
1737 TYPE_ALIGN (type)
1738 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1739 #endif
1740
1741 /* If we failed to find a simple way to calculate the unit size
1742 of the type, find it by division. */
1743 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1744 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1745 result will fit in sizetype. We will get more efficient code using
1746 sizetype, so we force a conversion. */
1747 TYPE_SIZE_UNIT (type)
1748 = fold_convert (sizetype,
1749 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1750 bitsize_unit_node));
1751
1752 if (TYPE_SIZE (type) != 0)
1753 {
1754 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1755 TYPE_SIZE_UNIT (type)
1756 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1757 }
1758
1759 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1760 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1761 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1762 if (TYPE_SIZE_UNIT (type) != 0
1763 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1764 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1765
1766 /* Also layout any other variants of the type. */
1767 if (TYPE_NEXT_VARIANT (type)
1768 || type != TYPE_MAIN_VARIANT (type))
1769 {
1770 tree variant;
1771 /* Record layout info of this variant. */
1772 tree size = TYPE_SIZE (type);
1773 tree size_unit = TYPE_SIZE_UNIT (type);
1774 unsigned int align = TYPE_ALIGN (type);
1775 unsigned int precision = TYPE_PRECISION (type);
1776 unsigned int user_align = TYPE_USER_ALIGN (type);
1777 machine_mode mode = TYPE_MODE (type);
1778
1779 /* Copy it into all variants. */
1780 for (variant = TYPE_MAIN_VARIANT (type);
1781 variant != 0;
1782 variant = TYPE_NEXT_VARIANT (variant))
1783 {
1784 TYPE_SIZE (variant) = size;
1785 TYPE_SIZE_UNIT (variant) = size_unit;
1786 unsigned valign = align;
1787 if (TYPE_USER_ALIGN (variant))
1788 valign = MAX (valign, TYPE_ALIGN (variant));
1789 else
1790 TYPE_USER_ALIGN (variant) = user_align;
1791 TYPE_ALIGN (variant) = valign;
1792 TYPE_PRECISION (variant) = precision;
1793 SET_TYPE_MODE (variant, mode);
1794 }
1795 }
1796 }
1797
1798 /* Return a new underlying object for a bitfield started with FIELD. */
1799
1800 static tree
1801 start_bitfield_representative (tree field)
1802 {
1803 tree repr = make_node (FIELD_DECL);
1804 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1805 /* Force the representative to begin at a BITS_PER_UNIT aligned
1806 boundary - C++ may use tail-padding of a base object to
1807 continue packing bits so the bitfield region does not start
1808 at bit zero (see g++.dg/abi/bitfield5.C for example).
1809 Unallocated bits may happen for other reasons as well,
1810 for example Ada which allows explicit bit-granular structure layout. */
1811 DECL_FIELD_BIT_OFFSET (repr)
1812 = size_binop (BIT_AND_EXPR,
1813 DECL_FIELD_BIT_OFFSET (field),
1814 bitsize_int (~(BITS_PER_UNIT - 1)));
1815 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1816 DECL_SIZE (repr) = DECL_SIZE (field);
1817 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1818 DECL_PACKED (repr) = DECL_PACKED (field);
1819 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1820 return repr;
1821 }
1822
1823 /* Finish up a bitfield group that was started by creating the underlying
1824 object REPR with the last field in the bitfield group FIELD. */
1825
1826 static void
1827 finish_bitfield_representative (tree repr, tree field)
1828 {
1829 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1830 machine_mode mode;
1831 tree nextf, size;
1832
1833 size = size_diffop (DECL_FIELD_OFFSET (field),
1834 DECL_FIELD_OFFSET (repr));
1835 while (TREE_CODE (size) == COMPOUND_EXPR)
1836 size = TREE_OPERAND (size, 1);
1837 gcc_assert (tree_fits_uhwi_p (size));
1838 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1839 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1840 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1841 + tree_to_uhwi (DECL_SIZE (field)));
1842
1843 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1844 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1845
1846 /* Now nothing tells us how to pad out bitsize ... */
1847 nextf = DECL_CHAIN (field);
1848 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1849 nextf = DECL_CHAIN (nextf);
1850 if (nextf)
1851 {
1852 tree maxsize;
1853 /* If there was an error, the field may be not laid out
1854 correctly. Don't bother to do anything. */
1855 if (TREE_TYPE (nextf) == error_mark_node)
1856 return;
1857 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1858 DECL_FIELD_OFFSET (repr));
1859 if (tree_fits_uhwi_p (maxsize))
1860 {
1861 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1862 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1863 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1864 /* If the group ends within a bitfield nextf does not need to be
1865 aligned to BITS_PER_UNIT. Thus round up. */
1866 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1867 }
1868 else
1869 maxbitsize = bitsize;
1870 }
1871 else
1872 {
1873 /* ??? If you consider that tail-padding of this struct might be
1874 re-used when deriving from it we cannot really do the following
1875 and thus need to set maxsize to bitsize? Also we cannot
1876 generally rely on maxsize to fold to an integer constant, so
1877 use bitsize as fallback for this case. */
1878 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1879 DECL_FIELD_OFFSET (repr));
1880 if (tree_fits_uhwi_p (maxsize))
1881 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1882 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1883 else
1884 maxbitsize = bitsize;
1885 }
1886
1887 /* Only if we don't artificially break up the representative in
1888 the middle of a large bitfield with different possibly
1889 overlapping representatives. And all representatives start
1890 at byte offset. */
1891 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1892
1893 /* Find the smallest nice mode to use. */
1894 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1895 mode = GET_MODE_WIDER_MODE (mode))
1896 if (GET_MODE_BITSIZE (mode) >= bitsize)
1897 break;
1898 if (mode != VOIDmode
1899 && (GET_MODE_BITSIZE (mode) > maxbitsize
1900 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1901 mode = VOIDmode;
1902
1903 if (mode == VOIDmode)
1904 {
1905 /* We really want a BLKmode representative only as a last resort,
1906 considering the member b in
1907 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1908 Otherwise we simply want to split the representative up
1909 allowing for overlaps within the bitfield region as required for
1910 struct { int a : 7; int b : 7;
1911 int c : 10; int d; } __attribute__((packed));
1912 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1913 DECL_SIZE (repr) = bitsize_int (bitsize);
1914 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1915 DECL_MODE (repr) = BLKmode;
1916 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1917 bitsize / BITS_PER_UNIT);
1918 }
1919 else
1920 {
1921 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1922 DECL_SIZE (repr) = bitsize_int (modesize);
1923 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1924 DECL_MODE (repr) = mode;
1925 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1926 }
1927
1928 /* Remember whether the bitfield group is at the end of the
1929 structure or not. */
1930 DECL_CHAIN (repr) = nextf;
1931 }
1932
1933 /* Compute and set FIELD_DECLs for the underlying objects we should
1934 use for bitfield access for the structure T. */
1935
1936 void
1937 finish_bitfield_layout (tree t)
1938 {
1939 tree field, prev;
1940 tree repr = NULL_TREE;
1941
1942 /* Unions would be special, for the ease of type-punning optimizations
1943 we could use the underlying type as hint for the representative
1944 if the bitfield would fit and the representative would not exceed
1945 the union in size. */
1946 if (TREE_CODE (t) != RECORD_TYPE)
1947 return;
1948
1949 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
1950 field; field = DECL_CHAIN (field))
1951 {
1952 if (TREE_CODE (field) != FIELD_DECL)
1953 continue;
1954
1955 /* In the C++ memory model, consecutive bit fields in a structure are
1956 considered one memory location and updating a memory location
1957 may not store into adjacent memory locations. */
1958 if (!repr
1959 && DECL_BIT_FIELD_TYPE (field))
1960 {
1961 /* Start new representative. */
1962 repr = start_bitfield_representative (field);
1963 }
1964 else if (repr
1965 && ! DECL_BIT_FIELD_TYPE (field))
1966 {
1967 /* Finish off new representative. */
1968 finish_bitfield_representative (repr, prev);
1969 repr = NULL_TREE;
1970 }
1971 else if (DECL_BIT_FIELD_TYPE (field))
1972 {
1973 gcc_assert (repr != NULL_TREE);
1974
1975 /* Zero-size bitfields finish off a representative and
1976 do not have a representative themselves. This is
1977 required by the C++ memory model. */
1978 if (integer_zerop (DECL_SIZE (field)))
1979 {
1980 finish_bitfield_representative (repr, prev);
1981 repr = NULL_TREE;
1982 }
1983
1984 /* We assume that either DECL_FIELD_OFFSET of the representative
1985 and each bitfield member is a constant or they are equal.
1986 This is because we need to be able to compute the bit-offset
1987 of each field relative to the representative in get_bit_range
1988 during RTL expansion.
1989 If these constraints are not met, simply force a new
1990 representative to be generated. That will at most
1991 generate worse code but still maintain correctness with
1992 respect to the C++ memory model. */
1993 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1994 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1995 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1996 DECL_FIELD_OFFSET (field), 0)))
1997 {
1998 finish_bitfield_representative (repr, prev);
1999 repr = start_bitfield_representative (field);
2000 }
2001 }
2002 else
2003 continue;
2004
2005 if (repr)
2006 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2007
2008 prev = field;
2009 }
2010
2011 if (repr)
2012 finish_bitfield_representative (repr, prev);
2013 }
2014
2015 /* Do all of the work required to layout the type indicated by RLI,
2016 once the fields have been laid out. This function will call `free'
2017 for RLI, unless FREE_P is false. Passing a value other than false
2018 for FREE_P is bad practice; this option only exists to support the
2019 G++ 3.2 ABI. */
2020
2021 void
2022 finish_record_layout (record_layout_info rli, int free_p)
2023 {
2024 tree variant;
2025
2026 /* Compute the final size. */
2027 finalize_record_size (rli);
2028
2029 /* Compute the TYPE_MODE for the record. */
2030 compute_record_mode (rli->t);
2031
2032 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2033 finalize_type_size (rli->t);
2034
2035 /* Compute bitfield representatives. */
2036 finish_bitfield_layout (rli->t);
2037
2038 /* Propagate TYPE_PACKED to variants. With C++ templates,
2039 handle_packed_attribute is too early to do this. */
2040 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2041 variant = TYPE_NEXT_VARIANT (variant))
2042 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2043
2044 /* Lay out any static members. This is done now because their type
2045 may use the record's type. */
2046 while (!vec_safe_is_empty (rli->pending_statics))
2047 layout_decl (rli->pending_statics->pop (), 0);
2048
2049 /* Clean up. */
2050 if (free_p)
2051 {
2052 vec_free (rli->pending_statics);
2053 free (rli);
2054 }
2055 }
2056 \f
2057
2058 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2059 NAME, its fields are chained in reverse on FIELDS.
2060
2061 If ALIGN_TYPE is non-null, it is given the same alignment as
2062 ALIGN_TYPE. */
2063
2064 void
2065 finish_builtin_struct (tree type, const char *name, tree fields,
2066 tree align_type)
2067 {
2068 tree tail, next;
2069
2070 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2071 {
2072 DECL_FIELD_CONTEXT (fields) = type;
2073 next = DECL_CHAIN (fields);
2074 DECL_CHAIN (fields) = tail;
2075 }
2076 TYPE_FIELDS (type) = tail;
2077
2078 if (align_type)
2079 {
2080 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2081 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2082 }
2083
2084 layout_type (type);
2085 #if 0 /* not yet, should get fixed properly later */
2086 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2087 #else
2088 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2089 TYPE_DECL, get_identifier (name), type);
2090 #endif
2091 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2092 layout_decl (TYPE_NAME (type), 0);
2093 }
2094
2095 /* Calculate the mode, size, and alignment for TYPE.
2096 For an array type, calculate the element separation as well.
2097 Record TYPE on the chain of permanent or temporary types
2098 so that dbxout will find out about it.
2099
2100 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2101 layout_type does nothing on such a type.
2102
2103 If the type is incomplete, its TYPE_SIZE remains zero. */
2104
2105 void
2106 layout_type (tree type)
2107 {
2108 gcc_assert (type);
2109
2110 if (type == error_mark_node)
2111 return;
2112
2113 /* We don't want finalize_type_size to copy an alignment attribute to
2114 variants that don't have it. */
2115 type = TYPE_MAIN_VARIANT (type);
2116
2117 /* Do nothing if type has been laid out before. */
2118 if (TYPE_SIZE (type))
2119 return;
2120
2121 switch (TREE_CODE (type))
2122 {
2123 case LANG_TYPE:
2124 /* This kind of type is the responsibility
2125 of the language-specific code. */
2126 gcc_unreachable ();
2127
2128 case BOOLEAN_TYPE:
2129 case INTEGER_TYPE:
2130 case ENUMERAL_TYPE:
2131 SET_TYPE_MODE (type,
2132 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2133 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2134 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2135 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2136 break;
2137
2138 case REAL_TYPE:
2139 SET_TYPE_MODE (type,
2140 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2141 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2142 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2143 break;
2144
2145 case FIXED_POINT_TYPE:
2146 /* TYPE_MODE (type) has been set already. */
2147 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2148 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2149 break;
2150
2151 case COMPLEX_TYPE:
2152 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2153 SET_TYPE_MODE (type,
2154 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2155 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2156 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2157 0));
2158 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2159 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2160 break;
2161
2162 case VECTOR_TYPE:
2163 {
2164 int nunits = TYPE_VECTOR_SUBPARTS (type);
2165 tree innertype = TREE_TYPE (type);
2166
2167 gcc_assert (!(nunits & (nunits - 1)));
2168
2169 /* Find an appropriate mode for the vector type. */
2170 if (TYPE_MODE (type) == VOIDmode)
2171 SET_TYPE_MODE (type,
2172 mode_for_vector (TYPE_MODE (innertype), nunits));
2173
2174 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2175 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2176 /* Several boolean vector elements may fit in a single unit. */
2177 if (VECTOR_BOOLEAN_TYPE_P (type))
2178 TYPE_SIZE_UNIT (type)
2179 = size_int (GET_MODE_SIZE (type->type_common.mode));
2180 else
2181 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2182 TYPE_SIZE_UNIT (innertype),
2183 size_int (nunits));
2184 TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
2185 TYPE_SIZE (innertype),
2186 bitsize_int (nunits));
2187
2188 /* For vector types, we do not default to the mode's alignment.
2189 Instead, query a target hook, defaulting to natural alignment.
2190 This prevents ABI changes depending on whether or not native
2191 vector modes are supported. */
2192 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2193
2194 /* However, if the underlying mode requires a bigger alignment than
2195 what the target hook provides, we cannot use the mode. For now,
2196 simply reject that case. */
2197 gcc_assert (TYPE_ALIGN (type)
2198 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2199 break;
2200 }
2201
2202 case VOID_TYPE:
2203 /* This is an incomplete type and so doesn't have a size. */
2204 TYPE_ALIGN (type) = 1;
2205 TYPE_USER_ALIGN (type) = 0;
2206 SET_TYPE_MODE (type, VOIDmode);
2207 break;
2208
2209 case POINTER_BOUNDS_TYPE:
2210 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2211 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2212 break;
2213
2214 case OFFSET_TYPE:
2215 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2216 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2217 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2218 integral, which may be an __intN. */
2219 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2220 TYPE_PRECISION (type) = POINTER_SIZE;
2221 break;
2222
2223 case FUNCTION_TYPE:
2224 case METHOD_TYPE:
2225 /* It's hard to see what the mode and size of a function ought to
2226 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2227 make it consistent with that. */
2228 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2229 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2230 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2231 break;
2232
2233 case POINTER_TYPE:
2234 case REFERENCE_TYPE:
2235 {
2236 machine_mode mode = TYPE_MODE (type);
2237 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2238 {
2239 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2240 mode = targetm.addr_space.address_mode (as);
2241 }
2242
2243 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2244 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2245 TYPE_UNSIGNED (type) = 1;
2246 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2247 }
2248 break;
2249
2250 case ARRAY_TYPE:
2251 {
2252 tree index = TYPE_DOMAIN (type);
2253 tree element = TREE_TYPE (type);
2254
2255 build_pointer_type (element);
2256
2257 /* We need to know both bounds in order to compute the size. */
2258 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2259 && TYPE_SIZE (element))
2260 {
2261 tree ub = TYPE_MAX_VALUE (index);
2262 tree lb = TYPE_MIN_VALUE (index);
2263 tree element_size = TYPE_SIZE (element);
2264 tree length;
2265
2266 /* Make sure that an array of zero-sized element is zero-sized
2267 regardless of its extent. */
2268 if (integer_zerop (element_size))
2269 length = size_zero_node;
2270
2271 /* The computation should happen in the original signedness so
2272 that (possible) negative values are handled appropriately
2273 when determining overflow. */
2274 else
2275 {
2276 /* ??? When it is obvious that the range is signed
2277 represent it using ssizetype. */
2278 if (TREE_CODE (lb) == INTEGER_CST
2279 && TREE_CODE (ub) == INTEGER_CST
2280 && TYPE_UNSIGNED (TREE_TYPE (lb))
2281 && tree_int_cst_lt (ub, lb))
2282 {
2283 lb = wide_int_to_tree (ssizetype,
2284 offset_int::from (lb, SIGNED));
2285 ub = wide_int_to_tree (ssizetype,
2286 offset_int::from (ub, SIGNED));
2287 }
2288 length
2289 = fold_convert (sizetype,
2290 size_binop (PLUS_EXPR,
2291 build_int_cst (TREE_TYPE (lb), 1),
2292 size_binop (MINUS_EXPR, ub, lb)));
2293 }
2294
2295 /* ??? We have no way to distinguish a null-sized array from an
2296 array spanning the whole sizetype range, so we arbitrarily
2297 decide that [0, -1] is the only valid representation. */
2298 if (integer_zerop (length)
2299 && TREE_OVERFLOW (length)
2300 && integer_zerop (lb))
2301 length = size_zero_node;
2302
2303 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2304 fold_convert (bitsizetype,
2305 length));
2306
2307 /* If we know the size of the element, calculate the total size
2308 directly, rather than do some division thing below. This
2309 optimization helps Fortran assumed-size arrays (where the
2310 size of the array is determined at runtime) substantially. */
2311 if (TYPE_SIZE_UNIT (element))
2312 TYPE_SIZE_UNIT (type)
2313 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2314 }
2315
2316 /* Now round the alignment and size,
2317 using machine-dependent criteria if any. */
2318
2319 unsigned align = TYPE_ALIGN (element);
2320 if (TYPE_USER_ALIGN (type))
2321 align = MAX (align, TYPE_ALIGN (type));
2322 else
2323 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2324 #ifdef ROUND_TYPE_ALIGN
2325 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2326 #else
2327 align = MAX (align, BITS_PER_UNIT);
2328 #endif
2329 TYPE_ALIGN (type) = align;
2330 SET_TYPE_MODE (type, BLKmode);
2331 if (TYPE_SIZE (type) != 0
2332 && ! targetm.member_type_forces_blk (type, VOIDmode)
2333 /* BLKmode elements force BLKmode aggregate;
2334 else extract/store fields may lose. */
2335 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2336 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2337 {
2338 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2339 TYPE_SIZE (type)));
2340 if (TYPE_MODE (type) != BLKmode
2341 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2342 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2343 {
2344 TYPE_NO_FORCE_BLK (type) = 1;
2345 SET_TYPE_MODE (type, BLKmode);
2346 }
2347 }
2348 /* When the element size is constant, check that it is at least as
2349 large as the element alignment. */
2350 if (TYPE_SIZE_UNIT (element)
2351 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2352 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2353 TYPE_ALIGN_UNIT. */
2354 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2355 && !integer_zerop (TYPE_SIZE_UNIT (element))
2356 && compare_tree_int (TYPE_SIZE_UNIT (element),
2357 TYPE_ALIGN_UNIT (element)) < 0)
2358 error ("alignment of array elements is greater than element size");
2359 break;
2360 }
2361
2362 case RECORD_TYPE:
2363 case UNION_TYPE:
2364 case QUAL_UNION_TYPE:
2365 {
2366 tree field;
2367 record_layout_info rli;
2368
2369 /* Initialize the layout information. */
2370 rli = start_record_layout (type);
2371
2372 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2373 in the reverse order in building the COND_EXPR that denotes
2374 its size. We reverse them again later. */
2375 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2376 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2377
2378 /* Place all the fields. */
2379 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2380 place_field (rli, field);
2381
2382 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2383 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2384
2385 /* Finish laying out the record. */
2386 finish_record_layout (rli, /*free_p=*/true);
2387 }
2388 break;
2389
2390 default:
2391 gcc_unreachable ();
2392 }
2393
2394 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2395 records and unions, finish_record_layout already called this
2396 function. */
2397 if (!RECORD_OR_UNION_TYPE_P (type))
2398 finalize_type_size (type);
2399
2400 /* We should never see alias sets on incomplete aggregates. And we
2401 should not call layout_type on not incomplete aggregates. */
2402 if (AGGREGATE_TYPE_P (type))
2403 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2404 }
2405
2406 /* Return the least alignment required for type TYPE. */
2407
2408 unsigned int
2409 min_align_of_type (tree type)
2410 {
2411 unsigned int align = TYPE_ALIGN (type);
2412 if (!TYPE_USER_ALIGN (type))
2413 {
2414 align = MIN (align, BIGGEST_ALIGNMENT);
2415 #ifdef BIGGEST_FIELD_ALIGNMENT
2416 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2417 #endif
2418 unsigned int field_align = align;
2419 #ifdef ADJUST_FIELD_ALIGN
2420 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2421 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2422 ggc_free (field);
2423 #endif
2424 align = MIN (align, field_align);
2425 }
2426 return align / BITS_PER_UNIT;
2427 }
2428
2429 /* Vector types need to re-check the target flags each time we report
2430 the machine mode. We need to do this because attribute target can
2431 change the result of vector_mode_supported_p and have_regs_of_mode
2432 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2433 change on a per-function basis. */
2434 /* ??? Possibly a better solution is to run through all the types
2435 referenced by a function and re-compute the TYPE_MODE once, rather
2436 than make the TYPE_MODE macro call a function. */
2437
2438 machine_mode
2439 vector_type_mode (const_tree t)
2440 {
2441 machine_mode mode;
2442
2443 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2444
2445 mode = t->type_common.mode;
2446 if (VECTOR_MODE_P (mode)
2447 && (!targetm.vector_mode_supported_p (mode)
2448 || !have_regs_of_mode[mode]))
2449 {
2450 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2451
2452 /* For integers, try mapping it to a same-sized scalar mode. */
2453 if (GET_MODE_CLASS (innermode) == MODE_INT)
2454 {
2455 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2456 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2457
2458 if (mode != VOIDmode && have_regs_of_mode[mode])
2459 return mode;
2460 }
2461
2462 return BLKmode;
2463 }
2464
2465 return mode;
2466 }
2467 \f
2468 /* Create and return a type for signed integers of PRECISION bits. */
2469
2470 tree
2471 make_signed_type (int precision)
2472 {
2473 tree type = make_node (INTEGER_TYPE);
2474
2475 TYPE_PRECISION (type) = precision;
2476
2477 fixup_signed_type (type);
2478 return type;
2479 }
2480
2481 /* Create and return a type for unsigned integers of PRECISION bits. */
2482
2483 tree
2484 make_unsigned_type (int precision)
2485 {
2486 tree type = make_node (INTEGER_TYPE);
2487
2488 TYPE_PRECISION (type) = precision;
2489
2490 fixup_unsigned_type (type);
2491 return type;
2492 }
2493 \f
2494 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2495 and SATP. */
2496
2497 tree
2498 make_fract_type (int precision, int unsignedp, int satp)
2499 {
2500 tree type = make_node (FIXED_POINT_TYPE);
2501
2502 TYPE_PRECISION (type) = precision;
2503
2504 if (satp)
2505 TYPE_SATURATING (type) = 1;
2506
2507 /* Lay out the type: set its alignment, size, etc. */
2508 if (unsignedp)
2509 {
2510 TYPE_UNSIGNED (type) = 1;
2511 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2512 }
2513 else
2514 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2515 layout_type (type);
2516
2517 return type;
2518 }
2519
2520 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2521 and SATP. */
2522
2523 tree
2524 make_accum_type (int precision, int unsignedp, int satp)
2525 {
2526 tree type = make_node (FIXED_POINT_TYPE);
2527
2528 TYPE_PRECISION (type) = precision;
2529
2530 if (satp)
2531 TYPE_SATURATING (type) = 1;
2532
2533 /* Lay out the type: set its alignment, size, etc. */
2534 if (unsignedp)
2535 {
2536 TYPE_UNSIGNED (type) = 1;
2537 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2538 }
2539 else
2540 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2541 layout_type (type);
2542
2543 return type;
2544 }
2545
2546 /* Initialize sizetypes so layout_type can use them. */
2547
2548 void
2549 initialize_sizetypes (void)
2550 {
2551 int precision, bprecision;
2552
2553 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2554 if (strcmp (SIZETYPE, "unsigned int") == 0)
2555 precision = INT_TYPE_SIZE;
2556 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2557 precision = LONG_TYPE_SIZE;
2558 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2559 precision = LONG_LONG_TYPE_SIZE;
2560 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2561 precision = SHORT_TYPE_SIZE;
2562 else
2563 {
2564 int i;
2565
2566 precision = -1;
2567 for (i = 0; i < NUM_INT_N_ENTS; i++)
2568 if (int_n_enabled_p[i])
2569 {
2570 char name[50];
2571 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2572
2573 if (strcmp (name, SIZETYPE) == 0)
2574 {
2575 precision = int_n_data[i].bitsize;
2576 }
2577 }
2578 if (precision == -1)
2579 gcc_unreachable ();
2580 }
2581
2582 bprecision
2583 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2584 bprecision
2585 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2586 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2587 bprecision = HOST_BITS_PER_DOUBLE_INT;
2588
2589 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2590 sizetype = make_node (INTEGER_TYPE);
2591 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2592 TYPE_PRECISION (sizetype) = precision;
2593 TYPE_UNSIGNED (sizetype) = 1;
2594 bitsizetype = make_node (INTEGER_TYPE);
2595 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2596 TYPE_PRECISION (bitsizetype) = bprecision;
2597 TYPE_UNSIGNED (bitsizetype) = 1;
2598
2599 /* Now layout both types manually. */
2600 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2601 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2602 TYPE_SIZE (sizetype) = bitsize_int (precision);
2603 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2604 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2605
2606 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2607 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2608 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2609 TYPE_SIZE_UNIT (bitsizetype)
2610 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2611 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2612
2613 /* Create the signed variants of *sizetype. */
2614 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2615 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2616 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2617 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2618 }
2619 \f
2620 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2621 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2622 for TYPE, based on the PRECISION and whether or not the TYPE
2623 IS_UNSIGNED. PRECISION need not correspond to a width supported
2624 natively by the hardware; for example, on a machine with 8-bit,
2625 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2626 61. */
2627
2628 void
2629 set_min_and_max_values_for_integral_type (tree type,
2630 int precision,
2631 signop sgn)
2632 {
2633 /* For bitfields with zero width we end up creating integer types
2634 with zero precision. Don't assign any minimum/maximum values
2635 to those types, they don't have any valid value. */
2636 if (precision < 1)
2637 return;
2638
2639 TYPE_MIN_VALUE (type)
2640 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2641 TYPE_MAX_VALUE (type)
2642 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2643 }
2644
2645 /* Set the extreme values of TYPE based on its precision in bits,
2646 then lay it out. Used when make_signed_type won't do
2647 because the tree code is not INTEGER_TYPE.
2648 E.g. for Pascal, when the -fsigned-char option is given. */
2649
2650 void
2651 fixup_signed_type (tree type)
2652 {
2653 int precision = TYPE_PRECISION (type);
2654
2655 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2656
2657 /* Lay out the type: set its alignment, size, etc. */
2658 layout_type (type);
2659 }
2660
2661 /* Set the extreme values of TYPE based on its precision in bits,
2662 then lay it out. This is used both in `make_unsigned_type'
2663 and for enumeral types. */
2664
2665 void
2666 fixup_unsigned_type (tree type)
2667 {
2668 int precision = TYPE_PRECISION (type);
2669
2670 TYPE_UNSIGNED (type) = 1;
2671
2672 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2673
2674 /* Lay out the type: set its alignment, size, etc. */
2675 layout_type (type);
2676 }
2677 \f
2678 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2679 starting at BITPOS.
2680
2681 BITREGION_START is the bit position of the first bit in this
2682 sequence of bit fields. BITREGION_END is the last bit in this
2683 sequence. If these two fields are non-zero, we should restrict the
2684 memory access to that range. Otherwise, we are allowed to touch
2685 any adjacent non bit-fields.
2686
2687 ALIGN is the alignment of the underlying object in bits.
2688 VOLATILEP says whether the bitfield is volatile. */
2689
2690 bit_field_mode_iterator
2691 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2692 HOST_WIDE_INT bitregion_start,
2693 HOST_WIDE_INT bitregion_end,
2694 unsigned int align, bool volatilep)
2695 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2696 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2697 m_bitregion_end (bitregion_end), m_align (align),
2698 m_volatilep (volatilep), m_count (0)
2699 {
2700 if (!m_bitregion_end)
2701 {
2702 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2703 the bitfield is mapped and won't trap, provided that ALIGN isn't
2704 too large. The cap is the biggest required alignment for data,
2705 or at least the word size. And force one such chunk at least. */
2706 unsigned HOST_WIDE_INT units
2707 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2708 if (bitsize <= 0)
2709 bitsize = 1;
2710 m_bitregion_end = bitpos + bitsize + units - 1;
2711 m_bitregion_end -= m_bitregion_end % units + 1;
2712 }
2713 }
2714
2715 /* Calls to this function return successively larger modes that can be used
2716 to represent the bitfield. Return true if another bitfield mode is
2717 available, storing it in *OUT_MODE if so. */
2718
2719 bool
2720 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2721 {
2722 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2723 {
2724 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2725
2726 /* Skip modes that don't have full precision. */
2727 if (unit != GET_MODE_PRECISION (m_mode))
2728 continue;
2729
2730 /* Stop if the mode is too wide to handle efficiently. */
2731 if (unit > MAX_FIXED_MODE_SIZE)
2732 break;
2733
2734 /* Don't deliver more than one multiword mode; the smallest one
2735 should be used. */
2736 if (m_count > 0 && unit > BITS_PER_WORD)
2737 break;
2738
2739 /* Skip modes that are too small. */
2740 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2741 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2742 if (subend > unit)
2743 continue;
2744
2745 /* Stop if the mode goes outside the bitregion. */
2746 HOST_WIDE_INT start = m_bitpos - substart;
2747 if (m_bitregion_start && start < m_bitregion_start)
2748 break;
2749 HOST_WIDE_INT end = start + unit;
2750 if (end > m_bitregion_end + 1)
2751 break;
2752
2753 /* Stop if the mode requires too much alignment. */
2754 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2755 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2756 break;
2757
2758 *out_mode = m_mode;
2759 m_mode = GET_MODE_WIDER_MODE (m_mode);
2760 m_count++;
2761 return true;
2762 }
2763 return false;
2764 }
2765
2766 /* Return true if smaller modes are generally preferred for this kind
2767 of bitfield. */
2768
2769 bool
2770 bit_field_mode_iterator::prefer_smaller_modes ()
2771 {
2772 return (m_volatilep
2773 ? targetm.narrow_volatile_bitfield ()
2774 : !SLOW_BYTE_ACCESS);
2775 }
2776
2777 /* Find the best machine mode to use when referencing a bit field of length
2778 BITSIZE bits starting at BITPOS.
2779
2780 BITREGION_START is the bit position of the first bit in this
2781 sequence of bit fields. BITREGION_END is the last bit in this
2782 sequence. If these two fields are non-zero, we should restrict the
2783 memory access to that range. Otherwise, we are allowed to touch
2784 any adjacent non bit-fields.
2785
2786 The underlying object is known to be aligned to a boundary of ALIGN bits.
2787 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2788 larger than LARGEST_MODE (usually SImode).
2789
2790 If no mode meets all these conditions, we return VOIDmode.
2791
2792 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2793 smallest mode meeting these conditions.
2794
2795 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2796 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2797 all the conditions.
2798
2799 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2800 decide which of the above modes should be used. */
2801
2802 machine_mode
2803 get_best_mode (int bitsize, int bitpos,
2804 unsigned HOST_WIDE_INT bitregion_start,
2805 unsigned HOST_WIDE_INT bitregion_end,
2806 unsigned int align,
2807 machine_mode largest_mode, bool volatilep)
2808 {
2809 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2810 bitregion_end, align, volatilep);
2811 machine_mode widest_mode = VOIDmode;
2812 machine_mode mode;
2813 while (iter.next_mode (&mode)
2814 /* ??? For historical reasons, reject modes that would normally
2815 receive greater alignment, even if unaligned accesses are
2816 acceptable. This has both advantages and disadvantages.
2817 Removing this check means that something like:
2818
2819 struct s { unsigned int x; unsigned int y; };
2820 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2821
2822 can be implemented using a single load and compare on
2823 64-bit machines that have no alignment restrictions.
2824 For example, on powerpc64-linux-gnu, we would generate:
2825
2826 ld 3,0(3)
2827 cntlzd 3,3
2828 srdi 3,3,6
2829 blr
2830
2831 rather than:
2832
2833 lwz 9,0(3)
2834 cmpwi 7,9,0
2835 bne 7,.L3
2836 lwz 3,4(3)
2837 cntlzw 3,3
2838 srwi 3,3,5
2839 extsw 3,3
2840 blr
2841 .p2align 4,,15
2842 .L3:
2843 li 3,0
2844 blr
2845
2846 However, accessing more than one field can make life harder
2847 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2848 has a series of unsigned short copies followed by a series of
2849 unsigned short comparisons. With this check, both the copies
2850 and comparisons remain 16-bit accesses and FRE is able
2851 to eliminate the latter. Without the check, the comparisons
2852 can be done using 2 64-bit operations, which FRE isn't able
2853 to handle in the same way.
2854
2855 Either way, it would probably be worth disabling this check
2856 during expand. One particular example where removing the
2857 check would help is the get_best_mode call in store_bit_field.
2858 If we are given a memory bitregion of 128 bits that is aligned
2859 to a 64-bit boundary, and the bitfield we want to modify is
2860 in the second half of the bitregion, this check causes
2861 store_bitfield to turn the memory into a 64-bit reference
2862 to the _first_ half of the region. We later use
2863 adjust_bitfield_address to get a reference to the correct half,
2864 but doing so looks to adjust_bitfield_address as though we are
2865 moving past the end of the original object, so it drops the
2866 associated MEM_EXPR and MEM_OFFSET. Removing the check
2867 causes store_bit_field to keep a 128-bit memory reference,
2868 so that the final bitfield reference still has a MEM_EXPR
2869 and MEM_OFFSET. */
2870 && GET_MODE_ALIGNMENT (mode) <= align
2871 && (largest_mode == VOIDmode
2872 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2873 {
2874 widest_mode = mode;
2875 if (iter.prefer_smaller_modes ())
2876 break;
2877 }
2878 return widest_mode;
2879 }
2880
2881 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2882 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2883
2884 void
2885 get_mode_bounds (machine_mode mode, int sign,
2886 machine_mode target_mode,
2887 rtx *mmin, rtx *mmax)
2888 {
2889 unsigned size = GET_MODE_PRECISION (mode);
2890 unsigned HOST_WIDE_INT min_val, max_val;
2891
2892 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2893
2894 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2895 if (mode == BImode)
2896 {
2897 if (STORE_FLAG_VALUE < 0)
2898 {
2899 min_val = STORE_FLAG_VALUE;
2900 max_val = 0;
2901 }
2902 else
2903 {
2904 min_val = 0;
2905 max_val = STORE_FLAG_VALUE;
2906 }
2907 }
2908 else if (sign)
2909 {
2910 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2911 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2912 }
2913 else
2914 {
2915 min_val = 0;
2916 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2917 }
2918
2919 *mmin = gen_int_mode (min_val, target_mode);
2920 *mmax = gen_int_mode (max_val, target_mode);
2921 }
2922
2923 #include "gt-stor-layout.h"