7ffef4d849199c07b31acf7851c7393cc00b9593
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "output.h"
34 #include "diagnostic-core.h"
35 #include "toplev.h"
36 #include "ggc.h"
37 #include "target.h"
38 #include "langhooks.h"
39 #include "regs.h"
40 #include "params.h"
41 #include "cgraph.h"
42 #include "tree-inline.h"
43 #include "tree-dump.h"
44 #include "gimple.h"
45
46 /* Data type for the expressions representing sizes of data types.
47 It is the first integer type laid out. */
48 tree sizetype_tab[(int) TYPE_KIND_LAST];
49
50 /* If nonzero, this is an upper limit on alignment of structure fields.
51 The value is measured in bits. */
52 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 /* ... and its original value in bytes, specified via -fpack-struct=<value>. */
54 unsigned int initial_max_fld_align = TARGET_DEFAULT_PACK_STRUCT;
55
56 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
57 in the address spaces' address_mode, not pointer_mode. Set only by
58 internal_reference_types called only by a front end. */
59 static int reference_types_internal = 0;
60
61 static tree self_referential_size (tree);
62 static void finalize_record_size (record_layout_info);
63 static void finalize_type_size (tree);
64 static void place_union_field (record_layout_info, tree);
65 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
66 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
67 HOST_WIDE_INT, tree);
68 #endif
69 extern void debug_rli (record_layout_info);
70 \f
71 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
72
73 static GTY(()) VEC(tree,gc) *pending_sizes;
74
75 /* Show that REFERENCE_TYPES are internal and should use address_mode.
76 Called only by front end. */
77
78 void
79 internal_reference_types (void)
80 {
81 reference_types_internal = 1;
82 }
83
84 /* Get a VEC of all the objects put on the pending sizes list. */
85
86 VEC(tree,gc) *
87 get_pending_sizes (void)
88 {
89 VEC(tree,gc) *chain = pending_sizes;
90
91 pending_sizes = 0;
92 return chain;
93 }
94
95 /* Add EXPR to the pending sizes list. */
96
97 void
98 put_pending_size (tree expr)
99 {
100 /* Strip any simple arithmetic from EXPR to see if it has an underlying
101 SAVE_EXPR. */
102 expr = skip_simple_arithmetic (expr);
103
104 if (TREE_CODE (expr) == SAVE_EXPR)
105 VEC_safe_push (tree, gc, pending_sizes, expr);
106 }
107
108 /* Put a chain of objects into the pending sizes list, which must be
109 empty. */
110
111 void
112 put_pending_sizes (VEC(tree,gc) *chain)
113 {
114 gcc_assert (!pending_sizes);
115 pending_sizes = chain;
116 }
117
118 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
119 to serve as the actual size-expression for a type or decl. */
120
121 tree
122 variable_size (tree size)
123 {
124 tree save;
125
126 /* Obviously. */
127 if (TREE_CONSTANT (size))
128 return size;
129
130 /* If the size is self-referential, we can't make a SAVE_EXPR (see
131 save_expr for the rationale). But we can do something else. */
132 if (CONTAINS_PLACEHOLDER_P (size))
133 return self_referential_size (size);
134
135 /* If the language-processor is to take responsibility for variable-sized
136 items (e.g., languages which have elaboration procedures like Ada),
137 just return SIZE unchanged. */
138 if (lang_hooks.decls.global_bindings_p () < 0)
139 return size;
140
141 size = save_expr (size);
142
143 /* If an array with a variable number of elements is declared, and
144 the elements require destruction, we will emit a cleanup for the
145 array. That cleanup is run both on normal exit from the block
146 and in the exception-handler for the block. Normally, when code
147 is used in both ordinary code and in an exception handler it is
148 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
149 not wish to do that here; the array-size is the same in both
150 places. */
151 save = skip_simple_arithmetic (size);
152
153 if (cfun && cfun->dont_save_pending_sizes_p)
154 /* The front-end doesn't want us to keep a list of the expressions
155 that determine sizes for variable size objects. Trust it. */
156 return size;
157
158 if (lang_hooks.decls.global_bindings_p ())
159 {
160 if (TREE_CONSTANT (size))
161 error ("type size can%'t be explicitly evaluated");
162 else
163 error ("variable-size type declared outside of any function");
164
165 return size_one_node;
166 }
167
168 put_pending_size (save);
169
170 return size;
171 }
172
173 /* An array of functions used for self-referential size computation. */
174 static GTY(()) VEC (tree, gc) *size_functions;
175
176 /* Similar to copy_tree_r but do not copy component references involving
177 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
178 and substituted in substitute_in_expr. */
179
180 static tree
181 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
182 {
183 enum tree_code code = TREE_CODE (*tp);
184
185 /* Stop at types, decls, constants like copy_tree_r. */
186 if (TREE_CODE_CLASS (code) == tcc_type
187 || TREE_CODE_CLASS (code) == tcc_declaration
188 || TREE_CODE_CLASS (code) == tcc_constant)
189 {
190 *walk_subtrees = 0;
191 return NULL_TREE;
192 }
193
194 /* This is the pattern built in ada/make_aligning_type. */
195 else if (code == ADDR_EXPR
196 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
197 {
198 *walk_subtrees = 0;
199 return NULL_TREE;
200 }
201
202 /* Default case: the component reference. */
203 else if (code == COMPONENT_REF)
204 {
205 tree inner;
206 for (inner = TREE_OPERAND (*tp, 0);
207 REFERENCE_CLASS_P (inner);
208 inner = TREE_OPERAND (inner, 0))
209 ;
210
211 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
212 {
213 *walk_subtrees = 0;
214 return NULL_TREE;
215 }
216 }
217
218 /* We're not supposed to have them in self-referential size trees
219 because we wouldn't properly control when they are evaluated.
220 However, not creating superfluous SAVE_EXPRs requires accurate
221 tracking of readonly-ness all the way down to here, which we
222 cannot always guarantee in practice. So punt in this case. */
223 else if (code == SAVE_EXPR)
224 return error_mark_node;
225
226 return copy_tree_r (tp, walk_subtrees, data);
227 }
228
229 /* Given a SIZE expression that is self-referential, return an equivalent
230 expression to serve as the actual size expression for a type. */
231
232 static tree
233 self_referential_size (tree size)
234 {
235 static unsigned HOST_WIDE_INT fnno = 0;
236 VEC (tree, heap) *self_refs = NULL;
237 tree param_type_list = NULL, param_decl_list = NULL;
238 tree t, ref, return_type, fntype, fnname, fndecl;
239 unsigned int i;
240 char buf[128];
241 VEC(tree,gc) *args = NULL;
242
243 /* Do not factor out simple operations. */
244 t = skip_simple_arithmetic (size);
245 if (TREE_CODE (t) == CALL_EXPR)
246 return size;
247
248 /* Collect the list of self-references in the expression. */
249 find_placeholder_in_expr (size, &self_refs);
250 gcc_assert (VEC_length (tree, self_refs) > 0);
251
252 /* Obtain a private copy of the expression. */
253 t = size;
254 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
255 return size;
256 size = t;
257
258 /* Build the parameter and argument lists in parallel; also
259 substitute the former for the latter in the expression. */
260 args = VEC_alloc (tree, gc, VEC_length (tree, self_refs));
261 FOR_EACH_VEC_ELT (tree, self_refs, i, ref)
262 {
263 tree subst, param_name, param_type, param_decl;
264
265 if (DECL_P (ref))
266 {
267 /* We shouldn't have true variables here. */
268 gcc_assert (TREE_READONLY (ref));
269 subst = ref;
270 }
271 /* This is the pattern built in ada/make_aligning_type. */
272 else if (TREE_CODE (ref) == ADDR_EXPR)
273 subst = ref;
274 /* Default case: the component reference. */
275 else
276 subst = TREE_OPERAND (ref, 1);
277
278 sprintf (buf, "p%d", i);
279 param_name = get_identifier (buf);
280 param_type = TREE_TYPE (ref);
281 param_decl
282 = build_decl (input_location, PARM_DECL, param_name, param_type);
283 if (targetm.calls.promote_prototypes (NULL_TREE)
284 && INTEGRAL_TYPE_P (param_type)
285 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
286 DECL_ARG_TYPE (param_decl) = integer_type_node;
287 else
288 DECL_ARG_TYPE (param_decl) = param_type;
289 DECL_ARTIFICIAL (param_decl) = 1;
290 TREE_READONLY (param_decl) = 1;
291
292 size = substitute_in_expr (size, subst, param_decl);
293
294 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
295 param_decl_list = chainon (param_decl, param_decl_list);
296 VEC_quick_push (tree, args, ref);
297 }
298
299 VEC_free (tree, heap, self_refs);
300
301 /* Append 'void' to indicate that the number of parameters is fixed. */
302 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
303
304 /* The 3 lists have been created in reverse order. */
305 param_type_list = nreverse (param_type_list);
306 param_decl_list = nreverse (param_decl_list);
307
308 /* Build the function type. */
309 return_type = TREE_TYPE (size);
310 fntype = build_function_type (return_type, param_type_list);
311
312 /* Build the function declaration. */
313 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
314 fnname = get_file_function_name (buf);
315 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
316 for (t = param_decl_list; t; t = DECL_CHAIN (t))
317 DECL_CONTEXT (t) = fndecl;
318 DECL_ARGUMENTS (fndecl) = param_decl_list;
319 DECL_RESULT (fndecl)
320 = build_decl (input_location, RESULT_DECL, 0, return_type);
321 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
322
323 /* The function has been created by the compiler and we don't
324 want to emit debug info for it. */
325 DECL_ARTIFICIAL (fndecl) = 1;
326 DECL_IGNORED_P (fndecl) = 1;
327
328 /* It is supposed to be "const" and never throw. */
329 TREE_READONLY (fndecl) = 1;
330 TREE_NOTHROW (fndecl) = 1;
331
332 /* We want it to be inlined when this is deemed profitable, as
333 well as discarded if every call has been integrated. */
334 DECL_DECLARED_INLINE_P (fndecl) = 1;
335
336 /* It is made up of a unique return statement. */
337 DECL_INITIAL (fndecl) = make_node (BLOCK);
338 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
339 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
340 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
341 TREE_STATIC (fndecl) = 1;
342
343 /* Put it onto the list of size functions. */
344 VEC_safe_push (tree, gc, size_functions, fndecl);
345
346 /* Replace the original expression with a call to the size function. */
347 return build_call_expr_loc_vec (input_location, fndecl, args);
348 }
349
350 /* Take, queue and compile all the size functions. It is essential that
351 the size functions be gimplified at the very end of the compilation
352 in order to guarantee transparent handling of self-referential sizes.
353 Otherwise the GENERIC inliner would not be able to inline them back
354 at each of their call sites, thus creating artificial non-constant
355 size expressions which would trigger nasty problems later on. */
356
357 void
358 finalize_size_functions (void)
359 {
360 unsigned int i;
361 tree fndecl;
362
363 for (i = 0; VEC_iterate(tree, size_functions, i, fndecl); i++)
364 {
365 dump_function (TDI_original, fndecl);
366 gimplify_function_tree (fndecl);
367 dump_function (TDI_generic, fndecl);
368 cgraph_finalize_function (fndecl, false);
369 }
370
371 VEC_free (tree, gc, size_functions);
372 }
373 \f
374 /* Return the machine mode to use for a nonscalar of SIZE bits. The
375 mode must be in class MCLASS, and have exactly that many value bits;
376 it may have padding as well. If LIMIT is nonzero, modes of wider
377 than MAX_FIXED_MODE_SIZE will not be used. */
378
379 enum machine_mode
380 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
381 {
382 enum machine_mode mode;
383
384 if (limit && size > MAX_FIXED_MODE_SIZE)
385 return BLKmode;
386
387 /* Get the first mode which has this size, in the specified class. */
388 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
389 mode = GET_MODE_WIDER_MODE (mode))
390 if (GET_MODE_PRECISION (mode) == size)
391 return mode;
392
393 return BLKmode;
394 }
395
396 /* Similar, except passed a tree node. */
397
398 enum machine_mode
399 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
400 {
401 unsigned HOST_WIDE_INT uhwi;
402 unsigned int ui;
403
404 if (!host_integerp (size, 1))
405 return BLKmode;
406 uhwi = tree_low_cst (size, 1);
407 ui = uhwi;
408 if (uhwi != ui)
409 return BLKmode;
410 return mode_for_size (ui, mclass, limit);
411 }
412
413 /* Similar, but never return BLKmode; return the narrowest mode that
414 contains at least the requested number of value bits. */
415
416 enum machine_mode
417 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
418 {
419 enum machine_mode mode;
420
421 /* Get the first mode which has at least this size, in the
422 specified class. */
423 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
424 mode = GET_MODE_WIDER_MODE (mode))
425 if (GET_MODE_PRECISION (mode) >= size)
426 return mode;
427
428 gcc_unreachable ();
429 }
430
431 /* Find an integer mode of the exact same size, or BLKmode on failure. */
432
433 enum machine_mode
434 int_mode_for_mode (enum machine_mode mode)
435 {
436 switch (GET_MODE_CLASS (mode))
437 {
438 case MODE_INT:
439 case MODE_PARTIAL_INT:
440 break;
441
442 case MODE_COMPLEX_INT:
443 case MODE_COMPLEX_FLOAT:
444 case MODE_FLOAT:
445 case MODE_DECIMAL_FLOAT:
446 case MODE_VECTOR_INT:
447 case MODE_VECTOR_FLOAT:
448 case MODE_FRACT:
449 case MODE_ACCUM:
450 case MODE_UFRACT:
451 case MODE_UACCUM:
452 case MODE_VECTOR_FRACT:
453 case MODE_VECTOR_ACCUM:
454 case MODE_VECTOR_UFRACT:
455 case MODE_VECTOR_UACCUM:
456 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
457 break;
458
459 case MODE_RANDOM:
460 if (mode == BLKmode)
461 break;
462
463 /* ... fall through ... */
464
465 case MODE_CC:
466 default:
467 gcc_unreachable ();
468 }
469
470 return mode;
471 }
472
473 /* Return the alignment of MODE. This will be bounded by 1 and
474 BIGGEST_ALIGNMENT. */
475
476 unsigned int
477 get_mode_alignment (enum machine_mode mode)
478 {
479 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
480 }
481
482 \f
483 /* Subroutine of layout_decl: Force alignment required for the data type.
484 But if the decl itself wants greater alignment, don't override that. */
485
486 static inline void
487 do_type_align (tree type, tree decl)
488 {
489 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
490 {
491 DECL_ALIGN (decl) = TYPE_ALIGN (type);
492 if (TREE_CODE (decl) == FIELD_DECL)
493 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
494 }
495 }
496
497 /* Set the size, mode and alignment of a ..._DECL node.
498 TYPE_DECL does need this for C++.
499 Note that LABEL_DECL and CONST_DECL nodes do not need this,
500 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
501 Don't call layout_decl for them.
502
503 KNOWN_ALIGN is the amount of alignment we can assume this
504 decl has with no special effort. It is relevant only for FIELD_DECLs
505 and depends on the previous fields.
506 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
507 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
508 the record will be aligned to suit. */
509
510 void
511 layout_decl (tree decl, unsigned int known_align)
512 {
513 tree type = TREE_TYPE (decl);
514 enum tree_code code = TREE_CODE (decl);
515 rtx rtl = NULL_RTX;
516 location_t loc = DECL_SOURCE_LOCATION (decl);
517
518 if (code == CONST_DECL)
519 return;
520
521 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
522 || code == TYPE_DECL ||code == FIELD_DECL);
523
524 rtl = DECL_RTL_IF_SET (decl);
525
526 if (type == error_mark_node)
527 type = void_type_node;
528
529 /* Usually the size and mode come from the data type without change,
530 however, the front-end may set the explicit width of the field, so its
531 size may not be the same as the size of its type. This happens with
532 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
533 also happens with other fields. For example, the C++ front-end creates
534 zero-sized fields corresponding to empty base classes, and depends on
535 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
536 size in bytes from the size in bits. If we have already set the mode,
537 don't set it again since we can be called twice for FIELD_DECLs. */
538
539 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
540 if (DECL_MODE (decl) == VOIDmode)
541 DECL_MODE (decl) = TYPE_MODE (type);
542
543 if (DECL_SIZE (decl) == 0)
544 {
545 DECL_SIZE (decl) = TYPE_SIZE (type);
546 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
547 }
548 else if (DECL_SIZE_UNIT (decl) == 0)
549 DECL_SIZE_UNIT (decl)
550 = fold_convert_loc (loc, sizetype,
551 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
552 bitsize_unit_node));
553
554 if (code != FIELD_DECL)
555 /* For non-fields, update the alignment from the type. */
556 do_type_align (type, decl);
557 else
558 /* For fields, it's a bit more complicated... */
559 {
560 bool old_user_align = DECL_USER_ALIGN (decl);
561 bool zero_bitfield = false;
562 bool packed_p = DECL_PACKED (decl);
563 unsigned int mfa;
564
565 if (DECL_BIT_FIELD (decl))
566 {
567 DECL_BIT_FIELD_TYPE (decl) = type;
568
569 /* A zero-length bit-field affects the alignment of the next
570 field. In essence such bit-fields are not influenced by
571 any packing due to #pragma pack or attribute packed. */
572 if (integer_zerop (DECL_SIZE (decl))
573 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
574 {
575 zero_bitfield = true;
576 packed_p = false;
577 #ifdef PCC_BITFIELD_TYPE_MATTERS
578 if (PCC_BITFIELD_TYPE_MATTERS)
579 do_type_align (type, decl);
580 else
581 #endif
582 {
583 #ifdef EMPTY_FIELD_BOUNDARY
584 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
585 {
586 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
587 DECL_USER_ALIGN (decl) = 0;
588 }
589 #endif
590 }
591 }
592
593 /* See if we can use an ordinary integer mode for a bit-field.
594 Conditions are: a fixed size that is correct for another mode
595 and occupying a complete byte or bytes on proper boundary. */
596 if (TYPE_SIZE (type) != 0
597 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
598 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
599 {
600 enum machine_mode xmode
601 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
602 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
603
604 if (xmode != BLKmode
605 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
606 && (known_align == 0 || known_align >= xalign))
607 {
608 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
609 DECL_MODE (decl) = xmode;
610 DECL_BIT_FIELD (decl) = 0;
611 }
612 }
613
614 /* Turn off DECL_BIT_FIELD if we won't need it set. */
615 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
616 && known_align >= TYPE_ALIGN (type)
617 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
618 DECL_BIT_FIELD (decl) = 0;
619 }
620 else if (packed_p && DECL_USER_ALIGN (decl))
621 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
622 round up; we'll reduce it again below. We want packing to
623 supersede USER_ALIGN inherited from the type, but defer to
624 alignment explicitly specified on the field decl. */;
625 else
626 do_type_align (type, decl);
627
628 /* If the field is packed and not explicitly aligned, give it the
629 minimum alignment. Note that do_type_align may set
630 DECL_USER_ALIGN, so we need to check old_user_align instead. */
631 if (packed_p
632 && !old_user_align)
633 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
634
635 if (! packed_p && ! DECL_USER_ALIGN (decl))
636 {
637 /* Some targets (i.e. i386, VMS) limit struct field alignment
638 to a lower boundary than alignment of variables unless
639 it was overridden by attribute aligned. */
640 #ifdef BIGGEST_FIELD_ALIGNMENT
641 DECL_ALIGN (decl)
642 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
643 #endif
644 #ifdef ADJUST_FIELD_ALIGN
645 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
646 #endif
647 }
648
649 if (zero_bitfield)
650 mfa = initial_max_fld_align * BITS_PER_UNIT;
651 else
652 mfa = maximum_field_alignment;
653 /* Should this be controlled by DECL_USER_ALIGN, too? */
654 if (mfa != 0)
655 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
656 }
657
658 /* Evaluate nonconstant size only once, either now or as soon as safe. */
659 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
660 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
661 if (DECL_SIZE_UNIT (decl) != 0
662 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
663 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
664
665 /* If requested, warn about definitions of large data objects. */
666 if (warn_larger_than
667 && (code == VAR_DECL || code == PARM_DECL)
668 && ! DECL_EXTERNAL (decl))
669 {
670 tree size = DECL_SIZE_UNIT (decl);
671
672 if (size != 0 && TREE_CODE (size) == INTEGER_CST
673 && compare_tree_int (size, larger_than_size) > 0)
674 {
675 int size_as_int = TREE_INT_CST_LOW (size);
676
677 if (compare_tree_int (size, size_as_int) == 0)
678 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
679 else
680 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
681 decl, larger_than_size);
682 }
683 }
684
685 /* If the RTL was already set, update its mode and mem attributes. */
686 if (rtl)
687 {
688 PUT_MODE (rtl, DECL_MODE (decl));
689 SET_DECL_RTL (decl, 0);
690 set_mem_attributes (rtl, decl, 1);
691 SET_DECL_RTL (decl, rtl);
692 }
693 }
694
695 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
696 a previous call to layout_decl and calls it again. */
697
698 void
699 relayout_decl (tree decl)
700 {
701 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
702 DECL_MODE (decl) = VOIDmode;
703 if (!DECL_USER_ALIGN (decl))
704 DECL_ALIGN (decl) = 0;
705 SET_DECL_RTL (decl, 0);
706
707 layout_decl (decl, 0);
708 }
709 \f
710 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
711 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
712 is to be passed to all other layout functions for this record. It is the
713 responsibility of the caller to call `free' for the storage returned.
714 Note that garbage collection is not permitted until we finish laying
715 out the record. */
716
717 record_layout_info
718 start_record_layout (tree t)
719 {
720 record_layout_info rli = XNEW (struct record_layout_info_s);
721
722 rli->t = t;
723
724 /* If the type has a minimum specified alignment (via an attribute
725 declaration, for example) use it -- otherwise, start with a
726 one-byte alignment. */
727 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
728 rli->unpacked_align = rli->record_align;
729 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
730
731 #ifdef STRUCTURE_SIZE_BOUNDARY
732 /* Packed structures don't need to have minimum size. */
733 if (! TYPE_PACKED (t))
734 {
735 unsigned tmp;
736
737 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
738 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
739 if (maximum_field_alignment != 0)
740 tmp = MIN (tmp, maximum_field_alignment);
741 rli->record_align = MAX (rli->record_align, tmp);
742 }
743 #endif
744
745 rli->offset = size_zero_node;
746 rli->bitpos = bitsize_zero_node;
747 rli->prev_field = 0;
748 rli->pending_statics = NULL;
749 rli->packed_maybe_necessary = 0;
750 rli->remaining_in_alignment = 0;
751
752 return rli;
753 }
754
755 /* These four routines perform computations that convert between
756 the offset/bitpos forms and byte and bit offsets. */
757
758 tree
759 bit_from_pos (tree offset, tree bitpos)
760 {
761 return size_binop (PLUS_EXPR, bitpos,
762 size_binop (MULT_EXPR,
763 fold_convert (bitsizetype, offset),
764 bitsize_unit_node));
765 }
766
767 tree
768 byte_from_pos (tree offset, tree bitpos)
769 {
770 return size_binop (PLUS_EXPR, offset,
771 fold_convert (sizetype,
772 size_binop (TRUNC_DIV_EXPR, bitpos,
773 bitsize_unit_node)));
774 }
775
776 void
777 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
778 tree pos)
779 {
780 *poffset = size_binop (MULT_EXPR,
781 fold_convert (sizetype,
782 size_binop (FLOOR_DIV_EXPR, pos,
783 bitsize_int (off_align))),
784 size_int (off_align / BITS_PER_UNIT));
785 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
786 }
787
788 /* Given a pointer to bit and byte offsets and an offset alignment,
789 normalize the offsets so they are within the alignment. */
790
791 void
792 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
793 {
794 /* If the bit position is now larger than it should be, adjust it
795 downwards. */
796 if (compare_tree_int (*pbitpos, off_align) >= 0)
797 {
798 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
799 bitsize_int (off_align));
800
801 *poffset
802 = size_binop (PLUS_EXPR, *poffset,
803 size_binop (MULT_EXPR,
804 fold_convert (sizetype, extra_aligns),
805 size_int (off_align / BITS_PER_UNIT)));
806
807 *pbitpos
808 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
809 }
810 }
811
812 /* Print debugging information about the information in RLI. */
813
814 DEBUG_FUNCTION void
815 debug_rli (record_layout_info rli)
816 {
817 print_node_brief (stderr, "type", rli->t, 0);
818 print_node_brief (stderr, "\noffset", rli->offset, 0);
819 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
820
821 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
822 rli->record_align, rli->unpacked_align,
823 rli->offset_align);
824
825 /* The ms_struct code is the only that uses this. */
826 if (targetm.ms_bitfield_layout_p (rli->t))
827 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
828
829 if (rli->packed_maybe_necessary)
830 fprintf (stderr, "packed may be necessary\n");
831
832 if (!VEC_empty (tree, rli->pending_statics))
833 {
834 fprintf (stderr, "pending statics:\n");
835 debug_vec_tree (rli->pending_statics);
836 }
837 }
838
839 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
840 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
841
842 void
843 normalize_rli (record_layout_info rli)
844 {
845 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
846 }
847
848 /* Returns the size in bytes allocated so far. */
849
850 tree
851 rli_size_unit_so_far (record_layout_info rli)
852 {
853 return byte_from_pos (rli->offset, rli->bitpos);
854 }
855
856 /* Returns the size in bits allocated so far. */
857
858 tree
859 rli_size_so_far (record_layout_info rli)
860 {
861 return bit_from_pos (rli->offset, rli->bitpos);
862 }
863
864 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
865 the next available location within the record is given by KNOWN_ALIGN.
866 Update the variable alignment fields in RLI, and return the alignment
867 to give the FIELD. */
868
869 unsigned int
870 update_alignment_for_field (record_layout_info rli, tree field,
871 unsigned int known_align)
872 {
873 /* The alignment required for FIELD. */
874 unsigned int desired_align;
875 /* The type of this field. */
876 tree type = TREE_TYPE (field);
877 /* True if the field was explicitly aligned by the user. */
878 bool user_align;
879 bool is_bitfield;
880
881 /* Do not attempt to align an ERROR_MARK node */
882 if (TREE_CODE (type) == ERROR_MARK)
883 return 0;
884
885 /* Lay out the field so we know what alignment it needs. */
886 layout_decl (field, known_align);
887 desired_align = DECL_ALIGN (field);
888 user_align = DECL_USER_ALIGN (field);
889
890 is_bitfield = (type != error_mark_node
891 && DECL_BIT_FIELD_TYPE (field)
892 && ! integer_zerop (TYPE_SIZE (type)));
893
894 /* Record must have at least as much alignment as any field.
895 Otherwise, the alignment of the field within the record is
896 meaningless. */
897 if (targetm.ms_bitfield_layout_p (rli->t))
898 {
899 /* Here, the alignment of the underlying type of a bitfield can
900 affect the alignment of a record; even a zero-sized field
901 can do this. The alignment should be to the alignment of
902 the type, except that for zero-size bitfields this only
903 applies if there was an immediately prior, nonzero-size
904 bitfield. (That's the way it is, experimentally.) */
905 if ((!is_bitfield && !DECL_PACKED (field))
906 || (!integer_zerop (DECL_SIZE (field))
907 ? !DECL_PACKED (field)
908 : (rli->prev_field
909 && DECL_BIT_FIELD_TYPE (rli->prev_field)
910 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
911 {
912 unsigned int type_align = TYPE_ALIGN (type);
913 type_align = MAX (type_align, desired_align);
914 if (maximum_field_alignment != 0)
915 type_align = MIN (type_align, maximum_field_alignment);
916 rli->record_align = MAX (rli->record_align, type_align);
917 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
918 }
919 }
920 #ifdef PCC_BITFIELD_TYPE_MATTERS
921 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
922 {
923 /* Named bit-fields cause the entire structure to have the
924 alignment implied by their type. Some targets also apply the same
925 rules to unnamed bitfields. */
926 if (DECL_NAME (field) != 0
927 || targetm.align_anon_bitfield ())
928 {
929 unsigned int type_align = TYPE_ALIGN (type);
930
931 #ifdef ADJUST_FIELD_ALIGN
932 if (! TYPE_USER_ALIGN (type))
933 type_align = ADJUST_FIELD_ALIGN (field, type_align);
934 #endif
935
936 /* Targets might chose to handle unnamed and hence possibly
937 zero-width bitfield. Those are not influenced by #pragmas
938 or packed attributes. */
939 if (integer_zerop (DECL_SIZE (field)))
940 {
941 if (initial_max_fld_align)
942 type_align = MIN (type_align,
943 initial_max_fld_align * BITS_PER_UNIT);
944 }
945 else if (maximum_field_alignment != 0)
946 type_align = MIN (type_align, maximum_field_alignment);
947 else if (DECL_PACKED (field))
948 type_align = MIN (type_align, BITS_PER_UNIT);
949
950 /* The alignment of the record is increased to the maximum
951 of the current alignment, the alignment indicated on the
952 field (i.e., the alignment specified by an __aligned__
953 attribute), and the alignment indicated by the type of
954 the field. */
955 rli->record_align = MAX (rli->record_align, desired_align);
956 rli->record_align = MAX (rli->record_align, type_align);
957
958 if (warn_packed)
959 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
960 user_align |= TYPE_USER_ALIGN (type);
961 }
962 }
963 #endif
964 else
965 {
966 rli->record_align = MAX (rli->record_align, desired_align);
967 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
968 }
969
970 TYPE_USER_ALIGN (rli->t) |= user_align;
971
972 return desired_align;
973 }
974
975 /* Called from place_field to handle unions. */
976
977 static void
978 place_union_field (record_layout_info rli, tree field)
979 {
980 update_alignment_for_field (rli, field, /*known_align=*/0);
981
982 DECL_FIELD_OFFSET (field) = size_zero_node;
983 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
984 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
985
986 /* If this is an ERROR_MARK return *after* having set the
987 field at the start of the union. This helps when parsing
988 invalid fields. */
989 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
990 return;
991
992 /* We assume the union's size will be a multiple of a byte so we don't
993 bother with BITPOS. */
994 if (TREE_CODE (rli->t) == UNION_TYPE)
995 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
996 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
997 rli->offset = fold_build3_loc (input_location, COND_EXPR, sizetype,
998 DECL_QUALIFIER (field),
999 DECL_SIZE_UNIT (field), rli->offset);
1000 }
1001
1002 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1003 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1004 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1005 units of alignment than the underlying TYPE. */
1006 static int
1007 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1008 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1009 {
1010 /* Note that the calculation of OFFSET might overflow; we calculate it so
1011 that we still get the right result as long as ALIGN is a power of two. */
1012 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1013
1014 offset = offset % align;
1015 return ((offset + size + align - 1) / align
1016 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
1017 / align));
1018 }
1019 #endif
1020
1021 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1022 is a FIELD_DECL to be added after those fields already present in
1023 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1024 callers that desire that behavior must manually perform that step.) */
1025
1026 void
1027 place_field (record_layout_info rli, tree field)
1028 {
1029 /* The alignment required for FIELD. */
1030 unsigned int desired_align;
1031 /* The alignment FIELD would have if we just dropped it into the
1032 record as it presently stands. */
1033 unsigned int known_align;
1034 unsigned int actual_align;
1035 /* The type of this field. */
1036 tree type = TREE_TYPE (field);
1037
1038 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1039
1040 /* If FIELD is static, then treat it like a separate variable, not
1041 really like a structure field. If it is a FUNCTION_DECL, it's a
1042 method. In both cases, all we do is lay out the decl, and we do
1043 it *after* the record is laid out. */
1044 if (TREE_CODE (field) == VAR_DECL)
1045 {
1046 VEC_safe_push (tree, gc, rli->pending_statics, field);
1047 return;
1048 }
1049
1050 /* Enumerators and enum types which are local to this class need not
1051 be laid out. Likewise for initialized constant fields. */
1052 else if (TREE_CODE (field) != FIELD_DECL)
1053 return;
1054
1055 /* Unions are laid out very differently than records, so split
1056 that code off to another function. */
1057 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1058 {
1059 place_union_field (rli, field);
1060 return;
1061 }
1062
1063 else if (TREE_CODE (type) == ERROR_MARK)
1064 {
1065 /* Place this field at the current allocation position, so we
1066 maintain monotonicity. */
1067 DECL_FIELD_OFFSET (field) = rli->offset;
1068 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1069 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1070 return;
1071 }
1072
1073 /* Work out the known alignment so far. Note that A & (-A) is the
1074 value of the least-significant bit in A that is one. */
1075 if (! integer_zerop (rli->bitpos))
1076 known_align = (tree_low_cst (rli->bitpos, 1)
1077 & - tree_low_cst (rli->bitpos, 1));
1078 else if (integer_zerop (rli->offset))
1079 known_align = 0;
1080 else if (host_integerp (rli->offset, 1))
1081 known_align = (BITS_PER_UNIT
1082 * (tree_low_cst (rli->offset, 1)
1083 & - tree_low_cst (rli->offset, 1)));
1084 else
1085 known_align = rli->offset_align;
1086
1087 desired_align = update_alignment_for_field (rli, field, known_align);
1088 if (known_align == 0)
1089 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1090
1091 if (warn_packed && DECL_PACKED (field))
1092 {
1093 if (known_align >= TYPE_ALIGN (type))
1094 {
1095 if (TYPE_ALIGN (type) > desired_align)
1096 {
1097 if (STRICT_ALIGNMENT)
1098 warning (OPT_Wattributes, "packed attribute causes "
1099 "inefficient alignment for %q+D", field);
1100 /* Don't warn if DECL_PACKED was set by the type. */
1101 else if (!TYPE_PACKED (rli->t))
1102 warning (OPT_Wattributes, "packed attribute is "
1103 "unnecessary for %q+D", field);
1104 }
1105 }
1106 else
1107 rli->packed_maybe_necessary = 1;
1108 }
1109
1110 /* Does this field automatically have alignment it needs by virtue
1111 of the fields that precede it and the record's own alignment?
1112 We already align ms_struct fields, so don't re-align them. */
1113 if (known_align < desired_align
1114 && !targetm.ms_bitfield_layout_p (rli->t))
1115 {
1116 /* No, we need to skip space before this field.
1117 Bump the cumulative size to multiple of field alignment. */
1118
1119 if (DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1120 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1121
1122 /* If the alignment is still within offset_align, just align
1123 the bit position. */
1124 if (desired_align < rli->offset_align)
1125 rli->bitpos = round_up (rli->bitpos, desired_align);
1126 else
1127 {
1128 /* First adjust OFFSET by the partial bits, then align. */
1129 rli->offset
1130 = size_binop (PLUS_EXPR, rli->offset,
1131 fold_convert (sizetype,
1132 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1133 bitsize_unit_node)));
1134 rli->bitpos = bitsize_zero_node;
1135
1136 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1137 }
1138
1139 if (! TREE_CONSTANT (rli->offset))
1140 rli->offset_align = desired_align;
1141
1142 }
1143
1144 /* Handle compatibility with PCC. Note that if the record has any
1145 variable-sized fields, we need not worry about compatibility. */
1146 #ifdef PCC_BITFIELD_TYPE_MATTERS
1147 if (PCC_BITFIELD_TYPE_MATTERS
1148 && ! targetm.ms_bitfield_layout_p (rli->t)
1149 && TREE_CODE (field) == FIELD_DECL
1150 && type != error_mark_node
1151 && DECL_BIT_FIELD (field)
1152 && (! DECL_PACKED (field)
1153 /* Enter for these packed fields only to issue a warning. */
1154 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1155 && maximum_field_alignment == 0
1156 && ! integer_zerop (DECL_SIZE (field))
1157 && host_integerp (DECL_SIZE (field), 1)
1158 && host_integerp (rli->offset, 1)
1159 && host_integerp (TYPE_SIZE (type), 1))
1160 {
1161 unsigned int type_align = TYPE_ALIGN (type);
1162 tree dsize = DECL_SIZE (field);
1163 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1164 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1165 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1166
1167 #ifdef ADJUST_FIELD_ALIGN
1168 if (! TYPE_USER_ALIGN (type))
1169 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1170 #endif
1171
1172 /* A bit field may not span more units of alignment of its type
1173 than its type itself. Advance to next boundary if necessary. */
1174 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1175 {
1176 if (DECL_PACKED (field))
1177 {
1178 if (warn_packed_bitfield_compat == 1)
1179 inform
1180 (input_location,
1181 "Offset of packed bit-field %qD has changed in GCC 4.4",
1182 field);
1183 }
1184 else
1185 rli->bitpos = round_up_loc (input_location, rli->bitpos, type_align);
1186 }
1187
1188 if (! DECL_PACKED (field))
1189 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1190 }
1191 #endif
1192
1193 #ifdef BITFIELD_NBYTES_LIMITED
1194 if (BITFIELD_NBYTES_LIMITED
1195 && ! targetm.ms_bitfield_layout_p (rli->t)
1196 && TREE_CODE (field) == FIELD_DECL
1197 && type != error_mark_node
1198 && DECL_BIT_FIELD_TYPE (field)
1199 && ! DECL_PACKED (field)
1200 && ! integer_zerop (DECL_SIZE (field))
1201 && host_integerp (DECL_SIZE (field), 1)
1202 && host_integerp (rli->offset, 1)
1203 && host_integerp (TYPE_SIZE (type), 1))
1204 {
1205 unsigned int type_align = TYPE_ALIGN (type);
1206 tree dsize = DECL_SIZE (field);
1207 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1208 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1209 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1210
1211 #ifdef ADJUST_FIELD_ALIGN
1212 if (! TYPE_USER_ALIGN (type))
1213 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1214 #endif
1215
1216 if (maximum_field_alignment != 0)
1217 type_align = MIN (type_align, maximum_field_alignment);
1218 /* ??? This test is opposite the test in the containing if
1219 statement, so this code is unreachable currently. */
1220 else if (DECL_PACKED (field))
1221 type_align = MIN (type_align, BITS_PER_UNIT);
1222
1223 /* A bit field may not span the unit of alignment of its type.
1224 Advance to next boundary if necessary. */
1225 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1226 rli->bitpos = round_up (rli->bitpos, type_align);
1227
1228 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1229 }
1230 #endif
1231
1232 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1233 A subtlety:
1234 When a bit field is inserted into a packed record, the whole
1235 size of the underlying type is used by one or more same-size
1236 adjacent bitfields. (That is, if its long:3, 32 bits is
1237 used in the record, and any additional adjacent long bitfields are
1238 packed into the same chunk of 32 bits. However, if the size
1239 changes, a new field of that size is allocated.) In an unpacked
1240 record, this is the same as using alignment, but not equivalent
1241 when packing.
1242
1243 Note: for compatibility, we use the type size, not the type alignment
1244 to determine alignment, since that matches the documentation */
1245
1246 if (targetm.ms_bitfield_layout_p (rli->t))
1247 {
1248 tree prev_saved = rli->prev_field;
1249 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1250
1251 /* This is a bitfield if it exists. */
1252 if (rli->prev_field)
1253 {
1254 /* If both are bitfields, nonzero, and the same size, this is
1255 the middle of a run. Zero declared size fields are special
1256 and handled as "end of run". (Note: it's nonzero declared
1257 size, but equal type sizes!) (Since we know that both
1258 the current and previous fields are bitfields by the
1259 time we check it, DECL_SIZE must be present for both.) */
1260 if (DECL_BIT_FIELD_TYPE (field)
1261 && !integer_zerop (DECL_SIZE (field))
1262 && !integer_zerop (DECL_SIZE (rli->prev_field))
1263 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1264 && host_integerp (TYPE_SIZE (type), 0)
1265 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1266 {
1267 /* We're in the middle of a run of equal type size fields; make
1268 sure we realign if we run out of bits. (Not decl size,
1269 type size!) */
1270 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
1271
1272 if (rli->remaining_in_alignment < bitsize)
1273 {
1274 HOST_WIDE_INT typesize = tree_low_cst (TYPE_SIZE (type), 1);
1275
1276 /* out of bits; bump up to next 'word'. */
1277 rli->bitpos
1278 = size_binop (PLUS_EXPR, rli->bitpos,
1279 bitsize_int (rli->remaining_in_alignment));
1280 rli->prev_field = field;
1281 if (typesize < bitsize)
1282 rli->remaining_in_alignment = 0;
1283 else
1284 rli->remaining_in_alignment = typesize - bitsize;
1285 }
1286 else
1287 rli->remaining_in_alignment -= bitsize;
1288 }
1289 else
1290 {
1291 /* End of a run: if leaving a run of bitfields of the same type
1292 size, we have to "use up" the rest of the bits of the type
1293 size.
1294
1295 Compute the new position as the sum of the size for the prior
1296 type and where we first started working on that type.
1297 Note: since the beginning of the field was aligned then
1298 of course the end will be too. No round needed. */
1299
1300 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1301 {
1302 rli->bitpos
1303 = size_binop (PLUS_EXPR, rli->bitpos,
1304 bitsize_int (rli->remaining_in_alignment));
1305 }
1306 else
1307 /* We "use up" size zero fields; the code below should behave
1308 as if the prior field was not a bitfield. */
1309 prev_saved = NULL;
1310
1311 /* Cause a new bitfield to be captured, either this time (if
1312 currently a bitfield) or next time we see one. */
1313 if (!DECL_BIT_FIELD_TYPE(field)
1314 || integer_zerop (DECL_SIZE (field)))
1315 rli->prev_field = NULL;
1316 }
1317
1318 normalize_rli (rli);
1319 }
1320
1321 /* If we're starting a new run of same size type bitfields
1322 (or a run of non-bitfields), set up the "first of the run"
1323 fields.
1324
1325 That is, if the current field is not a bitfield, or if there
1326 was a prior bitfield the type sizes differ, or if there wasn't
1327 a prior bitfield the size of the current field is nonzero.
1328
1329 Note: we must be sure to test ONLY the type size if there was
1330 a prior bitfield and ONLY for the current field being zero if
1331 there wasn't. */
1332
1333 if (!DECL_BIT_FIELD_TYPE (field)
1334 || (prev_saved != NULL
1335 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1336 : !integer_zerop (DECL_SIZE (field)) ))
1337 {
1338 /* Never smaller than a byte for compatibility. */
1339 unsigned int type_align = BITS_PER_UNIT;
1340
1341 /* (When not a bitfield), we could be seeing a flex array (with
1342 no DECL_SIZE). Since we won't be using remaining_in_alignment
1343 until we see a bitfield (and come by here again) we just skip
1344 calculating it. */
1345 if (DECL_SIZE (field) != NULL
1346 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 1)
1347 && host_integerp (DECL_SIZE (field), 1))
1348 {
1349 unsigned HOST_WIDE_INT bitsize
1350 = tree_low_cst (DECL_SIZE (field), 1);
1351 unsigned HOST_WIDE_INT typesize
1352 = tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 1);
1353
1354 if (typesize < bitsize)
1355 rli->remaining_in_alignment = 0;
1356 else
1357 rli->remaining_in_alignment = typesize - bitsize;
1358 }
1359
1360 /* Now align (conventionally) for the new type. */
1361 type_align = TYPE_ALIGN (TREE_TYPE (field));
1362
1363 if (maximum_field_alignment != 0)
1364 type_align = MIN (type_align, maximum_field_alignment);
1365
1366 rli->bitpos = round_up_loc (input_location, rli->bitpos, type_align);
1367
1368 /* If we really aligned, don't allow subsequent bitfields
1369 to undo that. */
1370 rli->prev_field = NULL;
1371 }
1372 }
1373
1374 /* Offset so far becomes the position of this field after normalizing. */
1375 normalize_rli (rli);
1376 DECL_FIELD_OFFSET (field) = rli->offset;
1377 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1378 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1379
1380 /* If this field ended up more aligned than we thought it would be (we
1381 approximate this by seeing if its position changed), lay out the field
1382 again; perhaps we can use an integral mode for it now. */
1383 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1384 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1385 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1386 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1387 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1388 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1389 actual_align = (BITS_PER_UNIT
1390 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1391 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1392 else
1393 actual_align = DECL_OFFSET_ALIGN (field);
1394 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1395 store / extract bit field operations will check the alignment of the
1396 record against the mode of bit fields. */
1397
1398 if (known_align != actual_align)
1399 layout_decl (field, actual_align);
1400
1401 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1402 rli->prev_field = field;
1403
1404 /* Now add size of this field to the size of the record. If the size is
1405 not constant, treat the field as being a multiple of bytes and just
1406 adjust the offset, resetting the bit position. Otherwise, apportion the
1407 size amongst the bit position and offset. First handle the case of an
1408 unspecified size, which can happen when we have an invalid nested struct
1409 definition, such as struct j { struct j { int i; } }. The error message
1410 is printed in finish_struct. */
1411 if (DECL_SIZE (field) == 0)
1412 /* Do nothing. */;
1413 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1414 || TREE_OVERFLOW (DECL_SIZE (field)))
1415 {
1416 rli->offset
1417 = size_binop (PLUS_EXPR, rli->offset,
1418 fold_convert (sizetype,
1419 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1420 bitsize_unit_node)));
1421 rli->offset
1422 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1423 rli->bitpos = bitsize_zero_node;
1424 rli->offset_align = MIN (rli->offset_align, desired_align);
1425 }
1426 else if (targetm.ms_bitfield_layout_p (rli->t))
1427 {
1428 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1429
1430 /* If we ended a bitfield before the full length of the type then
1431 pad the struct out to the full length of the last type. */
1432 if ((DECL_CHAIN (field) == NULL
1433 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1434 && DECL_BIT_FIELD_TYPE (field)
1435 && !integer_zerop (DECL_SIZE (field)))
1436 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1437 bitsize_int (rli->remaining_in_alignment));
1438
1439 normalize_rli (rli);
1440 }
1441 else
1442 {
1443 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1444 normalize_rli (rli);
1445 }
1446 }
1447
1448 /* Assuming that all the fields have been laid out, this function uses
1449 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1450 indicated by RLI. */
1451
1452 static void
1453 finalize_record_size (record_layout_info rli)
1454 {
1455 tree unpadded_size, unpadded_size_unit;
1456
1457 /* Now we want just byte and bit offsets, so set the offset alignment
1458 to be a byte and then normalize. */
1459 rli->offset_align = BITS_PER_UNIT;
1460 normalize_rli (rli);
1461
1462 /* Determine the desired alignment. */
1463 #ifdef ROUND_TYPE_ALIGN
1464 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1465 rli->record_align);
1466 #else
1467 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1468 #endif
1469
1470 /* Compute the size so far. Be sure to allow for extra bits in the
1471 size in bytes. We have guaranteed above that it will be no more
1472 than a single byte. */
1473 unpadded_size = rli_size_so_far (rli);
1474 unpadded_size_unit = rli_size_unit_so_far (rli);
1475 if (! integer_zerop (rli->bitpos))
1476 unpadded_size_unit
1477 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1478
1479 /* Round the size up to be a multiple of the required alignment. */
1480 TYPE_SIZE (rli->t) = round_up_loc (input_location, unpadded_size,
1481 TYPE_ALIGN (rli->t));
1482 TYPE_SIZE_UNIT (rli->t)
1483 = round_up_loc (input_location, unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1484
1485 if (TREE_CONSTANT (unpadded_size)
1486 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1487 && input_location != BUILTINS_LOCATION)
1488 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1489
1490 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1491 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1492 && TREE_CONSTANT (unpadded_size))
1493 {
1494 tree unpacked_size;
1495
1496 #ifdef ROUND_TYPE_ALIGN
1497 rli->unpacked_align
1498 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1499 #else
1500 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1501 #endif
1502
1503 unpacked_size = round_up_loc (input_location, TYPE_SIZE (rli->t), rli->unpacked_align);
1504 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1505 {
1506 if (TYPE_NAME (rli->t))
1507 {
1508 tree name;
1509
1510 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1511 name = TYPE_NAME (rli->t);
1512 else
1513 name = DECL_NAME (TYPE_NAME (rli->t));
1514
1515 if (STRICT_ALIGNMENT)
1516 warning (OPT_Wpacked, "packed attribute causes inefficient "
1517 "alignment for %qE", name);
1518 else
1519 warning (OPT_Wpacked,
1520 "packed attribute is unnecessary for %qE", name);
1521 }
1522 else
1523 {
1524 if (STRICT_ALIGNMENT)
1525 warning (OPT_Wpacked,
1526 "packed attribute causes inefficient alignment");
1527 else
1528 warning (OPT_Wpacked, "packed attribute is unnecessary");
1529 }
1530 }
1531 }
1532 }
1533
1534 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1535
1536 void
1537 compute_record_mode (tree type)
1538 {
1539 tree field;
1540 enum machine_mode mode = VOIDmode;
1541
1542 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1543 However, if possible, we use a mode that fits in a register
1544 instead, in order to allow for better optimization down the
1545 line. */
1546 SET_TYPE_MODE (type, BLKmode);
1547
1548 if (! host_integerp (TYPE_SIZE (type), 1))
1549 return;
1550
1551 /* A record which has any BLKmode members must itself be
1552 BLKmode; it can't go in a register. Unless the member is
1553 BLKmode only because it isn't aligned. */
1554 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1555 {
1556 if (TREE_CODE (field) != FIELD_DECL)
1557 continue;
1558
1559 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1560 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1561 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1562 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1563 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1564 || ! host_integerp (bit_position (field), 1)
1565 || DECL_SIZE (field) == 0
1566 || ! host_integerp (DECL_SIZE (field), 1))
1567 return;
1568
1569 /* If this field is the whole struct, remember its mode so
1570 that, say, we can put a double in a class into a DF
1571 register instead of forcing it to live in the stack. */
1572 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1573 mode = DECL_MODE (field);
1574
1575 #ifdef MEMBER_TYPE_FORCES_BLK
1576 /* With some targets, eg. c4x, it is sub-optimal
1577 to access an aligned BLKmode structure as a scalar. */
1578
1579 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1580 return;
1581 #endif /* MEMBER_TYPE_FORCES_BLK */
1582 }
1583
1584 /* If we only have one real field; use its mode if that mode's size
1585 matches the type's size. This only applies to RECORD_TYPE. This
1586 does not apply to unions. */
1587 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1588 && host_integerp (TYPE_SIZE (type), 1)
1589 && GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
1590 SET_TYPE_MODE (type, mode);
1591 else
1592 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1593
1594 /* If structure's known alignment is less than what the scalar
1595 mode would need, and it matters, then stick with BLKmode. */
1596 if (TYPE_MODE (type) != BLKmode
1597 && STRICT_ALIGNMENT
1598 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1599 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1600 {
1601 /* If this is the only reason this type is BLKmode, then
1602 don't force containing types to be BLKmode. */
1603 TYPE_NO_FORCE_BLK (type) = 1;
1604 SET_TYPE_MODE (type, BLKmode);
1605 }
1606 }
1607
1608 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1609 out. */
1610
1611 static void
1612 finalize_type_size (tree type)
1613 {
1614 /* Normally, use the alignment corresponding to the mode chosen.
1615 However, where strict alignment is not required, avoid
1616 over-aligning structures, since most compilers do not do this
1617 alignment. */
1618
1619 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1620 && (STRICT_ALIGNMENT
1621 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1622 && TREE_CODE (type) != QUAL_UNION_TYPE
1623 && TREE_CODE (type) != ARRAY_TYPE)))
1624 {
1625 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1626
1627 /* Don't override a larger alignment requirement coming from a user
1628 alignment of one of the fields. */
1629 if (mode_align >= TYPE_ALIGN (type))
1630 {
1631 TYPE_ALIGN (type) = mode_align;
1632 TYPE_USER_ALIGN (type) = 0;
1633 }
1634 }
1635
1636 /* Do machine-dependent extra alignment. */
1637 #ifdef ROUND_TYPE_ALIGN
1638 TYPE_ALIGN (type)
1639 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1640 #endif
1641
1642 /* If we failed to find a simple way to calculate the unit size
1643 of the type, find it by division. */
1644 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1645 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1646 result will fit in sizetype. We will get more efficient code using
1647 sizetype, so we force a conversion. */
1648 TYPE_SIZE_UNIT (type)
1649 = fold_convert (sizetype,
1650 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1651 bitsize_unit_node));
1652
1653 if (TYPE_SIZE (type) != 0)
1654 {
1655 TYPE_SIZE (type) = round_up_loc (input_location,
1656 TYPE_SIZE (type), TYPE_ALIGN (type));
1657 TYPE_SIZE_UNIT (type) = round_up_loc (input_location, TYPE_SIZE_UNIT (type),
1658 TYPE_ALIGN_UNIT (type));
1659 }
1660
1661 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1662 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1663 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1664 if (TYPE_SIZE_UNIT (type) != 0
1665 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1666 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1667
1668 /* Also layout any other variants of the type. */
1669 if (TYPE_NEXT_VARIANT (type)
1670 || type != TYPE_MAIN_VARIANT (type))
1671 {
1672 tree variant;
1673 /* Record layout info of this variant. */
1674 tree size = TYPE_SIZE (type);
1675 tree size_unit = TYPE_SIZE_UNIT (type);
1676 unsigned int align = TYPE_ALIGN (type);
1677 unsigned int user_align = TYPE_USER_ALIGN (type);
1678 enum machine_mode mode = TYPE_MODE (type);
1679
1680 /* Copy it into all variants. */
1681 for (variant = TYPE_MAIN_VARIANT (type);
1682 variant != 0;
1683 variant = TYPE_NEXT_VARIANT (variant))
1684 {
1685 TYPE_SIZE (variant) = size;
1686 TYPE_SIZE_UNIT (variant) = size_unit;
1687 TYPE_ALIGN (variant) = align;
1688 TYPE_USER_ALIGN (variant) = user_align;
1689 SET_TYPE_MODE (variant, mode);
1690 }
1691 }
1692 }
1693
1694 /* Do all of the work required to layout the type indicated by RLI,
1695 once the fields have been laid out. This function will call `free'
1696 for RLI, unless FREE_P is false. Passing a value other than false
1697 for FREE_P is bad practice; this option only exists to support the
1698 G++ 3.2 ABI. */
1699
1700 void
1701 finish_record_layout (record_layout_info rli, int free_p)
1702 {
1703 tree variant;
1704
1705 /* Compute the final size. */
1706 finalize_record_size (rli);
1707
1708 /* Compute the TYPE_MODE for the record. */
1709 compute_record_mode (rli->t);
1710
1711 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1712 finalize_type_size (rli->t);
1713
1714 /* Propagate TYPE_PACKED to variants. With C++ templates,
1715 handle_packed_attribute is too early to do this. */
1716 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
1717 variant = TYPE_NEXT_VARIANT (variant))
1718 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
1719
1720 /* Lay out any static members. This is done now because their type
1721 may use the record's type. */
1722 while (!VEC_empty (tree, rli->pending_statics))
1723 layout_decl (VEC_pop (tree, rli->pending_statics), 0);
1724
1725 /* Clean up. */
1726 if (free_p)
1727 {
1728 VEC_free (tree, gc, rli->pending_statics);
1729 free (rli);
1730 }
1731 }
1732 \f
1733
1734 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1735 NAME, its fields are chained in reverse on FIELDS.
1736
1737 If ALIGN_TYPE is non-null, it is given the same alignment as
1738 ALIGN_TYPE. */
1739
1740 void
1741 finish_builtin_struct (tree type, const char *name, tree fields,
1742 tree align_type)
1743 {
1744 tree tail, next;
1745
1746 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1747 {
1748 DECL_FIELD_CONTEXT (fields) = type;
1749 next = DECL_CHAIN (fields);
1750 DECL_CHAIN (fields) = tail;
1751 }
1752 TYPE_FIELDS (type) = tail;
1753
1754 if (align_type)
1755 {
1756 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1757 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1758 }
1759
1760 layout_type (type);
1761 #if 0 /* not yet, should get fixed properly later */
1762 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1763 #else
1764 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
1765 TYPE_DECL, get_identifier (name), type);
1766 #endif
1767 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1768 layout_decl (TYPE_NAME (type), 0);
1769 }
1770
1771 /* Calculate the mode, size, and alignment for TYPE.
1772 For an array type, calculate the element separation as well.
1773 Record TYPE on the chain of permanent or temporary types
1774 so that dbxout will find out about it.
1775
1776 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1777 layout_type does nothing on such a type.
1778
1779 If the type is incomplete, its TYPE_SIZE remains zero. */
1780
1781 void
1782 layout_type (tree type)
1783 {
1784 gcc_assert (type);
1785
1786 if (type == error_mark_node)
1787 return;
1788
1789 /* Do nothing if type has been laid out before. */
1790 if (TYPE_SIZE (type))
1791 return;
1792
1793 switch (TREE_CODE (type))
1794 {
1795 case LANG_TYPE:
1796 /* This kind of type is the responsibility
1797 of the language-specific code. */
1798 gcc_unreachable ();
1799
1800 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1801 if (TYPE_PRECISION (type) == 0)
1802 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1803
1804 /* ... fall through ... */
1805
1806 case INTEGER_TYPE:
1807 case ENUMERAL_TYPE:
1808 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1809 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1810 TYPE_UNSIGNED (type) = 1;
1811
1812 SET_TYPE_MODE (type,
1813 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
1814 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1815 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1816 break;
1817
1818 case REAL_TYPE:
1819 SET_TYPE_MODE (type,
1820 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
1821 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1822 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1823 break;
1824
1825 case FIXED_POINT_TYPE:
1826 /* TYPE_MODE (type) has been set already. */
1827 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1828 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1829 break;
1830
1831 case COMPLEX_TYPE:
1832 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1833 SET_TYPE_MODE (type,
1834 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1835 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
1836 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
1837 0));
1838 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1839 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1840 break;
1841
1842 case VECTOR_TYPE:
1843 {
1844 int nunits = TYPE_VECTOR_SUBPARTS (type);
1845 tree innertype = TREE_TYPE (type);
1846
1847 gcc_assert (!(nunits & (nunits - 1)));
1848
1849 /* Find an appropriate mode for the vector type. */
1850 if (TYPE_MODE (type) == VOIDmode)
1851 {
1852 enum machine_mode innermode = TYPE_MODE (innertype);
1853 enum machine_mode mode;
1854
1855 /* First, look for a supported vector type. */
1856 if (SCALAR_FLOAT_MODE_P (innermode))
1857 mode = MIN_MODE_VECTOR_FLOAT;
1858 else if (SCALAR_FRACT_MODE_P (innermode))
1859 mode = MIN_MODE_VECTOR_FRACT;
1860 else if (SCALAR_UFRACT_MODE_P (innermode))
1861 mode = MIN_MODE_VECTOR_UFRACT;
1862 else if (SCALAR_ACCUM_MODE_P (innermode))
1863 mode = MIN_MODE_VECTOR_ACCUM;
1864 else if (SCALAR_UACCUM_MODE_P (innermode))
1865 mode = MIN_MODE_VECTOR_UACCUM;
1866 else
1867 mode = MIN_MODE_VECTOR_INT;
1868
1869 /* Do not check vector_mode_supported_p here. We'll do that
1870 later in vector_type_mode. */
1871 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
1872 if (GET_MODE_NUNITS (mode) == nunits
1873 && GET_MODE_INNER (mode) == innermode)
1874 break;
1875
1876 /* For integers, try mapping it to a same-sized scalar mode. */
1877 if (mode == VOIDmode
1878 && GET_MODE_CLASS (innermode) == MODE_INT)
1879 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
1880 MODE_INT, 0);
1881
1882 if (mode == VOIDmode ||
1883 (GET_MODE_CLASS (mode) == MODE_INT
1884 && !have_regs_of_mode[mode]))
1885 SET_TYPE_MODE (type, BLKmode);
1886 else
1887 SET_TYPE_MODE (type, mode);
1888 }
1889
1890 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
1891 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1892 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
1893 TYPE_SIZE_UNIT (innertype),
1894 size_int (nunits), 0);
1895 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
1896 bitsize_int (nunits), 0);
1897
1898 /* Always naturally align vectors. This prevents ABI changes
1899 depending on whether or not native vector modes are supported. */
1900 TYPE_ALIGN (type) = tree_low_cst (TYPE_SIZE (type), 0);
1901 break;
1902 }
1903
1904 case VOID_TYPE:
1905 /* This is an incomplete type and so doesn't have a size. */
1906 TYPE_ALIGN (type) = 1;
1907 TYPE_USER_ALIGN (type) = 0;
1908 SET_TYPE_MODE (type, VOIDmode);
1909 break;
1910
1911 case OFFSET_TYPE:
1912 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1913 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1914 /* A pointer might be MODE_PARTIAL_INT,
1915 but ptrdiff_t must be integral. */
1916 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
1917 TYPE_PRECISION (type) = POINTER_SIZE;
1918 break;
1919
1920 case FUNCTION_TYPE:
1921 case METHOD_TYPE:
1922 /* It's hard to see what the mode and size of a function ought to
1923 be, but we do know the alignment is FUNCTION_BOUNDARY, so
1924 make it consistent with that. */
1925 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
1926 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
1927 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
1928 break;
1929
1930 case POINTER_TYPE:
1931 case REFERENCE_TYPE:
1932 {
1933 enum machine_mode mode = TYPE_MODE (type);
1934 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
1935 {
1936 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
1937 mode = targetm.addr_space.address_mode (as);
1938 }
1939
1940 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
1941 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1942 TYPE_UNSIGNED (type) = 1;
1943 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
1944 }
1945 break;
1946
1947 case ARRAY_TYPE:
1948 {
1949 tree index = TYPE_DOMAIN (type);
1950 tree element = TREE_TYPE (type);
1951
1952 build_pointer_type (element);
1953
1954 /* We need to know both bounds in order to compute the size. */
1955 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1956 && TYPE_SIZE (element))
1957 {
1958 tree ub = TYPE_MAX_VALUE (index);
1959 tree lb = TYPE_MIN_VALUE (index);
1960 tree element_size = TYPE_SIZE (element);
1961 tree length;
1962
1963 /* Make sure that an array of zero-sized element is zero-sized
1964 regardless of its extent. */
1965 if (integer_zerop (element_size))
1966 length = size_zero_node;
1967
1968 /* The initial subtraction should happen in the original type so
1969 that (possible) negative values are handled appropriately. */
1970 else
1971 length
1972 = size_binop (PLUS_EXPR, size_one_node,
1973 fold_convert (sizetype,
1974 fold_build2_loc (input_location,
1975 MINUS_EXPR,
1976 TREE_TYPE (lb),
1977 ub, lb)));
1978
1979 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1980 fold_convert (bitsizetype,
1981 length));
1982
1983 /* If we know the size of the element, calculate the total size
1984 directly, rather than do some division thing below. This
1985 optimization helps Fortran assumed-size arrays (where the
1986 size of the array is determined at runtime) substantially. */
1987 if (TYPE_SIZE_UNIT (element))
1988 TYPE_SIZE_UNIT (type)
1989 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1990 }
1991
1992 /* Now round the alignment and size,
1993 using machine-dependent criteria if any. */
1994
1995 #ifdef ROUND_TYPE_ALIGN
1996 TYPE_ALIGN (type)
1997 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1998 #else
1999 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2000 #endif
2001 if (!TYPE_SIZE (element))
2002 /* We don't know the size of the underlying element type, so
2003 our alignment calculations will be wrong, forcing us to
2004 fall back on structural equality. */
2005 SET_TYPE_STRUCTURAL_EQUALITY (type);
2006 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2007 SET_TYPE_MODE (type, BLKmode);
2008 if (TYPE_SIZE (type) != 0
2009 #ifdef MEMBER_TYPE_FORCES_BLK
2010 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
2011 #endif
2012 /* BLKmode elements force BLKmode aggregate;
2013 else extract/store fields may lose. */
2014 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2015 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2016 {
2017 /* One-element arrays get the component type's mode. */
2018 if (simple_cst_equal (TYPE_SIZE (type),
2019 TYPE_SIZE (TREE_TYPE (type))))
2020 SET_TYPE_MODE (type, TYPE_MODE (TREE_TYPE (type)));
2021 else
2022 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type),
2023 MODE_INT, 1));
2024
2025 if (TYPE_MODE (type) != BLKmode
2026 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2027 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2028 {
2029 TYPE_NO_FORCE_BLK (type) = 1;
2030 SET_TYPE_MODE (type, BLKmode);
2031 }
2032 }
2033 /* When the element size is constant, check that it is at least as
2034 large as the element alignment. */
2035 if (TYPE_SIZE_UNIT (element)
2036 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2037 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2038 TYPE_ALIGN_UNIT. */
2039 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2040 && !integer_zerop (TYPE_SIZE_UNIT (element))
2041 && compare_tree_int (TYPE_SIZE_UNIT (element),
2042 TYPE_ALIGN_UNIT (element)) < 0)
2043 error ("alignment of array elements is greater than element size");
2044 break;
2045 }
2046
2047 case RECORD_TYPE:
2048 case UNION_TYPE:
2049 case QUAL_UNION_TYPE:
2050 {
2051 tree field;
2052 record_layout_info rli;
2053
2054 /* Initialize the layout information. */
2055 rli = start_record_layout (type);
2056
2057 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2058 in the reverse order in building the COND_EXPR that denotes
2059 its size. We reverse them again later. */
2060 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2061 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2062
2063 /* Place all the fields. */
2064 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2065 place_field (rli, field);
2066
2067 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2068 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2069
2070 /* Finish laying out the record. */
2071 finish_record_layout (rli, /*free_p=*/true);
2072 }
2073 break;
2074
2075 default:
2076 gcc_unreachable ();
2077 }
2078
2079 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2080 records and unions, finish_record_layout already called this
2081 function. */
2082 if (TREE_CODE (type) != RECORD_TYPE
2083 && TREE_CODE (type) != UNION_TYPE
2084 && TREE_CODE (type) != QUAL_UNION_TYPE)
2085 finalize_type_size (type);
2086
2087 /* We should never see alias sets on incomplete aggregates. And we
2088 should not call layout_type on not incomplete aggregates. */
2089 if (AGGREGATE_TYPE_P (type))
2090 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2091 }
2092
2093 /* Vector types need to re-check the target flags each time we report
2094 the machine mode. We need to do this because attribute target can
2095 change the result of vector_mode_supported_p and have_regs_of_mode
2096 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2097 change on a per-function basis. */
2098 /* ??? Possibly a better solution is to run through all the types
2099 referenced by a function and re-compute the TYPE_MODE once, rather
2100 than make the TYPE_MODE macro call a function. */
2101
2102 enum machine_mode
2103 vector_type_mode (const_tree t)
2104 {
2105 enum machine_mode mode;
2106
2107 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2108
2109 mode = t->type.mode;
2110 if (VECTOR_MODE_P (mode)
2111 && (!targetm.vector_mode_supported_p (mode)
2112 || !have_regs_of_mode[mode]))
2113 {
2114 enum machine_mode innermode = TREE_TYPE (t)->type.mode;
2115
2116 /* For integers, try mapping it to a same-sized scalar mode. */
2117 if (GET_MODE_CLASS (innermode) == MODE_INT)
2118 {
2119 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2120 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2121
2122 if (mode != VOIDmode && have_regs_of_mode[mode])
2123 return mode;
2124 }
2125
2126 return BLKmode;
2127 }
2128
2129 return mode;
2130 }
2131 \f
2132 /* Create and return a type for signed integers of PRECISION bits. */
2133
2134 tree
2135 make_signed_type (int precision)
2136 {
2137 tree type = make_node (INTEGER_TYPE);
2138
2139 TYPE_PRECISION (type) = precision;
2140
2141 fixup_signed_type (type);
2142 return type;
2143 }
2144
2145 /* Create and return a type for unsigned integers of PRECISION bits. */
2146
2147 tree
2148 make_unsigned_type (int precision)
2149 {
2150 tree type = make_node (INTEGER_TYPE);
2151
2152 TYPE_PRECISION (type) = precision;
2153
2154 fixup_unsigned_type (type);
2155 return type;
2156 }
2157 \f
2158 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2159 and SATP. */
2160
2161 tree
2162 make_fract_type (int precision, int unsignedp, int satp)
2163 {
2164 tree type = make_node (FIXED_POINT_TYPE);
2165
2166 TYPE_PRECISION (type) = precision;
2167
2168 if (satp)
2169 TYPE_SATURATING (type) = 1;
2170
2171 /* Lay out the type: set its alignment, size, etc. */
2172 if (unsignedp)
2173 {
2174 TYPE_UNSIGNED (type) = 1;
2175 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2176 }
2177 else
2178 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2179 layout_type (type);
2180
2181 return type;
2182 }
2183
2184 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2185 and SATP. */
2186
2187 tree
2188 make_accum_type (int precision, int unsignedp, int satp)
2189 {
2190 tree type = make_node (FIXED_POINT_TYPE);
2191
2192 TYPE_PRECISION (type) = precision;
2193
2194 if (satp)
2195 TYPE_SATURATING (type) = 1;
2196
2197 /* Lay out the type: set its alignment, size, etc. */
2198 if (unsignedp)
2199 {
2200 TYPE_UNSIGNED (type) = 1;
2201 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2202 }
2203 else
2204 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2205 layout_type (type);
2206
2207 return type;
2208 }
2209
2210 /* Initialize sizetype and bitsizetype to a reasonable and temporary
2211 value to enable integer types to be created. */
2212
2213 void
2214 initialize_sizetypes (void)
2215 {
2216 tree t = make_node (INTEGER_TYPE);
2217 int precision = GET_MODE_BITSIZE (SImode);
2218
2219 SET_TYPE_MODE (t, SImode);
2220 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
2221 TYPE_IS_SIZETYPE (t) = 1;
2222 TYPE_UNSIGNED (t) = 1;
2223 TYPE_SIZE (t) = build_int_cst (t, precision);
2224 TYPE_SIZE_UNIT (t) = build_int_cst (t, GET_MODE_SIZE (SImode));
2225 TYPE_PRECISION (t) = precision;
2226
2227 set_min_and_max_values_for_integral_type (t, precision, true);
2228
2229 sizetype = t;
2230 bitsizetype = build_distinct_type_copy (t);
2231 }
2232
2233 /* Make sizetype a version of TYPE, and initialize *sizetype accordingly.
2234 We do this by overwriting the stub sizetype and bitsizetype nodes created
2235 by initialize_sizetypes. This makes sure that (a) anything stubby about
2236 them no longer exists and (b) any INTEGER_CSTs created with such a type,
2237 remain valid. */
2238
2239 void
2240 set_sizetype (tree type)
2241 {
2242 tree t, max;
2243 int oprecision = TYPE_PRECISION (type);
2244 /* The *bitsizetype types use a precision that avoids overflows when
2245 calculating signed sizes / offsets in bits. However, when
2246 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
2247 precision. */
2248 int precision
2249 = MIN (oprecision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2250 precision
2251 = GET_MODE_PRECISION (smallest_mode_for_size (precision, MODE_INT));
2252 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2253 precision = HOST_BITS_PER_WIDE_INT * 2;
2254
2255 /* sizetype must be an unsigned type. */
2256 gcc_assert (TYPE_UNSIGNED (type));
2257
2258 t = build_distinct_type_copy (type);
2259 /* We want to use sizetype's cache, as we will be replacing that type. */
2260 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (sizetype);
2261 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (sizetype);
2262 TREE_TYPE (TYPE_CACHED_VALUES (t)) = type;
2263 TYPE_UID (t) = TYPE_UID (sizetype);
2264 TYPE_IS_SIZETYPE (t) = 1;
2265
2266 /* Replace our original stub sizetype. */
2267 memcpy (sizetype, t, tree_size (sizetype));
2268 TYPE_MAIN_VARIANT (sizetype) = sizetype;
2269 TYPE_CANONICAL (sizetype) = sizetype;
2270
2271 /* sizetype is unsigned but we need to fix TYPE_MAX_VALUE so that it is
2272 sign-extended in a way consistent with force_fit_type. */
2273 max = TYPE_MAX_VALUE (sizetype);
2274 TYPE_MAX_VALUE (sizetype)
2275 = double_int_to_tree (sizetype, tree_to_double_int (max));
2276
2277 t = make_node (INTEGER_TYPE);
2278 TYPE_NAME (t) = get_identifier ("bit_size_type");
2279 /* We want to use bitsizetype's cache, as we will be replacing that type. */
2280 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (bitsizetype);
2281 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (bitsizetype);
2282 TYPE_PRECISION (t) = precision;
2283 TYPE_UID (t) = TYPE_UID (bitsizetype);
2284 TYPE_IS_SIZETYPE (t) = 1;
2285
2286 /* Replace our original stub bitsizetype. */
2287 memcpy (bitsizetype, t, tree_size (bitsizetype));
2288 TYPE_MAIN_VARIANT (bitsizetype) = bitsizetype;
2289 TYPE_CANONICAL (bitsizetype) = bitsizetype;
2290
2291 fixup_unsigned_type (bitsizetype);
2292
2293 /* Create the signed variants of *sizetype. */
2294 ssizetype = make_signed_type (oprecision);
2295 TYPE_IS_SIZETYPE (ssizetype) = 1;
2296 sbitsizetype = make_signed_type (precision);
2297 TYPE_IS_SIZETYPE (sbitsizetype) = 1;
2298 }
2299 \f
2300 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2301 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2302 for TYPE, based on the PRECISION and whether or not the TYPE
2303 IS_UNSIGNED. PRECISION need not correspond to a width supported
2304 natively by the hardware; for example, on a machine with 8-bit,
2305 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2306 61. */
2307
2308 void
2309 set_min_and_max_values_for_integral_type (tree type,
2310 int precision,
2311 bool is_unsigned)
2312 {
2313 tree min_value;
2314 tree max_value;
2315
2316 if (is_unsigned)
2317 {
2318 min_value = build_int_cst (type, 0);
2319 max_value
2320 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2321 ? -1
2322 : ((HOST_WIDE_INT) 1 << precision) - 1,
2323 precision - HOST_BITS_PER_WIDE_INT > 0
2324 ? ((unsigned HOST_WIDE_INT) ~0
2325 >> (HOST_BITS_PER_WIDE_INT
2326 - (precision - HOST_BITS_PER_WIDE_INT)))
2327 : 0);
2328 }
2329 else
2330 {
2331 min_value
2332 = build_int_cst_wide (type,
2333 (precision - HOST_BITS_PER_WIDE_INT > 0
2334 ? 0
2335 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2336 (((HOST_WIDE_INT) (-1)
2337 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2338 ? precision - HOST_BITS_PER_WIDE_INT - 1
2339 : 0))));
2340 max_value
2341 = build_int_cst_wide (type,
2342 (precision - HOST_BITS_PER_WIDE_INT > 0
2343 ? -1
2344 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2345 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2346 ? (((HOST_WIDE_INT) 1
2347 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2348 : 0));
2349 }
2350
2351 TYPE_MIN_VALUE (type) = min_value;
2352 TYPE_MAX_VALUE (type) = max_value;
2353 }
2354
2355 /* Set the extreme values of TYPE based on its precision in bits,
2356 then lay it out. Used when make_signed_type won't do
2357 because the tree code is not INTEGER_TYPE.
2358 E.g. for Pascal, when the -fsigned-char option is given. */
2359
2360 void
2361 fixup_signed_type (tree type)
2362 {
2363 int precision = TYPE_PRECISION (type);
2364
2365 /* We can not represent properly constants greater then
2366 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2367 as they are used by i386 vector extensions and friends. */
2368 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2369 precision = HOST_BITS_PER_WIDE_INT * 2;
2370
2371 set_min_and_max_values_for_integral_type (type, precision,
2372 /*is_unsigned=*/false);
2373
2374 /* Lay out the type: set its alignment, size, etc. */
2375 layout_type (type);
2376 }
2377
2378 /* Set the extreme values of TYPE based on its precision in bits,
2379 then lay it out. This is used both in `make_unsigned_type'
2380 and for enumeral types. */
2381
2382 void
2383 fixup_unsigned_type (tree type)
2384 {
2385 int precision = TYPE_PRECISION (type);
2386
2387 /* We can not represent properly constants greater then
2388 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2389 as they are used by i386 vector extensions and friends. */
2390 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2391 precision = HOST_BITS_PER_WIDE_INT * 2;
2392
2393 TYPE_UNSIGNED (type) = 1;
2394
2395 set_min_and_max_values_for_integral_type (type, precision,
2396 /*is_unsigned=*/true);
2397
2398 /* Lay out the type: set its alignment, size, etc. */
2399 layout_type (type);
2400 }
2401 \f
2402 /* Find the best machine mode to use when referencing a bit field of length
2403 BITSIZE bits starting at BITPOS.
2404
2405 The underlying object is known to be aligned to a boundary of ALIGN bits.
2406 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2407 larger than LARGEST_MODE (usually SImode).
2408
2409 If no mode meets all these conditions, we return VOIDmode.
2410
2411 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2412 smallest mode meeting these conditions.
2413
2414 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2415 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2416 all the conditions.
2417
2418 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2419 decide which of the above modes should be used. */
2420
2421 enum machine_mode
2422 get_best_mode (int bitsize, int bitpos, unsigned int align,
2423 enum machine_mode largest_mode, int volatilep)
2424 {
2425 enum machine_mode mode;
2426 unsigned int unit = 0;
2427
2428 /* Find the narrowest integer mode that contains the bit field. */
2429 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2430 mode = GET_MODE_WIDER_MODE (mode))
2431 {
2432 unit = GET_MODE_BITSIZE (mode);
2433 if ((bitpos % unit) + bitsize <= unit)
2434 break;
2435 }
2436
2437 if (mode == VOIDmode
2438 /* It is tempting to omit the following line
2439 if STRICT_ALIGNMENT is true.
2440 But that is incorrect, since if the bitfield uses part of 3 bytes
2441 and we use a 4-byte mode, we could get a spurious segv
2442 if the extra 4th byte is past the end of memory.
2443 (Though at least one Unix compiler ignores this problem:
2444 that on the Sequent 386 machine. */
2445 || MIN (unit, BIGGEST_ALIGNMENT) > align
2446 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2447 return VOIDmode;
2448
2449 if ((SLOW_BYTE_ACCESS && ! volatilep)
2450 || (volatilep && !targetm.narrow_volatile_bitfield ()))
2451 {
2452 enum machine_mode wide_mode = VOIDmode, tmode;
2453
2454 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2455 tmode = GET_MODE_WIDER_MODE (tmode))
2456 {
2457 unit = GET_MODE_BITSIZE (tmode);
2458 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2459 && unit <= BITS_PER_WORD
2460 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2461 && (largest_mode == VOIDmode
2462 || unit <= GET_MODE_BITSIZE (largest_mode)))
2463 wide_mode = tmode;
2464 }
2465
2466 if (wide_mode != VOIDmode)
2467 return wide_mode;
2468 }
2469
2470 return mode;
2471 }
2472
2473 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2474 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2475
2476 void
2477 get_mode_bounds (enum machine_mode mode, int sign,
2478 enum machine_mode target_mode,
2479 rtx *mmin, rtx *mmax)
2480 {
2481 unsigned size = GET_MODE_BITSIZE (mode);
2482 unsigned HOST_WIDE_INT min_val, max_val;
2483
2484 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2485
2486 if (sign)
2487 {
2488 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2489 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2490 }
2491 else
2492 {
2493 min_val = 0;
2494 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2495 }
2496
2497 *mmin = gen_int_mode (min_val, target_mode);
2498 *mmax = gen_int_mode (max_val, target_mode);
2499 }
2500
2501 #include "gt-stor-layout.h"