* stor-layout.c (bit_from_pos): Do not distribute the conversion.
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "debug.h"
44
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) stk_type_kind_last];
48
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
52
53 static tree self_referential_size (tree);
54 static void finalize_record_size (record_layout_info);
55 static void finalize_type_size (tree);
56 static void place_union_field (record_layout_info, tree);
57 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
58 HOST_WIDE_INT, tree);
59 extern void debug_rli (record_layout_info);
60 \f
61 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
62 to serve as the actual size-expression for a type or decl. */
63
64 tree
65 variable_size (tree size)
66 {
67 /* Obviously. */
68 if (TREE_CONSTANT (size))
69 return size;
70
71 /* If the size is self-referential, we can't make a SAVE_EXPR (see
72 save_expr for the rationale). But we can do something else. */
73 if (CONTAINS_PLACEHOLDER_P (size))
74 return self_referential_size (size);
75
76 /* If we are in the global binding level, we can't make a SAVE_EXPR
77 since it may end up being shared across functions, so it is up
78 to the front-end to deal with this case. */
79 if (lang_hooks.decls.global_bindings_p ())
80 return size;
81
82 return save_expr (size);
83 }
84
85 /* An array of functions used for self-referential size computation. */
86 static GTY(()) vec<tree, va_gc> *size_functions;
87
88 /* Return true if T is a self-referential component reference. */
89
90 static bool
91 self_referential_component_ref_p (tree t)
92 {
93 if (TREE_CODE (t) != COMPONENT_REF)
94 return false;
95
96 while (REFERENCE_CLASS_P (t))
97 t = TREE_OPERAND (t, 0);
98
99 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
100 }
101
102 /* Similar to copy_tree_r but do not copy component references involving
103 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
104 and substituted in substitute_in_expr. */
105
106 static tree
107 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
108 {
109 enum tree_code code = TREE_CODE (*tp);
110
111 /* Stop at types, decls, constants like copy_tree_r. */
112 if (TREE_CODE_CLASS (code) == tcc_type
113 || TREE_CODE_CLASS (code) == tcc_declaration
114 || TREE_CODE_CLASS (code) == tcc_constant)
115 {
116 *walk_subtrees = 0;
117 return NULL_TREE;
118 }
119
120 /* This is the pattern built in ada/make_aligning_type. */
121 else if (code == ADDR_EXPR
122 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
123 {
124 *walk_subtrees = 0;
125 return NULL_TREE;
126 }
127
128 /* Default case: the component reference. */
129 else if (self_referential_component_ref_p (*tp))
130 {
131 *walk_subtrees = 0;
132 return NULL_TREE;
133 }
134
135 /* We're not supposed to have them in self-referential size trees
136 because we wouldn't properly control when they are evaluated.
137 However, not creating superfluous SAVE_EXPRs requires accurate
138 tracking of readonly-ness all the way down to here, which we
139 cannot always guarantee in practice. So punt in this case. */
140 else if (code == SAVE_EXPR)
141 return error_mark_node;
142
143 else if (code == STATEMENT_LIST)
144 gcc_unreachable ();
145
146 return copy_tree_r (tp, walk_subtrees, data);
147 }
148
149 /* Given a SIZE expression that is self-referential, return an equivalent
150 expression to serve as the actual size expression for a type. */
151
152 static tree
153 self_referential_size (tree size)
154 {
155 static unsigned HOST_WIDE_INT fnno = 0;
156 vec<tree> self_refs = vNULL;
157 tree param_type_list = NULL, param_decl_list = NULL;
158 tree t, ref, return_type, fntype, fnname, fndecl;
159 unsigned int i;
160 char buf[128];
161 vec<tree, va_gc> *args = NULL;
162
163 /* Do not factor out simple operations. */
164 t = skip_simple_constant_arithmetic (size);
165 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
166 return size;
167
168 /* Collect the list of self-references in the expression. */
169 find_placeholder_in_expr (size, &self_refs);
170 gcc_assert (self_refs.length () > 0);
171
172 /* Obtain a private copy of the expression. */
173 t = size;
174 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
175 return size;
176 size = t;
177
178 /* Build the parameter and argument lists in parallel; also
179 substitute the former for the latter in the expression. */
180 vec_alloc (args, self_refs.length ());
181 FOR_EACH_VEC_ELT (self_refs, i, ref)
182 {
183 tree subst, param_name, param_type, param_decl;
184
185 if (DECL_P (ref))
186 {
187 /* We shouldn't have true variables here. */
188 gcc_assert (TREE_READONLY (ref));
189 subst = ref;
190 }
191 /* This is the pattern built in ada/make_aligning_type. */
192 else if (TREE_CODE (ref) == ADDR_EXPR)
193 subst = ref;
194 /* Default case: the component reference. */
195 else
196 subst = TREE_OPERAND (ref, 1);
197
198 sprintf (buf, "p%d", i);
199 param_name = get_identifier (buf);
200 param_type = TREE_TYPE (ref);
201 param_decl
202 = build_decl (input_location, PARM_DECL, param_name, param_type);
203 DECL_ARG_TYPE (param_decl) = param_type;
204 DECL_ARTIFICIAL (param_decl) = 1;
205 TREE_READONLY (param_decl) = 1;
206
207 size = substitute_in_expr (size, subst, param_decl);
208
209 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
210 param_decl_list = chainon (param_decl, param_decl_list);
211 args->quick_push (ref);
212 }
213
214 self_refs.release ();
215
216 /* Append 'void' to indicate that the number of parameters is fixed. */
217 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
218
219 /* The 3 lists have been created in reverse order. */
220 param_type_list = nreverse (param_type_list);
221 param_decl_list = nreverse (param_decl_list);
222
223 /* Build the function type. */
224 return_type = TREE_TYPE (size);
225 fntype = build_function_type (return_type, param_type_list);
226
227 /* Build the function declaration. */
228 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
229 fnname = get_file_function_name (buf);
230 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
231 for (t = param_decl_list; t; t = DECL_CHAIN (t))
232 DECL_CONTEXT (t) = fndecl;
233 DECL_ARGUMENTS (fndecl) = param_decl_list;
234 DECL_RESULT (fndecl)
235 = build_decl (input_location, RESULT_DECL, 0, return_type);
236 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
237
238 /* The function has been created by the compiler and we don't
239 want to emit debug info for it. */
240 DECL_ARTIFICIAL (fndecl) = 1;
241 DECL_IGNORED_P (fndecl) = 1;
242
243 /* It is supposed to be "const" and never throw. */
244 TREE_READONLY (fndecl) = 1;
245 TREE_NOTHROW (fndecl) = 1;
246
247 /* We want it to be inlined when this is deemed profitable, as
248 well as discarded if every call has been integrated. */
249 DECL_DECLARED_INLINE_P (fndecl) = 1;
250
251 /* It is made up of a unique return statement. */
252 DECL_INITIAL (fndecl) = make_node (BLOCK);
253 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
254 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
255 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
256 TREE_STATIC (fndecl) = 1;
257
258 /* Put it onto the list of size functions. */
259 vec_safe_push (size_functions, fndecl);
260
261 /* Replace the original expression with a call to the size function. */
262 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
263 }
264
265 /* Take, queue and compile all the size functions. It is essential that
266 the size functions be gimplified at the very end of the compilation
267 in order to guarantee transparent handling of self-referential sizes.
268 Otherwise the GENERIC inliner would not be able to inline them back
269 at each of their call sites, thus creating artificial non-constant
270 size expressions which would trigger nasty problems later on. */
271
272 void
273 finalize_size_functions (void)
274 {
275 unsigned int i;
276 tree fndecl;
277
278 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
279 {
280 allocate_struct_function (fndecl, false);
281 set_cfun (NULL);
282 dump_function (TDI_original, fndecl);
283
284 /* As these functions are used to describe the layout of variable-length
285 structures, debug info generation needs their implementation. */
286 debug_hooks->size_function (fndecl);
287 gimplify_function_tree (fndecl);
288 cgraph_node::finalize_function (fndecl, false);
289 }
290
291 vec_free (size_functions);
292 }
293 \f
294 /* Return a machine mode of class MCLASS with SIZE bits of precision,
295 if one exists. The mode may have padding bits as well the SIZE
296 value bits. If LIMIT is nonzero, disregard modes wider than
297 MAX_FIXED_MODE_SIZE. */
298
299 opt_machine_mode
300 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
301 {
302 machine_mode mode;
303 int i;
304
305 if (limit && size > MAX_FIXED_MODE_SIZE)
306 return opt_machine_mode ();
307
308 /* Get the first mode which has this size, in the specified class. */
309 FOR_EACH_MODE_IN_CLASS (mode, mclass)
310 if (GET_MODE_PRECISION (mode) == size)
311 return mode;
312
313 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
314 for (i = 0; i < NUM_INT_N_ENTS; i ++)
315 if (int_n_data[i].bitsize == size
316 && int_n_enabled_p[i])
317 return int_n_data[i].m;
318
319 return opt_machine_mode ();
320 }
321
322 /* Similar, except passed a tree node. */
323
324 opt_machine_mode
325 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
326 {
327 unsigned HOST_WIDE_INT uhwi;
328 unsigned int ui;
329
330 if (!tree_fits_uhwi_p (size))
331 return opt_machine_mode ();
332 uhwi = tree_to_uhwi (size);
333 ui = uhwi;
334 if (uhwi != ui)
335 return opt_machine_mode ();
336 return mode_for_size (ui, mclass, limit);
337 }
338
339 /* Return the narrowest mode of class MCLASS that contains at least
340 SIZE bits. Abort if no such mode exists. */
341
342 machine_mode
343 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
344 {
345 machine_mode mode = VOIDmode;
346 int i;
347
348 /* Get the first mode which has at least this size, in the
349 specified class. */
350 FOR_EACH_MODE_IN_CLASS (mode, mclass)
351 if (GET_MODE_PRECISION (mode) >= size)
352 break;
353
354 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
355 for (i = 0; i < NUM_INT_N_ENTS; i ++)
356 if (int_n_data[i].bitsize >= size
357 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
358 && int_n_enabled_p[i])
359 mode = int_n_data[i].m;
360
361 if (mode == VOIDmode)
362 gcc_unreachable ();
363
364 return mode;
365 }
366
367 /* Return an integer mode of exactly the same size as MODE, if one exists. */
368
369 opt_scalar_int_mode
370 int_mode_for_mode (machine_mode mode)
371 {
372 switch (GET_MODE_CLASS (mode))
373 {
374 case MODE_INT:
375 case MODE_PARTIAL_INT:
376 return as_a <scalar_int_mode> (mode);
377
378 case MODE_COMPLEX_INT:
379 case MODE_COMPLEX_FLOAT:
380 case MODE_FLOAT:
381 case MODE_DECIMAL_FLOAT:
382 case MODE_VECTOR_INT:
383 case MODE_VECTOR_FLOAT:
384 case MODE_FRACT:
385 case MODE_ACCUM:
386 case MODE_UFRACT:
387 case MODE_UACCUM:
388 case MODE_VECTOR_FRACT:
389 case MODE_VECTOR_ACCUM:
390 case MODE_VECTOR_UFRACT:
391 case MODE_VECTOR_UACCUM:
392 case MODE_POINTER_BOUNDS:
393 return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
394
395 case MODE_RANDOM:
396 if (mode == BLKmode)
397 return opt_scalar_int_mode ();
398
399 /* fall through */
400
401 case MODE_CC:
402 default:
403 gcc_unreachable ();
404 }
405 }
406
407 /* Find a mode that can be used for efficient bitwise operations on MODE,
408 if one exists. */
409
410 opt_machine_mode
411 bitwise_mode_for_mode (machine_mode mode)
412 {
413 /* Quick exit if we already have a suitable mode. */
414 unsigned int bitsize = GET_MODE_BITSIZE (mode);
415 scalar_int_mode int_mode;
416 if (is_a <scalar_int_mode> (mode, &int_mode)
417 && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
418 return int_mode;
419
420 /* Reuse the sanity checks from int_mode_for_mode. */
421 gcc_checking_assert ((int_mode_for_mode (mode), true));
422
423 /* Try to replace complex modes with complex modes. In general we
424 expect both components to be processed independently, so we only
425 care whether there is a register for the inner mode. */
426 if (COMPLEX_MODE_P (mode))
427 {
428 machine_mode trial = mode;
429 if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
430 || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
431 && have_regs_of_mode[GET_MODE_INNER (trial)])
432 return trial;
433 }
434
435 /* Try to replace vector modes with vector modes. Also try using vector
436 modes if an integer mode would be too big. */
437 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
438 {
439 machine_mode trial = mode;
440 if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
441 || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
442 && have_regs_of_mode[trial]
443 && targetm.vector_mode_supported_p (trial))
444 return trial;
445 }
446
447 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
448 return mode_for_size (bitsize, MODE_INT, true);
449 }
450
451 /* Find a type that can be used for efficient bitwise operations on MODE.
452 Return null if no such mode exists. */
453
454 tree
455 bitwise_type_for_mode (machine_mode mode)
456 {
457 if (!bitwise_mode_for_mode (mode).exists (&mode))
458 return NULL_TREE;
459
460 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
461 tree inner_type = build_nonstandard_integer_type (inner_size, true);
462
463 if (VECTOR_MODE_P (mode))
464 return build_vector_type_for_mode (inner_type, mode);
465
466 if (COMPLEX_MODE_P (mode))
467 return build_complex_type (inner_type);
468
469 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
470 return inner_type;
471 }
472
473 /* Find a mode that is suitable for representing a vector with NUNITS
474 elements of mode INNERMODE, if one exists. The returned mode can be
475 either an integer mode or a vector mode. */
476
477 opt_machine_mode
478 mode_for_vector (scalar_mode innermode, unsigned nunits)
479 {
480 machine_mode mode;
481
482 /* First, look for a supported vector type. */
483 if (SCALAR_FLOAT_MODE_P (innermode))
484 mode = MIN_MODE_VECTOR_FLOAT;
485 else if (SCALAR_FRACT_MODE_P (innermode))
486 mode = MIN_MODE_VECTOR_FRACT;
487 else if (SCALAR_UFRACT_MODE_P (innermode))
488 mode = MIN_MODE_VECTOR_UFRACT;
489 else if (SCALAR_ACCUM_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_ACCUM;
491 else if (SCALAR_UACCUM_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_UACCUM;
493 else
494 mode = MIN_MODE_VECTOR_INT;
495
496 /* Do not check vector_mode_supported_p here. We'll do that
497 later in vector_type_mode. */
498 FOR_EACH_MODE_FROM (mode, mode)
499 if (GET_MODE_NUNITS (mode) == nunits
500 && GET_MODE_INNER (mode) == innermode)
501 return mode;
502
503 /* For integers, try mapping it to a same-sized scalar mode. */
504 if (GET_MODE_CLASS (innermode) == MODE_INT)
505 {
506 unsigned int nbits = nunits * GET_MODE_BITSIZE (innermode);
507 if (int_mode_for_size (nbits, 0).exists (&mode)
508 && have_regs_of_mode[mode])
509 return mode;
510 }
511
512 return opt_machine_mode ();
513 }
514
515 /* Return the mode for a vector that has NUNITS integer elements of
516 INT_BITS bits each, if such a mode exists. The mode can be either
517 an integer mode or a vector mode. */
518
519 opt_machine_mode
520 mode_for_int_vector (unsigned int int_bits, unsigned int nunits)
521 {
522 scalar_int_mode int_mode;
523 machine_mode vec_mode;
524 if (int_mode_for_size (int_bits, 0).exists (&int_mode)
525 && mode_for_vector (int_mode, nunits).exists (&vec_mode))
526 return vec_mode;
527 return opt_machine_mode ();
528 }
529
530 /* Return the alignment of MODE. This will be bounded by 1 and
531 BIGGEST_ALIGNMENT. */
532
533 unsigned int
534 get_mode_alignment (machine_mode mode)
535 {
536 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
537 }
538
539 /* Return the natural mode of an array, given that it is SIZE bytes in
540 total and has elements of type ELEM_TYPE. */
541
542 static machine_mode
543 mode_for_array (tree elem_type, tree size)
544 {
545 tree elem_size;
546 unsigned HOST_WIDE_INT int_size, int_elem_size;
547 bool limit_p;
548
549 /* One-element arrays get the component type's mode. */
550 elem_size = TYPE_SIZE (elem_type);
551 if (simple_cst_equal (size, elem_size))
552 return TYPE_MODE (elem_type);
553
554 limit_p = true;
555 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
556 {
557 int_size = tree_to_uhwi (size);
558 int_elem_size = tree_to_uhwi (elem_size);
559 if (int_elem_size > 0
560 && int_size % int_elem_size == 0
561 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
562 int_size / int_elem_size))
563 limit_p = false;
564 }
565 return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
566 }
567 \f
568 /* Subroutine of layout_decl: Force alignment required for the data type.
569 But if the decl itself wants greater alignment, don't override that. */
570
571 static inline void
572 do_type_align (tree type, tree decl)
573 {
574 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
575 {
576 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
577 if (TREE_CODE (decl) == FIELD_DECL)
578 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
579 }
580 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
581 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
582 }
583
584 /* Set the size, mode and alignment of a ..._DECL node.
585 TYPE_DECL does need this for C++.
586 Note that LABEL_DECL and CONST_DECL nodes do not need this,
587 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
588 Don't call layout_decl for them.
589
590 KNOWN_ALIGN is the amount of alignment we can assume this
591 decl has with no special effort. It is relevant only for FIELD_DECLs
592 and depends on the previous fields.
593 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
594 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
595 the record will be aligned to suit. */
596
597 void
598 layout_decl (tree decl, unsigned int known_align)
599 {
600 tree type = TREE_TYPE (decl);
601 enum tree_code code = TREE_CODE (decl);
602 rtx rtl = NULL_RTX;
603 location_t loc = DECL_SOURCE_LOCATION (decl);
604
605 if (code == CONST_DECL)
606 return;
607
608 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
609 || code == TYPE_DECL || code == FIELD_DECL);
610
611 rtl = DECL_RTL_IF_SET (decl);
612
613 if (type == error_mark_node)
614 type = void_type_node;
615
616 /* Usually the size and mode come from the data type without change,
617 however, the front-end may set the explicit width of the field, so its
618 size may not be the same as the size of its type. This happens with
619 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
620 also happens with other fields. For example, the C++ front-end creates
621 zero-sized fields corresponding to empty base classes, and depends on
622 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
623 size in bytes from the size in bits. If we have already set the mode,
624 don't set it again since we can be called twice for FIELD_DECLs. */
625
626 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
627 if (DECL_MODE (decl) == VOIDmode)
628 SET_DECL_MODE (decl, TYPE_MODE (type));
629
630 if (DECL_SIZE (decl) == 0)
631 {
632 DECL_SIZE (decl) = TYPE_SIZE (type);
633 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
634 }
635 else if (DECL_SIZE_UNIT (decl) == 0)
636 DECL_SIZE_UNIT (decl)
637 = fold_convert_loc (loc, sizetype,
638 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
639 bitsize_unit_node));
640
641 if (code != FIELD_DECL)
642 /* For non-fields, update the alignment from the type. */
643 do_type_align (type, decl);
644 else
645 /* For fields, it's a bit more complicated... */
646 {
647 bool old_user_align = DECL_USER_ALIGN (decl);
648 bool zero_bitfield = false;
649 bool packed_p = DECL_PACKED (decl);
650 unsigned int mfa;
651
652 if (DECL_BIT_FIELD (decl))
653 {
654 DECL_BIT_FIELD_TYPE (decl) = type;
655
656 /* A zero-length bit-field affects the alignment of the next
657 field. In essence such bit-fields are not influenced by
658 any packing due to #pragma pack or attribute packed. */
659 if (integer_zerop (DECL_SIZE (decl))
660 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
661 {
662 zero_bitfield = true;
663 packed_p = false;
664 if (PCC_BITFIELD_TYPE_MATTERS)
665 do_type_align (type, decl);
666 else
667 {
668 #ifdef EMPTY_FIELD_BOUNDARY
669 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
670 {
671 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
672 DECL_USER_ALIGN (decl) = 0;
673 }
674 #endif
675 }
676 }
677
678 /* See if we can use an ordinary integer mode for a bit-field.
679 Conditions are: a fixed size that is correct for another mode,
680 occupying a complete byte or bytes on proper boundary. */
681 if (TYPE_SIZE (type) != 0
682 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
683 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
684 {
685 machine_mode xmode;
686 if (mode_for_size_tree (DECL_SIZE (decl),
687 MODE_INT, 1).exists (&xmode))
688 {
689 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
690 if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
691 && (known_align == 0 || known_align >= xalign))
692 {
693 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
694 SET_DECL_MODE (decl, xmode);
695 DECL_BIT_FIELD (decl) = 0;
696 }
697 }
698 }
699
700 /* Turn off DECL_BIT_FIELD if we won't need it set. */
701 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
702 && known_align >= TYPE_ALIGN (type)
703 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
704 DECL_BIT_FIELD (decl) = 0;
705 }
706 else if (packed_p && DECL_USER_ALIGN (decl))
707 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
708 round up; we'll reduce it again below. We want packing to
709 supersede USER_ALIGN inherited from the type, but defer to
710 alignment explicitly specified on the field decl. */;
711 else
712 do_type_align (type, decl);
713
714 /* If the field is packed and not explicitly aligned, give it the
715 minimum alignment. Note that do_type_align may set
716 DECL_USER_ALIGN, so we need to check old_user_align instead. */
717 if (packed_p
718 && !old_user_align)
719 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
720
721 if (! packed_p && ! DECL_USER_ALIGN (decl))
722 {
723 /* Some targets (i.e. i386, VMS) limit struct field alignment
724 to a lower boundary than alignment of variables unless
725 it was overridden by attribute aligned. */
726 #ifdef BIGGEST_FIELD_ALIGNMENT
727 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
728 (unsigned) BIGGEST_FIELD_ALIGNMENT));
729 #endif
730 #ifdef ADJUST_FIELD_ALIGN
731 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
732 DECL_ALIGN (decl)));
733 #endif
734 }
735
736 if (zero_bitfield)
737 mfa = initial_max_fld_align * BITS_PER_UNIT;
738 else
739 mfa = maximum_field_alignment;
740 /* Should this be controlled by DECL_USER_ALIGN, too? */
741 if (mfa != 0)
742 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
743 }
744
745 /* Evaluate nonconstant size only once, either now or as soon as safe. */
746 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
747 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
748 if (DECL_SIZE_UNIT (decl) != 0
749 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
750 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
751
752 /* If requested, warn about definitions of large data objects. */
753 if (warn_larger_than
754 && (code == VAR_DECL || code == PARM_DECL)
755 && ! DECL_EXTERNAL (decl))
756 {
757 tree size = DECL_SIZE_UNIT (decl);
758
759 if (size != 0 && TREE_CODE (size) == INTEGER_CST
760 && compare_tree_int (size, larger_than_size) > 0)
761 {
762 int size_as_int = TREE_INT_CST_LOW (size);
763
764 if (compare_tree_int (size, size_as_int) == 0)
765 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
766 else
767 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
768 decl, larger_than_size);
769 }
770 }
771
772 /* If the RTL was already set, update its mode and mem attributes. */
773 if (rtl)
774 {
775 PUT_MODE (rtl, DECL_MODE (decl));
776 SET_DECL_RTL (decl, 0);
777 if (MEM_P (rtl))
778 set_mem_attributes (rtl, decl, 1);
779 SET_DECL_RTL (decl, rtl);
780 }
781 }
782
783 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
784 results of a previous call to layout_decl and calls it again. */
785
786 void
787 relayout_decl (tree decl)
788 {
789 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
790 SET_DECL_MODE (decl, VOIDmode);
791 if (!DECL_USER_ALIGN (decl))
792 SET_DECL_ALIGN (decl, 0);
793 if (DECL_RTL_SET_P (decl))
794 SET_DECL_RTL (decl, 0);
795
796 layout_decl (decl, 0);
797 }
798 \f
799 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
800 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
801 is to be passed to all other layout functions for this record. It is the
802 responsibility of the caller to call `free' for the storage returned.
803 Note that garbage collection is not permitted until we finish laying
804 out the record. */
805
806 record_layout_info
807 start_record_layout (tree t)
808 {
809 record_layout_info rli = XNEW (struct record_layout_info_s);
810
811 rli->t = t;
812
813 /* If the type has a minimum specified alignment (via an attribute
814 declaration, for example) use it -- otherwise, start with a
815 one-byte alignment. */
816 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
817 rli->unpacked_align = rli->record_align;
818 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
819
820 #ifdef STRUCTURE_SIZE_BOUNDARY
821 /* Packed structures don't need to have minimum size. */
822 if (! TYPE_PACKED (t))
823 {
824 unsigned tmp;
825
826 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
827 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
828 if (maximum_field_alignment != 0)
829 tmp = MIN (tmp, maximum_field_alignment);
830 rli->record_align = MAX (rli->record_align, tmp);
831 }
832 #endif
833
834 rli->offset = size_zero_node;
835 rli->bitpos = bitsize_zero_node;
836 rli->prev_field = 0;
837 rli->pending_statics = 0;
838 rli->packed_maybe_necessary = 0;
839 rli->remaining_in_alignment = 0;
840
841 return rli;
842 }
843
844 /* Return the combined bit position for the byte offset OFFSET and the
845 bit position BITPOS.
846
847 These functions operate on byte and bit positions present in FIELD_DECLs
848 and assume that these expressions result in no (intermediate) overflow.
849 This assumption is necessary to fold the expressions as much as possible,
850 so as to avoid creating artificially variable-sized types in languages
851 supporting variable-sized types like Ada. */
852
853 tree
854 bit_from_pos (tree offset, tree bitpos)
855 {
856 return size_binop (PLUS_EXPR, bitpos,
857 size_binop (MULT_EXPR,
858 fold_convert (bitsizetype, offset),
859 bitsize_unit_node));
860 }
861
862 /* Return the combined truncated byte position for the byte offset OFFSET and
863 the bit position BITPOS. */
864
865 tree
866 byte_from_pos (tree offset, tree bitpos)
867 {
868 tree bytepos;
869 if (TREE_CODE (bitpos) == MULT_EXPR
870 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
871 bytepos = TREE_OPERAND (bitpos, 0);
872 else
873 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
874 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
875 }
876
877 /* Split the bit position POS into a byte offset *POFFSET and a bit
878 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
879
880 void
881 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
882 tree pos)
883 {
884 tree toff_align = bitsize_int (off_align);
885 if (TREE_CODE (pos) == MULT_EXPR
886 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
887 {
888 *poffset = size_binop (MULT_EXPR,
889 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
890 size_int (off_align / BITS_PER_UNIT));
891 *pbitpos = bitsize_zero_node;
892 }
893 else
894 {
895 *poffset = size_binop (MULT_EXPR,
896 fold_convert (sizetype,
897 size_binop (FLOOR_DIV_EXPR, pos,
898 toff_align)),
899 size_int (off_align / BITS_PER_UNIT));
900 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
901 }
902 }
903
904 /* Given a pointer to bit and byte offsets and an offset alignment,
905 normalize the offsets so they are within the alignment. */
906
907 void
908 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
909 {
910 /* If the bit position is now larger than it should be, adjust it
911 downwards. */
912 if (compare_tree_int (*pbitpos, off_align) >= 0)
913 {
914 tree offset, bitpos;
915 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
916 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
917 *pbitpos = bitpos;
918 }
919 }
920
921 /* Print debugging information about the information in RLI. */
922
923 DEBUG_FUNCTION void
924 debug_rli (record_layout_info rli)
925 {
926 print_node_brief (stderr, "type", rli->t, 0);
927 print_node_brief (stderr, "\noffset", rli->offset, 0);
928 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
929
930 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
931 rli->record_align, rli->unpacked_align,
932 rli->offset_align);
933
934 /* The ms_struct code is the only that uses this. */
935 if (targetm.ms_bitfield_layout_p (rli->t))
936 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
937
938 if (rli->packed_maybe_necessary)
939 fprintf (stderr, "packed may be necessary\n");
940
941 if (!vec_safe_is_empty (rli->pending_statics))
942 {
943 fprintf (stderr, "pending statics:\n");
944 debug_vec_tree (rli->pending_statics);
945 }
946 }
947
948 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
949 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
950
951 void
952 normalize_rli (record_layout_info rli)
953 {
954 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
955 }
956
957 /* Returns the size in bytes allocated so far. */
958
959 tree
960 rli_size_unit_so_far (record_layout_info rli)
961 {
962 return byte_from_pos (rli->offset, rli->bitpos);
963 }
964
965 /* Returns the size in bits allocated so far. */
966
967 tree
968 rli_size_so_far (record_layout_info rli)
969 {
970 return bit_from_pos (rli->offset, rli->bitpos);
971 }
972
973 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
974 the next available location within the record is given by KNOWN_ALIGN.
975 Update the variable alignment fields in RLI, and return the alignment
976 to give the FIELD. */
977
978 unsigned int
979 update_alignment_for_field (record_layout_info rli, tree field,
980 unsigned int known_align)
981 {
982 /* The alignment required for FIELD. */
983 unsigned int desired_align;
984 /* The type of this field. */
985 tree type = TREE_TYPE (field);
986 /* True if the field was explicitly aligned by the user. */
987 bool user_align;
988 bool is_bitfield;
989
990 /* Do not attempt to align an ERROR_MARK node */
991 if (TREE_CODE (type) == ERROR_MARK)
992 return 0;
993
994 /* Lay out the field so we know what alignment it needs. */
995 layout_decl (field, known_align);
996 desired_align = DECL_ALIGN (field);
997 user_align = DECL_USER_ALIGN (field);
998
999 is_bitfield = (type != error_mark_node
1000 && DECL_BIT_FIELD_TYPE (field)
1001 && ! integer_zerop (TYPE_SIZE (type)));
1002
1003 /* Record must have at least as much alignment as any field.
1004 Otherwise, the alignment of the field within the record is
1005 meaningless. */
1006 if (targetm.ms_bitfield_layout_p (rli->t))
1007 {
1008 /* Here, the alignment of the underlying type of a bitfield can
1009 affect the alignment of a record; even a zero-sized field
1010 can do this. The alignment should be to the alignment of
1011 the type, except that for zero-size bitfields this only
1012 applies if there was an immediately prior, nonzero-size
1013 bitfield. (That's the way it is, experimentally.) */
1014 if ((!is_bitfield && !DECL_PACKED (field))
1015 || ((DECL_SIZE (field) == NULL_TREE
1016 || !integer_zerop (DECL_SIZE (field)))
1017 ? !DECL_PACKED (field)
1018 : (rli->prev_field
1019 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1020 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1021 {
1022 unsigned int type_align = TYPE_ALIGN (type);
1023 type_align = MAX (type_align, desired_align);
1024 if (maximum_field_alignment != 0)
1025 type_align = MIN (type_align, maximum_field_alignment);
1026 rli->record_align = MAX (rli->record_align, type_align);
1027 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1028 }
1029 }
1030 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1031 {
1032 /* Named bit-fields cause the entire structure to have the
1033 alignment implied by their type. Some targets also apply the same
1034 rules to unnamed bitfields. */
1035 if (DECL_NAME (field) != 0
1036 || targetm.align_anon_bitfield ())
1037 {
1038 unsigned int type_align = TYPE_ALIGN (type);
1039
1040 #ifdef ADJUST_FIELD_ALIGN
1041 if (! TYPE_USER_ALIGN (type))
1042 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1043 #endif
1044
1045 /* Targets might chose to handle unnamed and hence possibly
1046 zero-width bitfield. Those are not influenced by #pragmas
1047 or packed attributes. */
1048 if (integer_zerop (DECL_SIZE (field)))
1049 {
1050 if (initial_max_fld_align)
1051 type_align = MIN (type_align,
1052 initial_max_fld_align * BITS_PER_UNIT);
1053 }
1054 else if (maximum_field_alignment != 0)
1055 type_align = MIN (type_align, maximum_field_alignment);
1056 else if (DECL_PACKED (field))
1057 type_align = MIN (type_align, BITS_PER_UNIT);
1058
1059 /* The alignment of the record is increased to the maximum
1060 of the current alignment, the alignment indicated on the
1061 field (i.e., the alignment specified by an __aligned__
1062 attribute), and the alignment indicated by the type of
1063 the field. */
1064 rli->record_align = MAX (rli->record_align, desired_align);
1065 rli->record_align = MAX (rli->record_align, type_align);
1066
1067 if (warn_packed)
1068 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1069 user_align |= TYPE_USER_ALIGN (type);
1070 }
1071 }
1072 else
1073 {
1074 rli->record_align = MAX (rli->record_align, desired_align);
1075 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1076 }
1077
1078 TYPE_USER_ALIGN (rli->t) |= user_align;
1079
1080 return desired_align;
1081 }
1082
1083 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1084 the field alignment of FIELD or FIELD isn't aligned. */
1085
1086 static void
1087 handle_warn_if_not_align (tree field, unsigned int record_align)
1088 {
1089 tree type = TREE_TYPE (field);
1090
1091 if (type == error_mark_node)
1092 return;
1093
1094 unsigned int warn_if_not_align = 0;
1095
1096 int opt_w = 0;
1097
1098 if (warn_if_not_aligned)
1099 {
1100 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1101 if (!warn_if_not_align)
1102 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1103 if (warn_if_not_align)
1104 opt_w = OPT_Wif_not_aligned;
1105 }
1106
1107 if (!warn_if_not_align
1108 && warn_packed_not_aligned
1109 && TYPE_USER_ALIGN (type))
1110 {
1111 warn_if_not_align = TYPE_ALIGN (type);
1112 opt_w = OPT_Wpacked_not_aligned;
1113 }
1114
1115 if (!warn_if_not_align)
1116 return;
1117
1118 tree context = DECL_CONTEXT (field);
1119
1120 warn_if_not_align /= BITS_PER_UNIT;
1121 record_align /= BITS_PER_UNIT;
1122 if ((record_align % warn_if_not_align) != 0)
1123 warning (opt_w, "alignment %u of %qT is less than %u",
1124 record_align, context, warn_if_not_align);
1125
1126 unsigned HOST_WIDE_INT off
1127 = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1128 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)) / BITS_PER_UNIT);
1129 if ((off % warn_if_not_align) != 0)
1130 warning (opt_w, "%q+D offset %wu in %qT isn't aligned to %u",
1131 field, off, context, warn_if_not_align);
1132 }
1133
1134 /* Called from place_field to handle unions. */
1135
1136 static void
1137 place_union_field (record_layout_info rli, tree field)
1138 {
1139 update_alignment_for_field (rli, field, /*known_align=*/0);
1140
1141 DECL_FIELD_OFFSET (field) = size_zero_node;
1142 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1143 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1144 handle_warn_if_not_align (field, rli->record_align);
1145
1146 /* If this is an ERROR_MARK return *after* having set the
1147 field at the start of the union. This helps when parsing
1148 invalid fields. */
1149 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1150 return;
1151
1152 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1153 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1154 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1155
1156 /* We assume the union's size will be a multiple of a byte so we don't
1157 bother with BITPOS. */
1158 if (TREE_CODE (rli->t) == UNION_TYPE)
1159 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1160 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1161 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1162 DECL_SIZE_UNIT (field), rli->offset);
1163 }
1164
1165 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1166 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1167 units of alignment than the underlying TYPE. */
1168 static int
1169 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1170 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1171 {
1172 /* Note that the calculation of OFFSET might overflow; we calculate it so
1173 that we still get the right result as long as ALIGN is a power of two. */
1174 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1175
1176 offset = offset % align;
1177 return ((offset + size + align - 1) / align
1178 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1179 }
1180
1181 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1182 is a FIELD_DECL to be added after those fields already present in
1183 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1184 callers that desire that behavior must manually perform that step.) */
1185
1186 void
1187 place_field (record_layout_info rli, tree field)
1188 {
1189 /* The alignment required for FIELD. */
1190 unsigned int desired_align;
1191 /* The alignment FIELD would have if we just dropped it into the
1192 record as it presently stands. */
1193 unsigned int known_align;
1194 unsigned int actual_align;
1195 /* The type of this field. */
1196 tree type = TREE_TYPE (field);
1197
1198 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1199
1200 /* If FIELD is static, then treat it like a separate variable, not
1201 really like a structure field. If it is a FUNCTION_DECL, it's a
1202 method. In both cases, all we do is lay out the decl, and we do
1203 it *after* the record is laid out. */
1204 if (VAR_P (field))
1205 {
1206 vec_safe_push (rli->pending_statics, field);
1207 return;
1208 }
1209
1210 /* Enumerators and enum types which are local to this class need not
1211 be laid out. Likewise for initialized constant fields. */
1212 else if (TREE_CODE (field) != FIELD_DECL)
1213 return;
1214
1215 /* Unions are laid out very differently than records, so split
1216 that code off to another function. */
1217 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1218 {
1219 place_union_field (rli, field);
1220 return;
1221 }
1222
1223 else if (TREE_CODE (type) == ERROR_MARK)
1224 {
1225 /* Place this field at the current allocation position, so we
1226 maintain monotonicity. */
1227 DECL_FIELD_OFFSET (field) = rli->offset;
1228 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1229 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1230 handle_warn_if_not_align (field, rli->record_align);
1231 return;
1232 }
1233
1234 if (AGGREGATE_TYPE_P (type)
1235 && TYPE_TYPELESS_STORAGE (type))
1236 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1237
1238 /* Work out the known alignment so far. Note that A & (-A) is the
1239 value of the least-significant bit in A that is one. */
1240 if (! integer_zerop (rli->bitpos))
1241 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1242 else if (integer_zerop (rli->offset))
1243 known_align = 0;
1244 else if (tree_fits_uhwi_p (rli->offset))
1245 known_align = (BITS_PER_UNIT
1246 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1247 else
1248 known_align = rli->offset_align;
1249
1250 desired_align = update_alignment_for_field (rli, field, known_align);
1251 if (known_align == 0)
1252 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1253
1254 if (warn_packed && DECL_PACKED (field))
1255 {
1256 if (known_align >= TYPE_ALIGN (type))
1257 {
1258 if (TYPE_ALIGN (type) > desired_align)
1259 {
1260 if (STRICT_ALIGNMENT)
1261 warning (OPT_Wattributes, "packed attribute causes "
1262 "inefficient alignment for %q+D", field);
1263 /* Don't warn if DECL_PACKED was set by the type. */
1264 else if (!TYPE_PACKED (rli->t))
1265 warning (OPT_Wattributes, "packed attribute is "
1266 "unnecessary for %q+D", field);
1267 }
1268 }
1269 else
1270 rli->packed_maybe_necessary = 1;
1271 }
1272
1273 /* Does this field automatically have alignment it needs by virtue
1274 of the fields that precede it and the record's own alignment? */
1275 if (known_align < desired_align)
1276 {
1277 /* No, we need to skip space before this field.
1278 Bump the cumulative size to multiple of field alignment. */
1279
1280 if (!targetm.ms_bitfield_layout_p (rli->t)
1281 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1282 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1283
1284 /* If the alignment is still within offset_align, just align
1285 the bit position. */
1286 if (desired_align < rli->offset_align)
1287 rli->bitpos = round_up (rli->bitpos, desired_align);
1288 else
1289 {
1290 /* First adjust OFFSET by the partial bits, then align. */
1291 rli->offset
1292 = size_binop (PLUS_EXPR, rli->offset,
1293 fold_convert (sizetype,
1294 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1295 bitsize_unit_node)));
1296 rli->bitpos = bitsize_zero_node;
1297
1298 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1299 }
1300
1301 if (! TREE_CONSTANT (rli->offset))
1302 rli->offset_align = desired_align;
1303 if (targetm.ms_bitfield_layout_p (rli->t))
1304 rli->prev_field = NULL;
1305 }
1306
1307 /* Handle compatibility with PCC. Note that if the record has any
1308 variable-sized fields, we need not worry about compatibility. */
1309 if (PCC_BITFIELD_TYPE_MATTERS
1310 && ! targetm.ms_bitfield_layout_p (rli->t)
1311 && TREE_CODE (field) == FIELD_DECL
1312 && type != error_mark_node
1313 && DECL_BIT_FIELD (field)
1314 && (! DECL_PACKED (field)
1315 /* Enter for these packed fields only to issue a warning. */
1316 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1317 && maximum_field_alignment == 0
1318 && ! integer_zerop (DECL_SIZE (field))
1319 && tree_fits_uhwi_p (DECL_SIZE (field))
1320 && tree_fits_uhwi_p (rli->offset)
1321 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1322 {
1323 unsigned int type_align = TYPE_ALIGN (type);
1324 tree dsize = DECL_SIZE (field);
1325 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1326 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1327 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1328
1329 #ifdef ADJUST_FIELD_ALIGN
1330 if (! TYPE_USER_ALIGN (type))
1331 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1332 #endif
1333
1334 /* A bit field may not span more units of alignment of its type
1335 than its type itself. Advance to next boundary if necessary. */
1336 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1337 {
1338 if (DECL_PACKED (field))
1339 {
1340 if (warn_packed_bitfield_compat == 1)
1341 inform
1342 (input_location,
1343 "offset of packed bit-field %qD has changed in GCC 4.4",
1344 field);
1345 }
1346 else
1347 rli->bitpos = round_up (rli->bitpos, type_align);
1348 }
1349
1350 if (! DECL_PACKED (field))
1351 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1352
1353 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1354 TYPE_WARN_IF_NOT_ALIGN (type));
1355 }
1356
1357 #ifdef BITFIELD_NBYTES_LIMITED
1358 if (BITFIELD_NBYTES_LIMITED
1359 && ! targetm.ms_bitfield_layout_p (rli->t)
1360 && TREE_CODE (field) == FIELD_DECL
1361 && type != error_mark_node
1362 && DECL_BIT_FIELD_TYPE (field)
1363 && ! DECL_PACKED (field)
1364 && ! integer_zerop (DECL_SIZE (field))
1365 && tree_fits_uhwi_p (DECL_SIZE (field))
1366 && tree_fits_uhwi_p (rli->offset)
1367 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1368 {
1369 unsigned int type_align = TYPE_ALIGN (type);
1370 tree dsize = DECL_SIZE (field);
1371 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1372 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1373 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1374
1375 #ifdef ADJUST_FIELD_ALIGN
1376 if (! TYPE_USER_ALIGN (type))
1377 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1378 #endif
1379
1380 if (maximum_field_alignment != 0)
1381 type_align = MIN (type_align, maximum_field_alignment);
1382 /* ??? This test is opposite the test in the containing if
1383 statement, so this code is unreachable currently. */
1384 else if (DECL_PACKED (field))
1385 type_align = MIN (type_align, BITS_PER_UNIT);
1386
1387 /* A bit field may not span the unit of alignment of its type.
1388 Advance to next boundary if necessary. */
1389 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1390 rli->bitpos = round_up (rli->bitpos, type_align);
1391
1392 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1393 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1394 TYPE_WARN_IF_NOT_ALIGN (type));
1395 }
1396 #endif
1397
1398 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1399 A subtlety:
1400 When a bit field is inserted into a packed record, the whole
1401 size of the underlying type is used by one or more same-size
1402 adjacent bitfields. (That is, if its long:3, 32 bits is
1403 used in the record, and any additional adjacent long bitfields are
1404 packed into the same chunk of 32 bits. However, if the size
1405 changes, a new field of that size is allocated.) In an unpacked
1406 record, this is the same as using alignment, but not equivalent
1407 when packing.
1408
1409 Note: for compatibility, we use the type size, not the type alignment
1410 to determine alignment, since that matches the documentation */
1411
1412 if (targetm.ms_bitfield_layout_p (rli->t))
1413 {
1414 tree prev_saved = rli->prev_field;
1415 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1416
1417 /* This is a bitfield if it exists. */
1418 if (rli->prev_field)
1419 {
1420 /* If both are bitfields, nonzero, and the same size, this is
1421 the middle of a run. Zero declared size fields are special
1422 and handled as "end of run". (Note: it's nonzero declared
1423 size, but equal type sizes!) (Since we know that both
1424 the current and previous fields are bitfields by the
1425 time we check it, DECL_SIZE must be present for both.) */
1426 if (DECL_BIT_FIELD_TYPE (field)
1427 && !integer_zerop (DECL_SIZE (field))
1428 && !integer_zerop (DECL_SIZE (rli->prev_field))
1429 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1430 && tree_fits_uhwi_p (TYPE_SIZE (type))
1431 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1432 {
1433 /* We're in the middle of a run of equal type size fields; make
1434 sure we realign if we run out of bits. (Not decl size,
1435 type size!) */
1436 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1437
1438 if (rli->remaining_in_alignment < bitsize)
1439 {
1440 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1441
1442 /* out of bits; bump up to next 'word'. */
1443 rli->bitpos
1444 = size_binop (PLUS_EXPR, rli->bitpos,
1445 bitsize_int (rli->remaining_in_alignment));
1446 rli->prev_field = field;
1447 if (typesize < bitsize)
1448 rli->remaining_in_alignment = 0;
1449 else
1450 rli->remaining_in_alignment = typesize - bitsize;
1451 }
1452 else
1453 rli->remaining_in_alignment -= bitsize;
1454 }
1455 else
1456 {
1457 /* End of a run: if leaving a run of bitfields of the same type
1458 size, we have to "use up" the rest of the bits of the type
1459 size.
1460
1461 Compute the new position as the sum of the size for the prior
1462 type and where we first started working on that type.
1463 Note: since the beginning of the field was aligned then
1464 of course the end will be too. No round needed. */
1465
1466 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1467 {
1468 rli->bitpos
1469 = size_binop (PLUS_EXPR, rli->bitpos,
1470 bitsize_int (rli->remaining_in_alignment));
1471 }
1472 else
1473 /* We "use up" size zero fields; the code below should behave
1474 as if the prior field was not a bitfield. */
1475 prev_saved = NULL;
1476
1477 /* Cause a new bitfield to be captured, either this time (if
1478 currently a bitfield) or next time we see one. */
1479 if (!DECL_BIT_FIELD_TYPE (field)
1480 || integer_zerop (DECL_SIZE (field)))
1481 rli->prev_field = NULL;
1482 }
1483
1484 normalize_rli (rli);
1485 }
1486
1487 /* If we're starting a new run of same type size bitfields
1488 (or a run of non-bitfields), set up the "first of the run"
1489 fields.
1490
1491 That is, if the current field is not a bitfield, or if there
1492 was a prior bitfield the type sizes differ, or if there wasn't
1493 a prior bitfield the size of the current field is nonzero.
1494
1495 Note: we must be sure to test ONLY the type size if there was
1496 a prior bitfield and ONLY for the current field being zero if
1497 there wasn't. */
1498
1499 if (!DECL_BIT_FIELD_TYPE (field)
1500 || (prev_saved != NULL
1501 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1502 : !integer_zerop (DECL_SIZE (field)) ))
1503 {
1504 /* Never smaller than a byte for compatibility. */
1505 unsigned int type_align = BITS_PER_UNIT;
1506
1507 /* (When not a bitfield), we could be seeing a flex array (with
1508 no DECL_SIZE). Since we won't be using remaining_in_alignment
1509 until we see a bitfield (and come by here again) we just skip
1510 calculating it. */
1511 if (DECL_SIZE (field) != NULL
1512 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1513 && tree_fits_uhwi_p (DECL_SIZE (field)))
1514 {
1515 unsigned HOST_WIDE_INT bitsize
1516 = tree_to_uhwi (DECL_SIZE (field));
1517 unsigned HOST_WIDE_INT typesize
1518 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1519
1520 if (typesize < bitsize)
1521 rli->remaining_in_alignment = 0;
1522 else
1523 rli->remaining_in_alignment = typesize - bitsize;
1524 }
1525
1526 /* Now align (conventionally) for the new type. */
1527 type_align = TYPE_ALIGN (TREE_TYPE (field));
1528
1529 if (maximum_field_alignment != 0)
1530 type_align = MIN (type_align, maximum_field_alignment);
1531
1532 rli->bitpos = round_up (rli->bitpos, type_align);
1533
1534 /* If we really aligned, don't allow subsequent bitfields
1535 to undo that. */
1536 rli->prev_field = NULL;
1537 }
1538 }
1539
1540 /* Offset so far becomes the position of this field after normalizing. */
1541 normalize_rli (rli);
1542 DECL_FIELD_OFFSET (field) = rli->offset;
1543 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1544 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1545 handle_warn_if_not_align (field, rli->record_align);
1546
1547 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1548 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1549 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1550
1551 /* If this field ended up more aligned than we thought it would be (we
1552 approximate this by seeing if its position changed), lay out the field
1553 again; perhaps we can use an integral mode for it now. */
1554 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1555 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1556 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1557 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1558 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1559 actual_align = (BITS_PER_UNIT
1560 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1561 else
1562 actual_align = DECL_OFFSET_ALIGN (field);
1563 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1564 store / extract bit field operations will check the alignment of the
1565 record against the mode of bit fields. */
1566
1567 if (known_align != actual_align)
1568 layout_decl (field, actual_align);
1569
1570 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1571 rli->prev_field = field;
1572
1573 /* Now add size of this field to the size of the record. If the size is
1574 not constant, treat the field as being a multiple of bytes and just
1575 adjust the offset, resetting the bit position. Otherwise, apportion the
1576 size amongst the bit position and offset. First handle the case of an
1577 unspecified size, which can happen when we have an invalid nested struct
1578 definition, such as struct j { struct j { int i; } }. The error message
1579 is printed in finish_struct. */
1580 if (DECL_SIZE (field) == 0)
1581 /* Do nothing. */;
1582 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1583 || TREE_OVERFLOW (DECL_SIZE (field)))
1584 {
1585 rli->offset
1586 = size_binop (PLUS_EXPR, rli->offset,
1587 fold_convert (sizetype,
1588 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1589 bitsize_unit_node)));
1590 rli->offset
1591 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1592 rli->bitpos = bitsize_zero_node;
1593 rli->offset_align = MIN (rli->offset_align, desired_align);
1594 }
1595 else if (targetm.ms_bitfield_layout_p (rli->t))
1596 {
1597 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1598
1599 /* If we ended a bitfield before the full length of the type then
1600 pad the struct out to the full length of the last type. */
1601 if ((DECL_CHAIN (field) == NULL
1602 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1603 && DECL_BIT_FIELD_TYPE (field)
1604 && !integer_zerop (DECL_SIZE (field)))
1605 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1606 bitsize_int (rli->remaining_in_alignment));
1607
1608 normalize_rli (rli);
1609 }
1610 else
1611 {
1612 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1613 normalize_rli (rli);
1614 }
1615 }
1616
1617 /* Assuming that all the fields have been laid out, this function uses
1618 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1619 indicated by RLI. */
1620
1621 static void
1622 finalize_record_size (record_layout_info rli)
1623 {
1624 tree unpadded_size, unpadded_size_unit;
1625
1626 /* Now we want just byte and bit offsets, so set the offset alignment
1627 to be a byte and then normalize. */
1628 rli->offset_align = BITS_PER_UNIT;
1629 normalize_rli (rli);
1630
1631 /* Determine the desired alignment. */
1632 #ifdef ROUND_TYPE_ALIGN
1633 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1634 rli->record_align));
1635 #else
1636 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1637 #endif
1638
1639 /* Compute the size so far. Be sure to allow for extra bits in the
1640 size in bytes. We have guaranteed above that it will be no more
1641 than a single byte. */
1642 unpadded_size = rli_size_so_far (rli);
1643 unpadded_size_unit = rli_size_unit_so_far (rli);
1644 if (! integer_zerop (rli->bitpos))
1645 unpadded_size_unit
1646 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1647
1648 /* Round the size up to be a multiple of the required alignment. */
1649 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1650 TYPE_SIZE_UNIT (rli->t)
1651 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1652
1653 if (TREE_CONSTANT (unpadded_size)
1654 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1655 && input_location != BUILTINS_LOCATION)
1656 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1657
1658 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1659 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1660 && TREE_CONSTANT (unpadded_size))
1661 {
1662 tree unpacked_size;
1663
1664 #ifdef ROUND_TYPE_ALIGN
1665 rli->unpacked_align
1666 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1667 #else
1668 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1669 #endif
1670
1671 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1672 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1673 {
1674 if (TYPE_NAME (rli->t))
1675 {
1676 tree name;
1677
1678 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1679 name = TYPE_NAME (rli->t);
1680 else
1681 name = DECL_NAME (TYPE_NAME (rli->t));
1682
1683 if (STRICT_ALIGNMENT)
1684 warning (OPT_Wpacked, "packed attribute causes inefficient "
1685 "alignment for %qE", name);
1686 else
1687 warning (OPT_Wpacked,
1688 "packed attribute is unnecessary for %qE", name);
1689 }
1690 else
1691 {
1692 if (STRICT_ALIGNMENT)
1693 warning (OPT_Wpacked,
1694 "packed attribute causes inefficient alignment");
1695 else
1696 warning (OPT_Wpacked, "packed attribute is unnecessary");
1697 }
1698 }
1699 }
1700 }
1701
1702 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1703
1704 void
1705 compute_record_mode (tree type)
1706 {
1707 tree field;
1708 machine_mode mode = VOIDmode;
1709
1710 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1711 However, if possible, we use a mode that fits in a register
1712 instead, in order to allow for better optimization down the
1713 line. */
1714 SET_TYPE_MODE (type, BLKmode);
1715
1716 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1717 return;
1718
1719 /* A record which has any BLKmode members must itself be
1720 BLKmode; it can't go in a register. Unless the member is
1721 BLKmode only because it isn't aligned. */
1722 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1723 {
1724 if (TREE_CODE (field) != FIELD_DECL)
1725 continue;
1726
1727 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1728 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1729 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1730 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1731 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1732 || ! tree_fits_uhwi_p (bit_position (field))
1733 || DECL_SIZE (field) == 0
1734 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1735 return;
1736
1737 /* If this field is the whole struct, remember its mode so
1738 that, say, we can put a double in a class into a DF
1739 register instead of forcing it to live in the stack. */
1740 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1741 mode = DECL_MODE (field);
1742
1743 /* With some targets, it is sub-optimal to access an aligned
1744 BLKmode structure as a scalar. */
1745 if (targetm.member_type_forces_blk (field, mode))
1746 return;
1747 }
1748
1749 /* If we only have one real field; use its mode if that mode's size
1750 matches the type's size. This only applies to RECORD_TYPE. This
1751 does not apply to unions. */
1752 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1753 && tree_fits_uhwi_p (TYPE_SIZE (type))
1754 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1755 ;
1756 else
1757 mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1758
1759 /* If structure's known alignment is less than what the scalar
1760 mode would need, and it matters, then stick with BLKmode. */
1761 if (mode != BLKmode
1762 && STRICT_ALIGNMENT
1763 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1764 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1765 {
1766 /* If this is the only reason this type is BLKmode, then
1767 don't force containing types to be BLKmode. */
1768 TYPE_NO_FORCE_BLK (type) = 1;
1769 mode = BLKmode;
1770 }
1771
1772 SET_TYPE_MODE (type, mode);
1773 }
1774
1775 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1776 out. */
1777
1778 static void
1779 finalize_type_size (tree type)
1780 {
1781 /* Normally, use the alignment corresponding to the mode chosen.
1782 However, where strict alignment is not required, avoid
1783 over-aligning structures, since most compilers do not do this
1784 alignment. */
1785 if (TYPE_MODE (type) != BLKmode
1786 && TYPE_MODE (type) != VOIDmode
1787 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1788 {
1789 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1790
1791 /* Don't override a larger alignment requirement coming from a user
1792 alignment of one of the fields. */
1793 if (mode_align >= TYPE_ALIGN (type))
1794 {
1795 SET_TYPE_ALIGN (type, mode_align);
1796 TYPE_USER_ALIGN (type) = 0;
1797 }
1798 }
1799
1800 /* Do machine-dependent extra alignment. */
1801 #ifdef ROUND_TYPE_ALIGN
1802 SET_TYPE_ALIGN (type,
1803 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1804 #endif
1805
1806 /* If we failed to find a simple way to calculate the unit size
1807 of the type, find it by division. */
1808 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1809 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1810 result will fit in sizetype. We will get more efficient code using
1811 sizetype, so we force a conversion. */
1812 TYPE_SIZE_UNIT (type)
1813 = fold_convert (sizetype,
1814 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1815 bitsize_unit_node));
1816
1817 if (TYPE_SIZE (type) != 0)
1818 {
1819 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1820 TYPE_SIZE_UNIT (type)
1821 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1822 }
1823
1824 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1825 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1826 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1827 if (TYPE_SIZE_UNIT (type) != 0
1828 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1829 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1830
1831 /* Also layout any other variants of the type. */
1832 if (TYPE_NEXT_VARIANT (type)
1833 || type != TYPE_MAIN_VARIANT (type))
1834 {
1835 tree variant;
1836 /* Record layout info of this variant. */
1837 tree size = TYPE_SIZE (type);
1838 tree size_unit = TYPE_SIZE_UNIT (type);
1839 unsigned int align = TYPE_ALIGN (type);
1840 unsigned int precision = TYPE_PRECISION (type);
1841 unsigned int user_align = TYPE_USER_ALIGN (type);
1842 machine_mode mode = TYPE_MODE (type);
1843
1844 /* Copy it into all variants. */
1845 for (variant = TYPE_MAIN_VARIANT (type);
1846 variant != 0;
1847 variant = TYPE_NEXT_VARIANT (variant))
1848 {
1849 TYPE_SIZE (variant) = size;
1850 TYPE_SIZE_UNIT (variant) = size_unit;
1851 unsigned valign = align;
1852 if (TYPE_USER_ALIGN (variant))
1853 valign = MAX (valign, TYPE_ALIGN (variant));
1854 else
1855 TYPE_USER_ALIGN (variant) = user_align;
1856 SET_TYPE_ALIGN (variant, valign);
1857 TYPE_PRECISION (variant) = precision;
1858 SET_TYPE_MODE (variant, mode);
1859 }
1860 }
1861 }
1862
1863 /* Return a new underlying object for a bitfield started with FIELD. */
1864
1865 static tree
1866 start_bitfield_representative (tree field)
1867 {
1868 tree repr = make_node (FIELD_DECL);
1869 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1870 /* Force the representative to begin at a BITS_PER_UNIT aligned
1871 boundary - C++ may use tail-padding of a base object to
1872 continue packing bits so the bitfield region does not start
1873 at bit zero (see g++.dg/abi/bitfield5.C for example).
1874 Unallocated bits may happen for other reasons as well,
1875 for example Ada which allows explicit bit-granular structure layout. */
1876 DECL_FIELD_BIT_OFFSET (repr)
1877 = size_binop (BIT_AND_EXPR,
1878 DECL_FIELD_BIT_OFFSET (field),
1879 bitsize_int (~(BITS_PER_UNIT - 1)));
1880 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1881 DECL_SIZE (repr) = DECL_SIZE (field);
1882 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1883 DECL_PACKED (repr) = DECL_PACKED (field);
1884 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1885 /* There are no indirect accesses to this field. If we introduce
1886 some then they have to use the record alias set. This makes
1887 sure to properly conflict with [indirect] accesses to addressable
1888 fields of the bitfield group. */
1889 DECL_NONADDRESSABLE_P (repr) = 1;
1890 return repr;
1891 }
1892
1893 /* Finish up a bitfield group that was started by creating the underlying
1894 object REPR with the last field in the bitfield group FIELD. */
1895
1896 static void
1897 finish_bitfield_representative (tree repr, tree field)
1898 {
1899 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1900 tree nextf, size;
1901
1902 size = size_diffop (DECL_FIELD_OFFSET (field),
1903 DECL_FIELD_OFFSET (repr));
1904 while (TREE_CODE (size) == COMPOUND_EXPR)
1905 size = TREE_OPERAND (size, 1);
1906 gcc_assert (tree_fits_uhwi_p (size));
1907 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1908 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1909 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1910 + tree_to_uhwi (DECL_SIZE (field)));
1911
1912 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1913 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1914
1915 /* Now nothing tells us how to pad out bitsize ... */
1916 nextf = DECL_CHAIN (field);
1917 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1918 nextf = DECL_CHAIN (nextf);
1919 if (nextf)
1920 {
1921 tree maxsize;
1922 /* If there was an error, the field may be not laid out
1923 correctly. Don't bother to do anything. */
1924 if (TREE_TYPE (nextf) == error_mark_node)
1925 return;
1926 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1927 DECL_FIELD_OFFSET (repr));
1928 if (tree_fits_uhwi_p (maxsize))
1929 {
1930 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1931 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1932 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1933 /* If the group ends within a bitfield nextf does not need to be
1934 aligned to BITS_PER_UNIT. Thus round up. */
1935 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1936 }
1937 else
1938 maxbitsize = bitsize;
1939 }
1940 else
1941 {
1942 /* Note that if the C++ FE sets up tail-padding to be re-used it
1943 creates a as-base variant of the type with TYPE_SIZE adjusted
1944 accordingly. So it is safe to include tail-padding here. */
1945 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
1946 (DECL_CONTEXT (field));
1947 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
1948 /* We cannot generally rely on maxsize to fold to an integer constant,
1949 so use bitsize as fallback for this case. */
1950 if (tree_fits_uhwi_p (maxsize))
1951 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1952 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1953 else
1954 maxbitsize = bitsize;
1955 }
1956
1957 /* Only if we don't artificially break up the representative in
1958 the middle of a large bitfield with different possibly
1959 overlapping representatives. And all representatives start
1960 at byte offset. */
1961 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1962
1963 /* Find the smallest nice mode to use. */
1964 opt_scalar_int_mode mode_iter;
1965 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1966 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
1967 break;
1968
1969 scalar_int_mode mode;
1970 if (!mode_iter.exists (&mode)
1971 || GET_MODE_BITSIZE (mode) > maxbitsize
1972 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
1973 {
1974 /* We really want a BLKmode representative only as a last resort,
1975 considering the member b in
1976 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1977 Otherwise we simply want to split the representative up
1978 allowing for overlaps within the bitfield region as required for
1979 struct { int a : 7; int b : 7;
1980 int c : 10; int d; } __attribute__((packed));
1981 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1982 DECL_SIZE (repr) = bitsize_int (bitsize);
1983 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1984 SET_DECL_MODE (repr, BLKmode);
1985 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1986 bitsize / BITS_PER_UNIT);
1987 }
1988 else
1989 {
1990 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1991 DECL_SIZE (repr) = bitsize_int (modesize);
1992 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1993 SET_DECL_MODE (repr, mode);
1994 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1995 }
1996
1997 /* Remember whether the bitfield group is at the end of the
1998 structure or not. */
1999 DECL_CHAIN (repr) = nextf;
2000 }
2001
2002 /* Compute and set FIELD_DECLs for the underlying objects we should
2003 use for bitfield access for the structure T. */
2004
2005 void
2006 finish_bitfield_layout (tree t)
2007 {
2008 tree field, prev;
2009 tree repr = NULL_TREE;
2010
2011 /* Unions would be special, for the ease of type-punning optimizations
2012 we could use the underlying type as hint for the representative
2013 if the bitfield would fit and the representative would not exceed
2014 the union in size. */
2015 if (TREE_CODE (t) != RECORD_TYPE)
2016 return;
2017
2018 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2019 field; field = DECL_CHAIN (field))
2020 {
2021 if (TREE_CODE (field) != FIELD_DECL)
2022 continue;
2023
2024 /* In the C++ memory model, consecutive bit fields in a structure are
2025 considered one memory location and updating a memory location
2026 may not store into adjacent memory locations. */
2027 if (!repr
2028 && DECL_BIT_FIELD_TYPE (field))
2029 {
2030 /* Start new representative. */
2031 repr = start_bitfield_representative (field);
2032 }
2033 else if (repr
2034 && ! DECL_BIT_FIELD_TYPE (field))
2035 {
2036 /* Finish off new representative. */
2037 finish_bitfield_representative (repr, prev);
2038 repr = NULL_TREE;
2039 }
2040 else if (DECL_BIT_FIELD_TYPE (field))
2041 {
2042 gcc_assert (repr != NULL_TREE);
2043
2044 /* Zero-size bitfields finish off a representative and
2045 do not have a representative themselves. This is
2046 required by the C++ memory model. */
2047 if (integer_zerop (DECL_SIZE (field)))
2048 {
2049 finish_bitfield_representative (repr, prev);
2050 repr = NULL_TREE;
2051 }
2052
2053 /* We assume that either DECL_FIELD_OFFSET of the representative
2054 and each bitfield member is a constant or they are equal.
2055 This is because we need to be able to compute the bit-offset
2056 of each field relative to the representative in get_bit_range
2057 during RTL expansion.
2058 If these constraints are not met, simply force a new
2059 representative to be generated. That will at most
2060 generate worse code but still maintain correctness with
2061 respect to the C++ memory model. */
2062 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2063 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2064 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2065 DECL_FIELD_OFFSET (field), 0)))
2066 {
2067 finish_bitfield_representative (repr, prev);
2068 repr = start_bitfield_representative (field);
2069 }
2070 }
2071 else
2072 continue;
2073
2074 if (repr)
2075 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2076
2077 prev = field;
2078 }
2079
2080 if (repr)
2081 finish_bitfield_representative (repr, prev);
2082 }
2083
2084 /* Do all of the work required to layout the type indicated by RLI,
2085 once the fields have been laid out. This function will call `free'
2086 for RLI, unless FREE_P is false. Passing a value other than false
2087 for FREE_P is bad practice; this option only exists to support the
2088 G++ 3.2 ABI. */
2089
2090 void
2091 finish_record_layout (record_layout_info rli, int free_p)
2092 {
2093 tree variant;
2094
2095 /* Compute the final size. */
2096 finalize_record_size (rli);
2097
2098 /* Compute the TYPE_MODE for the record. */
2099 compute_record_mode (rli->t);
2100
2101 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2102 finalize_type_size (rli->t);
2103
2104 /* Compute bitfield representatives. */
2105 finish_bitfield_layout (rli->t);
2106
2107 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2108 With C++ templates, it is too early to do this when the attribute
2109 is being parsed. */
2110 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2111 variant = TYPE_NEXT_VARIANT (variant))
2112 {
2113 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2114 TYPE_REVERSE_STORAGE_ORDER (variant)
2115 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2116 }
2117
2118 /* Lay out any static members. This is done now because their type
2119 may use the record's type. */
2120 while (!vec_safe_is_empty (rli->pending_statics))
2121 layout_decl (rli->pending_statics->pop (), 0);
2122
2123 /* Clean up. */
2124 if (free_p)
2125 {
2126 vec_free (rli->pending_statics);
2127 free (rli);
2128 }
2129 }
2130 \f
2131
2132 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2133 NAME, its fields are chained in reverse on FIELDS.
2134
2135 If ALIGN_TYPE is non-null, it is given the same alignment as
2136 ALIGN_TYPE. */
2137
2138 void
2139 finish_builtin_struct (tree type, const char *name, tree fields,
2140 tree align_type)
2141 {
2142 tree tail, next;
2143
2144 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2145 {
2146 DECL_FIELD_CONTEXT (fields) = type;
2147 next = DECL_CHAIN (fields);
2148 DECL_CHAIN (fields) = tail;
2149 }
2150 TYPE_FIELDS (type) = tail;
2151
2152 if (align_type)
2153 {
2154 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2155 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2156 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2157 TYPE_WARN_IF_NOT_ALIGN (align_type));
2158 }
2159
2160 layout_type (type);
2161 #if 0 /* not yet, should get fixed properly later */
2162 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2163 #else
2164 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2165 TYPE_DECL, get_identifier (name), type);
2166 #endif
2167 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2168 layout_decl (TYPE_NAME (type), 0);
2169 }
2170
2171 /* Calculate the mode, size, and alignment for TYPE.
2172 For an array type, calculate the element separation as well.
2173 Record TYPE on the chain of permanent or temporary types
2174 so that dbxout will find out about it.
2175
2176 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2177 layout_type does nothing on such a type.
2178
2179 If the type is incomplete, its TYPE_SIZE remains zero. */
2180
2181 void
2182 layout_type (tree type)
2183 {
2184 gcc_assert (type);
2185
2186 if (type == error_mark_node)
2187 return;
2188
2189 /* We don't want finalize_type_size to copy an alignment attribute to
2190 variants that don't have it. */
2191 type = TYPE_MAIN_VARIANT (type);
2192
2193 /* Do nothing if type has been laid out before. */
2194 if (TYPE_SIZE (type))
2195 return;
2196
2197 switch (TREE_CODE (type))
2198 {
2199 case LANG_TYPE:
2200 /* This kind of type is the responsibility
2201 of the language-specific code. */
2202 gcc_unreachable ();
2203
2204 case BOOLEAN_TYPE:
2205 case INTEGER_TYPE:
2206 case ENUMERAL_TYPE:
2207 {
2208 scalar_int_mode mode
2209 = smallest_int_mode_for_size (TYPE_PRECISION (type));
2210 SET_TYPE_MODE (type, mode);
2211 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2212 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2213 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2214 break;
2215 }
2216
2217 case REAL_TYPE:
2218 {
2219 /* Allow the caller to choose the type mode, which is how decimal
2220 floats are distinguished from binary ones. */
2221 if (TYPE_MODE (type) == VOIDmode)
2222 SET_TYPE_MODE
2223 (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2224 scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2225 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2226 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2227 break;
2228 }
2229
2230 case FIXED_POINT_TYPE:
2231 {
2232 /* TYPE_MODE (type) has been set already. */
2233 scalar_mode mode = SCALAR_TYPE_MODE (type);
2234 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2235 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2236 break;
2237 }
2238
2239 case COMPLEX_TYPE:
2240 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2241 SET_TYPE_MODE (type,
2242 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2243
2244 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2245 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2246 break;
2247
2248 case VECTOR_TYPE:
2249 {
2250 int nunits = TYPE_VECTOR_SUBPARTS (type);
2251 tree innertype = TREE_TYPE (type);
2252
2253 gcc_assert (!(nunits & (nunits - 1)));
2254
2255 /* Find an appropriate mode for the vector type. */
2256 if (TYPE_MODE (type) == VOIDmode)
2257 SET_TYPE_MODE (type,
2258 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2259 nunits).else_blk ());
2260
2261 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2262 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2263 /* Several boolean vector elements may fit in a single unit. */
2264 if (VECTOR_BOOLEAN_TYPE_P (type)
2265 && type->type_common.mode != BLKmode)
2266 TYPE_SIZE_UNIT (type)
2267 = size_int (GET_MODE_SIZE (type->type_common.mode));
2268 else
2269 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2270 TYPE_SIZE_UNIT (innertype),
2271 size_int (nunits));
2272 TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
2273 TYPE_SIZE (innertype),
2274 bitsize_int (nunits));
2275
2276 /* For vector types, we do not default to the mode's alignment.
2277 Instead, query a target hook, defaulting to natural alignment.
2278 This prevents ABI changes depending on whether or not native
2279 vector modes are supported. */
2280 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2281
2282 /* However, if the underlying mode requires a bigger alignment than
2283 what the target hook provides, we cannot use the mode. For now,
2284 simply reject that case. */
2285 gcc_assert (TYPE_ALIGN (type)
2286 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2287 break;
2288 }
2289
2290 case VOID_TYPE:
2291 /* This is an incomplete type and so doesn't have a size. */
2292 SET_TYPE_ALIGN (type, 1);
2293 TYPE_USER_ALIGN (type) = 0;
2294 SET_TYPE_MODE (type, VOIDmode);
2295 break;
2296
2297 case POINTER_BOUNDS_TYPE:
2298 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2299 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2300 break;
2301
2302 case OFFSET_TYPE:
2303 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2304 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2305 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2306 integral, which may be an __intN. */
2307 SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2308 TYPE_PRECISION (type) = POINTER_SIZE;
2309 break;
2310
2311 case FUNCTION_TYPE:
2312 case METHOD_TYPE:
2313 /* It's hard to see what the mode and size of a function ought to
2314 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2315 make it consistent with that. */
2316 SET_TYPE_MODE (type,
2317 int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2318 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2319 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2320 break;
2321
2322 case POINTER_TYPE:
2323 case REFERENCE_TYPE:
2324 {
2325 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2326 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2327 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2328 TYPE_UNSIGNED (type) = 1;
2329 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2330 }
2331 break;
2332
2333 case ARRAY_TYPE:
2334 {
2335 tree index = TYPE_DOMAIN (type);
2336 tree element = TREE_TYPE (type);
2337
2338 /* We need to know both bounds in order to compute the size. */
2339 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2340 && TYPE_SIZE (element))
2341 {
2342 tree ub = TYPE_MAX_VALUE (index);
2343 tree lb = TYPE_MIN_VALUE (index);
2344 tree element_size = TYPE_SIZE (element);
2345 tree length;
2346
2347 /* Make sure that an array of zero-sized element is zero-sized
2348 regardless of its extent. */
2349 if (integer_zerop (element_size))
2350 length = size_zero_node;
2351
2352 /* The computation should happen in the original signedness so
2353 that (possible) negative values are handled appropriately
2354 when determining overflow. */
2355 else
2356 {
2357 /* ??? When it is obvious that the range is signed
2358 represent it using ssizetype. */
2359 if (TREE_CODE (lb) == INTEGER_CST
2360 && TREE_CODE (ub) == INTEGER_CST
2361 && TYPE_UNSIGNED (TREE_TYPE (lb))
2362 && tree_int_cst_lt (ub, lb))
2363 {
2364 lb = wide_int_to_tree (ssizetype,
2365 offset_int::from (lb, SIGNED));
2366 ub = wide_int_to_tree (ssizetype,
2367 offset_int::from (ub, SIGNED));
2368 }
2369 length
2370 = fold_convert (sizetype,
2371 size_binop (PLUS_EXPR,
2372 build_int_cst (TREE_TYPE (lb), 1),
2373 size_binop (MINUS_EXPR, ub, lb)));
2374 }
2375
2376 /* ??? We have no way to distinguish a null-sized array from an
2377 array spanning the whole sizetype range, so we arbitrarily
2378 decide that [0, -1] is the only valid representation. */
2379 if (integer_zerop (length)
2380 && TREE_OVERFLOW (length)
2381 && integer_zerop (lb))
2382 length = size_zero_node;
2383
2384 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2385 fold_convert (bitsizetype,
2386 length));
2387
2388 /* If we know the size of the element, calculate the total size
2389 directly, rather than do some division thing below. This
2390 optimization helps Fortran assumed-size arrays (where the
2391 size of the array is determined at runtime) substantially. */
2392 if (TYPE_SIZE_UNIT (element))
2393 TYPE_SIZE_UNIT (type)
2394 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2395 }
2396
2397 /* Now round the alignment and size,
2398 using machine-dependent criteria if any. */
2399
2400 unsigned align = TYPE_ALIGN (element);
2401 if (TYPE_USER_ALIGN (type))
2402 align = MAX (align, TYPE_ALIGN (type));
2403 else
2404 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2405 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2406 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2407 TYPE_WARN_IF_NOT_ALIGN (element));
2408 #ifdef ROUND_TYPE_ALIGN
2409 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2410 #else
2411 align = MAX (align, BITS_PER_UNIT);
2412 #endif
2413 SET_TYPE_ALIGN (type, align);
2414 SET_TYPE_MODE (type, BLKmode);
2415 if (TYPE_SIZE (type) != 0
2416 && ! targetm.member_type_forces_blk (type, VOIDmode)
2417 /* BLKmode elements force BLKmode aggregate;
2418 else extract/store fields may lose. */
2419 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2420 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2421 {
2422 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2423 TYPE_SIZE (type)));
2424 if (TYPE_MODE (type) != BLKmode
2425 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2426 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2427 {
2428 TYPE_NO_FORCE_BLK (type) = 1;
2429 SET_TYPE_MODE (type, BLKmode);
2430 }
2431 }
2432 if (AGGREGATE_TYPE_P (element))
2433 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2434 /* When the element size is constant, check that it is at least as
2435 large as the element alignment. */
2436 if (TYPE_SIZE_UNIT (element)
2437 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2438 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2439 TYPE_ALIGN_UNIT. */
2440 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2441 && !integer_zerop (TYPE_SIZE_UNIT (element))
2442 && compare_tree_int (TYPE_SIZE_UNIT (element),
2443 TYPE_ALIGN_UNIT (element)) < 0)
2444 error ("alignment of array elements is greater than element size");
2445 break;
2446 }
2447
2448 case RECORD_TYPE:
2449 case UNION_TYPE:
2450 case QUAL_UNION_TYPE:
2451 {
2452 tree field;
2453 record_layout_info rli;
2454
2455 /* Initialize the layout information. */
2456 rli = start_record_layout (type);
2457
2458 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2459 in the reverse order in building the COND_EXPR that denotes
2460 its size. We reverse them again later. */
2461 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2462 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2463
2464 /* Place all the fields. */
2465 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2466 place_field (rli, field);
2467
2468 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2469 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2470
2471 /* Finish laying out the record. */
2472 finish_record_layout (rli, /*free_p=*/true);
2473 }
2474 break;
2475
2476 default:
2477 gcc_unreachable ();
2478 }
2479
2480 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2481 records and unions, finish_record_layout already called this
2482 function. */
2483 if (!RECORD_OR_UNION_TYPE_P (type))
2484 finalize_type_size (type);
2485
2486 /* We should never see alias sets on incomplete aggregates. And we
2487 should not call layout_type on not incomplete aggregates. */
2488 if (AGGREGATE_TYPE_P (type))
2489 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2490 }
2491
2492 /* Return the least alignment required for type TYPE. */
2493
2494 unsigned int
2495 min_align_of_type (tree type)
2496 {
2497 unsigned int align = TYPE_ALIGN (type);
2498 if (!TYPE_USER_ALIGN (type))
2499 {
2500 align = MIN (align, BIGGEST_ALIGNMENT);
2501 #ifdef BIGGEST_FIELD_ALIGNMENT
2502 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2503 #endif
2504 unsigned int field_align = align;
2505 #ifdef ADJUST_FIELD_ALIGN
2506 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2507 #endif
2508 align = MIN (align, field_align);
2509 }
2510 return align / BITS_PER_UNIT;
2511 }
2512 \f
2513 /* Create and return a type for signed integers of PRECISION bits. */
2514
2515 tree
2516 make_signed_type (int precision)
2517 {
2518 tree type = make_node (INTEGER_TYPE);
2519
2520 TYPE_PRECISION (type) = precision;
2521
2522 fixup_signed_type (type);
2523 return type;
2524 }
2525
2526 /* Create and return a type for unsigned integers of PRECISION bits. */
2527
2528 tree
2529 make_unsigned_type (int precision)
2530 {
2531 tree type = make_node (INTEGER_TYPE);
2532
2533 TYPE_PRECISION (type) = precision;
2534
2535 fixup_unsigned_type (type);
2536 return type;
2537 }
2538 \f
2539 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2540 and SATP. */
2541
2542 tree
2543 make_fract_type (int precision, int unsignedp, int satp)
2544 {
2545 tree type = make_node (FIXED_POINT_TYPE);
2546
2547 TYPE_PRECISION (type) = precision;
2548
2549 if (satp)
2550 TYPE_SATURATING (type) = 1;
2551
2552 /* Lay out the type: set its alignment, size, etc. */
2553 TYPE_UNSIGNED (type) = unsignedp;
2554 enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2555 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2556 layout_type (type);
2557
2558 return type;
2559 }
2560
2561 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2562 and SATP. */
2563
2564 tree
2565 make_accum_type (int precision, int unsignedp, int satp)
2566 {
2567 tree type = make_node (FIXED_POINT_TYPE);
2568
2569 TYPE_PRECISION (type) = precision;
2570
2571 if (satp)
2572 TYPE_SATURATING (type) = 1;
2573
2574 /* Lay out the type: set its alignment, size, etc. */
2575 TYPE_UNSIGNED (type) = unsignedp;
2576 enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2577 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2578 layout_type (type);
2579
2580 return type;
2581 }
2582
2583 /* Initialize sizetypes so layout_type can use them. */
2584
2585 void
2586 initialize_sizetypes (void)
2587 {
2588 int precision, bprecision;
2589
2590 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2591 if (strcmp (SIZETYPE, "unsigned int") == 0)
2592 precision = INT_TYPE_SIZE;
2593 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2594 precision = LONG_TYPE_SIZE;
2595 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2596 precision = LONG_LONG_TYPE_SIZE;
2597 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2598 precision = SHORT_TYPE_SIZE;
2599 else
2600 {
2601 int i;
2602
2603 precision = -1;
2604 for (i = 0; i < NUM_INT_N_ENTS; i++)
2605 if (int_n_enabled_p[i])
2606 {
2607 char name[50];
2608 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2609
2610 if (strcmp (name, SIZETYPE) == 0)
2611 {
2612 precision = int_n_data[i].bitsize;
2613 }
2614 }
2615 if (precision == -1)
2616 gcc_unreachable ();
2617 }
2618
2619 bprecision
2620 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2621 bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2622 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2623 bprecision = HOST_BITS_PER_DOUBLE_INT;
2624
2625 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2626 sizetype = make_node (INTEGER_TYPE);
2627 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2628 TYPE_PRECISION (sizetype) = precision;
2629 TYPE_UNSIGNED (sizetype) = 1;
2630 bitsizetype = make_node (INTEGER_TYPE);
2631 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2632 TYPE_PRECISION (bitsizetype) = bprecision;
2633 TYPE_UNSIGNED (bitsizetype) = 1;
2634
2635 /* Now layout both types manually. */
2636 scalar_int_mode mode = smallest_int_mode_for_size (precision);
2637 SET_TYPE_MODE (sizetype, mode);
2638 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2639 TYPE_SIZE (sizetype) = bitsize_int (precision);
2640 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2641 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2642
2643 mode = smallest_int_mode_for_size (bprecision);
2644 SET_TYPE_MODE (bitsizetype, mode);
2645 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2646 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2647 TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2648 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2649
2650 /* Create the signed variants of *sizetype. */
2651 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2652 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2653 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2654 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2655 }
2656 \f
2657 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2658 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2659 for TYPE, based on the PRECISION and whether or not the TYPE
2660 IS_UNSIGNED. PRECISION need not correspond to a width supported
2661 natively by the hardware; for example, on a machine with 8-bit,
2662 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2663 61. */
2664
2665 void
2666 set_min_and_max_values_for_integral_type (tree type,
2667 int precision,
2668 signop sgn)
2669 {
2670 /* For bitfields with zero width we end up creating integer types
2671 with zero precision. Don't assign any minimum/maximum values
2672 to those types, they don't have any valid value. */
2673 if (precision < 1)
2674 return;
2675
2676 TYPE_MIN_VALUE (type)
2677 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2678 TYPE_MAX_VALUE (type)
2679 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2680 }
2681
2682 /* Set the extreme values of TYPE based on its precision in bits,
2683 then lay it out. Used when make_signed_type won't do
2684 because the tree code is not INTEGER_TYPE. */
2685
2686 void
2687 fixup_signed_type (tree type)
2688 {
2689 int precision = TYPE_PRECISION (type);
2690
2691 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2692
2693 /* Lay out the type: set its alignment, size, etc. */
2694 layout_type (type);
2695 }
2696
2697 /* Set the extreme values of TYPE based on its precision in bits,
2698 then lay it out. This is used both in `make_unsigned_type'
2699 and for enumeral types. */
2700
2701 void
2702 fixup_unsigned_type (tree type)
2703 {
2704 int precision = TYPE_PRECISION (type);
2705
2706 TYPE_UNSIGNED (type) = 1;
2707
2708 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2709
2710 /* Lay out the type: set its alignment, size, etc. */
2711 layout_type (type);
2712 }
2713 \f
2714 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2715 starting at BITPOS.
2716
2717 BITREGION_START is the bit position of the first bit in this
2718 sequence of bit fields. BITREGION_END is the last bit in this
2719 sequence. If these two fields are non-zero, we should restrict the
2720 memory access to that range. Otherwise, we are allowed to touch
2721 any adjacent non bit-fields.
2722
2723 ALIGN is the alignment of the underlying object in bits.
2724 VOLATILEP says whether the bitfield is volatile. */
2725
2726 bit_field_mode_iterator
2727 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2728 HOST_WIDE_INT bitregion_start,
2729 HOST_WIDE_INT bitregion_end,
2730 unsigned int align, bool volatilep)
2731 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2732 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2733 m_bitregion_end (bitregion_end), m_align (align),
2734 m_volatilep (volatilep), m_count (0)
2735 {
2736 if (!m_bitregion_end)
2737 {
2738 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2739 the bitfield is mapped and won't trap, provided that ALIGN isn't
2740 too large. The cap is the biggest required alignment for data,
2741 or at least the word size. And force one such chunk at least. */
2742 unsigned HOST_WIDE_INT units
2743 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2744 if (bitsize <= 0)
2745 bitsize = 1;
2746 m_bitregion_end = bitpos + bitsize + units - 1;
2747 m_bitregion_end -= m_bitregion_end % units + 1;
2748 }
2749 }
2750
2751 /* Calls to this function return successively larger modes that can be used
2752 to represent the bitfield. Return true if another bitfield mode is
2753 available, storing it in *OUT_MODE if so. */
2754
2755 bool
2756 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2757 {
2758 scalar_int_mode mode;
2759 for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2760 {
2761 unsigned int unit = GET_MODE_BITSIZE (mode);
2762
2763 /* Skip modes that don't have full precision. */
2764 if (unit != GET_MODE_PRECISION (mode))
2765 continue;
2766
2767 /* Stop if the mode is too wide to handle efficiently. */
2768 if (unit > MAX_FIXED_MODE_SIZE)
2769 break;
2770
2771 /* Don't deliver more than one multiword mode; the smallest one
2772 should be used. */
2773 if (m_count > 0 && unit > BITS_PER_WORD)
2774 break;
2775
2776 /* Skip modes that are too small. */
2777 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2778 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2779 if (subend > unit)
2780 continue;
2781
2782 /* Stop if the mode goes outside the bitregion. */
2783 HOST_WIDE_INT start = m_bitpos - substart;
2784 if (m_bitregion_start && start < m_bitregion_start)
2785 break;
2786 HOST_WIDE_INT end = start + unit;
2787 if (end > m_bitregion_end + 1)
2788 break;
2789
2790 /* Stop if the mode requires too much alignment. */
2791 if (GET_MODE_ALIGNMENT (mode) > m_align
2792 && targetm.slow_unaligned_access (mode, m_align))
2793 break;
2794
2795 *out_mode = mode;
2796 m_mode = GET_MODE_WIDER_MODE (mode);
2797 m_count++;
2798 return true;
2799 }
2800 return false;
2801 }
2802
2803 /* Return true if smaller modes are generally preferred for this kind
2804 of bitfield. */
2805
2806 bool
2807 bit_field_mode_iterator::prefer_smaller_modes ()
2808 {
2809 return (m_volatilep
2810 ? targetm.narrow_volatile_bitfield ()
2811 : !SLOW_BYTE_ACCESS);
2812 }
2813
2814 /* Find the best machine mode to use when referencing a bit field of length
2815 BITSIZE bits starting at BITPOS.
2816
2817 BITREGION_START is the bit position of the first bit in this
2818 sequence of bit fields. BITREGION_END is the last bit in this
2819 sequence. If these two fields are non-zero, we should restrict the
2820 memory access to that range. Otherwise, we are allowed to touch
2821 any adjacent non bit-fields.
2822
2823 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2824 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2825 doesn't want to apply a specific limit.
2826
2827 If no mode meets all these conditions, we return VOIDmode.
2828
2829 The underlying object is known to be aligned to a boundary of ALIGN bits.
2830
2831 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2832 smallest mode meeting these conditions.
2833
2834 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2835 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2836 all the conditions.
2837
2838 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2839 decide which of the above modes should be used. */
2840
2841 bool
2842 get_best_mode (int bitsize, int bitpos,
2843 unsigned HOST_WIDE_INT bitregion_start,
2844 unsigned HOST_WIDE_INT bitregion_end,
2845 unsigned int align,
2846 unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2847 scalar_int_mode *best_mode)
2848 {
2849 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2850 bitregion_end, align, volatilep);
2851 scalar_int_mode mode;
2852 bool found = false;
2853 while (iter.next_mode (&mode)
2854 /* ??? For historical reasons, reject modes that would normally
2855 receive greater alignment, even if unaligned accesses are
2856 acceptable. This has both advantages and disadvantages.
2857 Removing this check means that something like:
2858
2859 struct s { unsigned int x; unsigned int y; };
2860 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2861
2862 can be implemented using a single load and compare on
2863 64-bit machines that have no alignment restrictions.
2864 For example, on powerpc64-linux-gnu, we would generate:
2865
2866 ld 3,0(3)
2867 cntlzd 3,3
2868 srdi 3,3,6
2869 blr
2870
2871 rather than:
2872
2873 lwz 9,0(3)
2874 cmpwi 7,9,0
2875 bne 7,.L3
2876 lwz 3,4(3)
2877 cntlzw 3,3
2878 srwi 3,3,5
2879 extsw 3,3
2880 blr
2881 .p2align 4,,15
2882 .L3:
2883 li 3,0
2884 blr
2885
2886 However, accessing more than one field can make life harder
2887 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2888 has a series of unsigned short copies followed by a series of
2889 unsigned short comparisons. With this check, both the copies
2890 and comparisons remain 16-bit accesses and FRE is able
2891 to eliminate the latter. Without the check, the comparisons
2892 can be done using 2 64-bit operations, which FRE isn't able
2893 to handle in the same way.
2894
2895 Either way, it would probably be worth disabling this check
2896 during expand. One particular example where removing the
2897 check would help is the get_best_mode call in store_bit_field.
2898 If we are given a memory bitregion of 128 bits that is aligned
2899 to a 64-bit boundary, and the bitfield we want to modify is
2900 in the second half of the bitregion, this check causes
2901 store_bitfield to turn the memory into a 64-bit reference
2902 to the _first_ half of the region. We later use
2903 adjust_bitfield_address to get a reference to the correct half,
2904 but doing so looks to adjust_bitfield_address as though we are
2905 moving past the end of the original object, so it drops the
2906 associated MEM_EXPR and MEM_OFFSET. Removing the check
2907 causes store_bit_field to keep a 128-bit memory reference,
2908 so that the final bitfield reference still has a MEM_EXPR
2909 and MEM_OFFSET. */
2910 && GET_MODE_ALIGNMENT (mode) <= align
2911 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
2912 {
2913 *best_mode = mode;
2914 found = true;
2915 if (iter.prefer_smaller_modes ())
2916 break;
2917 }
2918
2919 return found;
2920 }
2921
2922 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2923 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2924
2925 void
2926 get_mode_bounds (scalar_int_mode mode, int sign,
2927 scalar_int_mode target_mode,
2928 rtx *mmin, rtx *mmax)
2929 {
2930 unsigned size = GET_MODE_PRECISION (mode);
2931 unsigned HOST_WIDE_INT min_val, max_val;
2932
2933 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2934
2935 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2936 if (mode == BImode)
2937 {
2938 if (STORE_FLAG_VALUE < 0)
2939 {
2940 min_val = STORE_FLAG_VALUE;
2941 max_val = 0;
2942 }
2943 else
2944 {
2945 min_val = 0;
2946 max_val = STORE_FLAG_VALUE;
2947 }
2948 }
2949 else if (sign)
2950 {
2951 min_val = -(HOST_WIDE_INT_1U << (size - 1));
2952 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
2953 }
2954 else
2955 {
2956 min_val = 0;
2957 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
2958 }
2959
2960 *mmin = gen_int_mode (min_val, target_mode);
2961 *mmax = gen_int_mode (max_val, target_mode);
2962 }
2963
2964 #include "gt-stor-layout.h"