tree.h (PHI_CHAIN): New.
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "toplev.h"
34 #include "ggc.h"
35 #include "target.h"
36 #include "langhooks.h"
37
38 /* Set to one when set_sizetype has been called. */
39 static int sizetype_set;
40
41 /* List of types created before set_sizetype has been called. We do not
42 make this a GGC root since we want these nodes to be reclaimed. */
43 static tree early_type_list;
44
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) TYPE_KIND_LAST];
48
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment;
52
53 /* If nonzero, the alignment of a bitstring or (power-)set value, in bits.
54 May be overridden by front-ends. */
55 unsigned int set_alignment = 0;
56
57 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
58 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
59 called only by a front end. */
60 static int reference_types_internal = 0;
61
62 static void finalize_record_size (record_layout_info);
63 static void finalize_type_size (tree);
64 static void place_union_field (record_layout_info, tree);
65 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
66 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
67 HOST_WIDE_INT, tree);
68 #endif
69 static void force_type_save_exprs_1 (tree);
70 extern void debug_rli (record_layout_info);
71 \f
72 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
73
74 static GTY(()) tree pending_sizes;
75
76 /* Nonzero means cannot safely call expand_expr now,
77 so put variable sizes onto `pending_sizes' instead. */
78
79 int immediate_size_expand;
80
81 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
82 by front end. */
83
84 void
85 internal_reference_types (void)
86 {
87 reference_types_internal = 1;
88 }
89
90 /* Get a list of all the objects put on the pending sizes list. */
91
92 tree
93 get_pending_sizes (void)
94 {
95 tree chain = pending_sizes;
96 tree t;
97
98 /* Put each SAVE_EXPR into the current function. */
99 for (t = chain; t; t = TREE_CHAIN (t))
100 SAVE_EXPR_CONTEXT (TREE_VALUE (t)) = current_function_decl;
101
102 pending_sizes = 0;
103 return chain;
104 }
105
106 /* Add EXPR to the pending sizes list. */
107
108 void
109 put_pending_size (tree expr)
110 {
111 /* Strip any simple arithmetic from EXPR to see if it has an underlying
112 SAVE_EXPR. */
113 expr = skip_simple_arithmetic (expr);
114
115 if (TREE_CODE (expr) == SAVE_EXPR)
116 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
117 }
118
119 /* Put a chain of objects into the pending sizes list, which must be
120 empty. */
121
122 void
123 put_pending_sizes (tree chain)
124 {
125 if (pending_sizes)
126 abort ();
127
128 pending_sizes = chain;
129 }
130
131 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
132 to serve as the actual size-expression for a type or decl. */
133
134 tree
135 variable_size (tree size)
136 {
137 tree save;
138
139 /* If the language-processor is to take responsibility for variable-sized
140 items (e.g., languages which have elaboration procedures like Ada),
141 just return SIZE unchanged. Likewise for self-referential sizes and
142 constant sizes. */
143 if (TREE_CONSTANT (size)
144 || lang_hooks.decls.global_bindings_p () < 0
145 || CONTAINS_PLACEHOLDER_P (size))
146 return size;
147
148 size = save_expr (size);
149
150 /* If an array with a variable number of elements is declared, and
151 the elements require destruction, we will emit a cleanup for the
152 array. That cleanup is run both on normal exit from the block
153 and in the exception-handler for the block. Normally, when code
154 is used in both ordinary code and in an exception handler it is
155 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
156 not wish to do that here; the array-size is the same in both
157 places. */
158 save = skip_simple_arithmetic (size);
159 if (TREE_CODE (save) == SAVE_EXPR)
160 SAVE_EXPR_PERSISTENT_P (save) = 1;
161
162 if (!immediate_size_expand && cfun && cfun->x_dont_save_pending_sizes_p)
163 /* The front-end doesn't want us to keep a list of the expressions
164 that determine sizes for variable size objects. Trust it. */
165 return size;
166
167 if (lang_hooks.decls.global_bindings_p ())
168 {
169 if (TREE_CONSTANT (size))
170 error ("type size can't be explicitly evaluated");
171 else
172 error ("variable-size type declared outside of any function");
173
174 return size_one_node;
175 }
176
177 if (immediate_size_expand)
178 expand_expr (save, const0_rtx, VOIDmode, 0);
179 else
180 put_pending_size (save);
181
182 return size;
183 }
184
185 /* Given a type T, force elaboration of any SAVE_EXPRs used in the definition
186 of that type. */
187
188 void
189 force_type_save_exprs (tree t)
190 {
191 tree field;
192
193 switch (TREE_CODE (t))
194 {
195 case ERROR_MARK:
196 return;
197
198 case ARRAY_TYPE:
199 case SET_TYPE:
200 case VECTOR_TYPE:
201 /* It's probably overly-conservative to force elaboration of bounds and
202 also the sizes, but it's better to be safe than sorry. */
203 force_type_save_exprs_1 (TYPE_MIN_VALUE (TYPE_DOMAIN (t)));
204 force_type_save_exprs_1 (TYPE_MAX_VALUE (TYPE_DOMAIN (t)));
205 break;
206
207 case RECORD_TYPE:
208 case UNION_TYPE:
209 case QUAL_UNION_TYPE:
210 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
211 if (TREE_CODE (field) == FIELD_DECL)
212 {
213 force_type_save_exprs (TREE_TYPE (field));
214 force_type_save_exprs_1 (DECL_FIELD_OFFSET (field));
215 }
216 break;
217
218 default:
219 break;
220 }
221
222 force_type_save_exprs_1 (TYPE_SIZE (t));
223 force_type_save_exprs_1 (TYPE_SIZE_UNIT (t));
224 }
225
226 /* Utility routine of above, to verify that SIZE has been elaborated and
227 do so it it is a SAVE_EXPR and has not been. */
228
229 static void
230 force_type_save_exprs_1 (tree size)
231 {
232 if (size
233 && (size = skip_simple_arithmetic (size))
234 && TREE_CODE (size) == SAVE_EXPR
235 && !SAVE_EXPR_RTL (size))
236 expand_expr (size, NULL_RTX, VOIDmode, 0);
237 }
238 \f
239 #ifndef MAX_FIXED_MODE_SIZE
240 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
241 #endif
242
243 /* Return the machine mode to use for a nonscalar of SIZE bits. The
244 mode must be in class CLASS, and have exactly that many value bits;
245 it may have padding as well. If LIMIT is nonzero, modes of wider
246 than MAX_FIXED_MODE_SIZE will not be used. */
247
248 enum machine_mode
249 mode_for_size (unsigned int size, enum mode_class class, int limit)
250 {
251 enum machine_mode mode;
252
253 if (limit && size > MAX_FIXED_MODE_SIZE)
254 return BLKmode;
255
256 /* Get the first mode which has this size, in the specified class. */
257 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
258 mode = GET_MODE_WIDER_MODE (mode))
259 if (GET_MODE_PRECISION (mode) == size)
260 return mode;
261
262 return BLKmode;
263 }
264
265 /* Similar, except passed a tree node. */
266
267 enum machine_mode
268 mode_for_size_tree (tree size, enum mode_class class, int limit)
269 {
270 if (TREE_CODE (size) != INTEGER_CST
271 || TREE_OVERFLOW (size)
272 /* What we really want to say here is that the size can fit in a
273 host integer, but we know there's no way we'd find a mode for
274 this many bits, so there's no point in doing the precise test. */
275 || compare_tree_int (size, 1000) > 0)
276 return BLKmode;
277 else
278 return mode_for_size (tree_low_cst (size, 1), class, limit);
279 }
280
281 /* Similar, but never return BLKmode; return the narrowest mode that
282 contains at least the requested number of value bits. */
283
284 enum machine_mode
285 smallest_mode_for_size (unsigned int size, enum mode_class class)
286 {
287 enum machine_mode mode;
288
289 /* Get the first mode which has at least this size, in the
290 specified class. */
291 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
292 mode = GET_MODE_WIDER_MODE (mode))
293 if (GET_MODE_PRECISION (mode) >= size)
294 return mode;
295
296 abort ();
297 }
298
299 /* Find an integer mode of the exact same size, or BLKmode on failure. */
300
301 enum machine_mode
302 int_mode_for_mode (enum machine_mode mode)
303 {
304 switch (GET_MODE_CLASS (mode))
305 {
306 case MODE_INT:
307 case MODE_PARTIAL_INT:
308 break;
309
310 case MODE_COMPLEX_INT:
311 case MODE_COMPLEX_FLOAT:
312 case MODE_FLOAT:
313 case MODE_VECTOR_INT:
314 case MODE_VECTOR_FLOAT:
315 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
316 break;
317
318 case MODE_RANDOM:
319 if (mode == BLKmode)
320 break;
321
322 /* ... fall through ... */
323
324 case MODE_CC:
325 default:
326 abort ();
327 }
328
329 return mode;
330 }
331
332 /* Return the alignment of MODE. This will be bounded by 1 and
333 BIGGEST_ALIGNMENT. */
334
335 unsigned int
336 get_mode_alignment (enum machine_mode mode)
337 {
338 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
339 }
340
341 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
342 This can only be applied to objects of a sizetype. */
343
344 tree
345 round_up (tree value, int divisor)
346 {
347 tree arg = size_int_type (divisor, TREE_TYPE (value));
348
349 return size_binop (MULT_EXPR, size_binop (CEIL_DIV_EXPR, value, arg), arg);
350 }
351
352 /* Likewise, but round down. */
353
354 tree
355 round_down (tree value, int divisor)
356 {
357 tree arg = size_int_type (divisor, TREE_TYPE (value));
358
359 return size_binop (MULT_EXPR, size_binop (FLOOR_DIV_EXPR, value, arg), arg);
360 }
361 \f
362 /* Subroutine of layout_decl: Force alignment required for the data type.
363 But if the decl itself wants greater alignment, don't override that. */
364
365 static inline void
366 do_type_align (tree type, tree decl)
367 {
368 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
369 {
370 DECL_ALIGN (decl) = TYPE_ALIGN (type);
371 if (TREE_CODE (decl) == FIELD_DECL)
372 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
373 }
374 }
375
376 /* Set the size, mode and alignment of a ..._DECL node.
377 TYPE_DECL does need this for C++.
378 Note that LABEL_DECL and CONST_DECL nodes do not need this,
379 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
380 Don't call layout_decl for them.
381
382 KNOWN_ALIGN is the amount of alignment we can assume this
383 decl has with no special effort. It is relevant only for FIELD_DECLs
384 and depends on the previous fields.
385 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
386 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
387 the record will be aligned to suit. */
388
389 void
390 layout_decl (tree decl, unsigned int known_align)
391 {
392 tree type = TREE_TYPE (decl);
393 enum tree_code code = TREE_CODE (decl);
394 rtx rtl = NULL_RTX;
395
396 if (code == CONST_DECL)
397 return;
398 else if (code != VAR_DECL && code != PARM_DECL && code != RESULT_DECL
399 && code != TYPE_DECL && code != FIELD_DECL)
400 abort ();
401
402 rtl = DECL_RTL_IF_SET (decl);
403
404 if (type == error_mark_node)
405 type = void_type_node;
406
407 /* Usually the size and mode come from the data type without change,
408 however, the front-end may set the explicit width of the field, so its
409 size may not be the same as the size of its type. This happens with
410 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
411 also happens with other fields. For example, the C++ front-end creates
412 zero-sized fields corresponding to empty base classes, and depends on
413 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
414 size in bytes from the size in bits. If we have already set the mode,
415 don't set it again since we can be called twice for FIELD_DECLs. */
416
417 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
418 if (DECL_MODE (decl) == VOIDmode)
419 DECL_MODE (decl) = TYPE_MODE (type);
420
421 if (DECL_SIZE (decl) == 0)
422 {
423 DECL_SIZE (decl) = TYPE_SIZE (type);
424 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
425 }
426 else if (DECL_SIZE_UNIT (decl) == 0)
427 DECL_SIZE_UNIT (decl)
428 = convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
429 bitsize_unit_node));
430
431 if (code != FIELD_DECL)
432 /* For non-fields, update the alignment from the type. */
433 do_type_align (type, decl);
434 else
435 /* For fields, it's a bit more complicated... */
436 {
437 bool old_user_align = DECL_USER_ALIGN (decl);
438
439 if (DECL_BIT_FIELD (decl))
440 {
441 DECL_BIT_FIELD_TYPE (decl) = type;
442
443 /* A zero-length bit-field affects the alignment of the next
444 field. */
445 if (integer_zerop (DECL_SIZE (decl))
446 && ! DECL_PACKED (decl)
447 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
448 {
449 #ifdef PCC_BITFIELD_TYPE_MATTERS
450 if (PCC_BITFIELD_TYPE_MATTERS)
451 do_type_align (type, decl);
452 else
453 #endif
454 {
455 #ifdef EMPTY_FIELD_BOUNDARY
456 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
457 {
458 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
459 DECL_USER_ALIGN (decl) = 0;
460 }
461 #endif
462 }
463 }
464
465 /* See if we can use an ordinary integer mode for a bit-field.
466 Conditions are: a fixed size that is correct for another mode
467 and occupying a complete byte or bytes on proper boundary. */
468 if (TYPE_SIZE (type) != 0
469 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
470 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
471 {
472 enum machine_mode xmode
473 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
474
475 if (xmode != BLKmode
476 && (known_align == 0
477 || known_align >= GET_MODE_ALIGNMENT (xmode)))
478 {
479 DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
480 DECL_ALIGN (decl));
481 DECL_MODE (decl) = xmode;
482 DECL_BIT_FIELD (decl) = 0;
483 }
484 }
485
486 /* Turn off DECL_BIT_FIELD if we won't need it set. */
487 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
488 && known_align >= TYPE_ALIGN (type)
489 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
490 DECL_BIT_FIELD (decl) = 0;
491 }
492 else if (DECL_PACKED (decl) && DECL_USER_ALIGN (decl))
493 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
494 round up; we'll reduce it again below. We want packing to
495 supersede USER_ALIGN inherited from the type, but defer to
496 alignment explicitly specified on the field decl. */;
497 else
498 do_type_align (type, decl);
499
500 /* If the field is of variable size, we can't misalign it since we
501 have no way to make a temporary to align the result. But this
502 isn't an issue if the decl is not addressable. Likewise if it
503 is of unknown size.
504
505 Note that do_type_align may set DECL_USER_ALIGN, so we need to
506 check old_user_align instead. */
507 if (DECL_PACKED (decl)
508 && !old_user_align
509 && (DECL_NONADDRESSABLE_P (decl)
510 || DECL_SIZE_UNIT (decl) == 0
511 || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
512 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
513
514 if (! DECL_USER_ALIGN (decl) && ! DECL_PACKED (decl))
515 {
516 /* Some targets (i.e. i386, VMS) limit struct field alignment
517 to a lower boundary than alignment of variables unless
518 it was overridden by attribute aligned. */
519 #ifdef BIGGEST_FIELD_ALIGNMENT
520 DECL_ALIGN (decl)
521 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
522 #endif
523 #ifdef ADJUST_FIELD_ALIGN
524 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
525 #endif
526 }
527
528 /* Should this be controlled by DECL_USER_ALIGN, too? */
529 if (maximum_field_alignment != 0)
530 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), maximum_field_alignment);
531 }
532
533 /* Evaluate nonconstant size only once, either now or as soon as safe. */
534 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
535 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
536 if (DECL_SIZE_UNIT (decl) != 0
537 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
538 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
539
540 /* If requested, warn about definitions of large data objects. */
541 if (warn_larger_than
542 && (code == VAR_DECL || code == PARM_DECL)
543 && ! DECL_EXTERNAL (decl))
544 {
545 tree size = DECL_SIZE_UNIT (decl);
546
547 if (size != 0 && TREE_CODE (size) == INTEGER_CST
548 && compare_tree_int (size, larger_than_size) > 0)
549 {
550 int size_as_int = TREE_INT_CST_LOW (size);
551
552 if (compare_tree_int (size, size_as_int) == 0)
553 warning ("%Jsize of '%D' is %d bytes", decl, decl, size_as_int);
554 else
555 warning ("%Jsize of '%D' is larger than %d bytes",
556 decl, decl, larger_than_size);
557 }
558 }
559
560 /* If the RTL was already set, update its mode and mem attributes. */
561 if (rtl)
562 {
563 PUT_MODE (rtl, DECL_MODE (decl));
564 SET_DECL_RTL (decl, 0);
565 set_mem_attributes (rtl, decl, 1);
566 SET_DECL_RTL (decl, rtl);
567 }
568 }
569 \f
570 /* Hook for a front-end function that can modify the record layout as needed
571 immediately before it is finalized. */
572
573 void (*lang_adjust_rli) (record_layout_info) = 0;
574
575 void
576 set_lang_adjust_rli (void (*f) (record_layout_info))
577 {
578 lang_adjust_rli = f;
579 }
580
581 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
582 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
583 is to be passed to all other layout functions for this record. It is the
584 responsibility of the caller to call `free' for the storage returned.
585 Note that garbage collection is not permitted until we finish laying
586 out the record. */
587
588 record_layout_info
589 start_record_layout (tree t)
590 {
591 record_layout_info rli = xmalloc (sizeof (struct record_layout_info_s));
592
593 rli->t = t;
594
595 /* If the type has a minimum specified alignment (via an attribute
596 declaration, for example) use it -- otherwise, start with a
597 one-byte alignment. */
598 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
599 rli->unpacked_align = rli->record_align;
600 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
601
602 #ifdef STRUCTURE_SIZE_BOUNDARY
603 /* Packed structures don't need to have minimum size. */
604 if (! TYPE_PACKED (t))
605 rli->record_align = MAX (rli->record_align, (unsigned) STRUCTURE_SIZE_BOUNDARY);
606 #endif
607
608 rli->offset = size_zero_node;
609 rli->bitpos = bitsize_zero_node;
610 rli->prev_field = 0;
611 rli->pending_statics = 0;
612 rli->packed_maybe_necessary = 0;
613
614 return rli;
615 }
616
617 /* These four routines perform computations that convert between
618 the offset/bitpos forms and byte and bit offsets. */
619
620 tree
621 bit_from_pos (tree offset, tree bitpos)
622 {
623 return size_binop (PLUS_EXPR, bitpos,
624 size_binop (MULT_EXPR, convert (bitsizetype, offset),
625 bitsize_unit_node));
626 }
627
628 tree
629 byte_from_pos (tree offset, tree bitpos)
630 {
631 return size_binop (PLUS_EXPR, offset,
632 convert (sizetype,
633 size_binop (TRUNC_DIV_EXPR, bitpos,
634 bitsize_unit_node)));
635 }
636
637 void
638 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
639 tree pos)
640 {
641 *poffset = size_binop (MULT_EXPR,
642 convert (sizetype,
643 size_binop (FLOOR_DIV_EXPR, pos,
644 bitsize_int (off_align))),
645 size_int (off_align / BITS_PER_UNIT));
646 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
647 }
648
649 /* Given a pointer to bit and byte offsets and an offset alignment,
650 normalize the offsets so they are within the alignment. */
651
652 void
653 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
654 {
655 /* If the bit position is now larger than it should be, adjust it
656 downwards. */
657 if (compare_tree_int (*pbitpos, off_align) >= 0)
658 {
659 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
660 bitsize_int (off_align));
661
662 *poffset
663 = size_binop (PLUS_EXPR, *poffset,
664 size_binop (MULT_EXPR, convert (sizetype, extra_aligns),
665 size_int (off_align / BITS_PER_UNIT)));
666
667 *pbitpos
668 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
669 }
670 }
671
672 /* Print debugging information about the information in RLI. */
673
674 void
675 debug_rli (record_layout_info rli)
676 {
677 print_node_brief (stderr, "type", rli->t, 0);
678 print_node_brief (stderr, "\noffset", rli->offset, 0);
679 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
680
681 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
682 rli->record_align, rli->unpacked_align,
683 rli->offset_align);
684 if (rli->packed_maybe_necessary)
685 fprintf (stderr, "packed may be necessary\n");
686
687 if (rli->pending_statics)
688 {
689 fprintf (stderr, "pending statics:\n");
690 debug_tree (rli->pending_statics);
691 }
692 }
693
694 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
695 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
696
697 void
698 normalize_rli (record_layout_info rli)
699 {
700 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
701 }
702
703 /* Returns the size in bytes allocated so far. */
704
705 tree
706 rli_size_unit_so_far (record_layout_info rli)
707 {
708 return byte_from_pos (rli->offset, rli->bitpos);
709 }
710
711 /* Returns the size in bits allocated so far. */
712
713 tree
714 rli_size_so_far (record_layout_info rli)
715 {
716 return bit_from_pos (rli->offset, rli->bitpos);
717 }
718
719 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
720 the next available location is given by KNOWN_ALIGN. Update the
721 variable alignment fields in RLI, and return the alignment to give
722 the FIELD. */
723
724 unsigned int
725 update_alignment_for_field (record_layout_info rli, tree field,
726 unsigned int known_align)
727 {
728 /* The alignment required for FIELD. */
729 unsigned int desired_align;
730 /* The type of this field. */
731 tree type = TREE_TYPE (field);
732 /* True if the field was explicitly aligned by the user. */
733 bool user_align;
734 bool is_bitfield;
735
736 /* Lay out the field so we know what alignment it needs. */
737 layout_decl (field, known_align);
738 desired_align = DECL_ALIGN (field);
739 user_align = DECL_USER_ALIGN (field);
740
741 is_bitfield = (type != error_mark_node
742 && DECL_BIT_FIELD_TYPE (field)
743 && ! integer_zerop (TYPE_SIZE (type)));
744
745 /* Record must have at least as much alignment as any field.
746 Otherwise, the alignment of the field within the record is
747 meaningless. */
748 if (is_bitfield && targetm.ms_bitfield_layout_p (rli->t))
749 {
750 /* Here, the alignment of the underlying type of a bitfield can
751 affect the alignment of a record; even a zero-sized field
752 can do this. The alignment should be to the alignment of
753 the type, except that for zero-size bitfields this only
754 applies if there was an immediately prior, nonzero-size
755 bitfield. (That's the way it is, experimentally.) */
756 if (! integer_zerop (DECL_SIZE (field))
757 ? ! DECL_PACKED (field)
758 : (rli->prev_field
759 && DECL_BIT_FIELD_TYPE (rli->prev_field)
760 && ! integer_zerop (DECL_SIZE (rli->prev_field))))
761 {
762 unsigned int type_align = TYPE_ALIGN (type);
763 type_align = MAX (type_align, desired_align);
764 if (maximum_field_alignment != 0)
765 type_align = MIN (type_align, maximum_field_alignment);
766 rli->record_align = MAX (rli->record_align, type_align);
767 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
768 }
769 }
770 #ifdef PCC_BITFIELD_TYPE_MATTERS
771 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
772 {
773 /* Named bit-fields cause the entire structure to have the
774 alignment implied by their type. Some targets also apply the same
775 rules to unnamed bitfields. */
776 if (DECL_NAME (field) != 0
777 || targetm.align_anon_bitfield ())
778 {
779 unsigned int type_align = TYPE_ALIGN (type);
780
781 #ifdef ADJUST_FIELD_ALIGN
782 if (! TYPE_USER_ALIGN (type))
783 type_align = ADJUST_FIELD_ALIGN (field, type_align);
784 #endif
785
786 if (maximum_field_alignment != 0)
787 type_align = MIN (type_align, maximum_field_alignment);
788 else if (DECL_PACKED (field))
789 type_align = MIN (type_align, BITS_PER_UNIT);
790
791 /* The alignment of the record is increased to the maximum
792 of the current alignment, the alignment indicated on the
793 field (i.e., the alignment specified by an __aligned__
794 attribute), and the alignment indicated by the type of
795 the field. */
796 rli->record_align = MAX (rli->record_align, desired_align);
797 rli->record_align = MAX (rli->record_align, type_align);
798
799 if (warn_packed)
800 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
801 user_align |= TYPE_USER_ALIGN (type);
802 }
803 }
804 #endif
805 else
806 {
807 rli->record_align = MAX (rli->record_align, desired_align);
808 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
809 }
810
811 TYPE_USER_ALIGN (rli->t) |= user_align;
812
813 return desired_align;
814 }
815
816 /* Called from place_field to handle unions. */
817
818 static void
819 place_union_field (record_layout_info rli, tree field)
820 {
821 update_alignment_for_field (rli, field, /*known_align=*/0);
822
823 DECL_FIELD_OFFSET (field) = size_zero_node;
824 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
825 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
826
827 /* We assume the union's size will be a multiple of a byte so we don't
828 bother with BITPOS. */
829 if (TREE_CODE (rli->t) == UNION_TYPE)
830 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
831 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
832 rli->offset = fold (build (COND_EXPR, sizetype,
833 DECL_QUALIFIER (field),
834 DECL_SIZE_UNIT (field), rli->offset));
835 }
836
837 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
838 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
839 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
840 units of alignment than the underlying TYPE. */
841 static int
842 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
843 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
844 {
845 /* Note that the calculation of OFFSET might overflow; we calculate it so
846 that we still get the right result as long as ALIGN is a power of two. */
847 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
848
849 offset = offset % align;
850 return ((offset + size + align - 1) / align
851 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
852 / align));
853 }
854 #endif
855
856 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
857 is a FIELD_DECL to be added after those fields already present in
858 T. (FIELD is not actually added to the TYPE_FIELDS list here;
859 callers that desire that behavior must manually perform that step.) */
860
861 void
862 place_field (record_layout_info rli, tree field)
863 {
864 /* The alignment required for FIELD. */
865 unsigned int desired_align;
866 /* The alignment FIELD would have if we just dropped it into the
867 record as it presently stands. */
868 unsigned int known_align;
869 unsigned int actual_align;
870 /* The type of this field. */
871 tree type = TREE_TYPE (field);
872
873 if (TREE_CODE (field) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
874 return;
875
876 /* If FIELD is static, then treat it like a separate variable, not
877 really like a structure field. If it is a FUNCTION_DECL, it's a
878 method. In both cases, all we do is lay out the decl, and we do
879 it *after* the record is laid out. */
880 if (TREE_CODE (field) == VAR_DECL)
881 {
882 rli->pending_statics = tree_cons (NULL_TREE, field,
883 rli->pending_statics);
884 return;
885 }
886
887 /* Enumerators and enum types which are local to this class need not
888 be laid out. Likewise for initialized constant fields. */
889 else if (TREE_CODE (field) != FIELD_DECL)
890 return;
891
892 /* Unions are laid out very differently than records, so split
893 that code off to another function. */
894 else if (TREE_CODE (rli->t) != RECORD_TYPE)
895 {
896 place_union_field (rli, field);
897 return;
898 }
899
900 /* Work out the known alignment so far. Note that A & (-A) is the
901 value of the least-significant bit in A that is one. */
902 if (! integer_zerop (rli->bitpos))
903 known_align = (tree_low_cst (rli->bitpos, 1)
904 & - tree_low_cst (rli->bitpos, 1));
905 else if (integer_zerop (rli->offset))
906 known_align = BIGGEST_ALIGNMENT;
907 else if (host_integerp (rli->offset, 1))
908 known_align = (BITS_PER_UNIT
909 * (tree_low_cst (rli->offset, 1)
910 & - tree_low_cst (rli->offset, 1)));
911 else
912 known_align = rli->offset_align;
913
914 desired_align = update_alignment_for_field (rli, field, known_align);
915
916 if (warn_packed && DECL_PACKED (field))
917 {
918 if (known_align >= TYPE_ALIGN (type))
919 {
920 if (TYPE_ALIGN (type) > desired_align)
921 {
922 if (STRICT_ALIGNMENT)
923 warning ("%Jpacked attribute causes inefficient alignment "
924 "for '%D'", field, field);
925 else
926 warning ("%Jpacked attribute is unnecessary for '%D'",
927 field, field);
928 }
929 }
930 else
931 rli->packed_maybe_necessary = 1;
932 }
933
934 /* Does this field automatically have alignment it needs by virtue
935 of the fields that precede it and the record's own alignment? */
936 if (known_align < desired_align)
937 {
938 /* No, we need to skip space before this field.
939 Bump the cumulative size to multiple of field alignment. */
940
941 if (warn_padded)
942 warning ("%Jpadding struct to align '%D'", field, field);
943
944 /* If the alignment is still within offset_align, just align
945 the bit position. */
946 if (desired_align < rli->offset_align)
947 rli->bitpos = round_up (rli->bitpos, desired_align);
948 else
949 {
950 /* First adjust OFFSET by the partial bits, then align. */
951 rli->offset
952 = size_binop (PLUS_EXPR, rli->offset,
953 convert (sizetype,
954 size_binop (CEIL_DIV_EXPR, rli->bitpos,
955 bitsize_unit_node)));
956 rli->bitpos = bitsize_zero_node;
957
958 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
959 }
960
961 if (! TREE_CONSTANT (rli->offset))
962 rli->offset_align = desired_align;
963
964 }
965
966 /* Handle compatibility with PCC. Note that if the record has any
967 variable-sized fields, we need not worry about compatibility. */
968 #ifdef PCC_BITFIELD_TYPE_MATTERS
969 if (PCC_BITFIELD_TYPE_MATTERS
970 && ! targetm.ms_bitfield_layout_p (rli->t)
971 && TREE_CODE (field) == FIELD_DECL
972 && type != error_mark_node
973 && DECL_BIT_FIELD (field)
974 && ! DECL_PACKED (field)
975 && maximum_field_alignment == 0
976 && ! integer_zerop (DECL_SIZE (field))
977 && host_integerp (DECL_SIZE (field), 1)
978 && host_integerp (rli->offset, 1)
979 && host_integerp (TYPE_SIZE (type), 1))
980 {
981 unsigned int type_align = TYPE_ALIGN (type);
982 tree dsize = DECL_SIZE (field);
983 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
984 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
985 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
986
987 #ifdef ADJUST_FIELD_ALIGN
988 if (! TYPE_USER_ALIGN (type))
989 type_align = ADJUST_FIELD_ALIGN (field, type_align);
990 #endif
991
992 /* A bit field may not span more units of alignment of its type
993 than its type itself. Advance to next boundary if necessary. */
994 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
995 rli->bitpos = round_up (rli->bitpos, type_align);
996
997 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
998 }
999 #endif
1000
1001 #ifdef BITFIELD_NBYTES_LIMITED
1002 if (BITFIELD_NBYTES_LIMITED
1003 && ! targetm.ms_bitfield_layout_p (rli->t)
1004 && TREE_CODE (field) == FIELD_DECL
1005 && type != error_mark_node
1006 && DECL_BIT_FIELD_TYPE (field)
1007 && ! DECL_PACKED (field)
1008 && ! integer_zerop (DECL_SIZE (field))
1009 && host_integerp (DECL_SIZE (field), 1)
1010 && host_integerp (rli->offset, 1)
1011 && host_integerp (TYPE_SIZE (type), 1))
1012 {
1013 unsigned int type_align = TYPE_ALIGN (type);
1014 tree dsize = DECL_SIZE (field);
1015 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1016 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1017 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1018
1019 #ifdef ADJUST_FIELD_ALIGN
1020 if (! TYPE_USER_ALIGN (type))
1021 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1022 #endif
1023
1024 if (maximum_field_alignment != 0)
1025 type_align = MIN (type_align, maximum_field_alignment);
1026 /* ??? This test is opposite the test in the containing if
1027 statement, so this code is unreachable currently. */
1028 else if (DECL_PACKED (field))
1029 type_align = MIN (type_align, BITS_PER_UNIT);
1030
1031 /* A bit field may not span the unit of alignment of its type.
1032 Advance to next boundary if necessary. */
1033 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1034 rli->bitpos = round_up (rli->bitpos, type_align);
1035
1036 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1037 }
1038 #endif
1039
1040 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1041 A subtlety:
1042 When a bit field is inserted into a packed record, the whole
1043 size of the underlying type is used by one or more same-size
1044 adjacent bitfields. (That is, if its long:3, 32 bits is
1045 used in the record, and any additional adjacent long bitfields are
1046 packed into the same chunk of 32 bits. However, if the size
1047 changes, a new field of that size is allocated.) In an unpacked
1048 record, this is the same as using alignment, but not equivalent
1049 when packing.
1050
1051 Note: for compatibility, we use the type size, not the type alignment
1052 to determine alignment, since that matches the documentation */
1053
1054 if (targetm.ms_bitfield_layout_p (rli->t)
1055 && ((DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field))
1056 || (rli->prev_field && ! DECL_PACKED (rli->prev_field))))
1057 {
1058 /* At this point, either the prior or current are bitfields,
1059 (possibly both), and we're dealing with MS packing. */
1060 tree prev_saved = rli->prev_field;
1061
1062 /* Is the prior field a bitfield? If so, handle "runs" of same
1063 type size fields. */
1064 if (rli->prev_field /* necessarily a bitfield if it exists. */)
1065 {
1066 /* If both are bitfields, nonzero, and the same size, this is
1067 the middle of a run. Zero declared size fields are special
1068 and handled as "end of run". (Note: it's nonzero declared
1069 size, but equal type sizes!) (Since we know that both
1070 the current and previous fields are bitfields by the
1071 time we check it, DECL_SIZE must be present for both.) */
1072 if (DECL_BIT_FIELD_TYPE (field)
1073 && !integer_zerop (DECL_SIZE (field))
1074 && !integer_zerop (DECL_SIZE (rli->prev_field))
1075 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1076 && host_integerp (TYPE_SIZE (type), 0)
1077 && simple_cst_equal (TYPE_SIZE (type),
1078 TYPE_SIZE (TREE_TYPE (rli->prev_field))))
1079 {
1080 /* We're in the middle of a run of equal type size fields; make
1081 sure we realign if we run out of bits. (Not decl size,
1082 type size!) */
1083 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 0);
1084
1085 if (rli->remaining_in_alignment < bitsize)
1086 {
1087 /* out of bits; bump up to next 'word'. */
1088 rli->offset = DECL_FIELD_OFFSET (rli->prev_field);
1089 rli->bitpos
1090 = size_binop (PLUS_EXPR, TYPE_SIZE (type),
1091 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1092 rli->prev_field = field;
1093 rli->remaining_in_alignment
1094 = tree_low_cst (TYPE_SIZE (type), 0);
1095 }
1096
1097 rli->remaining_in_alignment -= bitsize;
1098 }
1099 else
1100 {
1101 /* End of a run: if leaving a run of bitfields of the same type
1102 size, we have to "use up" the rest of the bits of the type
1103 size.
1104
1105 Compute the new position as the sum of the size for the prior
1106 type and where we first started working on that type.
1107 Note: since the beginning of the field was aligned then
1108 of course the end will be too. No round needed. */
1109
1110 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1111 {
1112 tree type_size = TYPE_SIZE (TREE_TYPE (rli->prev_field));
1113
1114 rli->bitpos
1115 = size_binop (PLUS_EXPR, type_size,
1116 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1117 }
1118 else
1119 /* We "use up" size zero fields; the code below should behave
1120 as if the prior field was not a bitfield. */
1121 prev_saved = NULL;
1122
1123 /* Cause a new bitfield to be captured, either this time (if
1124 currently a bitfield) or next time we see one. */
1125 if (!DECL_BIT_FIELD_TYPE(field)
1126 || integer_zerop (DECL_SIZE (field)))
1127 rli->prev_field = NULL;
1128 }
1129
1130 normalize_rli (rli);
1131 }
1132
1133 /* If we're starting a new run of same size type bitfields
1134 (or a run of non-bitfields), set up the "first of the run"
1135 fields.
1136
1137 That is, if the current field is not a bitfield, or if there
1138 was a prior bitfield the type sizes differ, or if there wasn't
1139 a prior bitfield the size of the current field is nonzero.
1140
1141 Note: we must be sure to test ONLY the type size if there was
1142 a prior bitfield and ONLY for the current field being zero if
1143 there wasn't. */
1144
1145 if (!DECL_BIT_FIELD_TYPE (field)
1146 || ( prev_saved != NULL
1147 ? !simple_cst_equal (TYPE_SIZE (type),
1148 TYPE_SIZE (TREE_TYPE (prev_saved)))
1149 : !integer_zerop (DECL_SIZE (field)) ))
1150 {
1151 /* Never smaller than a byte for compatibility. */
1152 unsigned int type_align = BITS_PER_UNIT;
1153
1154 /* (When not a bitfield), we could be seeing a flex array (with
1155 no DECL_SIZE). Since we won't be using remaining_in_alignment
1156 until we see a bitfield (and come by here again) we just skip
1157 calculating it. */
1158 if (DECL_SIZE (field) != NULL
1159 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 0)
1160 && host_integerp (DECL_SIZE (field), 0))
1161 rli->remaining_in_alignment
1162 = tree_low_cst (TYPE_SIZE (TREE_TYPE(field)), 0)
1163 - tree_low_cst (DECL_SIZE (field), 0);
1164
1165 /* Now align (conventionally) for the new type. */
1166 if (!DECL_PACKED(field))
1167 type_align = MAX(TYPE_ALIGN (type), type_align);
1168
1169 if (prev_saved
1170 && DECL_BIT_FIELD_TYPE (prev_saved)
1171 /* If the previous bit-field is zero-sized, we've already
1172 accounted for its alignment needs (or ignored it, if
1173 appropriate) while placing it. */
1174 && ! integer_zerop (DECL_SIZE (prev_saved)))
1175 type_align = MAX (type_align,
1176 TYPE_ALIGN (TREE_TYPE (prev_saved)));
1177
1178 if (maximum_field_alignment != 0)
1179 type_align = MIN (type_align, maximum_field_alignment);
1180
1181 rli->bitpos = round_up (rli->bitpos, type_align);
1182
1183 /* If we really aligned, don't allow subsequent bitfields
1184 to undo that. */
1185 rli->prev_field = NULL;
1186 }
1187 }
1188
1189 /* Offset so far becomes the position of this field after normalizing. */
1190 normalize_rli (rli);
1191 DECL_FIELD_OFFSET (field) = rli->offset;
1192 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1193 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1194
1195 /* If this field ended up more aligned than we thought it would be (we
1196 approximate this by seeing if its position changed), lay out the field
1197 again; perhaps we can use an integral mode for it now. */
1198 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1199 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1200 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1201 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1202 actual_align = BIGGEST_ALIGNMENT;
1203 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1204 actual_align = (BITS_PER_UNIT
1205 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1206 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1207 else
1208 actual_align = DECL_OFFSET_ALIGN (field);
1209
1210 if (known_align != actual_align)
1211 layout_decl (field, actual_align);
1212
1213 /* Only the MS bitfields use this. */
1214 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE(field))
1215 rli->prev_field = field;
1216
1217 /* Now add size of this field to the size of the record. If the size is
1218 not constant, treat the field as being a multiple of bytes and just
1219 adjust the offset, resetting the bit position. Otherwise, apportion the
1220 size amongst the bit position and offset. First handle the case of an
1221 unspecified size, which can happen when we have an invalid nested struct
1222 definition, such as struct j { struct j { int i; } }. The error message
1223 is printed in finish_struct. */
1224 if (DECL_SIZE (field) == 0)
1225 /* Do nothing. */;
1226 else if (TREE_CODE (DECL_SIZE_UNIT (field)) != INTEGER_CST
1227 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field)))
1228 {
1229 rli->offset
1230 = size_binop (PLUS_EXPR, rli->offset,
1231 convert (sizetype,
1232 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1233 bitsize_unit_node)));
1234 rli->offset
1235 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1236 rli->bitpos = bitsize_zero_node;
1237 rli->offset_align = MIN (rli->offset_align, desired_align);
1238 }
1239 else
1240 {
1241 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1242 normalize_rli (rli);
1243 }
1244 }
1245
1246 /* Assuming that all the fields have been laid out, this function uses
1247 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1248 indicated by RLI. */
1249
1250 static void
1251 finalize_record_size (record_layout_info rli)
1252 {
1253 tree unpadded_size, unpadded_size_unit;
1254
1255 /* Now we want just byte and bit offsets, so set the offset alignment
1256 to be a byte and then normalize. */
1257 rli->offset_align = BITS_PER_UNIT;
1258 normalize_rli (rli);
1259
1260 /* Determine the desired alignment. */
1261 #ifdef ROUND_TYPE_ALIGN
1262 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1263 rli->record_align);
1264 #else
1265 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1266 #endif
1267
1268 /* Compute the size so far. Be sure to allow for extra bits in the
1269 size in bytes. We have guaranteed above that it will be no more
1270 than a single byte. */
1271 unpadded_size = rli_size_so_far (rli);
1272 unpadded_size_unit = rli_size_unit_so_far (rli);
1273 if (! integer_zerop (rli->bitpos))
1274 unpadded_size_unit
1275 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1276
1277 /* Round the size up to be a multiple of the required alignment. */
1278 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1279 TYPE_SIZE_UNIT (rli->t) = round_up (unpadded_size_unit,
1280 TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
1281
1282 if (warn_padded && TREE_CONSTANT (unpadded_size)
1283 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1284 warning ("padding struct size to alignment boundary");
1285
1286 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1287 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1288 && TREE_CONSTANT (unpadded_size))
1289 {
1290 tree unpacked_size;
1291
1292 #ifdef ROUND_TYPE_ALIGN
1293 rli->unpacked_align
1294 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1295 #else
1296 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1297 #endif
1298
1299 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1300 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1301 {
1302 TYPE_PACKED (rli->t) = 0;
1303
1304 if (TYPE_NAME (rli->t))
1305 {
1306 const char *name;
1307
1308 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1309 name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
1310 else
1311 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
1312
1313 if (STRICT_ALIGNMENT)
1314 warning ("packed attribute causes inefficient alignment for `%s'", name);
1315 else
1316 warning ("packed attribute is unnecessary for `%s'", name);
1317 }
1318 else
1319 {
1320 if (STRICT_ALIGNMENT)
1321 warning ("packed attribute causes inefficient alignment");
1322 else
1323 warning ("packed attribute is unnecessary");
1324 }
1325 }
1326 }
1327 }
1328
1329 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1330
1331 void
1332 compute_record_mode (tree type)
1333 {
1334 tree field;
1335 enum machine_mode mode = VOIDmode;
1336
1337 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1338 However, if possible, we use a mode that fits in a register
1339 instead, in order to allow for better optimization down the
1340 line. */
1341 TYPE_MODE (type) = BLKmode;
1342
1343 if (! host_integerp (TYPE_SIZE (type), 1))
1344 return;
1345
1346 /* A record which has any BLKmode members must itself be
1347 BLKmode; it can't go in a register. Unless the member is
1348 BLKmode only because it isn't aligned. */
1349 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1350 {
1351 if (TREE_CODE (field) != FIELD_DECL)
1352 continue;
1353
1354 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1355 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1356 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1357 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1358 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1359 || ! host_integerp (bit_position (field), 1)
1360 || DECL_SIZE (field) == 0
1361 || ! host_integerp (DECL_SIZE (field), 1))
1362 return;
1363
1364 /* If this field is the whole struct, remember its mode so
1365 that, say, we can put a double in a class into a DF
1366 register instead of forcing it to live in the stack. */
1367 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1368 mode = DECL_MODE (field);
1369
1370 #ifdef MEMBER_TYPE_FORCES_BLK
1371 /* With some targets, eg. c4x, it is sub-optimal
1372 to access an aligned BLKmode structure as a scalar. */
1373
1374 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1375 return;
1376 #endif /* MEMBER_TYPE_FORCES_BLK */
1377 }
1378
1379 /* If we only have one real field; use its mode. This only applies to
1380 RECORD_TYPE. This does not apply to unions. */
1381 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode)
1382 TYPE_MODE (type) = mode;
1383 else
1384 TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1385
1386 /* If structure's known alignment is less than what the scalar
1387 mode would need, and it matters, then stick with BLKmode. */
1388 if (TYPE_MODE (type) != BLKmode
1389 && STRICT_ALIGNMENT
1390 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1391 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1392 {
1393 /* If this is the only reason this type is BLKmode, then
1394 don't force containing types to be BLKmode. */
1395 TYPE_NO_FORCE_BLK (type) = 1;
1396 TYPE_MODE (type) = BLKmode;
1397 }
1398 }
1399
1400 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1401 out. */
1402
1403 static void
1404 finalize_type_size (tree type)
1405 {
1406 /* Normally, use the alignment corresponding to the mode chosen.
1407 However, where strict alignment is not required, avoid
1408 over-aligning structures, since most compilers do not do this
1409 alignment. */
1410
1411 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1412 && (STRICT_ALIGNMENT
1413 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1414 && TREE_CODE (type) != QUAL_UNION_TYPE
1415 && TREE_CODE (type) != ARRAY_TYPE)))
1416 {
1417 TYPE_ALIGN (type) = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1418 TYPE_USER_ALIGN (type) = 0;
1419 }
1420
1421 /* Do machine-dependent extra alignment. */
1422 #ifdef ROUND_TYPE_ALIGN
1423 TYPE_ALIGN (type)
1424 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1425 #endif
1426
1427 /* If we failed to find a simple way to calculate the unit size
1428 of the type, find it by division. */
1429 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1430 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1431 result will fit in sizetype. We will get more efficient code using
1432 sizetype, so we force a conversion. */
1433 TYPE_SIZE_UNIT (type)
1434 = convert (sizetype,
1435 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1436 bitsize_unit_node));
1437
1438 if (TYPE_SIZE (type) != 0)
1439 {
1440 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1441 TYPE_SIZE_UNIT (type)
1442 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN (type) / BITS_PER_UNIT);
1443 }
1444
1445 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1446 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1447 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1448 if (TYPE_SIZE_UNIT (type) != 0
1449 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1450 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1451
1452 /* Also layout any other variants of the type. */
1453 if (TYPE_NEXT_VARIANT (type)
1454 || type != TYPE_MAIN_VARIANT (type))
1455 {
1456 tree variant;
1457 /* Record layout info of this variant. */
1458 tree size = TYPE_SIZE (type);
1459 tree size_unit = TYPE_SIZE_UNIT (type);
1460 unsigned int align = TYPE_ALIGN (type);
1461 unsigned int user_align = TYPE_USER_ALIGN (type);
1462 enum machine_mode mode = TYPE_MODE (type);
1463
1464 /* Copy it into all variants. */
1465 for (variant = TYPE_MAIN_VARIANT (type);
1466 variant != 0;
1467 variant = TYPE_NEXT_VARIANT (variant))
1468 {
1469 TYPE_SIZE (variant) = size;
1470 TYPE_SIZE_UNIT (variant) = size_unit;
1471 TYPE_ALIGN (variant) = align;
1472 TYPE_USER_ALIGN (variant) = user_align;
1473 TYPE_MODE (variant) = mode;
1474 }
1475 }
1476 }
1477
1478 /* Do all of the work required to layout the type indicated by RLI,
1479 once the fields have been laid out. This function will call `free'
1480 for RLI, unless FREE_P is false. Passing a value other than false
1481 for FREE_P is bad practice; this option only exists to support the
1482 G++ 3.2 ABI. */
1483
1484 void
1485 finish_record_layout (record_layout_info rli, int free_p)
1486 {
1487 /* Compute the final size. */
1488 finalize_record_size (rli);
1489
1490 /* Compute the TYPE_MODE for the record. */
1491 compute_record_mode (rli->t);
1492
1493 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1494 finalize_type_size (rli->t);
1495
1496 /* Lay out any static members. This is done now because their type
1497 may use the record's type. */
1498 while (rli->pending_statics)
1499 {
1500 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1501 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1502 }
1503
1504 /* Clean up. */
1505 if (free_p)
1506 free (rli);
1507 }
1508 \f
1509
1510 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1511 NAME, its fields are chained in reverse on FIELDS.
1512
1513 If ALIGN_TYPE is non-null, it is given the same alignment as
1514 ALIGN_TYPE. */
1515
1516 void
1517 finish_builtin_struct (tree type, const char *name, tree fields,
1518 tree align_type)
1519 {
1520 tree tail, next;
1521
1522 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1523 {
1524 DECL_FIELD_CONTEXT (fields) = type;
1525 next = TREE_CHAIN (fields);
1526 TREE_CHAIN (fields) = tail;
1527 }
1528 TYPE_FIELDS (type) = tail;
1529
1530 if (align_type)
1531 {
1532 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1533 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1534 }
1535
1536 layout_type (type);
1537 #if 0 /* not yet, should get fixed properly later */
1538 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1539 #else
1540 TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type);
1541 #endif
1542 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1543 layout_decl (TYPE_NAME (type), 0);
1544 }
1545
1546 /* Calculate the mode, size, and alignment for TYPE.
1547 For an array type, calculate the element separation as well.
1548 Record TYPE on the chain of permanent or temporary types
1549 so that dbxout will find out about it.
1550
1551 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1552 layout_type does nothing on such a type.
1553
1554 If the type is incomplete, its TYPE_SIZE remains zero. */
1555
1556 void
1557 layout_type (tree type)
1558 {
1559 if (type == 0)
1560 abort ();
1561
1562 if (type == error_mark_node)
1563 return;
1564
1565 /* Do nothing if type has been laid out before. */
1566 if (TYPE_SIZE (type))
1567 return;
1568
1569 switch (TREE_CODE (type))
1570 {
1571 case LANG_TYPE:
1572 /* This kind of type is the responsibility
1573 of the language-specific code. */
1574 abort ();
1575
1576 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1577 if (TYPE_PRECISION (type) == 0)
1578 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1579
1580 /* ... fall through ... */
1581
1582 case INTEGER_TYPE:
1583 case ENUMERAL_TYPE:
1584 case CHAR_TYPE:
1585 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1586 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1587 TYPE_UNSIGNED (type) = 1;
1588
1589 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
1590 MODE_INT);
1591 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1592 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1593 break;
1594
1595 case REAL_TYPE:
1596 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
1597 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1598 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1599 break;
1600
1601 case COMPLEX_TYPE:
1602 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1603 TYPE_MODE (type)
1604 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1605 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
1606 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
1607 0);
1608 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1609 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1610 break;
1611
1612 case VECTOR_TYPE:
1613 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1614 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1615 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1616 break;
1617
1618 case VOID_TYPE:
1619 /* This is an incomplete type and so doesn't have a size. */
1620 TYPE_ALIGN (type) = 1;
1621 TYPE_USER_ALIGN (type) = 0;
1622 TYPE_MODE (type) = VOIDmode;
1623 break;
1624
1625 case OFFSET_TYPE:
1626 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1627 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1628 /* A pointer might be MODE_PARTIAL_INT,
1629 but ptrdiff_t must be integral. */
1630 TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
1631 break;
1632
1633 case FUNCTION_TYPE:
1634 case METHOD_TYPE:
1635 /* It's hard to see what the mode and size of a function ought to
1636 be, but we do know the alignment is FUNCTION_BOUNDARY, so
1637 make it consistent with that. */
1638 TYPE_MODE (type) = mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0);
1639 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
1640 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
1641 break;
1642
1643 case POINTER_TYPE:
1644 case REFERENCE_TYPE:
1645 {
1646
1647 enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
1648 && reference_types_internal)
1649 ? Pmode : TYPE_MODE (type));
1650
1651 int nbits = GET_MODE_BITSIZE (mode);
1652
1653 TYPE_SIZE (type) = bitsize_int (nbits);
1654 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1655 TYPE_UNSIGNED (type) = 1;
1656 TYPE_PRECISION (type) = nbits;
1657 }
1658 break;
1659
1660 case ARRAY_TYPE:
1661 {
1662 tree index = TYPE_DOMAIN (type);
1663 tree element = TREE_TYPE (type);
1664
1665 build_pointer_type (element);
1666
1667 /* We need to know both bounds in order to compute the size. */
1668 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1669 && TYPE_SIZE (element))
1670 {
1671 tree ub = TYPE_MAX_VALUE (index);
1672 tree lb = TYPE_MIN_VALUE (index);
1673 tree length;
1674 tree element_size;
1675
1676 /* The initial subtraction should happen in the original type so
1677 that (possible) negative values are handled appropriately. */
1678 length = size_binop (PLUS_EXPR, size_one_node,
1679 convert (sizetype,
1680 fold (build (MINUS_EXPR,
1681 TREE_TYPE (lb),
1682 ub, lb))));
1683
1684 /* Special handling for arrays of bits (for Chill). */
1685 element_size = TYPE_SIZE (element);
1686 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1687 && (integer_zerop (TYPE_MAX_VALUE (element))
1688 || integer_onep (TYPE_MAX_VALUE (element)))
1689 && host_integerp (TYPE_MIN_VALUE (element), 1))
1690 {
1691 HOST_WIDE_INT maxvalue
1692 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1693 HOST_WIDE_INT minvalue
1694 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1695
1696 if (maxvalue - minvalue == 1
1697 && (maxvalue == 1 || maxvalue == 0))
1698 element_size = integer_one_node;
1699 }
1700
1701 /* If neither bound is a constant and sizetype is signed, make
1702 sure the size is never negative. We should really do this
1703 if *either* bound is non-constant, but this is the best
1704 compromise between C and Ada. */
1705 if (!TYPE_UNSIGNED (sizetype)
1706 && TREE_CODE (TYPE_MIN_VALUE (index)) != INTEGER_CST
1707 && TREE_CODE (TYPE_MAX_VALUE (index)) != INTEGER_CST)
1708 length = size_binop (MAX_EXPR, length, size_zero_node);
1709
1710 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1711 convert (bitsizetype, length));
1712
1713 /* If we know the size of the element, calculate the total
1714 size directly, rather than do some division thing below.
1715 This optimization helps Fortran assumed-size arrays
1716 (where the size of the array is determined at runtime)
1717 substantially.
1718 Note that we can't do this in the case where the size of
1719 the elements is one bit since TYPE_SIZE_UNIT cannot be
1720 set correctly in that case. */
1721 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
1722 TYPE_SIZE_UNIT (type)
1723 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1724 }
1725
1726 /* Now round the alignment and size,
1727 using machine-dependent criteria if any. */
1728
1729 #ifdef ROUND_TYPE_ALIGN
1730 TYPE_ALIGN (type)
1731 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1732 #else
1733 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1734 #endif
1735 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
1736 TYPE_MODE (type) = BLKmode;
1737 if (TYPE_SIZE (type) != 0
1738 #ifdef MEMBER_TYPE_FORCES_BLK
1739 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
1740 #endif
1741 /* BLKmode elements force BLKmode aggregate;
1742 else extract/store fields may lose. */
1743 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
1744 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
1745 {
1746 /* One-element arrays get the component type's mode. */
1747 if (simple_cst_equal (TYPE_SIZE (type),
1748 TYPE_SIZE (TREE_TYPE (type))))
1749 TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
1750 else
1751 TYPE_MODE (type)
1752 = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1753
1754 if (TYPE_MODE (type) != BLKmode
1755 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
1756 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
1757 && TYPE_MODE (type) != BLKmode)
1758 {
1759 TYPE_NO_FORCE_BLK (type) = 1;
1760 TYPE_MODE (type) = BLKmode;
1761 }
1762 }
1763 break;
1764 }
1765
1766 case RECORD_TYPE:
1767 case UNION_TYPE:
1768 case QUAL_UNION_TYPE:
1769 {
1770 tree field;
1771 record_layout_info rli;
1772
1773 /* Initialize the layout information. */
1774 rli = start_record_layout (type);
1775
1776 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1777 in the reverse order in building the COND_EXPR that denotes
1778 its size. We reverse them again later. */
1779 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1780 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1781
1782 /* Place all the fields. */
1783 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1784 place_field (rli, field);
1785
1786 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1787 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1788
1789 if (lang_adjust_rli)
1790 (*lang_adjust_rli) (rli);
1791
1792 /* Finish laying out the record. */
1793 finish_record_layout (rli, /*free_p=*/true);
1794 }
1795 break;
1796
1797 case SET_TYPE: /* Used by Chill and Pascal. */
1798 if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST
1799 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST)
1800 abort ();
1801 else
1802 {
1803 #ifndef SET_WORD_SIZE
1804 #define SET_WORD_SIZE BITS_PER_WORD
1805 #endif
1806 unsigned int alignment
1807 = set_alignment ? set_alignment : SET_WORD_SIZE;
1808 HOST_WIDE_INT size_in_bits
1809 = (tree_low_cst (TYPE_MAX_VALUE (TYPE_DOMAIN (type)), 0)
1810 - tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), 0) + 1);
1811 HOST_WIDE_INT rounded_size
1812 = ((size_in_bits + alignment - 1) / alignment) * alignment;
1813
1814 if (rounded_size > (int) alignment)
1815 TYPE_MODE (type) = BLKmode;
1816 else
1817 TYPE_MODE (type) = mode_for_size (alignment, MODE_INT, 1);
1818
1819 TYPE_SIZE (type) = bitsize_int (rounded_size);
1820 TYPE_SIZE_UNIT (type) = size_int (rounded_size / BITS_PER_UNIT);
1821 TYPE_ALIGN (type) = alignment;
1822 TYPE_USER_ALIGN (type) = 0;
1823 TYPE_PRECISION (type) = size_in_bits;
1824 }
1825 break;
1826
1827 case FILE_TYPE:
1828 /* The size may vary in different languages, so the language front end
1829 should fill in the size. */
1830 TYPE_ALIGN (type) = BIGGEST_ALIGNMENT;
1831 TYPE_USER_ALIGN (type) = 0;
1832 TYPE_MODE (type) = BLKmode;
1833 break;
1834
1835 default:
1836 abort ();
1837 }
1838
1839 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1840 records and unions, finish_record_layout already called this
1841 function. */
1842 if (TREE_CODE (type) != RECORD_TYPE
1843 && TREE_CODE (type) != UNION_TYPE
1844 && TREE_CODE (type) != QUAL_UNION_TYPE)
1845 finalize_type_size (type);
1846
1847 /* If this type is created before sizetype has been permanently set,
1848 record it so set_sizetype can fix it up. */
1849 if (! sizetype_set)
1850 early_type_list = tree_cons (NULL_TREE, type, early_type_list);
1851
1852 /* If an alias set has been set for this aggregate when it was incomplete,
1853 force it into alias set 0.
1854 This is too conservative, but we cannot call record_component_aliases
1855 here because some frontends still change the aggregates after
1856 layout_type. */
1857 if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
1858 TYPE_ALIAS_SET (type) = 0;
1859 }
1860 \f
1861 /* Create and return a type for signed integers of PRECISION bits. */
1862
1863 tree
1864 make_signed_type (int precision)
1865 {
1866 tree type = make_node (INTEGER_TYPE);
1867
1868 TYPE_PRECISION (type) = precision;
1869
1870 fixup_signed_type (type);
1871 return type;
1872 }
1873
1874 /* Create and return a type for unsigned integers of PRECISION bits. */
1875
1876 tree
1877 make_unsigned_type (int precision)
1878 {
1879 tree type = make_node (INTEGER_TYPE);
1880
1881 TYPE_PRECISION (type) = precision;
1882
1883 fixup_unsigned_type (type);
1884 return type;
1885 }
1886 \f
1887 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1888 value to enable integer types to be created. */
1889
1890 void
1891 initialize_sizetypes (void)
1892 {
1893 tree t = make_node (INTEGER_TYPE);
1894
1895 /* Set this so we do something reasonable for the build_int_2 calls
1896 below. */
1897 integer_type_node = t;
1898
1899 TYPE_MODE (t) = SImode;
1900 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
1901 TYPE_USER_ALIGN (t) = 0;
1902 TYPE_SIZE (t) = build_int_2 (GET_MODE_BITSIZE (SImode), 0);
1903 TYPE_SIZE_UNIT (t) = build_int_2 (GET_MODE_SIZE (SImode), 0);
1904 TYPE_UNSIGNED (t) = 1;
1905 TYPE_PRECISION (t) = GET_MODE_BITSIZE (SImode);
1906 TYPE_MIN_VALUE (t) = build_int_2 (0, 0);
1907 TYPE_IS_SIZETYPE (t) = 1;
1908
1909 /* 1000 avoids problems with possible overflow and is certainly
1910 larger than any size value we'd want to be storing. */
1911 TYPE_MAX_VALUE (t) = build_int_2 (1000, 0);
1912
1913 /* These two must be different nodes because of the caching done in
1914 size_int_wide. */
1915 sizetype = t;
1916 bitsizetype = copy_node (t);
1917 integer_type_node = 0;
1918 }
1919
1920 /* Set sizetype to TYPE, and initialize *sizetype accordingly.
1921 Also update the type of any standard type's sizes made so far. */
1922
1923 void
1924 set_sizetype (tree type)
1925 {
1926 int oprecision = TYPE_PRECISION (type);
1927 /* The *bitsizetype types use a precision that avoids overflows when
1928 calculating signed sizes / offsets in bits. However, when
1929 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1930 precision. */
1931 int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
1932 2 * HOST_BITS_PER_WIDE_INT);
1933 unsigned int i;
1934 tree t;
1935
1936 if (sizetype_set)
1937 abort ();
1938
1939 /* Make copies of nodes since we'll be setting TYPE_IS_SIZETYPE. */
1940 sizetype = copy_node (type);
1941 TYPE_ORIG_SIZE_TYPE (sizetype) = type;
1942 TYPE_IS_SIZETYPE (sizetype) = 1;
1943 bitsizetype = make_node (INTEGER_TYPE);
1944 TYPE_NAME (bitsizetype) = TYPE_NAME (type);
1945 TYPE_PRECISION (bitsizetype) = precision;
1946 TYPE_IS_SIZETYPE (bitsizetype) = 1;
1947
1948 if (TYPE_UNSIGNED (type))
1949 fixup_unsigned_type (bitsizetype);
1950 else
1951 fixup_signed_type (bitsizetype);
1952
1953 layout_type (bitsizetype);
1954
1955 if (TYPE_UNSIGNED (type))
1956 {
1957 usizetype = sizetype;
1958 ubitsizetype = bitsizetype;
1959 ssizetype = copy_node (make_signed_type (oprecision));
1960 sbitsizetype = copy_node (make_signed_type (precision));
1961 }
1962 else
1963 {
1964 ssizetype = sizetype;
1965 sbitsizetype = bitsizetype;
1966 usizetype = copy_node (make_unsigned_type (oprecision));
1967 ubitsizetype = copy_node (make_unsigned_type (precision));
1968 }
1969
1970 TYPE_NAME (bitsizetype) = get_identifier ("bit_size_type");
1971
1972 /* Show is a sizetype, is a main type, and has no pointers to it. */
1973 for (i = 0; i < ARRAY_SIZE (sizetype_tab); i++)
1974 {
1975 TYPE_IS_SIZETYPE (sizetype_tab[i]) = 1;
1976 TYPE_MAIN_VARIANT (sizetype_tab[i]) = sizetype_tab[i];
1977 TYPE_NEXT_VARIANT (sizetype_tab[i]) = 0;
1978 TYPE_POINTER_TO (sizetype_tab[i]) = 0;
1979 TYPE_REFERENCE_TO (sizetype_tab[i]) = 0;
1980 }
1981
1982 /* Go down each of the types we already made and set the proper type
1983 for the sizes in them. */
1984 for (t = early_type_list; t != 0; t = TREE_CHAIN (t))
1985 {
1986 if (TREE_CODE (TREE_VALUE (t)) != INTEGER_TYPE
1987 && TREE_CODE (TREE_VALUE (t)) != BOOLEAN_TYPE)
1988 abort ();
1989
1990 TREE_TYPE (TYPE_SIZE (TREE_VALUE (t))) = bitsizetype;
1991 TREE_TYPE (TYPE_SIZE_UNIT (TREE_VALUE (t))) = sizetype;
1992 }
1993
1994 early_type_list = 0;
1995 sizetype_set = 1;
1996 }
1997 \f
1998 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE,
1999 BOOLEAN_TYPE, or CHAR_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2000 for TYPE, based on the PRECISION and whether or not the TYPE
2001 IS_UNSIGNED. PRECISION need not correspond to a width supported
2002 natively by the hardware; for example, on a machine with 8-bit,
2003 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2004 61. */
2005
2006 void
2007 set_min_and_max_values_for_integral_type (tree type,
2008 int precision,
2009 bool is_unsigned)
2010 {
2011 tree min_value;
2012 tree max_value;
2013
2014 if (is_unsigned)
2015 {
2016 min_value = build_int_2 (0, 0);
2017 max_value
2018 = build_int_2 (precision - HOST_BITS_PER_WIDE_INT >= 0
2019 ? -1 : ((HOST_WIDE_INT) 1 << precision) - 1,
2020 precision - HOST_BITS_PER_WIDE_INT > 0
2021 ? ((unsigned HOST_WIDE_INT) ~0
2022 >> (HOST_BITS_PER_WIDE_INT
2023 - (precision - HOST_BITS_PER_WIDE_INT)))
2024 : 0);
2025 }
2026 else
2027 {
2028 min_value
2029 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
2030 ? 0 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2031 (((HOST_WIDE_INT) (-1)
2032 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2033 ? precision - HOST_BITS_PER_WIDE_INT - 1
2034 : 0))));
2035 max_value
2036 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
2037 ? -1 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2038 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2039 ? (((HOST_WIDE_INT) 1
2040 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2041 : 0));
2042 }
2043
2044 TREE_TYPE (min_value) = type;
2045 TREE_TYPE (max_value) = type;
2046 TYPE_MIN_VALUE (type) = min_value;
2047 TYPE_MAX_VALUE (type) = max_value;
2048 }
2049
2050 /* Set the extreme values of TYPE based on its precision in bits,
2051 then lay it out. Used when make_signed_type won't do
2052 because the tree code is not INTEGER_TYPE.
2053 E.g. for Pascal, when the -fsigned-char option is given. */
2054
2055 void
2056 fixup_signed_type (tree type)
2057 {
2058 int precision = TYPE_PRECISION (type);
2059
2060 /* We can not represent properly constants greater then
2061 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2062 as they are used by i386 vector extensions and friends. */
2063 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2064 precision = HOST_BITS_PER_WIDE_INT * 2;
2065
2066 set_min_and_max_values_for_integral_type (type, precision,
2067 /*is_unsigned=*/false);
2068
2069 /* Lay out the type: set its alignment, size, etc. */
2070 layout_type (type);
2071 }
2072
2073 /* Set the extreme values of TYPE based on its precision in bits,
2074 then lay it out. This is used both in `make_unsigned_type'
2075 and for enumeral types. */
2076
2077 void
2078 fixup_unsigned_type (tree type)
2079 {
2080 int precision = TYPE_PRECISION (type);
2081
2082 /* We can not represent properly constants greater then
2083 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2084 as they are used by i386 vector extensions and friends. */
2085 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2086 precision = HOST_BITS_PER_WIDE_INT * 2;
2087
2088 set_min_and_max_values_for_integral_type (type, precision,
2089 /*is_unsigned=*/true);
2090
2091 /* Lay out the type: set its alignment, size, etc. */
2092 layout_type (type);
2093 }
2094 \f
2095 /* Find the best machine mode to use when referencing a bit field of length
2096 BITSIZE bits starting at BITPOS.
2097
2098 The underlying object is known to be aligned to a boundary of ALIGN bits.
2099 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2100 larger than LARGEST_MODE (usually SImode).
2101
2102 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
2103 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
2104 mode meeting these conditions.
2105
2106 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
2107 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2108 all the conditions. */
2109
2110 enum machine_mode
2111 get_best_mode (int bitsize, int bitpos, unsigned int align,
2112 enum machine_mode largest_mode, int volatilep)
2113 {
2114 enum machine_mode mode;
2115 unsigned int unit = 0;
2116
2117 /* Find the narrowest integer mode that contains the bit field. */
2118 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2119 mode = GET_MODE_WIDER_MODE (mode))
2120 {
2121 unit = GET_MODE_BITSIZE (mode);
2122 if ((bitpos % unit) + bitsize <= unit)
2123 break;
2124 }
2125
2126 if (mode == VOIDmode
2127 /* It is tempting to omit the following line
2128 if STRICT_ALIGNMENT is true.
2129 But that is incorrect, since if the bitfield uses part of 3 bytes
2130 and we use a 4-byte mode, we could get a spurious segv
2131 if the extra 4th byte is past the end of memory.
2132 (Though at least one Unix compiler ignores this problem:
2133 that on the Sequent 386 machine. */
2134 || MIN (unit, BIGGEST_ALIGNMENT) > align
2135 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2136 return VOIDmode;
2137
2138 if (SLOW_BYTE_ACCESS && ! volatilep)
2139 {
2140 enum machine_mode wide_mode = VOIDmode, tmode;
2141
2142 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2143 tmode = GET_MODE_WIDER_MODE (tmode))
2144 {
2145 unit = GET_MODE_BITSIZE (tmode);
2146 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2147 && unit <= BITS_PER_WORD
2148 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2149 && (largest_mode == VOIDmode
2150 || unit <= GET_MODE_BITSIZE (largest_mode)))
2151 wide_mode = tmode;
2152 }
2153
2154 if (wide_mode != VOIDmode)
2155 return wide_mode;
2156 }
2157
2158 return mode;
2159 }
2160
2161 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2162 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2163
2164 void
2165 get_mode_bounds (enum machine_mode mode, int sign,
2166 enum machine_mode target_mode,
2167 rtx *mmin, rtx *mmax)
2168 {
2169 unsigned size = GET_MODE_BITSIZE (mode);
2170 unsigned HOST_WIDE_INT min_val, max_val;
2171
2172 if (size > HOST_BITS_PER_WIDE_INT)
2173 abort ();
2174
2175 if (sign)
2176 {
2177 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2178 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2179 }
2180 else
2181 {
2182 min_val = 0;
2183 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2184 }
2185
2186 *mmin = GEN_INT (trunc_int_for_mode (min_val, target_mode));
2187 *mmax = GEN_INT (trunc_int_for_mode (max_val, target_mode));
2188 }
2189
2190 #include "gt-stor-layout.h"