b95e07594129e09ccd4e14bac74b0699d2836e4b
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "ggc.h"
37 #include "target.h"
38 #include "langhooks.h"
39 #include "regs.h"
40 #include "params.h"
41
42 /* Data type for the expressions representing sizes of data types.
43 It is the first integer type laid out. */
44 tree sizetype_tab[(int) TYPE_KIND_LAST];
45
46 /* If nonzero, this is an upper limit on alignment of structure fields.
47 The value is measured in bits. */
48 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
49 /* ... and its original value in bytes, specified via -fpack-struct=<value>. */
50 unsigned int initial_max_fld_align = TARGET_DEFAULT_PACK_STRUCT;
51
52 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
53 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
54 called only by a front end. */
55 static int reference_types_internal = 0;
56
57 static void finalize_record_size (record_layout_info);
58 static void finalize_type_size (tree);
59 static void place_union_field (record_layout_info, tree);
60 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
61 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
62 HOST_WIDE_INT, tree);
63 #endif
64 extern void debug_rli (record_layout_info);
65 \f
66 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
67
68 static GTY(()) tree pending_sizes;
69
70 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
71 by front end. */
72
73 void
74 internal_reference_types (void)
75 {
76 reference_types_internal = 1;
77 }
78
79 /* Get a list of all the objects put on the pending sizes list. */
80
81 tree
82 get_pending_sizes (void)
83 {
84 tree chain = pending_sizes;
85
86 pending_sizes = 0;
87 return chain;
88 }
89
90 /* Add EXPR to the pending sizes list. */
91
92 void
93 put_pending_size (tree expr)
94 {
95 /* Strip any simple arithmetic from EXPR to see if it has an underlying
96 SAVE_EXPR. */
97 expr = skip_simple_arithmetic (expr);
98
99 if (TREE_CODE (expr) == SAVE_EXPR)
100 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
101 }
102
103 /* Put a chain of objects into the pending sizes list, which must be
104 empty. */
105
106 void
107 put_pending_sizes (tree chain)
108 {
109 gcc_assert (!pending_sizes);
110 pending_sizes = chain;
111 }
112
113 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
114 to serve as the actual size-expression for a type or decl. */
115
116 tree
117 variable_size (tree size)
118 {
119 tree save;
120
121 /* If the language-processor is to take responsibility for variable-sized
122 items (e.g., languages which have elaboration procedures like Ada),
123 just return SIZE unchanged. Likewise for self-referential sizes and
124 constant sizes. */
125 if (TREE_CONSTANT (size)
126 || lang_hooks.decls.global_bindings_p () < 0
127 || CONTAINS_PLACEHOLDER_P (size))
128 return size;
129
130 size = save_expr (size);
131
132 /* If an array with a variable number of elements is declared, and
133 the elements require destruction, we will emit a cleanup for the
134 array. That cleanup is run both on normal exit from the block
135 and in the exception-handler for the block. Normally, when code
136 is used in both ordinary code and in an exception handler it is
137 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
138 not wish to do that here; the array-size is the same in both
139 places. */
140 save = skip_simple_arithmetic (size);
141
142 if (cfun && cfun->x_dont_save_pending_sizes_p)
143 /* The front-end doesn't want us to keep a list of the expressions
144 that determine sizes for variable size objects. Trust it. */
145 return size;
146
147 if (lang_hooks.decls.global_bindings_p ())
148 {
149 if (TREE_CONSTANT (size))
150 error ("type size can%'t be explicitly evaluated");
151 else
152 error ("variable-size type declared outside of any function");
153
154 return size_one_node;
155 }
156
157 put_pending_size (save);
158
159 return size;
160 }
161 \f
162 #ifndef MAX_FIXED_MODE_SIZE
163 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
164 #endif
165
166 /* Return the machine mode to use for a nonscalar of SIZE bits. The
167 mode must be in class CLASS, and have exactly that many value bits;
168 it may have padding as well. If LIMIT is nonzero, modes of wider
169 than MAX_FIXED_MODE_SIZE will not be used. */
170
171 enum machine_mode
172 mode_for_size (unsigned int size, enum mode_class class, int limit)
173 {
174 enum machine_mode mode;
175
176 if (limit && size > MAX_FIXED_MODE_SIZE)
177 return BLKmode;
178
179 /* Get the first mode which has this size, in the specified class. */
180 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
181 mode = GET_MODE_WIDER_MODE (mode))
182 if (GET_MODE_PRECISION (mode) == size)
183 return mode;
184
185 return BLKmode;
186 }
187
188 /* Similar, except passed a tree node. */
189
190 enum machine_mode
191 mode_for_size_tree (tree size, enum mode_class class, int limit)
192 {
193 unsigned HOST_WIDE_INT uhwi;
194 unsigned int ui;
195
196 if (!host_integerp (size, 1))
197 return BLKmode;
198 uhwi = tree_low_cst (size, 1);
199 ui = uhwi;
200 if (uhwi != ui)
201 return BLKmode;
202 return mode_for_size (ui, class, limit);
203 }
204
205 /* Similar, but never return BLKmode; return the narrowest mode that
206 contains at least the requested number of value bits. */
207
208 enum machine_mode
209 smallest_mode_for_size (unsigned int size, enum mode_class class)
210 {
211 enum machine_mode mode;
212
213 /* Get the first mode which has at least this size, in the
214 specified class. */
215 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
216 mode = GET_MODE_WIDER_MODE (mode))
217 if (GET_MODE_PRECISION (mode) >= size)
218 return mode;
219
220 gcc_unreachable ();
221 }
222
223 /* Find an integer mode of the exact same size, or BLKmode on failure. */
224
225 enum machine_mode
226 int_mode_for_mode (enum machine_mode mode)
227 {
228 switch (GET_MODE_CLASS (mode))
229 {
230 case MODE_INT:
231 case MODE_PARTIAL_INT:
232 break;
233
234 case MODE_COMPLEX_INT:
235 case MODE_COMPLEX_FLOAT:
236 case MODE_FLOAT:
237 case MODE_DECIMAL_FLOAT:
238 case MODE_VECTOR_INT:
239 case MODE_VECTOR_FLOAT:
240 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
241 break;
242
243 case MODE_RANDOM:
244 if (mode == BLKmode)
245 break;
246
247 /* ... fall through ... */
248
249 case MODE_CC:
250 default:
251 gcc_unreachable ();
252 }
253
254 return mode;
255 }
256
257 /* Return the alignment of MODE. This will be bounded by 1 and
258 BIGGEST_ALIGNMENT. */
259
260 unsigned int
261 get_mode_alignment (enum machine_mode mode)
262 {
263 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
264 }
265
266 \f
267 /* Subroutine of layout_decl: Force alignment required for the data type.
268 But if the decl itself wants greater alignment, don't override that. */
269
270 static inline void
271 do_type_align (tree type, tree decl)
272 {
273 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
274 {
275 DECL_ALIGN (decl) = TYPE_ALIGN (type);
276 if (TREE_CODE (decl) == FIELD_DECL)
277 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
278 }
279 }
280
281 /* Set the size, mode and alignment of a ..._DECL node.
282 TYPE_DECL does need this for C++.
283 Note that LABEL_DECL and CONST_DECL nodes do not need this,
284 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
285 Don't call layout_decl for them.
286
287 KNOWN_ALIGN is the amount of alignment we can assume this
288 decl has with no special effort. It is relevant only for FIELD_DECLs
289 and depends on the previous fields.
290 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
291 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
292 the record will be aligned to suit. */
293
294 void
295 layout_decl (tree decl, unsigned int known_align)
296 {
297 tree type = TREE_TYPE (decl);
298 enum tree_code code = TREE_CODE (decl);
299 rtx rtl = NULL_RTX;
300
301 if (code == CONST_DECL)
302 return;
303
304 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
305 || code == TYPE_DECL ||code == FIELD_DECL);
306
307 rtl = DECL_RTL_IF_SET (decl);
308
309 if (type == error_mark_node)
310 type = void_type_node;
311
312 /* Usually the size and mode come from the data type without change,
313 however, the front-end may set the explicit width of the field, so its
314 size may not be the same as the size of its type. This happens with
315 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
316 also happens with other fields. For example, the C++ front-end creates
317 zero-sized fields corresponding to empty base classes, and depends on
318 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
319 size in bytes from the size in bits. If we have already set the mode,
320 don't set it again since we can be called twice for FIELD_DECLs. */
321
322 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
323 if (DECL_MODE (decl) == VOIDmode)
324 DECL_MODE (decl) = TYPE_MODE (type);
325
326 if (DECL_SIZE (decl) == 0)
327 {
328 DECL_SIZE (decl) = TYPE_SIZE (type);
329 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
330 }
331 else if (DECL_SIZE_UNIT (decl) == 0)
332 DECL_SIZE_UNIT (decl)
333 = fold_convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
334 bitsize_unit_node));
335
336 if (code != FIELD_DECL)
337 /* For non-fields, update the alignment from the type. */
338 do_type_align (type, decl);
339 else
340 /* For fields, it's a bit more complicated... */
341 {
342 bool old_user_align = DECL_USER_ALIGN (decl);
343 bool zero_bitfield = false;
344 bool packed_p = DECL_PACKED (decl);
345 unsigned int mfa;
346
347 if (DECL_BIT_FIELD (decl))
348 {
349 DECL_BIT_FIELD_TYPE (decl) = type;
350
351 /* A zero-length bit-field affects the alignment of the next
352 field. In essence such bit-fields are not influenced by
353 any packing due to #pragma pack or attribute packed. */
354 if (integer_zerop (DECL_SIZE (decl))
355 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
356 {
357 zero_bitfield = true;
358 packed_p = false;
359 #ifdef PCC_BITFIELD_TYPE_MATTERS
360 if (PCC_BITFIELD_TYPE_MATTERS)
361 do_type_align (type, decl);
362 else
363 #endif
364 {
365 #ifdef EMPTY_FIELD_BOUNDARY
366 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
367 {
368 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
369 DECL_USER_ALIGN (decl) = 0;
370 }
371 #endif
372 }
373 }
374
375 /* See if we can use an ordinary integer mode for a bit-field.
376 Conditions are: a fixed size that is correct for another mode
377 and occupying a complete byte or bytes on proper boundary. */
378 if (TYPE_SIZE (type) != 0
379 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
380 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
381 {
382 enum machine_mode xmode
383 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
384
385 if (xmode != BLKmode
386 && (known_align == 0
387 || known_align >= GET_MODE_ALIGNMENT (xmode)))
388 {
389 DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
390 DECL_ALIGN (decl));
391 DECL_MODE (decl) = xmode;
392 DECL_BIT_FIELD (decl) = 0;
393 }
394 }
395
396 /* Turn off DECL_BIT_FIELD if we won't need it set. */
397 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
398 && known_align >= TYPE_ALIGN (type)
399 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
400 DECL_BIT_FIELD (decl) = 0;
401 }
402 else if (packed_p && DECL_USER_ALIGN (decl))
403 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
404 round up; we'll reduce it again below. We want packing to
405 supersede USER_ALIGN inherited from the type, but defer to
406 alignment explicitly specified on the field decl. */;
407 else
408 do_type_align (type, decl);
409
410 /* If the field is of variable size, we can't misalign it since we
411 have no way to make a temporary to align the result. But this
412 isn't an issue if the decl is not addressable. Likewise if it
413 is of unknown size.
414
415 Note that do_type_align may set DECL_USER_ALIGN, so we need to
416 check old_user_align instead. */
417 if (packed_p
418 && !old_user_align
419 && (DECL_NONADDRESSABLE_P (decl)
420 || DECL_SIZE_UNIT (decl) == 0
421 || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
422 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
423
424 if (! packed_p && ! DECL_USER_ALIGN (decl))
425 {
426 /* Some targets (i.e. i386, VMS) limit struct field alignment
427 to a lower boundary than alignment of variables unless
428 it was overridden by attribute aligned. */
429 #ifdef BIGGEST_FIELD_ALIGNMENT
430 DECL_ALIGN (decl)
431 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
432 #endif
433 #ifdef ADJUST_FIELD_ALIGN
434 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
435 #endif
436 }
437
438 if (zero_bitfield)
439 mfa = initial_max_fld_align * BITS_PER_UNIT;
440 else
441 mfa = maximum_field_alignment;
442 /* Should this be controlled by DECL_USER_ALIGN, too? */
443 if (mfa != 0)
444 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
445 }
446
447 /* Evaluate nonconstant size only once, either now or as soon as safe. */
448 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
449 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
450 if (DECL_SIZE_UNIT (decl) != 0
451 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
452 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
453
454 /* If requested, warn about definitions of large data objects. */
455 if (warn_larger_than
456 && (code == VAR_DECL || code == PARM_DECL)
457 && ! DECL_EXTERNAL (decl))
458 {
459 tree size = DECL_SIZE_UNIT (decl);
460
461 if (size != 0 && TREE_CODE (size) == INTEGER_CST
462 && compare_tree_int (size, larger_than_size) > 0)
463 {
464 int size_as_int = TREE_INT_CST_LOW (size);
465
466 if (compare_tree_int (size, size_as_int) == 0)
467 warning (0, "size of %q+D is %d bytes", decl, size_as_int);
468 else
469 warning (0, "size of %q+D is larger than %wd bytes",
470 decl, larger_than_size);
471 }
472 }
473
474 /* If the RTL was already set, update its mode and mem attributes. */
475 if (rtl)
476 {
477 PUT_MODE (rtl, DECL_MODE (decl));
478 SET_DECL_RTL (decl, 0);
479 set_mem_attributes (rtl, decl, 1);
480 SET_DECL_RTL (decl, rtl);
481 }
482 }
483
484 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
485 a previous call to layout_decl and calls it again. */
486
487 void
488 relayout_decl (tree decl)
489 {
490 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
491 DECL_MODE (decl) = VOIDmode;
492 DECL_ALIGN (decl) = 0;
493 SET_DECL_RTL (decl, 0);
494
495 layout_decl (decl, 0);
496 }
497 \f
498 /* Hook for a front-end function that can modify the record layout as needed
499 immediately before it is finalized. */
500
501 static void (*lang_adjust_rli) (record_layout_info) = 0;
502
503 void
504 set_lang_adjust_rli (void (*f) (record_layout_info))
505 {
506 lang_adjust_rli = f;
507 }
508
509 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
510 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
511 is to be passed to all other layout functions for this record. It is the
512 responsibility of the caller to call `free' for the storage returned.
513 Note that garbage collection is not permitted until we finish laying
514 out the record. */
515
516 record_layout_info
517 start_record_layout (tree t)
518 {
519 record_layout_info rli = xmalloc (sizeof (struct record_layout_info_s));
520
521 rli->t = t;
522
523 /* If the type has a minimum specified alignment (via an attribute
524 declaration, for example) use it -- otherwise, start with a
525 one-byte alignment. */
526 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
527 rli->unpacked_align = rli->record_align;
528 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
529
530 #ifdef STRUCTURE_SIZE_BOUNDARY
531 /* Packed structures don't need to have minimum size. */
532 if (! TYPE_PACKED (t))
533 rli->record_align = MAX (rli->record_align, (unsigned) STRUCTURE_SIZE_BOUNDARY);
534 #endif
535
536 rli->offset = size_zero_node;
537 rli->bitpos = bitsize_zero_node;
538 rli->prev_field = 0;
539 rli->pending_statics = 0;
540 rli->packed_maybe_necessary = 0;
541
542 return rli;
543 }
544
545 /* These four routines perform computations that convert between
546 the offset/bitpos forms and byte and bit offsets. */
547
548 tree
549 bit_from_pos (tree offset, tree bitpos)
550 {
551 return size_binop (PLUS_EXPR, bitpos,
552 size_binop (MULT_EXPR,
553 fold_convert (bitsizetype, offset),
554 bitsize_unit_node));
555 }
556
557 tree
558 byte_from_pos (tree offset, tree bitpos)
559 {
560 return size_binop (PLUS_EXPR, offset,
561 fold_convert (sizetype,
562 size_binop (TRUNC_DIV_EXPR, bitpos,
563 bitsize_unit_node)));
564 }
565
566 void
567 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
568 tree pos)
569 {
570 *poffset = size_binop (MULT_EXPR,
571 fold_convert (sizetype,
572 size_binop (FLOOR_DIV_EXPR, pos,
573 bitsize_int (off_align))),
574 size_int (off_align / BITS_PER_UNIT));
575 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
576 }
577
578 /* Given a pointer to bit and byte offsets and an offset alignment,
579 normalize the offsets so they are within the alignment. */
580
581 void
582 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
583 {
584 /* If the bit position is now larger than it should be, adjust it
585 downwards. */
586 if (compare_tree_int (*pbitpos, off_align) >= 0)
587 {
588 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
589 bitsize_int (off_align));
590
591 *poffset
592 = size_binop (PLUS_EXPR, *poffset,
593 size_binop (MULT_EXPR,
594 fold_convert (sizetype, extra_aligns),
595 size_int (off_align / BITS_PER_UNIT)));
596
597 *pbitpos
598 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
599 }
600 }
601
602 /* Print debugging information about the information in RLI. */
603
604 void
605 debug_rli (record_layout_info rli)
606 {
607 print_node_brief (stderr, "type", rli->t, 0);
608 print_node_brief (stderr, "\noffset", rli->offset, 0);
609 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
610
611 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
612 rli->record_align, rli->unpacked_align,
613 rli->offset_align);
614 if (rli->packed_maybe_necessary)
615 fprintf (stderr, "packed may be necessary\n");
616
617 if (rli->pending_statics)
618 {
619 fprintf (stderr, "pending statics:\n");
620 debug_tree (rli->pending_statics);
621 }
622 }
623
624 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
625 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
626
627 void
628 normalize_rli (record_layout_info rli)
629 {
630 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
631 }
632
633 /* Returns the size in bytes allocated so far. */
634
635 tree
636 rli_size_unit_so_far (record_layout_info rli)
637 {
638 return byte_from_pos (rli->offset, rli->bitpos);
639 }
640
641 /* Returns the size in bits allocated so far. */
642
643 tree
644 rli_size_so_far (record_layout_info rli)
645 {
646 return bit_from_pos (rli->offset, rli->bitpos);
647 }
648
649 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
650 the next available location within the record is given by KNOWN_ALIGN.
651 Update the variable alignment fields in RLI, and return the alignment
652 to give the FIELD. */
653
654 unsigned int
655 update_alignment_for_field (record_layout_info rli, tree field,
656 unsigned int known_align)
657 {
658 /* The alignment required for FIELD. */
659 unsigned int desired_align;
660 /* The type of this field. */
661 tree type = TREE_TYPE (field);
662 /* True if the field was explicitly aligned by the user. */
663 bool user_align;
664 bool is_bitfield;
665
666 /* Do not attempt to align an ERROR_MARK node */
667 if (TREE_CODE (type) == ERROR_MARK)
668 return 0;
669
670 /* Lay out the field so we know what alignment it needs. */
671 layout_decl (field, known_align);
672 desired_align = DECL_ALIGN (field);
673 user_align = DECL_USER_ALIGN (field);
674
675 is_bitfield = (type != error_mark_node
676 && DECL_BIT_FIELD_TYPE (field)
677 && ! integer_zerop (TYPE_SIZE (type)));
678
679 /* Record must have at least as much alignment as any field.
680 Otherwise, the alignment of the field within the record is
681 meaningless. */
682 if (is_bitfield && targetm.ms_bitfield_layout_p (rli->t))
683 {
684 /* Here, the alignment of the underlying type of a bitfield can
685 affect the alignment of a record; even a zero-sized field
686 can do this. The alignment should be to the alignment of
687 the type, except that for zero-size bitfields this only
688 applies if there was an immediately prior, nonzero-size
689 bitfield. (That's the way it is, experimentally.) */
690 if (! integer_zerop (DECL_SIZE (field))
691 ? ! DECL_PACKED (field)
692 : (rli->prev_field
693 && DECL_BIT_FIELD_TYPE (rli->prev_field)
694 && ! integer_zerop (DECL_SIZE (rli->prev_field))))
695 {
696 unsigned int type_align = TYPE_ALIGN (type);
697 type_align = MAX (type_align, desired_align);
698 if (maximum_field_alignment != 0)
699 type_align = MIN (type_align, maximum_field_alignment);
700 rli->record_align = MAX (rli->record_align, type_align);
701 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
702 /* If we start a new run, make sure we start it properly aligned. */
703 if ((!rli->prev_field
704 || integer_zerop (DECL_SIZE (field))
705 || integer_zerop (DECL_SIZE (rli->prev_field))
706 || !host_integerp (DECL_SIZE (rli->prev_field), 0)
707 || !host_integerp (TYPE_SIZE (type), 0)
708 || !simple_cst_equal (TYPE_SIZE (type),
709 TYPE_SIZE (TREE_TYPE (rli->prev_field)))
710 || (rli->remaining_in_alignment
711 < tree_low_cst (DECL_SIZE (field), 0)))
712 && desired_align < type_align)
713 desired_align = type_align;
714 }
715 }
716 #ifdef PCC_BITFIELD_TYPE_MATTERS
717 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
718 {
719 /* Named bit-fields cause the entire structure to have the
720 alignment implied by their type. Some targets also apply the same
721 rules to unnamed bitfields. */
722 if (DECL_NAME (field) != 0
723 || targetm.align_anon_bitfield ())
724 {
725 unsigned int type_align = TYPE_ALIGN (type);
726
727 #ifdef ADJUST_FIELD_ALIGN
728 if (! TYPE_USER_ALIGN (type))
729 type_align = ADJUST_FIELD_ALIGN (field, type_align);
730 #endif
731
732 /* Targets might chose to handle unnamed and hence possibly
733 zero-width bitfield. Those are not influenced by #pragmas
734 or packed attributes. */
735 if (integer_zerop (DECL_SIZE (field)))
736 {
737 if (initial_max_fld_align)
738 type_align = MIN (type_align,
739 initial_max_fld_align * BITS_PER_UNIT);
740 }
741 else if (maximum_field_alignment != 0)
742 type_align = MIN (type_align, maximum_field_alignment);
743 else if (DECL_PACKED (field))
744 type_align = MIN (type_align, BITS_PER_UNIT);
745
746 /* The alignment of the record is increased to the maximum
747 of the current alignment, the alignment indicated on the
748 field (i.e., the alignment specified by an __aligned__
749 attribute), and the alignment indicated by the type of
750 the field. */
751 rli->record_align = MAX (rli->record_align, desired_align);
752 rli->record_align = MAX (rli->record_align, type_align);
753
754 if (warn_packed)
755 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
756 user_align |= TYPE_USER_ALIGN (type);
757 }
758 }
759 #endif
760 else
761 {
762 rli->record_align = MAX (rli->record_align, desired_align);
763 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
764 }
765
766 TYPE_USER_ALIGN (rli->t) |= user_align;
767
768 return desired_align;
769 }
770
771 /* Called from place_field to handle unions. */
772
773 static void
774 place_union_field (record_layout_info rli, tree field)
775 {
776 update_alignment_for_field (rli, field, /*known_align=*/0);
777
778 DECL_FIELD_OFFSET (field) = size_zero_node;
779 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
780 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
781
782 /* If this is an ERROR_MARK return *after* having set the
783 field at the start of the union. This helps when parsing
784 invalid fields. */
785 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
786 return;
787
788 /* We assume the union's size will be a multiple of a byte so we don't
789 bother with BITPOS. */
790 if (TREE_CODE (rli->t) == UNION_TYPE)
791 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
792 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
793 rli->offset = fold_build3 (COND_EXPR, sizetype,
794 DECL_QUALIFIER (field),
795 DECL_SIZE_UNIT (field), rli->offset);
796 }
797
798 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
799 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
800 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
801 units of alignment than the underlying TYPE. */
802 static int
803 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
804 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
805 {
806 /* Note that the calculation of OFFSET might overflow; we calculate it so
807 that we still get the right result as long as ALIGN is a power of two. */
808 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
809
810 offset = offset % align;
811 return ((offset + size + align - 1) / align
812 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
813 / align));
814 }
815 #endif
816
817 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
818 is a FIELD_DECL to be added after those fields already present in
819 T. (FIELD is not actually added to the TYPE_FIELDS list here;
820 callers that desire that behavior must manually perform that step.) */
821
822 void
823 place_field (record_layout_info rli, tree field)
824 {
825 /* The alignment required for FIELD. */
826 unsigned int desired_align;
827 /* The alignment FIELD would have if we just dropped it into the
828 record as it presently stands. */
829 unsigned int known_align;
830 unsigned int actual_align;
831 /* The type of this field. */
832 tree type = TREE_TYPE (field);
833
834 gcc_assert (TREE_CODE (field) != ERROR_MARK);
835
836 /* If FIELD is static, then treat it like a separate variable, not
837 really like a structure field. If it is a FUNCTION_DECL, it's a
838 method. In both cases, all we do is lay out the decl, and we do
839 it *after* the record is laid out. */
840 if (TREE_CODE (field) == VAR_DECL)
841 {
842 rli->pending_statics = tree_cons (NULL_TREE, field,
843 rli->pending_statics);
844 return;
845 }
846
847 /* Enumerators and enum types which are local to this class need not
848 be laid out. Likewise for initialized constant fields. */
849 else if (TREE_CODE (field) != FIELD_DECL)
850 return;
851
852 /* Unions are laid out very differently than records, so split
853 that code off to another function. */
854 else if (TREE_CODE (rli->t) != RECORD_TYPE)
855 {
856 place_union_field (rli, field);
857 return;
858 }
859
860 else if (TREE_CODE (type) == ERROR_MARK)
861 {
862 /* Place this field at the current allocation position, so we
863 maintain monotonicity. */
864 DECL_FIELD_OFFSET (field) = rli->offset;
865 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
866 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
867 return;
868 }
869
870 /* Work out the known alignment so far. Note that A & (-A) is the
871 value of the least-significant bit in A that is one. */
872 if (! integer_zerop (rli->bitpos))
873 known_align = (tree_low_cst (rli->bitpos, 1)
874 & - tree_low_cst (rli->bitpos, 1));
875 else if (integer_zerop (rli->offset))
876 known_align = 0;
877 else if (host_integerp (rli->offset, 1))
878 known_align = (BITS_PER_UNIT
879 * (tree_low_cst (rli->offset, 1)
880 & - tree_low_cst (rli->offset, 1)));
881 else
882 known_align = rli->offset_align;
883
884 desired_align = update_alignment_for_field (rli, field, known_align);
885 if (known_align == 0)
886 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
887
888 if (warn_packed && DECL_PACKED (field))
889 {
890 if (known_align >= TYPE_ALIGN (type))
891 {
892 if (TYPE_ALIGN (type) > desired_align)
893 {
894 if (STRICT_ALIGNMENT)
895 warning (OPT_Wattributes, "packed attribute causes "
896 "inefficient alignment for %q+D", field);
897 else
898 warning (OPT_Wattributes, "packed attribute is "
899 "unnecessary for %q+D", field);
900 }
901 }
902 else
903 rli->packed_maybe_necessary = 1;
904 }
905
906 /* Does this field automatically have alignment it needs by virtue
907 of the fields that precede it and the record's own alignment? */
908 if (known_align < desired_align)
909 {
910 /* No, we need to skip space before this field.
911 Bump the cumulative size to multiple of field alignment. */
912
913 warning (OPT_Wpadded, "padding struct to align %q+D", field);
914
915 /* If the alignment is still within offset_align, just align
916 the bit position. */
917 if (desired_align < rli->offset_align)
918 rli->bitpos = round_up (rli->bitpos, desired_align);
919 else
920 {
921 /* First adjust OFFSET by the partial bits, then align. */
922 rli->offset
923 = size_binop (PLUS_EXPR, rli->offset,
924 fold_convert (sizetype,
925 size_binop (CEIL_DIV_EXPR, rli->bitpos,
926 bitsize_unit_node)));
927 rli->bitpos = bitsize_zero_node;
928
929 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
930 }
931
932 if (! TREE_CONSTANT (rli->offset))
933 rli->offset_align = desired_align;
934
935 }
936
937 /* Handle compatibility with PCC. Note that if the record has any
938 variable-sized fields, we need not worry about compatibility. */
939 #ifdef PCC_BITFIELD_TYPE_MATTERS
940 if (PCC_BITFIELD_TYPE_MATTERS
941 && ! targetm.ms_bitfield_layout_p (rli->t)
942 && TREE_CODE (field) == FIELD_DECL
943 && type != error_mark_node
944 && DECL_BIT_FIELD (field)
945 && ! DECL_PACKED (field)
946 && maximum_field_alignment == 0
947 && ! integer_zerop (DECL_SIZE (field))
948 && host_integerp (DECL_SIZE (field), 1)
949 && host_integerp (rli->offset, 1)
950 && host_integerp (TYPE_SIZE (type), 1))
951 {
952 unsigned int type_align = TYPE_ALIGN (type);
953 tree dsize = DECL_SIZE (field);
954 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
955 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
956 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
957
958 #ifdef ADJUST_FIELD_ALIGN
959 if (! TYPE_USER_ALIGN (type))
960 type_align = ADJUST_FIELD_ALIGN (field, type_align);
961 #endif
962
963 /* A bit field may not span more units of alignment of its type
964 than its type itself. Advance to next boundary if necessary. */
965 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
966 rli->bitpos = round_up (rli->bitpos, type_align);
967
968 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
969 }
970 #endif
971
972 #ifdef BITFIELD_NBYTES_LIMITED
973 if (BITFIELD_NBYTES_LIMITED
974 && ! targetm.ms_bitfield_layout_p (rli->t)
975 && TREE_CODE (field) == FIELD_DECL
976 && type != error_mark_node
977 && DECL_BIT_FIELD_TYPE (field)
978 && ! DECL_PACKED (field)
979 && ! integer_zerop (DECL_SIZE (field))
980 && host_integerp (DECL_SIZE (field), 1)
981 && host_integerp (rli->offset, 1)
982 && host_integerp (TYPE_SIZE (type), 1))
983 {
984 unsigned int type_align = TYPE_ALIGN (type);
985 tree dsize = DECL_SIZE (field);
986 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
987 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
988 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
989
990 #ifdef ADJUST_FIELD_ALIGN
991 if (! TYPE_USER_ALIGN (type))
992 type_align = ADJUST_FIELD_ALIGN (field, type_align);
993 #endif
994
995 if (maximum_field_alignment != 0)
996 type_align = MIN (type_align, maximum_field_alignment);
997 /* ??? This test is opposite the test in the containing if
998 statement, so this code is unreachable currently. */
999 else if (DECL_PACKED (field))
1000 type_align = MIN (type_align, BITS_PER_UNIT);
1001
1002 /* A bit field may not span the unit of alignment of its type.
1003 Advance to next boundary if necessary. */
1004 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1005 rli->bitpos = round_up (rli->bitpos, type_align);
1006
1007 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1008 }
1009 #endif
1010
1011 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1012 A subtlety:
1013 When a bit field is inserted into a packed record, the whole
1014 size of the underlying type is used by one or more same-size
1015 adjacent bitfields. (That is, if its long:3, 32 bits is
1016 used in the record, and any additional adjacent long bitfields are
1017 packed into the same chunk of 32 bits. However, if the size
1018 changes, a new field of that size is allocated.) In an unpacked
1019 record, this is the same as using alignment, but not equivalent
1020 when packing.
1021
1022 Note: for compatibility, we use the type size, not the type alignment
1023 to determine alignment, since that matches the documentation */
1024
1025 if (targetm.ms_bitfield_layout_p (rli->t)
1026 && ((DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field))
1027 || (rli->prev_field && ! DECL_PACKED (rli->prev_field))))
1028 {
1029 /* At this point, either the prior or current are bitfields,
1030 (possibly both), and we're dealing with MS packing. */
1031 tree prev_saved = rli->prev_field;
1032
1033 /* Is the prior field a bitfield? If so, handle "runs" of same
1034 type size fields. */
1035 if (rli->prev_field /* necessarily a bitfield if it exists. */)
1036 {
1037 /* If both are bitfields, nonzero, and the same size, this is
1038 the middle of a run. Zero declared size fields are special
1039 and handled as "end of run". (Note: it's nonzero declared
1040 size, but equal type sizes!) (Since we know that both
1041 the current and previous fields are bitfields by the
1042 time we check it, DECL_SIZE must be present for both.) */
1043 if (DECL_BIT_FIELD_TYPE (field)
1044 && !integer_zerop (DECL_SIZE (field))
1045 && !integer_zerop (DECL_SIZE (rli->prev_field))
1046 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1047 && host_integerp (TYPE_SIZE (type), 0)
1048 && simple_cst_equal (TYPE_SIZE (type),
1049 TYPE_SIZE (TREE_TYPE (rli->prev_field))))
1050 {
1051 /* We're in the middle of a run of equal type size fields; make
1052 sure we realign if we run out of bits. (Not decl size,
1053 type size!) */
1054 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 0);
1055
1056 if (rli->remaining_in_alignment < bitsize)
1057 {
1058 /* If PREV_FIELD is packed, and we haven't lumped
1059 non-packed bitfields with it, treat this as if PREV_FIELD
1060 was not a bitfield. This avoids anomalies where a packed
1061 bitfield with long long base type can take up more
1062 space than a same-size bitfield with base type short. */
1063 if (rli->prev_packed)
1064 rli->prev_field = prev_saved = NULL;
1065 else
1066 {
1067 /* out of bits; bump up to next 'word'. */
1068 rli->offset = DECL_FIELD_OFFSET (rli->prev_field);
1069 rli->bitpos
1070 = size_binop (PLUS_EXPR, TYPE_SIZE (type),
1071 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1072 rli->prev_field = field;
1073 rli->remaining_in_alignment
1074 = tree_low_cst (TYPE_SIZE (type), 0) - bitsize;
1075 }
1076 }
1077 else
1078 rli->remaining_in_alignment -= bitsize;
1079 }
1080 else if (rli->prev_packed)
1081 rli->prev_field = prev_saved = NULL;
1082 else
1083 {
1084 /* End of a run: if leaving a run of bitfields of the same type
1085 size, we have to "use up" the rest of the bits of the type
1086 size.
1087
1088 Compute the new position as the sum of the size for the prior
1089 type and where we first started working on that type.
1090 Note: since the beginning of the field was aligned then
1091 of course the end will be too. No round needed. */
1092
1093 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1094 {
1095 tree type_size = TYPE_SIZE (TREE_TYPE (rli->prev_field));
1096
1097 /* If the desired alignment is greater or equal to TYPE_SIZE,
1098 we have already adjusted rli->bitpos / rli->offset above.
1099 */
1100 if ((unsigned HOST_WIDE_INT) tree_low_cst (type_size, 0)
1101 > desired_align)
1102 rli->bitpos
1103 = size_binop (PLUS_EXPR, type_size,
1104 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1105 }
1106 else
1107 /* We "use up" size zero fields; the code below should behave
1108 as if the prior field was not a bitfield. */
1109 prev_saved = NULL;
1110
1111 /* Cause a new bitfield to be captured, either this time (if
1112 currently a bitfield) or next time we see one. */
1113 if (!DECL_BIT_FIELD_TYPE(field)
1114 || integer_zerop (DECL_SIZE (field)))
1115 rli->prev_field = NULL;
1116 }
1117
1118 rli->prev_packed = 0;
1119 normalize_rli (rli);
1120 }
1121
1122 /* If we're starting a new run of same size type bitfields
1123 (or a run of non-bitfields), set up the "first of the run"
1124 fields.
1125
1126 That is, if the current field is not a bitfield, or if there
1127 was a prior bitfield the type sizes differ, or if there wasn't
1128 a prior bitfield the size of the current field is nonzero.
1129
1130 Note: we must be sure to test ONLY the type size if there was
1131 a prior bitfield and ONLY for the current field being zero if
1132 there wasn't. */
1133
1134 if (!DECL_BIT_FIELD_TYPE (field)
1135 || ( prev_saved != NULL
1136 ? !simple_cst_equal (TYPE_SIZE (type),
1137 TYPE_SIZE (TREE_TYPE (prev_saved)))
1138 : !integer_zerop (DECL_SIZE (field)) ))
1139 {
1140 /* Never smaller than a byte for compatibility. */
1141 unsigned int type_align = BITS_PER_UNIT;
1142
1143 /* (When not a bitfield), we could be seeing a flex array (with
1144 no DECL_SIZE). Since we won't be using remaining_in_alignment
1145 until we see a bitfield (and come by here again) we just skip
1146 calculating it. */
1147 if (DECL_SIZE (field) != NULL
1148 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 0)
1149 && host_integerp (DECL_SIZE (field), 0))
1150 rli->remaining_in_alignment
1151 = tree_low_cst (TYPE_SIZE (TREE_TYPE(field)), 0)
1152 - tree_low_cst (DECL_SIZE (field), 0);
1153
1154 /* Now align (conventionally) for the new type. */
1155 if (!DECL_PACKED(field))
1156 type_align = MAX(TYPE_ALIGN (type), type_align);
1157
1158 if (prev_saved
1159 && DECL_BIT_FIELD_TYPE (prev_saved)
1160 /* If the previous bit-field is zero-sized, we've already
1161 accounted for its alignment needs (or ignored it, if
1162 appropriate) while placing it. */
1163 && ! integer_zerop (DECL_SIZE (prev_saved)))
1164 type_align = MAX (type_align,
1165 TYPE_ALIGN (TREE_TYPE (prev_saved)));
1166
1167 if (maximum_field_alignment != 0)
1168 type_align = MIN (type_align, maximum_field_alignment);
1169
1170 rli->bitpos = round_up (rli->bitpos, type_align);
1171
1172 /* If we really aligned, don't allow subsequent bitfields
1173 to undo that. */
1174 rli->prev_field = NULL;
1175 }
1176 }
1177
1178 /* Offset so far becomes the position of this field after normalizing. */
1179 normalize_rli (rli);
1180 DECL_FIELD_OFFSET (field) = rli->offset;
1181 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1182 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1183
1184 /* If this field ended up more aligned than we thought it would be (we
1185 approximate this by seeing if its position changed), lay out the field
1186 again; perhaps we can use an integral mode for it now. */
1187 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1188 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1189 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1190 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1191 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1192 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1193 actual_align = (BITS_PER_UNIT
1194 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1195 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1196 else
1197 actual_align = DECL_OFFSET_ALIGN (field);
1198 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1199 store / extract bit field operations will check the alignment of the
1200 record against the mode of bit fields. */
1201
1202 if (known_align != actual_align)
1203 layout_decl (field, actual_align);
1204
1205 if (DECL_BIT_FIELD_TYPE (field))
1206 {
1207 unsigned int type_align = TYPE_ALIGN (type);
1208 unsigned int mfa = maximum_field_alignment;
1209
1210 if (integer_zerop (DECL_SIZE (field)))
1211 mfa = initial_max_fld_align * BITS_PER_UNIT;
1212
1213 /* Only the MS bitfields use this. We used to also put any kind of
1214 packed bit fields into prev_field, but that makes no sense, because
1215 an 8 bit packed bit field shouldn't impose more restriction on
1216 following fields than a char field, and the alignment requirements
1217 are also not fulfilled.
1218 There is no sane value to set rli->remaining_in_alignment to when
1219 a packed bitfield in prev_field is unaligned. */
1220 if (mfa != 0)
1221 type_align = MIN (type_align, mfa);
1222 gcc_assert (rli->prev_field
1223 || actual_align >= type_align || DECL_PACKED (field)
1224 || integer_zerop (DECL_SIZE (field))
1225 || !targetm.ms_bitfield_layout_p (rli->t));
1226 if (rli->prev_field == NULL && actual_align >= type_align
1227 && !integer_zerop (DECL_SIZE (field)))
1228 {
1229 rli->prev_field = field;
1230 /* rli->remaining_in_alignment has not been set if the bitfield
1231 has size zero, or if it is a packed bitfield. */
1232 rli->remaining_in_alignment
1233 = (tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 0)
1234 - tree_low_cst (DECL_SIZE (field), 0));
1235 rli->prev_packed = DECL_PACKED (field);
1236
1237 }
1238 else if (rli->prev_field && DECL_PACKED (field))
1239 {
1240 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 0);
1241
1242 if (rli->remaining_in_alignment < bitsize)
1243 rli->prev_field = NULL;
1244 else
1245 rli->remaining_in_alignment -= bitsize;
1246 }
1247 }
1248
1249 /* Now add size of this field to the size of the record. If the size is
1250 not constant, treat the field as being a multiple of bytes and just
1251 adjust the offset, resetting the bit position. Otherwise, apportion the
1252 size amongst the bit position and offset. First handle the case of an
1253 unspecified size, which can happen when we have an invalid nested struct
1254 definition, such as struct j { struct j { int i; } }. The error message
1255 is printed in finish_struct. */
1256 if (DECL_SIZE (field) == 0)
1257 /* Do nothing. */;
1258 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1259 || TREE_CONSTANT_OVERFLOW (DECL_SIZE (field)))
1260 {
1261 rli->offset
1262 = size_binop (PLUS_EXPR, rli->offset,
1263 fold_convert (sizetype,
1264 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1265 bitsize_unit_node)));
1266 rli->offset
1267 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1268 rli->bitpos = bitsize_zero_node;
1269 rli->offset_align = MIN (rli->offset_align, desired_align);
1270 }
1271 else
1272 {
1273 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1274 normalize_rli (rli);
1275 }
1276 }
1277
1278 /* Assuming that all the fields have been laid out, this function uses
1279 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1280 indicated by RLI. */
1281
1282 static void
1283 finalize_record_size (record_layout_info rli)
1284 {
1285 tree unpadded_size, unpadded_size_unit;
1286
1287 /* Now we want just byte and bit offsets, so set the offset alignment
1288 to be a byte and then normalize. */
1289 rli->offset_align = BITS_PER_UNIT;
1290 normalize_rli (rli);
1291
1292 /* Determine the desired alignment. */
1293 #ifdef ROUND_TYPE_ALIGN
1294 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1295 rli->record_align);
1296 #else
1297 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1298 #endif
1299
1300 /* Compute the size so far. Be sure to allow for extra bits in the
1301 size in bytes. We have guaranteed above that it will be no more
1302 than a single byte. */
1303 unpadded_size = rli_size_so_far (rli);
1304 unpadded_size_unit = rli_size_unit_so_far (rli);
1305 if (! integer_zerop (rli->bitpos))
1306 unpadded_size_unit
1307 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1308
1309 /* Round the size up to be a multiple of the required alignment. */
1310 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1311 TYPE_SIZE_UNIT (rli->t)
1312 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1313
1314 if (TREE_CONSTANT (unpadded_size)
1315 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1316 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1317
1318 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1319 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1320 && TREE_CONSTANT (unpadded_size))
1321 {
1322 tree unpacked_size;
1323
1324 #ifdef ROUND_TYPE_ALIGN
1325 rli->unpacked_align
1326 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1327 #else
1328 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1329 #endif
1330
1331 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1332 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1333 {
1334 TYPE_PACKED (rli->t) = 0;
1335
1336 if (TYPE_NAME (rli->t))
1337 {
1338 const char *name;
1339
1340 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1341 name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
1342 else
1343 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
1344
1345 if (STRICT_ALIGNMENT)
1346 warning (OPT_Wpacked, "packed attribute causes inefficient "
1347 "alignment for %qs", name);
1348 else
1349 warning (OPT_Wpacked,
1350 "packed attribute is unnecessary for %qs", name);
1351 }
1352 else
1353 {
1354 if (STRICT_ALIGNMENT)
1355 warning (OPT_Wpacked,
1356 "packed attribute causes inefficient alignment");
1357 else
1358 warning (OPT_Wpacked, "packed attribute is unnecessary");
1359 }
1360 }
1361 }
1362 }
1363
1364 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1365
1366 void
1367 compute_record_mode (tree type)
1368 {
1369 tree field;
1370 enum machine_mode mode = VOIDmode;
1371
1372 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1373 However, if possible, we use a mode that fits in a register
1374 instead, in order to allow for better optimization down the
1375 line. */
1376 TYPE_MODE (type) = BLKmode;
1377
1378 if (! host_integerp (TYPE_SIZE (type), 1))
1379 return;
1380
1381 /* A record which has any BLKmode members must itself be
1382 BLKmode; it can't go in a register. Unless the member is
1383 BLKmode only because it isn't aligned. */
1384 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1385 {
1386 if (TREE_CODE (field) != FIELD_DECL)
1387 continue;
1388
1389 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1390 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1391 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1392 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1393 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1394 || ! host_integerp (bit_position (field), 1)
1395 || DECL_SIZE (field) == 0
1396 || ! host_integerp (DECL_SIZE (field), 1))
1397 return;
1398
1399 /* If this field is the whole struct, remember its mode so
1400 that, say, we can put a double in a class into a DF
1401 register instead of forcing it to live in the stack. */
1402 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1403 mode = DECL_MODE (field);
1404
1405 #ifdef MEMBER_TYPE_FORCES_BLK
1406 /* With some targets, eg. c4x, it is sub-optimal
1407 to access an aligned BLKmode structure as a scalar. */
1408
1409 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1410 return;
1411 #endif /* MEMBER_TYPE_FORCES_BLK */
1412 }
1413
1414 /* If we only have one real field; use its mode if that mode's size
1415 matches the type's size. This only applies to RECORD_TYPE. This
1416 does not apply to unions. */
1417 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1418 && host_integerp (TYPE_SIZE (type), 1)
1419 && GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
1420 TYPE_MODE (type) = mode;
1421 else
1422 TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1423
1424 /* If structure's known alignment is less than what the scalar
1425 mode would need, and it matters, then stick with BLKmode. */
1426 if (TYPE_MODE (type) != BLKmode
1427 && STRICT_ALIGNMENT
1428 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1429 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1430 {
1431 /* If this is the only reason this type is BLKmode, then
1432 don't force containing types to be BLKmode. */
1433 TYPE_NO_FORCE_BLK (type) = 1;
1434 TYPE_MODE (type) = BLKmode;
1435 }
1436 }
1437
1438 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1439 out. */
1440
1441 static void
1442 finalize_type_size (tree type)
1443 {
1444 /* Normally, use the alignment corresponding to the mode chosen.
1445 However, where strict alignment is not required, avoid
1446 over-aligning structures, since most compilers do not do this
1447 alignment. */
1448
1449 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1450 && (STRICT_ALIGNMENT
1451 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1452 && TREE_CODE (type) != QUAL_UNION_TYPE
1453 && TREE_CODE (type) != ARRAY_TYPE)))
1454 {
1455 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1456
1457 /* Don't override a larger alignment requirement coming from a user
1458 alignment of one of the fields. */
1459 if (mode_align >= TYPE_ALIGN (type))
1460 {
1461 TYPE_ALIGN (type) = mode_align;
1462 TYPE_USER_ALIGN (type) = 0;
1463 }
1464 }
1465
1466 /* Do machine-dependent extra alignment. */
1467 #ifdef ROUND_TYPE_ALIGN
1468 TYPE_ALIGN (type)
1469 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1470 #endif
1471
1472 /* If we failed to find a simple way to calculate the unit size
1473 of the type, find it by division. */
1474 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1475 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1476 result will fit in sizetype. We will get more efficient code using
1477 sizetype, so we force a conversion. */
1478 TYPE_SIZE_UNIT (type)
1479 = fold_convert (sizetype,
1480 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1481 bitsize_unit_node));
1482
1483 if (TYPE_SIZE (type) != 0)
1484 {
1485 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1486 TYPE_SIZE_UNIT (type) = round_up (TYPE_SIZE_UNIT (type),
1487 TYPE_ALIGN_UNIT (type));
1488 }
1489
1490 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1491 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1492 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1493 if (TYPE_SIZE_UNIT (type) != 0
1494 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1495 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1496
1497 /* Also layout any other variants of the type. */
1498 if (TYPE_NEXT_VARIANT (type)
1499 || type != TYPE_MAIN_VARIANT (type))
1500 {
1501 tree variant;
1502 /* Record layout info of this variant. */
1503 tree size = TYPE_SIZE (type);
1504 tree size_unit = TYPE_SIZE_UNIT (type);
1505 unsigned int align = TYPE_ALIGN (type);
1506 unsigned int user_align = TYPE_USER_ALIGN (type);
1507 enum machine_mode mode = TYPE_MODE (type);
1508
1509 /* Copy it into all variants. */
1510 for (variant = TYPE_MAIN_VARIANT (type);
1511 variant != 0;
1512 variant = TYPE_NEXT_VARIANT (variant))
1513 {
1514 TYPE_SIZE (variant) = size;
1515 TYPE_SIZE_UNIT (variant) = size_unit;
1516 TYPE_ALIGN (variant) = align;
1517 TYPE_USER_ALIGN (variant) = user_align;
1518 TYPE_MODE (variant) = mode;
1519 }
1520 }
1521 }
1522
1523 /* Do all of the work required to layout the type indicated by RLI,
1524 once the fields have been laid out. This function will call `free'
1525 for RLI, unless FREE_P is false. Passing a value other than false
1526 for FREE_P is bad practice; this option only exists to support the
1527 G++ 3.2 ABI. */
1528
1529 void
1530 finish_record_layout (record_layout_info rli, int free_p)
1531 {
1532 /* Compute the final size. */
1533 finalize_record_size (rli);
1534
1535 /* Compute the TYPE_MODE for the record. */
1536 compute_record_mode (rli->t);
1537
1538 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1539 finalize_type_size (rli->t);
1540
1541 /* Lay out any static members. This is done now because their type
1542 may use the record's type. */
1543 while (rli->pending_statics)
1544 {
1545 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1546 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1547 }
1548
1549 /* Clean up. */
1550 if (free_p)
1551 free (rli);
1552 }
1553 \f
1554
1555 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1556 NAME, its fields are chained in reverse on FIELDS.
1557
1558 If ALIGN_TYPE is non-null, it is given the same alignment as
1559 ALIGN_TYPE. */
1560
1561 void
1562 finish_builtin_struct (tree type, const char *name, tree fields,
1563 tree align_type)
1564 {
1565 tree tail, next;
1566
1567 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1568 {
1569 DECL_FIELD_CONTEXT (fields) = type;
1570 next = TREE_CHAIN (fields);
1571 TREE_CHAIN (fields) = tail;
1572 }
1573 TYPE_FIELDS (type) = tail;
1574
1575 if (align_type)
1576 {
1577 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1578 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1579 }
1580
1581 layout_type (type);
1582 #if 0 /* not yet, should get fixed properly later */
1583 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1584 #else
1585 TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type);
1586 #endif
1587 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1588 layout_decl (TYPE_NAME (type), 0);
1589 }
1590
1591 /* Calculate the mode, size, and alignment for TYPE.
1592 For an array type, calculate the element separation as well.
1593 Record TYPE on the chain of permanent or temporary types
1594 so that dbxout will find out about it.
1595
1596 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1597 layout_type does nothing on such a type.
1598
1599 If the type is incomplete, its TYPE_SIZE remains zero. */
1600
1601 void
1602 layout_type (tree type)
1603 {
1604 gcc_assert (type);
1605
1606 if (type == error_mark_node)
1607 return;
1608
1609 /* Do nothing if type has been laid out before. */
1610 if (TYPE_SIZE (type))
1611 return;
1612
1613 switch (TREE_CODE (type))
1614 {
1615 case LANG_TYPE:
1616 /* This kind of type is the responsibility
1617 of the language-specific code. */
1618 gcc_unreachable ();
1619
1620 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1621 if (TYPE_PRECISION (type) == 0)
1622 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1623
1624 /* ... fall through ... */
1625
1626 case INTEGER_TYPE:
1627 case ENUMERAL_TYPE:
1628 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1629 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1630 TYPE_UNSIGNED (type) = 1;
1631
1632 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
1633 MODE_INT);
1634 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1635 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1636 break;
1637
1638 case REAL_TYPE:
1639 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
1640 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1641 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1642 break;
1643
1644 case COMPLEX_TYPE:
1645 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1646 TYPE_MODE (type)
1647 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1648 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
1649 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
1650 0);
1651 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1652 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1653 break;
1654
1655 case VECTOR_TYPE:
1656 {
1657 int nunits = TYPE_VECTOR_SUBPARTS (type);
1658 tree nunits_tree = build_int_cst (NULL_TREE, nunits);
1659 tree innertype = TREE_TYPE (type);
1660
1661 gcc_assert (!(nunits & (nunits - 1)));
1662
1663 /* Find an appropriate mode for the vector type. */
1664 if (TYPE_MODE (type) == VOIDmode)
1665 {
1666 enum machine_mode innermode = TYPE_MODE (innertype);
1667 enum machine_mode mode;
1668
1669 /* First, look for a supported vector type. */
1670 if (SCALAR_FLOAT_MODE_P (innermode))
1671 mode = MIN_MODE_VECTOR_FLOAT;
1672 else
1673 mode = MIN_MODE_VECTOR_INT;
1674
1675 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
1676 if (GET_MODE_NUNITS (mode) == nunits
1677 && GET_MODE_INNER (mode) == innermode
1678 && targetm.vector_mode_supported_p (mode))
1679 break;
1680
1681 /* For integers, try mapping it to a same-sized scalar mode. */
1682 if (mode == VOIDmode
1683 && GET_MODE_CLASS (innermode) == MODE_INT)
1684 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
1685 MODE_INT, 0);
1686
1687 if (mode == VOIDmode || !have_regs_of_mode[mode])
1688 TYPE_MODE (type) = BLKmode;
1689 else
1690 TYPE_MODE (type) = mode;
1691 }
1692
1693 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1694 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
1695 TYPE_SIZE_UNIT (innertype),
1696 nunits_tree, 0);
1697 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
1698 nunits_tree, 0);
1699
1700 /* Always naturally align vectors. This prevents ABI changes
1701 depending on whether or not native vector modes are supported. */
1702 TYPE_ALIGN (type) = tree_low_cst (TYPE_SIZE (type), 0);
1703 break;
1704 }
1705
1706 case VOID_TYPE:
1707 /* This is an incomplete type and so doesn't have a size. */
1708 TYPE_ALIGN (type) = 1;
1709 TYPE_USER_ALIGN (type) = 0;
1710 TYPE_MODE (type) = VOIDmode;
1711 break;
1712
1713 case OFFSET_TYPE:
1714 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1715 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1716 /* A pointer might be MODE_PARTIAL_INT,
1717 but ptrdiff_t must be integral. */
1718 TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
1719 break;
1720
1721 case FUNCTION_TYPE:
1722 case METHOD_TYPE:
1723 /* It's hard to see what the mode and size of a function ought to
1724 be, but we do know the alignment is FUNCTION_BOUNDARY, so
1725 make it consistent with that. */
1726 TYPE_MODE (type) = mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0);
1727 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
1728 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
1729 break;
1730
1731 case POINTER_TYPE:
1732 case REFERENCE_TYPE:
1733 {
1734
1735 enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
1736 && reference_types_internal)
1737 ? Pmode : TYPE_MODE (type));
1738
1739 int nbits = GET_MODE_BITSIZE (mode);
1740
1741 TYPE_SIZE (type) = bitsize_int (nbits);
1742 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1743 TYPE_UNSIGNED (type) = 1;
1744 TYPE_PRECISION (type) = nbits;
1745 }
1746 break;
1747
1748 case ARRAY_TYPE:
1749 {
1750 tree index = TYPE_DOMAIN (type);
1751 tree element = TREE_TYPE (type);
1752
1753 build_pointer_type (element);
1754
1755 /* We need to know both bounds in order to compute the size. */
1756 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1757 && TYPE_SIZE (element))
1758 {
1759 tree ub = TYPE_MAX_VALUE (index);
1760 tree lb = TYPE_MIN_VALUE (index);
1761 tree length;
1762 tree element_size;
1763
1764 /* The initial subtraction should happen in the original type so
1765 that (possible) negative values are handled appropriately. */
1766 length = size_binop (PLUS_EXPR, size_one_node,
1767 fold_convert (sizetype,
1768 fold_build2 (MINUS_EXPR,
1769 TREE_TYPE (lb),
1770 ub, lb)));
1771
1772 /* Special handling for arrays of bits (for Chill). */
1773 element_size = TYPE_SIZE (element);
1774 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1775 && (integer_zerop (TYPE_MAX_VALUE (element))
1776 || integer_onep (TYPE_MAX_VALUE (element)))
1777 && host_integerp (TYPE_MIN_VALUE (element), 1))
1778 {
1779 HOST_WIDE_INT maxvalue
1780 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1781 HOST_WIDE_INT minvalue
1782 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1783
1784 if (maxvalue - minvalue == 1
1785 && (maxvalue == 1 || maxvalue == 0))
1786 element_size = integer_one_node;
1787 }
1788
1789 /* If neither bound is a constant and sizetype is signed, make
1790 sure the size is never negative. We should really do this
1791 if *either* bound is non-constant, but this is the best
1792 compromise between C and Ada. */
1793 if (!TYPE_UNSIGNED (sizetype)
1794 && TREE_CODE (TYPE_MIN_VALUE (index)) != INTEGER_CST
1795 && TREE_CODE (TYPE_MAX_VALUE (index)) != INTEGER_CST)
1796 length = size_binop (MAX_EXPR, length, size_zero_node);
1797
1798 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1799 fold_convert (bitsizetype,
1800 length));
1801
1802 /* If we know the size of the element, calculate the total
1803 size directly, rather than do some division thing below.
1804 This optimization helps Fortran assumed-size arrays
1805 (where the size of the array is determined at runtime)
1806 substantially.
1807 Note that we can't do this in the case where the size of
1808 the elements is one bit since TYPE_SIZE_UNIT cannot be
1809 set correctly in that case. */
1810 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
1811 TYPE_SIZE_UNIT (type)
1812 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1813 }
1814
1815 /* Now round the alignment and size,
1816 using machine-dependent criteria if any. */
1817
1818 #ifdef ROUND_TYPE_ALIGN
1819 TYPE_ALIGN (type)
1820 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1821 #else
1822 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1823 #endif
1824 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
1825 TYPE_MODE (type) = BLKmode;
1826 if (TYPE_SIZE (type) != 0
1827 #ifdef MEMBER_TYPE_FORCES_BLK
1828 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
1829 #endif
1830 /* BLKmode elements force BLKmode aggregate;
1831 else extract/store fields may lose. */
1832 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
1833 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
1834 {
1835 /* One-element arrays get the component type's mode. */
1836 if (simple_cst_equal (TYPE_SIZE (type),
1837 TYPE_SIZE (TREE_TYPE (type))))
1838 TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
1839 else
1840 TYPE_MODE (type)
1841 = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1842
1843 if (TYPE_MODE (type) != BLKmode
1844 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
1845 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
1846 && TYPE_MODE (type) != BLKmode)
1847 {
1848 TYPE_NO_FORCE_BLK (type) = 1;
1849 TYPE_MODE (type) = BLKmode;
1850 }
1851 }
1852 /* When the element size is constant, check that it is at least as
1853 large as the element alignment. */
1854 if (TYPE_SIZE_UNIT (element)
1855 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
1856 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
1857 TYPE_ALIGN_UNIT. */
1858 && !TREE_CONSTANT_OVERFLOW (TYPE_SIZE_UNIT (element))
1859 && !integer_zerop (TYPE_SIZE_UNIT (element))
1860 && compare_tree_int (TYPE_SIZE_UNIT (element),
1861 TYPE_ALIGN_UNIT (element)) < 0)
1862 error ("alignment of array elements is greater than element size");
1863 break;
1864 }
1865
1866 case RECORD_TYPE:
1867 case UNION_TYPE:
1868 case QUAL_UNION_TYPE:
1869 {
1870 tree field;
1871 record_layout_info rli;
1872
1873 /* Initialize the layout information. */
1874 rli = start_record_layout (type);
1875
1876 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1877 in the reverse order in building the COND_EXPR that denotes
1878 its size. We reverse them again later. */
1879 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1880 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1881
1882 /* Place all the fields. */
1883 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1884 place_field (rli, field);
1885
1886 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1887 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1888
1889 if (lang_adjust_rli)
1890 (*lang_adjust_rli) (rli);
1891
1892 /* Finish laying out the record. */
1893 finish_record_layout (rli, /*free_p=*/true);
1894 }
1895 break;
1896
1897 default:
1898 gcc_unreachable ();
1899 }
1900
1901 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1902 records and unions, finish_record_layout already called this
1903 function. */
1904 if (TREE_CODE (type) != RECORD_TYPE
1905 && TREE_CODE (type) != UNION_TYPE
1906 && TREE_CODE (type) != QUAL_UNION_TYPE)
1907 finalize_type_size (type);
1908
1909 /* If an alias set has been set for this aggregate when it was incomplete,
1910 force it into alias set 0.
1911 This is too conservative, but we cannot call record_component_aliases
1912 here because some frontends still change the aggregates after
1913 layout_type. */
1914 if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
1915 TYPE_ALIAS_SET (type) = 0;
1916 }
1917 \f
1918 /* Create and return a type for signed integers of PRECISION bits. */
1919
1920 tree
1921 make_signed_type (int precision)
1922 {
1923 tree type = make_node (INTEGER_TYPE);
1924
1925 TYPE_PRECISION (type) = precision;
1926
1927 fixup_signed_type (type);
1928 return type;
1929 }
1930
1931 /* Create and return a type for unsigned integers of PRECISION bits. */
1932
1933 tree
1934 make_unsigned_type (int precision)
1935 {
1936 tree type = make_node (INTEGER_TYPE);
1937
1938 TYPE_PRECISION (type) = precision;
1939
1940 fixup_unsigned_type (type);
1941 return type;
1942 }
1943 \f
1944 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1945 value to enable integer types to be created. */
1946
1947 void
1948 initialize_sizetypes (bool signed_p)
1949 {
1950 tree t = make_node (INTEGER_TYPE);
1951 int precision = GET_MODE_BITSIZE (SImode);
1952
1953 TYPE_MODE (t) = SImode;
1954 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
1955 TYPE_USER_ALIGN (t) = 0;
1956 TYPE_IS_SIZETYPE (t) = 1;
1957 TYPE_UNSIGNED (t) = !signed_p;
1958 TYPE_SIZE (t) = build_int_cst (t, precision);
1959 TYPE_SIZE_UNIT (t) = build_int_cst (t, GET_MODE_SIZE (SImode));
1960 TYPE_PRECISION (t) = precision;
1961
1962 /* Set TYPE_MIN_VALUE and TYPE_MAX_VALUE. */
1963 set_min_and_max_values_for_integral_type (t, precision, !signed_p);
1964
1965 sizetype = t;
1966 bitsizetype = build_distinct_type_copy (t);
1967 }
1968
1969 /* Make sizetype a version of TYPE, and initialize *sizetype
1970 accordingly. We do this by overwriting the stub sizetype and
1971 bitsizetype nodes created by initialize_sizetypes. This makes sure
1972 that (a) anything stubby about them no longer exists, (b) any
1973 INTEGER_CSTs created with such a type, remain valid. */
1974
1975 void
1976 set_sizetype (tree type)
1977 {
1978 int oprecision = TYPE_PRECISION (type);
1979 /* The *bitsizetype types use a precision that avoids overflows when
1980 calculating signed sizes / offsets in bits. However, when
1981 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1982 precision. */
1983 int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
1984 2 * HOST_BITS_PER_WIDE_INT);
1985 tree t;
1986
1987 gcc_assert (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (sizetype));
1988
1989 t = build_distinct_type_copy (type);
1990 /* We do want to use sizetype's cache, as we will be replacing that
1991 type. */
1992 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (sizetype);
1993 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (sizetype);
1994 TREE_TYPE (TYPE_CACHED_VALUES (t)) = type;
1995 TYPE_UID (t) = TYPE_UID (sizetype);
1996 TYPE_IS_SIZETYPE (t) = 1;
1997
1998 /* Replace our original stub sizetype. */
1999 memcpy (sizetype, t, tree_size (sizetype));
2000 TYPE_MAIN_VARIANT (sizetype) = sizetype;
2001
2002 t = make_node (INTEGER_TYPE);
2003 TYPE_NAME (t) = get_identifier ("bit_size_type");
2004 /* We do want to use bitsizetype's cache, as we will be replacing that
2005 type. */
2006 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (bitsizetype);
2007 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (bitsizetype);
2008 TYPE_PRECISION (t) = precision;
2009 TYPE_UID (t) = TYPE_UID (bitsizetype);
2010 TYPE_IS_SIZETYPE (t) = 1;
2011
2012 /* Replace our original stub bitsizetype. */
2013 memcpy (bitsizetype, t, tree_size (bitsizetype));
2014 TYPE_MAIN_VARIANT (bitsizetype) = bitsizetype;
2015
2016 if (TYPE_UNSIGNED (type))
2017 {
2018 fixup_unsigned_type (bitsizetype);
2019 ssizetype = build_distinct_type_copy (make_signed_type (oprecision));
2020 TYPE_IS_SIZETYPE (ssizetype) = 1;
2021 sbitsizetype = build_distinct_type_copy (make_signed_type (precision));
2022 TYPE_IS_SIZETYPE (sbitsizetype) = 1;
2023 }
2024 else
2025 {
2026 fixup_signed_type (bitsizetype);
2027 ssizetype = sizetype;
2028 sbitsizetype = bitsizetype;
2029 }
2030
2031 /* If SIZETYPE is unsigned, we need to fix TYPE_MAX_VALUE so that
2032 it is sign extended in a way consistent with force_fit_type. */
2033 if (TYPE_UNSIGNED (type))
2034 {
2035 tree orig_max, new_max;
2036
2037 orig_max = TYPE_MAX_VALUE (sizetype);
2038
2039 /* Build a new node with the same values, but a different type. */
2040 new_max = build_int_cst_wide (sizetype,
2041 TREE_INT_CST_LOW (orig_max),
2042 TREE_INT_CST_HIGH (orig_max));
2043
2044 /* Now sign extend it using force_fit_type to ensure
2045 consistency. */
2046 new_max = force_fit_type (new_max, 0, 0, 0);
2047 TYPE_MAX_VALUE (sizetype) = new_max;
2048 }
2049 }
2050 \f
2051 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2052 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2053 for TYPE, based on the PRECISION and whether or not the TYPE
2054 IS_UNSIGNED. PRECISION need not correspond to a width supported
2055 natively by the hardware; for example, on a machine with 8-bit,
2056 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2057 61. */
2058
2059 void
2060 set_min_and_max_values_for_integral_type (tree type,
2061 int precision,
2062 bool is_unsigned)
2063 {
2064 tree min_value;
2065 tree max_value;
2066
2067 if (is_unsigned)
2068 {
2069 min_value = build_int_cst (type, 0);
2070 max_value
2071 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2072 ? -1
2073 : ((HOST_WIDE_INT) 1 << precision) - 1,
2074 precision - HOST_BITS_PER_WIDE_INT > 0
2075 ? ((unsigned HOST_WIDE_INT) ~0
2076 >> (HOST_BITS_PER_WIDE_INT
2077 - (precision - HOST_BITS_PER_WIDE_INT)))
2078 : 0);
2079 }
2080 else
2081 {
2082 min_value
2083 = build_int_cst_wide (type,
2084 (precision - HOST_BITS_PER_WIDE_INT > 0
2085 ? 0
2086 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2087 (((HOST_WIDE_INT) (-1)
2088 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2089 ? precision - HOST_BITS_PER_WIDE_INT - 1
2090 : 0))));
2091 max_value
2092 = build_int_cst_wide (type,
2093 (precision - HOST_BITS_PER_WIDE_INT > 0
2094 ? -1
2095 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2096 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2097 ? (((HOST_WIDE_INT) 1
2098 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2099 : 0));
2100 }
2101
2102 TYPE_MIN_VALUE (type) = min_value;
2103 TYPE_MAX_VALUE (type) = max_value;
2104 }
2105
2106 /* Set the extreme values of TYPE based on its precision in bits,
2107 then lay it out. Used when make_signed_type won't do
2108 because the tree code is not INTEGER_TYPE.
2109 E.g. for Pascal, when the -fsigned-char option is given. */
2110
2111 void
2112 fixup_signed_type (tree type)
2113 {
2114 int precision = TYPE_PRECISION (type);
2115
2116 /* We can not represent properly constants greater then
2117 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2118 as they are used by i386 vector extensions and friends. */
2119 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2120 precision = HOST_BITS_PER_WIDE_INT * 2;
2121
2122 set_min_and_max_values_for_integral_type (type, precision,
2123 /*is_unsigned=*/false);
2124
2125 /* Lay out the type: set its alignment, size, etc. */
2126 layout_type (type);
2127 }
2128
2129 /* Set the extreme values of TYPE based on its precision in bits,
2130 then lay it out. This is used both in `make_unsigned_type'
2131 and for enumeral types. */
2132
2133 void
2134 fixup_unsigned_type (tree type)
2135 {
2136 int precision = TYPE_PRECISION (type);
2137
2138 /* We can not represent properly constants greater then
2139 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2140 as they are used by i386 vector extensions and friends. */
2141 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2142 precision = HOST_BITS_PER_WIDE_INT * 2;
2143
2144 TYPE_UNSIGNED (type) = 1;
2145
2146 set_min_and_max_values_for_integral_type (type, precision,
2147 /*is_unsigned=*/true);
2148
2149 /* Lay out the type: set its alignment, size, etc. */
2150 layout_type (type);
2151 }
2152 \f
2153 /* Find the best machine mode to use when referencing a bit field of length
2154 BITSIZE bits starting at BITPOS.
2155
2156 The underlying object is known to be aligned to a boundary of ALIGN bits.
2157 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2158 larger than LARGEST_MODE (usually SImode).
2159
2160 If no mode meets all these conditions, we return VOIDmode.
2161
2162 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2163 smallest mode meeting these conditions.
2164
2165 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2166 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2167 all the conditions.
2168
2169 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2170 decide which of the above modes should be used. */
2171
2172 enum machine_mode
2173 get_best_mode (int bitsize, int bitpos, unsigned int align,
2174 enum machine_mode largest_mode, int volatilep)
2175 {
2176 enum machine_mode mode;
2177 unsigned int unit = 0;
2178
2179 /* Find the narrowest integer mode that contains the bit field. */
2180 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2181 mode = GET_MODE_WIDER_MODE (mode))
2182 {
2183 unit = GET_MODE_BITSIZE (mode);
2184 if ((bitpos % unit) + bitsize <= unit)
2185 break;
2186 }
2187
2188 if (mode == VOIDmode
2189 /* It is tempting to omit the following line
2190 if STRICT_ALIGNMENT is true.
2191 But that is incorrect, since if the bitfield uses part of 3 bytes
2192 and we use a 4-byte mode, we could get a spurious segv
2193 if the extra 4th byte is past the end of memory.
2194 (Though at least one Unix compiler ignores this problem:
2195 that on the Sequent 386 machine. */
2196 || MIN (unit, BIGGEST_ALIGNMENT) > align
2197 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2198 return VOIDmode;
2199
2200 if ((SLOW_BYTE_ACCESS && ! volatilep)
2201 || (volatilep && !targetm.narrow_volatile_bitfield()))
2202 {
2203 enum machine_mode wide_mode = VOIDmode, tmode;
2204
2205 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2206 tmode = GET_MODE_WIDER_MODE (tmode))
2207 {
2208 unit = GET_MODE_BITSIZE (tmode);
2209 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2210 && unit <= BITS_PER_WORD
2211 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2212 && (largest_mode == VOIDmode
2213 || unit <= GET_MODE_BITSIZE (largest_mode)))
2214 wide_mode = tmode;
2215 }
2216
2217 if (wide_mode != VOIDmode)
2218 return wide_mode;
2219 }
2220
2221 return mode;
2222 }
2223
2224 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2225 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2226
2227 void
2228 get_mode_bounds (enum machine_mode mode, int sign,
2229 enum machine_mode target_mode,
2230 rtx *mmin, rtx *mmax)
2231 {
2232 unsigned size = GET_MODE_BITSIZE (mode);
2233 unsigned HOST_WIDE_INT min_val, max_val;
2234
2235 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2236
2237 if (sign)
2238 {
2239 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2240 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2241 }
2242 else
2243 {
2244 min_val = 0;
2245 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2246 }
2247
2248 *mmin = gen_int_mode (min_val, target_mode);
2249 *mmax = gen_int_mode (max_val, target_mode);
2250 }
2251
2252 #include "gt-stor-layout.h"