expmed.c (struct init_expmed_rtl): Change all fields but pow2 and cint from struct...
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "stringpool.h"
28 #include "varasm.h"
29 #include "print-tree.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "diagnostic-core.h"
36 #include "target.h"
37 #include "langhooks.h"
38 #include "regs.h"
39 #include "params.h"
40 #include "cgraph.h"
41 #include "tree-inline.h"
42 #include "tree-dump.h"
43 #include "gimplify.h"
44
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) stk_type_kind_last];
48
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
52
53 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
54 in the address spaces' address_mode, not pointer_mode. Set only by
55 internal_reference_types called only by a front end. */
56 static int reference_types_internal = 0;
57
58 static tree self_referential_size (tree);
59 static void finalize_record_size (record_layout_info);
60 static void finalize_type_size (tree);
61 static void place_union_field (record_layout_info, tree);
62 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
63 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
64 HOST_WIDE_INT, tree);
65 #endif
66 extern void debug_rli (record_layout_info);
67 \f
68 /* Show that REFERENCE_TYPES are internal and should use address_mode.
69 Called only by front end. */
70
71 void
72 internal_reference_types (void)
73 {
74 reference_types_internal = 1;
75 }
76
77 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
78 to serve as the actual size-expression for a type or decl. */
79
80 tree
81 variable_size (tree size)
82 {
83 /* Obviously. */
84 if (TREE_CONSTANT (size))
85 return size;
86
87 /* If the size is self-referential, we can't make a SAVE_EXPR (see
88 save_expr for the rationale). But we can do something else. */
89 if (CONTAINS_PLACEHOLDER_P (size))
90 return self_referential_size (size);
91
92 /* If we are in the global binding level, we can't make a SAVE_EXPR
93 since it may end up being shared across functions, so it is up
94 to the front-end to deal with this case. */
95 if (lang_hooks.decls.global_bindings_p ())
96 return size;
97
98 return save_expr (size);
99 }
100
101 /* An array of functions used for self-referential size computation. */
102 static GTY(()) vec<tree, va_gc> *size_functions;
103
104 /* Similar to copy_tree_r but do not copy component references involving
105 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
106 and substituted in substitute_in_expr. */
107
108 static tree
109 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
110 {
111 enum tree_code code = TREE_CODE (*tp);
112
113 /* Stop at types, decls, constants like copy_tree_r. */
114 if (TREE_CODE_CLASS (code) == tcc_type
115 || TREE_CODE_CLASS (code) == tcc_declaration
116 || TREE_CODE_CLASS (code) == tcc_constant)
117 {
118 *walk_subtrees = 0;
119 return NULL_TREE;
120 }
121
122 /* This is the pattern built in ada/make_aligning_type. */
123 else if (code == ADDR_EXPR
124 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
125 {
126 *walk_subtrees = 0;
127 return NULL_TREE;
128 }
129
130 /* Default case: the component reference. */
131 else if (code == COMPONENT_REF)
132 {
133 tree inner;
134 for (inner = TREE_OPERAND (*tp, 0);
135 REFERENCE_CLASS_P (inner);
136 inner = TREE_OPERAND (inner, 0))
137 ;
138
139 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
140 {
141 *walk_subtrees = 0;
142 return NULL_TREE;
143 }
144 }
145
146 /* We're not supposed to have them in self-referential size trees
147 because we wouldn't properly control when they are evaluated.
148 However, not creating superfluous SAVE_EXPRs requires accurate
149 tracking of readonly-ness all the way down to here, which we
150 cannot always guarantee in practice. So punt in this case. */
151 else if (code == SAVE_EXPR)
152 return error_mark_node;
153
154 else if (code == STATEMENT_LIST)
155 gcc_unreachable ();
156
157 return copy_tree_r (tp, walk_subtrees, data);
158 }
159
160 /* Given a SIZE expression that is self-referential, return an equivalent
161 expression to serve as the actual size expression for a type. */
162
163 static tree
164 self_referential_size (tree size)
165 {
166 static unsigned HOST_WIDE_INT fnno = 0;
167 vec<tree> self_refs = vNULL;
168 tree param_type_list = NULL, param_decl_list = NULL;
169 tree t, ref, return_type, fntype, fnname, fndecl;
170 unsigned int i;
171 char buf[128];
172 vec<tree, va_gc> *args = NULL;
173
174 /* Do not factor out simple operations. */
175 t = skip_simple_constant_arithmetic (size);
176 if (TREE_CODE (t) == CALL_EXPR)
177 return size;
178
179 /* Collect the list of self-references in the expression. */
180 find_placeholder_in_expr (size, &self_refs);
181 gcc_assert (self_refs.length () > 0);
182
183 /* Obtain a private copy of the expression. */
184 t = size;
185 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
186 return size;
187 size = t;
188
189 /* Build the parameter and argument lists in parallel; also
190 substitute the former for the latter in the expression. */
191 vec_alloc (args, self_refs.length ());
192 FOR_EACH_VEC_ELT (self_refs, i, ref)
193 {
194 tree subst, param_name, param_type, param_decl;
195
196 if (DECL_P (ref))
197 {
198 /* We shouldn't have true variables here. */
199 gcc_assert (TREE_READONLY (ref));
200 subst = ref;
201 }
202 /* This is the pattern built in ada/make_aligning_type. */
203 else if (TREE_CODE (ref) == ADDR_EXPR)
204 subst = ref;
205 /* Default case: the component reference. */
206 else
207 subst = TREE_OPERAND (ref, 1);
208
209 sprintf (buf, "p%d", i);
210 param_name = get_identifier (buf);
211 param_type = TREE_TYPE (ref);
212 param_decl
213 = build_decl (input_location, PARM_DECL, param_name, param_type);
214 if (targetm.calls.promote_prototypes (NULL_TREE)
215 && INTEGRAL_TYPE_P (param_type)
216 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
217 DECL_ARG_TYPE (param_decl) = integer_type_node;
218 else
219 DECL_ARG_TYPE (param_decl) = param_type;
220 DECL_ARTIFICIAL (param_decl) = 1;
221 TREE_READONLY (param_decl) = 1;
222
223 size = substitute_in_expr (size, subst, param_decl);
224
225 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
226 param_decl_list = chainon (param_decl, param_decl_list);
227 args->quick_push (ref);
228 }
229
230 self_refs.release ();
231
232 /* Append 'void' to indicate that the number of parameters is fixed. */
233 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
234
235 /* The 3 lists have been created in reverse order. */
236 param_type_list = nreverse (param_type_list);
237 param_decl_list = nreverse (param_decl_list);
238
239 /* Build the function type. */
240 return_type = TREE_TYPE (size);
241 fntype = build_function_type (return_type, param_type_list);
242
243 /* Build the function declaration. */
244 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
245 fnname = get_file_function_name (buf);
246 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
247 for (t = param_decl_list; t; t = DECL_CHAIN (t))
248 DECL_CONTEXT (t) = fndecl;
249 DECL_ARGUMENTS (fndecl) = param_decl_list;
250 DECL_RESULT (fndecl)
251 = build_decl (input_location, RESULT_DECL, 0, return_type);
252 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
253
254 /* The function has been created by the compiler and we don't
255 want to emit debug info for it. */
256 DECL_ARTIFICIAL (fndecl) = 1;
257 DECL_IGNORED_P (fndecl) = 1;
258
259 /* It is supposed to be "const" and never throw. */
260 TREE_READONLY (fndecl) = 1;
261 TREE_NOTHROW (fndecl) = 1;
262
263 /* We want it to be inlined when this is deemed profitable, as
264 well as discarded if every call has been integrated. */
265 DECL_DECLARED_INLINE_P (fndecl) = 1;
266
267 /* It is made up of a unique return statement. */
268 DECL_INITIAL (fndecl) = make_node (BLOCK);
269 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
270 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
271 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
272 TREE_STATIC (fndecl) = 1;
273
274 /* Put it onto the list of size functions. */
275 vec_safe_push (size_functions, fndecl);
276
277 /* Replace the original expression with a call to the size function. */
278 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
279 }
280
281 /* Take, queue and compile all the size functions. It is essential that
282 the size functions be gimplified at the very end of the compilation
283 in order to guarantee transparent handling of self-referential sizes.
284 Otherwise the GENERIC inliner would not be able to inline them back
285 at each of their call sites, thus creating artificial non-constant
286 size expressions which would trigger nasty problems later on. */
287
288 void
289 finalize_size_functions (void)
290 {
291 unsigned int i;
292 tree fndecl;
293
294 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
295 {
296 allocate_struct_function (fndecl, false);
297 set_cfun (NULL);
298 dump_function (TDI_original, fndecl);
299 gimplify_function_tree (fndecl);
300 dump_function (TDI_generic, fndecl);
301 cgraph_finalize_function (fndecl, false);
302 }
303
304 vec_free (size_functions);
305 }
306 \f
307 /* Return the machine mode to use for a nonscalar of SIZE bits. The
308 mode must be in class MCLASS, and have exactly that many value bits;
309 it may have padding as well. If LIMIT is nonzero, modes of wider
310 than MAX_FIXED_MODE_SIZE will not be used. */
311
312 enum machine_mode
313 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
314 {
315 enum machine_mode mode;
316
317 if (limit && size > MAX_FIXED_MODE_SIZE)
318 return BLKmode;
319
320 /* Get the first mode which has this size, in the specified class. */
321 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
322 mode = GET_MODE_WIDER_MODE (mode))
323 if (GET_MODE_PRECISION (mode) == size)
324 return mode;
325
326 return BLKmode;
327 }
328
329 /* Similar, except passed a tree node. */
330
331 enum machine_mode
332 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
333 {
334 unsigned HOST_WIDE_INT uhwi;
335 unsigned int ui;
336
337 if (!tree_fits_uhwi_p (size))
338 return BLKmode;
339 uhwi = tree_to_uhwi (size);
340 ui = uhwi;
341 if (uhwi != ui)
342 return BLKmode;
343 return mode_for_size (ui, mclass, limit);
344 }
345
346 /* Similar, but never return BLKmode; return the narrowest mode that
347 contains at least the requested number of value bits. */
348
349 enum machine_mode
350 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
351 {
352 enum machine_mode mode;
353
354 /* Get the first mode which has at least this size, in the
355 specified class. */
356 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
357 mode = GET_MODE_WIDER_MODE (mode))
358 if (GET_MODE_PRECISION (mode) >= size)
359 return mode;
360
361 gcc_unreachable ();
362 }
363
364 /* Find an integer mode of the exact same size, or BLKmode on failure. */
365
366 enum machine_mode
367 int_mode_for_mode (enum machine_mode mode)
368 {
369 switch (GET_MODE_CLASS (mode))
370 {
371 case MODE_INT:
372 case MODE_PARTIAL_INT:
373 break;
374
375 case MODE_COMPLEX_INT:
376 case MODE_COMPLEX_FLOAT:
377 case MODE_FLOAT:
378 case MODE_DECIMAL_FLOAT:
379 case MODE_VECTOR_INT:
380 case MODE_VECTOR_FLOAT:
381 case MODE_FRACT:
382 case MODE_ACCUM:
383 case MODE_UFRACT:
384 case MODE_UACCUM:
385 case MODE_VECTOR_FRACT:
386 case MODE_VECTOR_ACCUM:
387 case MODE_VECTOR_UFRACT:
388 case MODE_VECTOR_UACCUM:
389 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
390 break;
391
392 case MODE_RANDOM:
393 if (mode == BLKmode)
394 break;
395
396 /* ... fall through ... */
397
398 case MODE_CC:
399 default:
400 gcc_unreachable ();
401 }
402
403 return mode;
404 }
405
406 /* Find a mode that can be used for efficient bitwise operations on MODE.
407 Return BLKmode if no such mode exists. */
408
409 enum machine_mode
410 bitwise_mode_for_mode (enum machine_mode mode)
411 {
412 /* Quick exit if we already have a suitable mode. */
413 unsigned int bitsize = GET_MODE_BITSIZE (mode);
414 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
415 return mode;
416
417 /* Reuse the sanity checks from int_mode_for_mode. */
418 gcc_checking_assert ((int_mode_for_mode (mode), true));
419
420 /* Try to replace complex modes with complex modes. In general we
421 expect both components to be processed independently, so we only
422 care whether there is a register for the inner mode. */
423 if (COMPLEX_MODE_P (mode))
424 {
425 enum machine_mode trial = mode;
426 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
427 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
428 if (trial != BLKmode
429 && have_regs_of_mode[GET_MODE_INNER (trial)])
430 return trial;
431 }
432
433 /* Try to replace vector modes with vector modes. Also try using vector
434 modes if an integer mode would be too big. */
435 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
436 {
437 enum machine_mode trial = mode;
438 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
439 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
440 if (trial != BLKmode
441 && have_regs_of_mode[trial]
442 && targetm.vector_mode_supported_p (trial))
443 return trial;
444 }
445
446 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
447 return mode_for_size (bitsize, MODE_INT, true);
448 }
449
450 /* Find a type that can be used for efficient bitwise operations on MODE.
451 Return null if no such mode exists. */
452
453 tree
454 bitwise_type_for_mode (enum machine_mode mode)
455 {
456 mode = bitwise_mode_for_mode (mode);
457 if (mode == BLKmode)
458 return NULL_TREE;
459
460 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
461 tree inner_type = build_nonstandard_integer_type (inner_size, true);
462
463 if (VECTOR_MODE_P (mode))
464 return build_vector_type_for_mode (inner_type, mode);
465
466 if (COMPLEX_MODE_P (mode))
467 return build_complex_type (inner_type);
468
469 gcc_checking_assert (GET_MODE_INNER (mode) == VOIDmode);
470 return inner_type;
471 }
472
473 /* Find a mode that is suitable for representing a vector with
474 NUNITS elements of mode INNERMODE. Returns BLKmode if there
475 is no suitable mode. */
476
477 enum machine_mode
478 mode_for_vector (enum machine_mode innermode, unsigned nunits)
479 {
480 enum machine_mode mode;
481
482 /* First, look for a supported vector type. */
483 if (SCALAR_FLOAT_MODE_P (innermode))
484 mode = MIN_MODE_VECTOR_FLOAT;
485 else if (SCALAR_FRACT_MODE_P (innermode))
486 mode = MIN_MODE_VECTOR_FRACT;
487 else if (SCALAR_UFRACT_MODE_P (innermode))
488 mode = MIN_MODE_VECTOR_UFRACT;
489 else if (SCALAR_ACCUM_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_ACCUM;
491 else if (SCALAR_UACCUM_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_UACCUM;
493 else
494 mode = MIN_MODE_VECTOR_INT;
495
496 /* Do not check vector_mode_supported_p here. We'll do that
497 later in vector_type_mode. */
498 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
499 if (GET_MODE_NUNITS (mode) == nunits
500 && GET_MODE_INNER (mode) == innermode)
501 break;
502
503 /* For integers, try mapping it to a same-sized scalar mode. */
504 if (mode == VOIDmode
505 && GET_MODE_CLASS (innermode) == MODE_INT)
506 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
507 MODE_INT, 0);
508
509 if (mode == VOIDmode
510 || (GET_MODE_CLASS (mode) == MODE_INT
511 && !have_regs_of_mode[mode]))
512 return BLKmode;
513
514 return mode;
515 }
516
517 /* Return the alignment of MODE. This will be bounded by 1 and
518 BIGGEST_ALIGNMENT. */
519
520 unsigned int
521 get_mode_alignment (enum machine_mode mode)
522 {
523 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
524 }
525
526 /* Return the precision of the mode, or for a complex or vector mode the
527 precision of the mode of its elements. */
528
529 unsigned int
530 element_precision (enum machine_mode mode)
531 {
532 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
533 mode = GET_MODE_INNER (mode);
534
535 return GET_MODE_PRECISION (mode);
536 }
537
538 /* Return the natural mode of an array, given that it is SIZE bytes in
539 total and has elements of type ELEM_TYPE. */
540
541 static enum machine_mode
542 mode_for_array (tree elem_type, tree size)
543 {
544 tree elem_size;
545 unsigned HOST_WIDE_INT int_size, int_elem_size;
546 bool limit_p;
547
548 /* One-element arrays get the component type's mode. */
549 elem_size = TYPE_SIZE (elem_type);
550 if (simple_cst_equal (size, elem_size))
551 return TYPE_MODE (elem_type);
552
553 limit_p = true;
554 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
555 {
556 int_size = tree_to_uhwi (size);
557 int_elem_size = tree_to_uhwi (elem_size);
558 if (int_elem_size > 0
559 && int_size % int_elem_size == 0
560 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
561 int_size / int_elem_size))
562 limit_p = false;
563 }
564 return mode_for_size_tree (size, MODE_INT, limit_p);
565 }
566 \f
567 /* Subroutine of layout_decl: Force alignment required for the data type.
568 But if the decl itself wants greater alignment, don't override that. */
569
570 static inline void
571 do_type_align (tree type, tree decl)
572 {
573 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
574 {
575 DECL_ALIGN (decl) = TYPE_ALIGN (type);
576 if (TREE_CODE (decl) == FIELD_DECL)
577 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
578 }
579 }
580
581 /* Set the size, mode and alignment of a ..._DECL node.
582 TYPE_DECL does need this for C++.
583 Note that LABEL_DECL and CONST_DECL nodes do not need this,
584 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
585 Don't call layout_decl for them.
586
587 KNOWN_ALIGN is the amount of alignment we can assume this
588 decl has with no special effort. It is relevant only for FIELD_DECLs
589 and depends on the previous fields.
590 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
591 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
592 the record will be aligned to suit. */
593
594 void
595 layout_decl (tree decl, unsigned int known_align)
596 {
597 tree type = TREE_TYPE (decl);
598 enum tree_code code = TREE_CODE (decl);
599 rtx rtl = NULL_RTX;
600 location_t loc = DECL_SOURCE_LOCATION (decl);
601
602 if (code == CONST_DECL)
603 return;
604
605 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
606 || code == TYPE_DECL ||code == FIELD_DECL);
607
608 rtl = DECL_RTL_IF_SET (decl);
609
610 if (type == error_mark_node)
611 type = void_type_node;
612
613 /* Usually the size and mode come from the data type without change,
614 however, the front-end may set the explicit width of the field, so its
615 size may not be the same as the size of its type. This happens with
616 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
617 also happens with other fields. For example, the C++ front-end creates
618 zero-sized fields corresponding to empty base classes, and depends on
619 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
620 size in bytes from the size in bits. If we have already set the mode,
621 don't set it again since we can be called twice for FIELD_DECLs. */
622
623 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
624 if (DECL_MODE (decl) == VOIDmode)
625 DECL_MODE (decl) = TYPE_MODE (type);
626
627 if (DECL_SIZE (decl) == 0)
628 {
629 DECL_SIZE (decl) = TYPE_SIZE (type);
630 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
631 }
632 else if (DECL_SIZE_UNIT (decl) == 0)
633 DECL_SIZE_UNIT (decl)
634 = fold_convert_loc (loc, sizetype,
635 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
636 bitsize_unit_node));
637
638 if (code != FIELD_DECL)
639 /* For non-fields, update the alignment from the type. */
640 do_type_align (type, decl);
641 else
642 /* For fields, it's a bit more complicated... */
643 {
644 bool old_user_align = DECL_USER_ALIGN (decl);
645 bool zero_bitfield = false;
646 bool packed_p = DECL_PACKED (decl);
647 unsigned int mfa;
648
649 if (DECL_BIT_FIELD (decl))
650 {
651 DECL_BIT_FIELD_TYPE (decl) = type;
652
653 /* A zero-length bit-field affects the alignment of the next
654 field. In essence such bit-fields are not influenced by
655 any packing due to #pragma pack or attribute packed. */
656 if (integer_zerop (DECL_SIZE (decl))
657 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
658 {
659 zero_bitfield = true;
660 packed_p = false;
661 #ifdef PCC_BITFIELD_TYPE_MATTERS
662 if (PCC_BITFIELD_TYPE_MATTERS)
663 do_type_align (type, decl);
664 else
665 #endif
666 {
667 #ifdef EMPTY_FIELD_BOUNDARY
668 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
669 {
670 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
671 DECL_USER_ALIGN (decl) = 0;
672 }
673 #endif
674 }
675 }
676
677 /* See if we can use an ordinary integer mode for a bit-field.
678 Conditions are: a fixed size that is correct for another mode,
679 occupying a complete byte or bytes on proper boundary. */
680 if (TYPE_SIZE (type) != 0
681 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
682 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
683 {
684 enum machine_mode xmode
685 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
686 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
687
688 if (xmode != BLKmode
689 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
690 && (known_align == 0 || known_align >= xalign))
691 {
692 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
693 DECL_MODE (decl) = xmode;
694 DECL_BIT_FIELD (decl) = 0;
695 }
696 }
697
698 /* Turn off DECL_BIT_FIELD if we won't need it set. */
699 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
700 && known_align >= TYPE_ALIGN (type)
701 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
702 DECL_BIT_FIELD (decl) = 0;
703 }
704 else if (packed_p && DECL_USER_ALIGN (decl))
705 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
706 round up; we'll reduce it again below. We want packing to
707 supersede USER_ALIGN inherited from the type, but defer to
708 alignment explicitly specified on the field decl. */;
709 else
710 do_type_align (type, decl);
711
712 /* If the field is packed and not explicitly aligned, give it the
713 minimum alignment. Note that do_type_align may set
714 DECL_USER_ALIGN, so we need to check old_user_align instead. */
715 if (packed_p
716 && !old_user_align)
717 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
718
719 if (! packed_p && ! DECL_USER_ALIGN (decl))
720 {
721 /* Some targets (i.e. i386, VMS) limit struct field alignment
722 to a lower boundary than alignment of variables unless
723 it was overridden by attribute aligned. */
724 #ifdef BIGGEST_FIELD_ALIGNMENT
725 DECL_ALIGN (decl)
726 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
727 #endif
728 #ifdef ADJUST_FIELD_ALIGN
729 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
730 #endif
731 }
732
733 if (zero_bitfield)
734 mfa = initial_max_fld_align * BITS_PER_UNIT;
735 else
736 mfa = maximum_field_alignment;
737 /* Should this be controlled by DECL_USER_ALIGN, too? */
738 if (mfa != 0)
739 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
740 }
741
742 /* Evaluate nonconstant size only once, either now or as soon as safe. */
743 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
744 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
745 if (DECL_SIZE_UNIT (decl) != 0
746 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
747 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
748
749 /* If requested, warn about definitions of large data objects. */
750 if (warn_larger_than
751 && (code == VAR_DECL || code == PARM_DECL)
752 && ! DECL_EXTERNAL (decl))
753 {
754 tree size = DECL_SIZE_UNIT (decl);
755
756 if (size != 0 && TREE_CODE (size) == INTEGER_CST
757 && compare_tree_int (size, larger_than_size) > 0)
758 {
759 int size_as_int = TREE_INT_CST_LOW (size);
760
761 if (compare_tree_int (size, size_as_int) == 0)
762 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
763 else
764 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
765 decl, larger_than_size);
766 }
767 }
768
769 /* If the RTL was already set, update its mode and mem attributes. */
770 if (rtl)
771 {
772 PUT_MODE (rtl, DECL_MODE (decl));
773 SET_DECL_RTL (decl, 0);
774 set_mem_attributes (rtl, decl, 1);
775 SET_DECL_RTL (decl, rtl);
776 }
777 }
778
779 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
780 a previous call to layout_decl and calls it again. */
781
782 void
783 relayout_decl (tree decl)
784 {
785 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
786 DECL_MODE (decl) = VOIDmode;
787 if (!DECL_USER_ALIGN (decl))
788 DECL_ALIGN (decl) = 0;
789 SET_DECL_RTL (decl, 0);
790
791 layout_decl (decl, 0);
792 }
793 \f
794 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
795 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
796 is to be passed to all other layout functions for this record. It is the
797 responsibility of the caller to call `free' for the storage returned.
798 Note that garbage collection is not permitted until we finish laying
799 out the record. */
800
801 record_layout_info
802 start_record_layout (tree t)
803 {
804 record_layout_info rli = XNEW (struct record_layout_info_s);
805
806 rli->t = t;
807
808 /* If the type has a minimum specified alignment (via an attribute
809 declaration, for example) use it -- otherwise, start with a
810 one-byte alignment. */
811 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
812 rli->unpacked_align = rli->record_align;
813 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
814
815 #ifdef STRUCTURE_SIZE_BOUNDARY
816 /* Packed structures don't need to have minimum size. */
817 if (! TYPE_PACKED (t))
818 {
819 unsigned tmp;
820
821 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
822 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
823 if (maximum_field_alignment != 0)
824 tmp = MIN (tmp, maximum_field_alignment);
825 rli->record_align = MAX (rli->record_align, tmp);
826 }
827 #endif
828
829 rli->offset = size_zero_node;
830 rli->bitpos = bitsize_zero_node;
831 rli->prev_field = 0;
832 rli->pending_statics = 0;
833 rli->packed_maybe_necessary = 0;
834 rli->remaining_in_alignment = 0;
835
836 return rli;
837 }
838
839 /* Return the combined bit position for the byte offset OFFSET and the
840 bit position BITPOS.
841
842 These functions operate on byte and bit positions present in FIELD_DECLs
843 and assume that these expressions result in no (intermediate) overflow.
844 This assumption is necessary to fold the expressions as much as possible,
845 so as to avoid creating artificially variable-sized types in languages
846 supporting variable-sized types like Ada. */
847
848 tree
849 bit_from_pos (tree offset, tree bitpos)
850 {
851 if (TREE_CODE (offset) == PLUS_EXPR)
852 offset = size_binop (PLUS_EXPR,
853 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
854 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
855 else
856 offset = fold_convert (bitsizetype, offset);
857 return size_binop (PLUS_EXPR, bitpos,
858 size_binop (MULT_EXPR, offset, bitsize_unit_node));
859 }
860
861 /* Return the combined truncated byte position for the byte offset OFFSET and
862 the bit position BITPOS. */
863
864 tree
865 byte_from_pos (tree offset, tree bitpos)
866 {
867 tree bytepos;
868 if (TREE_CODE (bitpos) == MULT_EXPR
869 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
870 bytepos = TREE_OPERAND (bitpos, 0);
871 else
872 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
873 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
874 }
875
876 /* Split the bit position POS into a byte offset *POFFSET and a bit
877 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
878
879 void
880 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
881 tree pos)
882 {
883 tree toff_align = bitsize_int (off_align);
884 if (TREE_CODE (pos) == MULT_EXPR
885 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
886 {
887 *poffset = size_binop (MULT_EXPR,
888 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
889 size_int (off_align / BITS_PER_UNIT));
890 *pbitpos = bitsize_zero_node;
891 }
892 else
893 {
894 *poffset = size_binop (MULT_EXPR,
895 fold_convert (sizetype,
896 size_binop (FLOOR_DIV_EXPR, pos,
897 toff_align)),
898 size_int (off_align / BITS_PER_UNIT));
899 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
900 }
901 }
902
903 /* Given a pointer to bit and byte offsets and an offset alignment,
904 normalize the offsets so they are within the alignment. */
905
906 void
907 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
908 {
909 /* If the bit position is now larger than it should be, adjust it
910 downwards. */
911 if (compare_tree_int (*pbitpos, off_align) >= 0)
912 {
913 tree offset, bitpos;
914 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
915 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
916 *pbitpos = bitpos;
917 }
918 }
919
920 /* Print debugging information about the information in RLI. */
921
922 DEBUG_FUNCTION void
923 debug_rli (record_layout_info rli)
924 {
925 print_node_brief (stderr, "type", rli->t, 0);
926 print_node_brief (stderr, "\noffset", rli->offset, 0);
927 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
928
929 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
930 rli->record_align, rli->unpacked_align,
931 rli->offset_align);
932
933 /* The ms_struct code is the only that uses this. */
934 if (targetm.ms_bitfield_layout_p (rli->t))
935 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
936
937 if (rli->packed_maybe_necessary)
938 fprintf (stderr, "packed may be necessary\n");
939
940 if (!vec_safe_is_empty (rli->pending_statics))
941 {
942 fprintf (stderr, "pending statics:\n");
943 debug_vec_tree (rli->pending_statics);
944 }
945 }
946
947 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
948 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
949
950 void
951 normalize_rli (record_layout_info rli)
952 {
953 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
954 }
955
956 /* Returns the size in bytes allocated so far. */
957
958 tree
959 rli_size_unit_so_far (record_layout_info rli)
960 {
961 return byte_from_pos (rli->offset, rli->bitpos);
962 }
963
964 /* Returns the size in bits allocated so far. */
965
966 tree
967 rli_size_so_far (record_layout_info rli)
968 {
969 return bit_from_pos (rli->offset, rli->bitpos);
970 }
971
972 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
973 the next available location within the record is given by KNOWN_ALIGN.
974 Update the variable alignment fields in RLI, and return the alignment
975 to give the FIELD. */
976
977 unsigned int
978 update_alignment_for_field (record_layout_info rli, tree field,
979 unsigned int known_align)
980 {
981 /* The alignment required for FIELD. */
982 unsigned int desired_align;
983 /* The type of this field. */
984 tree type = TREE_TYPE (field);
985 /* True if the field was explicitly aligned by the user. */
986 bool user_align;
987 bool is_bitfield;
988
989 /* Do not attempt to align an ERROR_MARK node */
990 if (TREE_CODE (type) == ERROR_MARK)
991 return 0;
992
993 /* Lay out the field so we know what alignment it needs. */
994 layout_decl (field, known_align);
995 desired_align = DECL_ALIGN (field);
996 user_align = DECL_USER_ALIGN (field);
997
998 is_bitfield = (type != error_mark_node
999 && DECL_BIT_FIELD_TYPE (field)
1000 && ! integer_zerop (TYPE_SIZE (type)));
1001
1002 /* Record must have at least as much alignment as any field.
1003 Otherwise, the alignment of the field within the record is
1004 meaningless. */
1005 if (targetm.ms_bitfield_layout_p (rli->t))
1006 {
1007 /* Here, the alignment of the underlying type of a bitfield can
1008 affect the alignment of a record; even a zero-sized field
1009 can do this. The alignment should be to the alignment of
1010 the type, except that for zero-size bitfields this only
1011 applies if there was an immediately prior, nonzero-size
1012 bitfield. (That's the way it is, experimentally.) */
1013 if ((!is_bitfield && !DECL_PACKED (field))
1014 || ((DECL_SIZE (field) == NULL_TREE
1015 || !integer_zerop (DECL_SIZE (field)))
1016 ? !DECL_PACKED (field)
1017 : (rli->prev_field
1018 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1019 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1020 {
1021 unsigned int type_align = TYPE_ALIGN (type);
1022 type_align = MAX (type_align, desired_align);
1023 if (maximum_field_alignment != 0)
1024 type_align = MIN (type_align, maximum_field_alignment);
1025 rli->record_align = MAX (rli->record_align, type_align);
1026 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1027 }
1028 }
1029 #ifdef PCC_BITFIELD_TYPE_MATTERS
1030 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1031 {
1032 /* Named bit-fields cause the entire structure to have the
1033 alignment implied by their type. Some targets also apply the same
1034 rules to unnamed bitfields. */
1035 if (DECL_NAME (field) != 0
1036 || targetm.align_anon_bitfield ())
1037 {
1038 unsigned int type_align = TYPE_ALIGN (type);
1039
1040 #ifdef ADJUST_FIELD_ALIGN
1041 if (! TYPE_USER_ALIGN (type))
1042 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1043 #endif
1044
1045 /* Targets might chose to handle unnamed and hence possibly
1046 zero-width bitfield. Those are not influenced by #pragmas
1047 or packed attributes. */
1048 if (integer_zerop (DECL_SIZE (field)))
1049 {
1050 if (initial_max_fld_align)
1051 type_align = MIN (type_align,
1052 initial_max_fld_align * BITS_PER_UNIT);
1053 }
1054 else if (maximum_field_alignment != 0)
1055 type_align = MIN (type_align, maximum_field_alignment);
1056 else if (DECL_PACKED (field))
1057 type_align = MIN (type_align, BITS_PER_UNIT);
1058
1059 /* The alignment of the record is increased to the maximum
1060 of the current alignment, the alignment indicated on the
1061 field (i.e., the alignment specified by an __aligned__
1062 attribute), and the alignment indicated by the type of
1063 the field. */
1064 rli->record_align = MAX (rli->record_align, desired_align);
1065 rli->record_align = MAX (rli->record_align, type_align);
1066
1067 if (warn_packed)
1068 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1069 user_align |= TYPE_USER_ALIGN (type);
1070 }
1071 }
1072 #endif
1073 else
1074 {
1075 rli->record_align = MAX (rli->record_align, desired_align);
1076 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1077 }
1078
1079 TYPE_USER_ALIGN (rli->t) |= user_align;
1080
1081 return desired_align;
1082 }
1083
1084 /* Called from place_field to handle unions. */
1085
1086 static void
1087 place_union_field (record_layout_info rli, tree field)
1088 {
1089 update_alignment_for_field (rli, field, /*known_align=*/0);
1090
1091 DECL_FIELD_OFFSET (field) = size_zero_node;
1092 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1093 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1094
1095 /* If this is an ERROR_MARK return *after* having set the
1096 field at the start of the union. This helps when parsing
1097 invalid fields. */
1098 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1099 return;
1100
1101 /* We assume the union's size will be a multiple of a byte so we don't
1102 bother with BITPOS. */
1103 if (TREE_CODE (rli->t) == UNION_TYPE)
1104 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1105 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1106 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1107 DECL_SIZE_UNIT (field), rli->offset);
1108 }
1109
1110 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1111 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1112 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1113 units of alignment than the underlying TYPE. */
1114 static int
1115 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1116 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1117 {
1118 /* Note that the calculation of OFFSET might overflow; we calculate it so
1119 that we still get the right result as long as ALIGN is a power of two. */
1120 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1121
1122 offset = offset % align;
1123 return ((offset + size + align - 1) / align
1124 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1125 }
1126 #endif
1127
1128 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1129 is a FIELD_DECL to be added after those fields already present in
1130 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1131 callers that desire that behavior must manually perform that step.) */
1132
1133 void
1134 place_field (record_layout_info rli, tree field)
1135 {
1136 /* The alignment required for FIELD. */
1137 unsigned int desired_align;
1138 /* The alignment FIELD would have if we just dropped it into the
1139 record as it presently stands. */
1140 unsigned int known_align;
1141 unsigned int actual_align;
1142 /* The type of this field. */
1143 tree type = TREE_TYPE (field);
1144
1145 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1146
1147 /* If FIELD is static, then treat it like a separate variable, not
1148 really like a structure field. If it is a FUNCTION_DECL, it's a
1149 method. In both cases, all we do is lay out the decl, and we do
1150 it *after* the record is laid out. */
1151 if (TREE_CODE (field) == VAR_DECL)
1152 {
1153 vec_safe_push (rli->pending_statics, field);
1154 return;
1155 }
1156
1157 /* Enumerators and enum types which are local to this class need not
1158 be laid out. Likewise for initialized constant fields. */
1159 else if (TREE_CODE (field) != FIELD_DECL)
1160 return;
1161
1162 /* Unions are laid out very differently than records, so split
1163 that code off to another function. */
1164 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1165 {
1166 place_union_field (rli, field);
1167 return;
1168 }
1169
1170 else if (TREE_CODE (type) == ERROR_MARK)
1171 {
1172 /* Place this field at the current allocation position, so we
1173 maintain monotonicity. */
1174 DECL_FIELD_OFFSET (field) = rli->offset;
1175 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1176 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1177 return;
1178 }
1179
1180 /* Work out the known alignment so far. Note that A & (-A) is the
1181 value of the least-significant bit in A that is one. */
1182 if (! integer_zerop (rli->bitpos))
1183 known_align = (tree_to_uhwi (rli->bitpos)
1184 & - tree_to_uhwi (rli->bitpos));
1185 else if (integer_zerop (rli->offset))
1186 known_align = 0;
1187 else if (tree_fits_uhwi_p (rli->offset))
1188 known_align = (BITS_PER_UNIT
1189 * (tree_to_uhwi (rli->offset)
1190 & - tree_to_uhwi (rli->offset)));
1191 else
1192 known_align = rli->offset_align;
1193
1194 desired_align = update_alignment_for_field (rli, field, known_align);
1195 if (known_align == 0)
1196 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1197
1198 if (warn_packed && DECL_PACKED (field))
1199 {
1200 if (known_align >= TYPE_ALIGN (type))
1201 {
1202 if (TYPE_ALIGN (type) > desired_align)
1203 {
1204 if (STRICT_ALIGNMENT)
1205 warning (OPT_Wattributes, "packed attribute causes "
1206 "inefficient alignment for %q+D", field);
1207 /* Don't warn if DECL_PACKED was set by the type. */
1208 else if (!TYPE_PACKED (rli->t))
1209 warning (OPT_Wattributes, "packed attribute is "
1210 "unnecessary for %q+D", field);
1211 }
1212 }
1213 else
1214 rli->packed_maybe_necessary = 1;
1215 }
1216
1217 /* Does this field automatically have alignment it needs by virtue
1218 of the fields that precede it and the record's own alignment? */
1219 if (known_align < desired_align)
1220 {
1221 /* No, we need to skip space before this field.
1222 Bump the cumulative size to multiple of field alignment. */
1223
1224 if (!targetm.ms_bitfield_layout_p (rli->t)
1225 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1226 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1227
1228 /* If the alignment is still within offset_align, just align
1229 the bit position. */
1230 if (desired_align < rli->offset_align)
1231 rli->bitpos = round_up (rli->bitpos, desired_align);
1232 else
1233 {
1234 /* First adjust OFFSET by the partial bits, then align. */
1235 rli->offset
1236 = size_binop (PLUS_EXPR, rli->offset,
1237 fold_convert (sizetype,
1238 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1239 bitsize_unit_node)));
1240 rli->bitpos = bitsize_zero_node;
1241
1242 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1243 }
1244
1245 if (! TREE_CONSTANT (rli->offset))
1246 rli->offset_align = desired_align;
1247 if (targetm.ms_bitfield_layout_p (rli->t))
1248 rli->prev_field = NULL;
1249 }
1250
1251 /* Handle compatibility with PCC. Note that if the record has any
1252 variable-sized fields, we need not worry about compatibility. */
1253 #ifdef PCC_BITFIELD_TYPE_MATTERS
1254 if (PCC_BITFIELD_TYPE_MATTERS
1255 && ! targetm.ms_bitfield_layout_p (rli->t)
1256 && TREE_CODE (field) == FIELD_DECL
1257 && type != error_mark_node
1258 && DECL_BIT_FIELD (field)
1259 && (! DECL_PACKED (field)
1260 /* Enter for these packed fields only to issue a warning. */
1261 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1262 && maximum_field_alignment == 0
1263 && ! integer_zerop (DECL_SIZE (field))
1264 && tree_fits_uhwi_p (DECL_SIZE (field))
1265 && tree_fits_uhwi_p (rli->offset)
1266 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1267 {
1268 unsigned int type_align = TYPE_ALIGN (type);
1269 tree dsize = DECL_SIZE (field);
1270 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1271 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1272 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1273
1274 #ifdef ADJUST_FIELD_ALIGN
1275 if (! TYPE_USER_ALIGN (type))
1276 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1277 #endif
1278
1279 /* A bit field may not span more units of alignment of its type
1280 than its type itself. Advance to next boundary if necessary. */
1281 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1282 {
1283 if (DECL_PACKED (field))
1284 {
1285 if (warn_packed_bitfield_compat == 1)
1286 inform
1287 (input_location,
1288 "offset of packed bit-field %qD has changed in GCC 4.4",
1289 field);
1290 }
1291 else
1292 rli->bitpos = round_up (rli->bitpos, type_align);
1293 }
1294
1295 if (! DECL_PACKED (field))
1296 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1297 }
1298 #endif
1299
1300 #ifdef BITFIELD_NBYTES_LIMITED
1301 if (BITFIELD_NBYTES_LIMITED
1302 && ! targetm.ms_bitfield_layout_p (rli->t)
1303 && TREE_CODE (field) == FIELD_DECL
1304 && type != error_mark_node
1305 && DECL_BIT_FIELD_TYPE (field)
1306 && ! DECL_PACKED (field)
1307 && ! integer_zerop (DECL_SIZE (field))
1308 && tree_fits_uhwi_p (DECL_SIZE (field))
1309 && tree_fits_uhwi_p (rli->offset)
1310 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1311 {
1312 unsigned int type_align = TYPE_ALIGN (type);
1313 tree dsize = DECL_SIZE (field);
1314 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1315 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1316 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1317
1318 #ifdef ADJUST_FIELD_ALIGN
1319 if (! TYPE_USER_ALIGN (type))
1320 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1321 #endif
1322
1323 if (maximum_field_alignment != 0)
1324 type_align = MIN (type_align, maximum_field_alignment);
1325 /* ??? This test is opposite the test in the containing if
1326 statement, so this code is unreachable currently. */
1327 else if (DECL_PACKED (field))
1328 type_align = MIN (type_align, BITS_PER_UNIT);
1329
1330 /* A bit field may not span the unit of alignment of its type.
1331 Advance to next boundary if necessary. */
1332 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1333 rli->bitpos = round_up (rli->bitpos, type_align);
1334
1335 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1336 }
1337 #endif
1338
1339 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1340 A subtlety:
1341 When a bit field is inserted into a packed record, the whole
1342 size of the underlying type is used by one or more same-size
1343 adjacent bitfields. (That is, if its long:3, 32 bits is
1344 used in the record, and any additional adjacent long bitfields are
1345 packed into the same chunk of 32 bits. However, if the size
1346 changes, a new field of that size is allocated.) In an unpacked
1347 record, this is the same as using alignment, but not equivalent
1348 when packing.
1349
1350 Note: for compatibility, we use the type size, not the type alignment
1351 to determine alignment, since that matches the documentation */
1352
1353 if (targetm.ms_bitfield_layout_p (rli->t))
1354 {
1355 tree prev_saved = rli->prev_field;
1356 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1357
1358 /* This is a bitfield if it exists. */
1359 if (rli->prev_field)
1360 {
1361 /* If both are bitfields, nonzero, and the same size, this is
1362 the middle of a run. Zero declared size fields are special
1363 and handled as "end of run". (Note: it's nonzero declared
1364 size, but equal type sizes!) (Since we know that both
1365 the current and previous fields are bitfields by the
1366 time we check it, DECL_SIZE must be present for both.) */
1367 if (DECL_BIT_FIELD_TYPE (field)
1368 && !integer_zerop (DECL_SIZE (field))
1369 && !integer_zerop (DECL_SIZE (rli->prev_field))
1370 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1371 && tree_fits_uhwi_p (TYPE_SIZE (type))
1372 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1373 {
1374 /* We're in the middle of a run of equal type size fields; make
1375 sure we realign if we run out of bits. (Not decl size,
1376 type size!) */
1377 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1378
1379 if (rli->remaining_in_alignment < bitsize)
1380 {
1381 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1382
1383 /* out of bits; bump up to next 'word'. */
1384 rli->bitpos
1385 = size_binop (PLUS_EXPR, rli->bitpos,
1386 bitsize_int (rli->remaining_in_alignment));
1387 rli->prev_field = field;
1388 if (typesize < bitsize)
1389 rli->remaining_in_alignment = 0;
1390 else
1391 rli->remaining_in_alignment = typesize - bitsize;
1392 }
1393 else
1394 rli->remaining_in_alignment -= bitsize;
1395 }
1396 else
1397 {
1398 /* End of a run: if leaving a run of bitfields of the same type
1399 size, we have to "use up" the rest of the bits of the type
1400 size.
1401
1402 Compute the new position as the sum of the size for the prior
1403 type and where we first started working on that type.
1404 Note: since the beginning of the field was aligned then
1405 of course the end will be too. No round needed. */
1406
1407 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1408 {
1409 rli->bitpos
1410 = size_binop (PLUS_EXPR, rli->bitpos,
1411 bitsize_int (rli->remaining_in_alignment));
1412 }
1413 else
1414 /* We "use up" size zero fields; the code below should behave
1415 as if the prior field was not a bitfield. */
1416 prev_saved = NULL;
1417
1418 /* Cause a new bitfield to be captured, either this time (if
1419 currently a bitfield) or next time we see one. */
1420 if (!DECL_BIT_FIELD_TYPE (field)
1421 || integer_zerop (DECL_SIZE (field)))
1422 rli->prev_field = NULL;
1423 }
1424
1425 normalize_rli (rli);
1426 }
1427
1428 /* If we're starting a new run of same type size bitfields
1429 (or a run of non-bitfields), set up the "first of the run"
1430 fields.
1431
1432 That is, if the current field is not a bitfield, or if there
1433 was a prior bitfield the type sizes differ, or if there wasn't
1434 a prior bitfield the size of the current field is nonzero.
1435
1436 Note: we must be sure to test ONLY the type size if there was
1437 a prior bitfield and ONLY for the current field being zero if
1438 there wasn't. */
1439
1440 if (!DECL_BIT_FIELD_TYPE (field)
1441 || (prev_saved != NULL
1442 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1443 : !integer_zerop (DECL_SIZE (field)) ))
1444 {
1445 /* Never smaller than a byte for compatibility. */
1446 unsigned int type_align = BITS_PER_UNIT;
1447
1448 /* (When not a bitfield), we could be seeing a flex array (with
1449 no DECL_SIZE). Since we won't be using remaining_in_alignment
1450 until we see a bitfield (and come by here again) we just skip
1451 calculating it. */
1452 if (DECL_SIZE (field) != NULL
1453 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1454 && tree_fits_uhwi_p (DECL_SIZE (field)))
1455 {
1456 unsigned HOST_WIDE_INT bitsize
1457 = tree_to_uhwi (DECL_SIZE (field));
1458 unsigned HOST_WIDE_INT typesize
1459 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1460
1461 if (typesize < bitsize)
1462 rli->remaining_in_alignment = 0;
1463 else
1464 rli->remaining_in_alignment = typesize - bitsize;
1465 }
1466
1467 /* Now align (conventionally) for the new type. */
1468 type_align = TYPE_ALIGN (TREE_TYPE (field));
1469
1470 if (maximum_field_alignment != 0)
1471 type_align = MIN (type_align, maximum_field_alignment);
1472
1473 rli->bitpos = round_up (rli->bitpos, type_align);
1474
1475 /* If we really aligned, don't allow subsequent bitfields
1476 to undo that. */
1477 rli->prev_field = NULL;
1478 }
1479 }
1480
1481 /* Offset so far becomes the position of this field after normalizing. */
1482 normalize_rli (rli);
1483 DECL_FIELD_OFFSET (field) = rli->offset;
1484 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1485 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1486
1487 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1488 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1489 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1490
1491 /* If this field ended up more aligned than we thought it would be (we
1492 approximate this by seeing if its position changed), lay out the field
1493 again; perhaps we can use an integral mode for it now. */
1494 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1495 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1496 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1497 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1498 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1499 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1500 actual_align = (BITS_PER_UNIT
1501 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1502 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1503 else
1504 actual_align = DECL_OFFSET_ALIGN (field);
1505 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1506 store / extract bit field operations will check the alignment of the
1507 record against the mode of bit fields. */
1508
1509 if (known_align != actual_align)
1510 layout_decl (field, actual_align);
1511
1512 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1513 rli->prev_field = field;
1514
1515 /* Now add size of this field to the size of the record. If the size is
1516 not constant, treat the field as being a multiple of bytes and just
1517 adjust the offset, resetting the bit position. Otherwise, apportion the
1518 size amongst the bit position and offset. First handle the case of an
1519 unspecified size, which can happen when we have an invalid nested struct
1520 definition, such as struct j { struct j { int i; } }. The error message
1521 is printed in finish_struct. */
1522 if (DECL_SIZE (field) == 0)
1523 /* Do nothing. */;
1524 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1525 || TREE_OVERFLOW (DECL_SIZE (field)))
1526 {
1527 rli->offset
1528 = size_binop (PLUS_EXPR, rli->offset,
1529 fold_convert (sizetype,
1530 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1531 bitsize_unit_node)));
1532 rli->offset
1533 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1534 rli->bitpos = bitsize_zero_node;
1535 rli->offset_align = MIN (rli->offset_align, desired_align);
1536 }
1537 else if (targetm.ms_bitfield_layout_p (rli->t))
1538 {
1539 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1540
1541 /* If we ended a bitfield before the full length of the type then
1542 pad the struct out to the full length of the last type. */
1543 if ((DECL_CHAIN (field) == NULL
1544 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1545 && DECL_BIT_FIELD_TYPE (field)
1546 && !integer_zerop (DECL_SIZE (field)))
1547 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1548 bitsize_int (rli->remaining_in_alignment));
1549
1550 normalize_rli (rli);
1551 }
1552 else
1553 {
1554 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1555 normalize_rli (rli);
1556 }
1557 }
1558
1559 /* Assuming that all the fields have been laid out, this function uses
1560 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1561 indicated by RLI. */
1562
1563 static void
1564 finalize_record_size (record_layout_info rli)
1565 {
1566 tree unpadded_size, unpadded_size_unit;
1567
1568 /* Now we want just byte and bit offsets, so set the offset alignment
1569 to be a byte and then normalize. */
1570 rli->offset_align = BITS_PER_UNIT;
1571 normalize_rli (rli);
1572
1573 /* Determine the desired alignment. */
1574 #ifdef ROUND_TYPE_ALIGN
1575 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1576 rli->record_align);
1577 #else
1578 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1579 #endif
1580
1581 /* Compute the size so far. Be sure to allow for extra bits in the
1582 size in bytes. We have guaranteed above that it will be no more
1583 than a single byte. */
1584 unpadded_size = rli_size_so_far (rli);
1585 unpadded_size_unit = rli_size_unit_so_far (rli);
1586 if (! integer_zerop (rli->bitpos))
1587 unpadded_size_unit
1588 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1589
1590 /* Round the size up to be a multiple of the required alignment. */
1591 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1592 TYPE_SIZE_UNIT (rli->t)
1593 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1594
1595 if (TREE_CONSTANT (unpadded_size)
1596 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1597 && input_location != BUILTINS_LOCATION)
1598 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1599
1600 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1601 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1602 && TREE_CONSTANT (unpadded_size))
1603 {
1604 tree unpacked_size;
1605
1606 #ifdef ROUND_TYPE_ALIGN
1607 rli->unpacked_align
1608 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1609 #else
1610 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1611 #endif
1612
1613 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1614 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1615 {
1616 if (TYPE_NAME (rli->t))
1617 {
1618 tree name;
1619
1620 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1621 name = TYPE_NAME (rli->t);
1622 else
1623 name = DECL_NAME (TYPE_NAME (rli->t));
1624
1625 if (STRICT_ALIGNMENT)
1626 warning (OPT_Wpacked, "packed attribute causes inefficient "
1627 "alignment for %qE", name);
1628 else
1629 warning (OPT_Wpacked,
1630 "packed attribute is unnecessary for %qE", name);
1631 }
1632 else
1633 {
1634 if (STRICT_ALIGNMENT)
1635 warning (OPT_Wpacked,
1636 "packed attribute causes inefficient alignment");
1637 else
1638 warning (OPT_Wpacked, "packed attribute is unnecessary");
1639 }
1640 }
1641 }
1642 }
1643
1644 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1645
1646 void
1647 compute_record_mode (tree type)
1648 {
1649 tree field;
1650 enum machine_mode mode = VOIDmode;
1651
1652 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1653 However, if possible, we use a mode that fits in a register
1654 instead, in order to allow for better optimization down the
1655 line. */
1656 SET_TYPE_MODE (type, BLKmode);
1657
1658 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1659 return;
1660
1661 /* A record which has any BLKmode members must itself be
1662 BLKmode; it can't go in a register. Unless the member is
1663 BLKmode only because it isn't aligned. */
1664 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1665 {
1666 if (TREE_CODE (field) != FIELD_DECL)
1667 continue;
1668
1669 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1670 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1671 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1672 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1673 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1674 || ! tree_fits_uhwi_p (bit_position (field))
1675 || DECL_SIZE (field) == 0
1676 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1677 return;
1678
1679 /* If this field is the whole struct, remember its mode so
1680 that, say, we can put a double in a class into a DF
1681 register instead of forcing it to live in the stack. */
1682 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1683 mode = DECL_MODE (field);
1684
1685 /* With some targets, it is sub-optimal to access an aligned
1686 BLKmode structure as a scalar. */
1687 if (targetm.member_type_forces_blk (field, mode))
1688 return;
1689 }
1690
1691 /* If we only have one real field; use its mode if that mode's size
1692 matches the type's size. This only applies to RECORD_TYPE. This
1693 does not apply to unions. */
1694 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1695 && tree_fits_uhwi_p (TYPE_SIZE (type))
1696 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1697 SET_TYPE_MODE (type, mode);
1698 else
1699 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1700
1701 /* If structure's known alignment is less than what the scalar
1702 mode would need, and it matters, then stick with BLKmode. */
1703 if (TYPE_MODE (type) != BLKmode
1704 && STRICT_ALIGNMENT
1705 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1706 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1707 {
1708 /* If this is the only reason this type is BLKmode, then
1709 don't force containing types to be BLKmode. */
1710 TYPE_NO_FORCE_BLK (type) = 1;
1711 SET_TYPE_MODE (type, BLKmode);
1712 }
1713 }
1714
1715 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1716 out. */
1717
1718 static void
1719 finalize_type_size (tree type)
1720 {
1721 /* Normally, use the alignment corresponding to the mode chosen.
1722 However, where strict alignment is not required, avoid
1723 over-aligning structures, since most compilers do not do this
1724 alignment. */
1725
1726 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1727 && (STRICT_ALIGNMENT
1728 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1729 && TREE_CODE (type) != QUAL_UNION_TYPE
1730 && TREE_CODE (type) != ARRAY_TYPE)))
1731 {
1732 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1733
1734 /* Don't override a larger alignment requirement coming from a user
1735 alignment of one of the fields. */
1736 if (mode_align >= TYPE_ALIGN (type))
1737 {
1738 TYPE_ALIGN (type) = mode_align;
1739 TYPE_USER_ALIGN (type) = 0;
1740 }
1741 }
1742
1743 /* Do machine-dependent extra alignment. */
1744 #ifdef ROUND_TYPE_ALIGN
1745 TYPE_ALIGN (type)
1746 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1747 #endif
1748
1749 /* If we failed to find a simple way to calculate the unit size
1750 of the type, find it by division. */
1751 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1752 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1753 result will fit in sizetype. We will get more efficient code using
1754 sizetype, so we force a conversion. */
1755 TYPE_SIZE_UNIT (type)
1756 = fold_convert (sizetype,
1757 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1758 bitsize_unit_node));
1759
1760 if (TYPE_SIZE (type) != 0)
1761 {
1762 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1763 TYPE_SIZE_UNIT (type)
1764 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1765 }
1766
1767 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1768 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1769 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1770 if (TYPE_SIZE_UNIT (type) != 0
1771 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1772 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1773
1774 /* Also layout any other variants of the type. */
1775 if (TYPE_NEXT_VARIANT (type)
1776 || type != TYPE_MAIN_VARIANT (type))
1777 {
1778 tree variant;
1779 /* Record layout info of this variant. */
1780 tree size = TYPE_SIZE (type);
1781 tree size_unit = TYPE_SIZE_UNIT (type);
1782 unsigned int align = TYPE_ALIGN (type);
1783 unsigned int user_align = TYPE_USER_ALIGN (type);
1784 enum machine_mode mode = TYPE_MODE (type);
1785
1786 /* Copy it into all variants. */
1787 for (variant = TYPE_MAIN_VARIANT (type);
1788 variant != 0;
1789 variant = TYPE_NEXT_VARIANT (variant))
1790 {
1791 TYPE_SIZE (variant) = size;
1792 TYPE_SIZE_UNIT (variant) = size_unit;
1793 TYPE_ALIGN (variant) = align;
1794 TYPE_USER_ALIGN (variant) = user_align;
1795 SET_TYPE_MODE (variant, mode);
1796 }
1797 }
1798 }
1799
1800 /* Return a new underlying object for a bitfield started with FIELD. */
1801
1802 static tree
1803 start_bitfield_representative (tree field)
1804 {
1805 tree repr = make_node (FIELD_DECL);
1806 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1807 /* Force the representative to begin at a BITS_PER_UNIT aligned
1808 boundary - C++ may use tail-padding of a base object to
1809 continue packing bits so the bitfield region does not start
1810 at bit zero (see g++.dg/abi/bitfield5.C for example).
1811 Unallocated bits may happen for other reasons as well,
1812 for example Ada which allows explicit bit-granular structure layout. */
1813 DECL_FIELD_BIT_OFFSET (repr)
1814 = size_binop (BIT_AND_EXPR,
1815 DECL_FIELD_BIT_OFFSET (field),
1816 bitsize_int (~(BITS_PER_UNIT - 1)));
1817 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1818 DECL_SIZE (repr) = DECL_SIZE (field);
1819 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1820 DECL_PACKED (repr) = DECL_PACKED (field);
1821 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1822 return repr;
1823 }
1824
1825 /* Finish up a bitfield group that was started by creating the underlying
1826 object REPR with the last field in the bitfield group FIELD. */
1827
1828 static void
1829 finish_bitfield_representative (tree repr, tree field)
1830 {
1831 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1832 enum machine_mode mode;
1833 tree nextf, size;
1834
1835 size = size_diffop (DECL_FIELD_OFFSET (field),
1836 DECL_FIELD_OFFSET (repr));
1837 gcc_assert (tree_fits_uhwi_p (size));
1838 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1839 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1840 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1841 + tree_to_uhwi (DECL_SIZE (field)));
1842
1843 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1844 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1845
1846 /* Now nothing tells us how to pad out bitsize ... */
1847 nextf = DECL_CHAIN (field);
1848 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1849 nextf = DECL_CHAIN (nextf);
1850 if (nextf)
1851 {
1852 tree maxsize;
1853 /* If there was an error, the field may be not laid out
1854 correctly. Don't bother to do anything. */
1855 if (TREE_TYPE (nextf) == error_mark_node)
1856 return;
1857 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1858 DECL_FIELD_OFFSET (repr));
1859 if (tree_fits_uhwi_p (maxsize))
1860 {
1861 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1862 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1863 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1864 /* If the group ends within a bitfield nextf does not need to be
1865 aligned to BITS_PER_UNIT. Thus round up. */
1866 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1867 }
1868 else
1869 maxbitsize = bitsize;
1870 }
1871 else
1872 {
1873 /* ??? If you consider that tail-padding of this struct might be
1874 re-used when deriving from it we cannot really do the following
1875 and thus need to set maxsize to bitsize? Also we cannot
1876 generally rely on maxsize to fold to an integer constant, so
1877 use bitsize as fallback for this case. */
1878 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1879 DECL_FIELD_OFFSET (repr));
1880 if (tree_fits_uhwi_p (maxsize))
1881 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1882 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1883 else
1884 maxbitsize = bitsize;
1885 }
1886
1887 /* Only if we don't artificially break up the representative in
1888 the middle of a large bitfield with different possibly
1889 overlapping representatives. And all representatives start
1890 at byte offset. */
1891 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1892
1893 /* Find the smallest nice mode to use. */
1894 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1895 mode = GET_MODE_WIDER_MODE (mode))
1896 if (GET_MODE_BITSIZE (mode) >= bitsize)
1897 break;
1898 if (mode != VOIDmode
1899 && (GET_MODE_BITSIZE (mode) > maxbitsize
1900 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1901 mode = VOIDmode;
1902
1903 if (mode == VOIDmode)
1904 {
1905 /* We really want a BLKmode representative only as a last resort,
1906 considering the member b in
1907 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1908 Otherwise we simply want to split the representative up
1909 allowing for overlaps within the bitfield region as required for
1910 struct { int a : 7; int b : 7;
1911 int c : 10; int d; } __attribute__((packed));
1912 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1913 DECL_SIZE (repr) = bitsize_int (bitsize);
1914 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1915 DECL_MODE (repr) = BLKmode;
1916 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1917 bitsize / BITS_PER_UNIT);
1918 }
1919 else
1920 {
1921 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1922 DECL_SIZE (repr) = bitsize_int (modesize);
1923 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1924 DECL_MODE (repr) = mode;
1925 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1926 }
1927
1928 /* Remember whether the bitfield group is at the end of the
1929 structure or not. */
1930 DECL_CHAIN (repr) = nextf;
1931 }
1932
1933 /* Compute and set FIELD_DECLs for the underlying objects we should
1934 use for bitfield access for the structure laid out with RLI. */
1935
1936 static void
1937 finish_bitfield_layout (record_layout_info rli)
1938 {
1939 tree field, prev;
1940 tree repr = NULL_TREE;
1941
1942 /* Unions would be special, for the ease of type-punning optimizations
1943 we could use the underlying type as hint for the representative
1944 if the bitfield would fit and the representative would not exceed
1945 the union in size. */
1946 if (TREE_CODE (rli->t) != RECORD_TYPE)
1947 return;
1948
1949 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1950 field; field = DECL_CHAIN (field))
1951 {
1952 if (TREE_CODE (field) != FIELD_DECL)
1953 continue;
1954
1955 /* In the C++ memory model, consecutive bit fields in a structure are
1956 considered one memory location and updating a memory location
1957 may not store into adjacent memory locations. */
1958 if (!repr
1959 && DECL_BIT_FIELD_TYPE (field))
1960 {
1961 /* Start new representative. */
1962 repr = start_bitfield_representative (field);
1963 }
1964 else if (repr
1965 && ! DECL_BIT_FIELD_TYPE (field))
1966 {
1967 /* Finish off new representative. */
1968 finish_bitfield_representative (repr, prev);
1969 repr = NULL_TREE;
1970 }
1971 else if (DECL_BIT_FIELD_TYPE (field))
1972 {
1973 gcc_assert (repr != NULL_TREE);
1974
1975 /* Zero-size bitfields finish off a representative and
1976 do not have a representative themselves. This is
1977 required by the C++ memory model. */
1978 if (integer_zerop (DECL_SIZE (field)))
1979 {
1980 finish_bitfield_representative (repr, prev);
1981 repr = NULL_TREE;
1982 }
1983
1984 /* We assume that either DECL_FIELD_OFFSET of the representative
1985 and each bitfield member is a constant or they are equal.
1986 This is because we need to be able to compute the bit-offset
1987 of each field relative to the representative in get_bit_range
1988 during RTL expansion.
1989 If these constraints are not met, simply force a new
1990 representative to be generated. That will at most
1991 generate worse code but still maintain correctness with
1992 respect to the C++ memory model. */
1993 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1994 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1995 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1996 DECL_FIELD_OFFSET (field), 0)))
1997 {
1998 finish_bitfield_representative (repr, prev);
1999 repr = start_bitfield_representative (field);
2000 }
2001 }
2002 else
2003 continue;
2004
2005 if (repr)
2006 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2007
2008 prev = field;
2009 }
2010
2011 if (repr)
2012 finish_bitfield_representative (repr, prev);
2013 }
2014
2015 /* Do all of the work required to layout the type indicated by RLI,
2016 once the fields have been laid out. This function will call `free'
2017 for RLI, unless FREE_P is false. Passing a value other than false
2018 for FREE_P is bad practice; this option only exists to support the
2019 G++ 3.2 ABI. */
2020
2021 void
2022 finish_record_layout (record_layout_info rli, int free_p)
2023 {
2024 tree variant;
2025
2026 /* Compute the final size. */
2027 finalize_record_size (rli);
2028
2029 /* Compute the TYPE_MODE for the record. */
2030 compute_record_mode (rli->t);
2031
2032 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2033 finalize_type_size (rli->t);
2034
2035 /* Compute bitfield representatives. */
2036 finish_bitfield_layout (rli);
2037
2038 /* Propagate TYPE_PACKED to variants. With C++ templates,
2039 handle_packed_attribute is too early to do this. */
2040 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2041 variant = TYPE_NEXT_VARIANT (variant))
2042 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2043
2044 /* Lay out any static members. This is done now because their type
2045 may use the record's type. */
2046 while (!vec_safe_is_empty (rli->pending_statics))
2047 layout_decl (rli->pending_statics->pop (), 0);
2048
2049 /* Clean up. */
2050 if (free_p)
2051 {
2052 vec_free (rli->pending_statics);
2053 free (rli);
2054 }
2055 }
2056 \f
2057
2058 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2059 NAME, its fields are chained in reverse on FIELDS.
2060
2061 If ALIGN_TYPE is non-null, it is given the same alignment as
2062 ALIGN_TYPE. */
2063
2064 void
2065 finish_builtin_struct (tree type, const char *name, tree fields,
2066 tree align_type)
2067 {
2068 tree tail, next, variant;
2069
2070 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2071 {
2072 DECL_FIELD_CONTEXT (fields) = type;
2073 next = DECL_CHAIN (fields);
2074 DECL_CHAIN (fields) = tail;
2075 }
2076 TYPE_FIELDS (type) = tail;
2077 for (variant = TYPE_MAIN_VARIANT (type);
2078 variant != 0;
2079 variant = TYPE_NEXT_VARIANT (variant))
2080 TYPE_FIELDS (variant) = tail;
2081
2082 if (align_type)
2083 {
2084 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2085 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2086 }
2087
2088 layout_type (type);
2089 #if 0 /* not yet, should get fixed properly later */
2090 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2091 #else
2092 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2093 TYPE_DECL, get_identifier (name), type);
2094 #endif
2095 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2096 layout_decl (TYPE_NAME (type), 0);
2097 }
2098
2099 /* Calculate the mode, size, and alignment for TYPE.
2100 For an array type, calculate the element separation as well.
2101 Record TYPE on the chain of permanent or temporary types
2102 so that dbxout will find out about it.
2103
2104 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2105 layout_type does nothing on such a type.
2106
2107 If the type is incomplete, its TYPE_SIZE remains zero. */
2108
2109 void
2110 layout_type (tree type)
2111 {
2112 gcc_assert (type);
2113
2114 if (type == error_mark_node)
2115 return;
2116
2117 /* Do nothing if type has been laid out before. */
2118 if (TYPE_SIZE (type))
2119 return;
2120
2121 switch (TREE_CODE (type))
2122 {
2123 case LANG_TYPE:
2124 /* This kind of type is the responsibility
2125 of the language-specific code. */
2126 gcc_unreachable ();
2127
2128 case BOOLEAN_TYPE:
2129 case INTEGER_TYPE:
2130 case ENUMERAL_TYPE:
2131 SET_TYPE_MODE (type,
2132 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2133 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2134 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2135 break;
2136
2137 case REAL_TYPE:
2138 SET_TYPE_MODE (type,
2139 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2140 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2141 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2142 break;
2143
2144 case FIXED_POINT_TYPE:
2145 /* TYPE_MODE (type) has been set already. */
2146 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2147 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2148 break;
2149
2150 case COMPLEX_TYPE:
2151 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2152 SET_TYPE_MODE (type,
2153 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2154 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2155 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2156 0));
2157 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2158 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2159 break;
2160
2161 case VECTOR_TYPE:
2162 {
2163 int nunits = TYPE_VECTOR_SUBPARTS (type);
2164 tree innertype = TREE_TYPE (type);
2165
2166 gcc_assert (!(nunits & (nunits - 1)));
2167
2168 /* Find an appropriate mode for the vector type. */
2169 if (TYPE_MODE (type) == VOIDmode)
2170 SET_TYPE_MODE (type,
2171 mode_for_vector (TYPE_MODE (innertype), nunits));
2172
2173 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2174 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2175 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2176 TYPE_SIZE_UNIT (innertype),
2177 size_int (nunits));
2178 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2179 bitsize_int (nunits));
2180
2181 /* For vector types, we do not default to the mode's alignment.
2182 Instead, query a target hook, defaulting to natural alignment.
2183 This prevents ABI changes depending on whether or not native
2184 vector modes are supported. */
2185 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2186
2187 /* However, if the underlying mode requires a bigger alignment than
2188 what the target hook provides, we cannot use the mode. For now,
2189 simply reject that case. */
2190 gcc_assert (TYPE_ALIGN (type)
2191 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2192 break;
2193 }
2194
2195 case VOID_TYPE:
2196 /* This is an incomplete type and so doesn't have a size. */
2197 TYPE_ALIGN (type) = 1;
2198 TYPE_USER_ALIGN (type) = 0;
2199 SET_TYPE_MODE (type, VOIDmode);
2200 break;
2201
2202 case OFFSET_TYPE:
2203 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2204 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
2205 /* A pointer might be MODE_PARTIAL_INT,
2206 but ptrdiff_t must be integral. */
2207 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2208 TYPE_PRECISION (type) = POINTER_SIZE;
2209 break;
2210
2211 case FUNCTION_TYPE:
2212 case METHOD_TYPE:
2213 /* It's hard to see what the mode and size of a function ought to
2214 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2215 make it consistent with that. */
2216 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2217 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2218 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2219 break;
2220
2221 case POINTER_TYPE:
2222 case REFERENCE_TYPE:
2223 {
2224 enum machine_mode mode = TYPE_MODE (type);
2225 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2226 {
2227 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2228 mode = targetm.addr_space.address_mode (as);
2229 }
2230
2231 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2232 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2233 TYPE_UNSIGNED (type) = 1;
2234 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
2235 }
2236 break;
2237
2238 case ARRAY_TYPE:
2239 {
2240 tree index = TYPE_DOMAIN (type);
2241 tree element = TREE_TYPE (type);
2242
2243 build_pointer_type (element);
2244
2245 /* We need to know both bounds in order to compute the size. */
2246 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2247 && TYPE_SIZE (element))
2248 {
2249 tree ub = TYPE_MAX_VALUE (index);
2250 tree lb = TYPE_MIN_VALUE (index);
2251 tree element_size = TYPE_SIZE (element);
2252 tree length;
2253
2254 /* Make sure that an array of zero-sized element is zero-sized
2255 regardless of its extent. */
2256 if (integer_zerop (element_size))
2257 length = size_zero_node;
2258
2259 /* The computation should happen in the original signedness so
2260 that (possible) negative values are handled appropriately
2261 when determining overflow. */
2262 else
2263 {
2264 /* ??? When it is obvious that the range is signed
2265 represent it using ssizetype. */
2266 if (TREE_CODE (lb) == INTEGER_CST
2267 && TREE_CODE (ub) == INTEGER_CST
2268 && TYPE_UNSIGNED (TREE_TYPE (lb))
2269 && tree_int_cst_lt (ub, lb))
2270 {
2271 lb = wide_int_to_tree (ssizetype,
2272 offset_int::from (lb, SIGNED));
2273 ub = wide_int_to_tree (ssizetype,
2274 offset_int::from (ub, SIGNED));
2275 }
2276 length
2277 = fold_convert (sizetype,
2278 size_binop (PLUS_EXPR,
2279 build_int_cst (TREE_TYPE (lb), 1),
2280 size_binop (MINUS_EXPR, ub, lb)));
2281 }
2282
2283 /* ??? We have no way to distinguish a null-sized array from an
2284 array spanning the whole sizetype range, so we arbitrarily
2285 decide that [0, -1] is the only valid representation. */
2286 if (integer_zerop (length)
2287 && TREE_OVERFLOW (length)
2288 && integer_zerop (lb))
2289 length = size_zero_node;
2290
2291 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2292 fold_convert (bitsizetype,
2293 length));
2294
2295 /* If we know the size of the element, calculate the total size
2296 directly, rather than do some division thing below. This
2297 optimization helps Fortran assumed-size arrays (where the
2298 size of the array is determined at runtime) substantially. */
2299 if (TYPE_SIZE_UNIT (element))
2300 TYPE_SIZE_UNIT (type)
2301 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2302 }
2303
2304 /* Now round the alignment and size,
2305 using machine-dependent criteria if any. */
2306
2307 #ifdef ROUND_TYPE_ALIGN
2308 TYPE_ALIGN (type)
2309 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2310 #else
2311 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2312 #endif
2313 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2314 SET_TYPE_MODE (type, BLKmode);
2315 if (TYPE_SIZE (type) != 0
2316 && ! targetm.member_type_forces_blk (type, VOIDmode)
2317 /* BLKmode elements force BLKmode aggregate;
2318 else extract/store fields may lose. */
2319 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2320 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2321 {
2322 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2323 TYPE_SIZE (type)));
2324 if (TYPE_MODE (type) != BLKmode
2325 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2326 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2327 {
2328 TYPE_NO_FORCE_BLK (type) = 1;
2329 SET_TYPE_MODE (type, BLKmode);
2330 }
2331 }
2332 /* When the element size is constant, check that it is at least as
2333 large as the element alignment. */
2334 if (TYPE_SIZE_UNIT (element)
2335 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2336 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2337 TYPE_ALIGN_UNIT. */
2338 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2339 && !integer_zerop (TYPE_SIZE_UNIT (element))
2340 && compare_tree_int (TYPE_SIZE_UNIT (element),
2341 TYPE_ALIGN_UNIT (element)) < 0)
2342 error ("alignment of array elements is greater than element size");
2343 break;
2344 }
2345
2346 case RECORD_TYPE:
2347 case UNION_TYPE:
2348 case QUAL_UNION_TYPE:
2349 {
2350 tree field;
2351 record_layout_info rli;
2352
2353 /* Initialize the layout information. */
2354 rli = start_record_layout (type);
2355
2356 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2357 in the reverse order in building the COND_EXPR that denotes
2358 its size. We reverse them again later. */
2359 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2360 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2361
2362 /* Place all the fields. */
2363 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2364 place_field (rli, field);
2365
2366 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2367 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2368
2369 /* Finish laying out the record. */
2370 finish_record_layout (rli, /*free_p=*/true);
2371 }
2372 break;
2373
2374 default:
2375 gcc_unreachable ();
2376 }
2377
2378 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2379 records and unions, finish_record_layout already called this
2380 function. */
2381 if (TREE_CODE (type) != RECORD_TYPE
2382 && TREE_CODE (type) != UNION_TYPE
2383 && TREE_CODE (type) != QUAL_UNION_TYPE)
2384 finalize_type_size (type);
2385
2386 /* We should never see alias sets on incomplete aggregates. And we
2387 should not call layout_type on not incomplete aggregates. */
2388 if (AGGREGATE_TYPE_P (type))
2389 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2390 }
2391
2392 /* Vector types need to re-check the target flags each time we report
2393 the machine mode. We need to do this because attribute target can
2394 change the result of vector_mode_supported_p and have_regs_of_mode
2395 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2396 change on a per-function basis. */
2397 /* ??? Possibly a better solution is to run through all the types
2398 referenced by a function and re-compute the TYPE_MODE once, rather
2399 than make the TYPE_MODE macro call a function. */
2400
2401 enum machine_mode
2402 vector_type_mode (const_tree t)
2403 {
2404 enum machine_mode mode;
2405
2406 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2407
2408 mode = t->type_common.mode;
2409 if (VECTOR_MODE_P (mode)
2410 && (!targetm.vector_mode_supported_p (mode)
2411 || !have_regs_of_mode[mode]))
2412 {
2413 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2414
2415 /* For integers, try mapping it to a same-sized scalar mode. */
2416 if (GET_MODE_CLASS (innermode) == MODE_INT)
2417 {
2418 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2419 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2420
2421 if (mode != VOIDmode && have_regs_of_mode[mode])
2422 return mode;
2423 }
2424
2425 return BLKmode;
2426 }
2427
2428 return mode;
2429 }
2430 \f
2431 /* Create and return a type for signed integers of PRECISION bits. */
2432
2433 tree
2434 make_signed_type (int precision)
2435 {
2436 tree type = make_node (INTEGER_TYPE);
2437
2438 TYPE_PRECISION (type) = precision;
2439
2440 fixup_signed_type (type);
2441 return type;
2442 }
2443
2444 /* Create and return a type for unsigned integers of PRECISION bits. */
2445
2446 tree
2447 make_unsigned_type (int precision)
2448 {
2449 tree type = make_node (INTEGER_TYPE);
2450
2451 TYPE_PRECISION (type) = precision;
2452
2453 fixup_unsigned_type (type);
2454 return type;
2455 }
2456 \f
2457 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2458 and SATP. */
2459
2460 tree
2461 make_fract_type (int precision, int unsignedp, int satp)
2462 {
2463 tree type = make_node (FIXED_POINT_TYPE);
2464
2465 TYPE_PRECISION (type) = precision;
2466
2467 if (satp)
2468 TYPE_SATURATING (type) = 1;
2469
2470 /* Lay out the type: set its alignment, size, etc. */
2471 if (unsignedp)
2472 {
2473 TYPE_UNSIGNED (type) = 1;
2474 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2475 }
2476 else
2477 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2478 layout_type (type);
2479
2480 return type;
2481 }
2482
2483 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2484 and SATP. */
2485
2486 tree
2487 make_accum_type (int precision, int unsignedp, int satp)
2488 {
2489 tree type = make_node (FIXED_POINT_TYPE);
2490
2491 TYPE_PRECISION (type) = precision;
2492
2493 if (satp)
2494 TYPE_SATURATING (type) = 1;
2495
2496 /* Lay out the type: set its alignment, size, etc. */
2497 if (unsignedp)
2498 {
2499 TYPE_UNSIGNED (type) = 1;
2500 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2501 }
2502 else
2503 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2504 layout_type (type);
2505
2506 return type;
2507 }
2508
2509 /* Initialize sizetypes so layout_type can use them. */
2510
2511 void
2512 initialize_sizetypes (void)
2513 {
2514 int precision, bprecision;
2515
2516 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2517 if (strcmp (SIZETYPE, "unsigned int") == 0)
2518 precision = INT_TYPE_SIZE;
2519 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2520 precision = LONG_TYPE_SIZE;
2521 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2522 precision = LONG_LONG_TYPE_SIZE;
2523 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2524 precision = SHORT_TYPE_SIZE;
2525 else
2526 gcc_unreachable ();
2527
2528 bprecision
2529 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2530 bprecision
2531 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2532 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2533 bprecision = HOST_BITS_PER_DOUBLE_INT;
2534
2535 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2536 sizetype = make_node (INTEGER_TYPE);
2537 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2538 TYPE_PRECISION (sizetype) = precision;
2539 TYPE_UNSIGNED (sizetype) = 1;
2540 bitsizetype = make_node (INTEGER_TYPE);
2541 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2542 TYPE_PRECISION (bitsizetype) = bprecision;
2543 TYPE_UNSIGNED (bitsizetype) = 1;
2544
2545 /* Now layout both types manually. */
2546 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2547 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2548 TYPE_SIZE (sizetype) = bitsize_int (precision);
2549 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2550 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2551
2552 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2553 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2554 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2555 TYPE_SIZE_UNIT (bitsizetype)
2556 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2557 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2558
2559 /* Create the signed variants of *sizetype. */
2560 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2561 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2562 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2563 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2564 }
2565 \f
2566 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2567 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2568 for TYPE, based on the PRECISION and whether or not the TYPE
2569 IS_UNSIGNED. PRECISION need not correspond to a width supported
2570 natively by the hardware; for example, on a machine with 8-bit,
2571 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2572 61. */
2573
2574 void
2575 set_min_and_max_values_for_integral_type (tree type,
2576 int precision,
2577 signop sgn)
2578 {
2579 /* For bitfields with zero width we end up creating integer types
2580 with zero precision. Don't assign any minimum/maximum values
2581 to those types, they don't have any valid value. */
2582 if (precision < 1)
2583 return;
2584
2585 TYPE_MIN_VALUE (type)
2586 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2587 TYPE_MAX_VALUE (type)
2588 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2589 }
2590
2591 /* Set the extreme values of TYPE based on its precision in bits,
2592 then lay it out. Used when make_signed_type won't do
2593 because the tree code is not INTEGER_TYPE.
2594 E.g. for Pascal, when the -fsigned-char option is given. */
2595
2596 void
2597 fixup_signed_type (tree type)
2598 {
2599 int precision = TYPE_PRECISION (type);
2600
2601 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2602
2603 /* Lay out the type: set its alignment, size, etc. */
2604 layout_type (type);
2605 }
2606
2607 /* Set the extreme values of TYPE based on its precision in bits,
2608 then lay it out. This is used both in `make_unsigned_type'
2609 and for enumeral types. */
2610
2611 void
2612 fixup_unsigned_type (tree type)
2613 {
2614 int precision = TYPE_PRECISION (type);
2615
2616 TYPE_UNSIGNED (type) = 1;
2617
2618 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2619
2620 /* Lay out the type: set its alignment, size, etc. */
2621 layout_type (type);
2622 }
2623 \f
2624 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2625 starting at BITPOS.
2626
2627 BITREGION_START is the bit position of the first bit in this
2628 sequence of bit fields. BITREGION_END is the last bit in this
2629 sequence. If these two fields are non-zero, we should restrict the
2630 memory access to that range. Otherwise, we are allowed to touch
2631 any adjacent non bit-fields.
2632
2633 ALIGN is the alignment of the underlying object in bits.
2634 VOLATILEP says whether the bitfield is volatile. */
2635
2636 bit_field_mode_iterator
2637 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2638 HOST_WIDE_INT bitregion_start,
2639 HOST_WIDE_INT bitregion_end,
2640 unsigned int align, bool volatilep)
2641 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2642 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2643 m_bitregion_end (bitregion_end), m_align (align),
2644 m_volatilep (volatilep), m_count (0)
2645 {
2646 if (!m_bitregion_end)
2647 {
2648 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2649 the bitfield is mapped and won't trap, provided that ALIGN isn't
2650 too large. The cap is the biggest required alignment for data,
2651 or at least the word size. And force one such chunk at least. */
2652 unsigned HOST_WIDE_INT units
2653 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2654 if (bitsize <= 0)
2655 bitsize = 1;
2656 m_bitregion_end = bitpos + bitsize + units - 1;
2657 m_bitregion_end -= m_bitregion_end % units + 1;
2658 }
2659 }
2660
2661 /* Calls to this function return successively larger modes that can be used
2662 to represent the bitfield. Return true if another bitfield mode is
2663 available, storing it in *OUT_MODE if so. */
2664
2665 bool
2666 bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
2667 {
2668 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2669 {
2670 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2671
2672 /* Skip modes that don't have full precision. */
2673 if (unit != GET_MODE_PRECISION (m_mode))
2674 continue;
2675
2676 /* Stop if the mode is too wide to handle efficiently. */
2677 if (unit > MAX_FIXED_MODE_SIZE)
2678 break;
2679
2680 /* Don't deliver more than one multiword mode; the smallest one
2681 should be used. */
2682 if (m_count > 0 && unit > BITS_PER_WORD)
2683 break;
2684
2685 /* Skip modes that are too small. */
2686 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2687 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2688 if (subend > unit)
2689 continue;
2690
2691 /* Stop if the mode goes outside the bitregion. */
2692 HOST_WIDE_INT start = m_bitpos - substart;
2693 if (m_bitregion_start && start < m_bitregion_start)
2694 break;
2695 HOST_WIDE_INT end = start + unit;
2696 if (end > m_bitregion_end + 1)
2697 break;
2698
2699 /* Stop if the mode requires too much alignment. */
2700 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2701 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2702 break;
2703
2704 *out_mode = m_mode;
2705 m_mode = GET_MODE_WIDER_MODE (m_mode);
2706 m_count++;
2707 return true;
2708 }
2709 return false;
2710 }
2711
2712 /* Return true if smaller modes are generally preferred for this kind
2713 of bitfield. */
2714
2715 bool
2716 bit_field_mode_iterator::prefer_smaller_modes ()
2717 {
2718 return (m_volatilep
2719 ? targetm.narrow_volatile_bitfield ()
2720 : !SLOW_BYTE_ACCESS);
2721 }
2722
2723 /* Find the best machine mode to use when referencing a bit field of length
2724 BITSIZE bits starting at BITPOS.
2725
2726 BITREGION_START is the bit position of the first bit in this
2727 sequence of bit fields. BITREGION_END is the last bit in this
2728 sequence. If these two fields are non-zero, we should restrict the
2729 memory access to that range. Otherwise, we are allowed to touch
2730 any adjacent non bit-fields.
2731
2732 The underlying object is known to be aligned to a boundary of ALIGN bits.
2733 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2734 larger than LARGEST_MODE (usually SImode).
2735
2736 If no mode meets all these conditions, we return VOIDmode.
2737
2738 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2739 smallest mode meeting these conditions.
2740
2741 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2742 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2743 all the conditions.
2744
2745 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2746 decide which of the above modes should be used. */
2747
2748 enum machine_mode
2749 get_best_mode (int bitsize, int bitpos,
2750 unsigned HOST_WIDE_INT bitregion_start,
2751 unsigned HOST_WIDE_INT bitregion_end,
2752 unsigned int align,
2753 enum machine_mode largest_mode, bool volatilep)
2754 {
2755 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2756 bitregion_end, align, volatilep);
2757 enum machine_mode widest_mode = VOIDmode;
2758 enum machine_mode mode;
2759 while (iter.next_mode (&mode)
2760 /* ??? For historical reasons, reject modes that would normally
2761 receive greater alignment, even if unaligned accesses are
2762 acceptable. This has both advantages and disadvantages.
2763 Removing this check means that something like:
2764
2765 struct s { unsigned int x; unsigned int y; };
2766 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2767
2768 can be implemented using a single load and compare on
2769 64-bit machines that have no alignment restrictions.
2770 For example, on powerpc64-linux-gnu, we would generate:
2771
2772 ld 3,0(3)
2773 cntlzd 3,3
2774 srdi 3,3,6
2775 blr
2776
2777 rather than:
2778
2779 lwz 9,0(3)
2780 cmpwi 7,9,0
2781 bne 7,.L3
2782 lwz 3,4(3)
2783 cntlzw 3,3
2784 srwi 3,3,5
2785 extsw 3,3
2786 blr
2787 .p2align 4,,15
2788 .L3:
2789 li 3,0
2790 blr
2791
2792 However, accessing more than one field can make life harder
2793 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2794 has a series of unsigned short copies followed by a series of
2795 unsigned short comparisons. With this check, both the copies
2796 and comparisons remain 16-bit accesses and FRE is able
2797 to eliminate the latter. Without the check, the comparisons
2798 can be done using 2 64-bit operations, which FRE isn't able
2799 to handle in the same way.
2800
2801 Either way, it would probably be worth disabling this check
2802 during expand. One particular example where removing the
2803 check would help is the get_best_mode call in store_bit_field.
2804 If we are given a memory bitregion of 128 bits that is aligned
2805 to a 64-bit boundary, and the bitfield we want to modify is
2806 in the second half of the bitregion, this check causes
2807 store_bitfield to turn the memory into a 64-bit reference
2808 to the _first_ half of the region. We later use
2809 adjust_bitfield_address to get a reference to the correct half,
2810 but doing so looks to adjust_bitfield_address as though we are
2811 moving past the end of the original object, so it drops the
2812 associated MEM_EXPR and MEM_OFFSET. Removing the check
2813 causes store_bit_field to keep a 128-bit memory reference,
2814 so that the final bitfield reference still has a MEM_EXPR
2815 and MEM_OFFSET. */
2816 && GET_MODE_ALIGNMENT (mode) <= align
2817 && (largest_mode == VOIDmode
2818 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2819 {
2820 widest_mode = mode;
2821 if (iter.prefer_smaller_modes ())
2822 break;
2823 }
2824 return widest_mode;
2825 }
2826
2827 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2828 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2829
2830 void
2831 get_mode_bounds (enum machine_mode mode, int sign,
2832 enum machine_mode target_mode,
2833 rtx *mmin, rtx *mmax)
2834 {
2835 unsigned size = GET_MODE_PRECISION (mode);
2836 unsigned HOST_WIDE_INT min_val, max_val;
2837
2838 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2839
2840 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2841 if (mode == BImode)
2842 {
2843 if (STORE_FLAG_VALUE < 0)
2844 {
2845 min_val = STORE_FLAG_VALUE;
2846 max_val = 0;
2847 }
2848 else
2849 {
2850 min_val = 0;
2851 max_val = STORE_FLAG_VALUE;
2852 }
2853 }
2854 else if (sign)
2855 {
2856 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2857 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2858 }
2859 else
2860 {
2861 min_val = 0;
2862 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2863 }
2864
2865 *mmin = gen_int_mode (min_val, target_mode);
2866 *mmax = gen_int_mode (max_val, target_mode);
2867 }
2868
2869 #include "gt-stor-layout.h"