alloc-pool.c: Fix comment formatting.
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "toplev.h"
34 #include "ggc.h"
35 #include "target.h"
36 #include "langhooks.h"
37
38 /* Set to one when set_sizetype has been called. */
39 static int sizetype_set;
40
41 /* List of types created before set_sizetype has been called. We do not
42 make this a GGC root since we want these nodes to be reclaimed. */
43 static tree early_type_list;
44
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) TYPE_KIND_LAST];
48
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment;
52
53 /* If nonzero, the alignment of a bitstring or (power-)set value, in bits.
54 May be overridden by front-ends. */
55 unsigned int set_alignment = 0;
56
57 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
58 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
59 called only by a front end. */
60 static int reference_types_internal = 0;
61
62 static void finalize_record_size PARAMS ((record_layout_info));
63 static void finalize_type_size PARAMS ((tree));
64 static void place_union_field PARAMS ((record_layout_info, tree));
65 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
66 static int excess_unit_span PARAMS ((HOST_WIDE_INT, HOST_WIDE_INT,
67 HOST_WIDE_INT, HOST_WIDE_INT,
68 tree));
69 #endif
70 static unsigned int update_alignment_for_field
71 PARAMS ((record_layout_info, tree,
72 unsigned int));
73 extern void debug_rli PARAMS ((record_layout_info));
74 \f
75 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
76
77 static GTY(()) tree pending_sizes;
78
79 /* Nonzero means cannot safely call expand_expr now,
80 so put variable sizes onto `pending_sizes' instead. */
81
82 int immediate_size_expand;
83
84 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
85 by front end. */
86
87 void
88 internal_reference_types ()
89 {
90 reference_types_internal = 1;
91 }
92
93 /* Get a list of all the objects put on the pending sizes list. */
94
95 tree
96 get_pending_sizes ()
97 {
98 tree chain = pending_sizes;
99 tree t;
100
101 /* Put each SAVE_EXPR into the current function. */
102 for (t = chain; t; t = TREE_CHAIN (t))
103 SAVE_EXPR_CONTEXT (TREE_VALUE (t)) = current_function_decl;
104
105 pending_sizes = 0;
106 return chain;
107 }
108
109 /* Return nonzero if EXPR is present on the pending sizes list. */
110
111 int
112 is_pending_size (expr)
113 tree expr;
114 {
115 tree t;
116
117 for (t = pending_sizes; t; t = TREE_CHAIN (t))
118 if (TREE_VALUE (t) == expr)
119 return 1;
120 return 0;
121 }
122
123 /* Add EXPR to the pending sizes list. */
124
125 void
126 put_pending_size (expr)
127 tree expr;
128 {
129 /* Strip any simple arithmetic from EXPR to see if it has an underlying
130 SAVE_EXPR. */
131 expr = skip_simple_arithmetic (expr);
132
133 if (TREE_CODE (expr) == SAVE_EXPR)
134 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
135 }
136
137 /* Put a chain of objects into the pending sizes list, which must be
138 empty. */
139
140 void
141 put_pending_sizes (chain)
142 tree chain;
143 {
144 if (pending_sizes)
145 abort ();
146
147 pending_sizes = chain;
148 }
149
150 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
151 to serve as the actual size-expression for a type or decl. */
152
153 tree
154 variable_size (size)
155 tree size;
156 {
157 tree save;
158
159 /* If the language-processor is to take responsibility for variable-sized
160 items (e.g., languages which have elaboration procedures like Ada),
161 just return SIZE unchanged. Likewise for self-referential sizes and
162 constant sizes. */
163 if (TREE_CONSTANT (size)
164 || (*lang_hooks.decls.global_bindings_p) () < 0
165 || contains_placeholder_p (size))
166 return size;
167
168 if (TREE_CODE (size) == MINUS_EXPR && integer_onep (TREE_OPERAND (size, 1)))
169 /* If this is the upper bound of a C array, leave the minus 1 outside
170 the SAVE_EXPR so it can be folded away. */
171 TREE_OPERAND (size, 0) = save = save_expr (TREE_OPERAND (size, 0));
172 else
173 size = save = save_expr (size);
174
175 /* If an array with a variable number of elements is declared, and
176 the elements require destruction, we will emit a cleanup for the
177 array. That cleanup is run both on normal exit from the block
178 and in the exception-handler for the block. Normally, when code
179 is used in both ordinary code and in an exception handler it is
180 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
181 not wish to do that here; the array-size is the same in both
182 places. */
183 if (TREE_CODE (save) == SAVE_EXPR)
184 SAVE_EXPR_PERSISTENT_P (save) = 1;
185
186 if ((*lang_hooks.decls.global_bindings_p) ())
187 {
188 if (TREE_CONSTANT (size))
189 error ("type size can't be explicitly evaluated");
190 else
191 error ("variable-size type declared outside of any function");
192
193 return size_one_node;
194 }
195
196 if (immediate_size_expand)
197 expand_expr (save, const0_rtx, VOIDmode, 0);
198 else if (cfun != 0 && cfun->x_dont_save_pending_sizes_p)
199 /* The front-end doesn't want us to keep a list of the expressions
200 that determine sizes for variable size objects. */
201 ;
202 else
203 put_pending_size (save);
204
205 return size;
206 }
207 \f
208 #ifndef MAX_FIXED_MODE_SIZE
209 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
210 #endif
211
212 /* Return the machine mode to use for a nonscalar of SIZE bits.
213 The mode must be in class CLASS, and have exactly that many bits.
214 If LIMIT is nonzero, modes of wider than MAX_FIXED_MODE_SIZE will not
215 be used. */
216
217 enum machine_mode
218 mode_for_size (size, class, limit)
219 unsigned int size;
220 enum mode_class class;
221 int limit;
222 {
223 enum machine_mode mode;
224
225 if (limit && size > MAX_FIXED_MODE_SIZE)
226 return BLKmode;
227
228 /* Get the first mode which has this size, in the specified class. */
229 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
230 mode = GET_MODE_WIDER_MODE (mode))
231 if (GET_MODE_BITSIZE (mode) == size)
232 return mode;
233
234 return BLKmode;
235 }
236
237 /* Similar, except passed a tree node. */
238
239 enum machine_mode
240 mode_for_size_tree (size, class, limit)
241 tree size;
242 enum mode_class class;
243 int limit;
244 {
245 if (TREE_CODE (size) != INTEGER_CST
246 || TREE_OVERFLOW (size)
247 /* What we really want to say here is that the size can fit in a
248 host integer, but we know there's no way we'd find a mode for
249 this many bits, so there's no point in doing the precise test. */
250 || compare_tree_int (size, 1000) > 0)
251 return BLKmode;
252 else
253 return mode_for_size (tree_low_cst (size, 1), class, limit);
254 }
255
256 /* Similar, but never return BLKmode; return the narrowest mode that
257 contains at least the requested number of bits. */
258
259 enum machine_mode
260 smallest_mode_for_size (size, class)
261 unsigned int size;
262 enum mode_class class;
263 {
264 enum machine_mode mode;
265
266 /* Get the first mode which has at least this size, in the
267 specified class. */
268 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
269 mode = GET_MODE_WIDER_MODE (mode))
270 if (GET_MODE_BITSIZE (mode) >= size)
271 return mode;
272
273 abort ();
274 }
275
276 /* Find an integer mode of the exact same size, or BLKmode on failure. */
277
278 enum machine_mode
279 int_mode_for_mode (mode)
280 enum machine_mode mode;
281 {
282 switch (GET_MODE_CLASS (mode))
283 {
284 case MODE_INT:
285 case MODE_PARTIAL_INT:
286 break;
287
288 case MODE_COMPLEX_INT:
289 case MODE_COMPLEX_FLOAT:
290 case MODE_FLOAT:
291 case MODE_VECTOR_INT:
292 case MODE_VECTOR_FLOAT:
293 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
294 break;
295
296 case MODE_RANDOM:
297 if (mode == BLKmode)
298 break;
299
300 /* ... fall through ... */
301
302 case MODE_CC:
303 default:
304 abort ();
305 }
306
307 return mode;
308 }
309
310 /* Return the alignment of MODE. This will be bounded by 1 and
311 BIGGEST_ALIGNMENT. */
312
313 unsigned int
314 get_mode_alignment (mode)
315 enum machine_mode mode;
316 {
317 unsigned int alignment;
318
319 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
320 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
321 alignment = GET_MODE_UNIT_SIZE (mode);
322 else
323 alignment = GET_MODE_SIZE (mode);
324
325 /* Extract the LSB of the size. */
326 alignment = alignment & -alignment;
327 alignment *= BITS_PER_UNIT;
328
329 alignment = MIN (BIGGEST_ALIGNMENT, MAX (1, alignment));
330 return alignment;
331 }
332
333 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
334 This can only be applied to objects of a sizetype. */
335
336 tree
337 round_up (value, divisor)
338 tree value;
339 int divisor;
340 {
341 tree arg = size_int_type (divisor, TREE_TYPE (value));
342
343 return size_binop (MULT_EXPR, size_binop (CEIL_DIV_EXPR, value, arg), arg);
344 }
345
346 /* Likewise, but round down. */
347
348 tree
349 round_down (value, divisor)
350 tree value;
351 int divisor;
352 {
353 tree arg = size_int_type (divisor, TREE_TYPE (value));
354
355 return size_binop (MULT_EXPR, size_binop (FLOOR_DIV_EXPR, value, arg), arg);
356 }
357 \f
358 /* Subroutine of layout_decl: Force alignment required for the data type.
359 But if the decl itself wants greater alignment, don't override that. */
360
361 static inline void
362 do_type_align (tree type, tree decl)
363 {
364 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
365 {
366 DECL_ALIGN (decl) = TYPE_ALIGN (type);
367 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
368 }
369 }
370
371 /* Set the size, mode and alignment of a ..._DECL node.
372 TYPE_DECL does need this for C++.
373 Note that LABEL_DECL and CONST_DECL nodes do not need this,
374 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
375 Don't call layout_decl for them.
376
377 KNOWN_ALIGN is the amount of alignment we can assume this
378 decl has with no special effort. It is relevant only for FIELD_DECLs
379 and depends on the previous fields.
380 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
381 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
382 the record will be aligned to suit. */
383
384 void
385 layout_decl (decl, known_align)
386 tree decl;
387 unsigned int known_align;
388 {
389 tree type = TREE_TYPE (decl);
390 enum tree_code code = TREE_CODE (decl);
391 rtx rtl = NULL_RTX;
392
393 if (code == CONST_DECL)
394 return;
395 else if (code != VAR_DECL && code != PARM_DECL && code != RESULT_DECL
396 && code != TYPE_DECL && code != FIELD_DECL)
397 abort ();
398
399 rtl = DECL_RTL_IF_SET (decl);
400
401 if (type == error_mark_node)
402 type = void_type_node;
403
404 /* Usually the size and mode come from the data type without change,
405 however, the front-end may set the explicit width of the field, so its
406 size may not be the same as the size of its type. This happens with
407 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
408 also happens with other fields. For example, the C++ front-end creates
409 zero-sized fields corresponding to empty base classes, and depends on
410 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
411 size in bytes from the size in bits. If we have already set the mode,
412 don't set it again since we can be called twice for FIELD_DECLs. */
413
414 TREE_UNSIGNED (decl) = TREE_UNSIGNED (type);
415 if (DECL_MODE (decl) == VOIDmode)
416 DECL_MODE (decl) = TYPE_MODE (type);
417
418 if (DECL_SIZE (decl) == 0)
419 {
420 DECL_SIZE (decl) = TYPE_SIZE (type);
421 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
422 }
423 else if (DECL_SIZE_UNIT (decl) == 0)
424 DECL_SIZE_UNIT (decl)
425 = convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
426 bitsize_unit_node));
427
428 if (code != FIELD_DECL)
429 /* For non-fields, update the alignment from the type. */
430 do_type_align (type, decl);
431 else
432 /* For fields, it's a bit more complicated... */
433 {
434 if (DECL_BIT_FIELD (decl))
435 {
436 DECL_BIT_FIELD_TYPE (decl) = type;
437
438 /* A zero-length bit-field affects the alignment of the next
439 field. */
440 if (integer_zerop (DECL_SIZE (decl))
441 && ! DECL_PACKED (decl)
442 && ! (*targetm.ms_bitfield_layout_p) (DECL_FIELD_CONTEXT (decl)))
443 {
444 #ifdef PCC_BITFIELD_TYPE_MATTERS
445 if (PCC_BITFIELD_TYPE_MATTERS)
446 do_type_align (type, decl);
447 else
448 #endif
449 {
450 #ifdef EMPTY_FIELD_BOUNDARY
451 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
452 {
453 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
454 DECL_USER_ALIGN (decl) = 0;
455 }
456 #endif
457 }
458 }
459
460 /* See if we can use an ordinary integer mode for a bit-field.
461 Conditions are: a fixed size that is correct for another mode
462 and occupying a complete byte or bytes on proper boundary. */
463 if (TYPE_SIZE (type) != 0
464 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
465 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
466 {
467 enum machine_mode xmode
468 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
469
470 if (xmode != BLKmode && known_align >= GET_MODE_ALIGNMENT (xmode))
471 {
472 DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
473 DECL_ALIGN (decl));
474 DECL_MODE (decl) = xmode;
475 DECL_BIT_FIELD (decl) = 0;
476 }
477 }
478
479 /* Turn off DECL_BIT_FIELD if we won't need it set. */
480 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
481 && known_align >= TYPE_ALIGN (type)
482 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
483 DECL_BIT_FIELD (decl) = 0;
484 }
485 else if (DECL_PACKED (decl) && DECL_USER_ALIGN (decl))
486 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
487 round up; we'll reduce it again below. */;
488 else
489 do_type_align (type, decl);
490
491 /* If the field is of variable size, we can't misalign it since we
492 have no way to make a temporary to align the result. But this
493 isn't an issue if the decl is not addressable. Likewise if it
494 is of unknown size. */
495 if (DECL_PACKED (decl)
496 && !DECL_USER_ALIGN (decl)
497 && (DECL_NONADDRESSABLE_P (decl)
498 || DECL_SIZE_UNIT (decl) == 0
499 || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
500 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
501
502 /* Should this be controlled by DECL_USER_ALIGN, too? */
503 if (maximum_field_alignment != 0)
504 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), maximum_field_alignment);
505 if (! DECL_USER_ALIGN (decl))
506 {
507 /* Some targets (i.e. i386, VMS) limit struct field alignment
508 to a lower boundary than alignment of variables unless
509 it was overridden by attribute aligned. */
510 #ifdef BIGGEST_FIELD_ALIGNMENT
511 DECL_ALIGN (decl)
512 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
513 #endif
514 #ifdef ADJUST_FIELD_ALIGN
515 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
516 #endif
517 }
518 }
519
520 /* Evaluate nonconstant size only once, either now or as soon as safe. */
521 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
522 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
523 if (DECL_SIZE_UNIT (decl) != 0
524 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
525 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
526
527 /* If requested, warn about definitions of large data objects. */
528 if (warn_larger_than
529 && (code == VAR_DECL || code == PARM_DECL)
530 && ! DECL_EXTERNAL (decl))
531 {
532 tree size = DECL_SIZE_UNIT (decl);
533
534 if (size != 0 && TREE_CODE (size) == INTEGER_CST
535 && compare_tree_int (size, larger_than_size) > 0)
536 {
537 int size_as_int = TREE_INT_CST_LOW (size);
538
539 if (compare_tree_int (size, size_as_int) == 0)
540 warning_with_decl (decl, "size of `%s' is %d bytes", size_as_int);
541 else
542 warning_with_decl (decl, "size of `%s' is larger than %d bytes",
543 larger_than_size);
544 }
545 }
546
547 /* If the RTL was already set, update its mode and mem attributes. */
548 if (rtl)
549 {
550 PUT_MODE (rtl, DECL_MODE (decl));
551 SET_DECL_RTL (decl, 0);
552 set_mem_attributes (rtl, decl, 1);
553 SET_DECL_RTL (decl, rtl);
554 }
555 }
556 \f
557 /* Hook for a front-end function that can modify the record layout as needed
558 immediately before it is finalized. */
559
560 void (*lang_adjust_rli) PARAMS ((record_layout_info)) = 0;
561
562 void
563 set_lang_adjust_rli (f)
564 void (*f) PARAMS ((record_layout_info));
565 {
566 lang_adjust_rli = f;
567 }
568
569 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
570 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
571 is to be passed to all other layout functions for this record. It is the
572 responsibility of the caller to call `free' for the storage returned.
573 Note that garbage collection is not permitted until we finish laying
574 out the record. */
575
576 record_layout_info
577 start_record_layout (t)
578 tree t;
579 {
580 record_layout_info rli
581 = (record_layout_info) xmalloc (sizeof (struct record_layout_info_s));
582
583 rli->t = t;
584
585 /* If the type has a minimum specified alignment (via an attribute
586 declaration, for example) use it -- otherwise, start with a
587 one-byte alignment. */
588 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
589 rli->unpacked_align = rli->record_align;
590 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
591
592 #ifdef STRUCTURE_SIZE_BOUNDARY
593 /* Packed structures don't need to have minimum size. */
594 if (! TYPE_PACKED (t))
595 rli->record_align = MAX (rli->record_align, (unsigned) STRUCTURE_SIZE_BOUNDARY);
596 #endif
597
598 rli->offset = size_zero_node;
599 rli->bitpos = bitsize_zero_node;
600 rli->prev_field = 0;
601 rli->pending_statics = 0;
602 rli->packed_maybe_necessary = 0;
603
604 return rli;
605 }
606
607 /* These four routines perform computations that convert between
608 the offset/bitpos forms and byte and bit offsets. */
609
610 tree
611 bit_from_pos (offset, bitpos)
612 tree offset, bitpos;
613 {
614 return size_binop (PLUS_EXPR, bitpos,
615 size_binop (MULT_EXPR, convert (bitsizetype, offset),
616 bitsize_unit_node));
617 }
618
619 tree
620 byte_from_pos (offset, bitpos)
621 tree offset, bitpos;
622 {
623 return size_binop (PLUS_EXPR, offset,
624 convert (sizetype,
625 size_binop (TRUNC_DIV_EXPR, bitpos,
626 bitsize_unit_node)));
627 }
628
629 void
630 pos_from_bit (poffset, pbitpos, off_align, pos)
631 tree *poffset, *pbitpos;
632 unsigned int off_align;
633 tree pos;
634 {
635 *poffset = size_binop (MULT_EXPR,
636 convert (sizetype,
637 size_binop (FLOOR_DIV_EXPR, pos,
638 bitsize_int (off_align))),
639 size_int (off_align / BITS_PER_UNIT));
640 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
641 }
642
643 /* Given a pointer to bit and byte offsets and an offset alignment,
644 normalize the offsets so they are within the alignment. */
645
646 void
647 normalize_offset (poffset, pbitpos, off_align)
648 tree *poffset, *pbitpos;
649 unsigned int off_align;
650 {
651 /* If the bit position is now larger than it should be, adjust it
652 downwards. */
653 if (compare_tree_int (*pbitpos, off_align) >= 0)
654 {
655 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
656 bitsize_int (off_align));
657
658 *poffset
659 = size_binop (PLUS_EXPR, *poffset,
660 size_binop (MULT_EXPR, convert (sizetype, extra_aligns),
661 size_int (off_align / BITS_PER_UNIT)));
662
663 *pbitpos
664 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
665 }
666 }
667
668 /* Print debugging information about the information in RLI. */
669
670 void
671 debug_rli (rli)
672 record_layout_info rli;
673 {
674 print_node_brief (stderr, "type", rli->t, 0);
675 print_node_brief (stderr, "\noffset", rli->offset, 0);
676 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
677
678 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
679 rli->record_align, rli->unpacked_align,
680 rli->offset_align);
681 if (rli->packed_maybe_necessary)
682 fprintf (stderr, "packed may be necessary\n");
683
684 if (rli->pending_statics)
685 {
686 fprintf (stderr, "pending statics:\n");
687 debug_tree (rli->pending_statics);
688 }
689 }
690
691 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
692 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
693
694 void
695 normalize_rli (rli)
696 record_layout_info rli;
697 {
698 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
699 }
700
701 /* Returns the size in bytes allocated so far. */
702
703 tree
704 rli_size_unit_so_far (rli)
705 record_layout_info rli;
706 {
707 return byte_from_pos (rli->offset, rli->bitpos);
708 }
709
710 /* Returns the size in bits allocated so far. */
711
712 tree
713 rli_size_so_far (rli)
714 record_layout_info rli;
715 {
716 return bit_from_pos (rli->offset, rli->bitpos);
717 }
718
719 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
720 the next available location is given by KNOWN_ALIGN. Update the
721 variable alignment fields in RLI, and return the alignment to give
722 the FIELD. */
723
724 static unsigned int
725 update_alignment_for_field (rli, field, known_align)
726 record_layout_info rli;
727 tree field;
728 unsigned int known_align;
729 {
730 /* The alignment required for FIELD. */
731 unsigned int desired_align;
732 /* The type of this field. */
733 tree type = TREE_TYPE (field);
734 /* True if the field was explicitly aligned by the user. */
735 bool user_align;
736 bool is_bitfield;
737
738 /* Lay out the field so we know what alignment it needs. */
739 layout_decl (field, known_align);
740 desired_align = DECL_ALIGN (field);
741 user_align = DECL_USER_ALIGN (field);
742
743 is_bitfield = (type != error_mark_node
744 && DECL_BIT_FIELD_TYPE (field)
745 && ! integer_zerop (TYPE_SIZE (type)));
746
747 /* Record must have at least as much alignment as any field.
748 Otherwise, the alignment of the field within the record is
749 meaningless. */
750 if (is_bitfield && (* targetm.ms_bitfield_layout_p) (rli->t))
751 {
752 /* Here, the alignment of the underlying type of a bitfield can
753 affect the alignment of a record; even a zero-sized field
754 can do this. The alignment should be to the alignment of
755 the type, except that for zero-size bitfields this only
756 applies if there was an immediately prior, nonzero-size
757 bitfield. (That's the way it is, experimentally.) */
758 if (! integer_zerop (DECL_SIZE (field))
759 ? ! DECL_PACKED (field)
760 : (rli->prev_field
761 && DECL_BIT_FIELD_TYPE (rli->prev_field)
762 && ! integer_zerop (DECL_SIZE (rli->prev_field))))
763 {
764 unsigned int type_align = TYPE_ALIGN (type);
765 type_align = MAX (type_align, desired_align);
766 if (maximum_field_alignment != 0)
767 type_align = MIN (type_align, maximum_field_alignment);
768 rli->record_align = MAX (rli->record_align, type_align);
769 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
770 }
771 }
772 #ifdef PCC_BITFIELD_TYPE_MATTERS
773 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
774 {
775 /* Named bit-fields cause the entire structure to have the
776 alignment implied by their type. */
777 if (DECL_NAME (field) != 0)
778 {
779 unsigned int type_align = TYPE_ALIGN (type);
780
781 #ifdef ADJUST_FIELD_ALIGN
782 if (! TYPE_USER_ALIGN (type))
783 type_align = ADJUST_FIELD_ALIGN (field, type_align);
784 #endif
785
786 if (maximum_field_alignment != 0)
787 type_align = MIN (type_align, maximum_field_alignment);
788 else if (DECL_PACKED (field))
789 type_align = MIN (type_align, BITS_PER_UNIT);
790
791 /* The alignment of the record is increased to the maximum
792 of the current alignment, the alignment indicated on the
793 field (i.e., the alignment specified by an __aligned__
794 attribute), and the alignment indicated by the type of
795 the field. */
796 rli->record_align = MAX (rli->record_align, desired_align);
797 rli->record_align = MAX (rli->record_align, type_align);
798
799 if (warn_packed)
800 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
801 user_align |= TYPE_USER_ALIGN (type);
802 }
803 }
804 #endif
805 else
806 {
807 rli->record_align = MAX (rli->record_align, desired_align);
808 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
809 }
810
811 TYPE_USER_ALIGN (rli->t) |= user_align;
812
813 return desired_align;
814 }
815
816 /* Called from place_field to handle unions. */
817
818 static void
819 place_union_field (rli, field)
820 record_layout_info rli;
821 tree field;
822 {
823 update_alignment_for_field (rli, field, /*known_align=*/0);
824
825 DECL_FIELD_OFFSET (field) = size_zero_node;
826 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
827 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
828
829 /* We assume the union's size will be a multiple of a byte so we don't
830 bother with BITPOS. */
831 if (TREE_CODE (rli->t) == UNION_TYPE)
832 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
833 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
834 rli->offset = fold (build (COND_EXPR, sizetype,
835 DECL_QUALIFIER (field),
836 DECL_SIZE_UNIT (field), rli->offset));
837 }
838
839 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
840 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
841 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
842 units of alignment than the underlying TYPE. */
843 static int
844 excess_unit_span (byte_offset, bit_offset, size, align, type)
845 HOST_WIDE_INT byte_offset, bit_offset, size, align;
846 tree type;
847 {
848 /* Note that the calculation of OFFSET might overflow; we calculate it so
849 that we still get the right result as long as ALIGN is a power of two. */
850 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
851
852 offset = offset % align;
853 return ((offset + size + align - 1) / align
854 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
855 / align));
856 }
857 #endif
858
859 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
860 is a FIELD_DECL to be added after those fields already present in
861 T. (FIELD is not actually added to the TYPE_FIELDS list here;
862 callers that desire that behavior must manually perform that step.) */
863
864 void
865 place_field (rli, field)
866 record_layout_info rli;
867 tree field;
868 {
869 /* The alignment required for FIELD. */
870 unsigned int desired_align;
871 /* The alignment FIELD would have if we just dropped it into the
872 record as it presently stands. */
873 unsigned int known_align;
874 unsigned int actual_align;
875 /* The type of this field. */
876 tree type = TREE_TYPE (field);
877
878 if (TREE_CODE (field) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
879 return;
880
881 /* If FIELD is static, then treat it like a separate variable, not
882 really like a structure field. If it is a FUNCTION_DECL, it's a
883 method. In both cases, all we do is lay out the decl, and we do
884 it *after* the record is laid out. */
885 if (TREE_CODE (field) == VAR_DECL)
886 {
887 rli->pending_statics = tree_cons (NULL_TREE, field,
888 rli->pending_statics);
889 return;
890 }
891
892 /* Enumerators and enum types which are local to this class need not
893 be laid out. Likewise for initialized constant fields. */
894 else if (TREE_CODE (field) != FIELD_DECL)
895 return;
896
897 /* Unions are laid out very differently than records, so split
898 that code off to another function. */
899 else if (TREE_CODE (rli->t) != RECORD_TYPE)
900 {
901 place_union_field (rli, field);
902 return;
903 }
904
905 /* Work out the known alignment so far. Note that A & (-A) is the
906 value of the least-significant bit in A that is one. */
907 if (! integer_zerop (rli->bitpos))
908 known_align = (tree_low_cst (rli->bitpos, 1)
909 & - tree_low_cst (rli->bitpos, 1));
910 else if (integer_zerop (rli->offset))
911 known_align = BIGGEST_ALIGNMENT;
912 else if (host_integerp (rli->offset, 1))
913 known_align = (BITS_PER_UNIT
914 * (tree_low_cst (rli->offset, 1)
915 & - tree_low_cst (rli->offset, 1)));
916 else
917 known_align = rli->offset_align;
918
919 desired_align = update_alignment_for_field (rli, field, known_align);
920
921 if (warn_packed && DECL_PACKED (field))
922 {
923 if (known_align >= TYPE_ALIGN (type))
924 {
925 if (TYPE_ALIGN (type) > desired_align)
926 {
927 if (STRICT_ALIGNMENT)
928 warning_with_decl (field, "packed attribute causes inefficient alignment for `%s'");
929 else
930 warning_with_decl (field, "packed attribute is unnecessary for `%s'");
931 }
932 }
933 else
934 rli->packed_maybe_necessary = 1;
935 }
936
937 /* Does this field automatically have alignment it needs by virtue
938 of the fields that precede it and the record's own alignment? */
939 if (known_align < desired_align)
940 {
941 /* No, we need to skip space before this field.
942 Bump the cumulative size to multiple of field alignment. */
943
944 if (warn_padded)
945 warning_with_decl (field, "padding struct to align `%s'");
946
947 /* If the alignment is still within offset_align, just align
948 the bit position. */
949 if (desired_align < rli->offset_align)
950 rli->bitpos = round_up (rli->bitpos, desired_align);
951 else
952 {
953 /* First adjust OFFSET by the partial bits, then align. */
954 rli->offset
955 = size_binop (PLUS_EXPR, rli->offset,
956 convert (sizetype,
957 size_binop (CEIL_DIV_EXPR, rli->bitpos,
958 bitsize_unit_node)));
959 rli->bitpos = bitsize_zero_node;
960
961 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
962 }
963
964 if (! TREE_CONSTANT (rli->offset))
965 rli->offset_align = desired_align;
966
967 }
968
969 /* Handle compatibility with PCC. Note that if the record has any
970 variable-sized fields, we need not worry about compatibility. */
971 #ifdef PCC_BITFIELD_TYPE_MATTERS
972 if (PCC_BITFIELD_TYPE_MATTERS
973 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
974 && TREE_CODE (field) == FIELD_DECL
975 && type != error_mark_node
976 && DECL_BIT_FIELD (field)
977 && ! DECL_PACKED (field)
978 && maximum_field_alignment == 0
979 && ! integer_zerop (DECL_SIZE (field))
980 && host_integerp (DECL_SIZE (field), 1)
981 && host_integerp (rli->offset, 1)
982 && host_integerp (TYPE_SIZE (type), 1))
983 {
984 unsigned int type_align = TYPE_ALIGN (type);
985 tree dsize = DECL_SIZE (field);
986 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
987 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
988 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
989
990 #ifdef ADJUST_FIELD_ALIGN
991 if (! TYPE_USER_ALIGN (type))
992 type_align = ADJUST_FIELD_ALIGN (field, type_align);
993 #endif
994
995 /* A bit field may not span more units of alignment of its type
996 than its type itself. Advance to next boundary if necessary. */
997 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
998 rli->bitpos = round_up (rli->bitpos, type_align);
999
1000 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1001 }
1002 #endif
1003
1004 #ifdef BITFIELD_NBYTES_LIMITED
1005 if (BITFIELD_NBYTES_LIMITED
1006 && ! (* targetm.ms_bitfield_layout_p) (rli->t)
1007 && TREE_CODE (field) == FIELD_DECL
1008 && type != error_mark_node
1009 && DECL_BIT_FIELD_TYPE (field)
1010 && ! DECL_PACKED (field)
1011 && ! integer_zerop (DECL_SIZE (field))
1012 && host_integerp (DECL_SIZE (field), 1)
1013 && host_integerp (rli->offset, 1)
1014 && host_integerp (TYPE_SIZE (type), 1))
1015 {
1016 unsigned int type_align = TYPE_ALIGN (type);
1017 tree dsize = DECL_SIZE (field);
1018 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1019 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1020 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1021
1022 #ifdef ADJUST_FIELD_ALIGN
1023 if (! TYPE_USER_ALIGN (type))
1024 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1025 #endif
1026
1027 if (maximum_field_alignment != 0)
1028 type_align = MIN (type_align, maximum_field_alignment);
1029 /* ??? This test is opposite the test in the containing if
1030 statement, so this code is unreachable currently. */
1031 else if (DECL_PACKED (field))
1032 type_align = MIN (type_align, BITS_PER_UNIT);
1033
1034 /* A bit field may not span the unit of alignment of its type.
1035 Advance to next boundary if necessary. */
1036 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1037 rli->bitpos = round_up (rli->bitpos, type_align);
1038
1039 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1040 }
1041 #endif
1042
1043 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1044 A subtlety:
1045 When a bit field is inserted into a packed record, the whole
1046 size of the underlying type is used by one or more same-size
1047 adjacent bitfields. (That is, if its long:3, 32 bits is
1048 used in the record, and any additional adjacent long bitfields are
1049 packed into the same chunk of 32 bits. However, if the size
1050 changes, a new field of that size is allocated.) In an unpacked
1051 record, this is the same as using alignment, but not equivalent
1052 when packing.
1053
1054 Note: for compatibility, we use the type size, not the type alignment
1055 to determine alignment, since that matches the documentation */
1056
1057 if ((* targetm.ms_bitfield_layout_p) (rli->t)
1058 && ((DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field))
1059 || (rli->prev_field && ! DECL_PACKED (rli->prev_field))))
1060 {
1061 /* At this point, either the prior or current are bitfields,
1062 (possibly both), and we're dealing with MS packing. */
1063 tree prev_saved = rli->prev_field;
1064
1065 /* Is the prior field a bitfield? If so, handle "runs" of same
1066 type size fields. */
1067 if (rli->prev_field /* necessarily a bitfield if it exists. */)
1068 {
1069 /* If both are bitfields, nonzero, and the same size, this is
1070 the middle of a run. Zero declared size fields are special
1071 and handled as "end of run". (Note: it's nonzero declared
1072 size, but equal type sizes!) (Since we know that both
1073 the current and previous fields are bitfields by the
1074 time we check it, DECL_SIZE must be present for both.) */
1075 if (DECL_BIT_FIELD_TYPE (field)
1076 && !integer_zerop (DECL_SIZE (field))
1077 && !integer_zerop (DECL_SIZE (rli->prev_field))
1078 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1079 && host_integerp (TYPE_SIZE (type), 0)
1080 && simple_cst_equal (TYPE_SIZE (type),
1081 TYPE_SIZE (TREE_TYPE (rli->prev_field))))
1082 {
1083 /* We're in the middle of a run of equal type size fields; make
1084 sure we realign if we run out of bits. (Not decl size,
1085 type size!) */
1086 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 0);
1087
1088 if (rli->remaining_in_alignment < bitsize)
1089 {
1090 /* out of bits; bump up to next 'word'. */
1091 rli->offset = DECL_FIELD_OFFSET (rli->prev_field);
1092 rli->bitpos
1093 = size_binop (PLUS_EXPR, TYPE_SIZE (type),
1094 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1095 rli->prev_field = field;
1096 rli->remaining_in_alignment
1097 = tree_low_cst (TYPE_SIZE (type), 0);
1098 }
1099
1100 rli->remaining_in_alignment -= bitsize;
1101 }
1102 else
1103 {
1104 /* End of a run: if leaving a run of bitfields of the same type
1105 size, we have to "use up" the rest of the bits of the type
1106 size.
1107
1108 Compute the new position as the sum of the size for the prior
1109 type and where we first started working on that type.
1110 Note: since the beginning of the field was aligned then
1111 of course the end will be too. No round needed. */
1112
1113 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1114 {
1115 tree type_size = TYPE_SIZE (TREE_TYPE (rli->prev_field));
1116
1117 rli->bitpos
1118 = size_binop (PLUS_EXPR, type_size,
1119 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1120 }
1121 else
1122 /* We "use up" size zero fields; the code below should behave
1123 as if the prior field was not a bitfield. */
1124 prev_saved = NULL;
1125
1126 /* Cause a new bitfield to be captured, either this time (if
1127 currently a bitfield) or next time we see one. */
1128 if (!DECL_BIT_FIELD_TYPE(field)
1129 || integer_zerop (DECL_SIZE (field)))
1130 rli->prev_field = NULL;
1131 }
1132
1133 normalize_rli (rli);
1134 }
1135
1136 /* If we're starting a new run of same size type bitfields
1137 (or a run of non-bitfields), set up the "first of the run"
1138 fields.
1139
1140 That is, if the current field is not a bitfield, or if there
1141 was a prior bitfield the type sizes differ, or if there wasn't
1142 a prior bitfield the size of the current field is nonzero.
1143
1144 Note: we must be sure to test ONLY the type size if there was
1145 a prior bitfield and ONLY for the current field being zero if
1146 there wasn't. */
1147
1148 if (!DECL_BIT_FIELD_TYPE (field)
1149 || ( prev_saved != NULL
1150 ? !simple_cst_equal (TYPE_SIZE (type),
1151 TYPE_SIZE (TREE_TYPE (prev_saved)))
1152 : !integer_zerop (DECL_SIZE (field)) ))
1153 {
1154 /* Never smaller than a byte for compatibility. */
1155 unsigned int type_align = BITS_PER_UNIT;
1156
1157 /* (When not a bitfield), we could be seeing a flex array (with
1158 no DECL_SIZE). Since we won't be using remaining_in_alignment
1159 until we see a bitfield (and come by here again) we just skip
1160 calculating it. */
1161 if (DECL_SIZE (field) != NULL
1162 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 0)
1163 && host_integerp (DECL_SIZE (field), 0))
1164 rli->remaining_in_alignment
1165 = tree_low_cst (TYPE_SIZE (TREE_TYPE(field)), 0)
1166 - tree_low_cst (DECL_SIZE (field), 0);
1167
1168 /* Now align (conventionally) for the new type. */
1169 if (!DECL_PACKED(field))
1170 type_align = MAX(TYPE_ALIGN (type), type_align);
1171
1172 if (prev_saved
1173 && DECL_BIT_FIELD_TYPE (prev_saved)
1174 /* If the previous bit-field is zero-sized, we've already
1175 accounted for its alignment needs (or ignored it, if
1176 appropriate) while placing it. */
1177 && ! integer_zerop (DECL_SIZE (prev_saved)))
1178 type_align = MAX (type_align,
1179 TYPE_ALIGN (TREE_TYPE (prev_saved)));
1180
1181 if (maximum_field_alignment != 0)
1182 type_align = MIN (type_align, maximum_field_alignment);
1183
1184 rli->bitpos = round_up (rli->bitpos, type_align);
1185
1186 /* If we really aligned, don't allow subsequent bitfields
1187 to undo that. */
1188 rli->prev_field = NULL;
1189 }
1190 }
1191
1192 /* Offset so far becomes the position of this field after normalizing. */
1193 normalize_rli (rli);
1194 DECL_FIELD_OFFSET (field) = rli->offset;
1195 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1196 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1197
1198 /* If this field ended up more aligned than we thought it would be (we
1199 approximate this by seeing if its position changed), lay out the field
1200 again; perhaps we can use an integral mode for it now. */
1201 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1202 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1203 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1204 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1205 actual_align = BIGGEST_ALIGNMENT;
1206 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1207 actual_align = (BITS_PER_UNIT
1208 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1209 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1210 else
1211 actual_align = DECL_OFFSET_ALIGN (field);
1212
1213 if (known_align != actual_align)
1214 layout_decl (field, actual_align);
1215
1216 /* Only the MS bitfields use this. */
1217 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE(field))
1218 rli->prev_field = field;
1219
1220 /* Now add size of this field to the size of the record. If the size is
1221 not constant, treat the field as being a multiple of bytes and just
1222 adjust the offset, resetting the bit position. Otherwise, apportion the
1223 size amongst the bit position and offset. First handle the case of an
1224 unspecified size, which can happen when we have an invalid nested struct
1225 definition, such as struct j { struct j { int i; } }. The error message
1226 is printed in finish_struct. */
1227 if (DECL_SIZE (field) == 0)
1228 /* Do nothing. */;
1229 else if (TREE_CODE (DECL_SIZE_UNIT (field)) != INTEGER_CST
1230 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field)))
1231 {
1232 rli->offset
1233 = size_binop (PLUS_EXPR, rli->offset,
1234 convert (sizetype,
1235 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1236 bitsize_unit_node)));
1237 rli->offset
1238 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1239 rli->bitpos = bitsize_zero_node;
1240 rli->offset_align = MIN (rli->offset_align, desired_align);
1241 }
1242 else
1243 {
1244 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1245 normalize_rli (rli);
1246 }
1247 }
1248
1249 /* Assuming that all the fields have been laid out, this function uses
1250 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1251 indicated by RLI. */
1252
1253 static void
1254 finalize_record_size (rli)
1255 record_layout_info rli;
1256 {
1257 tree unpadded_size, unpadded_size_unit;
1258
1259 /* Now we want just byte and bit offsets, so set the offset alignment
1260 to be a byte and then normalize. */
1261 rli->offset_align = BITS_PER_UNIT;
1262 normalize_rli (rli);
1263
1264 /* Determine the desired alignment. */
1265 #ifdef ROUND_TYPE_ALIGN
1266 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1267 rli->record_align);
1268 #else
1269 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1270 #endif
1271
1272 /* Compute the size so far. Be sure to allow for extra bits in the
1273 size in bytes. We have guaranteed above that it will be no more
1274 than a single byte. */
1275 unpadded_size = rli_size_so_far (rli);
1276 unpadded_size_unit = rli_size_unit_so_far (rli);
1277 if (! integer_zerop (rli->bitpos))
1278 unpadded_size_unit
1279 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1280
1281 /* Round the size up to be a multiple of the required alignment. */
1282 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1283 TYPE_SIZE_UNIT (rli->t) = round_up (unpadded_size_unit,
1284 TYPE_ALIGN (rli->t) / BITS_PER_UNIT);
1285
1286 if (warn_padded && TREE_CONSTANT (unpadded_size)
1287 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1288 warning ("padding struct size to alignment boundary");
1289
1290 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1291 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1292 && TREE_CONSTANT (unpadded_size))
1293 {
1294 tree unpacked_size;
1295
1296 #ifdef ROUND_TYPE_ALIGN
1297 rli->unpacked_align
1298 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1299 #else
1300 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1301 #endif
1302
1303 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1304 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1305 {
1306 TYPE_PACKED (rli->t) = 0;
1307
1308 if (TYPE_NAME (rli->t))
1309 {
1310 const char *name;
1311
1312 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1313 name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
1314 else
1315 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
1316
1317 if (STRICT_ALIGNMENT)
1318 warning ("packed attribute causes inefficient alignment for `%s'", name);
1319 else
1320 warning ("packed attribute is unnecessary for `%s'", name);
1321 }
1322 else
1323 {
1324 if (STRICT_ALIGNMENT)
1325 warning ("packed attribute causes inefficient alignment");
1326 else
1327 warning ("packed attribute is unnecessary");
1328 }
1329 }
1330 }
1331 }
1332
1333 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1334
1335 void
1336 compute_record_mode (type)
1337 tree type;
1338 {
1339 tree field;
1340 enum machine_mode mode = VOIDmode;
1341
1342 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1343 However, if possible, we use a mode that fits in a register
1344 instead, in order to allow for better optimization down the
1345 line. */
1346 TYPE_MODE (type) = BLKmode;
1347
1348 if (! host_integerp (TYPE_SIZE (type), 1))
1349 return;
1350
1351 /* A record which has any BLKmode members must itself be
1352 BLKmode; it can't go in a register. Unless the member is
1353 BLKmode only because it isn't aligned. */
1354 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1355 {
1356 unsigned HOST_WIDE_INT bitpos;
1357
1358 if (TREE_CODE (field) != FIELD_DECL)
1359 continue;
1360
1361 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1362 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1363 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field)))
1364 || ! host_integerp (bit_position (field), 1)
1365 || DECL_SIZE (field) == 0
1366 || ! host_integerp (DECL_SIZE (field), 1))
1367 return;
1368
1369 bitpos = int_bit_position (field);
1370
1371 /* Must be BLKmode if any field crosses a word boundary,
1372 since extract_bit_field can't handle that in registers. */
1373 if (bitpos / BITS_PER_WORD
1374 != ((tree_low_cst (DECL_SIZE (field), 1) + bitpos - 1)
1375 / BITS_PER_WORD)
1376 /* But there is no problem if the field is entire words
1377 or bigger than a word. */
1378 && ! (tree_low_cst (DECL_SIZE (field), 1) % BITS_PER_WORD == 0
1379 || compare_tree_int (DECL_SIZE (field), BITS_PER_WORD) > 0))
1380 return;
1381
1382 /* If this field is the whole struct, remember its mode so
1383 that, say, we can put a double in a class into a DF
1384 register instead of forcing it to live in the stack. */
1385 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1386 mode = DECL_MODE (field);
1387
1388 #ifdef MEMBER_TYPE_FORCES_BLK
1389 /* With some targets, eg. c4x, it is sub-optimal
1390 to access an aligned BLKmode structure as a scalar. */
1391
1392 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1393 return;
1394 #endif /* MEMBER_TYPE_FORCES_BLK */
1395 }
1396
1397 /* If we only have one real field; use its mode. This only applies to
1398 RECORD_TYPE. This does not apply to unions. */
1399 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode)
1400 TYPE_MODE (type) = mode;
1401 else
1402 TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1403
1404 /* If structure's known alignment is less than what the scalar
1405 mode would need, and it matters, then stick with BLKmode. */
1406 if (TYPE_MODE (type) != BLKmode
1407 && STRICT_ALIGNMENT
1408 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1409 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1410 {
1411 /* If this is the only reason this type is BLKmode, then
1412 don't force containing types to be BLKmode. */
1413 TYPE_NO_FORCE_BLK (type) = 1;
1414 TYPE_MODE (type) = BLKmode;
1415 }
1416 }
1417
1418 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1419 out. */
1420
1421 static void
1422 finalize_type_size (type)
1423 tree type;
1424 {
1425 /* Normally, use the alignment corresponding to the mode chosen.
1426 However, where strict alignment is not required, avoid
1427 over-aligning structures, since most compilers do not do this
1428 alignment. */
1429
1430 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1431 && (STRICT_ALIGNMENT
1432 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1433 && TREE_CODE (type) != QUAL_UNION_TYPE
1434 && TREE_CODE (type) != ARRAY_TYPE)))
1435 {
1436 TYPE_ALIGN (type) = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1437 TYPE_USER_ALIGN (type) = 0;
1438 }
1439
1440 /* Do machine-dependent extra alignment. */
1441 #ifdef ROUND_TYPE_ALIGN
1442 TYPE_ALIGN (type)
1443 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1444 #endif
1445
1446 /* If we failed to find a simple way to calculate the unit size
1447 of the type, find it by division. */
1448 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1449 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1450 result will fit in sizetype. We will get more efficient code using
1451 sizetype, so we force a conversion. */
1452 TYPE_SIZE_UNIT (type)
1453 = convert (sizetype,
1454 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1455 bitsize_unit_node));
1456
1457 if (TYPE_SIZE (type) != 0)
1458 {
1459 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1460 TYPE_SIZE_UNIT (type)
1461 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN (type) / BITS_PER_UNIT);
1462 }
1463
1464 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1465 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1466 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1467 if (TYPE_SIZE_UNIT (type) != 0
1468 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1469 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1470
1471 /* Also layout any other variants of the type. */
1472 if (TYPE_NEXT_VARIANT (type)
1473 || type != TYPE_MAIN_VARIANT (type))
1474 {
1475 tree variant;
1476 /* Record layout info of this variant. */
1477 tree size = TYPE_SIZE (type);
1478 tree size_unit = TYPE_SIZE_UNIT (type);
1479 unsigned int align = TYPE_ALIGN (type);
1480 unsigned int user_align = TYPE_USER_ALIGN (type);
1481 enum machine_mode mode = TYPE_MODE (type);
1482
1483 /* Copy it into all variants. */
1484 for (variant = TYPE_MAIN_VARIANT (type);
1485 variant != 0;
1486 variant = TYPE_NEXT_VARIANT (variant))
1487 {
1488 TYPE_SIZE (variant) = size;
1489 TYPE_SIZE_UNIT (variant) = size_unit;
1490 TYPE_ALIGN (variant) = align;
1491 TYPE_USER_ALIGN (variant) = user_align;
1492 TYPE_MODE (variant) = mode;
1493 }
1494 }
1495 }
1496
1497 /* Do all of the work required to layout the type indicated by RLI,
1498 once the fields have been laid out. This function will call `free'
1499 for RLI, unless FREE_P is false. Passing a value other than false
1500 for FREE_P is bad practice; this option only exists to support the
1501 G++ 3.2 ABI. */
1502
1503 void
1504 finish_record_layout (rli, free_p)
1505 record_layout_info rli;
1506 int free_p;
1507 {
1508 /* Compute the final size. */
1509 finalize_record_size (rli);
1510
1511 /* Compute the TYPE_MODE for the record. */
1512 compute_record_mode (rli->t);
1513
1514 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1515 finalize_type_size (rli->t);
1516
1517 /* Lay out any static members. This is done now because their type
1518 may use the record's type. */
1519 while (rli->pending_statics)
1520 {
1521 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1522 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1523 }
1524
1525 /* Clean up. */
1526 if (free_p)
1527 free (rli);
1528 }
1529 \f
1530
1531 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1532 NAME, its fields are chained in reverse on FIELDS.
1533
1534 If ALIGN_TYPE is non-null, it is given the same alignment as
1535 ALIGN_TYPE. */
1536
1537 void
1538 finish_builtin_struct (type, name, fields, align_type)
1539 tree type;
1540 const char *name;
1541 tree fields;
1542 tree align_type;
1543 {
1544 tree tail, next;
1545
1546 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1547 {
1548 DECL_FIELD_CONTEXT (fields) = type;
1549 next = TREE_CHAIN (fields);
1550 TREE_CHAIN (fields) = tail;
1551 }
1552 TYPE_FIELDS (type) = tail;
1553
1554 if (align_type)
1555 {
1556 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1557 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1558 }
1559
1560 layout_type (type);
1561 #if 0 /* not yet, should get fixed properly later */
1562 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1563 #else
1564 TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type);
1565 #endif
1566 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1567 layout_decl (TYPE_NAME (type), 0);
1568 }
1569
1570 /* Calculate the mode, size, and alignment for TYPE.
1571 For an array type, calculate the element separation as well.
1572 Record TYPE on the chain of permanent or temporary types
1573 so that dbxout will find out about it.
1574
1575 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1576 layout_type does nothing on such a type.
1577
1578 If the type is incomplete, its TYPE_SIZE remains zero. */
1579
1580 void
1581 layout_type (type)
1582 tree type;
1583 {
1584 if (type == 0)
1585 abort ();
1586
1587 /* Do nothing if type has been laid out before. */
1588 if (TYPE_SIZE (type))
1589 return;
1590
1591 switch (TREE_CODE (type))
1592 {
1593 case LANG_TYPE:
1594 /* This kind of type is the responsibility
1595 of the language-specific code. */
1596 abort ();
1597
1598 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1599 if (TYPE_PRECISION (type) == 0)
1600 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1601
1602 /* ... fall through ... */
1603
1604 case INTEGER_TYPE:
1605 case ENUMERAL_TYPE:
1606 case CHAR_TYPE:
1607 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1608 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1609 TREE_UNSIGNED (type) = 1;
1610
1611 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
1612 MODE_INT);
1613 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1614 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1615 break;
1616
1617 case REAL_TYPE:
1618 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
1619 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1620 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1621 break;
1622
1623 case COMPLEX_TYPE:
1624 TREE_UNSIGNED (type) = TREE_UNSIGNED (TREE_TYPE (type));
1625 TYPE_MODE (type)
1626 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1627 (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
1628 ? MODE_COMPLEX_INT : MODE_COMPLEX_FLOAT),
1629 0);
1630 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1631 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1632 break;
1633
1634 case VECTOR_TYPE:
1635 {
1636 tree subtype;
1637
1638 subtype = TREE_TYPE (type);
1639 TREE_UNSIGNED (type) = TREE_UNSIGNED (subtype);
1640 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1641 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1642 }
1643 break;
1644
1645 case VOID_TYPE:
1646 /* This is an incomplete type and so doesn't have a size. */
1647 TYPE_ALIGN (type) = 1;
1648 TYPE_USER_ALIGN (type) = 0;
1649 TYPE_MODE (type) = VOIDmode;
1650 break;
1651
1652 case OFFSET_TYPE:
1653 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1654 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1655 /* A pointer might be MODE_PARTIAL_INT,
1656 but ptrdiff_t must be integral. */
1657 TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
1658 break;
1659
1660 case FUNCTION_TYPE:
1661 case METHOD_TYPE:
1662 TYPE_MODE (type) = mode_for_size (2 * POINTER_SIZE, MODE_INT, 0);
1663 TYPE_SIZE (type) = bitsize_int (2 * POINTER_SIZE);
1664 TYPE_SIZE_UNIT (type) = size_int ((2 * POINTER_SIZE) / BITS_PER_UNIT);
1665 break;
1666
1667 case POINTER_TYPE:
1668 case REFERENCE_TYPE:
1669 {
1670
1671 enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
1672 && reference_types_internal)
1673 ? Pmode : TYPE_MODE (type));
1674
1675 int nbits = GET_MODE_BITSIZE (mode);
1676
1677 TYPE_SIZE (type) = bitsize_int (nbits);
1678 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1679 TREE_UNSIGNED (type) = 1;
1680 TYPE_PRECISION (type) = nbits;
1681 }
1682 break;
1683
1684 case ARRAY_TYPE:
1685 {
1686 tree index = TYPE_DOMAIN (type);
1687 tree element = TREE_TYPE (type);
1688
1689 build_pointer_type (element);
1690
1691 /* We need to know both bounds in order to compute the size. */
1692 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1693 && TYPE_SIZE (element))
1694 {
1695 tree ub = TYPE_MAX_VALUE (index);
1696 tree lb = TYPE_MIN_VALUE (index);
1697 tree length;
1698 tree element_size;
1699
1700 /* The initial subtraction should happen in the original type so
1701 that (possible) negative values are handled appropriately. */
1702 length = size_binop (PLUS_EXPR, size_one_node,
1703 convert (sizetype,
1704 fold (build (MINUS_EXPR,
1705 TREE_TYPE (lb),
1706 ub, lb))));
1707
1708 /* Special handling for arrays of bits (for Chill). */
1709 element_size = TYPE_SIZE (element);
1710 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1711 && (integer_zerop (TYPE_MAX_VALUE (element))
1712 || integer_onep (TYPE_MAX_VALUE (element)))
1713 && host_integerp (TYPE_MIN_VALUE (element), 1))
1714 {
1715 HOST_WIDE_INT maxvalue
1716 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1717 HOST_WIDE_INT minvalue
1718 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1719
1720 if (maxvalue - minvalue == 1
1721 && (maxvalue == 1 || maxvalue == 0))
1722 element_size = integer_one_node;
1723 }
1724
1725 /* If neither bound is a constant and sizetype is signed, make
1726 sure the size is never negative. We should really do this
1727 if *either* bound is non-constant, but this is the best
1728 compromise between C and Ada. */
1729 if (! TREE_UNSIGNED (sizetype)
1730 && TREE_CODE (TYPE_MIN_VALUE (index)) != INTEGER_CST
1731 && TREE_CODE (TYPE_MAX_VALUE (index)) != INTEGER_CST)
1732 length = size_binop (MAX_EXPR, length, size_zero_node);
1733
1734 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1735 convert (bitsizetype, length));
1736
1737 /* If we know the size of the element, calculate the total
1738 size directly, rather than do some division thing below.
1739 This optimization helps Fortran assumed-size arrays
1740 (where the size of the array is determined at runtime)
1741 substantially.
1742 Note that we can't do this in the case where the size of
1743 the elements is one bit since TYPE_SIZE_UNIT cannot be
1744 set correctly in that case. */
1745 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
1746 TYPE_SIZE_UNIT (type)
1747 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1748 }
1749
1750 /* Now round the alignment and size,
1751 using machine-dependent criteria if any. */
1752
1753 #ifdef ROUND_TYPE_ALIGN
1754 TYPE_ALIGN (type)
1755 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1756 #else
1757 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1758 #endif
1759 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
1760 TYPE_MODE (type) = BLKmode;
1761 if (TYPE_SIZE (type) != 0
1762 #ifdef MEMBER_TYPE_FORCES_BLK
1763 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
1764 #endif
1765 /* BLKmode elements force BLKmode aggregate;
1766 else extract/store fields may lose. */
1767 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
1768 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
1769 {
1770 /* One-element arrays get the component type's mode. */
1771 if (simple_cst_equal (TYPE_SIZE (type),
1772 TYPE_SIZE (TREE_TYPE (type))))
1773 TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
1774 else
1775 TYPE_MODE (type)
1776 = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1777
1778 if (TYPE_MODE (type) != BLKmode
1779 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
1780 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
1781 && TYPE_MODE (type) != BLKmode)
1782 {
1783 TYPE_NO_FORCE_BLK (type) = 1;
1784 TYPE_MODE (type) = BLKmode;
1785 }
1786 }
1787 break;
1788 }
1789
1790 case RECORD_TYPE:
1791 case UNION_TYPE:
1792 case QUAL_UNION_TYPE:
1793 {
1794 tree field;
1795 record_layout_info rli;
1796
1797 /* Initialize the layout information. */
1798 rli = start_record_layout (type);
1799
1800 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1801 in the reverse order in building the COND_EXPR that denotes
1802 its size. We reverse them again later. */
1803 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1804 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1805
1806 /* Place all the fields. */
1807 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1808 place_field (rli, field);
1809
1810 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1811 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1812
1813 if (lang_adjust_rli)
1814 (*lang_adjust_rli) (rli);
1815
1816 /* Finish laying out the record. */
1817 finish_record_layout (rli, /*free_p=*/true);
1818 }
1819 break;
1820
1821 case SET_TYPE: /* Used by Chill and Pascal. */
1822 if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST
1823 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST)
1824 abort ();
1825 else
1826 {
1827 #ifndef SET_WORD_SIZE
1828 #define SET_WORD_SIZE BITS_PER_WORD
1829 #endif
1830 unsigned int alignment
1831 = set_alignment ? set_alignment : SET_WORD_SIZE;
1832 HOST_WIDE_INT size_in_bits
1833 = (tree_low_cst (TYPE_MAX_VALUE (TYPE_DOMAIN (type)), 0)
1834 - tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), 0) + 1);
1835 HOST_WIDE_INT rounded_size
1836 = ((size_in_bits + alignment - 1) / alignment) * alignment;
1837
1838 if (rounded_size > (int) alignment)
1839 TYPE_MODE (type) = BLKmode;
1840 else
1841 TYPE_MODE (type) = mode_for_size (alignment, MODE_INT, 1);
1842
1843 TYPE_SIZE (type) = bitsize_int (rounded_size);
1844 TYPE_SIZE_UNIT (type) = size_int (rounded_size / BITS_PER_UNIT);
1845 TYPE_ALIGN (type) = alignment;
1846 TYPE_USER_ALIGN (type) = 0;
1847 TYPE_PRECISION (type) = size_in_bits;
1848 }
1849 break;
1850
1851 case FILE_TYPE:
1852 /* The size may vary in different languages, so the language front end
1853 should fill in the size. */
1854 TYPE_ALIGN (type) = BIGGEST_ALIGNMENT;
1855 TYPE_USER_ALIGN (type) = 0;
1856 TYPE_MODE (type) = BLKmode;
1857 break;
1858
1859 default:
1860 abort ();
1861 }
1862
1863 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1864 records and unions, finish_record_layout already called this
1865 function. */
1866 if (TREE_CODE (type) != RECORD_TYPE
1867 && TREE_CODE (type) != UNION_TYPE
1868 && TREE_CODE (type) != QUAL_UNION_TYPE)
1869 finalize_type_size (type);
1870
1871 /* If this type is created before sizetype has been permanently set,
1872 record it so set_sizetype can fix it up. */
1873 if (! sizetype_set)
1874 early_type_list = tree_cons (NULL_TREE, type, early_type_list);
1875
1876 /* If an alias set has been set for this aggregate when it was incomplete,
1877 force it into alias set 0.
1878 This is too conservative, but we cannot call record_component_aliases
1879 here because some frontends still change the aggregates after
1880 layout_type. */
1881 if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
1882 TYPE_ALIAS_SET (type) = 0;
1883 }
1884 \f
1885 /* Create and return a type for signed integers of PRECISION bits. */
1886
1887 tree
1888 make_signed_type (precision)
1889 int precision;
1890 {
1891 tree type = make_node (INTEGER_TYPE);
1892
1893 TYPE_PRECISION (type) = precision;
1894
1895 fixup_signed_type (type);
1896 return type;
1897 }
1898
1899 /* Create and return a type for unsigned integers of PRECISION bits. */
1900
1901 tree
1902 make_unsigned_type (precision)
1903 int precision;
1904 {
1905 tree type = make_node (INTEGER_TYPE);
1906
1907 TYPE_PRECISION (type) = precision;
1908
1909 fixup_unsigned_type (type);
1910 return type;
1911 }
1912 \f
1913 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1914 value to enable integer types to be created. */
1915
1916 void
1917 initialize_sizetypes ()
1918 {
1919 tree t = make_node (INTEGER_TYPE);
1920
1921 /* Set this so we do something reasonable for the build_int_2 calls
1922 below. */
1923 integer_type_node = t;
1924
1925 TYPE_MODE (t) = SImode;
1926 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
1927 TYPE_USER_ALIGN (t) = 0;
1928 TYPE_SIZE (t) = build_int_2 (GET_MODE_BITSIZE (SImode), 0);
1929 TYPE_SIZE_UNIT (t) = build_int_2 (GET_MODE_SIZE (SImode), 0);
1930 TREE_UNSIGNED (t) = 1;
1931 TYPE_PRECISION (t) = GET_MODE_BITSIZE (SImode);
1932 TYPE_MIN_VALUE (t) = build_int_2 (0, 0);
1933 TYPE_IS_SIZETYPE (t) = 1;
1934
1935 /* 1000 avoids problems with possible overflow and is certainly
1936 larger than any size value we'd want to be storing. */
1937 TYPE_MAX_VALUE (t) = build_int_2 (1000, 0);
1938
1939 /* These two must be different nodes because of the caching done in
1940 size_int_wide. */
1941 sizetype = t;
1942 bitsizetype = copy_node (t);
1943 integer_type_node = 0;
1944 }
1945
1946 /* Set sizetype to TYPE, and initialize *sizetype accordingly.
1947 Also update the type of any standard type's sizes made so far. */
1948
1949 void
1950 set_sizetype (type)
1951 tree type;
1952 {
1953 int oprecision = TYPE_PRECISION (type);
1954 /* The *bitsizetype types use a precision that avoids overflows when
1955 calculating signed sizes / offsets in bits. However, when
1956 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1957 precision. */
1958 int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
1959 2 * HOST_BITS_PER_WIDE_INT);
1960 unsigned int i;
1961 tree t;
1962
1963 if (sizetype_set)
1964 abort ();
1965
1966 /* Make copies of nodes since we'll be setting TYPE_IS_SIZETYPE. */
1967 sizetype = copy_node (type);
1968 TYPE_DOMAIN (sizetype) = type;
1969 TYPE_IS_SIZETYPE (sizetype) = 1;
1970 bitsizetype = make_node (INTEGER_TYPE);
1971 TYPE_NAME (bitsizetype) = TYPE_NAME (type);
1972 TYPE_PRECISION (bitsizetype) = precision;
1973 TYPE_IS_SIZETYPE (bitsizetype) = 1;
1974
1975 if (TREE_UNSIGNED (type))
1976 fixup_unsigned_type (bitsizetype);
1977 else
1978 fixup_signed_type (bitsizetype);
1979
1980 layout_type (bitsizetype);
1981
1982 if (TREE_UNSIGNED (type))
1983 {
1984 usizetype = sizetype;
1985 ubitsizetype = bitsizetype;
1986 ssizetype = copy_node (make_signed_type (oprecision));
1987 sbitsizetype = copy_node (make_signed_type (precision));
1988 }
1989 else
1990 {
1991 ssizetype = sizetype;
1992 sbitsizetype = bitsizetype;
1993 usizetype = copy_node (make_unsigned_type (oprecision));
1994 ubitsizetype = copy_node (make_unsigned_type (precision));
1995 }
1996
1997 TYPE_NAME (bitsizetype) = get_identifier ("bit_size_type");
1998
1999 /* Show is a sizetype, is a main type, and has no pointers to it. */
2000 for (i = 0; i < ARRAY_SIZE (sizetype_tab); i++)
2001 {
2002 TYPE_IS_SIZETYPE (sizetype_tab[i]) = 1;
2003 TYPE_MAIN_VARIANT (sizetype_tab[i]) = sizetype_tab[i];
2004 TYPE_NEXT_VARIANT (sizetype_tab[i]) = 0;
2005 TYPE_POINTER_TO (sizetype_tab[i]) = 0;
2006 TYPE_REFERENCE_TO (sizetype_tab[i]) = 0;
2007 }
2008
2009 /* Go down each of the types we already made and set the proper type
2010 for the sizes in them. */
2011 for (t = early_type_list; t != 0; t = TREE_CHAIN (t))
2012 {
2013 if (TREE_CODE (TREE_VALUE (t)) != INTEGER_TYPE)
2014 abort ();
2015
2016 TREE_TYPE (TYPE_SIZE (TREE_VALUE (t))) = bitsizetype;
2017 TREE_TYPE (TYPE_SIZE_UNIT (TREE_VALUE (t))) = sizetype;
2018 }
2019
2020 early_type_list = 0;
2021 sizetype_set = 1;
2022 }
2023 \f
2024 /* Set the extreme values of TYPE based on its precision in bits,
2025 then lay it out. Used when make_signed_type won't do
2026 because the tree code is not INTEGER_TYPE.
2027 E.g. for Pascal, when the -fsigned-char option is given. */
2028
2029 void
2030 fixup_signed_type (type)
2031 tree type;
2032 {
2033 int precision = TYPE_PRECISION (type);
2034
2035 /* We can not represent properly constants greater then
2036 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2037 as they are used by i386 vector extensions and friends. */
2038 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2039 precision = HOST_BITS_PER_WIDE_INT * 2;
2040
2041 TYPE_MIN_VALUE (type)
2042 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
2043 ? 0 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2044 (((HOST_WIDE_INT) (-1)
2045 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2046 ? precision - HOST_BITS_PER_WIDE_INT - 1
2047 : 0))));
2048 TYPE_MAX_VALUE (type)
2049 = build_int_2 ((precision - HOST_BITS_PER_WIDE_INT > 0
2050 ? -1 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2051 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2052 ? (((HOST_WIDE_INT) 1
2053 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2054 : 0));
2055
2056 TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
2057 TREE_TYPE (TYPE_MAX_VALUE (type)) = type;
2058
2059 /* Lay out the type: set its alignment, size, etc. */
2060 layout_type (type);
2061 }
2062
2063 /* Set the extreme values of TYPE based on its precision in bits,
2064 then lay it out. This is used both in `make_unsigned_type'
2065 and for enumeral types. */
2066
2067 void
2068 fixup_unsigned_type (type)
2069 tree type;
2070 {
2071 int precision = TYPE_PRECISION (type);
2072
2073 /* We can not represent properly constants greater then
2074 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2075 as they are used by i386 vector extensions and friends. */
2076 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2077 precision = HOST_BITS_PER_WIDE_INT * 2;
2078
2079 TYPE_MIN_VALUE (type) = build_int_2 (0, 0);
2080 TYPE_MAX_VALUE (type)
2081 = build_int_2 (precision - HOST_BITS_PER_WIDE_INT >= 0
2082 ? -1 : ((HOST_WIDE_INT) 1 << precision) - 1,
2083 precision - HOST_BITS_PER_WIDE_INT > 0
2084 ? ((unsigned HOST_WIDE_INT) ~0
2085 >> (HOST_BITS_PER_WIDE_INT
2086 - (precision - HOST_BITS_PER_WIDE_INT)))
2087 : 0);
2088 TREE_TYPE (TYPE_MIN_VALUE (type)) = type;
2089 TREE_TYPE (TYPE_MAX_VALUE (type)) = type;
2090
2091 /* Lay out the type: set its alignment, size, etc. */
2092 layout_type (type);
2093 }
2094 \f
2095 /* Find the best machine mode to use when referencing a bit field of length
2096 BITSIZE bits starting at BITPOS.
2097
2098 The underlying object is known to be aligned to a boundary of ALIGN bits.
2099 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2100 larger than LARGEST_MODE (usually SImode).
2101
2102 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
2103 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
2104 mode meeting these conditions.
2105
2106 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
2107 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2108 all the conditions. */
2109
2110 enum machine_mode
2111 get_best_mode (bitsize, bitpos, align, largest_mode, volatilep)
2112 int bitsize, bitpos;
2113 unsigned int align;
2114 enum machine_mode largest_mode;
2115 int volatilep;
2116 {
2117 enum machine_mode mode;
2118 unsigned int unit = 0;
2119
2120 /* Find the narrowest integer mode that contains the bit field. */
2121 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2122 mode = GET_MODE_WIDER_MODE (mode))
2123 {
2124 unit = GET_MODE_BITSIZE (mode);
2125 if ((bitpos % unit) + bitsize <= unit)
2126 break;
2127 }
2128
2129 if (mode == VOIDmode
2130 /* It is tempting to omit the following line
2131 if STRICT_ALIGNMENT is true.
2132 But that is incorrect, since if the bitfield uses part of 3 bytes
2133 and we use a 4-byte mode, we could get a spurious segv
2134 if the extra 4th byte is past the end of memory.
2135 (Though at least one Unix compiler ignores this problem:
2136 that on the Sequent 386 machine. */
2137 || MIN (unit, BIGGEST_ALIGNMENT) > align
2138 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2139 return VOIDmode;
2140
2141 if (SLOW_BYTE_ACCESS && ! volatilep)
2142 {
2143 enum machine_mode wide_mode = VOIDmode, tmode;
2144
2145 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2146 tmode = GET_MODE_WIDER_MODE (tmode))
2147 {
2148 unit = GET_MODE_BITSIZE (tmode);
2149 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2150 && unit <= BITS_PER_WORD
2151 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2152 && (largest_mode == VOIDmode
2153 || unit <= GET_MODE_BITSIZE (largest_mode)))
2154 wide_mode = tmode;
2155 }
2156
2157 if (wide_mode != VOIDmode)
2158 return wide_mode;
2159 }
2160
2161 return mode;
2162 }
2163
2164 #include "gt-stor-layout.h"