neon-vcond-gt.c: Scan for vbsl or vbit or vbif.
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "expr.h"
31 #include "diagnostic-core.h"
32 #include "ggc.h"
33 #include "target.h"
34 #include "langhooks.h"
35 #include "regs.h"
36 #include "params.h"
37 #include "cgraph.h"
38 #include "tree-inline.h"
39 #include "tree-dump.h"
40 #include "gimple.h"
41
42 /* Data type for the expressions representing sizes of data types.
43 It is the first integer type laid out. */
44 tree sizetype_tab[(int) stk_type_kind_last];
45
46 /* If nonzero, this is an upper limit on alignment of structure fields.
47 The value is measured in bits. */
48 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
49
50 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
51 in the address spaces' address_mode, not pointer_mode. Set only by
52 internal_reference_types called only by a front end. */
53 static int reference_types_internal = 0;
54
55 static tree self_referential_size (tree);
56 static void finalize_record_size (record_layout_info);
57 static void finalize_type_size (tree);
58 static void place_union_field (record_layout_info, tree);
59 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
60 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
61 HOST_WIDE_INT, tree);
62 #endif
63 extern void debug_rli (record_layout_info);
64 \f
65 /* Show that REFERENCE_TYPES are internal and should use address_mode.
66 Called only by front end. */
67
68 void
69 internal_reference_types (void)
70 {
71 reference_types_internal = 1;
72 }
73
74 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
75 to serve as the actual size-expression for a type or decl. */
76
77 tree
78 variable_size (tree size)
79 {
80 /* Obviously. */
81 if (TREE_CONSTANT (size))
82 return size;
83
84 /* If the size is self-referential, we can't make a SAVE_EXPR (see
85 save_expr for the rationale). But we can do something else. */
86 if (CONTAINS_PLACEHOLDER_P (size))
87 return self_referential_size (size);
88
89 /* If we are in the global binding level, we can't make a SAVE_EXPR
90 since it may end up being shared across functions, so it is up
91 to the front-end to deal with this case. */
92 if (lang_hooks.decls.global_bindings_p ())
93 return size;
94
95 return save_expr (size);
96 }
97
98 /* An array of functions used for self-referential size computation. */
99 static GTY(()) vec<tree, va_gc> *size_functions;
100
101 /* Similar to copy_tree_r but do not copy component references involving
102 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
103 and substituted in substitute_in_expr. */
104
105 static tree
106 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
107 {
108 enum tree_code code = TREE_CODE (*tp);
109
110 /* Stop at types, decls, constants like copy_tree_r. */
111 if (TREE_CODE_CLASS (code) == tcc_type
112 || TREE_CODE_CLASS (code) == tcc_declaration
113 || TREE_CODE_CLASS (code) == tcc_constant)
114 {
115 *walk_subtrees = 0;
116 return NULL_TREE;
117 }
118
119 /* This is the pattern built in ada/make_aligning_type. */
120 else if (code == ADDR_EXPR
121 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
122 {
123 *walk_subtrees = 0;
124 return NULL_TREE;
125 }
126
127 /* Default case: the component reference. */
128 else if (code == COMPONENT_REF)
129 {
130 tree inner;
131 for (inner = TREE_OPERAND (*tp, 0);
132 REFERENCE_CLASS_P (inner);
133 inner = TREE_OPERAND (inner, 0))
134 ;
135
136 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
137 {
138 *walk_subtrees = 0;
139 return NULL_TREE;
140 }
141 }
142
143 /* We're not supposed to have them in self-referential size trees
144 because we wouldn't properly control when they are evaluated.
145 However, not creating superfluous SAVE_EXPRs requires accurate
146 tracking of readonly-ness all the way down to here, which we
147 cannot always guarantee in practice. So punt in this case. */
148 else if (code == SAVE_EXPR)
149 return error_mark_node;
150
151 else if (code == STATEMENT_LIST)
152 gcc_unreachable ();
153
154 return copy_tree_r (tp, walk_subtrees, data);
155 }
156
157 /* Given a SIZE expression that is self-referential, return an equivalent
158 expression to serve as the actual size expression for a type. */
159
160 static tree
161 self_referential_size (tree size)
162 {
163 static unsigned HOST_WIDE_INT fnno = 0;
164 vec<tree> self_refs = vNULL;
165 tree param_type_list = NULL, param_decl_list = NULL;
166 tree t, ref, return_type, fntype, fnname, fndecl;
167 unsigned int i;
168 char buf[128];
169 vec<tree, va_gc> *args = NULL;
170
171 /* Do not factor out simple operations. */
172 t = skip_simple_constant_arithmetic (size);
173 if (TREE_CODE (t) == CALL_EXPR)
174 return size;
175
176 /* Collect the list of self-references in the expression. */
177 find_placeholder_in_expr (size, &self_refs);
178 gcc_assert (self_refs.length () > 0);
179
180 /* Obtain a private copy of the expression. */
181 t = size;
182 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
183 return size;
184 size = t;
185
186 /* Build the parameter and argument lists in parallel; also
187 substitute the former for the latter in the expression. */
188 vec_alloc (args, self_refs.length ());
189 FOR_EACH_VEC_ELT (self_refs, i, ref)
190 {
191 tree subst, param_name, param_type, param_decl;
192
193 if (DECL_P (ref))
194 {
195 /* We shouldn't have true variables here. */
196 gcc_assert (TREE_READONLY (ref));
197 subst = ref;
198 }
199 /* This is the pattern built in ada/make_aligning_type. */
200 else if (TREE_CODE (ref) == ADDR_EXPR)
201 subst = ref;
202 /* Default case: the component reference. */
203 else
204 subst = TREE_OPERAND (ref, 1);
205
206 sprintf (buf, "p%d", i);
207 param_name = get_identifier (buf);
208 param_type = TREE_TYPE (ref);
209 param_decl
210 = build_decl (input_location, PARM_DECL, param_name, param_type);
211 if (targetm.calls.promote_prototypes (NULL_TREE)
212 && INTEGRAL_TYPE_P (param_type)
213 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
214 DECL_ARG_TYPE (param_decl) = integer_type_node;
215 else
216 DECL_ARG_TYPE (param_decl) = param_type;
217 DECL_ARTIFICIAL (param_decl) = 1;
218 TREE_READONLY (param_decl) = 1;
219
220 size = substitute_in_expr (size, subst, param_decl);
221
222 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
223 param_decl_list = chainon (param_decl, param_decl_list);
224 args->quick_push (ref);
225 }
226
227 self_refs.release ();
228
229 /* Append 'void' to indicate that the number of parameters is fixed. */
230 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
231
232 /* The 3 lists have been created in reverse order. */
233 param_type_list = nreverse (param_type_list);
234 param_decl_list = nreverse (param_decl_list);
235
236 /* Build the function type. */
237 return_type = TREE_TYPE (size);
238 fntype = build_function_type (return_type, param_type_list);
239
240 /* Build the function declaration. */
241 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
242 fnname = get_file_function_name (buf);
243 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
244 for (t = param_decl_list; t; t = DECL_CHAIN (t))
245 DECL_CONTEXT (t) = fndecl;
246 DECL_ARGUMENTS (fndecl) = param_decl_list;
247 DECL_RESULT (fndecl)
248 = build_decl (input_location, RESULT_DECL, 0, return_type);
249 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
250
251 /* The function has been created by the compiler and we don't
252 want to emit debug info for it. */
253 DECL_ARTIFICIAL (fndecl) = 1;
254 DECL_IGNORED_P (fndecl) = 1;
255
256 /* It is supposed to be "const" and never throw. */
257 TREE_READONLY (fndecl) = 1;
258 TREE_NOTHROW (fndecl) = 1;
259
260 /* We want it to be inlined when this is deemed profitable, as
261 well as discarded if every call has been integrated. */
262 DECL_DECLARED_INLINE_P (fndecl) = 1;
263
264 /* It is made up of a unique return statement. */
265 DECL_INITIAL (fndecl) = make_node (BLOCK);
266 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
267 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
268 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
269 TREE_STATIC (fndecl) = 1;
270
271 /* Put it onto the list of size functions. */
272 vec_safe_push (size_functions, fndecl);
273
274 /* Replace the original expression with a call to the size function. */
275 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
276 }
277
278 /* Take, queue and compile all the size functions. It is essential that
279 the size functions be gimplified at the very end of the compilation
280 in order to guarantee transparent handling of self-referential sizes.
281 Otherwise the GENERIC inliner would not be able to inline them back
282 at each of their call sites, thus creating artificial non-constant
283 size expressions which would trigger nasty problems later on. */
284
285 void
286 finalize_size_functions (void)
287 {
288 unsigned int i;
289 tree fndecl;
290
291 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
292 {
293 allocate_struct_function (fndecl, false);
294 set_cfun (NULL);
295 dump_function (TDI_original, fndecl);
296 gimplify_function_tree (fndecl);
297 dump_function (TDI_generic, fndecl);
298 cgraph_finalize_function (fndecl, false);
299 }
300
301 vec_free (size_functions);
302 }
303 \f
304 /* Return the machine mode to use for a nonscalar of SIZE bits. The
305 mode must be in class MCLASS, and have exactly that many value bits;
306 it may have padding as well. If LIMIT is nonzero, modes of wider
307 than MAX_FIXED_MODE_SIZE will not be used. */
308
309 enum machine_mode
310 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
311 {
312 enum machine_mode mode;
313
314 if (limit && size > MAX_FIXED_MODE_SIZE)
315 return BLKmode;
316
317 /* Get the first mode which has this size, in the specified class. */
318 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
319 mode = GET_MODE_WIDER_MODE (mode))
320 if (GET_MODE_PRECISION (mode) == size)
321 return mode;
322
323 return BLKmode;
324 }
325
326 /* Similar, except passed a tree node. */
327
328 enum machine_mode
329 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
330 {
331 unsigned HOST_WIDE_INT uhwi;
332 unsigned int ui;
333
334 if (!host_integerp (size, 1))
335 return BLKmode;
336 uhwi = tree_low_cst (size, 1);
337 ui = uhwi;
338 if (uhwi != ui)
339 return BLKmode;
340 return mode_for_size (ui, mclass, limit);
341 }
342
343 /* Similar, but never return BLKmode; return the narrowest mode that
344 contains at least the requested number of value bits. */
345
346 enum machine_mode
347 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
348 {
349 enum machine_mode mode;
350
351 /* Get the first mode which has at least this size, in the
352 specified class. */
353 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
354 mode = GET_MODE_WIDER_MODE (mode))
355 if (GET_MODE_PRECISION (mode) >= size)
356 return mode;
357
358 gcc_unreachable ();
359 }
360
361 /* Find an integer mode of the exact same size, or BLKmode on failure. */
362
363 enum machine_mode
364 int_mode_for_mode (enum machine_mode mode)
365 {
366 switch (GET_MODE_CLASS (mode))
367 {
368 case MODE_INT:
369 case MODE_PARTIAL_INT:
370 break;
371
372 case MODE_COMPLEX_INT:
373 case MODE_COMPLEX_FLOAT:
374 case MODE_FLOAT:
375 case MODE_DECIMAL_FLOAT:
376 case MODE_VECTOR_INT:
377 case MODE_VECTOR_FLOAT:
378 case MODE_FRACT:
379 case MODE_ACCUM:
380 case MODE_UFRACT:
381 case MODE_UACCUM:
382 case MODE_VECTOR_FRACT:
383 case MODE_VECTOR_ACCUM:
384 case MODE_VECTOR_UFRACT:
385 case MODE_VECTOR_UACCUM:
386 case MODE_POINTER_BOUNDS:
387 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
388 break;
389
390 case MODE_RANDOM:
391 if (mode == BLKmode)
392 break;
393
394 /* ... fall through ... */
395
396 case MODE_CC:
397 default:
398 gcc_unreachable ();
399 }
400
401 return mode;
402 }
403
404 /* Find a mode that is suitable for representing a vector with
405 NUNITS elements of mode INNERMODE. Returns BLKmode if there
406 is no suitable mode. */
407
408 enum machine_mode
409 mode_for_vector (enum machine_mode innermode, unsigned nunits)
410 {
411 enum machine_mode mode;
412
413 /* First, look for a supported vector type. */
414 if (SCALAR_FLOAT_MODE_P (innermode))
415 mode = MIN_MODE_VECTOR_FLOAT;
416 else if (SCALAR_FRACT_MODE_P (innermode))
417 mode = MIN_MODE_VECTOR_FRACT;
418 else if (SCALAR_UFRACT_MODE_P (innermode))
419 mode = MIN_MODE_VECTOR_UFRACT;
420 else if (SCALAR_ACCUM_MODE_P (innermode))
421 mode = MIN_MODE_VECTOR_ACCUM;
422 else if (SCALAR_UACCUM_MODE_P (innermode))
423 mode = MIN_MODE_VECTOR_UACCUM;
424 else
425 mode = MIN_MODE_VECTOR_INT;
426
427 /* Do not check vector_mode_supported_p here. We'll do that
428 later in vector_type_mode. */
429 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
430 if (GET_MODE_NUNITS (mode) == nunits
431 && GET_MODE_INNER (mode) == innermode)
432 break;
433
434 /* For integers, try mapping it to a same-sized scalar mode. */
435 if (mode == VOIDmode
436 && GET_MODE_CLASS (innermode) == MODE_INT)
437 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
438 MODE_INT, 0);
439
440 if (mode == VOIDmode
441 || (GET_MODE_CLASS (mode) == MODE_INT
442 && !have_regs_of_mode[mode]))
443 return BLKmode;
444
445 return mode;
446 }
447
448 /* Return the alignment of MODE. This will be bounded by 1 and
449 BIGGEST_ALIGNMENT. */
450
451 unsigned int
452 get_mode_alignment (enum machine_mode mode)
453 {
454 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
455 }
456
457 /* Return the precision of the mode, or for a complex or vector mode the
458 precision of the mode of its elements. */
459
460 unsigned int
461 element_precision (enum machine_mode mode)
462 {
463 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
464 mode = GET_MODE_INNER (mode);
465
466 return GET_MODE_PRECISION (mode);
467 }
468
469 /* Return the natural mode of an array, given that it is SIZE bytes in
470 total and has elements of type ELEM_TYPE. */
471
472 static enum machine_mode
473 mode_for_array (tree elem_type, tree size)
474 {
475 tree elem_size;
476 unsigned HOST_WIDE_INT int_size, int_elem_size;
477 bool limit_p;
478
479 /* One-element arrays get the component type's mode. */
480 elem_size = TYPE_SIZE (elem_type);
481 if (simple_cst_equal (size, elem_size))
482 return TYPE_MODE (elem_type);
483
484 limit_p = true;
485 if (host_integerp (size, 1) && host_integerp (elem_size, 1))
486 {
487 int_size = tree_low_cst (size, 1);
488 int_elem_size = tree_low_cst (elem_size, 1);
489 if (int_elem_size > 0
490 && int_size % int_elem_size == 0
491 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
492 int_size / int_elem_size))
493 limit_p = false;
494 }
495 return mode_for_size_tree (size, MODE_INT, limit_p);
496 }
497 \f
498 /* Subroutine of layout_decl: Force alignment required for the data type.
499 But if the decl itself wants greater alignment, don't override that. */
500
501 static inline void
502 do_type_align (tree type, tree decl)
503 {
504 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
505 {
506 DECL_ALIGN (decl) = TYPE_ALIGN (type);
507 if (TREE_CODE (decl) == FIELD_DECL)
508 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
509 }
510 }
511
512 /* Set the size, mode and alignment of a ..._DECL node.
513 TYPE_DECL does need this for C++.
514 Note that LABEL_DECL and CONST_DECL nodes do not need this,
515 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
516 Don't call layout_decl for them.
517
518 KNOWN_ALIGN is the amount of alignment we can assume this
519 decl has with no special effort. It is relevant only for FIELD_DECLs
520 and depends on the previous fields.
521 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
522 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
523 the record will be aligned to suit. */
524
525 void
526 layout_decl (tree decl, unsigned int known_align)
527 {
528 tree type = TREE_TYPE (decl);
529 enum tree_code code = TREE_CODE (decl);
530 rtx rtl = NULL_RTX;
531 location_t loc = DECL_SOURCE_LOCATION (decl);
532
533 if (code == CONST_DECL)
534 return;
535
536 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
537 || code == TYPE_DECL ||code == FIELD_DECL);
538
539 rtl = DECL_RTL_IF_SET (decl);
540
541 if (type == error_mark_node)
542 type = void_type_node;
543
544 /* Usually the size and mode come from the data type without change,
545 however, the front-end may set the explicit width of the field, so its
546 size may not be the same as the size of its type. This happens with
547 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
548 also happens with other fields. For example, the C++ front-end creates
549 zero-sized fields corresponding to empty base classes, and depends on
550 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
551 size in bytes from the size in bits. If we have already set the mode,
552 don't set it again since we can be called twice for FIELD_DECLs. */
553
554 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
555 if (DECL_MODE (decl) == VOIDmode)
556 DECL_MODE (decl) = TYPE_MODE (type);
557
558 if (DECL_SIZE (decl) == 0)
559 {
560 DECL_SIZE (decl) = TYPE_SIZE (type);
561 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
562 }
563 else if (DECL_SIZE_UNIT (decl) == 0)
564 DECL_SIZE_UNIT (decl)
565 = fold_convert_loc (loc, sizetype,
566 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
567 bitsize_unit_node));
568
569 if (code != FIELD_DECL)
570 /* For non-fields, update the alignment from the type. */
571 do_type_align (type, decl);
572 else
573 /* For fields, it's a bit more complicated... */
574 {
575 bool old_user_align = DECL_USER_ALIGN (decl);
576 bool zero_bitfield = false;
577 bool packed_p = DECL_PACKED (decl);
578 unsigned int mfa;
579
580 if (DECL_BIT_FIELD (decl))
581 {
582 DECL_BIT_FIELD_TYPE (decl) = type;
583
584 /* A zero-length bit-field affects the alignment of the next
585 field. In essence such bit-fields are not influenced by
586 any packing due to #pragma pack or attribute packed. */
587 if (integer_zerop (DECL_SIZE (decl))
588 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
589 {
590 zero_bitfield = true;
591 packed_p = false;
592 #ifdef PCC_BITFIELD_TYPE_MATTERS
593 if (PCC_BITFIELD_TYPE_MATTERS)
594 do_type_align (type, decl);
595 else
596 #endif
597 {
598 #ifdef EMPTY_FIELD_BOUNDARY
599 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
600 {
601 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
602 DECL_USER_ALIGN (decl) = 0;
603 }
604 #endif
605 }
606 }
607
608 /* See if we can use an ordinary integer mode for a bit-field.
609 Conditions are: a fixed size that is correct for another mode,
610 occupying a complete byte or bytes on proper boundary. */
611 if (TYPE_SIZE (type) != 0
612 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
613 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
614 {
615 enum machine_mode xmode
616 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
617 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
618
619 if (xmode != BLKmode
620 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
621 && (known_align == 0 || known_align >= xalign))
622 {
623 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
624 DECL_MODE (decl) = xmode;
625 DECL_BIT_FIELD (decl) = 0;
626 }
627 }
628
629 /* Turn off DECL_BIT_FIELD if we won't need it set. */
630 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
631 && known_align >= TYPE_ALIGN (type)
632 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
633 DECL_BIT_FIELD (decl) = 0;
634 }
635 else if (packed_p && DECL_USER_ALIGN (decl))
636 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
637 round up; we'll reduce it again below. We want packing to
638 supersede USER_ALIGN inherited from the type, but defer to
639 alignment explicitly specified on the field decl. */;
640 else
641 do_type_align (type, decl);
642
643 /* If the field is packed and not explicitly aligned, give it the
644 minimum alignment. Note that do_type_align may set
645 DECL_USER_ALIGN, so we need to check old_user_align instead. */
646 if (packed_p
647 && !old_user_align)
648 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
649
650 if (! packed_p && ! DECL_USER_ALIGN (decl))
651 {
652 /* Some targets (i.e. i386, VMS) limit struct field alignment
653 to a lower boundary than alignment of variables unless
654 it was overridden by attribute aligned. */
655 #ifdef BIGGEST_FIELD_ALIGNMENT
656 DECL_ALIGN (decl)
657 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
658 #endif
659 #ifdef ADJUST_FIELD_ALIGN
660 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
661 #endif
662 }
663
664 if (zero_bitfield)
665 mfa = initial_max_fld_align * BITS_PER_UNIT;
666 else
667 mfa = maximum_field_alignment;
668 /* Should this be controlled by DECL_USER_ALIGN, too? */
669 if (mfa != 0)
670 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
671 }
672
673 /* Evaluate nonconstant size only once, either now or as soon as safe. */
674 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
675 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
676 if (DECL_SIZE_UNIT (decl) != 0
677 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
678 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
679
680 /* If requested, warn about definitions of large data objects. */
681 if (warn_larger_than
682 && (code == VAR_DECL || code == PARM_DECL)
683 && ! DECL_EXTERNAL (decl))
684 {
685 tree size = DECL_SIZE_UNIT (decl);
686
687 if (size != 0 && TREE_CODE (size) == INTEGER_CST
688 && compare_tree_int (size, larger_than_size) > 0)
689 {
690 int size_as_int = TREE_INT_CST_LOW (size);
691
692 if (compare_tree_int (size, size_as_int) == 0)
693 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
694 else
695 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
696 decl, larger_than_size);
697 }
698 }
699
700 /* If the RTL was already set, update its mode and mem attributes. */
701 if (rtl)
702 {
703 PUT_MODE (rtl, DECL_MODE (decl));
704 SET_DECL_RTL (decl, 0);
705 set_mem_attributes (rtl, decl, 1);
706 SET_DECL_RTL (decl, rtl);
707 }
708 }
709
710 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
711 a previous call to layout_decl and calls it again. */
712
713 void
714 relayout_decl (tree decl)
715 {
716 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
717 DECL_MODE (decl) = VOIDmode;
718 if (!DECL_USER_ALIGN (decl))
719 DECL_ALIGN (decl) = 0;
720 SET_DECL_RTL (decl, 0);
721
722 layout_decl (decl, 0);
723 }
724 \f
725 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
726 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
727 is to be passed to all other layout functions for this record. It is the
728 responsibility of the caller to call `free' for the storage returned.
729 Note that garbage collection is not permitted until we finish laying
730 out the record. */
731
732 record_layout_info
733 start_record_layout (tree t)
734 {
735 record_layout_info rli = XNEW (struct record_layout_info_s);
736
737 rli->t = t;
738
739 /* If the type has a minimum specified alignment (via an attribute
740 declaration, for example) use it -- otherwise, start with a
741 one-byte alignment. */
742 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
743 rli->unpacked_align = rli->record_align;
744 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
745
746 #ifdef STRUCTURE_SIZE_BOUNDARY
747 /* Packed structures don't need to have minimum size. */
748 if (! TYPE_PACKED (t))
749 {
750 unsigned tmp;
751
752 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
753 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
754 if (maximum_field_alignment != 0)
755 tmp = MIN (tmp, maximum_field_alignment);
756 rli->record_align = MAX (rli->record_align, tmp);
757 }
758 #endif
759
760 rli->offset = size_zero_node;
761 rli->bitpos = bitsize_zero_node;
762 rli->prev_field = 0;
763 rli->pending_statics = 0;
764 rli->packed_maybe_necessary = 0;
765 rli->remaining_in_alignment = 0;
766
767 return rli;
768 }
769
770 /* Return the combined bit position for the byte offset OFFSET and the
771 bit position BITPOS.
772
773 These functions operate on byte and bit positions present in FIELD_DECLs
774 and assume that these expressions result in no (intermediate) overflow.
775 This assumption is necessary to fold the expressions as much as possible,
776 so as to avoid creating artificially variable-sized types in languages
777 supporting variable-sized types like Ada. */
778
779 tree
780 bit_from_pos (tree offset, tree bitpos)
781 {
782 if (TREE_CODE (offset) == PLUS_EXPR)
783 offset = size_binop (PLUS_EXPR,
784 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
785 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
786 else
787 offset = fold_convert (bitsizetype, offset);
788 return size_binop (PLUS_EXPR, bitpos,
789 size_binop (MULT_EXPR, offset, bitsize_unit_node));
790 }
791
792 /* Return the combined truncated byte position for the byte offset OFFSET and
793 the bit position BITPOS. */
794
795 tree
796 byte_from_pos (tree offset, tree bitpos)
797 {
798 tree bytepos;
799 if (TREE_CODE (bitpos) == MULT_EXPR
800 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
801 bytepos = TREE_OPERAND (bitpos, 0);
802 else
803 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
804 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
805 }
806
807 /* Split the bit position POS into a byte offset *POFFSET and a bit
808 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
809
810 void
811 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
812 tree pos)
813 {
814 tree toff_align = bitsize_int (off_align);
815 if (TREE_CODE (pos) == MULT_EXPR
816 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
817 {
818 *poffset = size_binop (MULT_EXPR,
819 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
820 size_int (off_align / BITS_PER_UNIT));
821 *pbitpos = bitsize_zero_node;
822 }
823 else
824 {
825 *poffset = size_binop (MULT_EXPR,
826 fold_convert (sizetype,
827 size_binop (FLOOR_DIV_EXPR, pos,
828 toff_align)),
829 size_int (off_align / BITS_PER_UNIT));
830 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
831 }
832 }
833
834 /* Given a pointer to bit and byte offsets and an offset alignment,
835 normalize the offsets so they are within the alignment. */
836
837 void
838 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
839 {
840 /* If the bit position is now larger than it should be, adjust it
841 downwards. */
842 if (compare_tree_int (*pbitpos, off_align) >= 0)
843 {
844 tree offset, bitpos;
845 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
846 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
847 *pbitpos = bitpos;
848 }
849 }
850
851 /* Print debugging information about the information in RLI. */
852
853 DEBUG_FUNCTION void
854 debug_rli (record_layout_info rli)
855 {
856 print_node_brief (stderr, "type", rli->t, 0);
857 print_node_brief (stderr, "\noffset", rli->offset, 0);
858 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
859
860 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
861 rli->record_align, rli->unpacked_align,
862 rli->offset_align);
863
864 /* The ms_struct code is the only that uses this. */
865 if (targetm.ms_bitfield_layout_p (rli->t))
866 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
867
868 if (rli->packed_maybe_necessary)
869 fprintf (stderr, "packed may be necessary\n");
870
871 if (!vec_safe_is_empty (rli->pending_statics))
872 {
873 fprintf (stderr, "pending statics:\n");
874 debug_vec_tree (rli->pending_statics);
875 }
876 }
877
878 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
879 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
880
881 void
882 normalize_rli (record_layout_info rli)
883 {
884 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
885 }
886
887 /* Returns the size in bytes allocated so far. */
888
889 tree
890 rli_size_unit_so_far (record_layout_info rli)
891 {
892 return byte_from_pos (rli->offset, rli->bitpos);
893 }
894
895 /* Returns the size in bits allocated so far. */
896
897 tree
898 rli_size_so_far (record_layout_info rli)
899 {
900 return bit_from_pos (rli->offset, rli->bitpos);
901 }
902
903 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
904 the next available location within the record is given by KNOWN_ALIGN.
905 Update the variable alignment fields in RLI, and return the alignment
906 to give the FIELD. */
907
908 unsigned int
909 update_alignment_for_field (record_layout_info rli, tree field,
910 unsigned int known_align)
911 {
912 /* The alignment required for FIELD. */
913 unsigned int desired_align;
914 /* The type of this field. */
915 tree type = TREE_TYPE (field);
916 /* True if the field was explicitly aligned by the user. */
917 bool user_align;
918 bool is_bitfield;
919
920 /* Do not attempt to align an ERROR_MARK node */
921 if (TREE_CODE (type) == ERROR_MARK)
922 return 0;
923
924 /* Lay out the field so we know what alignment it needs. */
925 layout_decl (field, known_align);
926 desired_align = DECL_ALIGN (field);
927 user_align = DECL_USER_ALIGN (field);
928
929 is_bitfield = (type != error_mark_node
930 && DECL_BIT_FIELD_TYPE (field)
931 && ! integer_zerop (TYPE_SIZE (type)));
932
933 /* Record must have at least as much alignment as any field.
934 Otherwise, the alignment of the field within the record is
935 meaningless. */
936 if (targetm.ms_bitfield_layout_p (rli->t))
937 {
938 /* Here, the alignment of the underlying type of a bitfield can
939 affect the alignment of a record; even a zero-sized field
940 can do this. The alignment should be to the alignment of
941 the type, except that for zero-size bitfields this only
942 applies if there was an immediately prior, nonzero-size
943 bitfield. (That's the way it is, experimentally.) */
944 if ((!is_bitfield && !DECL_PACKED (field))
945 || ((DECL_SIZE (field) == NULL_TREE
946 || !integer_zerop (DECL_SIZE (field)))
947 ? !DECL_PACKED (field)
948 : (rli->prev_field
949 && DECL_BIT_FIELD_TYPE (rli->prev_field)
950 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
951 {
952 unsigned int type_align = TYPE_ALIGN (type);
953 type_align = MAX (type_align, desired_align);
954 if (maximum_field_alignment != 0)
955 type_align = MIN (type_align, maximum_field_alignment);
956 rli->record_align = MAX (rli->record_align, type_align);
957 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
958 }
959 }
960 #ifdef PCC_BITFIELD_TYPE_MATTERS
961 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
962 {
963 /* Named bit-fields cause the entire structure to have the
964 alignment implied by their type. Some targets also apply the same
965 rules to unnamed bitfields. */
966 if (DECL_NAME (field) != 0
967 || targetm.align_anon_bitfield ())
968 {
969 unsigned int type_align = TYPE_ALIGN (type);
970
971 #ifdef ADJUST_FIELD_ALIGN
972 if (! TYPE_USER_ALIGN (type))
973 type_align = ADJUST_FIELD_ALIGN (field, type_align);
974 #endif
975
976 /* Targets might chose to handle unnamed and hence possibly
977 zero-width bitfield. Those are not influenced by #pragmas
978 or packed attributes. */
979 if (integer_zerop (DECL_SIZE (field)))
980 {
981 if (initial_max_fld_align)
982 type_align = MIN (type_align,
983 initial_max_fld_align * BITS_PER_UNIT);
984 }
985 else if (maximum_field_alignment != 0)
986 type_align = MIN (type_align, maximum_field_alignment);
987 else if (DECL_PACKED (field))
988 type_align = MIN (type_align, BITS_PER_UNIT);
989
990 /* The alignment of the record is increased to the maximum
991 of the current alignment, the alignment indicated on the
992 field (i.e., the alignment specified by an __aligned__
993 attribute), and the alignment indicated by the type of
994 the field. */
995 rli->record_align = MAX (rli->record_align, desired_align);
996 rli->record_align = MAX (rli->record_align, type_align);
997
998 if (warn_packed)
999 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1000 user_align |= TYPE_USER_ALIGN (type);
1001 }
1002 }
1003 #endif
1004 else
1005 {
1006 rli->record_align = MAX (rli->record_align, desired_align);
1007 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1008 }
1009
1010 TYPE_USER_ALIGN (rli->t) |= user_align;
1011
1012 return desired_align;
1013 }
1014
1015 /* Called from place_field to handle unions. */
1016
1017 static void
1018 place_union_field (record_layout_info rli, tree field)
1019 {
1020 update_alignment_for_field (rli, field, /*known_align=*/0);
1021
1022 DECL_FIELD_OFFSET (field) = size_zero_node;
1023 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1024 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1025
1026 /* If this is an ERROR_MARK return *after* having set the
1027 field at the start of the union. This helps when parsing
1028 invalid fields. */
1029 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1030 return;
1031
1032 /* We assume the union's size will be a multiple of a byte so we don't
1033 bother with BITPOS. */
1034 if (TREE_CODE (rli->t) == UNION_TYPE)
1035 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1036 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1037 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1038 DECL_SIZE_UNIT (field), rli->offset);
1039 }
1040
1041 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1042 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1043 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1044 units of alignment than the underlying TYPE. */
1045 static int
1046 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1047 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1048 {
1049 /* Note that the calculation of OFFSET might overflow; we calculate it so
1050 that we still get the right result as long as ALIGN is a power of two. */
1051 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1052
1053 offset = offset % align;
1054 return ((offset + size + align - 1) / align
1055 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
1056 / align));
1057 }
1058 #endif
1059
1060 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1061 is a FIELD_DECL to be added after those fields already present in
1062 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1063 callers that desire that behavior must manually perform that step.) */
1064
1065 void
1066 place_field (record_layout_info rli, tree field)
1067 {
1068 /* The alignment required for FIELD. */
1069 unsigned int desired_align;
1070 /* The alignment FIELD would have if we just dropped it into the
1071 record as it presently stands. */
1072 unsigned int known_align;
1073 unsigned int actual_align;
1074 /* The type of this field. */
1075 tree type = TREE_TYPE (field);
1076
1077 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1078
1079 /* If FIELD is static, then treat it like a separate variable, not
1080 really like a structure field. If it is a FUNCTION_DECL, it's a
1081 method. In both cases, all we do is lay out the decl, and we do
1082 it *after* the record is laid out. */
1083 if (TREE_CODE (field) == VAR_DECL)
1084 {
1085 vec_safe_push (rli->pending_statics, field);
1086 return;
1087 }
1088
1089 /* Enumerators and enum types which are local to this class need not
1090 be laid out. Likewise for initialized constant fields. */
1091 else if (TREE_CODE (field) != FIELD_DECL)
1092 return;
1093
1094 /* Unions are laid out very differently than records, so split
1095 that code off to another function. */
1096 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1097 {
1098 place_union_field (rli, field);
1099 return;
1100 }
1101
1102 else if (TREE_CODE (type) == ERROR_MARK)
1103 {
1104 /* Place this field at the current allocation position, so we
1105 maintain monotonicity. */
1106 DECL_FIELD_OFFSET (field) = rli->offset;
1107 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1108 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1109 return;
1110 }
1111
1112 /* Work out the known alignment so far. Note that A & (-A) is the
1113 value of the least-significant bit in A that is one. */
1114 if (! integer_zerop (rli->bitpos))
1115 known_align = (tree_low_cst (rli->bitpos, 1)
1116 & - tree_low_cst (rli->bitpos, 1));
1117 else if (integer_zerop (rli->offset))
1118 known_align = 0;
1119 else if (host_integerp (rli->offset, 1))
1120 known_align = (BITS_PER_UNIT
1121 * (tree_low_cst (rli->offset, 1)
1122 & - tree_low_cst (rli->offset, 1)));
1123 else
1124 known_align = rli->offset_align;
1125
1126 desired_align = update_alignment_for_field (rli, field, known_align);
1127 if (known_align == 0)
1128 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1129
1130 if (warn_packed && DECL_PACKED (field))
1131 {
1132 if (known_align >= TYPE_ALIGN (type))
1133 {
1134 if (TYPE_ALIGN (type) > desired_align)
1135 {
1136 if (STRICT_ALIGNMENT)
1137 warning (OPT_Wattributes, "packed attribute causes "
1138 "inefficient alignment for %q+D", field);
1139 /* Don't warn if DECL_PACKED was set by the type. */
1140 else if (!TYPE_PACKED (rli->t))
1141 warning (OPT_Wattributes, "packed attribute is "
1142 "unnecessary for %q+D", field);
1143 }
1144 }
1145 else
1146 rli->packed_maybe_necessary = 1;
1147 }
1148
1149 /* Does this field automatically have alignment it needs by virtue
1150 of the fields that precede it and the record's own alignment? */
1151 if (known_align < desired_align)
1152 {
1153 /* No, we need to skip space before this field.
1154 Bump the cumulative size to multiple of field alignment. */
1155
1156 if (!targetm.ms_bitfield_layout_p (rli->t)
1157 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1158 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1159
1160 /* If the alignment is still within offset_align, just align
1161 the bit position. */
1162 if (desired_align < rli->offset_align)
1163 rli->bitpos = round_up (rli->bitpos, desired_align);
1164 else
1165 {
1166 /* First adjust OFFSET by the partial bits, then align. */
1167 rli->offset
1168 = size_binop (PLUS_EXPR, rli->offset,
1169 fold_convert (sizetype,
1170 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1171 bitsize_unit_node)));
1172 rli->bitpos = bitsize_zero_node;
1173
1174 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1175 }
1176
1177 if (! TREE_CONSTANT (rli->offset))
1178 rli->offset_align = desired_align;
1179 if (targetm.ms_bitfield_layout_p (rli->t))
1180 rli->prev_field = NULL;
1181 }
1182
1183 /* Handle compatibility with PCC. Note that if the record has any
1184 variable-sized fields, we need not worry about compatibility. */
1185 #ifdef PCC_BITFIELD_TYPE_MATTERS
1186 if (PCC_BITFIELD_TYPE_MATTERS
1187 && ! targetm.ms_bitfield_layout_p (rli->t)
1188 && TREE_CODE (field) == FIELD_DECL
1189 && type != error_mark_node
1190 && DECL_BIT_FIELD (field)
1191 && (! DECL_PACKED (field)
1192 /* Enter for these packed fields only to issue a warning. */
1193 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1194 && maximum_field_alignment == 0
1195 && ! integer_zerop (DECL_SIZE (field))
1196 && host_integerp (DECL_SIZE (field), 1)
1197 && host_integerp (rli->offset, 1)
1198 && host_integerp (TYPE_SIZE (type), 1))
1199 {
1200 unsigned int type_align = TYPE_ALIGN (type);
1201 tree dsize = DECL_SIZE (field);
1202 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1203 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1204 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1205
1206 #ifdef ADJUST_FIELD_ALIGN
1207 if (! TYPE_USER_ALIGN (type))
1208 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1209 #endif
1210
1211 /* A bit field may not span more units of alignment of its type
1212 than its type itself. Advance to next boundary if necessary. */
1213 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1214 {
1215 if (DECL_PACKED (field))
1216 {
1217 if (warn_packed_bitfield_compat == 1)
1218 inform
1219 (input_location,
1220 "offset of packed bit-field %qD has changed in GCC 4.4",
1221 field);
1222 }
1223 else
1224 rli->bitpos = round_up (rli->bitpos, type_align);
1225 }
1226
1227 if (! DECL_PACKED (field))
1228 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1229 }
1230 #endif
1231
1232 #ifdef BITFIELD_NBYTES_LIMITED
1233 if (BITFIELD_NBYTES_LIMITED
1234 && ! targetm.ms_bitfield_layout_p (rli->t)
1235 && TREE_CODE (field) == FIELD_DECL
1236 && type != error_mark_node
1237 && DECL_BIT_FIELD_TYPE (field)
1238 && ! DECL_PACKED (field)
1239 && ! integer_zerop (DECL_SIZE (field))
1240 && host_integerp (DECL_SIZE (field), 1)
1241 && host_integerp (rli->offset, 1)
1242 && host_integerp (TYPE_SIZE (type), 1))
1243 {
1244 unsigned int type_align = TYPE_ALIGN (type);
1245 tree dsize = DECL_SIZE (field);
1246 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1247 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1248 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1249
1250 #ifdef ADJUST_FIELD_ALIGN
1251 if (! TYPE_USER_ALIGN (type))
1252 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1253 #endif
1254
1255 if (maximum_field_alignment != 0)
1256 type_align = MIN (type_align, maximum_field_alignment);
1257 /* ??? This test is opposite the test in the containing if
1258 statement, so this code is unreachable currently. */
1259 else if (DECL_PACKED (field))
1260 type_align = MIN (type_align, BITS_PER_UNIT);
1261
1262 /* A bit field may not span the unit of alignment of its type.
1263 Advance to next boundary if necessary. */
1264 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1265 rli->bitpos = round_up (rli->bitpos, type_align);
1266
1267 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1268 }
1269 #endif
1270
1271 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1272 A subtlety:
1273 When a bit field is inserted into a packed record, the whole
1274 size of the underlying type is used by one or more same-size
1275 adjacent bitfields. (That is, if its long:3, 32 bits is
1276 used in the record, and any additional adjacent long bitfields are
1277 packed into the same chunk of 32 bits. However, if the size
1278 changes, a new field of that size is allocated.) In an unpacked
1279 record, this is the same as using alignment, but not equivalent
1280 when packing.
1281
1282 Note: for compatibility, we use the type size, not the type alignment
1283 to determine alignment, since that matches the documentation */
1284
1285 if (targetm.ms_bitfield_layout_p (rli->t))
1286 {
1287 tree prev_saved = rli->prev_field;
1288 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1289
1290 /* This is a bitfield if it exists. */
1291 if (rli->prev_field)
1292 {
1293 /* If both are bitfields, nonzero, and the same size, this is
1294 the middle of a run. Zero declared size fields are special
1295 and handled as "end of run". (Note: it's nonzero declared
1296 size, but equal type sizes!) (Since we know that both
1297 the current and previous fields are bitfields by the
1298 time we check it, DECL_SIZE must be present for both.) */
1299 if (DECL_BIT_FIELD_TYPE (field)
1300 && !integer_zerop (DECL_SIZE (field))
1301 && !integer_zerop (DECL_SIZE (rli->prev_field))
1302 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1303 && host_integerp (TYPE_SIZE (type), 0)
1304 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1305 {
1306 /* We're in the middle of a run of equal type size fields; make
1307 sure we realign if we run out of bits. (Not decl size,
1308 type size!) */
1309 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
1310
1311 if (rli->remaining_in_alignment < bitsize)
1312 {
1313 HOST_WIDE_INT typesize = tree_low_cst (TYPE_SIZE (type), 1);
1314
1315 /* out of bits; bump up to next 'word'. */
1316 rli->bitpos
1317 = size_binop (PLUS_EXPR, rli->bitpos,
1318 bitsize_int (rli->remaining_in_alignment));
1319 rli->prev_field = field;
1320 if (typesize < bitsize)
1321 rli->remaining_in_alignment = 0;
1322 else
1323 rli->remaining_in_alignment = typesize - bitsize;
1324 }
1325 else
1326 rli->remaining_in_alignment -= bitsize;
1327 }
1328 else
1329 {
1330 /* End of a run: if leaving a run of bitfields of the same type
1331 size, we have to "use up" the rest of the bits of the type
1332 size.
1333
1334 Compute the new position as the sum of the size for the prior
1335 type and where we first started working on that type.
1336 Note: since the beginning of the field was aligned then
1337 of course the end will be too. No round needed. */
1338
1339 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1340 {
1341 rli->bitpos
1342 = size_binop (PLUS_EXPR, rli->bitpos,
1343 bitsize_int (rli->remaining_in_alignment));
1344 }
1345 else
1346 /* We "use up" size zero fields; the code below should behave
1347 as if the prior field was not a bitfield. */
1348 prev_saved = NULL;
1349
1350 /* Cause a new bitfield to be captured, either this time (if
1351 currently a bitfield) or next time we see one. */
1352 if (!DECL_BIT_FIELD_TYPE (field)
1353 || integer_zerop (DECL_SIZE (field)))
1354 rli->prev_field = NULL;
1355 }
1356
1357 normalize_rli (rli);
1358 }
1359
1360 /* If we're starting a new run of same type size bitfields
1361 (or a run of non-bitfields), set up the "first of the run"
1362 fields.
1363
1364 That is, if the current field is not a bitfield, or if there
1365 was a prior bitfield the type sizes differ, or if there wasn't
1366 a prior bitfield the size of the current field is nonzero.
1367
1368 Note: we must be sure to test ONLY the type size if there was
1369 a prior bitfield and ONLY for the current field being zero if
1370 there wasn't. */
1371
1372 if (!DECL_BIT_FIELD_TYPE (field)
1373 || (prev_saved != NULL
1374 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1375 : !integer_zerop (DECL_SIZE (field)) ))
1376 {
1377 /* Never smaller than a byte for compatibility. */
1378 unsigned int type_align = BITS_PER_UNIT;
1379
1380 /* (When not a bitfield), we could be seeing a flex array (with
1381 no DECL_SIZE). Since we won't be using remaining_in_alignment
1382 until we see a bitfield (and come by here again) we just skip
1383 calculating it. */
1384 if (DECL_SIZE (field) != NULL
1385 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 1)
1386 && host_integerp (DECL_SIZE (field), 1))
1387 {
1388 unsigned HOST_WIDE_INT bitsize
1389 = tree_low_cst (DECL_SIZE (field), 1);
1390 unsigned HOST_WIDE_INT typesize
1391 = tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 1);
1392
1393 if (typesize < bitsize)
1394 rli->remaining_in_alignment = 0;
1395 else
1396 rli->remaining_in_alignment = typesize - bitsize;
1397 }
1398
1399 /* Now align (conventionally) for the new type. */
1400 type_align = TYPE_ALIGN (TREE_TYPE (field));
1401
1402 if (maximum_field_alignment != 0)
1403 type_align = MIN (type_align, maximum_field_alignment);
1404
1405 rli->bitpos = round_up (rli->bitpos, type_align);
1406
1407 /* If we really aligned, don't allow subsequent bitfields
1408 to undo that. */
1409 rli->prev_field = NULL;
1410 }
1411 }
1412
1413 /* Offset so far becomes the position of this field after normalizing. */
1414 normalize_rli (rli);
1415 DECL_FIELD_OFFSET (field) = rli->offset;
1416 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1417 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1418
1419 /* If this field ended up more aligned than we thought it would be (we
1420 approximate this by seeing if its position changed), lay out the field
1421 again; perhaps we can use an integral mode for it now. */
1422 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1423 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1424 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1425 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1426 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1427 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1428 actual_align = (BITS_PER_UNIT
1429 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1430 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1431 else
1432 actual_align = DECL_OFFSET_ALIGN (field);
1433 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1434 store / extract bit field operations will check the alignment of the
1435 record against the mode of bit fields. */
1436
1437 if (known_align != actual_align)
1438 layout_decl (field, actual_align);
1439
1440 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1441 rli->prev_field = field;
1442
1443 /* Now add size of this field to the size of the record. If the size is
1444 not constant, treat the field as being a multiple of bytes and just
1445 adjust the offset, resetting the bit position. Otherwise, apportion the
1446 size amongst the bit position and offset. First handle the case of an
1447 unspecified size, which can happen when we have an invalid nested struct
1448 definition, such as struct j { struct j { int i; } }. The error message
1449 is printed in finish_struct. */
1450 if (DECL_SIZE (field) == 0)
1451 /* Do nothing. */;
1452 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1453 || TREE_OVERFLOW (DECL_SIZE (field)))
1454 {
1455 rli->offset
1456 = size_binop (PLUS_EXPR, rli->offset,
1457 fold_convert (sizetype,
1458 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1459 bitsize_unit_node)));
1460 rli->offset
1461 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1462 rli->bitpos = bitsize_zero_node;
1463 rli->offset_align = MIN (rli->offset_align, desired_align);
1464 }
1465 else if (targetm.ms_bitfield_layout_p (rli->t))
1466 {
1467 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1468
1469 /* If we ended a bitfield before the full length of the type then
1470 pad the struct out to the full length of the last type. */
1471 if ((DECL_CHAIN (field) == NULL
1472 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1473 && DECL_BIT_FIELD_TYPE (field)
1474 && !integer_zerop (DECL_SIZE (field)))
1475 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1476 bitsize_int (rli->remaining_in_alignment));
1477
1478 normalize_rli (rli);
1479 }
1480 else
1481 {
1482 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1483 normalize_rli (rli);
1484 }
1485 }
1486
1487 /* Assuming that all the fields have been laid out, this function uses
1488 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1489 indicated by RLI. */
1490
1491 static void
1492 finalize_record_size (record_layout_info rli)
1493 {
1494 tree unpadded_size, unpadded_size_unit;
1495
1496 /* Now we want just byte and bit offsets, so set the offset alignment
1497 to be a byte and then normalize. */
1498 rli->offset_align = BITS_PER_UNIT;
1499 normalize_rli (rli);
1500
1501 /* Determine the desired alignment. */
1502 #ifdef ROUND_TYPE_ALIGN
1503 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1504 rli->record_align);
1505 #else
1506 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1507 #endif
1508
1509 /* Compute the size so far. Be sure to allow for extra bits in the
1510 size in bytes. We have guaranteed above that it will be no more
1511 than a single byte. */
1512 unpadded_size = rli_size_so_far (rli);
1513 unpadded_size_unit = rli_size_unit_so_far (rli);
1514 if (! integer_zerop (rli->bitpos))
1515 unpadded_size_unit
1516 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1517
1518 /* Round the size up to be a multiple of the required alignment. */
1519 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1520 TYPE_SIZE_UNIT (rli->t)
1521 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1522
1523 if (TREE_CONSTANT (unpadded_size)
1524 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1525 && input_location != BUILTINS_LOCATION)
1526 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1527
1528 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1529 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1530 && TREE_CONSTANT (unpadded_size))
1531 {
1532 tree unpacked_size;
1533
1534 #ifdef ROUND_TYPE_ALIGN
1535 rli->unpacked_align
1536 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1537 #else
1538 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1539 #endif
1540
1541 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1542 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1543 {
1544 if (TYPE_NAME (rli->t))
1545 {
1546 tree name;
1547
1548 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1549 name = TYPE_NAME (rli->t);
1550 else
1551 name = DECL_NAME (TYPE_NAME (rli->t));
1552
1553 if (STRICT_ALIGNMENT)
1554 warning (OPT_Wpacked, "packed attribute causes inefficient "
1555 "alignment for %qE", name);
1556 else
1557 warning (OPT_Wpacked,
1558 "packed attribute is unnecessary for %qE", name);
1559 }
1560 else
1561 {
1562 if (STRICT_ALIGNMENT)
1563 warning (OPT_Wpacked,
1564 "packed attribute causes inefficient alignment");
1565 else
1566 warning (OPT_Wpacked, "packed attribute is unnecessary");
1567 }
1568 }
1569 }
1570 }
1571
1572 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1573
1574 void
1575 compute_record_mode (tree type)
1576 {
1577 tree field;
1578 enum machine_mode mode = VOIDmode;
1579
1580 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1581 However, if possible, we use a mode that fits in a register
1582 instead, in order to allow for better optimization down the
1583 line. */
1584 SET_TYPE_MODE (type, BLKmode);
1585
1586 if (! host_integerp (TYPE_SIZE (type), 1))
1587 return;
1588
1589 /* A record which has any BLKmode members must itself be
1590 BLKmode; it can't go in a register. Unless the member is
1591 BLKmode only because it isn't aligned. */
1592 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1593 {
1594 if (TREE_CODE (field) != FIELD_DECL)
1595 continue;
1596
1597 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1598 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1599 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1600 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1601 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1602 || ! host_integerp (bit_position (field), 1)
1603 || DECL_SIZE (field) == 0
1604 || ! host_integerp (DECL_SIZE (field), 1))
1605 return;
1606
1607 /* If this field is the whole struct, remember its mode so
1608 that, say, we can put a double in a class into a DF
1609 register instead of forcing it to live in the stack. */
1610 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1611 mode = DECL_MODE (field);
1612
1613 /* With some targets, it is sub-optimal to access an aligned
1614 BLKmode structure as a scalar. */
1615 if (targetm.member_type_forces_blk (field, mode))
1616 return;
1617 }
1618
1619 /* If we only have one real field; use its mode if that mode's size
1620 matches the type's size. This only applies to RECORD_TYPE. This
1621 does not apply to unions. */
1622 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1623 && host_integerp (TYPE_SIZE (type), 1)
1624 && GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
1625 SET_TYPE_MODE (type, mode);
1626 else
1627 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1628
1629 /* If structure's known alignment is less than what the scalar
1630 mode would need, and it matters, then stick with BLKmode. */
1631 if (TYPE_MODE (type) != BLKmode
1632 && STRICT_ALIGNMENT
1633 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1634 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1635 {
1636 /* If this is the only reason this type is BLKmode, then
1637 don't force containing types to be BLKmode. */
1638 TYPE_NO_FORCE_BLK (type) = 1;
1639 SET_TYPE_MODE (type, BLKmode);
1640 }
1641 }
1642
1643 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1644 out. */
1645
1646 static void
1647 finalize_type_size (tree type)
1648 {
1649 /* Normally, use the alignment corresponding to the mode chosen.
1650 However, where strict alignment is not required, avoid
1651 over-aligning structures, since most compilers do not do this
1652 alignment. */
1653
1654 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1655 && (STRICT_ALIGNMENT
1656 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1657 && TREE_CODE (type) != QUAL_UNION_TYPE
1658 && TREE_CODE (type) != ARRAY_TYPE)))
1659 {
1660 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1661
1662 /* Don't override a larger alignment requirement coming from a user
1663 alignment of one of the fields. */
1664 if (mode_align >= TYPE_ALIGN (type))
1665 {
1666 TYPE_ALIGN (type) = mode_align;
1667 TYPE_USER_ALIGN (type) = 0;
1668 }
1669 }
1670
1671 /* Do machine-dependent extra alignment. */
1672 #ifdef ROUND_TYPE_ALIGN
1673 TYPE_ALIGN (type)
1674 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1675 #endif
1676
1677 /* If we failed to find a simple way to calculate the unit size
1678 of the type, find it by division. */
1679 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1680 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1681 result will fit in sizetype. We will get more efficient code using
1682 sizetype, so we force a conversion. */
1683 TYPE_SIZE_UNIT (type)
1684 = fold_convert (sizetype,
1685 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1686 bitsize_unit_node));
1687
1688 if (TYPE_SIZE (type) != 0)
1689 {
1690 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1691 TYPE_SIZE_UNIT (type)
1692 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1693 }
1694
1695 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1696 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1697 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1698 if (TYPE_SIZE_UNIT (type) != 0
1699 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1700 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1701
1702 /* Also layout any other variants of the type. */
1703 if (TYPE_NEXT_VARIANT (type)
1704 || type != TYPE_MAIN_VARIANT (type))
1705 {
1706 tree variant;
1707 /* Record layout info of this variant. */
1708 tree size = TYPE_SIZE (type);
1709 tree size_unit = TYPE_SIZE_UNIT (type);
1710 unsigned int align = TYPE_ALIGN (type);
1711 unsigned int user_align = TYPE_USER_ALIGN (type);
1712 enum machine_mode mode = TYPE_MODE (type);
1713
1714 /* Copy it into all variants. */
1715 for (variant = TYPE_MAIN_VARIANT (type);
1716 variant != 0;
1717 variant = TYPE_NEXT_VARIANT (variant))
1718 {
1719 TYPE_SIZE (variant) = size;
1720 TYPE_SIZE_UNIT (variant) = size_unit;
1721 TYPE_ALIGN (variant) = align;
1722 TYPE_USER_ALIGN (variant) = user_align;
1723 SET_TYPE_MODE (variant, mode);
1724 }
1725 }
1726 }
1727
1728 /* Return a new underlying object for a bitfield started with FIELD. */
1729
1730 static tree
1731 start_bitfield_representative (tree field)
1732 {
1733 tree repr = make_node (FIELD_DECL);
1734 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1735 /* Force the representative to begin at a BITS_PER_UNIT aligned
1736 boundary - C++ may use tail-padding of a base object to
1737 continue packing bits so the bitfield region does not start
1738 at bit zero (see g++.dg/abi/bitfield5.C for example).
1739 Unallocated bits may happen for other reasons as well,
1740 for example Ada which allows explicit bit-granular structure layout. */
1741 DECL_FIELD_BIT_OFFSET (repr)
1742 = size_binop (BIT_AND_EXPR,
1743 DECL_FIELD_BIT_OFFSET (field),
1744 bitsize_int (~(BITS_PER_UNIT - 1)));
1745 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1746 DECL_SIZE (repr) = DECL_SIZE (field);
1747 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1748 DECL_PACKED (repr) = DECL_PACKED (field);
1749 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1750 return repr;
1751 }
1752
1753 /* Finish up a bitfield group that was started by creating the underlying
1754 object REPR with the last field in the bitfield group FIELD. */
1755
1756 static void
1757 finish_bitfield_representative (tree repr, tree field)
1758 {
1759 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1760 enum machine_mode mode;
1761 tree nextf, size;
1762
1763 size = size_diffop (DECL_FIELD_OFFSET (field),
1764 DECL_FIELD_OFFSET (repr));
1765 gcc_assert (host_integerp (size, 1));
1766 bitsize = (tree_low_cst (size, 1) * BITS_PER_UNIT
1767 + tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1768 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1)
1769 + tree_low_cst (DECL_SIZE (field), 1));
1770
1771 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1772 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1773
1774 /* Now nothing tells us how to pad out bitsize ... */
1775 nextf = DECL_CHAIN (field);
1776 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1777 nextf = DECL_CHAIN (nextf);
1778 if (nextf)
1779 {
1780 tree maxsize;
1781 /* If there was an error, the field may be not laid out
1782 correctly. Don't bother to do anything. */
1783 if (TREE_TYPE (nextf) == error_mark_node)
1784 return;
1785 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1786 DECL_FIELD_OFFSET (repr));
1787 if (host_integerp (maxsize, 1))
1788 {
1789 maxbitsize = (tree_low_cst (maxsize, 1) * BITS_PER_UNIT
1790 + tree_low_cst (DECL_FIELD_BIT_OFFSET (nextf), 1)
1791 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1));
1792 /* If the group ends within a bitfield nextf does not need to be
1793 aligned to BITS_PER_UNIT. Thus round up. */
1794 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1795 }
1796 else
1797 maxbitsize = bitsize;
1798 }
1799 else
1800 {
1801 /* ??? If you consider that tail-padding of this struct might be
1802 re-used when deriving from it we cannot really do the following
1803 and thus need to set maxsize to bitsize? Also we cannot
1804 generally rely on maxsize to fold to an integer constant, so
1805 use bitsize as fallback for this case. */
1806 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1807 DECL_FIELD_OFFSET (repr));
1808 if (host_integerp (maxsize, 1))
1809 maxbitsize = (tree_low_cst (maxsize, 1) * BITS_PER_UNIT
1810 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1));
1811 else
1812 maxbitsize = bitsize;
1813 }
1814
1815 /* Only if we don't artificially break up the representative in
1816 the middle of a large bitfield with different possibly
1817 overlapping representatives. And all representatives start
1818 at byte offset. */
1819 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1820
1821 /* Find the smallest nice mode to use. */
1822 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1823 mode = GET_MODE_WIDER_MODE (mode))
1824 if (GET_MODE_BITSIZE (mode) >= bitsize)
1825 break;
1826 if (mode != VOIDmode
1827 && (GET_MODE_BITSIZE (mode) > maxbitsize
1828 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1829 mode = VOIDmode;
1830
1831 if (mode == VOIDmode)
1832 {
1833 /* We really want a BLKmode representative only as a last resort,
1834 considering the member b in
1835 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1836 Otherwise we simply want to split the representative up
1837 allowing for overlaps within the bitfield region as required for
1838 struct { int a : 7; int b : 7;
1839 int c : 10; int d; } __attribute__((packed));
1840 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1841 DECL_SIZE (repr) = bitsize_int (bitsize);
1842 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1843 DECL_MODE (repr) = BLKmode;
1844 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1845 bitsize / BITS_PER_UNIT);
1846 }
1847 else
1848 {
1849 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1850 DECL_SIZE (repr) = bitsize_int (modesize);
1851 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1852 DECL_MODE (repr) = mode;
1853 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1854 }
1855
1856 /* Remember whether the bitfield group is at the end of the
1857 structure or not. */
1858 DECL_CHAIN (repr) = nextf;
1859 }
1860
1861 /* Compute and set FIELD_DECLs for the underlying objects we should
1862 use for bitfield access for the structure laid out with RLI. */
1863
1864 static void
1865 finish_bitfield_layout (record_layout_info rli)
1866 {
1867 tree field, prev;
1868 tree repr = NULL_TREE;
1869
1870 /* Unions would be special, for the ease of type-punning optimizations
1871 we could use the underlying type as hint for the representative
1872 if the bitfield would fit and the representative would not exceed
1873 the union in size. */
1874 if (TREE_CODE (rli->t) != RECORD_TYPE)
1875 return;
1876
1877 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1878 field; field = DECL_CHAIN (field))
1879 {
1880 if (TREE_CODE (field) != FIELD_DECL)
1881 continue;
1882
1883 /* In the C++ memory model, consecutive bit fields in a structure are
1884 considered one memory location and updating a memory location
1885 may not store into adjacent memory locations. */
1886 if (!repr
1887 && DECL_BIT_FIELD_TYPE (field))
1888 {
1889 /* Start new representative. */
1890 repr = start_bitfield_representative (field);
1891 }
1892 else if (repr
1893 && ! DECL_BIT_FIELD_TYPE (field))
1894 {
1895 /* Finish off new representative. */
1896 finish_bitfield_representative (repr, prev);
1897 repr = NULL_TREE;
1898 }
1899 else if (DECL_BIT_FIELD_TYPE (field))
1900 {
1901 gcc_assert (repr != NULL_TREE);
1902
1903 /* Zero-size bitfields finish off a representative and
1904 do not have a representative themselves. This is
1905 required by the C++ memory model. */
1906 if (integer_zerop (DECL_SIZE (field)))
1907 {
1908 finish_bitfield_representative (repr, prev);
1909 repr = NULL_TREE;
1910 }
1911
1912 /* We assume that either DECL_FIELD_OFFSET of the representative
1913 and each bitfield member is a constant or they are equal.
1914 This is because we need to be able to compute the bit-offset
1915 of each field relative to the representative in get_bit_range
1916 during RTL expansion.
1917 If these constraints are not met, simply force a new
1918 representative to be generated. That will at most
1919 generate worse code but still maintain correctness with
1920 respect to the C++ memory model. */
1921 else if (!((host_integerp (DECL_FIELD_OFFSET (repr), 1)
1922 && host_integerp (DECL_FIELD_OFFSET (field), 1))
1923 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1924 DECL_FIELD_OFFSET (field), 0)))
1925 {
1926 finish_bitfield_representative (repr, prev);
1927 repr = start_bitfield_representative (field);
1928 }
1929 }
1930 else
1931 continue;
1932
1933 if (repr)
1934 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
1935
1936 prev = field;
1937 }
1938
1939 if (repr)
1940 finish_bitfield_representative (repr, prev);
1941 }
1942
1943 /* Do all of the work required to layout the type indicated by RLI,
1944 once the fields have been laid out. This function will call `free'
1945 for RLI, unless FREE_P is false. Passing a value other than false
1946 for FREE_P is bad practice; this option only exists to support the
1947 G++ 3.2 ABI. */
1948
1949 void
1950 finish_record_layout (record_layout_info rli, int free_p)
1951 {
1952 tree variant;
1953
1954 /* Compute the final size. */
1955 finalize_record_size (rli);
1956
1957 /* Compute the TYPE_MODE for the record. */
1958 compute_record_mode (rli->t);
1959
1960 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1961 finalize_type_size (rli->t);
1962
1963 /* Compute bitfield representatives. */
1964 finish_bitfield_layout (rli);
1965
1966 /* Propagate TYPE_PACKED to variants. With C++ templates,
1967 handle_packed_attribute is too early to do this. */
1968 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
1969 variant = TYPE_NEXT_VARIANT (variant))
1970 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
1971
1972 /* Lay out any static members. This is done now because their type
1973 may use the record's type. */
1974 while (!vec_safe_is_empty (rli->pending_statics))
1975 layout_decl (rli->pending_statics->pop (), 0);
1976
1977 /* Clean up. */
1978 if (free_p)
1979 {
1980 vec_free (rli->pending_statics);
1981 free (rli);
1982 }
1983 }
1984 \f
1985
1986 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1987 NAME, its fields are chained in reverse on FIELDS.
1988
1989 If ALIGN_TYPE is non-null, it is given the same alignment as
1990 ALIGN_TYPE. */
1991
1992 void
1993 finish_builtin_struct (tree type, const char *name, tree fields,
1994 tree align_type)
1995 {
1996 tree tail, next;
1997
1998 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1999 {
2000 DECL_FIELD_CONTEXT (fields) = type;
2001 next = DECL_CHAIN (fields);
2002 DECL_CHAIN (fields) = tail;
2003 }
2004 TYPE_FIELDS (type) = tail;
2005
2006 if (align_type)
2007 {
2008 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2009 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2010 }
2011
2012 layout_type (type);
2013 #if 0 /* not yet, should get fixed properly later */
2014 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2015 #else
2016 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2017 TYPE_DECL, get_identifier (name), type);
2018 #endif
2019 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2020 layout_decl (TYPE_NAME (type), 0);
2021 }
2022
2023 /* Calculate the mode, size, and alignment for TYPE.
2024 For an array type, calculate the element separation as well.
2025 Record TYPE on the chain of permanent or temporary types
2026 so that dbxout will find out about it.
2027
2028 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2029 layout_type does nothing on such a type.
2030
2031 If the type is incomplete, its TYPE_SIZE remains zero. */
2032
2033 void
2034 layout_type (tree type)
2035 {
2036 gcc_assert (type);
2037
2038 if (type == error_mark_node)
2039 return;
2040
2041 /* Do nothing if type has been laid out before. */
2042 if (TYPE_SIZE (type))
2043 return;
2044
2045 switch (TREE_CODE (type))
2046 {
2047 case LANG_TYPE:
2048 /* This kind of type is the responsibility
2049 of the language-specific code. */
2050 gcc_unreachable ();
2051
2052 case BOOLEAN_TYPE:
2053 case INTEGER_TYPE:
2054 case ENUMERAL_TYPE:
2055 SET_TYPE_MODE (type,
2056 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2057 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2058 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2059 break;
2060
2061 case REAL_TYPE:
2062 SET_TYPE_MODE (type,
2063 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2064 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2065 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2066 break;
2067
2068 case FIXED_POINT_TYPE:
2069 /* TYPE_MODE (type) has been set already. */
2070 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2071 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2072 break;
2073
2074 case COMPLEX_TYPE:
2075 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2076 SET_TYPE_MODE (type,
2077 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2078 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2079 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2080 0));
2081 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2082 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2083 break;
2084
2085 case VECTOR_TYPE:
2086 {
2087 int nunits = TYPE_VECTOR_SUBPARTS (type);
2088 tree innertype = TREE_TYPE (type);
2089
2090 gcc_assert (!(nunits & (nunits - 1)));
2091
2092 /* Find an appropriate mode for the vector type. */
2093 if (TYPE_MODE (type) == VOIDmode)
2094 SET_TYPE_MODE (type,
2095 mode_for_vector (TYPE_MODE (innertype), nunits));
2096
2097 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2098 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2099 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2100 TYPE_SIZE_UNIT (innertype),
2101 size_int (nunits));
2102 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2103 bitsize_int (nunits));
2104
2105 /* For vector types, we do not default to the mode's alignment.
2106 Instead, query a target hook, defaulting to natural alignment.
2107 This prevents ABI changes depending on whether or not native
2108 vector modes are supported. */
2109 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2110
2111 /* However, if the underlying mode requires a bigger alignment than
2112 what the target hook provides, we cannot use the mode. For now,
2113 simply reject that case. */
2114 gcc_assert (TYPE_ALIGN (type)
2115 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2116 break;
2117 }
2118
2119 case VOID_TYPE:
2120 /* This is an incomplete type and so doesn't have a size. */
2121 TYPE_ALIGN (type) = 1;
2122 TYPE_USER_ALIGN (type) = 0;
2123 SET_TYPE_MODE (type, VOIDmode);
2124 break;
2125
2126 case POINTER_BOUNDS_TYPE:
2127 SET_TYPE_MODE (type,
2128 mode_for_size (TYPE_PRECISION (type),
2129 MODE_POINTER_BOUNDS, 0));
2130 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2131 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2132 break;
2133
2134 case OFFSET_TYPE:
2135 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2136 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
2137 /* A pointer might be MODE_PARTIAL_INT,
2138 but ptrdiff_t must be integral. */
2139 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2140 TYPE_PRECISION (type) = POINTER_SIZE;
2141 break;
2142
2143 case FUNCTION_TYPE:
2144 case METHOD_TYPE:
2145 /* It's hard to see what the mode and size of a function ought to
2146 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2147 make it consistent with that. */
2148 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2149 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2150 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2151 break;
2152
2153 case POINTER_TYPE:
2154 case REFERENCE_TYPE:
2155 {
2156 enum machine_mode mode = TYPE_MODE (type);
2157 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2158 {
2159 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2160 mode = targetm.addr_space.address_mode (as);
2161 }
2162
2163 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2164 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2165 TYPE_UNSIGNED (type) = 1;
2166 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
2167 }
2168 break;
2169
2170 case ARRAY_TYPE:
2171 {
2172 tree index = TYPE_DOMAIN (type);
2173 tree element = TREE_TYPE (type);
2174
2175 build_pointer_type (element);
2176
2177 /* We need to know both bounds in order to compute the size. */
2178 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2179 && TYPE_SIZE (element))
2180 {
2181 tree ub = TYPE_MAX_VALUE (index);
2182 tree lb = TYPE_MIN_VALUE (index);
2183 tree element_size = TYPE_SIZE (element);
2184 tree length;
2185
2186 /* Make sure that an array of zero-sized element is zero-sized
2187 regardless of its extent. */
2188 if (integer_zerop (element_size))
2189 length = size_zero_node;
2190
2191 /* The computation should happen in the original signedness so
2192 that (possible) negative values are handled appropriately
2193 when determining overflow. */
2194 else
2195 {
2196 /* ??? When it is obvious that the range is signed
2197 represent it using ssizetype. */
2198 if (TREE_CODE (lb) == INTEGER_CST
2199 && TREE_CODE (ub) == INTEGER_CST
2200 && TYPE_UNSIGNED (TREE_TYPE (lb))
2201 && tree_int_cst_lt (ub, lb))
2202 {
2203 unsigned prec = TYPE_PRECISION (TREE_TYPE (lb));
2204 lb = double_int_to_tree
2205 (ssizetype,
2206 tree_to_double_int (lb).sext (prec));
2207 ub = double_int_to_tree
2208 (ssizetype,
2209 tree_to_double_int (ub).sext (prec));
2210 }
2211 length
2212 = fold_convert (sizetype,
2213 size_binop (PLUS_EXPR,
2214 build_int_cst (TREE_TYPE (lb), 1),
2215 size_binop (MINUS_EXPR, ub, lb)));
2216 }
2217
2218 /* ??? We have no way to distinguish a null-sized array from an
2219 array spanning the whole sizetype range, so we arbitrarily
2220 decide that [0, -1] is the only valid representation. */
2221 if (integer_zerop (length)
2222 && TREE_OVERFLOW (length)
2223 && integer_zerop (lb))
2224 length = size_zero_node;
2225
2226 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2227 fold_convert (bitsizetype,
2228 length));
2229
2230 /* If we know the size of the element, calculate the total size
2231 directly, rather than do some division thing below. This
2232 optimization helps Fortran assumed-size arrays (where the
2233 size of the array is determined at runtime) substantially. */
2234 if (TYPE_SIZE_UNIT (element))
2235 TYPE_SIZE_UNIT (type)
2236 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2237 }
2238
2239 /* Now round the alignment and size,
2240 using machine-dependent criteria if any. */
2241
2242 #ifdef ROUND_TYPE_ALIGN
2243 TYPE_ALIGN (type)
2244 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2245 #else
2246 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2247 #endif
2248 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2249 SET_TYPE_MODE (type, BLKmode);
2250 if (TYPE_SIZE (type) != 0
2251 && ! targetm.member_type_forces_blk (type, VOIDmode)
2252 /* BLKmode elements force BLKmode aggregate;
2253 else extract/store fields may lose. */
2254 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2255 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2256 {
2257 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2258 TYPE_SIZE (type)));
2259 if (TYPE_MODE (type) != BLKmode
2260 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2261 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2262 {
2263 TYPE_NO_FORCE_BLK (type) = 1;
2264 SET_TYPE_MODE (type, BLKmode);
2265 }
2266 }
2267 /* When the element size is constant, check that it is at least as
2268 large as the element alignment. */
2269 if (TYPE_SIZE_UNIT (element)
2270 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2271 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2272 TYPE_ALIGN_UNIT. */
2273 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2274 && !integer_zerop (TYPE_SIZE_UNIT (element))
2275 && compare_tree_int (TYPE_SIZE_UNIT (element),
2276 TYPE_ALIGN_UNIT (element)) < 0)
2277 error ("alignment of array elements is greater than element size");
2278 break;
2279 }
2280
2281 case RECORD_TYPE:
2282 case UNION_TYPE:
2283 case QUAL_UNION_TYPE:
2284 {
2285 tree field;
2286 record_layout_info rli;
2287
2288 /* Initialize the layout information. */
2289 rli = start_record_layout (type);
2290
2291 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2292 in the reverse order in building the COND_EXPR that denotes
2293 its size. We reverse them again later. */
2294 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2295 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2296
2297 /* Place all the fields. */
2298 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2299 place_field (rli, field);
2300
2301 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2302 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2303
2304 /* Finish laying out the record. */
2305 finish_record_layout (rli, /*free_p=*/true);
2306 }
2307 break;
2308
2309 default:
2310 gcc_unreachable ();
2311 }
2312
2313 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2314 records and unions, finish_record_layout already called this
2315 function. */
2316 if (TREE_CODE (type) != RECORD_TYPE
2317 && TREE_CODE (type) != UNION_TYPE
2318 && TREE_CODE (type) != QUAL_UNION_TYPE)
2319 finalize_type_size (type);
2320
2321 /* We should never see alias sets on incomplete aggregates. And we
2322 should not call layout_type on not incomplete aggregates. */
2323 if (AGGREGATE_TYPE_P (type))
2324 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2325 }
2326
2327 /* Vector types need to re-check the target flags each time we report
2328 the machine mode. We need to do this because attribute target can
2329 change the result of vector_mode_supported_p and have_regs_of_mode
2330 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2331 change on a per-function basis. */
2332 /* ??? Possibly a better solution is to run through all the types
2333 referenced by a function and re-compute the TYPE_MODE once, rather
2334 than make the TYPE_MODE macro call a function. */
2335
2336 enum machine_mode
2337 vector_type_mode (const_tree t)
2338 {
2339 enum machine_mode mode;
2340
2341 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2342
2343 mode = t->type_common.mode;
2344 if (VECTOR_MODE_P (mode)
2345 && (!targetm.vector_mode_supported_p (mode)
2346 || !have_regs_of_mode[mode]))
2347 {
2348 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2349
2350 /* For integers, try mapping it to a same-sized scalar mode. */
2351 if (GET_MODE_CLASS (innermode) == MODE_INT)
2352 {
2353 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2354 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2355
2356 if (mode != VOIDmode && have_regs_of_mode[mode])
2357 return mode;
2358 }
2359
2360 return BLKmode;
2361 }
2362
2363 return mode;
2364 }
2365 \f
2366 /* Create and return a type for signed integers of PRECISION bits. */
2367
2368 tree
2369 make_signed_type (int precision)
2370 {
2371 tree type = make_node (INTEGER_TYPE);
2372
2373 TYPE_PRECISION (type) = precision;
2374
2375 fixup_signed_type (type);
2376 return type;
2377 }
2378
2379 /* Create and return a type for unsigned integers of PRECISION bits. */
2380
2381 tree
2382 make_unsigned_type (int precision)
2383 {
2384 tree type = make_node (INTEGER_TYPE);
2385
2386 TYPE_PRECISION (type) = precision;
2387
2388 fixup_unsigned_type (type);
2389 return type;
2390 }
2391 \f
2392 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2393 and SATP. */
2394
2395 tree
2396 make_fract_type (int precision, int unsignedp, int satp)
2397 {
2398 tree type = make_node (FIXED_POINT_TYPE);
2399
2400 TYPE_PRECISION (type) = precision;
2401
2402 if (satp)
2403 TYPE_SATURATING (type) = 1;
2404
2405 /* Lay out the type: set its alignment, size, etc. */
2406 if (unsignedp)
2407 {
2408 TYPE_UNSIGNED (type) = 1;
2409 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2410 }
2411 else
2412 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2413 layout_type (type);
2414
2415 return type;
2416 }
2417
2418 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2419 and SATP. */
2420
2421 tree
2422 make_accum_type (int precision, int unsignedp, int satp)
2423 {
2424 tree type = make_node (FIXED_POINT_TYPE);
2425
2426 TYPE_PRECISION (type) = precision;
2427
2428 if (satp)
2429 TYPE_SATURATING (type) = 1;
2430
2431 /* Lay out the type: set its alignment, size, etc. */
2432 if (unsignedp)
2433 {
2434 TYPE_UNSIGNED (type) = 1;
2435 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2436 }
2437 else
2438 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2439 layout_type (type);
2440
2441 return type;
2442 }
2443
2444 /* Initialize sizetypes so layout_type can use them. */
2445
2446 void
2447 initialize_sizetypes (void)
2448 {
2449 int precision, bprecision;
2450
2451 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2452 if (strcmp (SIZETYPE, "unsigned int") == 0)
2453 precision = INT_TYPE_SIZE;
2454 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2455 precision = LONG_TYPE_SIZE;
2456 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2457 precision = LONG_LONG_TYPE_SIZE;
2458 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2459 precision = SHORT_TYPE_SIZE;
2460 else
2461 gcc_unreachable ();
2462
2463 bprecision
2464 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2465 bprecision
2466 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2467 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2468 bprecision = HOST_BITS_PER_DOUBLE_INT;
2469
2470 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2471 sizetype = make_node (INTEGER_TYPE);
2472 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2473 TYPE_PRECISION (sizetype) = precision;
2474 TYPE_UNSIGNED (sizetype) = 1;
2475 bitsizetype = make_node (INTEGER_TYPE);
2476 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2477 TYPE_PRECISION (bitsizetype) = bprecision;
2478 TYPE_UNSIGNED (bitsizetype) = 1;
2479
2480 /* Now layout both types manually. */
2481 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2482 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2483 TYPE_SIZE (sizetype) = bitsize_int (precision);
2484 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2485 set_min_and_max_values_for_integral_type (sizetype, precision,
2486 /*is_unsigned=*/true);
2487
2488 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2489 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2490 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2491 TYPE_SIZE_UNIT (bitsizetype)
2492 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2493 set_min_and_max_values_for_integral_type (bitsizetype, bprecision,
2494 /*is_unsigned=*/true);
2495
2496 /* Create the signed variants of *sizetype. */
2497 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2498 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2499 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2500 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2501 }
2502 \f
2503 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2504 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2505 for TYPE, based on the PRECISION and whether or not the TYPE
2506 IS_UNSIGNED. PRECISION need not correspond to a width supported
2507 natively by the hardware; for example, on a machine with 8-bit,
2508 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2509 61. */
2510
2511 void
2512 set_min_and_max_values_for_integral_type (tree type,
2513 int precision,
2514 bool is_unsigned)
2515 {
2516 tree min_value;
2517 tree max_value;
2518
2519 /* For bitfields with zero width we end up creating integer types
2520 with zero precision. Don't assign any minimum/maximum values
2521 to those types, they don't have any valid value. */
2522 if (precision < 1)
2523 return;
2524
2525 if (is_unsigned)
2526 {
2527 min_value = build_int_cst (type, 0);
2528 max_value
2529 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2530 ? -1
2531 : ((HOST_WIDE_INT) 1 << precision) - 1,
2532 precision - HOST_BITS_PER_WIDE_INT > 0
2533 ? ((unsigned HOST_WIDE_INT) ~0
2534 >> (HOST_BITS_PER_WIDE_INT
2535 - (precision - HOST_BITS_PER_WIDE_INT)))
2536 : 0);
2537 }
2538 else
2539 {
2540 min_value
2541 = build_int_cst_wide (type,
2542 (precision - HOST_BITS_PER_WIDE_INT > 0
2543 ? 0
2544 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2545 (((HOST_WIDE_INT) (-1)
2546 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2547 ? precision - HOST_BITS_PER_WIDE_INT - 1
2548 : 0))));
2549 max_value
2550 = build_int_cst_wide (type,
2551 (precision - HOST_BITS_PER_WIDE_INT > 0
2552 ? -1
2553 : (HOST_WIDE_INT)
2554 (((unsigned HOST_WIDE_INT) 1
2555 << (precision - 1)) - 1)),
2556 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2557 ? (HOST_WIDE_INT)
2558 ((((unsigned HOST_WIDE_INT) 1
2559 << (precision - HOST_BITS_PER_WIDE_INT
2560 - 1))) - 1)
2561 : 0));
2562 }
2563
2564 TYPE_MIN_VALUE (type) = min_value;
2565 TYPE_MAX_VALUE (type) = max_value;
2566 }
2567
2568 /* Set the extreme values of TYPE based on its precision in bits,
2569 then lay it out. Used when make_signed_type won't do
2570 because the tree code is not INTEGER_TYPE.
2571 E.g. for Pascal, when the -fsigned-char option is given. */
2572
2573 void
2574 fixup_signed_type (tree type)
2575 {
2576 int precision = TYPE_PRECISION (type);
2577
2578 /* We can not represent properly constants greater then
2579 HOST_BITS_PER_DOUBLE_INT, still we need the types
2580 as they are used by i386 vector extensions and friends. */
2581 if (precision > HOST_BITS_PER_DOUBLE_INT)
2582 precision = HOST_BITS_PER_DOUBLE_INT;
2583
2584 set_min_and_max_values_for_integral_type (type, precision,
2585 /*is_unsigned=*/false);
2586
2587 /* Lay out the type: set its alignment, size, etc. */
2588 layout_type (type);
2589 }
2590
2591 /* Set the extreme values of TYPE based on its precision in bits,
2592 then lay it out. This is used both in `make_unsigned_type'
2593 and for enumeral types. */
2594
2595 void
2596 fixup_unsigned_type (tree type)
2597 {
2598 int precision = TYPE_PRECISION (type);
2599
2600 /* We can not represent properly constants greater then
2601 HOST_BITS_PER_DOUBLE_INT, still we need the types
2602 as they are used by i386 vector extensions and friends. */
2603 if (precision > HOST_BITS_PER_DOUBLE_INT)
2604 precision = HOST_BITS_PER_DOUBLE_INT;
2605
2606 TYPE_UNSIGNED (type) = 1;
2607
2608 set_min_and_max_values_for_integral_type (type, precision,
2609 /*is_unsigned=*/true);
2610
2611 /* Lay out the type: set its alignment, size, etc. */
2612 layout_type (type);
2613 }
2614 \f
2615 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2616 starting at BITPOS.
2617
2618 BITREGION_START is the bit position of the first bit in this
2619 sequence of bit fields. BITREGION_END is the last bit in this
2620 sequence. If these two fields are non-zero, we should restrict the
2621 memory access to that range. Otherwise, we are allowed to touch
2622 any adjacent non bit-fields.
2623
2624 ALIGN is the alignment of the underlying object in bits.
2625 VOLATILEP says whether the bitfield is volatile. */
2626
2627 bit_field_mode_iterator
2628 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2629 HOST_WIDE_INT bitregion_start,
2630 HOST_WIDE_INT bitregion_end,
2631 unsigned int align, bool volatilep)
2632 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2633 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2634 m_bitregion_end (bitregion_end), m_align (align),
2635 m_volatilep (volatilep), m_count (0)
2636 {
2637 if (!m_bitregion_end)
2638 {
2639 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2640 the bitfield is mapped and won't trap, provided that ALIGN isn't
2641 too large. The cap is the biggest required alignment for data,
2642 or at least the word size. And force one such chunk at least. */
2643 unsigned HOST_WIDE_INT units
2644 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2645 if (bitsize <= 0)
2646 bitsize = 1;
2647 m_bitregion_end = bitpos + bitsize + units - 1;
2648 m_bitregion_end -= m_bitregion_end % units + 1;
2649 }
2650 }
2651
2652 /* Calls to this function return successively larger modes that can be used
2653 to represent the bitfield. Return true if another bitfield mode is
2654 available, storing it in *OUT_MODE if so. */
2655
2656 bool
2657 bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
2658 {
2659 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2660 {
2661 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2662
2663 /* Skip modes that don't have full precision. */
2664 if (unit != GET_MODE_PRECISION (m_mode))
2665 continue;
2666
2667 /* Stop if the mode is too wide to handle efficiently. */
2668 if (unit > MAX_FIXED_MODE_SIZE)
2669 break;
2670
2671 /* Don't deliver more than one multiword mode; the smallest one
2672 should be used. */
2673 if (m_count > 0 && unit > BITS_PER_WORD)
2674 break;
2675
2676 /* Skip modes that are too small. */
2677 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2678 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2679 if (subend > unit)
2680 continue;
2681
2682 /* Stop if the mode goes outside the bitregion. */
2683 HOST_WIDE_INT start = m_bitpos - substart;
2684 if (m_bitregion_start && start < m_bitregion_start)
2685 break;
2686 HOST_WIDE_INT end = start + unit;
2687 if (end > m_bitregion_end + 1)
2688 break;
2689
2690 /* Stop if the mode requires too much alignment. */
2691 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2692 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2693 break;
2694
2695 *out_mode = m_mode;
2696 m_mode = GET_MODE_WIDER_MODE (m_mode);
2697 m_count++;
2698 return true;
2699 }
2700 return false;
2701 }
2702
2703 /* Return true if smaller modes are generally preferred for this kind
2704 of bitfield. */
2705
2706 bool
2707 bit_field_mode_iterator::prefer_smaller_modes ()
2708 {
2709 return (m_volatilep
2710 ? targetm.narrow_volatile_bitfield ()
2711 : !SLOW_BYTE_ACCESS);
2712 }
2713
2714 /* Find the best machine mode to use when referencing a bit field of length
2715 BITSIZE bits starting at BITPOS.
2716
2717 BITREGION_START is the bit position of the first bit in this
2718 sequence of bit fields. BITREGION_END is the last bit in this
2719 sequence. If these two fields are non-zero, we should restrict the
2720 memory access to that range. Otherwise, we are allowed to touch
2721 any adjacent non bit-fields.
2722
2723 The underlying object is known to be aligned to a boundary of ALIGN bits.
2724 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2725 larger than LARGEST_MODE (usually SImode).
2726
2727 If no mode meets all these conditions, we return VOIDmode.
2728
2729 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2730 smallest mode meeting these conditions.
2731
2732 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2733 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2734 all the conditions.
2735
2736 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2737 decide which of the above modes should be used. */
2738
2739 enum machine_mode
2740 get_best_mode (int bitsize, int bitpos,
2741 unsigned HOST_WIDE_INT bitregion_start,
2742 unsigned HOST_WIDE_INT bitregion_end,
2743 unsigned int align,
2744 enum machine_mode largest_mode, bool volatilep)
2745 {
2746 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2747 bitregion_end, align, volatilep);
2748 enum machine_mode widest_mode = VOIDmode;
2749 enum machine_mode mode;
2750 while (iter.next_mode (&mode)
2751 /* ??? For historical reasons, reject modes that would normally
2752 receive greater alignment, even if unaligned accesses are
2753 acceptable. This has both advantages and disadvantages.
2754 Removing this check means that something like:
2755
2756 struct s { unsigned int x; unsigned int y; };
2757 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2758
2759 can be implemented using a single load and compare on
2760 64-bit machines that have no alignment restrictions.
2761 For example, on powerpc64-linux-gnu, we would generate:
2762
2763 ld 3,0(3)
2764 cntlzd 3,3
2765 srdi 3,3,6
2766 blr
2767
2768 rather than:
2769
2770 lwz 9,0(3)
2771 cmpwi 7,9,0
2772 bne 7,.L3
2773 lwz 3,4(3)
2774 cntlzw 3,3
2775 srwi 3,3,5
2776 extsw 3,3
2777 blr
2778 .p2align 4,,15
2779 .L3:
2780 li 3,0
2781 blr
2782
2783 However, accessing more than one field can make life harder
2784 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2785 has a series of unsigned short copies followed by a series of
2786 unsigned short comparisons. With this check, both the copies
2787 and comparisons remain 16-bit accesses and FRE is able
2788 to eliminate the latter. Without the check, the comparisons
2789 can be done using 2 64-bit operations, which FRE isn't able
2790 to handle in the same way.
2791
2792 Either way, it would probably be worth disabling this check
2793 during expand. One particular example where removing the
2794 check would help is the get_best_mode call in store_bit_field.
2795 If we are given a memory bitregion of 128 bits that is aligned
2796 to a 64-bit boundary, and the bitfield we want to modify is
2797 in the second half of the bitregion, this check causes
2798 store_bitfield to turn the memory into a 64-bit reference
2799 to the _first_ half of the region. We later use
2800 adjust_bitfield_address to get a reference to the correct half,
2801 but doing so looks to adjust_bitfield_address as though we are
2802 moving past the end of the original object, so it drops the
2803 associated MEM_EXPR and MEM_OFFSET. Removing the check
2804 causes store_bit_field to keep a 128-bit memory reference,
2805 so that the final bitfield reference still has a MEM_EXPR
2806 and MEM_OFFSET. */
2807 && GET_MODE_ALIGNMENT (mode) <= align
2808 && (largest_mode == VOIDmode
2809 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2810 {
2811 widest_mode = mode;
2812 if (iter.prefer_smaller_modes ())
2813 break;
2814 }
2815 return widest_mode;
2816 }
2817
2818 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2819 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2820
2821 void
2822 get_mode_bounds (enum machine_mode mode, int sign,
2823 enum machine_mode target_mode,
2824 rtx *mmin, rtx *mmax)
2825 {
2826 unsigned size = GET_MODE_BITSIZE (mode);
2827 unsigned HOST_WIDE_INT min_val, max_val;
2828
2829 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2830
2831 if (sign)
2832 {
2833 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2834 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2835 }
2836 else
2837 {
2838 min_val = 0;
2839 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2840 }
2841
2842 *mmin = gen_int_mode (min_val, target_mode);
2843 *mmax = gen_int_mode (max_val, target_mode);
2844 }
2845
2846 #include "gt-stor-layout.h"