optabs.c (init_floating_libfuncs): Handle decimal float modes.
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "output.h"
34 #include "toplev.h"
35 #include "ggc.h"
36 #include "target.h"
37 #include "langhooks.h"
38 #include "regs.h"
39 #include "params.h"
40
41 /* Data type for the expressions representing sizes of data types.
42 It is the first integer type laid out. */
43 tree sizetype_tab[(int) TYPE_KIND_LAST];
44
45 /* If nonzero, this is an upper limit on alignment of structure fields.
46 The value is measured in bits. */
47 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
48 /* ... and its original value in bytes, specified via -fpack-struct=<value>. */
49 unsigned int initial_max_fld_align = TARGET_DEFAULT_PACK_STRUCT;
50
51 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
52 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
53 called only by a front end. */
54 static int reference_types_internal = 0;
55
56 static void finalize_record_size (record_layout_info);
57 static void finalize_type_size (tree);
58 static void place_union_field (record_layout_info, tree);
59 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
60 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
61 HOST_WIDE_INT, tree);
62 #endif
63 extern void debug_rli (record_layout_info);
64 \f
65 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
66
67 static GTY(()) tree pending_sizes;
68
69 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
70 by front end. */
71
72 void
73 internal_reference_types (void)
74 {
75 reference_types_internal = 1;
76 }
77
78 /* Get a list of all the objects put on the pending sizes list. */
79
80 tree
81 get_pending_sizes (void)
82 {
83 tree chain = pending_sizes;
84
85 pending_sizes = 0;
86 return chain;
87 }
88
89 /* Add EXPR to the pending sizes list. */
90
91 void
92 put_pending_size (tree expr)
93 {
94 /* Strip any simple arithmetic from EXPR to see if it has an underlying
95 SAVE_EXPR. */
96 expr = skip_simple_arithmetic (expr);
97
98 if (TREE_CODE (expr) == SAVE_EXPR)
99 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
100 }
101
102 /* Put a chain of objects into the pending sizes list, which must be
103 empty. */
104
105 void
106 put_pending_sizes (tree chain)
107 {
108 gcc_assert (!pending_sizes);
109 pending_sizes = chain;
110 }
111
112 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
113 to serve as the actual size-expression for a type or decl. */
114
115 tree
116 variable_size (tree size)
117 {
118 tree save;
119
120 /* If the language-processor is to take responsibility for variable-sized
121 items (e.g., languages which have elaboration procedures like Ada),
122 just return SIZE unchanged. Likewise for self-referential sizes and
123 constant sizes. */
124 if (TREE_CONSTANT (size)
125 || lang_hooks.decls.global_bindings_p () < 0
126 || CONTAINS_PLACEHOLDER_P (size))
127 return size;
128
129 size = save_expr (size);
130
131 /* If an array with a variable number of elements is declared, and
132 the elements require destruction, we will emit a cleanup for the
133 array. That cleanup is run both on normal exit from the block
134 and in the exception-handler for the block. Normally, when code
135 is used in both ordinary code and in an exception handler it is
136 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
137 not wish to do that here; the array-size is the same in both
138 places. */
139 save = skip_simple_arithmetic (size);
140
141 if (cfun && cfun->x_dont_save_pending_sizes_p)
142 /* The front-end doesn't want us to keep a list of the expressions
143 that determine sizes for variable size objects. Trust it. */
144 return size;
145
146 if (lang_hooks.decls.global_bindings_p ())
147 {
148 if (TREE_CONSTANT (size))
149 error ("type size can%'t be explicitly evaluated");
150 else
151 error ("variable-size type declared outside of any function");
152
153 return size_one_node;
154 }
155
156 put_pending_size (save);
157
158 return size;
159 }
160 \f
161 #ifndef MAX_FIXED_MODE_SIZE
162 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
163 #endif
164
165 /* Return the machine mode to use for a nonscalar of SIZE bits. The
166 mode must be in class CLASS, and have exactly that many value bits;
167 it may have padding as well. If LIMIT is nonzero, modes of wider
168 than MAX_FIXED_MODE_SIZE will not be used. */
169
170 enum machine_mode
171 mode_for_size (unsigned int size, enum mode_class class, int limit)
172 {
173 enum machine_mode mode;
174
175 if (limit && size > MAX_FIXED_MODE_SIZE)
176 return BLKmode;
177
178 /* Get the first mode which has this size, in the specified class. */
179 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
180 mode = GET_MODE_WIDER_MODE (mode))
181 if (GET_MODE_PRECISION (mode) == size)
182 return mode;
183
184 return BLKmode;
185 }
186
187 /* Similar, except passed a tree node. */
188
189 enum machine_mode
190 mode_for_size_tree (tree size, enum mode_class class, int limit)
191 {
192 if (TREE_CODE (size) != INTEGER_CST
193 || TREE_OVERFLOW (size)
194 /* What we really want to say here is that the size can fit in a
195 host integer, but we know there's no way we'd find a mode for
196 this many bits, so there's no point in doing the precise test. */
197 || compare_tree_int (size, 1000) > 0)
198 return BLKmode;
199 else
200 return mode_for_size (tree_low_cst (size, 1), class, limit);
201 }
202
203 /* Similar, but never return BLKmode; return the narrowest mode that
204 contains at least the requested number of value bits. */
205
206 enum machine_mode
207 smallest_mode_for_size (unsigned int size, enum mode_class class)
208 {
209 enum machine_mode mode;
210
211 /* Get the first mode which has at least this size, in the
212 specified class. */
213 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
214 mode = GET_MODE_WIDER_MODE (mode))
215 if (GET_MODE_PRECISION (mode) >= size)
216 return mode;
217
218 gcc_unreachable ();
219 }
220
221 /* Find an integer mode of the exact same size, or BLKmode on failure. */
222
223 enum machine_mode
224 int_mode_for_mode (enum machine_mode mode)
225 {
226 switch (GET_MODE_CLASS (mode))
227 {
228 case MODE_INT:
229 case MODE_PARTIAL_INT:
230 break;
231
232 case MODE_COMPLEX_INT:
233 case MODE_COMPLEX_FLOAT:
234 case MODE_FLOAT:
235 case MODE_DECIMAL_FLOAT:
236 case MODE_VECTOR_INT:
237 case MODE_VECTOR_FLOAT:
238 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
239 break;
240
241 case MODE_RANDOM:
242 if (mode == BLKmode)
243 break;
244
245 /* ... fall through ... */
246
247 case MODE_CC:
248 default:
249 gcc_unreachable ();
250 }
251
252 return mode;
253 }
254
255 /* Return the alignment of MODE. This will be bounded by 1 and
256 BIGGEST_ALIGNMENT. */
257
258 unsigned int
259 get_mode_alignment (enum machine_mode mode)
260 {
261 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
262 }
263
264 \f
265 /* Subroutine of layout_decl: Force alignment required for the data type.
266 But if the decl itself wants greater alignment, don't override that. */
267
268 static inline void
269 do_type_align (tree type, tree decl)
270 {
271 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
272 {
273 DECL_ALIGN (decl) = TYPE_ALIGN (type);
274 if (TREE_CODE (decl) == FIELD_DECL)
275 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
276 }
277 }
278
279 /* Set the size, mode and alignment of a ..._DECL node.
280 TYPE_DECL does need this for C++.
281 Note that LABEL_DECL and CONST_DECL nodes do not need this,
282 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
283 Don't call layout_decl for them.
284
285 KNOWN_ALIGN is the amount of alignment we can assume this
286 decl has with no special effort. It is relevant only for FIELD_DECLs
287 and depends on the previous fields.
288 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
289 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
290 the record will be aligned to suit. */
291
292 void
293 layout_decl (tree decl, unsigned int known_align)
294 {
295 tree type = TREE_TYPE (decl);
296 enum tree_code code = TREE_CODE (decl);
297 rtx rtl = NULL_RTX;
298
299 if (code == CONST_DECL)
300 return;
301
302 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
303 || code == TYPE_DECL ||code == FIELD_DECL);
304
305 rtl = DECL_RTL_IF_SET (decl);
306
307 if (type == error_mark_node)
308 type = void_type_node;
309
310 /* Usually the size and mode come from the data type without change,
311 however, the front-end may set the explicit width of the field, so its
312 size may not be the same as the size of its type. This happens with
313 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
314 also happens with other fields. For example, the C++ front-end creates
315 zero-sized fields corresponding to empty base classes, and depends on
316 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
317 size in bytes from the size in bits. If we have already set the mode,
318 don't set it again since we can be called twice for FIELD_DECLs. */
319
320 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
321 if (DECL_MODE (decl) == VOIDmode)
322 DECL_MODE (decl) = TYPE_MODE (type);
323
324 if (DECL_SIZE (decl) == 0)
325 {
326 DECL_SIZE (decl) = TYPE_SIZE (type);
327 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
328 }
329 else if (DECL_SIZE_UNIT (decl) == 0)
330 DECL_SIZE_UNIT (decl)
331 = fold_convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
332 bitsize_unit_node));
333
334 if (code != FIELD_DECL)
335 /* For non-fields, update the alignment from the type. */
336 do_type_align (type, decl);
337 else
338 /* For fields, it's a bit more complicated... */
339 {
340 bool old_user_align = DECL_USER_ALIGN (decl);
341
342 if (DECL_BIT_FIELD (decl))
343 {
344 DECL_BIT_FIELD_TYPE (decl) = type;
345
346 /* A zero-length bit-field affects the alignment of the next
347 field. */
348 if (integer_zerop (DECL_SIZE (decl))
349 && ! DECL_PACKED (decl)
350 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
351 {
352 #ifdef PCC_BITFIELD_TYPE_MATTERS
353 if (PCC_BITFIELD_TYPE_MATTERS)
354 do_type_align (type, decl);
355 else
356 #endif
357 {
358 #ifdef EMPTY_FIELD_BOUNDARY
359 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
360 {
361 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
362 DECL_USER_ALIGN (decl) = 0;
363 }
364 #endif
365 }
366 }
367
368 /* See if we can use an ordinary integer mode for a bit-field.
369 Conditions are: a fixed size that is correct for another mode
370 and occupying a complete byte or bytes on proper boundary. */
371 if (TYPE_SIZE (type) != 0
372 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
373 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
374 {
375 enum machine_mode xmode
376 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
377
378 if (xmode != BLKmode
379 && (known_align == 0
380 || known_align >= GET_MODE_ALIGNMENT (xmode)))
381 {
382 DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
383 DECL_ALIGN (decl));
384 DECL_MODE (decl) = xmode;
385 DECL_BIT_FIELD (decl) = 0;
386 }
387 }
388
389 /* Turn off DECL_BIT_FIELD if we won't need it set. */
390 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
391 && known_align >= TYPE_ALIGN (type)
392 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
393 DECL_BIT_FIELD (decl) = 0;
394 }
395 else if (DECL_PACKED (decl) && DECL_USER_ALIGN (decl))
396 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
397 round up; we'll reduce it again below. We want packing to
398 supersede USER_ALIGN inherited from the type, but defer to
399 alignment explicitly specified on the field decl. */;
400 else
401 do_type_align (type, decl);
402
403 /* If the field is of variable size, we can't misalign it since we
404 have no way to make a temporary to align the result. But this
405 isn't an issue if the decl is not addressable. Likewise if it
406 is of unknown size.
407
408 Note that do_type_align may set DECL_USER_ALIGN, so we need to
409 check old_user_align instead. */
410 if (DECL_PACKED (decl)
411 && !old_user_align
412 && (DECL_NONADDRESSABLE_P (decl)
413 || DECL_SIZE_UNIT (decl) == 0
414 || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
415 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
416
417 if (! DECL_USER_ALIGN (decl) && ! DECL_PACKED (decl))
418 {
419 /* Some targets (i.e. i386, VMS) limit struct field alignment
420 to a lower boundary than alignment of variables unless
421 it was overridden by attribute aligned. */
422 #ifdef BIGGEST_FIELD_ALIGNMENT
423 DECL_ALIGN (decl)
424 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
425 #endif
426 #ifdef ADJUST_FIELD_ALIGN
427 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
428 #endif
429 }
430
431 /* Should this be controlled by DECL_USER_ALIGN, too? */
432 if (maximum_field_alignment != 0)
433 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), maximum_field_alignment);
434 }
435
436 /* Evaluate nonconstant size only once, either now or as soon as safe. */
437 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
438 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
439 if (DECL_SIZE_UNIT (decl) != 0
440 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
441 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
442
443 /* If requested, warn about definitions of large data objects. */
444 if (warn_larger_than
445 && (code == VAR_DECL || code == PARM_DECL)
446 && ! DECL_EXTERNAL (decl))
447 {
448 tree size = DECL_SIZE_UNIT (decl);
449
450 if (size != 0 && TREE_CODE (size) == INTEGER_CST
451 && compare_tree_int (size, larger_than_size) > 0)
452 {
453 int size_as_int = TREE_INT_CST_LOW (size);
454
455 if (compare_tree_int (size, size_as_int) == 0)
456 warning (0, "size of %q+D is %d bytes", decl, size_as_int);
457 else
458 warning (0, "size of %q+D is larger than %wd bytes",
459 decl, larger_than_size);
460 }
461 }
462
463 /* If the RTL was already set, update its mode and mem attributes. */
464 if (rtl)
465 {
466 PUT_MODE (rtl, DECL_MODE (decl));
467 SET_DECL_RTL (decl, 0);
468 set_mem_attributes (rtl, decl, 1);
469 SET_DECL_RTL (decl, rtl);
470 }
471 }
472
473 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
474 a previous call to layout_decl and calls it again. */
475
476 void
477 relayout_decl (tree decl)
478 {
479 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
480 DECL_MODE (decl) = VOIDmode;
481 DECL_ALIGN (decl) = 0;
482 SET_DECL_RTL (decl, 0);
483
484 layout_decl (decl, 0);
485 }
486 \f
487 /* Hook for a front-end function that can modify the record layout as needed
488 immediately before it is finalized. */
489
490 static void (*lang_adjust_rli) (record_layout_info) = 0;
491
492 void
493 set_lang_adjust_rli (void (*f) (record_layout_info))
494 {
495 lang_adjust_rli = f;
496 }
497
498 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
499 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
500 is to be passed to all other layout functions for this record. It is the
501 responsibility of the caller to call `free' for the storage returned.
502 Note that garbage collection is not permitted until we finish laying
503 out the record. */
504
505 record_layout_info
506 start_record_layout (tree t)
507 {
508 record_layout_info rli = xmalloc (sizeof (struct record_layout_info_s));
509
510 rli->t = t;
511
512 /* If the type has a minimum specified alignment (via an attribute
513 declaration, for example) use it -- otherwise, start with a
514 one-byte alignment. */
515 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
516 rli->unpacked_align = rli->record_align;
517 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
518
519 #ifdef STRUCTURE_SIZE_BOUNDARY
520 /* Packed structures don't need to have minimum size. */
521 if (! TYPE_PACKED (t))
522 rli->record_align = MAX (rli->record_align, (unsigned) STRUCTURE_SIZE_BOUNDARY);
523 #endif
524
525 rli->offset = size_zero_node;
526 rli->bitpos = bitsize_zero_node;
527 rli->prev_field = 0;
528 rli->pending_statics = 0;
529 rli->packed_maybe_necessary = 0;
530
531 return rli;
532 }
533
534 /* These four routines perform computations that convert between
535 the offset/bitpos forms and byte and bit offsets. */
536
537 tree
538 bit_from_pos (tree offset, tree bitpos)
539 {
540 return size_binop (PLUS_EXPR, bitpos,
541 size_binop (MULT_EXPR,
542 fold_convert (bitsizetype, offset),
543 bitsize_unit_node));
544 }
545
546 tree
547 byte_from_pos (tree offset, tree bitpos)
548 {
549 return size_binop (PLUS_EXPR, offset,
550 fold_convert (sizetype,
551 size_binop (TRUNC_DIV_EXPR, bitpos,
552 bitsize_unit_node)));
553 }
554
555 void
556 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
557 tree pos)
558 {
559 *poffset = size_binop (MULT_EXPR,
560 fold_convert (sizetype,
561 size_binop (FLOOR_DIV_EXPR, pos,
562 bitsize_int (off_align))),
563 size_int (off_align / BITS_PER_UNIT));
564 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
565 }
566
567 /* Given a pointer to bit and byte offsets and an offset alignment,
568 normalize the offsets so they are within the alignment. */
569
570 void
571 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
572 {
573 /* If the bit position is now larger than it should be, adjust it
574 downwards. */
575 if (compare_tree_int (*pbitpos, off_align) >= 0)
576 {
577 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
578 bitsize_int (off_align));
579
580 *poffset
581 = size_binop (PLUS_EXPR, *poffset,
582 size_binop (MULT_EXPR,
583 fold_convert (sizetype, extra_aligns),
584 size_int (off_align / BITS_PER_UNIT)));
585
586 *pbitpos
587 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
588 }
589 }
590
591 /* Print debugging information about the information in RLI. */
592
593 void
594 debug_rli (record_layout_info rli)
595 {
596 print_node_brief (stderr, "type", rli->t, 0);
597 print_node_brief (stderr, "\noffset", rli->offset, 0);
598 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
599
600 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
601 rli->record_align, rli->unpacked_align,
602 rli->offset_align);
603 if (rli->packed_maybe_necessary)
604 fprintf (stderr, "packed may be necessary\n");
605
606 if (rli->pending_statics)
607 {
608 fprintf (stderr, "pending statics:\n");
609 debug_tree (rli->pending_statics);
610 }
611 }
612
613 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
614 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
615
616 void
617 normalize_rli (record_layout_info rli)
618 {
619 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
620 }
621
622 /* Returns the size in bytes allocated so far. */
623
624 tree
625 rli_size_unit_so_far (record_layout_info rli)
626 {
627 return byte_from_pos (rli->offset, rli->bitpos);
628 }
629
630 /* Returns the size in bits allocated so far. */
631
632 tree
633 rli_size_so_far (record_layout_info rli)
634 {
635 return bit_from_pos (rli->offset, rli->bitpos);
636 }
637
638 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
639 the next available location within the record is given by KNOWN_ALIGN.
640 Update the variable alignment fields in RLI, and return the alignment
641 to give the FIELD. */
642
643 unsigned int
644 update_alignment_for_field (record_layout_info rli, tree field,
645 unsigned int known_align)
646 {
647 /* The alignment required for FIELD. */
648 unsigned int desired_align;
649 /* The type of this field. */
650 tree type = TREE_TYPE (field);
651 /* True if the field was explicitly aligned by the user. */
652 bool user_align;
653 bool is_bitfield;
654
655 /* Lay out the field so we know what alignment it needs. */
656 layout_decl (field, known_align);
657 desired_align = DECL_ALIGN (field);
658 user_align = DECL_USER_ALIGN (field);
659
660 is_bitfield = (type != error_mark_node
661 && DECL_BIT_FIELD_TYPE (field)
662 && ! integer_zerop (TYPE_SIZE (type)));
663
664 /* Record must have at least as much alignment as any field.
665 Otherwise, the alignment of the field within the record is
666 meaningless. */
667 if (is_bitfield && targetm.ms_bitfield_layout_p (rli->t))
668 {
669 /* Here, the alignment of the underlying type of a bitfield can
670 affect the alignment of a record; even a zero-sized field
671 can do this. The alignment should be to the alignment of
672 the type, except that for zero-size bitfields this only
673 applies if there was an immediately prior, nonzero-size
674 bitfield. (That's the way it is, experimentally.) */
675 if (! integer_zerop (DECL_SIZE (field))
676 ? ! DECL_PACKED (field)
677 : (rli->prev_field
678 && DECL_BIT_FIELD_TYPE (rli->prev_field)
679 && ! integer_zerop (DECL_SIZE (rli->prev_field))))
680 {
681 unsigned int type_align = TYPE_ALIGN (type);
682 type_align = MAX (type_align, desired_align);
683 if (maximum_field_alignment != 0)
684 type_align = MIN (type_align, maximum_field_alignment);
685 rli->record_align = MAX (rli->record_align, type_align);
686 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
687 /* If we start a new run, make sure we start it properly aligned. */
688 if ((!rli->prev_field
689 || integer_zerop (DECL_SIZE (field))
690 || integer_zerop (DECL_SIZE (rli->prev_field))
691 || !host_integerp (DECL_SIZE (rli->prev_field), 0)
692 || !host_integerp (TYPE_SIZE (type), 0)
693 || !simple_cst_equal (TYPE_SIZE (type),
694 TYPE_SIZE (TREE_TYPE (rli->prev_field)))
695 || (rli->remaining_in_alignment
696 < tree_low_cst (DECL_SIZE (field), 0)))
697 && desired_align < type_align)
698 desired_align = type_align;
699 }
700 }
701 #ifdef PCC_BITFIELD_TYPE_MATTERS
702 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
703 {
704 /* Named bit-fields cause the entire structure to have the
705 alignment implied by their type. Some targets also apply the same
706 rules to unnamed bitfields. */
707 if (DECL_NAME (field) != 0
708 || targetm.align_anon_bitfield ())
709 {
710 unsigned int type_align = TYPE_ALIGN (type);
711
712 #ifdef ADJUST_FIELD_ALIGN
713 if (! TYPE_USER_ALIGN (type))
714 type_align = ADJUST_FIELD_ALIGN (field, type_align);
715 #endif
716
717 if (maximum_field_alignment != 0)
718 type_align = MIN (type_align, maximum_field_alignment);
719 else if (DECL_PACKED (field))
720 type_align = MIN (type_align, BITS_PER_UNIT);
721
722 /* The alignment of the record is increased to the maximum
723 of the current alignment, the alignment indicated on the
724 field (i.e., the alignment specified by an __aligned__
725 attribute), and the alignment indicated by the type of
726 the field. */
727 rli->record_align = MAX (rli->record_align, desired_align);
728 rli->record_align = MAX (rli->record_align, type_align);
729
730 if (warn_packed)
731 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
732 user_align |= TYPE_USER_ALIGN (type);
733 }
734 }
735 #endif
736 else
737 {
738 rli->record_align = MAX (rli->record_align, desired_align);
739 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
740 }
741
742 TYPE_USER_ALIGN (rli->t) |= user_align;
743
744 return desired_align;
745 }
746
747 /* Called from place_field to handle unions. */
748
749 static void
750 place_union_field (record_layout_info rli, tree field)
751 {
752 update_alignment_for_field (rli, field, /*known_align=*/0);
753
754 DECL_FIELD_OFFSET (field) = size_zero_node;
755 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
756 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
757
758 /* We assume the union's size will be a multiple of a byte so we don't
759 bother with BITPOS. */
760 if (TREE_CODE (rli->t) == UNION_TYPE)
761 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
762 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
763 rli->offset = fold_build3 (COND_EXPR, sizetype,
764 DECL_QUALIFIER (field),
765 DECL_SIZE_UNIT (field), rli->offset);
766 }
767
768 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
769 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
770 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
771 units of alignment than the underlying TYPE. */
772 static int
773 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
774 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
775 {
776 /* Note that the calculation of OFFSET might overflow; we calculate it so
777 that we still get the right result as long as ALIGN is a power of two. */
778 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
779
780 offset = offset % align;
781 return ((offset + size + align - 1) / align
782 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
783 / align));
784 }
785 #endif
786
787 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
788 is a FIELD_DECL to be added after those fields already present in
789 T. (FIELD is not actually added to the TYPE_FIELDS list here;
790 callers that desire that behavior must manually perform that step.) */
791
792 void
793 place_field (record_layout_info rli, tree field)
794 {
795 /* The alignment required for FIELD. */
796 unsigned int desired_align;
797 /* The alignment FIELD would have if we just dropped it into the
798 record as it presently stands. */
799 unsigned int known_align;
800 unsigned int actual_align;
801 /* The type of this field. */
802 tree type = TREE_TYPE (field);
803
804 gcc_assert (TREE_CODE (field) != ERROR_MARK);
805
806 if (TREE_CODE (type) == ERROR_MARK)
807 {
808 if (TREE_CODE (field) == FIELD_DECL)
809 {
810 DECL_FIELD_OFFSET (field) = size_int (0);
811 DECL_FIELD_BIT_OFFSET (field) = bitsize_int (0);
812 }
813
814 return;
815 }
816
817 /* If FIELD is static, then treat it like a separate variable, not
818 really like a structure field. If it is a FUNCTION_DECL, it's a
819 method. In both cases, all we do is lay out the decl, and we do
820 it *after* the record is laid out. */
821 if (TREE_CODE (field) == VAR_DECL)
822 {
823 rli->pending_statics = tree_cons (NULL_TREE, field,
824 rli->pending_statics);
825 return;
826 }
827
828 /* Enumerators and enum types which are local to this class need not
829 be laid out. Likewise for initialized constant fields. */
830 else if (TREE_CODE (field) != FIELD_DECL)
831 return;
832
833 /* Unions are laid out very differently than records, so split
834 that code off to another function. */
835 else if (TREE_CODE (rli->t) != RECORD_TYPE)
836 {
837 place_union_field (rli, field);
838 return;
839 }
840
841 /* Work out the known alignment so far. Note that A & (-A) is the
842 value of the least-significant bit in A that is one. */
843 if (! integer_zerop (rli->bitpos))
844 known_align = (tree_low_cst (rli->bitpos, 1)
845 & - tree_low_cst (rli->bitpos, 1));
846 else if (integer_zerop (rli->offset))
847 known_align = 0;
848 else if (host_integerp (rli->offset, 1))
849 known_align = (BITS_PER_UNIT
850 * (tree_low_cst (rli->offset, 1)
851 & - tree_low_cst (rli->offset, 1)));
852 else
853 known_align = rli->offset_align;
854
855 desired_align = update_alignment_for_field (rli, field, known_align);
856 if (known_align == 0)
857 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
858
859 if (warn_packed && DECL_PACKED (field))
860 {
861 if (known_align >= TYPE_ALIGN (type))
862 {
863 if (TYPE_ALIGN (type) > desired_align)
864 {
865 if (STRICT_ALIGNMENT)
866 warning (OPT_Wattributes, "packed attribute causes "
867 "inefficient alignment for %q+D", field);
868 else
869 warning (OPT_Wattributes, "packed attribute is "
870 "unnecessary for %q+D", field);
871 }
872 }
873 else
874 rli->packed_maybe_necessary = 1;
875 }
876
877 /* Does this field automatically have alignment it needs by virtue
878 of the fields that precede it and the record's own alignment? */
879 if (known_align < desired_align)
880 {
881 /* No, we need to skip space before this field.
882 Bump the cumulative size to multiple of field alignment. */
883
884 warning (OPT_Wpadded, "padding struct to align %q+D", field);
885
886 /* If the alignment is still within offset_align, just align
887 the bit position. */
888 if (desired_align < rli->offset_align)
889 rli->bitpos = round_up (rli->bitpos, desired_align);
890 else
891 {
892 /* First adjust OFFSET by the partial bits, then align. */
893 rli->offset
894 = size_binop (PLUS_EXPR, rli->offset,
895 fold_convert (sizetype,
896 size_binop (CEIL_DIV_EXPR, rli->bitpos,
897 bitsize_unit_node)));
898 rli->bitpos = bitsize_zero_node;
899
900 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
901 }
902
903 if (! TREE_CONSTANT (rli->offset))
904 rli->offset_align = desired_align;
905
906 }
907
908 /* Handle compatibility with PCC. Note that if the record has any
909 variable-sized fields, we need not worry about compatibility. */
910 #ifdef PCC_BITFIELD_TYPE_MATTERS
911 if (PCC_BITFIELD_TYPE_MATTERS
912 && ! targetm.ms_bitfield_layout_p (rli->t)
913 && TREE_CODE (field) == FIELD_DECL
914 && type != error_mark_node
915 && DECL_BIT_FIELD (field)
916 && ! DECL_PACKED (field)
917 && maximum_field_alignment == 0
918 && ! integer_zerop (DECL_SIZE (field))
919 && host_integerp (DECL_SIZE (field), 1)
920 && host_integerp (rli->offset, 1)
921 && host_integerp (TYPE_SIZE (type), 1))
922 {
923 unsigned int type_align = TYPE_ALIGN (type);
924 tree dsize = DECL_SIZE (field);
925 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
926 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
927 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
928
929 #ifdef ADJUST_FIELD_ALIGN
930 if (! TYPE_USER_ALIGN (type))
931 type_align = ADJUST_FIELD_ALIGN (field, type_align);
932 #endif
933
934 /* A bit field may not span more units of alignment of its type
935 than its type itself. Advance to next boundary if necessary. */
936 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
937 rli->bitpos = round_up (rli->bitpos, type_align);
938
939 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
940 }
941 #endif
942
943 #ifdef BITFIELD_NBYTES_LIMITED
944 if (BITFIELD_NBYTES_LIMITED
945 && ! targetm.ms_bitfield_layout_p (rli->t)
946 && TREE_CODE (field) == FIELD_DECL
947 && type != error_mark_node
948 && DECL_BIT_FIELD_TYPE (field)
949 && ! DECL_PACKED (field)
950 && ! integer_zerop (DECL_SIZE (field))
951 && host_integerp (DECL_SIZE (field), 1)
952 && host_integerp (rli->offset, 1)
953 && host_integerp (TYPE_SIZE (type), 1))
954 {
955 unsigned int type_align = TYPE_ALIGN (type);
956 tree dsize = DECL_SIZE (field);
957 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
958 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
959 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
960
961 #ifdef ADJUST_FIELD_ALIGN
962 if (! TYPE_USER_ALIGN (type))
963 type_align = ADJUST_FIELD_ALIGN (field, type_align);
964 #endif
965
966 if (maximum_field_alignment != 0)
967 type_align = MIN (type_align, maximum_field_alignment);
968 /* ??? This test is opposite the test in the containing if
969 statement, so this code is unreachable currently. */
970 else if (DECL_PACKED (field))
971 type_align = MIN (type_align, BITS_PER_UNIT);
972
973 /* A bit field may not span the unit of alignment of its type.
974 Advance to next boundary if necessary. */
975 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
976 rli->bitpos = round_up (rli->bitpos, type_align);
977
978 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
979 }
980 #endif
981
982 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
983 A subtlety:
984 When a bit field is inserted into a packed record, the whole
985 size of the underlying type is used by one or more same-size
986 adjacent bitfields. (That is, if its long:3, 32 bits is
987 used in the record, and any additional adjacent long bitfields are
988 packed into the same chunk of 32 bits. However, if the size
989 changes, a new field of that size is allocated.) In an unpacked
990 record, this is the same as using alignment, but not equivalent
991 when packing.
992
993 Note: for compatibility, we use the type size, not the type alignment
994 to determine alignment, since that matches the documentation */
995
996 if (targetm.ms_bitfield_layout_p (rli->t)
997 && ((DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field))
998 || (rli->prev_field && ! DECL_PACKED (rli->prev_field))))
999 {
1000 /* At this point, either the prior or current are bitfields,
1001 (possibly both), and we're dealing with MS packing. */
1002 tree prev_saved = rli->prev_field;
1003
1004 /* Is the prior field a bitfield? If so, handle "runs" of same
1005 type size fields. */
1006 if (rli->prev_field /* necessarily a bitfield if it exists. */)
1007 {
1008 /* If both are bitfields, nonzero, and the same size, this is
1009 the middle of a run. Zero declared size fields are special
1010 and handled as "end of run". (Note: it's nonzero declared
1011 size, but equal type sizes!) (Since we know that both
1012 the current and previous fields are bitfields by the
1013 time we check it, DECL_SIZE must be present for both.) */
1014 if (DECL_BIT_FIELD_TYPE (field)
1015 && !integer_zerop (DECL_SIZE (field))
1016 && !integer_zerop (DECL_SIZE (rli->prev_field))
1017 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1018 && host_integerp (TYPE_SIZE (type), 0)
1019 && simple_cst_equal (TYPE_SIZE (type),
1020 TYPE_SIZE (TREE_TYPE (rli->prev_field))))
1021 {
1022 /* We're in the middle of a run of equal type size fields; make
1023 sure we realign if we run out of bits. (Not decl size,
1024 type size!) */
1025 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 0);
1026
1027 if (rli->remaining_in_alignment < bitsize)
1028 {
1029 /* If PREV_FIELD is packed, and we haven't lumped
1030 non-packed bitfields with it, treat this as if PREV_FIELD
1031 was not a bitfield. This avoids anomalies where a packed
1032 bitfield with long long base type can take up more
1033 space than a same-size bitfield with base type short. */
1034 if (rli->prev_packed)
1035 rli->prev_field = prev_saved = NULL;
1036 else
1037 {
1038 /* out of bits; bump up to next 'word'. */
1039 rli->offset = DECL_FIELD_OFFSET (rli->prev_field);
1040 rli->bitpos
1041 = size_binop (PLUS_EXPR, TYPE_SIZE (type),
1042 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1043 rli->prev_field = field;
1044 rli->remaining_in_alignment
1045 = tree_low_cst (TYPE_SIZE (type), 0) - bitsize;
1046 }
1047 }
1048 else
1049 rli->remaining_in_alignment -= bitsize;
1050 }
1051 else if (rli->prev_packed)
1052 rli->prev_field = prev_saved = NULL;
1053 else
1054 {
1055 /* End of a run: if leaving a run of bitfields of the same type
1056 size, we have to "use up" the rest of the bits of the type
1057 size.
1058
1059 Compute the new position as the sum of the size for the prior
1060 type and where we first started working on that type.
1061 Note: since the beginning of the field was aligned then
1062 of course the end will be too. No round needed. */
1063
1064 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1065 {
1066 tree type_size = TYPE_SIZE (TREE_TYPE (rli->prev_field));
1067
1068 /* If the desired alignment is greater or equal to TYPE_SIZE,
1069 we have already adjusted rli->bitpos / rli->offset above.
1070 */
1071 if ((unsigned HOST_WIDE_INT) tree_low_cst (type_size, 0)
1072 > desired_align)
1073 rli->bitpos
1074 = size_binop (PLUS_EXPR, type_size,
1075 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1076 }
1077 else
1078 /* We "use up" size zero fields; the code below should behave
1079 as if the prior field was not a bitfield. */
1080 prev_saved = NULL;
1081
1082 /* Cause a new bitfield to be captured, either this time (if
1083 currently a bitfield) or next time we see one. */
1084 if (!DECL_BIT_FIELD_TYPE(field)
1085 || integer_zerop (DECL_SIZE (field)))
1086 rli->prev_field = NULL;
1087 }
1088
1089 rli->prev_packed = 0;
1090 normalize_rli (rli);
1091 }
1092
1093 /* If we're starting a new run of same size type bitfields
1094 (or a run of non-bitfields), set up the "first of the run"
1095 fields.
1096
1097 That is, if the current field is not a bitfield, or if there
1098 was a prior bitfield the type sizes differ, or if there wasn't
1099 a prior bitfield the size of the current field is nonzero.
1100
1101 Note: we must be sure to test ONLY the type size if there was
1102 a prior bitfield and ONLY for the current field being zero if
1103 there wasn't. */
1104
1105 if (!DECL_BIT_FIELD_TYPE (field)
1106 || ( prev_saved != NULL
1107 ? !simple_cst_equal (TYPE_SIZE (type),
1108 TYPE_SIZE (TREE_TYPE (prev_saved)))
1109 : !integer_zerop (DECL_SIZE (field)) ))
1110 {
1111 /* Never smaller than a byte for compatibility. */
1112 unsigned int type_align = BITS_PER_UNIT;
1113
1114 /* (When not a bitfield), we could be seeing a flex array (with
1115 no DECL_SIZE). Since we won't be using remaining_in_alignment
1116 until we see a bitfield (and come by here again) we just skip
1117 calculating it. */
1118 if (DECL_SIZE (field) != NULL
1119 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 0)
1120 && host_integerp (DECL_SIZE (field), 0))
1121 rli->remaining_in_alignment
1122 = tree_low_cst (TYPE_SIZE (TREE_TYPE(field)), 0)
1123 - tree_low_cst (DECL_SIZE (field), 0);
1124
1125 /* Now align (conventionally) for the new type. */
1126 if (!DECL_PACKED(field))
1127 type_align = MAX(TYPE_ALIGN (type), type_align);
1128
1129 if (prev_saved
1130 && DECL_BIT_FIELD_TYPE (prev_saved)
1131 /* If the previous bit-field is zero-sized, we've already
1132 accounted for its alignment needs (or ignored it, if
1133 appropriate) while placing it. */
1134 && ! integer_zerop (DECL_SIZE (prev_saved)))
1135 type_align = MAX (type_align,
1136 TYPE_ALIGN (TREE_TYPE (prev_saved)));
1137
1138 if (maximum_field_alignment != 0)
1139 type_align = MIN (type_align, maximum_field_alignment);
1140
1141 rli->bitpos = round_up (rli->bitpos, type_align);
1142
1143 /* If we really aligned, don't allow subsequent bitfields
1144 to undo that. */
1145 rli->prev_field = NULL;
1146 }
1147 }
1148
1149 /* Offset so far becomes the position of this field after normalizing. */
1150 normalize_rli (rli);
1151 DECL_FIELD_OFFSET (field) = rli->offset;
1152 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1153 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1154
1155 /* If this field ended up more aligned than we thought it would be (we
1156 approximate this by seeing if its position changed), lay out the field
1157 again; perhaps we can use an integral mode for it now. */
1158 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1159 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1160 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1161 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1162 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1163 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1164 actual_align = (BITS_PER_UNIT
1165 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1166 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1167 else
1168 actual_align = DECL_OFFSET_ALIGN (field);
1169 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1170 store / extract bit field operations will check the alignment of the
1171 record against the mode of bit fields. */
1172
1173 if (known_align != actual_align)
1174 layout_decl (field, actual_align);
1175
1176 if (DECL_BIT_FIELD_TYPE (field))
1177 {
1178 unsigned int type_align = TYPE_ALIGN (type);
1179
1180 /* Only the MS bitfields use this. We used to also put any kind of
1181 packed bit fields into prev_field, but that makes no sense, because
1182 an 8 bit packed bit field shouldn't impose more restriction on
1183 following fields than a char field, and the alignment requirements
1184 are also not fulfilled.
1185 There is no sane value to set rli->remaining_in_alignment to when
1186 a packed bitfield in prev_field is unaligned. */
1187 if (maximum_field_alignment != 0)
1188 type_align = MIN (type_align, maximum_field_alignment);
1189 gcc_assert (rli->prev_field
1190 || actual_align >= type_align || DECL_PACKED (field)
1191 || integer_zerop (DECL_SIZE (field))
1192 || !targetm.ms_bitfield_layout_p (rli->t));
1193 if (rli->prev_field == NULL && actual_align >= type_align
1194 && !integer_zerop (DECL_SIZE (field)))
1195 {
1196 rli->prev_field = field;
1197 /* rli->remaining_in_alignment has not been set if the bitfield
1198 has size zero, or if it is a packed bitfield. */
1199 rli->remaining_in_alignment
1200 = (tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 0)
1201 - tree_low_cst (DECL_SIZE (field), 0));
1202 rli->prev_packed = DECL_PACKED (field);
1203
1204 }
1205 else if (rli->prev_field && DECL_PACKED (field))
1206 {
1207 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 0);
1208
1209 if (rli->remaining_in_alignment < bitsize)
1210 rli->prev_field = NULL;
1211 else
1212 rli->remaining_in_alignment -= bitsize;
1213 }
1214 }
1215
1216 /* Now add size of this field to the size of the record. If the size is
1217 not constant, treat the field as being a multiple of bytes and just
1218 adjust the offset, resetting the bit position. Otherwise, apportion the
1219 size amongst the bit position and offset. First handle the case of an
1220 unspecified size, which can happen when we have an invalid nested struct
1221 definition, such as struct j { struct j { int i; } }. The error message
1222 is printed in finish_struct. */
1223 if (DECL_SIZE (field) == 0)
1224 /* Do nothing. */;
1225 else if (TREE_CODE (DECL_SIZE_UNIT (field)) != INTEGER_CST
1226 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field)))
1227 {
1228 rli->offset
1229 = size_binop (PLUS_EXPR, rli->offset,
1230 fold_convert (sizetype,
1231 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1232 bitsize_unit_node)));
1233 rli->offset
1234 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1235 rli->bitpos = bitsize_zero_node;
1236 rli->offset_align = MIN (rli->offset_align, desired_align);
1237 }
1238 else
1239 {
1240 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1241 normalize_rli (rli);
1242 }
1243 }
1244
1245 /* Assuming that all the fields have been laid out, this function uses
1246 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1247 indicated by RLI. */
1248
1249 static void
1250 finalize_record_size (record_layout_info rli)
1251 {
1252 tree unpadded_size, unpadded_size_unit;
1253
1254 /* Now we want just byte and bit offsets, so set the offset alignment
1255 to be a byte and then normalize. */
1256 rli->offset_align = BITS_PER_UNIT;
1257 normalize_rli (rli);
1258
1259 /* Determine the desired alignment. */
1260 #ifdef ROUND_TYPE_ALIGN
1261 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1262 rli->record_align);
1263 #else
1264 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1265 #endif
1266
1267 /* Compute the size so far. Be sure to allow for extra bits in the
1268 size in bytes. We have guaranteed above that it will be no more
1269 than a single byte. */
1270 unpadded_size = rli_size_so_far (rli);
1271 unpadded_size_unit = rli_size_unit_so_far (rli);
1272 if (! integer_zerop (rli->bitpos))
1273 unpadded_size_unit
1274 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1275
1276 /* Round the size up to be a multiple of the required alignment. */
1277 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1278 TYPE_SIZE_UNIT (rli->t)
1279 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1280
1281 if (TREE_CONSTANT (unpadded_size)
1282 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1283 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1284
1285 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1286 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1287 && TREE_CONSTANT (unpadded_size))
1288 {
1289 tree unpacked_size;
1290
1291 #ifdef ROUND_TYPE_ALIGN
1292 rli->unpacked_align
1293 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1294 #else
1295 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1296 #endif
1297
1298 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1299 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1300 {
1301 TYPE_PACKED (rli->t) = 0;
1302
1303 if (TYPE_NAME (rli->t))
1304 {
1305 const char *name;
1306
1307 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1308 name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
1309 else
1310 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
1311
1312 if (STRICT_ALIGNMENT)
1313 warning (OPT_Wpacked, "packed attribute causes inefficient "
1314 "alignment for %qs", name);
1315 else
1316 warning (OPT_Wpacked,
1317 "packed attribute is unnecessary for %qs", name);
1318 }
1319 else
1320 {
1321 if (STRICT_ALIGNMENT)
1322 warning (OPT_Wpacked,
1323 "packed attribute causes inefficient alignment");
1324 else
1325 warning (OPT_Wpacked, "packed attribute is unnecessary");
1326 }
1327 }
1328 }
1329 }
1330
1331 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1332
1333 void
1334 compute_record_mode (tree type)
1335 {
1336 tree field;
1337 enum machine_mode mode = VOIDmode;
1338
1339 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1340 However, if possible, we use a mode that fits in a register
1341 instead, in order to allow for better optimization down the
1342 line. */
1343 TYPE_MODE (type) = BLKmode;
1344
1345 if (! host_integerp (TYPE_SIZE (type), 1))
1346 return;
1347
1348 /* A record which has any BLKmode members must itself be
1349 BLKmode; it can't go in a register. Unless the member is
1350 BLKmode only because it isn't aligned. */
1351 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1352 {
1353 if (TREE_CODE (field) != FIELD_DECL)
1354 continue;
1355
1356 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1357 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1358 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1359 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1360 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1361 || ! host_integerp (bit_position (field), 1)
1362 || DECL_SIZE (field) == 0
1363 || ! host_integerp (DECL_SIZE (field), 1))
1364 return;
1365
1366 /* If this field is the whole struct, remember its mode so
1367 that, say, we can put a double in a class into a DF
1368 register instead of forcing it to live in the stack. */
1369 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1370 mode = DECL_MODE (field);
1371
1372 #ifdef MEMBER_TYPE_FORCES_BLK
1373 /* With some targets, eg. c4x, it is sub-optimal
1374 to access an aligned BLKmode structure as a scalar. */
1375
1376 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1377 return;
1378 #endif /* MEMBER_TYPE_FORCES_BLK */
1379 }
1380
1381 /* If we only have one real field; use its mode if that mode's size
1382 matches the type's size. This only applies to RECORD_TYPE. This
1383 does not apply to unions. */
1384 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1385 && host_integerp (TYPE_SIZE (type), 1)
1386 && GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
1387 TYPE_MODE (type) = mode;
1388 else
1389 TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1390
1391 /* If structure's known alignment is less than what the scalar
1392 mode would need, and it matters, then stick with BLKmode. */
1393 if (TYPE_MODE (type) != BLKmode
1394 && STRICT_ALIGNMENT
1395 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1396 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1397 {
1398 /* If this is the only reason this type is BLKmode, then
1399 don't force containing types to be BLKmode. */
1400 TYPE_NO_FORCE_BLK (type) = 1;
1401 TYPE_MODE (type) = BLKmode;
1402 }
1403 }
1404
1405 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1406 out. */
1407
1408 static void
1409 finalize_type_size (tree type)
1410 {
1411 /* Normally, use the alignment corresponding to the mode chosen.
1412 However, where strict alignment is not required, avoid
1413 over-aligning structures, since most compilers do not do this
1414 alignment. */
1415
1416 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1417 && (STRICT_ALIGNMENT
1418 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1419 && TREE_CODE (type) != QUAL_UNION_TYPE
1420 && TREE_CODE (type) != ARRAY_TYPE)))
1421 {
1422 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1423
1424 /* Don't override a larger alignment requirement coming from a user
1425 alignment of one of the fields. */
1426 if (mode_align >= TYPE_ALIGN (type))
1427 {
1428 TYPE_ALIGN (type) = mode_align;
1429 TYPE_USER_ALIGN (type) = 0;
1430 }
1431 }
1432
1433 /* Do machine-dependent extra alignment. */
1434 #ifdef ROUND_TYPE_ALIGN
1435 TYPE_ALIGN (type)
1436 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1437 #endif
1438
1439 /* If we failed to find a simple way to calculate the unit size
1440 of the type, find it by division. */
1441 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1442 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1443 result will fit in sizetype. We will get more efficient code using
1444 sizetype, so we force a conversion. */
1445 TYPE_SIZE_UNIT (type)
1446 = fold_convert (sizetype,
1447 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1448 bitsize_unit_node));
1449
1450 if (TYPE_SIZE (type) != 0)
1451 {
1452 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1453 TYPE_SIZE_UNIT (type) = round_up (TYPE_SIZE_UNIT (type),
1454 TYPE_ALIGN_UNIT (type));
1455 }
1456
1457 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1458 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1459 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1460 if (TYPE_SIZE_UNIT (type) != 0
1461 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1462 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1463
1464 /* Also layout any other variants of the type. */
1465 if (TYPE_NEXT_VARIANT (type)
1466 || type != TYPE_MAIN_VARIANT (type))
1467 {
1468 tree variant;
1469 /* Record layout info of this variant. */
1470 tree size = TYPE_SIZE (type);
1471 tree size_unit = TYPE_SIZE_UNIT (type);
1472 unsigned int align = TYPE_ALIGN (type);
1473 unsigned int user_align = TYPE_USER_ALIGN (type);
1474 enum machine_mode mode = TYPE_MODE (type);
1475
1476 /* Copy it into all variants. */
1477 for (variant = TYPE_MAIN_VARIANT (type);
1478 variant != 0;
1479 variant = TYPE_NEXT_VARIANT (variant))
1480 {
1481 TYPE_SIZE (variant) = size;
1482 TYPE_SIZE_UNIT (variant) = size_unit;
1483 TYPE_ALIGN (variant) = align;
1484 TYPE_USER_ALIGN (variant) = user_align;
1485 TYPE_MODE (variant) = mode;
1486 }
1487 }
1488 }
1489
1490 /* Do all of the work required to layout the type indicated by RLI,
1491 once the fields have been laid out. This function will call `free'
1492 for RLI, unless FREE_P is false. Passing a value other than false
1493 for FREE_P is bad practice; this option only exists to support the
1494 G++ 3.2 ABI. */
1495
1496 void
1497 finish_record_layout (record_layout_info rli, int free_p)
1498 {
1499 /* Compute the final size. */
1500 finalize_record_size (rli);
1501
1502 /* Compute the TYPE_MODE for the record. */
1503 compute_record_mode (rli->t);
1504
1505 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1506 finalize_type_size (rli->t);
1507
1508 /* Lay out any static members. This is done now because their type
1509 may use the record's type. */
1510 while (rli->pending_statics)
1511 {
1512 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1513 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1514 }
1515
1516 /* Clean up. */
1517 if (free_p)
1518 free (rli);
1519 }
1520 \f
1521
1522 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1523 NAME, its fields are chained in reverse on FIELDS.
1524
1525 If ALIGN_TYPE is non-null, it is given the same alignment as
1526 ALIGN_TYPE. */
1527
1528 void
1529 finish_builtin_struct (tree type, const char *name, tree fields,
1530 tree align_type)
1531 {
1532 tree tail, next;
1533
1534 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1535 {
1536 DECL_FIELD_CONTEXT (fields) = type;
1537 next = TREE_CHAIN (fields);
1538 TREE_CHAIN (fields) = tail;
1539 }
1540 TYPE_FIELDS (type) = tail;
1541
1542 if (align_type)
1543 {
1544 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1545 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1546 }
1547
1548 layout_type (type);
1549 #if 0 /* not yet, should get fixed properly later */
1550 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1551 #else
1552 TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type);
1553 #endif
1554 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1555 layout_decl (TYPE_NAME (type), 0);
1556 }
1557
1558 /* Calculate the mode, size, and alignment for TYPE.
1559 For an array type, calculate the element separation as well.
1560 Record TYPE on the chain of permanent or temporary types
1561 so that dbxout will find out about it.
1562
1563 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1564 layout_type does nothing on such a type.
1565
1566 If the type is incomplete, its TYPE_SIZE remains zero. */
1567
1568 void
1569 layout_type (tree type)
1570 {
1571 gcc_assert (type);
1572
1573 if (type == error_mark_node)
1574 return;
1575
1576 /* Do nothing if type has been laid out before. */
1577 if (TYPE_SIZE (type))
1578 return;
1579
1580 switch (TREE_CODE (type))
1581 {
1582 case LANG_TYPE:
1583 /* This kind of type is the responsibility
1584 of the language-specific code. */
1585 gcc_unreachable ();
1586
1587 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1588 if (TYPE_PRECISION (type) == 0)
1589 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1590
1591 /* ... fall through ... */
1592
1593 case INTEGER_TYPE:
1594 case ENUMERAL_TYPE:
1595 case CHAR_TYPE:
1596 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1597 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1598 TYPE_UNSIGNED (type) = 1;
1599
1600 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
1601 MODE_INT);
1602 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1603 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1604 break;
1605
1606 case REAL_TYPE:
1607 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
1608 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1609 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1610 break;
1611
1612 case COMPLEX_TYPE:
1613 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1614 TYPE_MODE (type)
1615 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1616 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
1617 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
1618 0);
1619 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1620 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1621 break;
1622
1623 case VECTOR_TYPE:
1624 {
1625 int nunits = TYPE_VECTOR_SUBPARTS (type);
1626 tree nunits_tree = build_int_cst (NULL_TREE, nunits);
1627 tree innertype = TREE_TYPE (type);
1628
1629 gcc_assert (!(nunits & (nunits - 1)));
1630
1631 /* Find an appropriate mode for the vector type. */
1632 if (TYPE_MODE (type) == VOIDmode)
1633 {
1634 enum machine_mode innermode = TYPE_MODE (innertype);
1635 enum machine_mode mode;
1636
1637 /* First, look for a supported vector type. */
1638 if (SCALAR_FLOAT_MODE_P (innermode))
1639 mode = MIN_MODE_VECTOR_FLOAT;
1640 else
1641 mode = MIN_MODE_VECTOR_INT;
1642
1643 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
1644 if (GET_MODE_NUNITS (mode) == nunits
1645 && GET_MODE_INNER (mode) == innermode
1646 && targetm.vector_mode_supported_p (mode))
1647 break;
1648
1649 /* For integers, try mapping it to a same-sized scalar mode. */
1650 if (mode == VOIDmode
1651 && GET_MODE_CLASS (innermode) == MODE_INT)
1652 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
1653 MODE_INT, 0);
1654
1655 if (mode == VOIDmode || !have_regs_of_mode[mode])
1656 TYPE_MODE (type) = BLKmode;
1657 else
1658 TYPE_MODE (type) = mode;
1659 }
1660
1661 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1662 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
1663 TYPE_SIZE_UNIT (innertype),
1664 nunits_tree, 0);
1665 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
1666 nunits_tree, 0);
1667
1668 /* Always naturally align vectors. This prevents ABI changes
1669 depending on whether or not native vector modes are supported. */
1670 TYPE_ALIGN (type) = tree_low_cst (TYPE_SIZE (type), 0);
1671 break;
1672 }
1673
1674 case VOID_TYPE:
1675 /* This is an incomplete type and so doesn't have a size. */
1676 TYPE_ALIGN (type) = 1;
1677 TYPE_USER_ALIGN (type) = 0;
1678 TYPE_MODE (type) = VOIDmode;
1679 break;
1680
1681 case OFFSET_TYPE:
1682 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1683 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1684 /* A pointer might be MODE_PARTIAL_INT,
1685 but ptrdiff_t must be integral. */
1686 TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
1687 break;
1688
1689 case FUNCTION_TYPE:
1690 case METHOD_TYPE:
1691 /* It's hard to see what the mode and size of a function ought to
1692 be, but we do know the alignment is FUNCTION_BOUNDARY, so
1693 make it consistent with that. */
1694 TYPE_MODE (type) = mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0);
1695 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
1696 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
1697 break;
1698
1699 case POINTER_TYPE:
1700 case REFERENCE_TYPE:
1701 {
1702
1703 enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
1704 && reference_types_internal)
1705 ? Pmode : TYPE_MODE (type));
1706
1707 int nbits = GET_MODE_BITSIZE (mode);
1708
1709 TYPE_SIZE (type) = bitsize_int (nbits);
1710 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1711 TYPE_UNSIGNED (type) = 1;
1712 TYPE_PRECISION (type) = nbits;
1713 }
1714 break;
1715
1716 case ARRAY_TYPE:
1717 {
1718 tree index = TYPE_DOMAIN (type);
1719 tree element = TREE_TYPE (type);
1720
1721 build_pointer_type (element);
1722
1723 /* We need to know both bounds in order to compute the size. */
1724 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1725 && TYPE_SIZE (element))
1726 {
1727 tree ub = TYPE_MAX_VALUE (index);
1728 tree lb = TYPE_MIN_VALUE (index);
1729 tree length;
1730 tree element_size;
1731
1732 /* The initial subtraction should happen in the original type so
1733 that (possible) negative values are handled appropriately. */
1734 length = size_binop (PLUS_EXPR, size_one_node,
1735 fold_convert (sizetype,
1736 fold_build2 (MINUS_EXPR,
1737 TREE_TYPE (lb),
1738 ub, lb)));
1739
1740 /* Special handling for arrays of bits (for Chill). */
1741 element_size = TYPE_SIZE (element);
1742 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1743 && (integer_zerop (TYPE_MAX_VALUE (element))
1744 || integer_onep (TYPE_MAX_VALUE (element)))
1745 && host_integerp (TYPE_MIN_VALUE (element), 1))
1746 {
1747 HOST_WIDE_INT maxvalue
1748 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1749 HOST_WIDE_INT minvalue
1750 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1751
1752 if (maxvalue - minvalue == 1
1753 && (maxvalue == 1 || maxvalue == 0))
1754 element_size = integer_one_node;
1755 }
1756
1757 /* If neither bound is a constant and sizetype is signed, make
1758 sure the size is never negative. We should really do this
1759 if *either* bound is non-constant, but this is the best
1760 compromise between C and Ada. */
1761 if (!TYPE_UNSIGNED (sizetype)
1762 && TREE_CODE (TYPE_MIN_VALUE (index)) != INTEGER_CST
1763 && TREE_CODE (TYPE_MAX_VALUE (index)) != INTEGER_CST)
1764 length = size_binop (MAX_EXPR, length, size_zero_node);
1765
1766 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1767 fold_convert (bitsizetype,
1768 length));
1769
1770 /* If we know the size of the element, calculate the total
1771 size directly, rather than do some division thing below.
1772 This optimization helps Fortran assumed-size arrays
1773 (where the size of the array is determined at runtime)
1774 substantially.
1775 Note that we can't do this in the case where the size of
1776 the elements is one bit since TYPE_SIZE_UNIT cannot be
1777 set correctly in that case. */
1778 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
1779 TYPE_SIZE_UNIT (type)
1780 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1781 }
1782
1783 /* Now round the alignment and size,
1784 using machine-dependent criteria if any. */
1785
1786 #ifdef ROUND_TYPE_ALIGN
1787 TYPE_ALIGN (type)
1788 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1789 #else
1790 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1791 #endif
1792 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
1793 TYPE_MODE (type) = BLKmode;
1794 if (TYPE_SIZE (type) != 0
1795 #ifdef MEMBER_TYPE_FORCES_BLK
1796 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
1797 #endif
1798 /* BLKmode elements force BLKmode aggregate;
1799 else extract/store fields may lose. */
1800 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
1801 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
1802 {
1803 /* One-element arrays get the component type's mode. */
1804 if (simple_cst_equal (TYPE_SIZE (type),
1805 TYPE_SIZE (TREE_TYPE (type))))
1806 TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
1807 else
1808 TYPE_MODE (type)
1809 = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1810
1811 if (TYPE_MODE (type) != BLKmode
1812 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
1813 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
1814 && TYPE_MODE (type) != BLKmode)
1815 {
1816 TYPE_NO_FORCE_BLK (type) = 1;
1817 TYPE_MODE (type) = BLKmode;
1818 }
1819 }
1820 /* When the element size is constant, check that it is at least as
1821 large as the element alignment. */
1822 if (TYPE_SIZE_UNIT (element)
1823 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
1824 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
1825 TYPE_ALIGN_UNIT. */
1826 && !TREE_CONSTANT_OVERFLOW (TYPE_SIZE_UNIT (element))
1827 && !integer_zerop (TYPE_SIZE_UNIT (element))
1828 && compare_tree_int (TYPE_SIZE_UNIT (element),
1829 TYPE_ALIGN_UNIT (element)) < 0)
1830 error ("alignment of array elements is greater than element size");
1831 break;
1832 }
1833
1834 case RECORD_TYPE:
1835 case UNION_TYPE:
1836 case QUAL_UNION_TYPE:
1837 {
1838 tree field;
1839 record_layout_info rli;
1840
1841 /* Initialize the layout information. */
1842 rli = start_record_layout (type);
1843
1844 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1845 in the reverse order in building the COND_EXPR that denotes
1846 its size. We reverse them again later. */
1847 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1848 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1849
1850 /* Place all the fields. */
1851 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1852 place_field (rli, field);
1853
1854 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1855 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1856
1857 if (lang_adjust_rli)
1858 (*lang_adjust_rli) (rli);
1859
1860 /* Finish laying out the record. */
1861 finish_record_layout (rli, /*free_p=*/true);
1862 }
1863 break;
1864
1865 default:
1866 gcc_unreachable ();
1867 }
1868
1869 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1870 records and unions, finish_record_layout already called this
1871 function. */
1872 if (TREE_CODE (type) != RECORD_TYPE
1873 && TREE_CODE (type) != UNION_TYPE
1874 && TREE_CODE (type) != QUAL_UNION_TYPE)
1875 finalize_type_size (type);
1876
1877 /* If an alias set has been set for this aggregate when it was incomplete,
1878 force it into alias set 0.
1879 This is too conservative, but we cannot call record_component_aliases
1880 here because some frontends still change the aggregates after
1881 layout_type. */
1882 if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
1883 TYPE_ALIAS_SET (type) = 0;
1884 }
1885 \f
1886 /* Create and return a type for signed integers of PRECISION bits. */
1887
1888 tree
1889 make_signed_type (int precision)
1890 {
1891 tree type = make_node (INTEGER_TYPE);
1892
1893 TYPE_PRECISION (type) = precision;
1894
1895 fixup_signed_type (type);
1896 return type;
1897 }
1898
1899 /* Create and return a type for unsigned integers of PRECISION bits. */
1900
1901 tree
1902 make_unsigned_type (int precision)
1903 {
1904 tree type = make_node (INTEGER_TYPE);
1905
1906 TYPE_PRECISION (type) = precision;
1907
1908 fixup_unsigned_type (type);
1909 return type;
1910 }
1911 \f
1912 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1913 value to enable integer types to be created. */
1914
1915 void
1916 initialize_sizetypes (bool signed_p)
1917 {
1918 tree t = make_node (INTEGER_TYPE);
1919
1920 TYPE_MODE (t) = SImode;
1921 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
1922 TYPE_USER_ALIGN (t) = 0;
1923 TYPE_IS_SIZETYPE (t) = 1;
1924 TYPE_UNSIGNED (t) = !signed_p;
1925 TYPE_SIZE (t) = build_int_cst (t, GET_MODE_BITSIZE (SImode));
1926 TYPE_SIZE_UNIT (t) = build_int_cst (t, GET_MODE_SIZE (SImode));
1927 TYPE_PRECISION (t) = GET_MODE_BITSIZE (SImode);
1928 TYPE_MIN_VALUE (t) = build_int_cst (t, 0);
1929
1930 /* 1000 avoids problems with possible overflow and is certainly
1931 larger than any size value we'd want to be storing. */
1932 TYPE_MAX_VALUE (t) = build_int_cst (t, 1000);
1933
1934 sizetype = t;
1935 bitsizetype = build_distinct_type_copy (t);
1936 }
1937
1938 /* Make sizetype a version of TYPE, and initialize *sizetype
1939 accordingly. We do this by overwriting the stub sizetype and
1940 bitsizetype nodes created by initialize_sizetypes. This makes sure
1941 that (a) anything stubby about them no longer exists, (b) any
1942 INTEGER_CSTs created with such a type, remain valid. */
1943
1944 void
1945 set_sizetype (tree type)
1946 {
1947 int oprecision = TYPE_PRECISION (type);
1948 /* The *bitsizetype types use a precision that avoids overflows when
1949 calculating signed sizes / offsets in bits. However, when
1950 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1951 precision. */
1952 int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
1953 2 * HOST_BITS_PER_WIDE_INT);
1954 tree t;
1955
1956 gcc_assert (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (sizetype));
1957
1958 t = build_distinct_type_copy (type);
1959 /* We do want to use sizetype's cache, as we will be replacing that
1960 type. */
1961 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (sizetype);
1962 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (sizetype);
1963 TREE_TYPE (TYPE_CACHED_VALUES (t)) = type;
1964 TYPE_UID (t) = TYPE_UID (sizetype);
1965 TYPE_IS_SIZETYPE (t) = 1;
1966
1967 /* Replace our original stub sizetype. */
1968 memcpy (sizetype, t, tree_size (sizetype));
1969 TYPE_MAIN_VARIANT (sizetype) = sizetype;
1970
1971 t = make_node (INTEGER_TYPE);
1972 TYPE_NAME (t) = get_identifier ("bit_size_type");
1973 /* We do want to use bitsizetype's cache, as we will be replacing that
1974 type. */
1975 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (bitsizetype);
1976 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (bitsizetype);
1977 TYPE_PRECISION (t) = precision;
1978 TYPE_UID (t) = TYPE_UID (bitsizetype);
1979 TYPE_IS_SIZETYPE (t) = 1;
1980
1981 /* Replace our original stub bitsizetype. */
1982 memcpy (bitsizetype, t, tree_size (bitsizetype));
1983 TYPE_MAIN_VARIANT (bitsizetype) = bitsizetype;
1984
1985 if (TYPE_UNSIGNED (type))
1986 {
1987 fixup_unsigned_type (bitsizetype);
1988 ssizetype = build_distinct_type_copy (make_signed_type (oprecision));
1989 TYPE_IS_SIZETYPE (ssizetype) = 1;
1990 sbitsizetype = build_distinct_type_copy (make_signed_type (precision));
1991 TYPE_IS_SIZETYPE (sbitsizetype) = 1;
1992 }
1993 else
1994 {
1995 fixup_signed_type (bitsizetype);
1996 ssizetype = sizetype;
1997 sbitsizetype = bitsizetype;
1998 }
1999 }
2000 \f
2001 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE,
2002 BOOLEAN_TYPE, or CHAR_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2003 for TYPE, based on the PRECISION and whether or not the TYPE
2004 IS_UNSIGNED. PRECISION need not correspond to a width supported
2005 natively by the hardware; for example, on a machine with 8-bit,
2006 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2007 61. */
2008
2009 void
2010 set_min_and_max_values_for_integral_type (tree type,
2011 int precision,
2012 bool is_unsigned)
2013 {
2014 tree min_value;
2015 tree max_value;
2016
2017 if (is_unsigned)
2018 {
2019 min_value = build_int_cst (type, 0);
2020 max_value
2021 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2022 ? -1
2023 : ((HOST_WIDE_INT) 1 << precision) - 1,
2024 precision - HOST_BITS_PER_WIDE_INT > 0
2025 ? ((unsigned HOST_WIDE_INT) ~0
2026 >> (HOST_BITS_PER_WIDE_INT
2027 - (precision - HOST_BITS_PER_WIDE_INT)))
2028 : 0);
2029 }
2030 else
2031 {
2032 min_value
2033 = build_int_cst_wide (type,
2034 (precision - HOST_BITS_PER_WIDE_INT > 0
2035 ? 0
2036 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2037 (((HOST_WIDE_INT) (-1)
2038 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2039 ? precision - HOST_BITS_PER_WIDE_INT - 1
2040 : 0))));
2041 max_value
2042 = build_int_cst_wide (type,
2043 (precision - HOST_BITS_PER_WIDE_INT > 0
2044 ? -1
2045 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2046 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2047 ? (((HOST_WIDE_INT) 1
2048 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2049 : 0));
2050 }
2051
2052 TYPE_MIN_VALUE (type) = min_value;
2053 TYPE_MAX_VALUE (type) = max_value;
2054 }
2055
2056 /* Set the extreme values of TYPE based on its precision in bits,
2057 then lay it out. Used when make_signed_type won't do
2058 because the tree code is not INTEGER_TYPE.
2059 E.g. for Pascal, when the -fsigned-char option is given. */
2060
2061 void
2062 fixup_signed_type (tree type)
2063 {
2064 int precision = TYPE_PRECISION (type);
2065
2066 /* We can not represent properly constants greater then
2067 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2068 as they are used by i386 vector extensions and friends. */
2069 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2070 precision = HOST_BITS_PER_WIDE_INT * 2;
2071
2072 set_min_and_max_values_for_integral_type (type, precision,
2073 /*is_unsigned=*/false);
2074
2075 /* Lay out the type: set its alignment, size, etc. */
2076 layout_type (type);
2077 }
2078
2079 /* Set the extreme values of TYPE based on its precision in bits,
2080 then lay it out. This is used both in `make_unsigned_type'
2081 and for enumeral types. */
2082
2083 void
2084 fixup_unsigned_type (tree type)
2085 {
2086 int precision = TYPE_PRECISION (type);
2087
2088 /* We can not represent properly constants greater then
2089 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2090 as they are used by i386 vector extensions and friends. */
2091 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2092 precision = HOST_BITS_PER_WIDE_INT * 2;
2093
2094 TYPE_UNSIGNED (type) = 1;
2095
2096 set_min_and_max_values_for_integral_type (type, precision,
2097 /*is_unsigned=*/true);
2098
2099 /* Lay out the type: set its alignment, size, etc. */
2100 layout_type (type);
2101 }
2102 \f
2103 /* Find the best machine mode to use when referencing a bit field of length
2104 BITSIZE bits starting at BITPOS.
2105
2106 The underlying object is known to be aligned to a boundary of ALIGN bits.
2107 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2108 larger than LARGEST_MODE (usually SImode).
2109
2110 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
2111 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
2112 mode meeting these conditions.
2113
2114 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
2115 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2116 all the conditions. */
2117
2118 enum machine_mode
2119 get_best_mode (int bitsize, int bitpos, unsigned int align,
2120 enum machine_mode largest_mode, int volatilep)
2121 {
2122 enum machine_mode mode;
2123 unsigned int unit = 0;
2124
2125 /* Find the narrowest integer mode that contains the bit field. */
2126 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2127 mode = GET_MODE_WIDER_MODE (mode))
2128 {
2129 unit = GET_MODE_BITSIZE (mode);
2130 if ((bitpos % unit) + bitsize <= unit)
2131 break;
2132 }
2133
2134 if (mode == VOIDmode
2135 /* It is tempting to omit the following line
2136 if STRICT_ALIGNMENT is true.
2137 But that is incorrect, since if the bitfield uses part of 3 bytes
2138 and we use a 4-byte mode, we could get a spurious segv
2139 if the extra 4th byte is past the end of memory.
2140 (Though at least one Unix compiler ignores this problem:
2141 that on the Sequent 386 machine. */
2142 || MIN (unit, BIGGEST_ALIGNMENT) > align
2143 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2144 return VOIDmode;
2145
2146 if (SLOW_BYTE_ACCESS && ! volatilep)
2147 {
2148 enum machine_mode wide_mode = VOIDmode, tmode;
2149
2150 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2151 tmode = GET_MODE_WIDER_MODE (tmode))
2152 {
2153 unit = GET_MODE_BITSIZE (tmode);
2154 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2155 && unit <= BITS_PER_WORD
2156 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2157 && (largest_mode == VOIDmode
2158 || unit <= GET_MODE_BITSIZE (largest_mode)))
2159 wide_mode = tmode;
2160 }
2161
2162 if (wide_mode != VOIDmode)
2163 return wide_mode;
2164 }
2165
2166 return mode;
2167 }
2168
2169 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2170 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2171
2172 void
2173 get_mode_bounds (enum machine_mode mode, int sign,
2174 enum machine_mode target_mode,
2175 rtx *mmin, rtx *mmax)
2176 {
2177 unsigned size = GET_MODE_BITSIZE (mode);
2178 unsigned HOST_WIDE_INT min_val, max_val;
2179
2180 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2181
2182 if (sign)
2183 {
2184 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2185 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2186 }
2187 else
2188 {
2189 min_val = 0;
2190 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2191 }
2192
2193 *mmin = gen_int_mode (min_val, target_mode);
2194 *mmax = gen_int_mode (max_val, target_mode);
2195 }
2196
2197 #include "gt-stor-layout.h"