Update FSF address.
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "toplev.h"
34 #include "ggc.h"
35 #include "target.h"
36 #include "langhooks.h"
37 #include "regs.h"
38 #include "params.h"
39
40 /* Data type for the expressions representing sizes of data types.
41 It is the first integer type laid out. */
42 tree sizetype_tab[(int) TYPE_KIND_LAST];
43
44 /* If nonzero, this is an upper limit on alignment of structure fields.
45 The value is measured in bits. */
46 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
47 /* ... and its original value in bytes, specified via -fpack-struct=<value>. */
48 unsigned int initial_max_fld_align = TARGET_DEFAULT_PACK_STRUCT;
49
50 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
51 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
52 called only by a front end. */
53 static int reference_types_internal = 0;
54
55 static void finalize_record_size (record_layout_info);
56 static void finalize_type_size (tree);
57 static void place_union_field (record_layout_info, tree);
58 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
59 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
60 HOST_WIDE_INT, tree);
61 #endif
62 extern void debug_rli (record_layout_info);
63 \f
64 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
65
66 static GTY(()) tree pending_sizes;
67
68 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
69 by front end. */
70
71 void
72 internal_reference_types (void)
73 {
74 reference_types_internal = 1;
75 }
76
77 /* Get a list of all the objects put on the pending sizes list. */
78
79 tree
80 get_pending_sizes (void)
81 {
82 tree chain = pending_sizes;
83
84 pending_sizes = 0;
85 return chain;
86 }
87
88 /* Add EXPR to the pending sizes list. */
89
90 void
91 put_pending_size (tree expr)
92 {
93 /* Strip any simple arithmetic from EXPR to see if it has an underlying
94 SAVE_EXPR. */
95 expr = skip_simple_arithmetic (expr);
96
97 if (TREE_CODE (expr) == SAVE_EXPR)
98 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
99 }
100
101 /* Put a chain of objects into the pending sizes list, which must be
102 empty. */
103
104 void
105 put_pending_sizes (tree chain)
106 {
107 gcc_assert (!pending_sizes);
108 pending_sizes = chain;
109 }
110
111 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
112 to serve as the actual size-expression for a type or decl. */
113
114 tree
115 variable_size (tree size)
116 {
117 tree save;
118
119 /* If the language-processor is to take responsibility for variable-sized
120 items (e.g., languages which have elaboration procedures like Ada),
121 just return SIZE unchanged. Likewise for self-referential sizes and
122 constant sizes. */
123 if (TREE_CONSTANT (size)
124 || lang_hooks.decls.global_bindings_p () < 0
125 || CONTAINS_PLACEHOLDER_P (size))
126 return size;
127
128 size = save_expr (size);
129
130 /* If an array with a variable number of elements is declared, and
131 the elements require destruction, we will emit a cleanup for the
132 array. That cleanup is run both on normal exit from the block
133 and in the exception-handler for the block. Normally, when code
134 is used in both ordinary code and in an exception handler it is
135 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
136 not wish to do that here; the array-size is the same in both
137 places. */
138 save = skip_simple_arithmetic (size);
139
140 if (cfun && cfun->x_dont_save_pending_sizes_p)
141 /* The front-end doesn't want us to keep a list of the expressions
142 that determine sizes for variable size objects. Trust it. */
143 return size;
144
145 if (lang_hooks.decls.global_bindings_p ())
146 {
147 if (TREE_CONSTANT (size))
148 error ("type size can%'t be explicitly evaluated");
149 else
150 error ("variable-size type declared outside of any function");
151
152 return size_one_node;
153 }
154
155 put_pending_size (save);
156
157 return size;
158 }
159 \f
160 #ifndef MAX_FIXED_MODE_SIZE
161 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
162 #endif
163
164 /* Return the machine mode to use for a nonscalar of SIZE bits. The
165 mode must be in class CLASS, and have exactly that many value bits;
166 it may have padding as well. If LIMIT is nonzero, modes of wider
167 than MAX_FIXED_MODE_SIZE will not be used. */
168
169 enum machine_mode
170 mode_for_size (unsigned int size, enum mode_class class, int limit)
171 {
172 enum machine_mode mode;
173
174 if (limit && size > MAX_FIXED_MODE_SIZE)
175 return BLKmode;
176
177 /* Get the first mode which has this size, in the specified class. */
178 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
179 mode = GET_MODE_WIDER_MODE (mode))
180 if (GET_MODE_PRECISION (mode) == size)
181 return mode;
182
183 return BLKmode;
184 }
185
186 /* Similar, except passed a tree node. */
187
188 enum machine_mode
189 mode_for_size_tree (tree size, enum mode_class class, int limit)
190 {
191 if (TREE_CODE (size) != INTEGER_CST
192 || TREE_OVERFLOW (size)
193 /* What we really want to say here is that the size can fit in a
194 host integer, but we know there's no way we'd find a mode for
195 this many bits, so there's no point in doing the precise test. */
196 || compare_tree_int (size, 1000) > 0)
197 return BLKmode;
198 else
199 return mode_for_size (tree_low_cst (size, 1), class, limit);
200 }
201
202 /* Similar, but never return BLKmode; return the narrowest mode that
203 contains at least the requested number of value bits. */
204
205 enum machine_mode
206 smallest_mode_for_size (unsigned int size, enum mode_class class)
207 {
208 enum machine_mode mode;
209
210 /* Get the first mode which has at least this size, in the
211 specified class. */
212 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
213 mode = GET_MODE_WIDER_MODE (mode))
214 if (GET_MODE_PRECISION (mode) >= size)
215 return mode;
216
217 gcc_unreachable ();
218 }
219
220 /* Find an integer mode of the exact same size, or BLKmode on failure. */
221
222 enum machine_mode
223 int_mode_for_mode (enum machine_mode mode)
224 {
225 switch (GET_MODE_CLASS (mode))
226 {
227 case MODE_INT:
228 case MODE_PARTIAL_INT:
229 break;
230
231 case MODE_COMPLEX_INT:
232 case MODE_COMPLEX_FLOAT:
233 case MODE_FLOAT:
234 case MODE_VECTOR_INT:
235 case MODE_VECTOR_FLOAT:
236 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
237 break;
238
239 case MODE_RANDOM:
240 if (mode == BLKmode)
241 break;
242
243 /* ... fall through ... */
244
245 case MODE_CC:
246 default:
247 gcc_unreachable ();
248 }
249
250 return mode;
251 }
252
253 /* Return the alignment of MODE. This will be bounded by 1 and
254 BIGGEST_ALIGNMENT. */
255
256 unsigned int
257 get_mode_alignment (enum machine_mode mode)
258 {
259 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
260 }
261
262 \f
263 /* Subroutine of layout_decl: Force alignment required for the data type.
264 But if the decl itself wants greater alignment, don't override that. */
265
266 static inline void
267 do_type_align (tree type, tree decl)
268 {
269 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
270 {
271 DECL_ALIGN (decl) = TYPE_ALIGN (type);
272 if (TREE_CODE (decl) == FIELD_DECL)
273 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
274 }
275 }
276
277 /* Set the size, mode and alignment of a ..._DECL node.
278 TYPE_DECL does need this for C++.
279 Note that LABEL_DECL and CONST_DECL nodes do not need this,
280 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
281 Don't call layout_decl for them.
282
283 KNOWN_ALIGN is the amount of alignment we can assume this
284 decl has with no special effort. It is relevant only for FIELD_DECLs
285 and depends on the previous fields.
286 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
287 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
288 the record will be aligned to suit. */
289
290 void
291 layout_decl (tree decl, unsigned int known_align)
292 {
293 tree type = TREE_TYPE (decl);
294 enum tree_code code = TREE_CODE (decl);
295 rtx rtl = NULL_RTX;
296
297 if (code == CONST_DECL)
298 return;
299
300 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
301 || code == TYPE_DECL ||code == FIELD_DECL);
302
303 rtl = DECL_RTL_IF_SET (decl);
304
305 if (type == error_mark_node)
306 type = void_type_node;
307
308 /* Usually the size and mode come from the data type without change,
309 however, the front-end may set the explicit width of the field, so its
310 size may not be the same as the size of its type. This happens with
311 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
312 also happens with other fields. For example, the C++ front-end creates
313 zero-sized fields corresponding to empty base classes, and depends on
314 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
315 size in bytes from the size in bits. If we have already set the mode,
316 don't set it again since we can be called twice for FIELD_DECLs. */
317
318 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
319 if (DECL_MODE (decl) == VOIDmode)
320 DECL_MODE (decl) = TYPE_MODE (type);
321
322 if (DECL_SIZE (decl) == 0)
323 {
324 DECL_SIZE (decl) = TYPE_SIZE (type);
325 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
326 }
327 else if (DECL_SIZE_UNIT (decl) == 0)
328 DECL_SIZE_UNIT (decl)
329 = fold_convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
330 bitsize_unit_node));
331
332 if (code != FIELD_DECL)
333 /* For non-fields, update the alignment from the type. */
334 do_type_align (type, decl);
335 else
336 /* For fields, it's a bit more complicated... */
337 {
338 bool old_user_align = DECL_USER_ALIGN (decl);
339
340 if (DECL_BIT_FIELD (decl))
341 {
342 DECL_BIT_FIELD_TYPE (decl) = type;
343
344 /* A zero-length bit-field affects the alignment of the next
345 field. */
346 if (integer_zerop (DECL_SIZE (decl))
347 && ! DECL_PACKED (decl)
348 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
349 {
350 #ifdef PCC_BITFIELD_TYPE_MATTERS
351 if (PCC_BITFIELD_TYPE_MATTERS)
352 do_type_align (type, decl);
353 else
354 #endif
355 {
356 #ifdef EMPTY_FIELD_BOUNDARY
357 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
358 {
359 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
360 DECL_USER_ALIGN (decl) = 0;
361 }
362 #endif
363 }
364 }
365
366 /* See if we can use an ordinary integer mode for a bit-field.
367 Conditions are: a fixed size that is correct for another mode
368 and occupying a complete byte or bytes on proper boundary. */
369 if (TYPE_SIZE (type) != 0
370 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
371 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
372 {
373 enum machine_mode xmode
374 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
375
376 if (xmode != BLKmode
377 && (known_align == 0
378 || known_align >= GET_MODE_ALIGNMENT (xmode)))
379 {
380 DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
381 DECL_ALIGN (decl));
382 DECL_MODE (decl) = xmode;
383 DECL_BIT_FIELD (decl) = 0;
384 }
385 }
386
387 /* Turn off DECL_BIT_FIELD if we won't need it set. */
388 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
389 && known_align >= TYPE_ALIGN (type)
390 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
391 DECL_BIT_FIELD (decl) = 0;
392 }
393 else if (DECL_PACKED (decl) && DECL_USER_ALIGN (decl))
394 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
395 round up; we'll reduce it again below. We want packing to
396 supersede USER_ALIGN inherited from the type, but defer to
397 alignment explicitly specified on the field decl. */;
398 else
399 do_type_align (type, decl);
400
401 /* If the field is of variable size, we can't misalign it since we
402 have no way to make a temporary to align the result. But this
403 isn't an issue if the decl is not addressable. Likewise if it
404 is of unknown size.
405
406 Note that do_type_align may set DECL_USER_ALIGN, so we need to
407 check old_user_align instead. */
408 if (DECL_PACKED (decl)
409 && !old_user_align
410 && (DECL_NONADDRESSABLE_P (decl)
411 || DECL_SIZE_UNIT (decl) == 0
412 || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
413 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
414
415 if (! DECL_USER_ALIGN (decl) && ! DECL_PACKED (decl))
416 {
417 /* Some targets (i.e. i386, VMS) limit struct field alignment
418 to a lower boundary than alignment of variables unless
419 it was overridden by attribute aligned. */
420 #ifdef BIGGEST_FIELD_ALIGNMENT
421 DECL_ALIGN (decl)
422 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
423 #endif
424 #ifdef ADJUST_FIELD_ALIGN
425 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
426 #endif
427 }
428
429 /* Should this be controlled by DECL_USER_ALIGN, too? */
430 if (maximum_field_alignment != 0)
431 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), maximum_field_alignment);
432 }
433
434 /* Evaluate nonconstant size only once, either now or as soon as safe. */
435 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
436 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
437 if (DECL_SIZE_UNIT (decl) != 0
438 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
439 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
440
441 /* If requested, warn about definitions of large data objects. */
442 if (warn_larger_than
443 && (code == VAR_DECL || code == PARM_DECL)
444 && ! DECL_EXTERNAL (decl))
445 {
446 tree size = DECL_SIZE_UNIT (decl);
447
448 if (size != 0 && TREE_CODE (size) == INTEGER_CST
449 && compare_tree_int (size, larger_than_size) > 0)
450 {
451 int size_as_int = TREE_INT_CST_LOW (size);
452
453 if (compare_tree_int (size, size_as_int) == 0)
454 warning (0, "%Jsize of %qD is %d bytes", decl, decl, size_as_int);
455 else
456 warning (0, "%Jsize of %qD is larger than %d bytes",
457 decl, decl, larger_than_size);
458 }
459 }
460
461 /* If the RTL was already set, update its mode and mem attributes. */
462 if (rtl)
463 {
464 PUT_MODE (rtl, DECL_MODE (decl));
465 SET_DECL_RTL (decl, 0);
466 set_mem_attributes (rtl, decl, 1);
467 SET_DECL_RTL (decl, rtl);
468 }
469 }
470
471 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
472 a previous call to layout_decl and calls it again. */
473
474 void
475 relayout_decl (tree decl)
476 {
477 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
478 DECL_MODE (decl) = VOIDmode;
479 DECL_ALIGN (decl) = 0;
480 SET_DECL_RTL (decl, 0);
481
482 layout_decl (decl, 0);
483 }
484 \f
485 /* Hook for a front-end function that can modify the record layout as needed
486 immediately before it is finalized. */
487
488 static void (*lang_adjust_rli) (record_layout_info) = 0;
489
490 void
491 set_lang_adjust_rli (void (*f) (record_layout_info))
492 {
493 lang_adjust_rli = f;
494 }
495
496 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
497 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
498 is to be passed to all other layout functions for this record. It is the
499 responsibility of the caller to call `free' for the storage returned.
500 Note that garbage collection is not permitted until we finish laying
501 out the record. */
502
503 record_layout_info
504 start_record_layout (tree t)
505 {
506 record_layout_info rli = xmalloc (sizeof (struct record_layout_info_s));
507
508 rli->t = t;
509
510 /* If the type has a minimum specified alignment (via an attribute
511 declaration, for example) use it -- otherwise, start with a
512 one-byte alignment. */
513 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
514 rli->unpacked_align = rli->record_align;
515 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
516
517 #ifdef STRUCTURE_SIZE_BOUNDARY
518 /* Packed structures don't need to have minimum size. */
519 if (! TYPE_PACKED (t))
520 rli->record_align = MAX (rli->record_align, (unsigned) STRUCTURE_SIZE_BOUNDARY);
521 #endif
522
523 rli->offset = size_zero_node;
524 rli->bitpos = bitsize_zero_node;
525 rli->prev_field = 0;
526 rli->pending_statics = 0;
527 rli->packed_maybe_necessary = 0;
528
529 return rli;
530 }
531
532 /* These four routines perform computations that convert between
533 the offset/bitpos forms and byte and bit offsets. */
534
535 tree
536 bit_from_pos (tree offset, tree bitpos)
537 {
538 return size_binop (PLUS_EXPR, bitpos,
539 size_binop (MULT_EXPR,
540 fold_convert (bitsizetype, offset),
541 bitsize_unit_node));
542 }
543
544 tree
545 byte_from_pos (tree offset, tree bitpos)
546 {
547 return size_binop (PLUS_EXPR, offset,
548 fold_convert (sizetype,
549 size_binop (TRUNC_DIV_EXPR, bitpos,
550 bitsize_unit_node)));
551 }
552
553 void
554 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
555 tree pos)
556 {
557 *poffset = size_binop (MULT_EXPR,
558 fold_convert (sizetype,
559 size_binop (FLOOR_DIV_EXPR, pos,
560 bitsize_int (off_align))),
561 size_int (off_align / BITS_PER_UNIT));
562 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
563 }
564
565 /* Given a pointer to bit and byte offsets and an offset alignment,
566 normalize the offsets so they are within the alignment. */
567
568 void
569 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
570 {
571 /* If the bit position is now larger than it should be, adjust it
572 downwards. */
573 if (compare_tree_int (*pbitpos, off_align) >= 0)
574 {
575 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
576 bitsize_int (off_align));
577
578 *poffset
579 = size_binop (PLUS_EXPR, *poffset,
580 size_binop (MULT_EXPR,
581 fold_convert (sizetype, extra_aligns),
582 size_int (off_align / BITS_PER_UNIT)));
583
584 *pbitpos
585 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
586 }
587 }
588
589 /* Print debugging information about the information in RLI. */
590
591 void
592 debug_rli (record_layout_info rli)
593 {
594 print_node_brief (stderr, "type", rli->t, 0);
595 print_node_brief (stderr, "\noffset", rli->offset, 0);
596 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
597
598 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
599 rli->record_align, rli->unpacked_align,
600 rli->offset_align);
601 if (rli->packed_maybe_necessary)
602 fprintf (stderr, "packed may be necessary\n");
603
604 if (rli->pending_statics)
605 {
606 fprintf (stderr, "pending statics:\n");
607 debug_tree (rli->pending_statics);
608 }
609 }
610
611 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
612 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
613
614 void
615 normalize_rli (record_layout_info rli)
616 {
617 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
618 }
619
620 /* Returns the size in bytes allocated so far. */
621
622 tree
623 rli_size_unit_so_far (record_layout_info rli)
624 {
625 return byte_from_pos (rli->offset, rli->bitpos);
626 }
627
628 /* Returns the size in bits allocated so far. */
629
630 tree
631 rli_size_so_far (record_layout_info rli)
632 {
633 return bit_from_pos (rli->offset, rli->bitpos);
634 }
635
636 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
637 the next available location within the record is given by KNOWN_ALIGN.
638 Update the variable alignment fields in RLI, and return the alignment
639 to give the FIELD. */
640
641 unsigned int
642 update_alignment_for_field (record_layout_info rli, tree field,
643 unsigned int known_align)
644 {
645 /* The alignment required for FIELD. */
646 unsigned int desired_align;
647 /* The type of this field. */
648 tree type = TREE_TYPE (field);
649 /* True if the field was explicitly aligned by the user. */
650 bool user_align;
651 bool is_bitfield;
652
653 /* Lay out the field so we know what alignment it needs. */
654 layout_decl (field, known_align);
655 desired_align = DECL_ALIGN (field);
656 user_align = DECL_USER_ALIGN (field);
657
658 is_bitfield = (type != error_mark_node
659 && DECL_BIT_FIELD_TYPE (field)
660 && ! integer_zerop (TYPE_SIZE (type)));
661
662 /* Record must have at least as much alignment as any field.
663 Otherwise, the alignment of the field within the record is
664 meaningless. */
665 if (is_bitfield && targetm.ms_bitfield_layout_p (rli->t))
666 {
667 /* Here, the alignment of the underlying type of a bitfield can
668 affect the alignment of a record; even a zero-sized field
669 can do this. The alignment should be to the alignment of
670 the type, except that for zero-size bitfields this only
671 applies if there was an immediately prior, nonzero-size
672 bitfield. (That's the way it is, experimentally.) */
673 if (! integer_zerop (DECL_SIZE (field))
674 ? ! DECL_PACKED (field)
675 : (rli->prev_field
676 && DECL_BIT_FIELD_TYPE (rli->prev_field)
677 && ! integer_zerop (DECL_SIZE (rli->prev_field))))
678 {
679 unsigned int type_align = TYPE_ALIGN (type);
680 type_align = MAX (type_align, desired_align);
681 if (maximum_field_alignment != 0)
682 type_align = MIN (type_align, maximum_field_alignment);
683 rli->record_align = MAX (rli->record_align, type_align);
684 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
685 /* If we start a new run, make sure we start it properly aligned. */
686 if ((!rli->prev_field
687 || integer_zerop (DECL_SIZE (field))
688 || integer_zerop (DECL_SIZE (rli->prev_field))
689 || !host_integerp (DECL_SIZE (rli->prev_field), 0)
690 || !host_integerp (TYPE_SIZE (type), 0)
691 || !simple_cst_equal (TYPE_SIZE (type),
692 TYPE_SIZE (TREE_TYPE (rli->prev_field)))
693 || (rli->remaining_in_alignment
694 < tree_low_cst (DECL_SIZE (field), 0)))
695 && desired_align < type_align)
696 desired_align = type_align;
697 }
698 }
699 #ifdef PCC_BITFIELD_TYPE_MATTERS
700 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
701 {
702 /* Named bit-fields cause the entire structure to have the
703 alignment implied by their type. Some targets also apply the same
704 rules to unnamed bitfields. */
705 if (DECL_NAME (field) != 0
706 || targetm.align_anon_bitfield ())
707 {
708 unsigned int type_align = TYPE_ALIGN (type);
709
710 #ifdef ADJUST_FIELD_ALIGN
711 if (! TYPE_USER_ALIGN (type))
712 type_align = ADJUST_FIELD_ALIGN (field, type_align);
713 #endif
714
715 if (maximum_field_alignment != 0)
716 type_align = MIN (type_align, maximum_field_alignment);
717 else if (DECL_PACKED (field))
718 type_align = MIN (type_align, BITS_PER_UNIT);
719
720 /* The alignment of the record is increased to the maximum
721 of the current alignment, the alignment indicated on the
722 field (i.e., the alignment specified by an __aligned__
723 attribute), and the alignment indicated by the type of
724 the field. */
725 rli->record_align = MAX (rli->record_align, desired_align);
726 rli->record_align = MAX (rli->record_align, type_align);
727
728 if (warn_packed)
729 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
730 user_align |= TYPE_USER_ALIGN (type);
731 }
732 }
733 #endif
734 else
735 {
736 rli->record_align = MAX (rli->record_align, desired_align);
737 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
738 }
739
740 TYPE_USER_ALIGN (rli->t) |= user_align;
741
742 return desired_align;
743 }
744
745 /* Called from place_field to handle unions. */
746
747 static void
748 place_union_field (record_layout_info rli, tree field)
749 {
750 update_alignment_for_field (rli, field, /*known_align=*/0);
751
752 DECL_FIELD_OFFSET (field) = size_zero_node;
753 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
754 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
755
756 /* We assume the union's size will be a multiple of a byte so we don't
757 bother with BITPOS. */
758 if (TREE_CODE (rli->t) == UNION_TYPE)
759 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
760 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
761 rli->offset = fold_build3 (COND_EXPR, sizetype,
762 DECL_QUALIFIER (field),
763 DECL_SIZE_UNIT (field), rli->offset);
764 }
765
766 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
767 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
768 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
769 units of alignment than the underlying TYPE. */
770 static int
771 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
772 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
773 {
774 /* Note that the calculation of OFFSET might overflow; we calculate it so
775 that we still get the right result as long as ALIGN is a power of two. */
776 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
777
778 offset = offset % align;
779 return ((offset + size + align - 1) / align
780 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
781 / align));
782 }
783 #endif
784
785 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
786 is a FIELD_DECL to be added after those fields already present in
787 T. (FIELD is not actually added to the TYPE_FIELDS list here;
788 callers that desire that behavior must manually perform that step.) */
789
790 void
791 place_field (record_layout_info rli, tree field)
792 {
793 /* The alignment required for FIELD. */
794 unsigned int desired_align;
795 /* The alignment FIELD would have if we just dropped it into the
796 record as it presently stands. */
797 unsigned int known_align;
798 unsigned int actual_align;
799 /* The type of this field. */
800 tree type = TREE_TYPE (field);
801
802 if (TREE_CODE (field) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
803 return;
804
805 /* If FIELD is static, then treat it like a separate variable, not
806 really like a structure field. If it is a FUNCTION_DECL, it's a
807 method. In both cases, all we do is lay out the decl, and we do
808 it *after* the record is laid out. */
809 if (TREE_CODE (field) == VAR_DECL)
810 {
811 rli->pending_statics = tree_cons (NULL_TREE, field,
812 rli->pending_statics);
813 return;
814 }
815
816 /* Enumerators and enum types which are local to this class need not
817 be laid out. Likewise for initialized constant fields. */
818 else if (TREE_CODE (field) != FIELD_DECL)
819 return;
820
821 /* Unions are laid out very differently than records, so split
822 that code off to another function. */
823 else if (TREE_CODE (rli->t) != RECORD_TYPE)
824 {
825 place_union_field (rli, field);
826 return;
827 }
828
829 /* Work out the known alignment so far. Note that A & (-A) is the
830 value of the least-significant bit in A that is one. */
831 if (! integer_zerop (rli->bitpos))
832 known_align = (tree_low_cst (rli->bitpos, 1)
833 & - tree_low_cst (rli->bitpos, 1));
834 else if (integer_zerop (rli->offset))
835 known_align = 0;
836 else if (host_integerp (rli->offset, 1))
837 known_align = (BITS_PER_UNIT
838 * (tree_low_cst (rli->offset, 1)
839 & - tree_low_cst (rli->offset, 1)));
840 else
841 known_align = rli->offset_align;
842
843 desired_align = update_alignment_for_field (rli, field, known_align);
844 if (known_align == 0)
845 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
846
847 if (warn_packed && DECL_PACKED (field))
848 {
849 if (known_align >= TYPE_ALIGN (type))
850 {
851 if (TYPE_ALIGN (type) > desired_align)
852 {
853 if (STRICT_ALIGNMENT)
854 warning (OPT_Wattributes, "%Jpacked attribute causes "
855 "inefficient alignment for %qD", field, field);
856 else
857 warning (OPT_Wattributes, "%Jpacked attribute is "
858 "unnecessary for %qD", field, field);
859 }
860 }
861 else
862 rli->packed_maybe_necessary = 1;
863 }
864
865 /* Does this field automatically have alignment it needs by virtue
866 of the fields that precede it and the record's own alignment? */
867 if (known_align < desired_align)
868 {
869 /* No, we need to skip space before this field.
870 Bump the cumulative size to multiple of field alignment. */
871
872 warning (OPT_Wpadded, "%Jpadding struct to align %qD", field, field);
873
874 /* If the alignment is still within offset_align, just align
875 the bit position. */
876 if (desired_align < rli->offset_align)
877 rli->bitpos = round_up (rli->bitpos, desired_align);
878 else
879 {
880 /* First adjust OFFSET by the partial bits, then align. */
881 rli->offset
882 = size_binop (PLUS_EXPR, rli->offset,
883 fold_convert (sizetype,
884 size_binop (CEIL_DIV_EXPR, rli->bitpos,
885 bitsize_unit_node)));
886 rli->bitpos = bitsize_zero_node;
887
888 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
889 }
890
891 if (! TREE_CONSTANT (rli->offset))
892 rli->offset_align = desired_align;
893
894 }
895
896 /* Handle compatibility with PCC. Note that if the record has any
897 variable-sized fields, we need not worry about compatibility. */
898 #ifdef PCC_BITFIELD_TYPE_MATTERS
899 if (PCC_BITFIELD_TYPE_MATTERS
900 && ! targetm.ms_bitfield_layout_p (rli->t)
901 && TREE_CODE (field) == FIELD_DECL
902 && type != error_mark_node
903 && DECL_BIT_FIELD (field)
904 && ! DECL_PACKED (field)
905 && maximum_field_alignment == 0
906 && ! integer_zerop (DECL_SIZE (field))
907 && host_integerp (DECL_SIZE (field), 1)
908 && host_integerp (rli->offset, 1)
909 && host_integerp (TYPE_SIZE (type), 1))
910 {
911 unsigned int type_align = TYPE_ALIGN (type);
912 tree dsize = DECL_SIZE (field);
913 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
914 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
915 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
916
917 #ifdef ADJUST_FIELD_ALIGN
918 if (! TYPE_USER_ALIGN (type))
919 type_align = ADJUST_FIELD_ALIGN (field, type_align);
920 #endif
921
922 /* A bit field may not span more units of alignment of its type
923 than its type itself. Advance to next boundary if necessary. */
924 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
925 rli->bitpos = round_up (rli->bitpos, type_align);
926
927 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
928 }
929 #endif
930
931 #ifdef BITFIELD_NBYTES_LIMITED
932 if (BITFIELD_NBYTES_LIMITED
933 && ! targetm.ms_bitfield_layout_p (rli->t)
934 && TREE_CODE (field) == FIELD_DECL
935 && type != error_mark_node
936 && DECL_BIT_FIELD_TYPE (field)
937 && ! DECL_PACKED (field)
938 && ! integer_zerop (DECL_SIZE (field))
939 && host_integerp (DECL_SIZE (field), 1)
940 && host_integerp (rli->offset, 1)
941 && host_integerp (TYPE_SIZE (type), 1))
942 {
943 unsigned int type_align = TYPE_ALIGN (type);
944 tree dsize = DECL_SIZE (field);
945 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
946 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
947 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
948
949 #ifdef ADJUST_FIELD_ALIGN
950 if (! TYPE_USER_ALIGN (type))
951 type_align = ADJUST_FIELD_ALIGN (field, type_align);
952 #endif
953
954 if (maximum_field_alignment != 0)
955 type_align = MIN (type_align, maximum_field_alignment);
956 /* ??? This test is opposite the test in the containing if
957 statement, so this code is unreachable currently. */
958 else if (DECL_PACKED (field))
959 type_align = MIN (type_align, BITS_PER_UNIT);
960
961 /* A bit field may not span the unit of alignment of its type.
962 Advance to next boundary if necessary. */
963 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
964 rli->bitpos = round_up (rli->bitpos, type_align);
965
966 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
967 }
968 #endif
969
970 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
971 A subtlety:
972 When a bit field is inserted into a packed record, the whole
973 size of the underlying type is used by one or more same-size
974 adjacent bitfields. (That is, if its long:3, 32 bits is
975 used in the record, and any additional adjacent long bitfields are
976 packed into the same chunk of 32 bits. However, if the size
977 changes, a new field of that size is allocated.) In an unpacked
978 record, this is the same as using alignment, but not equivalent
979 when packing.
980
981 Note: for compatibility, we use the type size, not the type alignment
982 to determine alignment, since that matches the documentation */
983
984 if (targetm.ms_bitfield_layout_p (rli->t)
985 && ((DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field))
986 || (rli->prev_field && ! DECL_PACKED (rli->prev_field))))
987 {
988 /* At this point, either the prior or current are bitfields,
989 (possibly both), and we're dealing with MS packing. */
990 tree prev_saved = rli->prev_field;
991
992 /* Is the prior field a bitfield? If so, handle "runs" of same
993 type size fields. */
994 if (rli->prev_field /* necessarily a bitfield if it exists. */)
995 {
996 /* If both are bitfields, nonzero, and the same size, this is
997 the middle of a run. Zero declared size fields are special
998 and handled as "end of run". (Note: it's nonzero declared
999 size, but equal type sizes!) (Since we know that both
1000 the current and previous fields are bitfields by the
1001 time we check it, DECL_SIZE must be present for both.) */
1002 if (DECL_BIT_FIELD_TYPE (field)
1003 && !integer_zerop (DECL_SIZE (field))
1004 && !integer_zerop (DECL_SIZE (rli->prev_field))
1005 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1006 && host_integerp (TYPE_SIZE (type), 0)
1007 && simple_cst_equal (TYPE_SIZE (type),
1008 TYPE_SIZE (TREE_TYPE (rli->prev_field))))
1009 {
1010 /* We're in the middle of a run of equal type size fields; make
1011 sure we realign if we run out of bits. (Not decl size,
1012 type size!) */
1013 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 0);
1014
1015 if (rli->remaining_in_alignment < bitsize)
1016 {
1017 /* If PREV_FIELD is packed, and we haven't lumped
1018 non-packed bitfields with it, treat this as if PREV_FIELD
1019 was not a bitfield. This avoids anomalies where a packed
1020 bitfield with long long base type can take up more
1021 space than a same-size bitfield with base type short. */
1022 if (rli->prev_packed)
1023 rli->prev_field = prev_saved = NULL;
1024 else
1025 {
1026 /* out of bits; bump up to next 'word'. */
1027 rli->offset = DECL_FIELD_OFFSET (rli->prev_field);
1028 rli->bitpos
1029 = size_binop (PLUS_EXPR, TYPE_SIZE (type),
1030 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1031 rli->prev_field = field;
1032 rli->remaining_in_alignment
1033 = tree_low_cst (TYPE_SIZE (type), 0) - bitsize;
1034 }
1035 }
1036 else
1037 rli->remaining_in_alignment -= bitsize;
1038 }
1039 else if (rli->prev_packed)
1040 rli->prev_field = prev_saved = NULL;
1041 else
1042 {
1043 /* End of a run: if leaving a run of bitfields of the same type
1044 size, we have to "use up" the rest of the bits of the type
1045 size.
1046
1047 Compute the new position as the sum of the size for the prior
1048 type and where we first started working on that type.
1049 Note: since the beginning of the field was aligned then
1050 of course the end will be too. No round needed. */
1051
1052 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1053 {
1054 tree type_size = TYPE_SIZE (TREE_TYPE (rli->prev_field));
1055
1056 /* If the desired alignment is greater or equal to TYPE_SIZE,
1057 we have already adjusted rli->bitpos / rli->offset above.
1058 */
1059 if ((unsigned HOST_WIDE_INT) tree_low_cst (type_size, 0)
1060 > desired_align)
1061 rli->bitpos
1062 = size_binop (PLUS_EXPR, type_size,
1063 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1064 }
1065 else
1066 /* We "use up" size zero fields; the code below should behave
1067 as if the prior field was not a bitfield. */
1068 prev_saved = NULL;
1069
1070 /* Cause a new bitfield to be captured, either this time (if
1071 currently a bitfield) or next time we see one. */
1072 if (!DECL_BIT_FIELD_TYPE(field)
1073 || integer_zerop (DECL_SIZE (field)))
1074 rli->prev_field = NULL;
1075 }
1076
1077 rli->prev_packed = 0;
1078 normalize_rli (rli);
1079 }
1080
1081 /* If we're starting a new run of same size type bitfields
1082 (or a run of non-bitfields), set up the "first of the run"
1083 fields.
1084
1085 That is, if the current field is not a bitfield, or if there
1086 was a prior bitfield the type sizes differ, or if there wasn't
1087 a prior bitfield the size of the current field is nonzero.
1088
1089 Note: we must be sure to test ONLY the type size if there was
1090 a prior bitfield and ONLY for the current field being zero if
1091 there wasn't. */
1092
1093 if (!DECL_BIT_FIELD_TYPE (field)
1094 || ( prev_saved != NULL
1095 ? !simple_cst_equal (TYPE_SIZE (type),
1096 TYPE_SIZE (TREE_TYPE (prev_saved)))
1097 : !integer_zerop (DECL_SIZE (field)) ))
1098 {
1099 /* Never smaller than a byte for compatibility. */
1100 unsigned int type_align = BITS_PER_UNIT;
1101
1102 /* (When not a bitfield), we could be seeing a flex array (with
1103 no DECL_SIZE). Since we won't be using remaining_in_alignment
1104 until we see a bitfield (and come by here again) we just skip
1105 calculating it. */
1106 if (DECL_SIZE (field) != NULL
1107 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 0)
1108 && host_integerp (DECL_SIZE (field), 0))
1109 rli->remaining_in_alignment
1110 = tree_low_cst (TYPE_SIZE (TREE_TYPE(field)), 0)
1111 - tree_low_cst (DECL_SIZE (field), 0);
1112
1113 /* Now align (conventionally) for the new type. */
1114 if (!DECL_PACKED(field))
1115 type_align = MAX(TYPE_ALIGN (type), type_align);
1116
1117 if (prev_saved
1118 && DECL_BIT_FIELD_TYPE (prev_saved)
1119 /* If the previous bit-field is zero-sized, we've already
1120 accounted for its alignment needs (or ignored it, if
1121 appropriate) while placing it. */
1122 && ! integer_zerop (DECL_SIZE (prev_saved)))
1123 type_align = MAX (type_align,
1124 TYPE_ALIGN (TREE_TYPE (prev_saved)));
1125
1126 if (maximum_field_alignment != 0)
1127 type_align = MIN (type_align, maximum_field_alignment);
1128
1129 rli->bitpos = round_up (rli->bitpos, type_align);
1130
1131 /* If we really aligned, don't allow subsequent bitfields
1132 to undo that. */
1133 rli->prev_field = NULL;
1134 }
1135 }
1136
1137 /* Offset so far becomes the position of this field after normalizing. */
1138 normalize_rli (rli);
1139 DECL_FIELD_OFFSET (field) = rli->offset;
1140 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1141 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1142
1143 /* If this field ended up more aligned than we thought it would be (we
1144 approximate this by seeing if its position changed), lay out the field
1145 again; perhaps we can use an integral mode for it now. */
1146 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1147 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1148 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1149 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1150 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1151 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1152 actual_align = (BITS_PER_UNIT
1153 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1154 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1155 else
1156 actual_align = DECL_OFFSET_ALIGN (field);
1157 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1158 store / extract bit field operations will check the alignment of the
1159 record against the mode of bit fields. */
1160
1161 if (known_align != actual_align)
1162 layout_decl (field, actual_align);
1163
1164 if (DECL_BIT_FIELD_TYPE (field))
1165 {
1166 unsigned int type_align = TYPE_ALIGN (type);
1167
1168 /* Only the MS bitfields use this. We used to also put any kind of
1169 packed bit fields into prev_field, but that makes no sense, because
1170 an 8 bit packed bit field shouldn't impose more restriction on
1171 following fields than a char field, and the alignment requirements
1172 are also not fulfilled.
1173 There is no sane value to set rli->remaining_in_alignment to when
1174 a packed bitfield in prev_field is unaligned. */
1175 if (maximum_field_alignment != 0)
1176 type_align = MIN (type_align, maximum_field_alignment);
1177 gcc_assert (rli->prev_field
1178 || actual_align >= type_align || DECL_PACKED (field)
1179 || integer_zerop (DECL_SIZE (field))
1180 || !targetm.ms_bitfield_layout_p (rli->t));
1181 if (rli->prev_field == NULL && actual_align >= type_align
1182 && !integer_zerop (DECL_SIZE (field)))
1183 {
1184 rli->prev_field = field;
1185 /* rli->remaining_in_alignment has not been set if the bitfield
1186 has size zero, or if it is a packed bitfield. */
1187 rli->remaining_in_alignment
1188 = (tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 0)
1189 - tree_low_cst (DECL_SIZE (field), 0));
1190 rli->prev_packed = DECL_PACKED (field);
1191
1192 }
1193 else if (rli->prev_field && DECL_PACKED (field))
1194 {
1195 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 0);
1196
1197 if (rli->remaining_in_alignment < bitsize)
1198 rli->prev_field = NULL;
1199 else
1200 rli->remaining_in_alignment -= bitsize;
1201 }
1202 }
1203
1204 /* Now add size of this field to the size of the record. If the size is
1205 not constant, treat the field as being a multiple of bytes and just
1206 adjust the offset, resetting the bit position. Otherwise, apportion the
1207 size amongst the bit position and offset. First handle the case of an
1208 unspecified size, which can happen when we have an invalid nested struct
1209 definition, such as struct j { struct j { int i; } }. The error message
1210 is printed in finish_struct. */
1211 if (DECL_SIZE (field) == 0)
1212 /* Do nothing. */;
1213 else if (TREE_CODE (DECL_SIZE_UNIT (field)) != INTEGER_CST
1214 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field)))
1215 {
1216 rli->offset
1217 = size_binop (PLUS_EXPR, rli->offset,
1218 fold_convert (sizetype,
1219 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1220 bitsize_unit_node)));
1221 rli->offset
1222 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1223 rli->bitpos = bitsize_zero_node;
1224 rli->offset_align = MIN (rli->offset_align, desired_align);
1225 }
1226 else
1227 {
1228 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1229 normalize_rli (rli);
1230 }
1231 }
1232
1233 /* Assuming that all the fields have been laid out, this function uses
1234 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1235 indicated by RLI. */
1236
1237 static void
1238 finalize_record_size (record_layout_info rli)
1239 {
1240 tree unpadded_size, unpadded_size_unit;
1241
1242 /* Now we want just byte and bit offsets, so set the offset alignment
1243 to be a byte and then normalize. */
1244 rli->offset_align = BITS_PER_UNIT;
1245 normalize_rli (rli);
1246
1247 /* Determine the desired alignment. */
1248 #ifdef ROUND_TYPE_ALIGN
1249 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1250 rli->record_align);
1251 #else
1252 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1253 #endif
1254
1255 /* Compute the size so far. Be sure to allow for extra bits in the
1256 size in bytes. We have guaranteed above that it will be no more
1257 than a single byte. */
1258 unpadded_size = rli_size_so_far (rli);
1259 unpadded_size_unit = rli_size_unit_so_far (rli);
1260 if (! integer_zerop (rli->bitpos))
1261 unpadded_size_unit
1262 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1263
1264 /* Round the size up to be a multiple of the required alignment. */
1265 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1266 TYPE_SIZE_UNIT (rli->t)
1267 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1268
1269 if (warn_padded && TREE_CONSTANT (unpadded_size)
1270 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1271 warning (0, "padding struct size to alignment boundary");
1272
1273 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1274 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1275 && TREE_CONSTANT (unpadded_size))
1276 {
1277 tree unpacked_size;
1278
1279 #ifdef ROUND_TYPE_ALIGN
1280 rli->unpacked_align
1281 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1282 #else
1283 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1284 #endif
1285
1286 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1287 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1288 {
1289 TYPE_PACKED (rli->t) = 0;
1290
1291 if (TYPE_NAME (rli->t))
1292 {
1293 const char *name;
1294
1295 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1296 name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
1297 else
1298 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
1299
1300 if (STRICT_ALIGNMENT)
1301 warning (OPT_Wattributes, "packed attribute causes inefficient "
1302 "alignment for %qs", name);
1303 else
1304 warning (OPT_Wattributes,
1305 "packed attribute is unnecessary for %qs", name);
1306 }
1307 else
1308 {
1309 if (STRICT_ALIGNMENT)
1310 warning (OPT_Wattributes,
1311 "packed attribute causes inefficient alignment");
1312 else
1313 warning (OPT_Wattributes, "packed attribute is unnecessary");
1314 }
1315 }
1316 }
1317 }
1318
1319 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1320
1321 void
1322 compute_record_mode (tree type)
1323 {
1324 tree field;
1325 enum machine_mode mode = VOIDmode;
1326
1327 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1328 However, if possible, we use a mode that fits in a register
1329 instead, in order to allow for better optimization down the
1330 line. */
1331 TYPE_MODE (type) = BLKmode;
1332
1333 if (! host_integerp (TYPE_SIZE (type), 1))
1334 return;
1335
1336 /* A record which has any BLKmode members must itself be
1337 BLKmode; it can't go in a register. Unless the member is
1338 BLKmode only because it isn't aligned. */
1339 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1340 {
1341 if (TREE_CODE (field) != FIELD_DECL)
1342 continue;
1343
1344 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1345 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1346 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1347 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1348 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1349 || ! host_integerp (bit_position (field), 1)
1350 || DECL_SIZE (field) == 0
1351 || ! host_integerp (DECL_SIZE (field), 1))
1352 return;
1353
1354 /* If this field is the whole struct, remember its mode so
1355 that, say, we can put a double in a class into a DF
1356 register instead of forcing it to live in the stack. */
1357 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1358 mode = DECL_MODE (field);
1359
1360 #ifdef MEMBER_TYPE_FORCES_BLK
1361 /* With some targets, eg. c4x, it is sub-optimal
1362 to access an aligned BLKmode structure as a scalar. */
1363
1364 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1365 return;
1366 #endif /* MEMBER_TYPE_FORCES_BLK */
1367 }
1368
1369 TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1370
1371 /* If we only have one real field; use its mode if that mode's size
1372 matches the type's size. This only applies to RECORD_TYPE. This
1373 does not apply to unions. */
1374 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1375 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (TYPE_MODE (type)))
1376 TYPE_MODE (type) = mode;
1377
1378 /* If structure's known alignment is less than what the scalar
1379 mode would need, and it matters, then stick with BLKmode. */
1380 if (TYPE_MODE (type) != BLKmode
1381 && STRICT_ALIGNMENT
1382 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1383 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1384 {
1385 /* If this is the only reason this type is BLKmode, then
1386 don't force containing types to be BLKmode. */
1387 TYPE_NO_FORCE_BLK (type) = 1;
1388 TYPE_MODE (type) = BLKmode;
1389 }
1390 }
1391
1392 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1393 out. */
1394
1395 static void
1396 finalize_type_size (tree type)
1397 {
1398 /* Normally, use the alignment corresponding to the mode chosen.
1399 However, where strict alignment is not required, avoid
1400 over-aligning structures, since most compilers do not do this
1401 alignment. */
1402
1403 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1404 && (STRICT_ALIGNMENT
1405 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1406 && TREE_CODE (type) != QUAL_UNION_TYPE
1407 && TREE_CODE (type) != ARRAY_TYPE)))
1408 {
1409 TYPE_ALIGN (type) = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1410 TYPE_USER_ALIGN (type) = 0;
1411 }
1412
1413 /* Do machine-dependent extra alignment. */
1414 #ifdef ROUND_TYPE_ALIGN
1415 TYPE_ALIGN (type)
1416 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1417 #endif
1418
1419 /* If we failed to find a simple way to calculate the unit size
1420 of the type, find it by division. */
1421 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1422 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1423 result will fit in sizetype. We will get more efficient code using
1424 sizetype, so we force a conversion. */
1425 TYPE_SIZE_UNIT (type)
1426 = fold_convert (sizetype,
1427 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1428 bitsize_unit_node));
1429
1430 if (TYPE_SIZE (type) != 0)
1431 {
1432 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1433 TYPE_SIZE_UNIT (type) = round_up (TYPE_SIZE_UNIT (type),
1434 TYPE_ALIGN_UNIT (type));
1435 }
1436
1437 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1438 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1439 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1440 if (TYPE_SIZE_UNIT (type) != 0
1441 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1442 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1443
1444 /* Also layout any other variants of the type. */
1445 if (TYPE_NEXT_VARIANT (type)
1446 || type != TYPE_MAIN_VARIANT (type))
1447 {
1448 tree variant;
1449 /* Record layout info of this variant. */
1450 tree size = TYPE_SIZE (type);
1451 tree size_unit = TYPE_SIZE_UNIT (type);
1452 unsigned int align = TYPE_ALIGN (type);
1453 unsigned int user_align = TYPE_USER_ALIGN (type);
1454 enum machine_mode mode = TYPE_MODE (type);
1455
1456 /* Copy it into all variants. */
1457 for (variant = TYPE_MAIN_VARIANT (type);
1458 variant != 0;
1459 variant = TYPE_NEXT_VARIANT (variant))
1460 {
1461 TYPE_SIZE (variant) = size;
1462 TYPE_SIZE_UNIT (variant) = size_unit;
1463 TYPE_ALIGN (variant) = align;
1464 TYPE_USER_ALIGN (variant) = user_align;
1465 TYPE_MODE (variant) = mode;
1466 }
1467 }
1468 }
1469
1470 /* Do all of the work required to layout the type indicated by RLI,
1471 once the fields have been laid out. This function will call `free'
1472 for RLI, unless FREE_P is false. Passing a value other than false
1473 for FREE_P is bad practice; this option only exists to support the
1474 G++ 3.2 ABI. */
1475
1476 void
1477 finish_record_layout (record_layout_info rli, int free_p)
1478 {
1479 /* Compute the final size. */
1480 finalize_record_size (rli);
1481
1482 /* Compute the TYPE_MODE for the record. */
1483 compute_record_mode (rli->t);
1484
1485 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1486 finalize_type_size (rli->t);
1487
1488 /* Lay out any static members. This is done now because their type
1489 may use the record's type. */
1490 while (rli->pending_statics)
1491 {
1492 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1493 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1494 }
1495
1496 /* Clean up. */
1497 if (free_p)
1498 free (rli);
1499 }
1500 \f
1501
1502 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1503 NAME, its fields are chained in reverse on FIELDS.
1504
1505 If ALIGN_TYPE is non-null, it is given the same alignment as
1506 ALIGN_TYPE. */
1507
1508 void
1509 finish_builtin_struct (tree type, const char *name, tree fields,
1510 tree align_type)
1511 {
1512 tree tail, next;
1513
1514 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1515 {
1516 DECL_FIELD_CONTEXT (fields) = type;
1517 next = TREE_CHAIN (fields);
1518 TREE_CHAIN (fields) = tail;
1519 }
1520 TYPE_FIELDS (type) = tail;
1521
1522 if (align_type)
1523 {
1524 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1525 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1526 }
1527
1528 layout_type (type);
1529 #if 0 /* not yet, should get fixed properly later */
1530 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1531 #else
1532 TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type);
1533 #endif
1534 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1535 layout_decl (TYPE_NAME (type), 0);
1536 }
1537
1538 /* Calculate the mode, size, and alignment for TYPE.
1539 For an array type, calculate the element separation as well.
1540 Record TYPE on the chain of permanent or temporary types
1541 so that dbxout will find out about it.
1542
1543 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1544 layout_type does nothing on such a type.
1545
1546 If the type is incomplete, its TYPE_SIZE remains zero. */
1547
1548 void
1549 layout_type (tree type)
1550 {
1551 gcc_assert (type);
1552
1553 if (type == error_mark_node)
1554 return;
1555
1556 /* Do nothing if type has been laid out before. */
1557 if (TYPE_SIZE (type))
1558 return;
1559
1560 switch (TREE_CODE (type))
1561 {
1562 case LANG_TYPE:
1563 /* This kind of type is the responsibility
1564 of the language-specific code. */
1565 gcc_unreachable ();
1566
1567 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1568 if (TYPE_PRECISION (type) == 0)
1569 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1570
1571 /* ... fall through ... */
1572
1573 case INTEGER_TYPE:
1574 case ENUMERAL_TYPE:
1575 case CHAR_TYPE:
1576 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1577 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1578 TYPE_UNSIGNED (type) = 1;
1579
1580 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
1581 MODE_INT);
1582 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1583 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1584 break;
1585
1586 case REAL_TYPE:
1587 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
1588 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1589 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1590 break;
1591
1592 case COMPLEX_TYPE:
1593 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1594 TYPE_MODE (type)
1595 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1596 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
1597 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
1598 0);
1599 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1600 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1601 break;
1602
1603 case VECTOR_TYPE:
1604 {
1605 int nunits = TYPE_VECTOR_SUBPARTS (type);
1606 tree nunits_tree = build_int_cst (NULL_TREE, nunits);
1607 tree innertype = TREE_TYPE (type);
1608
1609 gcc_assert (!(nunits & (nunits - 1)));
1610
1611 /* Find an appropriate mode for the vector type. */
1612 if (TYPE_MODE (type) == VOIDmode)
1613 {
1614 enum machine_mode innermode = TYPE_MODE (innertype);
1615 enum machine_mode mode;
1616
1617 /* First, look for a supported vector type. */
1618 if (GET_MODE_CLASS (innermode) == MODE_FLOAT)
1619 mode = MIN_MODE_VECTOR_FLOAT;
1620 else
1621 mode = MIN_MODE_VECTOR_INT;
1622
1623 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
1624 if (GET_MODE_NUNITS (mode) == nunits
1625 && GET_MODE_INNER (mode) == innermode
1626 && targetm.vector_mode_supported_p (mode))
1627 break;
1628
1629 /* For integers, try mapping it to a same-sized scalar mode. */
1630 if (mode == VOIDmode
1631 && GET_MODE_CLASS (innermode) == MODE_INT)
1632 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
1633 MODE_INT, 0);
1634
1635 if (mode == VOIDmode || !have_regs_of_mode[mode])
1636 TYPE_MODE (type) = BLKmode;
1637 else
1638 TYPE_MODE (type) = mode;
1639 }
1640
1641 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1642 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
1643 TYPE_SIZE_UNIT (innertype),
1644 nunits_tree, 0);
1645 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
1646 nunits_tree, 0);
1647
1648 /* Always naturally align vectors. This prevents ABI changes
1649 depending on whether or not native vector modes are supported. */
1650 TYPE_ALIGN (type) = tree_low_cst (TYPE_SIZE (type), 0);
1651 break;
1652 }
1653
1654 case VOID_TYPE:
1655 /* This is an incomplete type and so doesn't have a size. */
1656 TYPE_ALIGN (type) = 1;
1657 TYPE_USER_ALIGN (type) = 0;
1658 TYPE_MODE (type) = VOIDmode;
1659 break;
1660
1661 case OFFSET_TYPE:
1662 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1663 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1664 /* A pointer might be MODE_PARTIAL_INT,
1665 but ptrdiff_t must be integral. */
1666 TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
1667 break;
1668
1669 case FUNCTION_TYPE:
1670 case METHOD_TYPE:
1671 /* It's hard to see what the mode and size of a function ought to
1672 be, but we do know the alignment is FUNCTION_BOUNDARY, so
1673 make it consistent with that. */
1674 TYPE_MODE (type) = mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0);
1675 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
1676 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
1677 break;
1678
1679 case POINTER_TYPE:
1680 case REFERENCE_TYPE:
1681 {
1682
1683 enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
1684 && reference_types_internal)
1685 ? Pmode : TYPE_MODE (type));
1686
1687 int nbits = GET_MODE_BITSIZE (mode);
1688
1689 TYPE_SIZE (type) = bitsize_int (nbits);
1690 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1691 TYPE_UNSIGNED (type) = 1;
1692 TYPE_PRECISION (type) = nbits;
1693 }
1694 break;
1695
1696 case ARRAY_TYPE:
1697 {
1698 tree index = TYPE_DOMAIN (type);
1699 tree element = TREE_TYPE (type);
1700
1701 build_pointer_type (element);
1702
1703 /* We need to know both bounds in order to compute the size. */
1704 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1705 && TYPE_SIZE (element))
1706 {
1707 tree ub = TYPE_MAX_VALUE (index);
1708 tree lb = TYPE_MIN_VALUE (index);
1709 tree length;
1710 tree element_size;
1711
1712 /* The initial subtraction should happen in the original type so
1713 that (possible) negative values are handled appropriately. */
1714 length = size_binop (PLUS_EXPR, size_one_node,
1715 fold_convert (sizetype,
1716 fold_build2 (MINUS_EXPR,
1717 TREE_TYPE (lb),
1718 ub, lb)));
1719
1720 /* Special handling for arrays of bits (for Chill). */
1721 element_size = TYPE_SIZE (element);
1722 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1723 && (integer_zerop (TYPE_MAX_VALUE (element))
1724 || integer_onep (TYPE_MAX_VALUE (element)))
1725 && host_integerp (TYPE_MIN_VALUE (element), 1))
1726 {
1727 HOST_WIDE_INT maxvalue
1728 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1729 HOST_WIDE_INT minvalue
1730 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1731
1732 if (maxvalue - minvalue == 1
1733 && (maxvalue == 1 || maxvalue == 0))
1734 element_size = integer_one_node;
1735 }
1736
1737 /* If neither bound is a constant and sizetype is signed, make
1738 sure the size is never negative. We should really do this
1739 if *either* bound is non-constant, but this is the best
1740 compromise between C and Ada. */
1741 if (!TYPE_UNSIGNED (sizetype)
1742 && TREE_CODE (TYPE_MIN_VALUE (index)) != INTEGER_CST
1743 && TREE_CODE (TYPE_MAX_VALUE (index)) != INTEGER_CST)
1744 length = size_binop (MAX_EXPR, length, size_zero_node);
1745
1746 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1747 fold_convert (bitsizetype,
1748 length));
1749
1750 /* If we know the size of the element, calculate the total
1751 size directly, rather than do some division thing below.
1752 This optimization helps Fortran assumed-size arrays
1753 (where the size of the array is determined at runtime)
1754 substantially.
1755 Note that we can't do this in the case where the size of
1756 the elements is one bit since TYPE_SIZE_UNIT cannot be
1757 set correctly in that case. */
1758 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
1759 TYPE_SIZE_UNIT (type)
1760 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1761 }
1762
1763 /* Now round the alignment and size,
1764 using machine-dependent criteria if any. */
1765
1766 #ifdef ROUND_TYPE_ALIGN
1767 TYPE_ALIGN (type)
1768 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1769 #else
1770 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1771 #endif
1772 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
1773 TYPE_MODE (type) = BLKmode;
1774 if (TYPE_SIZE (type) != 0
1775 #ifdef MEMBER_TYPE_FORCES_BLK
1776 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
1777 #endif
1778 /* BLKmode elements force BLKmode aggregate;
1779 else extract/store fields may lose. */
1780 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
1781 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
1782 {
1783 /* One-element arrays get the component type's mode. */
1784 if (simple_cst_equal (TYPE_SIZE (type),
1785 TYPE_SIZE (TREE_TYPE (type))))
1786 TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
1787 else
1788 TYPE_MODE (type)
1789 = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1790
1791 if (TYPE_MODE (type) != BLKmode
1792 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
1793 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
1794 && TYPE_MODE (type) != BLKmode)
1795 {
1796 TYPE_NO_FORCE_BLK (type) = 1;
1797 TYPE_MODE (type) = BLKmode;
1798 }
1799 }
1800 break;
1801 }
1802
1803 case RECORD_TYPE:
1804 case UNION_TYPE:
1805 case QUAL_UNION_TYPE:
1806 {
1807 tree field;
1808 record_layout_info rli;
1809
1810 /* Initialize the layout information. */
1811 rli = start_record_layout (type);
1812
1813 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1814 in the reverse order in building the COND_EXPR that denotes
1815 its size. We reverse them again later. */
1816 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1817 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1818
1819 /* Place all the fields. */
1820 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1821 place_field (rli, field);
1822
1823 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1824 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1825
1826 if (lang_adjust_rli)
1827 (*lang_adjust_rli) (rli);
1828
1829 /* Finish laying out the record. */
1830 finish_record_layout (rli, /*free_p=*/true);
1831 }
1832 break;
1833
1834 default:
1835 gcc_unreachable ();
1836 }
1837
1838 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1839 records and unions, finish_record_layout already called this
1840 function. */
1841 if (TREE_CODE (type) != RECORD_TYPE
1842 && TREE_CODE (type) != UNION_TYPE
1843 && TREE_CODE (type) != QUAL_UNION_TYPE)
1844 finalize_type_size (type);
1845
1846 /* If an alias set has been set for this aggregate when it was incomplete,
1847 force it into alias set 0.
1848 This is too conservative, but we cannot call record_component_aliases
1849 here because some frontends still change the aggregates after
1850 layout_type. */
1851 if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
1852 TYPE_ALIAS_SET (type) = 0;
1853 }
1854 \f
1855 /* Create and return a type for signed integers of PRECISION bits. */
1856
1857 tree
1858 make_signed_type (int precision)
1859 {
1860 tree type = make_node (INTEGER_TYPE);
1861
1862 TYPE_PRECISION (type) = precision;
1863
1864 fixup_signed_type (type);
1865 return type;
1866 }
1867
1868 /* Create and return a type for unsigned integers of PRECISION bits. */
1869
1870 tree
1871 make_unsigned_type (int precision)
1872 {
1873 tree type = make_node (INTEGER_TYPE);
1874
1875 TYPE_PRECISION (type) = precision;
1876
1877 fixup_unsigned_type (type);
1878 return type;
1879 }
1880 \f
1881 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1882 value to enable integer types to be created. */
1883
1884 void
1885 initialize_sizetypes (bool signed_p)
1886 {
1887 tree t = make_node (INTEGER_TYPE);
1888
1889 TYPE_MODE (t) = SImode;
1890 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
1891 TYPE_USER_ALIGN (t) = 0;
1892 TYPE_IS_SIZETYPE (t) = 1;
1893 TYPE_UNSIGNED (t) = !signed_p;
1894 TYPE_SIZE (t) = build_int_cst (t, GET_MODE_BITSIZE (SImode));
1895 TYPE_SIZE_UNIT (t) = build_int_cst (t, GET_MODE_SIZE (SImode));
1896 TYPE_PRECISION (t) = GET_MODE_BITSIZE (SImode);
1897 TYPE_MIN_VALUE (t) = build_int_cst (t, 0);
1898
1899 /* 1000 avoids problems with possible overflow and is certainly
1900 larger than any size value we'd want to be storing. */
1901 TYPE_MAX_VALUE (t) = build_int_cst (t, 1000);
1902
1903 sizetype = t;
1904 bitsizetype = build_distinct_type_copy (t);
1905 }
1906
1907 /* Make sizetype a version of TYPE, and initialize *sizetype
1908 accordingly. We do this by overwriting the stub sizetype and
1909 bitsizetype nodes created by initialize_sizetypes. This makes sure
1910 that (a) anything stubby about them no longer exists, (b) any
1911 INTEGER_CSTs created with such a type, remain valid. */
1912
1913 void
1914 set_sizetype (tree type)
1915 {
1916 int oprecision = TYPE_PRECISION (type);
1917 /* The *bitsizetype types use a precision that avoids overflows when
1918 calculating signed sizes / offsets in bits. However, when
1919 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1920 precision. */
1921 int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
1922 2 * HOST_BITS_PER_WIDE_INT);
1923 tree t;
1924
1925 gcc_assert (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (sizetype));
1926
1927 t = build_distinct_type_copy (type);
1928 /* We do want to use sizetype's cache, as we will be replacing that
1929 type. */
1930 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (sizetype);
1931 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (sizetype);
1932 TREE_TYPE (TYPE_CACHED_VALUES (t)) = type;
1933 TYPE_UID (t) = TYPE_UID (sizetype);
1934 TYPE_IS_SIZETYPE (t) = 1;
1935
1936 /* Replace our original stub sizetype. */
1937 memcpy (sizetype, t, tree_size (sizetype));
1938 TYPE_MAIN_VARIANT (sizetype) = sizetype;
1939
1940 t = make_node (INTEGER_TYPE);
1941 TYPE_NAME (t) = get_identifier ("bit_size_type");
1942 /* We do want to use bitsizetype's cache, as we will be replacing that
1943 type. */
1944 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (bitsizetype);
1945 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (bitsizetype);
1946 TYPE_PRECISION (t) = precision;
1947 TYPE_UID (t) = TYPE_UID (bitsizetype);
1948 TYPE_IS_SIZETYPE (t) = 1;
1949 /* Replace our original stub bitsizetype. */
1950 memcpy (bitsizetype, t, tree_size (bitsizetype));
1951
1952 if (TYPE_UNSIGNED (type))
1953 {
1954 fixup_unsigned_type (bitsizetype);
1955 ssizetype = build_distinct_type_copy (make_signed_type (oprecision));
1956 TYPE_IS_SIZETYPE (ssizetype) = 1;
1957 sbitsizetype = build_distinct_type_copy (make_signed_type (precision));
1958 TYPE_IS_SIZETYPE (sbitsizetype) = 1;
1959 }
1960 else
1961 {
1962 fixup_signed_type (bitsizetype);
1963 ssizetype = sizetype;
1964 sbitsizetype = bitsizetype;
1965 }
1966 }
1967 \f
1968 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE,
1969 BOOLEAN_TYPE, or CHAR_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
1970 for TYPE, based on the PRECISION and whether or not the TYPE
1971 IS_UNSIGNED. PRECISION need not correspond to a width supported
1972 natively by the hardware; for example, on a machine with 8-bit,
1973 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
1974 61. */
1975
1976 void
1977 set_min_and_max_values_for_integral_type (tree type,
1978 int precision,
1979 bool is_unsigned)
1980 {
1981 tree min_value;
1982 tree max_value;
1983
1984 if (is_unsigned)
1985 {
1986 min_value = build_int_cst (type, 0);
1987 max_value
1988 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
1989 ? -1
1990 : ((HOST_WIDE_INT) 1 << precision) - 1,
1991 precision - HOST_BITS_PER_WIDE_INT > 0
1992 ? ((unsigned HOST_WIDE_INT) ~0
1993 >> (HOST_BITS_PER_WIDE_INT
1994 - (precision - HOST_BITS_PER_WIDE_INT)))
1995 : 0);
1996 }
1997 else
1998 {
1999 min_value
2000 = build_int_cst_wide (type,
2001 (precision - HOST_BITS_PER_WIDE_INT > 0
2002 ? 0
2003 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2004 (((HOST_WIDE_INT) (-1)
2005 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2006 ? precision - HOST_BITS_PER_WIDE_INT - 1
2007 : 0))));
2008 max_value
2009 = build_int_cst_wide (type,
2010 (precision - HOST_BITS_PER_WIDE_INT > 0
2011 ? -1
2012 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2013 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2014 ? (((HOST_WIDE_INT) 1
2015 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2016 : 0));
2017 }
2018
2019 TYPE_MIN_VALUE (type) = min_value;
2020 TYPE_MAX_VALUE (type) = max_value;
2021 }
2022
2023 /* Set the extreme values of TYPE based on its precision in bits,
2024 then lay it out. Used when make_signed_type won't do
2025 because the tree code is not INTEGER_TYPE.
2026 E.g. for Pascal, when the -fsigned-char option is given. */
2027
2028 void
2029 fixup_signed_type (tree type)
2030 {
2031 int precision = TYPE_PRECISION (type);
2032
2033 /* We can not represent properly constants greater then
2034 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2035 as they are used by i386 vector extensions and friends. */
2036 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2037 precision = HOST_BITS_PER_WIDE_INT * 2;
2038
2039 set_min_and_max_values_for_integral_type (type, precision,
2040 /*is_unsigned=*/false);
2041
2042 /* Lay out the type: set its alignment, size, etc. */
2043 layout_type (type);
2044 }
2045
2046 /* Set the extreme values of TYPE based on its precision in bits,
2047 then lay it out. This is used both in `make_unsigned_type'
2048 and for enumeral types. */
2049
2050 void
2051 fixup_unsigned_type (tree type)
2052 {
2053 int precision = TYPE_PRECISION (type);
2054
2055 /* We can not represent properly constants greater then
2056 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2057 as they are used by i386 vector extensions and friends. */
2058 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2059 precision = HOST_BITS_PER_WIDE_INT * 2;
2060
2061 TYPE_UNSIGNED (type) = 1;
2062
2063 set_min_and_max_values_for_integral_type (type, precision,
2064 /*is_unsigned=*/true);
2065
2066 /* Lay out the type: set its alignment, size, etc. */
2067 layout_type (type);
2068 }
2069 \f
2070 /* Find the best machine mode to use when referencing a bit field of length
2071 BITSIZE bits starting at BITPOS.
2072
2073 The underlying object is known to be aligned to a boundary of ALIGN bits.
2074 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2075 larger than LARGEST_MODE (usually SImode).
2076
2077 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
2078 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
2079 mode meeting these conditions.
2080
2081 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
2082 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2083 all the conditions. */
2084
2085 enum machine_mode
2086 get_best_mode (int bitsize, int bitpos, unsigned int align,
2087 enum machine_mode largest_mode, int volatilep)
2088 {
2089 enum machine_mode mode;
2090 unsigned int unit = 0;
2091
2092 /* Find the narrowest integer mode that contains the bit field. */
2093 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2094 mode = GET_MODE_WIDER_MODE (mode))
2095 {
2096 unit = GET_MODE_BITSIZE (mode);
2097 if ((bitpos % unit) + bitsize <= unit)
2098 break;
2099 }
2100
2101 if (mode == VOIDmode
2102 /* It is tempting to omit the following line
2103 if STRICT_ALIGNMENT is true.
2104 But that is incorrect, since if the bitfield uses part of 3 bytes
2105 and we use a 4-byte mode, we could get a spurious segv
2106 if the extra 4th byte is past the end of memory.
2107 (Though at least one Unix compiler ignores this problem:
2108 that on the Sequent 386 machine. */
2109 || MIN (unit, BIGGEST_ALIGNMENT) > align
2110 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2111 return VOIDmode;
2112
2113 if (SLOW_BYTE_ACCESS && ! volatilep)
2114 {
2115 enum machine_mode wide_mode = VOIDmode, tmode;
2116
2117 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2118 tmode = GET_MODE_WIDER_MODE (tmode))
2119 {
2120 unit = GET_MODE_BITSIZE (tmode);
2121 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2122 && unit <= BITS_PER_WORD
2123 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2124 && (largest_mode == VOIDmode
2125 || unit <= GET_MODE_BITSIZE (largest_mode)))
2126 wide_mode = tmode;
2127 }
2128
2129 if (wide_mode != VOIDmode)
2130 return wide_mode;
2131 }
2132
2133 return mode;
2134 }
2135
2136 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2137 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2138
2139 void
2140 get_mode_bounds (enum machine_mode mode, int sign,
2141 enum machine_mode target_mode,
2142 rtx *mmin, rtx *mmax)
2143 {
2144 unsigned size = GET_MODE_BITSIZE (mode);
2145 unsigned HOST_WIDE_INT min_val, max_val;
2146
2147 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2148
2149 if (sign)
2150 {
2151 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2152 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2153 }
2154 else
2155 {
2156 min_val = 0;
2157 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2158 }
2159
2160 *mmin = gen_int_mode (min_val, target_mode);
2161 *mmax = gen_int_mode (max_val, target_mode);
2162 }
2163
2164 #include "gt-stor-layout.h"