stor-layout.c (place_field): Don't emit -Wpadded warnings for fields in builtin structs.
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "output.h"
34 #include "toplev.h"
35 #include "ggc.h"
36 #include "target.h"
37 #include "langhooks.h"
38 #include "regs.h"
39 #include "params.h"
40 #include "cgraph.h"
41 #include "tree-inline.h"
42 #include "tree-dump.h"
43 #include "gimple.h"
44
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) TYPE_KIND_LAST];
48
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
52 /* ... and its original value in bytes, specified via -fpack-struct=<value>. */
53 unsigned int initial_max_fld_align = TARGET_DEFAULT_PACK_STRUCT;
54
55 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
56 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
57 called only by a front end. */
58 static int reference_types_internal = 0;
59
60 static tree self_referential_size (tree);
61 static void finalize_record_size (record_layout_info);
62 static void finalize_type_size (tree);
63 static void place_union_field (record_layout_info, tree);
64 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
65 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
66 HOST_WIDE_INT, tree);
67 #endif
68 extern void debug_rli (record_layout_info);
69 \f
70 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
71
72 static GTY(()) tree pending_sizes;
73
74 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
75 by front end. */
76
77 void
78 internal_reference_types (void)
79 {
80 reference_types_internal = 1;
81 }
82
83 /* Get a list of all the objects put on the pending sizes list. */
84
85 tree
86 get_pending_sizes (void)
87 {
88 tree chain = pending_sizes;
89
90 pending_sizes = 0;
91 return chain;
92 }
93
94 /* Add EXPR to the pending sizes list. */
95
96 void
97 put_pending_size (tree expr)
98 {
99 /* Strip any simple arithmetic from EXPR to see if it has an underlying
100 SAVE_EXPR. */
101 expr = skip_simple_arithmetic (expr);
102
103 if (TREE_CODE (expr) == SAVE_EXPR)
104 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
105 }
106
107 /* Put a chain of objects into the pending sizes list, which must be
108 empty. */
109
110 void
111 put_pending_sizes (tree chain)
112 {
113 gcc_assert (!pending_sizes);
114 pending_sizes = chain;
115 }
116
117 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
118 to serve as the actual size-expression for a type or decl. */
119
120 tree
121 variable_size (tree size)
122 {
123 tree save;
124
125 /* Obviously. */
126 if (TREE_CONSTANT (size))
127 return size;
128
129 /* If the size is self-referential, we can't make a SAVE_EXPR (see
130 save_expr for the rationale). But we can do something else. */
131 if (CONTAINS_PLACEHOLDER_P (size))
132 return self_referential_size (size);
133
134 /* If the language-processor is to take responsibility for variable-sized
135 items (e.g., languages which have elaboration procedures like Ada),
136 just return SIZE unchanged. */
137 if (lang_hooks.decls.global_bindings_p () < 0)
138 return size;
139
140 size = save_expr (size);
141
142 /* If an array with a variable number of elements is declared, and
143 the elements require destruction, we will emit a cleanup for the
144 array. That cleanup is run both on normal exit from the block
145 and in the exception-handler for the block. Normally, when code
146 is used in both ordinary code and in an exception handler it is
147 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
148 not wish to do that here; the array-size is the same in both
149 places. */
150 save = skip_simple_arithmetic (size);
151
152 if (cfun && cfun->dont_save_pending_sizes_p)
153 /* The front-end doesn't want us to keep a list of the expressions
154 that determine sizes for variable size objects. Trust it. */
155 return size;
156
157 if (lang_hooks.decls.global_bindings_p ())
158 {
159 if (TREE_CONSTANT (size))
160 error ("type size can%'t be explicitly evaluated");
161 else
162 error ("variable-size type declared outside of any function");
163
164 return size_one_node;
165 }
166
167 put_pending_size (save);
168
169 return size;
170 }
171
172 /* An array of functions used for self-referential size computation. */
173 static GTY(()) VEC (tree, gc) *size_functions;
174
175 /* Similar to copy_tree_r but do not copy component references involving
176 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
177 and substituted in substitute_in_expr. */
178
179 static tree
180 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
181 {
182 enum tree_code code = TREE_CODE (*tp);
183
184 /* Stop at types, decls, constants like copy_tree_r. */
185 if (TREE_CODE_CLASS (code) == tcc_type
186 || TREE_CODE_CLASS (code) == tcc_declaration
187 || TREE_CODE_CLASS (code) == tcc_constant)
188 {
189 *walk_subtrees = 0;
190 return NULL_TREE;
191 }
192
193 /* This is the pattern built in ada/make_aligning_type. */
194 else if (code == ADDR_EXPR
195 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
196 {
197 *walk_subtrees = 0;
198 return NULL_TREE;
199 }
200
201 /* Default case: the component reference. */
202 else if (code == COMPONENT_REF)
203 {
204 tree inner;
205 for (inner = TREE_OPERAND (*tp, 0);
206 REFERENCE_CLASS_P (inner);
207 inner = TREE_OPERAND (inner, 0))
208 ;
209
210 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
211 {
212 *walk_subtrees = 0;
213 return NULL_TREE;
214 }
215 }
216
217 /* We're not supposed to have them in self-referential size trees
218 because we wouldn't properly control when they are evaluated.
219 However, not creating superfluous SAVE_EXPRs requires accurate
220 tracking of readonly-ness all the way down to here, which we
221 cannot always guarantee in practice. So punt in this case. */
222 else if (code == SAVE_EXPR)
223 return error_mark_node;
224
225 return copy_tree_r (tp, walk_subtrees, data);
226 }
227
228 /* Given a SIZE expression that is self-referential, return an equivalent
229 expression to serve as the actual size expression for a type. */
230
231 static tree
232 self_referential_size (tree size)
233 {
234 static unsigned HOST_WIDE_INT fnno = 0;
235 VEC (tree, heap) *self_refs = NULL;
236 tree param_type_list = NULL, param_decl_list = NULL, arg_list = NULL;
237 tree t, ref, return_type, fntype, fnname, fndecl;
238 unsigned int i;
239 char buf[128];
240
241 /* Do not factor out simple operations. */
242 t = skip_simple_arithmetic (size);
243 if (TREE_CODE (t) == CALL_EXPR)
244 return size;
245
246 /* Collect the list of self-references in the expression. */
247 find_placeholder_in_expr (size, &self_refs);
248 gcc_assert (VEC_length (tree, self_refs) > 0);
249
250 /* Obtain a private copy of the expression. */
251 t = size;
252 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
253 return size;
254 size = t;
255
256 /* Build the parameter and argument lists in parallel; also
257 substitute the former for the latter in the expression. */
258 for (i = 0; VEC_iterate (tree, self_refs, i, ref); i++)
259 {
260 tree subst, param_name, param_type, param_decl;
261
262 if (DECL_P (ref))
263 {
264 /* We shouldn't have true variables here. */
265 gcc_assert (TREE_READONLY (ref));
266 subst = ref;
267 }
268 /* This is the pattern built in ada/make_aligning_type. */
269 else if (TREE_CODE (ref) == ADDR_EXPR)
270 subst = ref;
271 /* Default case: the component reference. */
272 else
273 subst = TREE_OPERAND (ref, 1);
274
275 sprintf (buf, "p%d", i);
276 param_name = get_identifier (buf);
277 param_type = TREE_TYPE (ref);
278 param_decl
279 = build_decl (input_location, PARM_DECL, param_name, param_type);
280 if (targetm.calls.promote_prototypes (NULL_TREE)
281 && INTEGRAL_TYPE_P (param_type)
282 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
283 DECL_ARG_TYPE (param_decl) = integer_type_node;
284 else
285 DECL_ARG_TYPE (param_decl) = param_type;
286 DECL_ARTIFICIAL (param_decl) = 1;
287 TREE_READONLY (param_decl) = 1;
288
289 size = substitute_in_expr (size, subst, param_decl);
290
291 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
292 param_decl_list = chainon (param_decl, param_decl_list);
293 arg_list = tree_cons (NULL_TREE, ref, arg_list);
294 }
295
296 VEC_free (tree, heap, self_refs);
297
298 /* Append 'void' to indicate that the number of parameters is fixed. */
299 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
300
301 /* The 3 lists have been created in reverse order. */
302 param_type_list = nreverse (param_type_list);
303 param_decl_list = nreverse (param_decl_list);
304 arg_list = nreverse (arg_list);
305
306 /* Build the function type. */
307 return_type = TREE_TYPE (size);
308 fntype = build_function_type (return_type, param_type_list);
309
310 /* Build the function declaration. */
311 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
312 fnname = get_file_function_name (buf);
313 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
314 for (t = param_decl_list; t; t = TREE_CHAIN (t))
315 DECL_CONTEXT (t) = fndecl;
316 DECL_ARGUMENTS (fndecl) = param_decl_list;
317 DECL_RESULT (fndecl)
318 = build_decl (input_location, RESULT_DECL, 0, return_type);
319 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
320
321 /* The function has been created by the compiler and we don't
322 want to emit debug info for it. */
323 DECL_ARTIFICIAL (fndecl) = 1;
324 DECL_IGNORED_P (fndecl) = 1;
325
326 /* It is supposed to be "const" and never throw. */
327 TREE_READONLY (fndecl) = 1;
328 TREE_NOTHROW (fndecl) = 1;
329
330 /* We want it to be inlined when this is deemed profitable, as
331 well as discarded if every call has been integrated. */
332 DECL_DECLARED_INLINE_P (fndecl) = 1;
333
334 /* It is made up of a unique return statement. */
335 DECL_INITIAL (fndecl) = make_node (BLOCK);
336 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
337 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
338 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
339 TREE_STATIC (fndecl) = 1;
340
341 /* Put it onto the list of size functions. */
342 VEC_safe_push (tree, gc, size_functions, fndecl);
343
344 /* Replace the original expression with a call to the size function. */
345 return build_function_call_expr (input_location, fndecl, arg_list);
346 }
347
348 /* Take, queue and compile all the size functions. It is essential that
349 the size functions be gimplified at the very end of the compilation
350 in order to guarantee transparent handling of self-referential sizes.
351 Otherwise the GENERIC inliner would not be able to inline them back
352 at each of their call sites, thus creating artificial non-constant
353 size expressions which would trigger nasty problems later on. */
354
355 void
356 finalize_size_functions (void)
357 {
358 unsigned int i;
359 tree fndecl;
360
361 for (i = 0; VEC_iterate(tree, size_functions, i, fndecl); i++)
362 {
363 dump_function (TDI_original, fndecl);
364 gimplify_function_tree (fndecl);
365 dump_function (TDI_generic, fndecl);
366 cgraph_finalize_function (fndecl, false);
367 }
368
369 VEC_free (tree, gc, size_functions);
370 }
371 \f
372 #ifndef MAX_FIXED_MODE_SIZE
373 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
374 #endif
375
376 /* Return the machine mode to use for a nonscalar of SIZE bits. The
377 mode must be in class MCLASS, and have exactly that many value bits;
378 it may have padding as well. If LIMIT is nonzero, modes of wider
379 than MAX_FIXED_MODE_SIZE will not be used. */
380
381 enum machine_mode
382 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
383 {
384 enum machine_mode mode;
385
386 if (limit && size > MAX_FIXED_MODE_SIZE)
387 return BLKmode;
388
389 /* Get the first mode which has this size, in the specified class. */
390 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
391 mode = GET_MODE_WIDER_MODE (mode))
392 if (GET_MODE_PRECISION (mode) == size)
393 return mode;
394
395 return BLKmode;
396 }
397
398 /* Similar, except passed a tree node. */
399
400 enum machine_mode
401 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
402 {
403 unsigned HOST_WIDE_INT uhwi;
404 unsigned int ui;
405
406 if (!host_integerp (size, 1))
407 return BLKmode;
408 uhwi = tree_low_cst (size, 1);
409 ui = uhwi;
410 if (uhwi != ui)
411 return BLKmode;
412 return mode_for_size (ui, mclass, limit);
413 }
414
415 /* Similar, but never return BLKmode; return the narrowest mode that
416 contains at least the requested number of value bits. */
417
418 enum machine_mode
419 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
420 {
421 enum machine_mode mode;
422
423 /* Get the first mode which has at least this size, in the
424 specified class. */
425 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
426 mode = GET_MODE_WIDER_MODE (mode))
427 if (GET_MODE_PRECISION (mode) >= size)
428 return mode;
429
430 gcc_unreachable ();
431 }
432
433 /* Find an integer mode of the exact same size, or BLKmode on failure. */
434
435 enum machine_mode
436 int_mode_for_mode (enum machine_mode mode)
437 {
438 switch (GET_MODE_CLASS (mode))
439 {
440 case MODE_INT:
441 case MODE_PARTIAL_INT:
442 break;
443
444 case MODE_COMPLEX_INT:
445 case MODE_COMPLEX_FLOAT:
446 case MODE_FLOAT:
447 case MODE_DECIMAL_FLOAT:
448 case MODE_VECTOR_INT:
449 case MODE_VECTOR_FLOAT:
450 case MODE_FRACT:
451 case MODE_ACCUM:
452 case MODE_UFRACT:
453 case MODE_UACCUM:
454 case MODE_VECTOR_FRACT:
455 case MODE_VECTOR_ACCUM:
456 case MODE_VECTOR_UFRACT:
457 case MODE_VECTOR_UACCUM:
458 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
459 break;
460
461 case MODE_RANDOM:
462 if (mode == BLKmode)
463 break;
464
465 /* ... fall through ... */
466
467 case MODE_CC:
468 default:
469 gcc_unreachable ();
470 }
471
472 return mode;
473 }
474
475 /* Return the alignment of MODE. This will be bounded by 1 and
476 BIGGEST_ALIGNMENT. */
477
478 unsigned int
479 get_mode_alignment (enum machine_mode mode)
480 {
481 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
482 }
483
484 \f
485 /* Subroutine of layout_decl: Force alignment required for the data type.
486 But if the decl itself wants greater alignment, don't override that. */
487
488 static inline void
489 do_type_align (tree type, tree decl)
490 {
491 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
492 {
493 DECL_ALIGN (decl) = TYPE_ALIGN (type);
494 if (TREE_CODE (decl) == FIELD_DECL)
495 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
496 }
497 }
498
499 /* Set the size, mode and alignment of a ..._DECL node.
500 TYPE_DECL does need this for C++.
501 Note that LABEL_DECL and CONST_DECL nodes do not need this,
502 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
503 Don't call layout_decl for them.
504
505 KNOWN_ALIGN is the amount of alignment we can assume this
506 decl has with no special effort. It is relevant only for FIELD_DECLs
507 and depends on the previous fields.
508 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
509 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
510 the record will be aligned to suit. */
511
512 void
513 layout_decl (tree decl, unsigned int known_align)
514 {
515 tree type = TREE_TYPE (decl);
516 enum tree_code code = TREE_CODE (decl);
517 rtx rtl = NULL_RTX;
518 location_t loc = DECL_SOURCE_LOCATION (decl);
519
520 if (code == CONST_DECL)
521 return;
522
523 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
524 || code == TYPE_DECL ||code == FIELD_DECL);
525
526 rtl = DECL_RTL_IF_SET (decl);
527
528 if (type == error_mark_node)
529 type = void_type_node;
530
531 /* Usually the size and mode come from the data type without change,
532 however, the front-end may set the explicit width of the field, so its
533 size may not be the same as the size of its type. This happens with
534 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
535 also happens with other fields. For example, the C++ front-end creates
536 zero-sized fields corresponding to empty base classes, and depends on
537 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
538 size in bytes from the size in bits. If we have already set the mode,
539 don't set it again since we can be called twice for FIELD_DECLs. */
540
541 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
542 if (DECL_MODE (decl) == VOIDmode)
543 DECL_MODE (decl) = TYPE_MODE (type);
544
545 if (DECL_SIZE (decl) == 0)
546 {
547 DECL_SIZE (decl) = TYPE_SIZE (type);
548 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
549 }
550 else if (DECL_SIZE_UNIT (decl) == 0)
551 DECL_SIZE_UNIT (decl)
552 = fold_convert_loc (loc, sizetype,
553 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
554 bitsize_unit_node));
555
556 if (code != FIELD_DECL)
557 /* For non-fields, update the alignment from the type. */
558 do_type_align (type, decl);
559 else
560 /* For fields, it's a bit more complicated... */
561 {
562 bool old_user_align = DECL_USER_ALIGN (decl);
563 bool zero_bitfield = false;
564 bool packed_p = DECL_PACKED (decl);
565 unsigned int mfa;
566
567 if (DECL_BIT_FIELD (decl))
568 {
569 DECL_BIT_FIELD_TYPE (decl) = type;
570
571 /* A zero-length bit-field affects the alignment of the next
572 field. In essence such bit-fields are not influenced by
573 any packing due to #pragma pack or attribute packed. */
574 if (integer_zerop (DECL_SIZE (decl))
575 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
576 {
577 zero_bitfield = true;
578 packed_p = false;
579 #ifdef PCC_BITFIELD_TYPE_MATTERS
580 if (PCC_BITFIELD_TYPE_MATTERS)
581 do_type_align (type, decl);
582 else
583 #endif
584 {
585 #ifdef EMPTY_FIELD_BOUNDARY
586 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
587 {
588 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
589 DECL_USER_ALIGN (decl) = 0;
590 }
591 #endif
592 }
593 }
594
595 /* See if we can use an ordinary integer mode for a bit-field.
596 Conditions are: a fixed size that is correct for another mode
597 and occupying a complete byte or bytes on proper boundary. */
598 if (TYPE_SIZE (type) != 0
599 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
600 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
601 {
602 enum machine_mode xmode
603 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
604 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
605
606 if (xmode != BLKmode
607 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
608 && (known_align == 0 || known_align >= xalign))
609 {
610 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
611 DECL_MODE (decl) = xmode;
612 DECL_BIT_FIELD (decl) = 0;
613 }
614 }
615
616 /* Turn off DECL_BIT_FIELD if we won't need it set. */
617 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
618 && known_align >= TYPE_ALIGN (type)
619 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
620 DECL_BIT_FIELD (decl) = 0;
621 }
622 else if (packed_p && DECL_USER_ALIGN (decl))
623 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
624 round up; we'll reduce it again below. We want packing to
625 supersede USER_ALIGN inherited from the type, but defer to
626 alignment explicitly specified on the field decl. */;
627 else
628 do_type_align (type, decl);
629
630 /* If the field is packed and not explicitly aligned, give it the
631 minimum alignment. Note that do_type_align may set
632 DECL_USER_ALIGN, so we need to check old_user_align instead. */
633 if (packed_p
634 && !old_user_align)
635 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
636
637 if (! packed_p && ! DECL_USER_ALIGN (decl))
638 {
639 /* Some targets (i.e. i386, VMS) limit struct field alignment
640 to a lower boundary than alignment of variables unless
641 it was overridden by attribute aligned. */
642 #ifdef BIGGEST_FIELD_ALIGNMENT
643 DECL_ALIGN (decl)
644 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
645 #endif
646 #ifdef ADJUST_FIELD_ALIGN
647 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
648 #endif
649 }
650
651 if (zero_bitfield)
652 mfa = initial_max_fld_align * BITS_PER_UNIT;
653 else
654 mfa = maximum_field_alignment;
655 /* Should this be controlled by DECL_USER_ALIGN, too? */
656 if (mfa != 0)
657 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
658 }
659
660 /* Evaluate nonconstant size only once, either now or as soon as safe. */
661 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
662 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
663 if (DECL_SIZE_UNIT (decl) != 0
664 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
665 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
666
667 /* If requested, warn about definitions of large data objects. */
668 if (warn_larger_than
669 && (code == VAR_DECL || code == PARM_DECL)
670 && ! DECL_EXTERNAL (decl))
671 {
672 tree size = DECL_SIZE_UNIT (decl);
673
674 if (size != 0 && TREE_CODE (size) == INTEGER_CST
675 && compare_tree_int (size, larger_than_size) > 0)
676 {
677 int size_as_int = TREE_INT_CST_LOW (size);
678
679 if (compare_tree_int (size, size_as_int) == 0)
680 warning (OPT_Wlarger_than_eq, "size of %q+D is %d bytes", decl, size_as_int);
681 else
682 warning (OPT_Wlarger_than_eq, "size of %q+D is larger than %wd bytes",
683 decl, larger_than_size);
684 }
685 }
686
687 /* If the RTL was already set, update its mode and mem attributes. */
688 if (rtl)
689 {
690 PUT_MODE (rtl, DECL_MODE (decl));
691 SET_DECL_RTL (decl, 0);
692 set_mem_attributes (rtl, decl, 1);
693 SET_DECL_RTL (decl, rtl);
694 }
695 }
696
697 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
698 a previous call to layout_decl and calls it again. */
699
700 void
701 relayout_decl (tree decl)
702 {
703 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
704 DECL_MODE (decl) = VOIDmode;
705 if (!DECL_USER_ALIGN (decl))
706 DECL_ALIGN (decl) = 0;
707 SET_DECL_RTL (decl, 0);
708
709 layout_decl (decl, 0);
710 }
711 \f
712 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
713 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
714 is to be passed to all other layout functions for this record. It is the
715 responsibility of the caller to call `free' for the storage returned.
716 Note that garbage collection is not permitted until we finish laying
717 out the record. */
718
719 record_layout_info
720 start_record_layout (tree t)
721 {
722 record_layout_info rli = XNEW (struct record_layout_info_s);
723
724 rli->t = t;
725
726 /* If the type has a minimum specified alignment (via an attribute
727 declaration, for example) use it -- otherwise, start with a
728 one-byte alignment. */
729 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
730 rli->unpacked_align = rli->record_align;
731 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
732
733 #ifdef STRUCTURE_SIZE_BOUNDARY
734 /* Packed structures don't need to have minimum size. */
735 if (! TYPE_PACKED (t))
736 {
737 unsigned tmp;
738
739 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
740 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
741 if (maximum_field_alignment != 0)
742 tmp = MIN (tmp, maximum_field_alignment);
743 rli->record_align = MAX (rli->record_align, tmp);
744 }
745 #endif
746
747 rli->offset = size_zero_node;
748 rli->bitpos = bitsize_zero_node;
749 rli->prev_field = 0;
750 rli->pending_statics = 0;
751 rli->packed_maybe_necessary = 0;
752 rli->remaining_in_alignment = 0;
753
754 return rli;
755 }
756
757 /* These four routines perform computations that convert between
758 the offset/bitpos forms and byte and bit offsets. */
759
760 tree
761 bit_from_pos (tree offset, tree bitpos)
762 {
763 return size_binop (PLUS_EXPR, bitpos,
764 size_binop (MULT_EXPR,
765 fold_convert (bitsizetype, offset),
766 bitsize_unit_node));
767 }
768
769 tree
770 byte_from_pos (tree offset, tree bitpos)
771 {
772 return size_binop (PLUS_EXPR, offset,
773 fold_convert (sizetype,
774 size_binop (TRUNC_DIV_EXPR, bitpos,
775 bitsize_unit_node)));
776 }
777
778 void
779 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
780 tree pos)
781 {
782 *poffset = size_binop (MULT_EXPR,
783 fold_convert (sizetype,
784 size_binop (FLOOR_DIV_EXPR, pos,
785 bitsize_int (off_align))),
786 size_int (off_align / BITS_PER_UNIT));
787 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
788 }
789
790 /* Given a pointer to bit and byte offsets and an offset alignment,
791 normalize the offsets so they are within the alignment. */
792
793 void
794 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
795 {
796 /* If the bit position is now larger than it should be, adjust it
797 downwards. */
798 if (compare_tree_int (*pbitpos, off_align) >= 0)
799 {
800 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
801 bitsize_int (off_align));
802
803 *poffset
804 = size_binop (PLUS_EXPR, *poffset,
805 size_binop (MULT_EXPR,
806 fold_convert (sizetype, extra_aligns),
807 size_int (off_align / BITS_PER_UNIT)));
808
809 *pbitpos
810 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
811 }
812 }
813
814 /* Print debugging information about the information in RLI. */
815
816 void
817 debug_rli (record_layout_info rli)
818 {
819 print_node_brief (stderr, "type", rli->t, 0);
820 print_node_brief (stderr, "\noffset", rli->offset, 0);
821 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
822
823 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
824 rli->record_align, rli->unpacked_align,
825 rli->offset_align);
826
827 /* The ms_struct code is the only that uses this. */
828 if (targetm.ms_bitfield_layout_p (rli->t))
829 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
830
831 if (rli->packed_maybe_necessary)
832 fprintf (stderr, "packed may be necessary\n");
833
834 if (rli->pending_statics)
835 {
836 fprintf (stderr, "pending statics:\n");
837 debug_tree (rli->pending_statics);
838 }
839 }
840
841 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
842 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
843
844 void
845 normalize_rli (record_layout_info rli)
846 {
847 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
848 }
849
850 /* Returns the size in bytes allocated so far. */
851
852 tree
853 rli_size_unit_so_far (record_layout_info rli)
854 {
855 return byte_from_pos (rli->offset, rli->bitpos);
856 }
857
858 /* Returns the size in bits allocated so far. */
859
860 tree
861 rli_size_so_far (record_layout_info rli)
862 {
863 return bit_from_pos (rli->offset, rli->bitpos);
864 }
865
866 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
867 the next available location within the record is given by KNOWN_ALIGN.
868 Update the variable alignment fields in RLI, and return the alignment
869 to give the FIELD. */
870
871 unsigned int
872 update_alignment_for_field (record_layout_info rli, tree field,
873 unsigned int known_align)
874 {
875 /* The alignment required for FIELD. */
876 unsigned int desired_align;
877 /* The type of this field. */
878 tree type = TREE_TYPE (field);
879 /* True if the field was explicitly aligned by the user. */
880 bool user_align;
881 bool is_bitfield;
882
883 /* Do not attempt to align an ERROR_MARK node */
884 if (TREE_CODE (type) == ERROR_MARK)
885 return 0;
886
887 /* Lay out the field so we know what alignment it needs. */
888 layout_decl (field, known_align);
889 desired_align = DECL_ALIGN (field);
890 user_align = DECL_USER_ALIGN (field);
891
892 is_bitfield = (type != error_mark_node
893 && DECL_BIT_FIELD_TYPE (field)
894 && ! integer_zerop (TYPE_SIZE (type)));
895
896 /* Record must have at least as much alignment as any field.
897 Otherwise, the alignment of the field within the record is
898 meaningless. */
899 if (targetm.ms_bitfield_layout_p (rli->t))
900 {
901 /* Here, the alignment of the underlying type of a bitfield can
902 affect the alignment of a record; even a zero-sized field
903 can do this. The alignment should be to the alignment of
904 the type, except that for zero-size bitfields this only
905 applies if there was an immediately prior, nonzero-size
906 bitfield. (That's the way it is, experimentally.) */
907 if ((!is_bitfield && !DECL_PACKED (field))
908 || (!integer_zerop (DECL_SIZE (field))
909 ? !DECL_PACKED (field)
910 : (rli->prev_field
911 && DECL_BIT_FIELD_TYPE (rli->prev_field)
912 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
913 {
914 unsigned int type_align = TYPE_ALIGN (type);
915 type_align = MAX (type_align, desired_align);
916 if (maximum_field_alignment != 0)
917 type_align = MIN (type_align, maximum_field_alignment);
918 rli->record_align = MAX (rli->record_align, type_align);
919 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
920 }
921 }
922 #ifdef PCC_BITFIELD_TYPE_MATTERS
923 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
924 {
925 /* Named bit-fields cause the entire structure to have the
926 alignment implied by their type. Some targets also apply the same
927 rules to unnamed bitfields. */
928 if (DECL_NAME (field) != 0
929 || targetm.align_anon_bitfield ())
930 {
931 unsigned int type_align = TYPE_ALIGN (type);
932
933 #ifdef ADJUST_FIELD_ALIGN
934 if (! TYPE_USER_ALIGN (type))
935 type_align = ADJUST_FIELD_ALIGN (field, type_align);
936 #endif
937
938 /* Targets might chose to handle unnamed and hence possibly
939 zero-width bitfield. Those are not influenced by #pragmas
940 or packed attributes. */
941 if (integer_zerop (DECL_SIZE (field)))
942 {
943 if (initial_max_fld_align)
944 type_align = MIN (type_align,
945 initial_max_fld_align * BITS_PER_UNIT);
946 }
947 else if (maximum_field_alignment != 0)
948 type_align = MIN (type_align, maximum_field_alignment);
949 else if (DECL_PACKED (field))
950 type_align = MIN (type_align, BITS_PER_UNIT);
951
952 /* The alignment of the record is increased to the maximum
953 of the current alignment, the alignment indicated on the
954 field (i.e., the alignment specified by an __aligned__
955 attribute), and the alignment indicated by the type of
956 the field. */
957 rli->record_align = MAX (rli->record_align, desired_align);
958 rli->record_align = MAX (rli->record_align, type_align);
959
960 if (warn_packed)
961 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
962 user_align |= TYPE_USER_ALIGN (type);
963 }
964 }
965 #endif
966 else
967 {
968 rli->record_align = MAX (rli->record_align, desired_align);
969 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
970 }
971
972 TYPE_USER_ALIGN (rli->t) |= user_align;
973
974 return desired_align;
975 }
976
977 /* Called from place_field to handle unions. */
978
979 static void
980 place_union_field (record_layout_info rli, tree field)
981 {
982 update_alignment_for_field (rli, field, /*known_align=*/0);
983
984 DECL_FIELD_OFFSET (field) = size_zero_node;
985 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
986 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
987
988 /* If this is an ERROR_MARK return *after* having set the
989 field at the start of the union. This helps when parsing
990 invalid fields. */
991 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
992 return;
993
994 /* We assume the union's size will be a multiple of a byte so we don't
995 bother with BITPOS. */
996 if (TREE_CODE (rli->t) == UNION_TYPE)
997 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
998 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
999 rli->offset = fold_build3_loc (input_location, COND_EXPR, sizetype,
1000 DECL_QUALIFIER (field),
1001 DECL_SIZE_UNIT (field), rli->offset);
1002 }
1003
1004 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1005 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1006 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1007 units of alignment than the underlying TYPE. */
1008 static int
1009 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1010 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1011 {
1012 /* Note that the calculation of OFFSET might overflow; we calculate it so
1013 that we still get the right result as long as ALIGN is a power of two. */
1014 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1015
1016 offset = offset % align;
1017 return ((offset + size + align - 1) / align
1018 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
1019 / align));
1020 }
1021 #endif
1022
1023 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1024 is a FIELD_DECL to be added after those fields already present in
1025 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1026 callers that desire that behavior must manually perform that step.) */
1027
1028 void
1029 place_field (record_layout_info rli, tree field)
1030 {
1031 /* The alignment required for FIELD. */
1032 unsigned int desired_align;
1033 /* The alignment FIELD would have if we just dropped it into the
1034 record as it presently stands. */
1035 unsigned int known_align;
1036 unsigned int actual_align;
1037 /* The type of this field. */
1038 tree type = TREE_TYPE (field);
1039
1040 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1041
1042 /* If FIELD is static, then treat it like a separate variable, not
1043 really like a structure field. If it is a FUNCTION_DECL, it's a
1044 method. In both cases, all we do is lay out the decl, and we do
1045 it *after* the record is laid out. */
1046 if (TREE_CODE (field) == VAR_DECL)
1047 {
1048 rli->pending_statics = tree_cons (NULL_TREE, field,
1049 rli->pending_statics);
1050 return;
1051 }
1052
1053 /* Enumerators and enum types which are local to this class need not
1054 be laid out. Likewise for initialized constant fields. */
1055 else if (TREE_CODE (field) != FIELD_DECL)
1056 return;
1057
1058 /* Unions are laid out very differently than records, so split
1059 that code off to another function. */
1060 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1061 {
1062 place_union_field (rli, field);
1063 return;
1064 }
1065
1066 else if (TREE_CODE (type) == ERROR_MARK)
1067 {
1068 /* Place this field at the current allocation position, so we
1069 maintain monotonicity. */
1070 DECL_FIELD_OFFSET (field) = rli->offset;
1071 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1072 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1073 return;
1074 }
1075
1076 /* Work out the known alignment so far. Note that A & (-A) is the
1077 value of the least-significant bit in A that is one. */
1078 if (! integer_zerop (rli->bitpos))
1079 known_align = (tree_low_cst (rli->bitpos, 1)
1080 & - tree_low_cst (rli->bitpos, 1));
1081 else if (integer_zerop (rli->offset))
1082 known_align = 0;
1083 else if (host_integerp (rli->offset, 1))
1084 known_align = (BITS_PER_UNIT
1085 * (tree_low_cst (rli->offset, 1)
1086 & - tree_low_cst (rli->offset, 1)));
1087 else
1088 known_align = rli->offset_align;
1089
1090 desired_align = update_alignment_for_field (rli, field, known_align);
1091 if (known_align == 0)
1092 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1093
1094 if (warn_packed && DECL_PACKED (field))
1095 {
1096 if (known_align >= TYPE_ALIGN (type))
1097 {
1098 if (TYPE_ALIGN (type) > desired_align)
1099 {
1100 if (STRICT_ALIGNMENT)
1101 warning (OPT_Wattributes, "packed attribute causes "
1102 "inefficient alignment for %q+D", field);
1103 else
1104 warning (OPT_Wattributes, "packed attribute is "
1105 "unnecessary for %q+D", field);
1106 }
1107 }
1108 else
1109 rli->packed_maybe_necessary = 1;
1110 }
1111
1112 /* Does this field automatically have alignment it needs by virtue
1113 of the fields that precede it and the record's own alignment?
1114 We already align ms_struct fields, so don't re-align them. */
1115 if (known_align < desired_align
1116 && !targetm.ms_bitfield_layout_p (rli->t))
1117 {
1118 /* No, we need to skip space before this field.
1119 Bump the cumulative size to multiple of field alignment. */
1120
1121 if (DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1122 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1123
1124 /* If the alignment is still within offset_align, just align
1125 the bit position. */
1126 if (desired_align < rli->offset_align)
1127 rli->bitpos = round_up (rli->bitpos, desired_align);
1128 else
1129 {
1130 /* First adjust OFFSET by the partial bits, then align. */
1131 rli->offset
1132 = size_binop (PLUS_EXPR, rli->offset,
1133 fold_convert (sizetype,
1134 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1135 bitsize_unit_node)));
1136 rli->bitpos = bitsize_zero_node;
1137
1138 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1139 }
1140
1141 if (! TREE_CONSTANT (rli->offset))
1142 rli->offset_align = desired_align;
1143
1144 }
1145
1146 /* Handle compatibility with PCC. Note that if the record has any
1147 variable-sized fields, we need not worry about compatibility. */
1148 #ifdef PCC_BITFIELD_TYPE_MATTERS
1149 if (PCC_BITFIELD_TYPE_MATTERS
1150 && ! targetm.ms_bitfield_layout_p (rli->t)
1151 && TREE_CODE (field) == FIELD_DECL
1152 && type != error_mark_node
1153 && DECL_BIT_FIELD (field)
1154 && (! DECL_PACKED (field)
1155 /* Enter for these packed fields only to issue a warning. */
1156 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1157 && maximum_field_alignment == 0
1158 && ! integer_zerop (DECL_SIZE (field))
1159 && host_integerp (DECL_SIZE (field), 1)
1160 && host_integerp (rli->offset, 1)
1161 && host_integerp (TYPE_SIZE (type), 1))
1162 {
1163 unsigned int type_align = TYPE_ALIGN (type);
1164 tree dsize = DECL_SIZE (field);
1165 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1166 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1167 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1168
1169 #ifdef ADJUST_FIELD_ALIGN
1170 if (! TYPE_USER_ALIGN (type))
1171 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1172 #endif
1173
1174 /* A bit field may not span more units of alignment of its type
1175 than its type itself. Advance to next boundary if necessary. */
1176 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1177 {
1178 if (DECL_PACKED (field))
1179 {
1180 if (warn_packed_bitfield_compat == 1)
1181 inform
1182 (input_location,
1183 "Offset of packed bit-field %qD has changed in GCC 4.4",
1184 field);
1185 }
1186 else
1187 rli->bitpos = round_up_loc (input_location, rli->bitpos, type_align);
1188 }
1189
1190 if (! DECL_PACKED (field))
1191 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1192 }
1193 #endif
1194
1195 #ifdef BITFIELD_NBYTES_LIMITED
1196 if (BITFIELD_NBYTES_LIMITED
1197 && ! targetm.ms_bitfield_layout_p (rli->t)
1198 && TREE_CODE (field) == FIELD_DECL
1199 && type != error_mark_node
1200 && DECL_BIT_FIELD_TYPE (field)
1201 && ! DECL_PACKED (field)
1202 && ! integer_zerop (DECL_SIZE (field))
1203 && host_integerp (DECL_SIZE (field), 1)
1204 && host_integerp (rli->offset, 1)
1205 && host_integerp (TYPE_SIZE (type), 1))
1206 {
1207 unsigned int type_align = TYPE_ALIGN (type);
1208 tree dsize = DECL_SIZE (field);
1209 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1210 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1211 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1212
1213 #ifdef ADJUST_FIELD_ALIGN
1214 if (! TYPE_USER_ALIGN (type))
1215 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1216 #endif
1217
1218 if (maximum_field_alignment != 0)
1219 type_align = MIN (type_align, maximum_field_alignment);
1220 /* ??? This test is opposite the test in the containing if
1221 statement, so this code is unreachable currently. */
1222 else if (DECL_PACKED (field))
1223 type_align = MIN (type_align, BITS_PER_UNIT);
1224
1225 /* A bit field may not span the unit of alignment of its type.
1226 Advance to next boundary if necessary. */
1227 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1228 rli->bitpos = round_up (rli->bitpos, type_align);
1229
1230 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1231 }
1232 #endif
1233
1234 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1235 A subtlety:
1236 When a bit field is inserted into a packed record, the whole
1237 size of the underlying type is used by one or more same-size
1238 adjacent bitfields. (That is, if its long:3, 32 bits is
1239 used in the record, and any additional adjacent long bitfields are
1240 packed into the same chunk of 32 bits. However, if the size
1241 changes, a new field of that size is allocated.) In an unpacked
1242 record, this is the same as using alignment, but not equivalent
1243 when packing.
1244
1245 Note: for compatibility, we use the type size, not the type alignment
1246 to determine alignment, since that matches the documentation */
1247
1248 if (targetm.ms_bitfield_layout_p (rli->t))
1249 {
1250 tree prev_saved = rli->prev_field;
1251 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1252
1253 /* This is a bitfield if it exists. */
1254 if (rli->prev_field)
1255 {
1256 /* If both are bitfields, nonzero, and the same size, this is
1257 the middle of a run. Zero declared size fields are special
1258 and handled as "end of run". (Note: it's nonzero declared
1259 size, but equal type sizes!) (Since we know that both
1260 the current and previous fields are bitfields by the
1261 time we check it, DECL_SIZE must be present for both.) */
1262 if (DECL_BIT_FIELD_TYPE (field)
1263 && !integer_zerop (DECL_SIZE (field))
1264 && !integer_zerop (DECL_SIZE (rli->prev_field))
1265 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1266 && host_integerp (TYPE_SIZE (type), 0)
1267 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1268 {
1269 /* We're in the middle of a run of equal type size fields; make
1270 sure we realign if we run out of bits. (Not decl size,
1271 type size!) */
1272 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
1273
1274 if (rli->remaining_in_alignment < bitsize)
1275 {
1276 HOST_WIDE_INT typesize = tree_low_cst (TYPE_SIZE (type), 1);
1277
1278 /* out of bits; bump up to next 'word'. */
1279 rli->bitpos
1280 = size_binop (PLUS_EXPR, rli->bitpos,
1281 bitsize_int (rli->remaining_in_alignment));
1282 rli->prev_field = field;
1283 if (typesize < bitsize)
1284 rli->remaining_in_alignment = 0;
1285 else
1286 rli->remaining_in_alignment = typesize - bitsize;
1287 }
1288 else
1289 rli->remaining_in_alignment -= bitsize;
1290 }
1291 else
1292 {
1293 /* End of a run: if leaving a run of bitfields of the same type
1294 size, we have to "use up" the rest of the bits of the type
1295 size.
1296
1297 Compute the new position as the sum of the size for the prior
1298 type and where we first started working on that type.
1299 Note: since the beginning of the field was aligned then
1300 of course the end will be too. No round needed. */
1301
1302 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1303 {
1304 rli->bitpos
1305 = size_binop (PLUS_EXPR, rli->bitpos,
1306 bitsize_int (rli->remaining_in_alignment));
1307 }
1308 else
1309 /* We "use up" size zero fields; the code below should behave
1310 as if the prior field was not a bitfield. */
1311 prev_saved = NULL;
1312
1313 /* Cause a new bitfield to be captured, either this time (if
1314 currently a bitfield) or next time we see one. */
1315 if (!DECL_BIT_FIELD_TYPE(field)
1316 || integer_zerop (DECL_SIZE (field)))
1317 rli->prev_field = NULL;
1318 }
1319
1320 normalize_rli (rli);
1321 }
1322
1323 /* If we're starting a new run of same size type bitfields
1324 (or a run of non-bitfields), set up the "first of the run"
1325 fields.
1326
1327 That is, if the current field is not a bitfield, or if there
1328 was a prior bitfield the type sizes differ, or if there wasn't
1329 a prior bitfield the size of the current field is nonzero.
1330
1331 Note: we must be sure to test ONLY the type size if there was
1332 a prior bitfield and ONLY for the current field being zero if
1333 there wasn't. */
1334
1335 if (!DECL_BIT_FIELD_TYPE (field)
1336 || (prev_saved != NULL
1337 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1338 : !integer_zerop (DECL_SIZE (field)) ))
1339 {
1340 /* Never smaller than a byte for compatibility. */
1341 unsigned int type_align = BITS_PER_UNIT;
1342
1343 /* (When not a bitfield), we could be seeing a flex array (with
1344 no DECL_SIZE). Since we won't be using remaining_in_alignment
1345 until we see a bitfield (and come by here again) we just skip
1346 calculating it. */
1347 if (DECL_SIZE (field) != NULL
1348 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 0)
1349 && host_integerp (DECL_SIZE (field), 0))
1350 {
1351 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
1352 HOST_WIDE_INT typesize
1353 = tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 1);
1354
1355 if (typesize < bitsize)
1356 rli->remaining_in_alignment = 0;
1357 else
1358 rli->remaining_in_alignment = typesize - bitsize;
1359 }
1360
1361 /* Now align (conventionally) for the new type. */
1362 type_align = TYPE_ALIGN (TREE_TYPE (field));
1363
1364 if (maximum_field_alignment != 0)
1365 type_align = MIN (type_align, maximum_field_alignment);
1366
1367 rli->bitpos = round_up_loc (input_location, rli->bitpos, type_align);
1368
1369 /* If we really aligned, don't allow subsequent bitfields
1370 to undo that. */
1371 rli->prev_field = NULL;
1372 }
1373 }
1374
1375 /* Offset so far becomes the position of this field after normalizing. */
1376 normalize_rli (rli);
1377 DECL_FIELD_OFFSET (field) = rli->offset;
1378 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1379 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1380
1381 /* If this field ended up more aligned than we thought it would be (we
1382 approximate this by seeing if its position changed), lay out the field
1383 again; perhaps we can use an integral mode for it now. */
1384 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1385 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1386 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1387 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1388 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1389 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1390 actual_align = (BITS_PER_UNIT
1391 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1392 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1393 else
1394 actual_align = DECL_OFFSET_ALIGN (field);
1395 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1396 store / extract bit field operations will check the alignment of the
1397 record against the mode of bit fields. */
1398
1399 if (known_align != actual_align)
1400 layout_decl (field, actual_align);
1401
1402 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1403 rli->prev_field = field;
1404
1405 /* Now add size of this field to the size of the record. If the size is
1406 not constant, treat the field as being a multiple of bytes and just
1407 adjust the offset, resetting the bit position. Otherwise, apportion the
1408 size amongst the bit position and offset. First handle the case of an
1409 unspecified size, which can happen when we have an invalid nested struct
1410 definition, such as struct j { struct j { int i; } }. The error message
1411 is printed in finish_struct. */
1412 if (DECL_SIZE (field) == 0)
1413 /* Do nothing. */;
1414 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1415 || TREE_OVERFLOW (DECL_SIZE (field)))
1416 {
1417 rli->offset
1418 = size_binop (PLUS_EXPR, rli->offset,
1419 fold_convert (sizetype,
1420 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1421 bitsize_unit_node)));
1422 rli->offset
1423 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1424 rli->bitpos = bitsize_zero_node;
1425 rli->offset_align = MIN (rli->offset_align, desired_align);
1426 }
1427 else if (targetm.ms_bitfield_layout_p (rli->t))
1428 {
1429 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1430
1431 /* If we ended a bitfield before the full length of the type then
1432 pad the struct out to the full length of the last type. */
1433 if ((TREE_CHAIN (field) == NULL
1434 || TREE_CODE (TREE_CHAIN (field)) != FIELD_DECL)
1435 && DECL_BIT_FIELD_TYPE (field)
1436 && !integer_zerop (DECL_SIZE (field)))
1437 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1438 bitsize_int (rli->remaining_in_alignment));
1439
1440 normalize_rli (rli);
1441 }
1442 else
1443 {
1444 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1445 normalize_rli (rli);
1446 }
1447 }
1448
1449 /* Assuming that all the fields have been laid out, this function uses
1450 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1451 indicated by RLI. */
1452
1453 static void
1454 finalize_record_size (record_layout_info rli)
1455 {
1456 tree unpadded_size, unpadded_size_unit;
1457
1458 /* Now we want just byte and bit offsets, so set the offset alignment
1459 to be a byte and then normalize. */
1460 rli->offset_align = BITS_PER_UNIT;
1461 normalize_rli (rli);
1462
1463 /* Determine the desired alignment. */
1464 #ifdef ROUND_TYPE_ALIGN
1465 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1466 rli->record_align);
1467 #else
1468 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1469 #endif
1470
1471 /* Compute the size so far. Be sure to allow for extra bits in the
1472 size in bytes. We have guaranteed above that it will be no more
1473 than a single byte. */
1474 unpadded_size = rli_size_so_far (rli);
1475 unpadded_size_unit = rli_size_unit_so_far (rli);
1476 if (! integer_zerop (rli->bitpos))
1477 unpadded_size_unit
1478 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1479
1480 /* Round the size up to be a multiple of the required alignment. */
1481 TYPE_SIZE (rli->t) = round_up_loc (input_location, unpadded_size,
1482 TYPE_ALIGN (rli->t));
1483 TYPE_SIZE_UNIT (rli->t)
1484 = round_up_loc (input_location, unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1485
1486 if (TREE_CONSTANT (unpadded_size)
1487 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1488 && input_location != BUILTINS_LOCATION)
1489 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1490
1491 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1492 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1493 && TREE_CONSTANT (unpadded_size))
1494 {
1495 tree unpacked_size;
1496
1497 #ifdef ROUND_TYPE_ALIGN
1498 rli->unpacked_align
1499 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1500 #else
1501 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1502 #endif
1503
1504 unpacked_size = round_up_loc (input_location, TYPE_SIZE (rli->t), rli->unpacked_align);
1505 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1506 {
1507 TYPE_PACKED (rli->t) = 0;
1508
1509 if (TYPE_NAME (rli->t))
1510 {
1511 tree name;
1512
1513 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1514 name = TYPE_NAME (rli->t);
1515 else
1516 name = DECL_NAME (TYPE_NAME (rli->t));
1517
1518 if (STRICT_ALIGNMENT)
1519 warning (OPT_Wpacked, "packed attribute causes inefficient "
1520 "alignment for %qE", name);
1521 else
1522 warning (OPT_Wpacked,
1523 "packed attribute is unnecessary for %qE", name);
1524 }
1525 else
1526 {
1527 if (STRICT_ALIGNMENT)
1528 warning (OPT_Wpacked,
1529 "packed attribute causes inefficient alignment");
1530 else
1531 warning (OPT_Wpacked, "packed attribute is unnecessary");
1532 }
1533 }
1534 }
1535 }
1536
1537 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1538
1539 void
1540 compute_record_mode (tree type)
1541 {
1542 tree field;
1543 enum machine_mode mode = VOIDmode;
1544
1545 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1546 However, if possible, we use a mode that fits in a register
1547 instead, in order to allow for better optimization down the
1548 line. */
1549 SET_TYPE_MODE (type, BLKmode);
1550
1551 if (! host_integerp (TYPE_SIZE (type), 1))
1552 return;
1553
1554 /* A record which has any BLKmode members must itself be
1555 BLKmode; it can't go in a register. Unless the member is
1556 BLKmode only because it isn't aligned. */
1557 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1558 {
1559 if (TREE_CODE (field) != FIELD_DECL)
1560 continue;
1561
1562 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1563 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1564 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1565 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1566 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1567 || ! host_integerp (bit_position (field), 1)
1568 || DECL_SIZE (field) == 0
1569 || ! host_integerp (DECL_SIZE (field), 1))
1570 return;
1571
1572 /* If this field is the whole struct, remember its mode so
1573 that, say, we can put a double in a class into a DF
1574 register instead of forcing it to live in the stack. */
1575 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1576 mode = DECL_MODE (field);
1577
1578 #ifdef MEMBER_TYPE_FORCES_BLK
1579 /* With some targets, eg. c4x, it is sub-optimal
1580 to access an aligned BLKmode structure as a scalar. */
1581
1582 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1583 return;
1584 #endif /* MEMBER_TYPE_FORCES_BLK */
1585 }
1586
1587 /* If we only have one real field; use its mode if that mode's size
1588 matches the type's size. This only applies to RECORD_TYPE. This
1589 does not apply to unions. */
1590 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1591 && host_integerp (TYPE_SIZE (type), 1)
1592 && GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
1593 SET_TYPE_MODE (type, mode);
1594 else
1595 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1596
1597 /* If structure's known alignment is less than what the scalar
1598 mode would need, and it matters, then stick with BLKmode. */
1599 if (TYPE_MODE (type) != BLKmode
1600 && STRICT_ALIGNMENT
1601 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1602 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1603 {
1604 /* If this is the only reason this type is BLKmode, then
1605 don't force containing types to be BLKmode. */
1606 TYPE_NO_FORCE_BLK (type) = 1;
1607 SET_TYPE_MODE (type, BLKmode);
1608 }
1609 }
1610
1611 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1612 out. */
1613
1614 static void
1615 finalize_type_size (tree type)
1616 {
1617 /* Normally, use the alignment corresponding to the mode chosen.
1618 However, where strict alignment is not required, avoid
1619 over-aligning structures, since most compilers do not do this
1620 alignment. */
1621
1622 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1623 && (STRICT_ALIGNMENT
1624 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1625 && TREE_CODE (type) != QUAL_UNION_TYPE
1626 && TREE_CODE (type) != ARRAY_TYPE)))
1627 {
1628 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1629
1630 /* Don't override a larger alignment requirement coming from a user
1631 alignment of one of the fields. */
1632 if (mode_align >= TYPE_ALIGN (type))
1633 {
1634 TYPE_ALIGN (type) = mode_align;
1635 TYPE_USER_ALIGN (type) = 0;
1636 }
1637 }
1638
1639 /* Do machine-dependent extra alignment. */
1640 #ifdef ROUND_TYPE_ALIGN
1641 TYPE_ALIGN (type)
1642 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1643 #endif
1644
1645 /* If we failed to find a simple way to calculate the unit size
1646 of the type, find it by division. */
1647 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1648 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1649 result will fit in sizetype. We will get more efficient code using
1650 sizetype, so we force a conversion. */
1651 TYPE_SIZE_UNIT (type)
1652 = fold_convert (sizetype,
1653 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1654 bitsize_unit_node));
1655
1656 if (TYPE_SIZE (type) != 0)
1657 {
1658 TYPE_SIZE (type) = round_up_loc (input_location,
1659 TYPE_SIZE (type), TYPE_ALIGN (type));
1660 TYPE_SIZE_UNIT (type) = round_up_loc (input_location, TYPE_SIZE_UNIT (type),
1661 TYPE_ALIGN_UNIT (type));
1662 }
1663
1664 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1665 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1666 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1667 if (TYPE_SIZE_UNIT (type) != 0
1668 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1669 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1670
1671 /* Also layout any other variants of the type. */
1672 if (TYPE_NEXT_VARIANT (type)
1673 || type != TYPE_MAIN_VARIANT (type))
1674 {
1675 tree variant;
1676 /* Record layout info of this variant. */
1677 tree size = TYPE_SIZE (type);
1678 tree size_unit = TYPE_SIZE_UNIT (type);
1679 unsigned int align = TYPE_ALIGN (type);
1680 unsigned int user_align = TYPE_USER_ALIGN (type);
1681 enum machine_mode mode = TYPE_MODE (type);
1682
1683 /* Copy it into all variants. */
1684 for (variant = TYPE_MAIN_VARIANT (type);
1685 variant != 0;
1686 variant = TYPE_NEXT_VARIANT (variant))
1687 {
1688 TYPE_SIZE (variant) = size;
1689 TYPE_SIZE_UNIT (variant) = size_unit;
1690 TYPE_ALIGN (variant) = align;
1691 TYPE_USER_ALIGN (variant) = user_align;
1692 SET_TYPE_MODE (variant, mode);
1693 }
1694 }
1695 }
1696
1697 /* Do all of the work required to layout the type indicated by RLI,
1698 once the fields have been laid out. This function will call `free'
1699 for RLI, unless FREE_P is false. Passing a value other than false
1700 for FREE_P is bad practice; this option only exists to support the
1701 G++ 3.2 ABI. */
1702
1703 void
1704 finish_record_layout (record_layout_info rli, int free_p)
1705 {
1706 tree variant;
1707
1708 /* Compute the final size. */
1709 finalize_record_size (rli);
1710
1711 /* Compute the TYPE_MODE for the record. */
1712 compute_record_mode (rli->t);
1713
1714 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1715 finalize_type_size (rli->t);
1716
1717 /* Propagate TYPE_PACKED to variants. With C++ templates,
1718 handle_packed_attribute is too early to do this. */
1719 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
1720 variant = TYPE_NEXT_VARIANT (variant))
1721 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
1722
1723 /* Lay out any static members. This is done now because their type
1724 may use the record's type. */
1725 while (rli->pending_statics)
1726 {
1727 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1728 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1729 }
1730
1731 /* Clean up. */
1732 if (free_p)
1733 free (rli);
1734 }
1735 \f
1736
1737 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1738 NAME, its fields are chained in reverse on FIELDS.
1739
1740 If ALIGN_TYPE is non-null, it is given the same alignment as
1741 ALIGN_TYPE. */
1742
1743 void
1744 finish_builtin_struct (tree type, const char *name, tree fields,
1745 tree align_type)
1746 {
1747 tree tail, next;
1748
1749 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1750 {
1751 DECL_FIELD_CONTEXT (fields) = type;
1752 next = TREE_CHAIN (fields);
1753 TREE_CHAIN (fields) = tail;
1754 }
1755 TYPE_FIELDS (type) = tail;
1756
1757 if (align_type)
1758 {
1759 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1760 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1761 }
1762
1763 layout_type (type);
1764 #if 0 /* not yet, should get fixed properly later */
1765 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1766 #else
1767 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
1768 TYPE_DECL, get_identifier (name), type);
1769 #endif
1770 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1771 layout_decl (TYPE_NAME (type), 0);
1772 }
1773
1774 /* Calculate the mode, size, and alignment for TYPE.
1775 For an array type, calculate the element separation as well.
1776 Record TYPE on the chain of permanent or temporary types
1777 so that dbxout will find out about it.
1778
1779 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1780 layout_type does nothing on such a type.
1781
1782 If the type is incomplete, its TYPE_SIZE remains zero. */
1783
1784 void
1785 layout_type (tree type)
1786 {
1787 gcc_assert (type);
1788
1789 if (type == error_mark_node)
1790 return;
1791
1792 /* Do nothing if type has been laid out before. */
1793 if (TYPE_SIZE (type))
1794 return;
1795
1796 switch (TREE_CODE (type))
1797 {
1798 case LANG_TYPE:
1799 /* This kind of type is the responsibility
1800 of the language-specific code. */
1801 gcc_unreachable ();
1802
1803 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1804 if (TYPE_PRECISION (type) == 0)
1805 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1806
1807 /* ... fall through ... */
1808
1809 case INTEGER_TYPE:
1810 case ENUMERAL_TYPE:
1811 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1812 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1813 TYPE_UNSIGNED (type) = 1;
1814
1815 SET_TYPE_MODE (type,
1816 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
1817 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1818 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1819 break;
1820
1821 case REAL_TYPE:
1822 SET_TYPE_MODE (type,
1823 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
1824 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1825 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1826 break;
1827
1828 case FIXED_POINT_TYPE:
1829 /* TYPE_MODE (type) has been set already. */
1830 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1831 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1832 break;
1833
1834 case COMPLEX_TYPE:
1835 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1836 SET_TYPE_MODE (type,
1837 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1838 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
1839 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
1840 0));
1841 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1842 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1843 break;
1844
1845 case VECTOR_TYPE:
1846 {
1847 int nunits = TYPE_VECTOR_SUBPARTS (type);
1848 tree innertype = TREE_TYPE (type);
1849
1850 gcc_assert (!(nunits & (nunits - 1)));
1851
1852 /* Find an appropriate mode for the vector type. */
1853 if (TYPE_MODE (type) == VOIDmode)
1854 {
1855 enum machine_mode innermode = TYPE_MODE (innertype);
1856 enum machine_mode mode;
1857
1858 /* First, look for a supported vector type. */
1859 if (SCALAR_FLOAT_MODE_P (innermode))
1860 mode = MIN_MODE_VECTOR_FLOAT;
1861 else if (SCALAR_FRACT_MODE_P (innermode))
1862 mode = MIN_MODE_VECTOR_FRACT;
1863 else if (SCALAR_UFRACT_MODE_P (innermode))
1864 mode = MIN_MODE_VECTOR_UFRACT;
1865 else if (SCALAR_ACCUM_MODE_P (innermode))
1866 mode = MIN_MODE_VECTOR_ACCUM;
1867 else if (SCALAR_UACCUM_MODE_P (innermode))
1868 mode = MIN_MODE_VECTOR_UACCUM;
1869 else
1870 mode = MIN_MODE_VECTOR_INT;
1871
1872 /* Do not check vector_mode_supported_p here. We'll do that
1873 later in vector_type_mode. */
1874 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
1875 if (GET_MODE_NUNITS (mode) == nunits
1876 && GET_MODE_INNER (mode) == innermode)
1877 break;
1878
1879 /* For integers, try mapping it to a same-sized scalar mode. */
1880 if (mode == VOIDmode
1881 && GET_MODE_CLASS (innermode) == MODE_INT)
1882 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
1883 MODE_INT, 0);
1884
1885 if (mode == VOIDmode ||
1886 (GET_MODE_CLASS (mode) == MODE_INT
1887 && !have_regs_of_mode[mode]))
1888 SET_TYPE_MODE (type, BLKmode);
1889 else
1890 SET_TYPE_MODE (type, mode);
1891 }
1892
1893 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
1894 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1895 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
1896 TYPE_SIZE_UNIT (innertype),
1897 size_int (nunits), 0);
1898 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
1899 bitsize_int (nunits), 0);
1900
1901 /* Always naturally align vectors. This prevents ABI changes
1902 depending on whether or not native vector modes are supported. */
1903 TYPE_ALIGN (type) = tree_low_cst (TYPE_SIZE (type), 0);
1904 break;
1905 }
1906
1907 case VOID_TYPE:
1908 /* This is an incomplete type and so doesn't have a size. */
1909 TYPE_ALIGN (type) = 1;
1910 TYPE_USER_ALIGN (type) = 0;
1911 SET_TYPE_MODE (type, VOIDmode);
1912 break;
1913
1914 case OFFSET_TYPE:
1915 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1916 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1917 /* A pointer might be MODE_PARTIAL_INT,
1918 but ptrdiff_t must be integral. */
1919 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
1920 break;
1921
1922 case FUNCTION_TYPE:
1923 case METHOD_TYPE:
1924 /* It's hard to see what the mode and size of a function ought to
1925 be, but we do know the alignment is FUNCTION_BOUNDARY, so
1926 make it consistent with that. */
1927 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
1928 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
1929 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
1930 break;
1931
1932 case POINTER_TYPE:
1933 case REFERENCE_TYPE:
1934 {
1935 enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
1936 && reference_types_internal)
1937 ? Pmode : TYPE_MODE (type));
1938
1939 int nbits = GET_MODE_BITSIZE (mode);
1940
1941 TYPE_SIZE (type) = bitsize_int (nbits);
1942 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1943 TYPE_UNSIGNED (type) = 1;
1944 TYPE_PRECISION (type) = nbits;
1945 }
1946 break;
1947
1948 case ARRAY_TYPE:
1949 {
1950 tree index = TYPE_DOMAIN (type);
1951 tree element = TREE_TYPE (type);
1952
1953 build_pointer_type (element);
1954
1955 /* We need to know both bounds in order to compute the size. */
1956 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1957 && TYPE_SIZE (element))
1958 {
1959 tree ub = TYPE_MAX_VALUE (index);
1960 tree lb = TYPE_MIN_VALUE (index);
1961 tree element_size = TYPE_SIZE (element);
1962 tree length;
1963
1964 /* Make sure that an array of zero-sized element is zero-sized
1965 regardless of its extent. */
1966 if (integer_zerop (element_size))
1967 length = size_zero_node;
1968
1969 /* The initial subtraction should happen in the original type so
1970 that (possible) negative values are handled appropriately. */
1971 else
1972 length
1973 = size_binop (PLUS_EXPR, size_one_node,
1974 fold_convert (sizetype,
1975 fold_build2_loc (input_location,
1976 MINUS_EXPR,
1977 TREE_TYPE (lb),
1978 ub, lb)));
1979
1980 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1981 fold_convert (bitsizetype,
1982 length));
1983
1984 /* If we know the size of the element, calculate the total size
1985 directly, rather than do some division thing below. This
1986 optimization helps Fortran assumed-size arrays (where the
1987 size of the array is determined at runtime) substantially. */
1988 if (TYPE_SIZE_UNIT (element))
1989 TYPE_SIZE_UNIT (type)
1990 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1991 }
1992
1993 /* Now round the alignment and size,
1994 using machine-dependent criteria if any. */
1995
1996 #ifdef ROUND_TYPE_ALIGN
1997 TYPE_ALIGN (type)
1998 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1999 #else
2000 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2001 #endif
2002 if (!TYPE_SIZE (element))
2003 /* We don't know the size of the underlying element type, so
2004 our alignment calculations will be wrong, forcing us to
2005 fall back on structural equality. */
2006 SET_TYPE_STRUCTURAL_EQUALITY (type);
2007 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2008 SET_TYPE_MODE (type, BLKmode);
2009 if (TYPE_SIZE (type) != 0
2010 #ifdef MEMBER_TYPE_FORCES_BLK
2011 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
2012 #endif
2013 /* BLKmode elements force BLKmode aggregate;
2014 else extract/store fields may lose. */
2015 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2016 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2017 {
2018 /* One-element arrays get the component type's mode. */
2019 if (simple_cst_equal (TYPE_SIZE (type),
2020 TYPE_SIZE (TREE_TYPE (type))))
2021 SET_TYPE_MODE (type, TYPE_MODE (TREE_TYPE (type)));
2022 else
2023 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type),
2024 MODE_INT, 1));
2025
2026 if (TYPE_MODE (type) != BLKmode
2027 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2028 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2029 {
2030 TYPE_NO_FORCE_BLK (type) = 1;
2031 SET_TYPE_MODE (type, BLKmode);
2032 }
2033 }
2034 /* When the element size is constant, check that it is at least as
2035 large as the element alignment. */
2036 if (TYPE_SIZE_UNIT (element)
2037 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2038 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2039 TYPE_ALIGN_UNIT. */
2040 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2041 && !integer_zerop (TYPE_SIZE_UNIT (element))
2042 && compare_tree_int (TYPE_SIZE_UNIT (element),
2043 TYPE_ALIGN_UNIT (element)) < 0)
2044 error ("alignment of array elements is greater than element size");
2045 break;
2046 }
2047
2048 case RECORD_TYPE:
2049 case UNION_TYPE:
2050 case QUAL_UNION_TYPE:
2051 {
2052 tree field;
2053 record_layout_info rli;
2054
2055 /* Initialize the layout information. */
2056 rli = start_record_layout (type);
2057
2058 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2059 in the reverse order in building the COND_EXPR that denotes
2060 its size. We reverse them again later. */
2061 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2062 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2063
2064 /* Place all the fields. */
2065 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2066 place_field (rli, field);
2067
2068 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2069 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2070
2071 /* Finish laying out the record. */
2072 finish_record_layout (rli, /*free_p=*/true);
2073 }
2074 break;
2075
2076 default:
2077 gcc_unreachable ();
2078 }
2079
2080 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2081 records and unions, finish_record_layout already called this
2082 function. */
2083 if (TREE_CODE (type) != RECORD_TYPE
2084 && TREE_CODE (type) != UNION_TYPE
2085 && TREE_CODE (type) != QUAL_UNION_TYPE)
2086 finalize_type_size (type);
2087
2088 /* We should never see alias sets on incomplete aggregates. And we
2089 should not call layout_type on not incomplete aggregates. */
2090 if (AGGREGATE_TYPE_P (type))
2091 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2092 }
2093
2094 /* Vector types need to re-check the target flags each time we report
2095 the machine mode. We need to do this because attribute target can
2096 change the result of vector_mode_supported_p and have_regs_of_mode
2097 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2098 change on a per-function basis. */
2099 /* ??? Possibly a better solution is to run through all the types
2100 referenced by a function and re-compute the TYPE_MODE once, rather
2101 than make the TYPE_MODE macro call a function. */
2102
2103 enum machine_mode
2104 vector_type_mode (const_tree t)
2105 {
2106 enum machine_mode mode;
2107
2108 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2109
2110 mode = t->type.mode;
2111 if (VECTOR_MODE_P (mode)
2112 && (!targetm.vector_mode_supported_p (mode)
2113 || !have_regs_of_mode[mode]))
2114 {
2115 enum machine_mode innermode = TREE_TYPE (t)->type.mode;
2116
2117 /* For integers, try mapping it to a same-sized scalar mode. */
2118 if (GET_MODE_CLASS (innermode) == MODE_INT)
2119 {
2120 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2121 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2122
2123 if (mode != VOIDmode && have_regs_of_mode[mode])
2124 return mode;
2125 }
2126
2127 return BLKmode;
2128 }
2129
2130 return mode;
2131 }
2132 \f
2133 /* Create and return a type for signed integers of PRECISION bits. */
2134
2135 tree
2136 make_signed_type (int precision)
2137 {
2138 tree type = make_node (INTEGER_TYPE);
2139
2140 TYPE_PRECISION (type) = precision;
2141
2142 fixup_signed_type (type);
2143 return type;
2144 }
2145
2146 /* Create and return a type for unsigned integers of PRECISION bits. */
2147
2148 tree
2149 make_unsigned_type (int precision)
2150 {
2151 tree type = make_node (INTEGER_TYPE);
2152
2153 TYPE_PRECISION (type) = precision;
2154
2155 fixup_unsigned_type (type);
2156 return type;
2157 }
2158 \f
2159 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2160 and SATP. */
2161
2162 tree
2163 make_fract_type (int precision, int unsignedp, int satp)
2164 {
2165 tree type = make_node (FIXED_POINT_TYPE);
2166
2167 TYPE_PRECISION (type) = precision;
2168
2169 if (satp)
2170 TYPE_SATURATING (type) = 1;
2171
2172 /* Lay out the type: set its alignment, size, etc. */
2173 if (unsignedp)
2174 {
2175 TYPE_UNSIGNED (type) = 1;
2176 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2177 }
2178 else
2179 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2180 layout_type (type);
2181
2182 return type;
2183 }
2184
2185 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2186 and SATP. */
2187
2188 tree
2189 make_accum_type (int precision, int unsignedp, int satp)
2190 {
2191 tree type = make_node (FIXED_POINT_TYPE);
2192
2193 TYPE_PRECISION (type) = precision;
2194
2195 if (satp)
2196 TYPE_SATURATING (type) = 1;
2197
2198 /* Lay out the type: set its alignment, size, etc. */
2199 if (unsignedp)
2200 {
2201 TYPE_UNSIGNED (type) = 1;
2202 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2203 }
2204 else
2205 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2206 layout_type (type);
2207
2208 return type;
2209 }
2210
2211 /* Initialize sizetype and bitsizetype to a reasonable and temporary
2212 value to enable integer types to be created. */
2213
2214 void
2215 initialize_sizetypes (bool signed_p)
2216 {
2217 tree t = make_node (INTEGER_TYPE);
2218 int precision = GET_MODE_BITSIZE (SImode);
2219
2220 SET_TYPE_MODE (t, SImode);
2221 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
2222 TYPE_USER_ALIGN (t) = 0;
2223 TYPE_IS_SIZETYPE (t) = 1;
2224 TYPE_UNSIGNED (t) = !signed_p;
2225 TYPE_SIZE (t) = build_int_cst (t, precision);
2226 TYPE_SIZE_UNIT (t) = build_int_cst (t, GET_MODE_SIZE (SImode));
2227 TYPE_PRECISION (t) = precision;
2228
2229 /* Set TYPE_MIN_VALUE and TYPE_MAX_VALUE. */
2230 set_min_and_max_values_for_integral_type (t, precision, !signed_p);
2231
2232 sizetype = t;
2233 bitsizetype = build_distinct_type_copy (t);
2234 }
2235
2236 /* Make sizetype a version of TYPE, and initialize *sizetype
2237 accordingly. We do this by overwriting the stub sizetype and
2238 bitsizetype nodes created by initialize_sizetypes. This makes sure
2239 that (a) anything stubby about them no longer exists, (b) any
2240 INTEGER_CSTs created with such a type, remain valid. */
2241
2242 void
2243 set_sizetype (tree type)
2244 {
2245 tree t;
2246 int oprecision = TYPE_PRECISION (type);
2247 /* The *bitsizetype types use a precision that avoids overflows when
2248 calculating signed sizes / offsets in bits. However, when
2249 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
2250 precision. */
2251 int precision
2252 = MIN (oprecision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2253 precision
2254 = GET_MODE_PRECISION (smallest_mode_for_size (precision, MODE_INT));
2255 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2256 precision = HOST_BITS_PER_WIDE_INT * 2;
2257
2258 gcc_assert (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (sizetype));
2259
2260 t = build_distinct_type_copy (type);
2261 /* We do want to use sizetype's cache, as we will be replacing that
2262 type. */
2263 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (sizetype);
2264 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (sizetype);
2265 TREE_TYPE (TYPE_CACHED_VALUES (t)) = type;
2266 TYPE_UID (t) = TYPE_UID (sizetype);
2267 TYPE_IS_SIZETYPE (t) = 1;
2268
2269 /* Replace our original stub sizetype. */
2270 memcpy (sizetype, t, tree_size (sizetype));
2271 TYPE_MAIN_VARIANT (sizetype) = sizetype;
2272 TYPE_CANONICAL (sizetype) = sizetype;
2273
2274 t = make_node (INTEGER_TYPE);
2275 TYPE_NAME (t) = get_identifier ("bit_size_type");
2276 /* We do want to use bitsizetype's cache, as we will be replacing that
2277 type. */
2278 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (bitsizetype);
2279 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (bitsizetype);
2280 TYPE_PRECISION (t) = precision;
2281 TYPE_UID (t) = TYPE_UID (bitsizetype);
2282 TYPE_IS_SIZETYPE (t) = 1;
2283
2284 /* Replace our original stub bitsizetype. */
2285 memcpy (bitsizetype, t, tree_size (bitsizetype));
2286 TYPE_MAIN_VARIANT (bitsizetype) = bitsizetype;
2287 TYPE_CANONICAL (bitsizetype) = bitsizetype;
2288
2289 if (TYPE_UNSIGNED (type))
2290 {
2291 fixup_unsigned_type (bitsizetype);
2292 ssizetype = make_signed_type (oprecision);
2293 TYPE_IS_SIZETYPE (ssizetype) = 1;
2294 sbitsizetype = make_signed_type (precision);
2295 TYPE_IS_SIZETYPE (sbitsizetype) = 1;
2296 }
2297 else
2298 {
2299 fixup_signed_type (bitsizetype);
2300 ssizetype = sizetype;
2301 sbitsizetype = bitsizetype;
2302 }
2303
2304 /* If SIZETYPE is unsigned, we need to fix TYPE_MAX_VALUE so that
2305 it is sign extended in a way consistent with force_fit_type. */
2306 if (TYPE_UNSIGNED (type))
2307 {
2308 tree orig_max, new_max;
2309
2310 orig_max = TYPE_MAX_VALUE (sizetype);
2311
2312 /* Build a new node with the same values, but a different type.
2313 Sign extend it to ensure consistency. */
2314 new_max = build_int_cst_wide_type (sizetype,
2315 TREE_INT_CST_LOW (orig_max),
2316 TREE_INT_CST_HIGH (orig_max));
2317 TYPE_MAX_VALUE (sizetype) = new_max;
2318 }
2319 }
2320 \f
2321 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2322 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2323 for TYPE, based on the PRECISION and whether or not the TYPE
2324 IS_UNSIGNED. PRECISION need not correspond to a width supported
2325 natively by the hardware; for example, on a machine with 8-bit,
2326 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2327 61. */
2328
2329 void
2330 set_min_and_max_values_for_integral_type (tree type,
2331 int precision,
2332 bool is_unsigned)
2333 {
2334 tree min_value;
2335 tree max_value;
2336
2337 if (is_unsigned)
2338 {
2339 min_value = build_int_cst (type, 0);
2340 max_value
2341 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2342 ? -1
2343 : ((HOST_WIDE_INT) 1 << precision) - 1,
2344 precision - HOST_BITS_PER_WIDE_INT > 0
2345 ? ((unsigned HOST_WIDE_INT) ~0
2346 >> (HOST_BITS_PER_WIDE_INT
2347 - (precision - HOST_BITS_PER_WIDE_INT)))
2348 : 0);
2349 }
2350 else
2351 {
2352 min_value
2353 = build_int_cst_wide (type,
2354 (precision - HOST_BITS_PER_WIDE_INT > 0
2355 ? 0
2356 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2357 (((HOST_WIDE_INT) (-1)
2358 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2359 ? precision - HOST_BITS_PER_WIDE_INT - 1
2360 : 0))));
2361 max_value
2362 = build_int_cst_wide (type,
2363 (precision - HOST_BITS_PER_WIDE_INT > 0
2364 ? -1
2365 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2366 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2367 ? (((HOST_WIDE_INT) 1
2368 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2369 : 0));
2370 }
2371
2372 TYPE_MIN_VALUE (type) = min_value;
2373 TYPE_MAX_VALUE (type) = max_value;
2374 }
2375
2376 /* Set the extreme values of TYPE based on its precision in bits,
2377 then lay it out. Used when make_signed_type won't do
2378 because the tree code is not INTEGER_TYPE.
2379 E.g. for Pascal, when the -fsigned-char option is given. */
2380
2381 void
2382 fixup_signed_type (tree type)
2383 {
2384 int precision = TYPE_PRECISION (type);
2385
2386 /* We can not represent properly constants greater then
2387 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2388 as they are used by i386 vector extensions and friends. */
2389 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2390 precision = HOST_BITS_PER_WIDE_INT * 2;
2391
2392 set_min_and_max_values_for_integral_type (type, precision,
2393 /*is_unsigned=*/false);
2394
2395 /* Lay out the type: set its alignment, size, etc. */
2396 layout_type (type);
2397 }
2398
2399 /* Set the extreme values of TYPE based on its precision in bits,
2400 then lay it out. This is used both in `make_unsigned_type'
2401 and for enumeral types. */
2402
2403 void
2404 fixup_unsigned_type (tree type)
2405 {
2406 int precision = TYPE_PRECISION (type);
2407
2408 /* We can not represent properly constants greater then
2409 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2410 as they are used by i386 vector extensions and friends. */
2411 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2412 precision = HOST_BITS_PER_WIDE_INT * 2;
2413
2414 TYPE_UNSIGNED (type) = 1;
2415
2416 set_min_and_max_values_for_integral_type (type, precision,
2417 /*is_unsigned=*/true);
2418
2419 /* Lay out the type: set its alignment, size, etc. */
2420 layout_type (type);
2421 }
2422 \f
2423 /* Find the best machine mode to use when referencing a bit field of length
2424 BITSIZE bits starting at BITPOS.
2425
2426 The underlying object is known to be aligned to a boundary of ALIGN bits.
2427 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2428 larger than LARGEST_MODE (usually SImode).
2429
2430 If no mode meets all these conditions, we return VOIDmode.
2431
2432 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2433 smallest mode meeting these conditions.
2434
2435 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2436 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2437 all the conditions.
2438
2439 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2440 decide which of the above modes should be used. */
2441
2442 enum machine_mode
2443 get_best_mode (int bitsize, int bitpos, unsigned int align,
2444 enum machine_mode largest_mode, int volatilep)
2445 {
2446 enum machine_mode mode;
2447 unsigned int unit = 0;
2448
2449 /* Find the narrowest integer mode that contains the bit field. */
2450 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2451 mode = GET_MODE_WIDER_MODE (mode))
2452 {
2453 unit = GET_MODE_BITSIZE (mode);
2454 if ((bitpos % unit) + bitsize <= unit)
2455 break;
2456 }
2457
2458 if (mode == VOIDmode
2459 /* It is tempting to omit the following line
2460 if STRICT_ALIGNMENT is true.
2461 But that is incorrect, since if the bitfield uses part of 3 bytes
2462 and we use a 4-byte mode, we could get a spurious segv
2463 if the extra 4th byte is past the end of memory.
2464 (Though at least one Unix compiler ignores this problem:
2465 that on the Sequent 386 machine. */
2466 || MIN (unit, BIGGEST_ALIGNMENT) > align
2467 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2468 return VOIDmode;
2469
2470 if ((SLOW_BYTE_ACCESS && ! volatilep)
2471 || (volatilep && !targetm.narrow_volatile_bitfield ()))
2472 {
2473 enum machine_mode wide_mode = VOIDmode, tmode;
2474
2475 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2476 tmode = GET_MODE_WIDER_MODE (tmode))
2477 {
2478 unit = GET_MODE_BITSIZE (tmode);
2479 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2480 && unit <= BITS_PER_WORD
2481 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2482 && (largest_mode == VOIDmode
2483 || unit <= GET_MODE_BITSIZE (largest_mode)))
2484 wide_mode = tmode;
2485 }
2486
2487 if (wide_mode != VOIDmode)
2488 return wide_mode;
2489 }
2490
2491 return mode;
2492 }
2493
2494 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2495 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2496
2497 void
2498 get_mode_bounds (enum machine_mode mode, int sign,
2499 enum machine_mode target_mode,
2500 rtx *mmin, rtx *mmax)
2501 {
2502 unsigned size = GET_MODE_BITSIZE (mode);
2503 unsigned HOST_WIDE_INT min_val, max_val;
2504
2505 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2506
2507 if (sign)
2508 {
2509 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2510 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2511 }
2512 else
2513 {
2514 min_val = 0;
2515 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2516 }
2517
2518 *mmin = gen_int_mode (min_val, target_mode);
2519 *mmax = gen_int_mode (max_val, target_mode);
2520 }
2521
2522 #include "gt-stor-layout.h"