re PR middle-end/24053 (ICE in build_int_cst_wide, at tree.c:795)
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "output.h"
34 #include "toplev.h"
35 #include "ggc.h"
36 #include "target.h"
37 #include "langhooks.h"
38 #include "regs.h"
39 #include "params.h"
40
41 /* Data type for the expressions representing sizes of data types.
42 It is the first integer type laid out. */
43 tree sizetype_tab[(int) TYPE_KIND_LAST];
44
45 /* If nonzero, this is an upper limit on alignment of structure fields.
46 The value is measured in bits. */
47 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
48 /* ... and its original value in bytes, specified via -fpack-struct=<value>. */
49 unsigned int initial_max_fld_align = TARGET_DEFAULT_PACK_STRUCT;
50
51 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
52 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
53 called only by a front end. */
54 static int reference_types_internal = 0;
55
56 static void finalize_record_size (record_layout_info);
57 static void finalize_type_size (tree);
58 static void place_union_field (record_layout_info, tree);
59 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
60 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
61 HOST_WIDE_INT, tree);
62 #endif
63 extern void debug_rli (record_layout_info);
64 \f
65 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
66
67 static GTY(()) tree pending_sizes;
68
69 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
70 by front end. */
71
72 void
73 internal_reference_types (void)
74 {
75 reference_types_internal = 1;
76 }
77
78 /* Get a list of all the objects put on the pending sizes list. */
79
80 tree
81 get_pending_sizes (void)
82 {
83 tree chain = pending_sizes;
84
85 pending_sizes = 0;
86 return chain;
87 }
88
89 /* Add EXPR to the pending sizes list. */
90
91 void
92 put_pending_size (tree expr)
93 {
94 /* Strip any simple arithmetic from EXPR to see if it has an underlying
95 SAVE_EXPR. */
96 expr = skip_simple_arithmetic (expr);
97
98 if (TREE_CODE (expr) == SAVE_EXPR)
99 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
100 }
101
102 /* Put a chain of objects into the pending sizes list, which must be
103 empty. */
104
105 void
106 put_pending_sizes (tree chain)
107 {
108 gcc_assert (!pending_sizes);
109 pending_sizes = chain;
110 }
111
112 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
113 to serve as the actual size-expression for a type or decl. */
114
115 tree
116 variable_size (tree size)
117 {
118 tree save;
119
120 /* If the language-processor is to take responsibility for variable-sized
121 items (e.g., languages which have elaboration procedures like Ada),
122 just return SIZE unchanged. Likewise for self-referential sizes and
123 constant sizes. */
124 if (TREE_CONSTANT (size)
125 || lang_hooks.decls.global_bindings_p () < 0
126 || CONTAINS_PLACEHOLDER_P (size))
127 return size;
128
129 size = save_expr (size);
130
131 /* If an array with a variable number of elements is declared, and
132 the elements require destruction, we will emit a cleanup for the
133 array. That cleanup is run both on normal exit from the block
134 and in the exception-handler for the block. Normally, when code
135 is used in both ordinary code and in an exception handler it is
136 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
137 not wish to do that here; the array-size is the same in both
138 places. */
139 save = skip_simple_arithmetic (size);
140
141 if (cfun && cfun->x_dont_save_pending_sizes_p)
142 /* The front-end doesn't want us to keep a list of the expressions
143 that determine sizes for variable size objects. Trust it. */
144 return size;
145
146 if (lang_hooks.decls.global_bindings_p ())
147 {
148 if (TREE_CONSTANT (size))
149 error ("type size can%'t be explicitly evaluated");
150 else
151 error ("variable-size type declared outside of any function");
152
153 return size_one_node;
154 }
155
156 put_pending_size (save);
157
158 return size;
159 }
160 \f
161 #ifndef MAX_FIXED_MODE_SIZE
162 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
163 #endif
164
165 /* Return the machine mode to use for a nonscalar of SIZE bits. The
166 mode must be in class CLASS, and have exactly that many value bits;
167 it may have padding as well. If LIMIT is nonzero, modes of wider
168 than MAX_FIXED_MODE_SIZE will not be used. */
169
170 enum machine_mode
171 mode_for_size (unsigned int size, enum mode_class class, int limit)
172 {
173 enum machine_mode mode;
174
175 if (limit && size > MAX_FIXED_MODE_SIZE)
176 return BLKmode;
177
178 /* Get the first mode which has this size, in the specified class. */
179 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
180 mode = GET_MODE_WIDER_MODE (mode))
181 if (GET_MODE_PRECISION (mode) == size)
182 return mode;
183
184 return BLKmode;
185 }
186
187 /* Similar, except passed a tree node. */
188
189 enum machine_mode
190 mode_for_size_tree (tree size, enum mode_class class, int limit)
191 {
192 if (TREE_CODE (size) != INTEGER_CST
193 || TREE_OVERFLOW (size)
194 /* What we really want to say here is that the size can fit in a
195 host integer, but we know there's no way we'd find a mode for
196 this many bits, so there's no point in doing the precise test. */
197 || compare_tree_int (size, 1000) > 0)
198 return BLKmode;
199 else
200 return mode_for_size (tree_low_cst (size, 1), class, limit);
201 }
202
203 /* Similar, but never return BLKmode; return the narrowest mode that
204 contains at least the requested number of value bits. */
205
206 enum machine_mode
207 smallest_mode_for_size (unsigned int size, enum mode_class class)
208 {
209 enum machine_mode mode;
210
211 /* Get the first mode which has at least this size, in the
212 specified class. */
213 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
214 mode = GET_MODE_WIDER_MODE (mode))
215 if (GET_MODE_PRECISION (mode) >= size)
216 return mode;
217
218 gcc_unreachable ();
219 }
220
221 /* Find an integer mode of the exact same size, or BLKmode on failure. */
222
223 enum machine_mode
224 int_mode_for_mode (enum machine_mode mode)
225 {
226 switch (GET_MODE_CLASS (mode))
227 {
228 case MODE_INT:
229 case MODE_PARTIAL_INT:
230 break;
231
232 case MODE_COMPLEX_INT:
233 case MODE_COMPLEX_FLOAT:
234 case MODE_FLOAT:
235 case MODE_VECTOR_INT:
236 case MODE_VECTOR_FLOAT:
237 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
238 break;
239
240 case MODE_RANDOM:
241 if (mode == BLKmode)
242 break;
243
244 /* ... fall through ... */
245
246 case MODE_CC:
247 default:
248 gcc_unreachable ();
249 }
250
251 return mode;
252 }
253
254 /* Return the alignment of MODE. This will be bounded by 1 and
255 BIGGEST_ALIGNMENT. */
256
257 unsigned int
258 get_mode_alignment (enum machine_mode mode)
259 {
260 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
261 }
262
263 \f
264 /* Subroutine of layout_decl: Force alignment required for the data type.
265 But if the decl itself wants greater alignment, don't override that. */
266
267 static inline void
268 do_type_align (tree type, tree decl)
269 {
270 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
271 {
272 DECL_ALIGN (decl) = TYPE_ALIGN (type);
273 if (TREE_CODE (decl) == FIELD_DECL)
274 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
275 }
276 }
277
278 /* Set the size, mode and alignment of a ..._DECL node.
279 TYPE_DECL does need this for C++.
280 Note that LABEL_DECL and CONST_DECL nodes do not need this,
281 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
282 Don't call layout_decl for them.
283
284 KNOWN_ALIGN is the amount of alignment we can assume this
285 decl has with no special effort. It is relevant only for FIELD_DECLs
286 and depends on the previous fields.
287 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
288 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
289 the record will be aligned to suit. */
290
291 void
292 layout_decl (tree decl, unsigned int known_align)
293 {
294 tree type = TREE_TYPE (decl);
295 enum tree_code code = TREE_CODE (decl);
296 rtx rtl = NULL_RTX;
297
298 if (code == CONST_DECL)
299 return;
300
301 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
302 || code == TYPE_DECL ||code == FIELD_DECL);
303
304 rtl = DECL_RTL_IF_SET (decl);
305
306 if (type == error_mark_node)
307 type = void_type_node;
308
309 /* Usually the size and mode come from the data type without change,
310 however, the front-end may set the explicit width of the field, so its
311 size may not be the same as the size of its type. This happens with
312 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
313 also happens with other fields. For example, the C++ front-end creates
314 zero-sized fields corresponding to empty base classes, and depends on
315 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
316 size in bytes from the size in bits. If we have already set the mode,
317 don't set it again since we can be called twice for FIELD_DECLs. */
318
319 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
320 if (DECL_MODE (decl) == VOIDmode)
321 DECL_MODE (decl) = TYPE_MODE (type);
322
323 if (DECL_SIZE (decl) == 0)
324 {
325 DECL_SIZE (decl) = TYPE_SIZE (type);
326 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
327 }
328 else if (DECL_SIZE_UNIT (decl) == 0)
329 DECL_SIZE_UNIT (decl)
330 = fold_convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
331 bitsize_unit_node));
332
333 if (code != FIELD_DECL)
334 /* For non-fields, update the alignment from the type. */
335 do_type_align (type, decl);
336 else
337 /* For fields, it's a bit more complicated... */
338 {
339 bool old_user_align = DECL_USER_ALIGN (decl);
340
341 if (DECL_BIT_FIELD (decl))
342 {
343 DECL_BIT_FIELD_TYPE (decl) = type;
344
345 /* A zero-length bit-field affects the alignment of the next
346 field. */
347 if (integer_zerop (DECL_SIZE (decl))
348 && ! DECL_PACKED (decl)
349 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
350 {
351 #ifdef PCC_BITFIELD_TYPE_MATTERS
352 if (PCC_BITFIELD_TYPE_MATTERS)
353 do_type_align (type, decl);
354 else
355 #endif
356 {
357 #ifdef EMPTY_FIELD_BOUNDARY
358 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
359 {
360 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
361 DECL_USER_ALIGN (decl) = 0;
362 }
363 #endif
364 }
365 }
366
367 /* See if we can use an ordinary integer mode for a bit-field.
368 Conditions are: a fixed size that is correct for another mode
369 and occupying a complete byte or bytes on proper boundary. */
370 if (TYPE_SIZE (type) != 0
371 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
372 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
373 {
374 enum machine_mode xmode
375 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
376
377 if (xmode != BLKmode
378 && (known_align == 0
379 || known_align >= GET_MODE_ALIGNMENT (xmode)))
380 {
381 DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
382 DECL_ALIGN (decl));
383 DECL_MODE (decl) = xmode;
384 DECL_BIT_FIELD (decl) = 0;
385 }
386 }
387
388 /* Turn off DECL_BIT_FIELD if we won't need it set. */
389 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
390 && known_align >= TYPE_ALIGN (type)
391 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
392 DECL_BIT_FIELD (decl) = 0;
393 }
394 else if (DECL_PACKED (decl) && DECL_USER_ALIGN (decl))
395 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
396 round up; we'll reduce it again below. We want packing to
397 supersede USER_ALIGN inherited from the type, but defer to
398 alignment explicitly specified on the field decl. */;
399 else
400 do_type_align (type, decl);
401
402 /* If the field is of variable size, we can't misalign it since we
403 have no way to make a temporary to align the result. But this
404 isn't an issue if the decl is not addressable. Likewise if it
405 is of unknown size.
406
407 Note that do_type_align may set DECL_USER_ALIGN, so we need to
408 check old_user_align instead. */
409 if (DECL_PACKED (decl)
410 && !old_user_align
411 && (DECL_NONADDRESSABLE_P (decl)
412 || DECL_SIZE_UNIT (decl) == 0
413 || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
414 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
415
416 if (! DECL_USER_ALIGN (decl) && ! DECL_PACKED (decl))
417 {
418 /* Some targets (i.e. i386, VMS) limit struct field alignment
419 to a lower boundary than alignment of variables unless
420 it was overridden by attribute aligned. */
421 #ifdef BIGGEST_FIELD_ALIGNMENT
422 DECL_ALIGN (decl)
423 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
424 #endif
425 #ifdef ADJUST_FIELD_ALIGN
426 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
427 #endif
428 }
429
430 /* Should this be controlled by DECL_USER_ALIGN, too? */
431 if (maximum_field_alignment != 0)
432 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), maximum_field_alignment);
433 }
434
435 /* Evaluate nonconstant size only once, either now or as soon as safe. */
436 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
437 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
438 if (DECL_SIZE_UNIT (decl) != 0
439 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
440 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
441
442 /* If requested, warn about definitions of large data objects. */
443 if (warn_larger_than
444 && (code == VAR_DECL || code == PARM_DECL)
445 && ! DECL_EXTERNAL (decl))
446 {
447 tree size = DECL_SIZE_UNIT (decl);
448
449 if (size != 0 && TREE_CODE (size) == INTEGER_CST
450 && compare_tree_int (size, larger_than_size) > 0)
451 {
452 int size_as_int = TREE_INT_CST_LOW (size);
453
454 if (compare_tree_int (size, size_as_int) == 0)
455 warning (0, "size of %q+D is %d bytes", decl, size_as_int);
456 else
457 warning (0, "size of %q+D is larger than %wd bytes",
458 decl, larger_than_size);
459 }
460 }
461
462 /* If the RTL was already set, update its mode and mem attributes. */
463 if (rtl)
464 {
465 PUT_MODE (rtl, DECL_MODE (decl));
466 SET_DECL_RTL (decl, 0);
467 set_mem_attributes (rtl, decl, 1);
468 SET_DECL_RTL (decl, rtl);
469 }
470 }
471
472 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
473 a previous call to layout_decl and calls it again. */
474
475 void
476 relayout_decl (tree decl)
477 {
478 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
479 DECL_MODE (decl) = VOIDmode;
480 DECL_ALIGN (decl) = 0;
481 SET_DECL_RTL (decl, 0);
482
483 layout_decl (decl, 0);
484 }
485 \f
486 /* Hook for a front-end function that can modify the record layout as needed
487 immediately before it is finalized. */
488
489 static void (*lang_adjust_rli) (record_layout_info) = 0;
490
491 void
492 set_lang_adjust_rli (void (*f) (record_layout_info))
493 {
494 lang_adjust_rli = f;
495 }
496
497 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
498 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
499 is to be passed to all other layout functions for this record. It is the
500 responsibility of the caller to call `free' for the storage returned.
501 Note that garbage collection is not permitted until we finish laying
502 out the record. */
503
504 record_layout_info
505 start_record_layout (tree t)
506 {
507 record_layout_info rli = xmalloc (sizeof (struct record_layout_info_s));
508
509 rli->t = t;
510
511 /* If the type has a minimum specified alignment (via an attribute
512 declaration, for example) use it -- otherwise, start with a
513 one-byte alignment. */
514 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
515 rli->unpacked_align = rli->record_align;
516 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
517
518 #ifdef STRUCTURE_SIZE_BOUNDARY
519 /* Packed structures don't need to have minimum size. */
520 if (! TYPE_PACKED (t))
521 rli->record_align = MAX (rli->record_align, (unsigned) STRUCTURE_SIZE_BOUNDARY);
522 #endif
523
524 rli->offset = size_zero_node;
525 rli->bitpos = bitsize_zero_node;
526 rli->prev_field = 0;
527 rli->pending_statics = 0;
528 rli->packed_maybe_necessary = 0;
529
530 return rli;
531 }
532
533 /* These four routines perform computations that convert between
534 the offset/bitpos forms and byte and bit offsets. */
535
536 tree
537 bit_from_pos (tree offset, tree bitpos)
538 {
539 return size_binop (PLUS_EXPR, bitpos,
540 size_binop (MULT_EXPR,
541 fold_convert (bitsizetype, offset),
542 bitsize_unit_node));
543 }
544
545 tree
546 byte_from_pos (tree offset, tree bitpos)
547 {
548 return size_binop (PLUS_EXPR, offset,
549 fold_convert (sizetype,
550 size_binop (TRUNC_DIV_EXPR, bitpos,
551 bitsize_unit_node)));
552 }
553
554 void
555 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
556 tree pos)
557 {
558 *poffset = size_binop (MULT_EXPR,
559 fold_convert (sizetype,
560 size_binop (FLOOR_DIV_EXPR, pos,
561 bitsize_int (off_align))),
562 size_int (off_align / BITS_PER_UNIT));
563 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
564 }
565
566 /* Given a pointer to bit and byte offsets and an offset alignment,
567 normalize the offsets so they are within the alignment. */
568
569 void
570 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
571 {
572 /* If the bit position is now larger than it should be, adjust it
573 downwards. */
574 if (compare_tree_int (*pbitpos, off_align) >= 0)
575 {
576 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
577 bitsize_int (off_align));
578
579 *poffset
580 = size_binop (PLUS_EXPR, *poffset,
581 size_binop (MULT_EXPR,
582 fold_convert (sizetype, extra_aligns),
583 size_int (off_align / BITS_PER_UNIT)));
584
585 *pbitpos
586 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
587 }
588 }
589
590 /* Print debugging information about the information in RLI. */
591
592 void
593 debug_rli (record_layout_info rli)
594 {
595 print_node_brief (stderr, "type", rli->t, 0);
596 print_node_brief (stderr, "\noffset", rli->offset, 0);
597 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
598
599 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
600 rli->record_align, rli->unpacked_align,
601 rli->offset_align);
602 if (rli->packed_maybe_necessary)
603 fprintf (stderr, "packed may be necessary\n");
604
605 if (rli->pending_statics)
606 {
607 fprintf (stderr, "pending statics:\n");
608 debug_tree (rli->pending_statics);
609 }
610 }
611
612 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
613 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
614
615 void
616 normalize_rli (record_layout_info rli)
617 {
618 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
619 }
620
621 /* Returns the size in bytes allocated so far. */
622
623 tree
624 rli_size_unit_so_far (record_layout_info rli)
625 {
626 return byte_from_pos (rli->offset, rli->bitpos);
627 }
628
629 /* Returns the size in bits allocated so far. */
630
631 tree
632 rli_size_so_far (record_layout_info rli)
633 {
634 return bit_from_pos (rli->offset, rli->bitpos);
635 }
636
637 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
638 the next available location within the record is given by KNOWN_ALIGN.
639 Update the variable alignment fields in RLI, and return the alignment
640 to give the FIELD. */
641
642 unsigned int
643 update_alignment_for_field (record_layout_info rli, tree field,
644 unsigned int known_align)
645 {
646 /* The alignment required for FIELD. */
647 unsigned int desired_align;
648 /* The type of this field. */
649 tree type = TREE_TYPE (field);
650 /* True if the field was explicitly aligned by the user. */
651 bool user_align;
652 bool is_bitfield;
653
654 /* Lay out the field so we know what alignment it needs. */
655 layout_decl (field, known_align);
656 desired_align = DECL_ALIGN (field);
657 user_align = DECL_USER_ALIGN (field);
658
659 is_bitfield = (type != error_mark_node
660 && DECL_BIT_FIELD_TYPE (field)
661 && ! integer_zerop (TYPE_SIZE (type)));
662
663 /* Record must have at least as much alignment as any field.
664 Otherwise, the alignment of the field within the record is
665 meaningless. */
666 if (is_bitfield && targetm.ms_bitfield_layout_p (rli->t))
667 {
668 /* Here, the alignment of the underlying type of a bitfield can
669 affect the alignment of a record; even a zero-sized field
670 can do this. The alignment should be to the alignment of
671 the type, except that for zero-size bitfields this only
672 applies if there was an immediately prior, nonzero-size
673 bitfield. (That's the way it is, experimentally.) */
674 if (! integer_zerop (DECL_SIZE (field))
675 ? ! DECL_PACKED (field)
676 : (rli->prev_field
677 && DECL_BIT_FIELD_TYPE (rli->prev_field)
678 && ! integer_zerop (DECL_SIZE (rli->prev_field))))
679 {
680 unsigned int type_align = TYPE_ALIGN (type);
681 type_align = MAX (type_align, desired_align);
682 if (maximum_field_alignment != 0)
683 type_align = MIN (type_align, maximum_field_alignment);
684 rli->record_align = MAX (rli->record_align, type_align);
685 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
686 /* If we start a new run, make sure we start it properly aligned. */
687 if ((!rli->prev_field
688 || integer_zerop (DECL_SIZE (field))
689 || integer_zerop (DECL_SIZE (rli->prev_field))
690 || !host_integerp (DECL_SIZE (rli->prev_field), 0)
691 || !host_integerp (TYPE_SIZE (type), 0)
692 || !simple_cst_equal (TYPE_SIZE (type),
693 TYPE_SIZE (TREE_TYPE (rli->prev_field)))
694 || (rli->remaining_in_alignment
695 < tree_low_cst (DECL_SIZE (field), 0)))
696 && desired_align < type_align)
697 desired_align = type_align;
698 }
699 }
700 #ifdef PCC_BITFIELD_TYPE_MATTERS
701 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
702 {
703 /* Named bit-fields cause the entire structure to have the
704 alignment implied by their type. Some targets also apply the same
705 rules to unnamed bitfields. */
706 if (DECL_NAME (field) != 0
707 || targetm.align_anon_bitfield ())
708 {
709 unsigned int type_align = TYPE_ALIGN (type);
710
711 #ifdef ADJUST_FIELD_ALIGN
712 if (! TYPE_USER_ALIGN (type))
713 type_align = ADJUST_FIELD_ALIGN (field, type_align);
714 #endif
715
716 if (maximum_field_alignment != 0)
717 type_align = MIN (type_align, maximum_field_alignment);
718 else if (DECL_PACKED (field))
719 type_align = MIN (type_align, BITS_PER_UNIT);
720
721 /* The alignment of the record is increased to the maximum
722 of the current alignment, the alignment indicated on the
723 field (i.e., the alignment specified by an __aligned__
724 attribute), and the alignment indicated by the type of
725 the field. */
726 rli->record_align = MAX (rli->record_align, desired_align);
727 rli->record_align = MAX (rli->record_align, type_align);
728
729 if (warn_packed)
730 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
731 user_align |= TYPE_USER_ALIGN (type);
732 }
733 }
734 #endif
735 else
736 {
737 rli->record_align = MAX (rli->record_align, desired_align);
738 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
739 }
740
741 TYPE_USER_ALIGN (rli->t) |= user_align;
742
743 return desired_align;
744 }
745
746 /* Called from place_field to handle unions. */
747
748 static void
749 place_union_field (record_layout_info rli, tree field)
750 {
751 update_alignment_for_field (rli, field, /*known_align=*/0);
752
753 DECL_FIELD_OFFSET (field) = size_zero_node;
754 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
755 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
756
757 /* We assume the union's size will be a multiple of a byte so we don't
758 bother with BITPOS. */
759 if (TREE_CODE (rli->t) == UNION_TYPE)
760 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
761 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
762 rli->offset = fold_build3 (COND_EXPR, sizetype,
763 DECL_QUALIFIER (field),
764 DECL_SIZE_UNIT (field), rli->offset);
765 }
766
767 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
768 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
769 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
770 units of alignment than the underlying TYPE. */
771 static int
772 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
773 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
774 {
775 /* Note that the calculation of OFFSET might overflow; we calculate it so
776 that we still get the right result as long as ALIGN is a power of two. */
777 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
778
779 offset = offset % align;
780 return ((offset + size + align - 1) / align
781 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
782 / align));
783 }
784 #endif
785
786 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
787 is a FIELD_DECL to be added after those fields already present in
788 T. (FIELD is not actually added to the TYPE_FIELDS list here;
789 callers that desire that behavior must manually perform that step.) */
790
791 void
792 place_field (record_layout_info rli, tree field)
793 {
794 /* The alignment required for FIELD. */
795 unsigned int desired_align;
796 /* The alignment FIELD would have if we just dropped it into the
797 record as it presently stands. */
798 unsigned int known_align;
799 unsigned int actual_align;
800 /* The type of this field. */
801 tree type = TREE_TYPE (field);
802
803 if (TREE_CODE (field) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
804 return;
805
806 /* If FIELD is static, then treat it like a separate variable, not
807 really like a structure field. If it is a FUNCTION_DECL, it's a
808 method. In both cases, all we do is lay out the decl, and we do
809 it *after* the record is laid out. */
810 if (TREE_CODE (field) == VAR_DECL)
811 {
812 rli->pending_statics = tree_cons (NULL_TREE, field,
813 rli->pending_statics);
814 return;
815 }
816
817 /* Enumerators and enum types which are local to this class need not
818 be laid out. Likewise for initialized constant fields. */
819 else if (TREE_CODE (field) != FIELD_DECL)
820 return;
821
822 /* Unions are laid out very differently than records, so split
823 that code off to another function. */
824 else if (TREE_CODE (rli->t) != RECORD_TYPE)
825 {
826 place_union_field (rli, field);
827 return;
828 }
829
830 /* Work out the known alignment so far. Note that A & (-A) is the
831 value of the least-significant bit in A that is one. */
832 if (! integer_zerop (rli->bitpos))
833 known_align = (tree_low_cst (rli->bitpos, 1)
834 & - tree_low_cst (rli->bitpos, 1));
835 else if (integer_zerop (rli->offset))
836 known_align = 0;
837 else if (host_integerp (rli->offset, 1))
838 known_align = (BITS_PER_UNIT
839 * (tree_low_cst (rli->offset, 1)
840 & - tree_low_cst (rli->offset, 1)));
841 else
842 known_align = rli->offset_align;
843
844 desired_align = update_alignment_for_field (rli, field, known_align);
845 if (known_align == 0)
846 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
847
848 if (warn_packed && DECL_PACKED (field))
849 {
850 if (known_align >= TYPE_ALIGN (type))
851 {
852 if (TYPE_ALIGN (type) > desired_align)
853 {
854 if (STRICT_ALIGNMENT)
855 warning (OPT_Wattributes, "packed attribute causes "
856 "inefficient alignment for %q+D", field);
857 else
858 warning (OPT_Wattributes, "packed attribute is "
859 "unnecessary for %q+D", field);
860 }
861 }
862 else
863 rli->packed_maybe_necessary = 1;
864 }
865
866 /* Does this field automatically have alignment it needs by virtue
867 of the fields that precede it and the record's own alignment? */
868 if (known_align < desired_align)
869 {
870 /* No, we need to skip space before this field.
871 Bump the cumulative size to multiple of field alignment. */
872
873 warning (OPT_Wpadded, "padding struct to align %q+D", field);
874
875 /* If the alignment is still within offset_align, just align
876 the bit position. */
877 if (desired_align < rli->offset_align)
878 rli->bitpos = round_up (rli->bitpos, desired_align);
879 else
880 {
881 /* First adjust OFFSET by the partial bits, then align. */
882 rli->offset
883 = size_binop (PLUS_EXPR, rli->offset,
884 fold_convert (sizetype,
885 size_binop (CEIL_DIV_EXPR, rli->bitpos,
886 bitsize_unit_node)));
887 rli->bitpos = bitsize_zero_node;
888
889 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
890 }
891
892 if (! TREE_CONSTANT (rli->offset))
893 rli->offset_align = desired_align;
894
895 }
896
897 /* Handle compatibility with PCC. Note that if the record has any
898 variable-sized fields, we need not worry about compatibility. */
899 #ifdef PCC_BITFIELD_TYPE_MATTERS
900 if (PCC_BITFIELD_TYPE_MATTERS
901 && ! targetm.ms_bitfield_layout_p (rli->t)
902 && TREE_CODE (field) == FIELD_DECL
903 && type != error_mark_node
904 && DECL_BIT_FIELD (field)
905 && ! DECL_PACKED (field)
906 && maximum_field_alignment == 0
907 && ! integer_zerop (DECL_SIZE (field))
908 && host_integerp (DECL_SIZE (field), 1)
909 && host_integerp (rli->offset, 1)
910 && host_integerp (TYPE_SIZE (type), 1))
911 {
912 unsigned int type_align = TYPE_ALIGN (type);
913 tree dsize = DECL_SIZE (field);
914 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
915 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
916 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
917
918 #ifdef ADJUST_FIELD_ALIGN
919 if (! TYPE_USER_ALIGN (type))
920 type_align = ADJUST_FIELD_ALIGN (field, type_align);
921 #endif
922
923 /* A bit field may not span more units of alignment of its type
924 than its type itself. Advance to next boundary if necessary. */
925 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
926 rli->bitpos = round_up (rli->bitpos, type_align);
927
928 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
929 }
930 #endif
931
932 #ifdef BITFIELD_NBYTES_LIMITED
933 if (BITFIELD_NBYTES_LIMITED
934 && ! targetm.ms_bitfield_layout_p (rli->t)
935 && TREE_CODE (field) == FIELD_DECL
936 && type != error_mark_node
937 && DECL_BIT_FIELD_TYPE (field)
938 && ! DECL_PACKED (field)
939 && ! integer_zerop (DECL_SIZE (field))
940 && host_integerp (DECL_SIZE (field), 1)
941 && host_integerp (rli->offset, 1)
942 && host_integerp (TYPE_SIZE (type), 1))
943 {
944 unsigned int type_align = TYPE_ALIGN (type);
945 tree dsize = DECL_SIZE (field);
946 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
947 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
948 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
949
950 #ifdef ADJUST_FIELD_ALIGN
951 if (! TYPE_USER_ALIGN (type))
952 type_align = ADJUST_FIELD_ALIGN (field, type_align);
953 #endif
954
955 if (maximum_field_alignment != 0)
956 type_align = MIN (type_align, maximum_field_alignment);
957 /* ??? This test is opposite the test in the containing if
958 statement, so this code is unreachable currently. */
959 else if (DECL_PACKED (field))
960 type_align = MIN (type_align, BITS_PER_UNIT);
961
962 /* A bit field may not span the unit of alignment of its type.
963 Advance to next boundary if necessary. */
964 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
965 rli->bitpos = round_up (rli->bitpos, type_align);
966
967 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
968 }
969 #endif
970
971 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
972 A subtlety:
973 When a bit field is inserted into a packed record, the whole
974 size of the underlying type is used by one or more same-size
975 adjacent bitfields. (That is, if its long:3, 32 bits is
976 used in the record, and any additional adjacent long bitfields are
977 packed into the same chunk of 32 bits. However, if the size
978 changes, a new field of that size is allocated.) In an unpacked
979 record, this is the same as using alignment, but not equivalent
980 when packing.
981
982 Note: for compatibility, we use the type size, not the type alignment
983 to determine alignment, since that matches the documentation */
984
985 if (targetm.ms_bitfield_layout_p (rli->t)
986 && ((DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field))
987 || (rli->prev_field && ! DECL_PACKED (rli->prev_field))))
988 {
989 /* At this point, either the prior or current are bitfields,
990 (possibly both), and we're dealing with MS packing. */
991 tree prev_saved = rli->prev_field;
992
993 /* Is the prior field a bitfield? If so, handle "runs" of same
994 type size fields. */
995 if (rli->prev_field /* necessarily a bitfield if it exists. */)
996 {
997 /* If both are bitfields, nonzero, and the same size, this is
998 the middle of a run. Zero declared size fields are special
999 and handled as "end of run". (Note: it's nonzero declared
1000 size, but equal type sizes!) (Since we know that both
1001 the current and previous fields are bitfields by the
1002 time we check it, DECL_SIZE must be present for both.) */
1003 if (DECL_BIT_FIELD_TYPE (field)
1004 && !integer_zerop (DECL_SIZE (field))
1005 && !integer_zerop (DECL_SIZE (rli->prev_field))
1006 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1007 && host_integerp (TYPE_SIZE (type), 0)
1008 && simple_cst_equal (TYPE_SIZE (type),
1009 TYPE_SIZE (TREE_TYPE (rli->prev_field))))
1010 {
1011 /* We're in the middle of a run of equal type size fields; make
1012 sure we realign if we run out of bits. (Not decl size,
1013 type size!) */
1014 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 0);
1015
1016 if (rli->remaining_in_alignment < bitsize)
1017 {
1018 /* If PREV_FIELD is packed, and we haven't lumped
1019 non-packed bitfields with it, treat this as if PREV_FIELD
1020 was not a bitfield. This avoids anomalies where a packed
1021 bitfield with long long base type can take up more
1022 space than a same-size bitfield with base type short. */
1023 if (rli->prev_packed)
1024 rli->prev_field = prev_saved = NULL;
1025 else
1026 {
1027 /* out of bits; bump up to next 'word'. */
1028 rli->offset = DECL_FIELD_OFFSET (rli->prev_field);
1029 rli->bitpos
1030 = size_binop (PLUS_EXPR, TYPE_SIZE (type),
1031 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1032 rli->prev_field = field;
1033 rli->remaining_in_alignment
1034 = tree_low_cst (TYPE_SIZE (type), 0) - bitsize;
1035 }
1036 }
1037 else
1038 rli->remaining_in_alignment -= bitsize;
1039 }
1040 else if (rli->prev_packed)
1041 rli->prev_field = prev_saved = NULL;
1042 else
1043 {
1044 /* End of a run: if leaving a run of bitfields of the same type
1045 size, we have to "use up" the rest of the bits of the type
1046 size.
1047
1048 Compute the new position as the sum of the size for the prior
1049 type and where we first started working on that type.
1050 Note: since the beginning of the field was aligned then
1051 of course the end will be too. No round needed. */
1052
1053 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1054 {
1055 tree type_size = TYPE_SIZE (TREE_TYPE (rli->prev_field));
1056
1057 /* If the desired alignment is greater or equal to TYPE_SIZE,
1058 we have already adjusted rli->bitpos / rli->offset above.
1059 */
1060 if ((unsigned HOST_WIDE_INT) tree_low_cst (type_size, 0)
1061 > desired_align)
1062 rli->bitpos
1063 = size_binop (PLUS_EXPR, type_size,
1064 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1065 }
1066 else
1067 /* We "use up" size zero fields; the code below should behave
1068 as if the prior field was not a bitfield. */
1069 prev_saved = NULL;
1070
1071 /* Cause a new bitfield to be captured, either this time (if
1072 currently a bitfield) or next time we see one. */
1073 if (!DECL_BIT_FIELD_TYPE(field)
1074 || integer_zerop (DECL_SIZE (field)))
1075 rli->prev_field = NULL;
1076 }
1077
1078 rli->prev_packed = 0;
1079 normalize_rli (rli);
1080 }
1081
1082 /* If we're starting a new run of same size type bitfields
1083 (or a run of non-bitfields), set up the "first of the run"
1084 fields.
1085
1086 That is, if the current field is not a bitfield, or if there
1087 was a prior bitfield the type sizes differ, or if there wasn't
1088 a prior bitfield the size of the current field is nonzero.
1089
1090 Note: we must be sure to test ONLY the type size if there was
1091 a prior bitfield and ONLY for the current field being zero if
1092 there wasn't. */
1093
1094 if (!DECL_BIT_FIELD_TYPE (field)
1095 || ( prev_saved != NULL
1096 ? !simple_cst_equal (TYPE_SIZE (type),
1097 TYPE_SIZE (TREE_TYPE (prev_saved)))
1098 : !integer_zerop (DECL_SIZE (field)) ))
1099 {
1100 /* Never smaller than a byte for compatibility. */
1101 unsigned int type_align = BITS_PER_UNIT;
1102
1103 /* (When not a bitfield), we could be seeing a flex array (with
1104 no DECL_SIZE). Since we won't be using remaining_in_alignment
1105 until we see a bitfield (and come by here again) we just skip
1106 calculating it. */
1107 if (DECL_SIZE (field) != NULL
1108 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 0)
1109 && host_integerp (DECL_SIZE (field), 0))
1110 rli->remaining_in_alignment
1111 = tree_low_cst (TYPE_SIZE (TREE_TYPE(field)), 0)
1112 - tree_low_cst (DECL_SIZE (field), 0);
1113
1114 /* Now align (conventionally) for the new type. */
1115 if (!DECL_PACKED(field))
1116 type_align = MAX(TYPE_ALIGN (type), type_align);
1117
1118 if (prev_saved
1119 && DECL_BIT_FIELD_TYPE (prev_saved)
1120 /* If the previous bit-field is zero-sized, we've already
1121 accounted for its alignment needs (or ignored it, if
1122 appropriate) while placing it. */
1123 && ! integer_zerop (DECL_SIZE (prev_saved)))
1124 type_align = MAX (type_align,
1125 TYPE_ALIGN (TREE_TYPE (prev_saved)));
1126
1127 if (maximum_field_alignment != 0)
1128 type_align = MIN (type_align, maximum_field_alignment);
1129
1130 rli->bitpos = round_up (rli->bitpos, type_align);
1131
1132 /* If we really aligned, don't allow subsequent bitfields
1133 to undo that. */
1134 rli->prev_field = NULL;
1135 }
1136 }
1137
1138 /* Offset so far becomes the position of this field after normalizing. */
1139 normalize_rli (rli);
1140 DECL_FIELD_OFFSET (field) = rli->offset;
1141 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1142 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1143
1144 /* If this field ended up more aligned than we thought it would be (we
1145 approximate this by seeing if its position changed), lay out the field
1146 again; perhaps we can use an integral mode for it now. */
1147 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1148 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1149 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1150 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1151 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1152 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1153 actual_align = (BITS_PER_UNIT
1154 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1155 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1156 else
1157 actual_align = DECL_OFFSET_ALIGN (field);
1158 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1159 store / extract bit field operations will check the alignment of the
1160 record against the mode of bit fields. */
1161
1162 if (known_align != actual_align)
1163 layout_decl (field, actual_align);
1164
1165 if (DECL_BIT_FIELD_TYPE (field))
1166 {
1167 unsigned int type_align = TYPE_ALIGN (type);
1168
1169 /* Only the MS bitfields use this. We used to also put any kind of
1170 packed bit fields into prev_field, but that makes no sense, because
1171 an 8 bit packed bit field shouldn't impose more restriction on
1172 following fields than a char field, and the alignment requirements
1173 are also not fulfilled.
1174 There is no sane value to set rli->remaining_in_alignment to when
1175 a packed bitfield in prev_field is unaligned. */
1176 if (maximum_field_alignment != 0)
1177 type_align = MIN (type_align, maximum_field_alignment);
1178 gcc_assert (rli->prev_field
1179 || actual_align >= type_align || DECL_PACKED (field)
1180 || integer_zerop (DECL_SIZE (field))
1181 || !targetm.ms_bitfield_layout_p (rli->t));
1182 if (rli->prev_field == NULL && actual_align >= type_align
1183 && !integer_zerop (DECL_SIZE (field)))
1184 {
1185 rli->prev_field = field;
1186 /* rli->remaining_in_alignment has not been set if the bitfield
1187 has size zero, or if it is a packed bitfield. */
1188 rli->remaining_in_alignment
1189 = (tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 0)
1190 - tree_low_cst (DECL_SIZE (field), 0));
1191 rli->prev_packed = DECL_PACKED (field);
1192
1193 }
1194 else if (rli->prev_field && DECL_PACKED (field))
1195 {
1196 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 0);
1197
1198 if (rli->remaining_in_alignment < bitsize)
1199 rli->prev_field = NULL;
1200 else
1201 rli->remaining_in_alignment -= bitsize;
1202 }
1203 }
1204
1205 /* Now add size of this field to the size of the record. If the size is
1206 not constant, treat the field as being a multiple of bytes and just
1207 adjust the offset, resetting the bit position. Otherwise, apportion the
1208 size amongst the bit position and offset. First handle the case of an
1209 unspecified size, which can happen when we have an invalid nested struct
1210 definition, such as struct j { struct j { int i; } }. The error message
1211 is printed in finish_struct. */
1212 if (DECL_SIZE (field) == 0)
1213 /* Do nothing. */;
1214 else if (TREE_CODE (DECL_SIZE_UNIT (field)) != INTEGER_CST
1215 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field)))
1216 {
1217 rli->offset
1218 = size_binop (PLUS_EXPR, rli->offset,
1219 fold_convert (sizetype,
1220 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1221 bitsize_unit_node)));
1222 rli->offset
1223 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1224 rli->bitpos = bitsize_zero_node;
1225 rli->offset_align = MIN (rli->offset_align, desired_align);
1226 }
1227 else
1228 {
1229 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1230 normalize_rli (rli);
1231 }
1232 }
1233
1234 /* Assuming that all the fields have been laid out, this function uses
1235 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1236 indicated by RLI. */
1237
1238 static void
1239 finalize_record_size (record_layout_info rli)
1240 {
1241 tree unpadded_size, unpadded_size_unit;
1242
1243 /* Now we want just byte and bit offsets, so set the offset alignment
1244 to be a byte and then normalize. */
1245 rli->offset_align = BITS_PER_UNIT;
1246 normalize_rli (rli);
1247
1248 /* Determine the desired alignment. */
1249 #ifdef ROUND_TYPE_ALIGN
1250 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1251 rli->record_align);
1252 #else
1253 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1254 #endif
1255
1256 /* Compute the size so far. Be sure to allow for extra bits in the
1257 size in bytes. We have guaranteed above that it will be no more
1258 than a single byte. */
1259 unpadded_size = rli_size_so_far (rli);
1260 unpadded_size_unit = rli_size_unit_so_far (rli);
1261 if (! integer_zerop (rli->bitpos))
1262 unpadded_size_unit
1263 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1264
1265 /* Round the size up to be a multiple of the required alignment. */
1266 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1267 TYPE_SIZE_UNIT (rli->t)
1268 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1269
1270 if (TREE_CONSTANT (unpadded_size)
1271 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1272 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1273
1274 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1275 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1276 && TREE_CONSTANT (unpadded_size))
1277 {
1278 tree unpacked_size;
1279
1280 #ifdef ROUND_TYPE_ALIGN
1281 rli->unpacked_align
1282 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1283 #else
1284 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1285 #endif
1286
1287 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1288 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1289 {
1290 TYPE_PACKED (rli->t) = 0;
1291
1292 if (TYPE_NAME (rli->t))
1293 {
1294 const char *name;
1295
1296 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1297 name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
1298 else
1299 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
1300
1301 if (STRICT_ALIGNMENT)
1302 warning (OPT_Wpacked, "packed attribute causes inefficient "
1303 "alignment for %qs", name);
1304 else
1305 warning (OPT_Wpacked,
1306 "packed attribute is unnecessary for %qs", name);
1307 }
1308 else
1309 {
1310 if (STRICT_ALIGNMENT)
1311 warning (OPT_Wpacked,
1312 "packed attribute causes inefficient alignment");
1313 else
1314 warning (OPT_Wpacked, "packed attribute is unnecessary");
1315 }
1316 }
1317 }
1318 }
1319
1320 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1321
1322 void
1323 compute_record_mode (tree type)
1324 {
1325 tree field;
1326 enum machine_mode mode = VOIDmode;
1327
1328 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1329 However, if possible, we use a mode that fits in a register
1330 instead, in order to allow for better optimization down the
1331 line. */
1332 TYPE_MODE (type) = BLKmode;
1333
1334 if (! host_integerp (TYPE_SIZE (type), 1))
1335 return;
1336
1337 /* A record which has any BLKmode members must itself be
1338 BLKmode; it can't go in a register. Unless the member is
1339 BLKmode only because it isn't aligned. */
1340 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1341 {
1342 if (TREE_CODE (field) != FIELD_DECL)
1343 continue;
1344
1345 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1346 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1347 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1348 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1349 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1350 || ! host_integerp (bit_position (field), 1)
1351 || DECL_SIZE (field) == 0
1352 || ! host_integerp (DECL_SIZE (field), 1))
1353 return;
1354
1355 /* If this field is the whole struct, remember its mode so
1356 that, say, we can put a double in a class into a DF
1357 register instead of forcing it to live in the stack. */
1358 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1359 mode = DECL_MODE (field);
1360
1361 #ifdef MEMBER_TYPE_FORCES_BLK
1362 /* With some targets, eg. c4x, it is sub-optimal
1363 to access an aligned BLKmode structure as a scalar. */
1364
1365 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1366 return;
1367 #endif /* MEMBER_TYPE_FORCES_BLK */
1368 }
1369
1370 /* If we only have one real field; use its mode if that mode's size
1371 matches the type's size. This only applies to RECORD_TYPE. This
1372 does not apply to unions. */
1373 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1374 && host_integerp (TYPE_SIZE (type), 1)
1375 && GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
1376 TYPE_MODE (type) = mode;
1377 else
1378 TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1379
1380 /* If structure's known alignment is less than what the scalar
1381 mode would need, and it matters, then stick with BLKmode. */
1382 if (TYPE_MODE (type) != BLKmode
1383 && STRICT_ALIGNMENT
1384 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1385 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1386 {
1387 /* If this is the only reason this type is BLKmode, then
1388 don't force containing types to be BLKmode. */
1389 TYPE_NO_FORCE_BLK (type) = 1;
1390 TYPE_MODE (type) = BLKmode;
1391 }
1392 }
1393
1394 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1395 out. */
1396
1397 static void
1398 finalize_type_size (tree type)
1399 {
1400 /* Normally, use the alignment corresponding to the mode chosen.
1401 However, where strict alignment is not required, avoid
1402 over-aligning structures, since most compilers do not do this
1403 alignment. */
1404
1405 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1406 && (STRICT_ALIGNMENT
1407 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1408 && TREE_CODE (type) != QUAL_UNION_TYPE
1409 && TREE_CODE (type) != ARRAY_TYPE)))
1410 {
1411 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1412
1413 /* Don't override a larger alignment requirement coming from a user
1414 alignment of one of the fields. */
1415 if (mode_align >= TYPE_ALIGN (type))
1416 {
1417 TYPE_ALIGN (type) = mode_align;
1418 TYPE_USER_ALIGN (type) = 0;
1419 }
1420 }
1421
1422 /* Do machine-dependent extra alignment. */
1423 #ifdef ROUND_TYPE_ALIGN
1424 TYPE_ALIGN (type)
1425 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1426 #endif
1427
1428 /* If we failed to find a simple way to calculate the unit size
1429 of the type, find it by division. */
1430 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1431 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1432 result will fit in sizetype. We will get more efficient code using
1433 sizetype, so we force a conversion. */
1434 TYPE_SIZE_UNIT (type)
1435 = fold_convert (sizetype,
1436 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1437 bitsize_unit_node));
1438
1439 if (TYPE_SIZE (type) != 0)
1440 {
1441 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1442 TYPE_SIZE_UNIT (type) = round_up (TYPE_SIZE_UNIT (type),
1443 TYPE_ALIGN_UNIT (type));
1444 }
1445
1446 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1447 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1448 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1449 if (TYPE_SIZE_UNIT (type) != 0
1450 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1451 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1452
1453 /* Also layout any other variants of the type. */
1454 if (TYPE_NEXT_VARIANT (type)
1455 || type != TYPE_MAIN_VARIANT (type))
1456 {
1457 tree variant;
1458 /* Record layout info of this variant. */
1459 tree size = TYPE_SIZE (type);
1460 tree size_unit = TYPE_SIZE_UNIT (type);
1461 unsigned int align = TYPE_ALIGN (type);
1462 unsigned int user_align = TYPE_USER_ALIGN (type);
1463 enum machine_mode mode = TYPE_MODE (type);
1464
1465 /* Copy it into all variants. */
1466 for (variant = TYPE_MAIN_VARIANT (type);
1467 variant != 0;
1468 variant = TYPE_NEXT_VARIANT (variant))
1469 {
1470 TYPE_SIZE (variant) = size;
1471 TYPE_SIZE_UNIT (variant) = size_unit;
1472 TYPE_ALIGN (variant) = align;
1473 TYPE_USER_ALIGN (variant) = user_align;
1474 TYPE_MODE (variant) = mode;
1475 }
1476 }
1477 }
1478
1479 /* Do all of the work required to layout the type indicated by RLI,
1480 once the fields have been laid out. This function will call `free'
1481 for RLI, unless FREE_P is false. Passing a value other than false
1482 for FREE_P is bad practice; this option only exists to support the
1483 G++ 3.2 ABI. */
1484
1485 void
1486 finish_record_layout (record_layout_info rli, int free_p)
1487 {
1488 tree field;
1489
1490 /* Compute the final size. */
1491 finalize_record_size (rli);
1492
1493 /* Compute the TYPE_MODE for the record. */
1494 compute_record_mode (rli->t);
1495
1496 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1497 finalize_type_size (rli->t);
1498
1499 /* We might be able to clear DECL_PACKED on any members that happen
1500 to be suitably aligned (not forgetting the alignment of the type
1501 itself). */
1502 for (field = TYPE_FIELDS (rli->t); field; field = TREE_CHAIN (field))
1503 if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field)
1504 && DECL_OFFSET_ALIGN (field) >= TYPE_ALIGN (TREE_TYPE (field))
1505 && TYPE_ALIGN (rli->t) >= TYPE_ALIGN (TREE_TYPE (field)))
1506 DECL_PACKED (field) = 0;
1507
1508 /* Lay out any static members. This is done now because their type
1509 may use the record's type. */
1510 while (rli->pending_statics)
1511 {
1512 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1513 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1514 }
1515
1516 /* Clean up. */
1517 if (free_p)
1518 free (rli);
1519 }
1520 \f
1521
1522 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1523 NAME, its fields are chained in reverse on FIELDS.
1524
1525 If ALIGN_TYPE is non-null, it is given the same alignment as
1526 ALIGN_TYPE. */
1527
1528 void
1529 finish_builtin_struct (tree type, const char *name, tree fields,
1530 tree align_type)
1531 {
1532 tree tail, next;
1533
1534 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1535 {
1536 DECL_FIELD_CONTEXT (fields) = type;
1537 next = TREE_CHAIN (fields);
1538 TREE_CHAIN (fields) = tail;
1539 }
1540 TYPE_FIELDS (type) = tail;
1541
1542 if (align_type)
1543 {
1544 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1545 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1546 }
1547
1548 layout_type (type);
1549 #if 0 /* not yet, should get fixed properly later */
1550 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1551 #else
1552 TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type);
1553 #endif
1554 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1555 layout_decl (TYPE_NAME (type), 0);
1556 }
1557
1558 /* Calculate the mode, size, and alignment for TYPE.
1559 For an array type, calculate the element separation as well.
1560 Record TYPE on the chain of permanent or temporary types
1561 so that dbxout will find out about it.
1562
1563 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1564 layout_type does nothing on such a type.
1565
1566 If the type is incomplete, its TYPE_SIZE remains zero. */
1567
1568 void
1569 layout_type (tree type)
1570 {
1571 gcc_assert (type);
1572
1573 if (type == error_mark_node)
1574 return;
1575
1576 /* Do nothing if type has been laid out before. */
1577 if (TYPE_SIZE (type))
1578 return;
1579
1580 switch (TREE_CODE (type))
1581 {
1582 case LANG_TYPE:
1583 /* This kind of type is the responsibility
1584 of the language-specific code. */
1585 gcc_unreachable ();
1586
1587 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1588 if (TYPE_PRECISION (type) == 0)
1589 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1590
1591 /* ... fall through ... */
1592
1593 case INTEGER_TYPE:
1594 case ENUMERAL_TYPE:
1595 case CHAR_TYPE:
1596 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1597 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1598 TYPE_UNSIGNED (type) = 1;
1599
1600 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
1601 MODE_INT);
1602 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1603 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1604 break;
1605
1606 case REAL_TYPE:
1607 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
1608 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1609 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1610 break;
1611
1612 case COMPLEX_TYPE:
1613 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1614 TYPE_MODE (type)
1615 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1616 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
1617 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
1618 0);
1619 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1620 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1621 break;
1622
1623 case VECTOR_TYPE:
1624 {
1625 int nunits = TYPE_VECTOR_SUBPARTS (type);
1626 tree nunits_tree = build_int_cst (NULL_TREE, nunits);
1627 tree innertype = TREE_TYPE (type);
1628
1629 gcc_assert (!(nunits & (nunits - 1)));
1630
1631 /* Find an appropriate mode for the vector type. */
1632 if (TYPE_MODE (type) == VOIDmode)
1633 {
1634 enum machine_mode innermode = TYPE_MODE (innertype);
1635 enum machine_mode mode;
1636
1637 /* First, look for a supported vector type. */
1638 if (GET_MODE_CLASS (innermode) == MODE_FLOAT)
1639 mode = MIN_MODE_VECTOR_FLOAT;
1640 else
1641 mode = MIN_MODE_VECTOR_INT;
1642
1643 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
1644 if (GET_MODE_NUNITS (mode) == nunits
1645 && GET_MODE_INNER (mode) == innermode
1646 && targetm.vector_mode_supported_p (mode))
1647 break;
1648
1649 /* For integers, try mapping it to a same-sized scalar mode. */
1650 if (mode == VOIDmode
1651 && GET_MODE_CLASS (innermode) == MODE_INT)
1652 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
1653 MODE_INT, 0);
1654
1655 if (mode == VOIDmode || !have_regs_of_mode[mode])
1656 TYPE_MODE (type) = BLKmode;
1657 else
1658 TYPE_MODE (type) = mode;
1659 }
1660
1661 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1662 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
1663 TYPE_SIZE_UNIT (innertype),
1664 nunits_tree, 0);
1665 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
1666 nunits_tree, 0);
1667
1668 /* Always naturally align vectors. This prevents ABI changes
1669 depending on whether or not native vector modes are supported. */
1670 TYPE_ALIGN (type) = tree_low_cst (TYPE_SIZE (type), 0);
1671 break;
1672 }
1673
1674 case VOID_TYPE:
1675 /* This is an incomplete type and so doesn't have a size. */
1676 TYPE_ALIGN (type) = 1;
1677 TYPE_USER_ALIGN (type) = 0;
1678 TYPE_MODE (type) = VOIDmode;
1679 break;
1680
1681 case OFFSET_TYPE:
1682 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1683 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1684 /* A pointer might be MODE_PARTIAL_INT,
1685 but ptrdiff_t must be integral. */
1686 TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
1687 break;
1688
1689 case FUNCTION_TYPE:
1690 case METHOD_TYPE:
1691 /* It's hard to see what the mode and size of a function ought to
1692 be, but we do know the alignment is FUNCTION_BOUNDARY, so
1693 make it consistent with that. */
1694 TYPE_MODE (type) = mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0);
1695 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
1696 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
1697 break;
1698
1699 case POINTER_TYPE:
1700 case REFERENCE_TYPE:
1701 {
1702
1703 enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
1704 && reference_types_internal)
1705 ? Pmode : TYPE_MODE (type));
1706
1707 int nbits = GET_MODE_BITSIZE (mode);
1708
1709 TYPE_SIZE (type) = bitsize_int (nbits);
1710 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1711 TYPE_UNSIGNED (type) = 1;
1712 TYPE_PRECISION (type) = nbits;
1713 }
1714 break;
1715
1716 case ARRAY_TYPE:
1717 {
1718 tree index = TYPE_DOMAIN (type);
1719 tree element = TREE_TYPE (type);
1720
1721 build_pointer_type (element);
1722
1723 /* We need to know both bounds in order to compute the size. */
1724 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1725 && TYPE_SIZE (element))
1726 {
1727 tree ub = TYPE_MAX_VALUE (index);
1728 tree lb = TYPE_MIN_VALUE (index);
1729 tree length;
1730 tree element_size;
1731
1732 /* The initial subtraction should happen in the original type so
1733 that (possible) negative values are handled appropriately. */
1734 length = size_binop (PLUS_EXPR, size_one_node,
1735 fold_convert (sizetype,
1736 fold_build2 (MINUS_EXPR,
1737 TREE_TYPE (lb),
1738 ub, lb)));
1739
1740 /* Special handling for arrays of bits (for Chill). */
1741 element_size = TYPE_SIZE (element);
1742 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1743 && (integer_zerop (TYPE_MAX_VALUE (element))
1744 || integer_onep (TYPE_MAX_VALUE (element)))
1745 && host_integerp (TYPE_MIN_VALUE (element), 1))
1746 {
1747 HOST_WIDE_INT maxvalue
1748 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1749 HOST_WIDE_INT minvalue
1750 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1751
1752 if (maxvalue - minvalue == 1
1753 && (maxvalue == 1 || maxvalue == 0))
1754 element_size = integer_one_node;
1755 }
1756
1757 /* If neither bound is a constant and sizetype is signed, make
1758 sure the size is never negative. We should really do this
1759 if *either* bound is non-constant, but this is the best
1760 compromise between C and Ada. */
1761 if (!TYPE_UNSIGNED (sizetype)
1762 && TREE_CODE (TYPE_MIN_VALUE (index)) != INTEGER_CST
1763 && TREE_CODE (TYPE_MAX_VALUE (index)) != INTEGER_CST)
1764 length = size_binop (MAX_EXPR, length, size_zero_node);
1765
1766 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1767 fold_convert (bitsizetype,
1768 length));
1769
1770 /* If we know the size of the element, calculate the total
1771 size directly, rather than do some division thing below.
1772 This optimization helps Fortran assumed-size arrays
1773 (where the size of the array is determined at runtime)
1774 substantially.
1775 Note that we can't do this in the case where the size of
1776 the elements is one bit since TYPE_SIZE_UNIT cannot be
1777 set correctly in that case. */
1778 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
1779 TYPE_SIZE_UNIT (type)
1780 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1781 }
1782
1783 /* Now round the alignment and size,
1784 using machine-dependent criteria if any. */
1785
1786 #ifdef ROUND_TYPE_ALIGN
1787 TYPE_ALIGN (type)
1788 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1789 #else
1790 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1791 #endif
1792 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
1793 TYPE_MODE (type) = BLKmode;
1794 if (TYPE_SIZE (type) != 0
1795 #ifdef MEMBER_TYPE_FORCES_BLK
1796 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
1797 #endif
1798 /* BLKmode elements force BLKmode aggregate;
1799 else extract/store fields may lose. */
1800 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
1801 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
1802 {
1803 /* One-element arrays get the component type's mode. */
1804 if (simple_cst_equal (TYPE_SIZE (type),
1805 TYPE_SIZE (TREE_TYPE (type))))
1806 TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
1807 else
1808 TYPE_MODE (type)
1809 = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1810
1811 if (TYPE_MODE (type) != BLKmode
1812 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
1813 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
1814 && TYPE_MODE (type) != BLKmode)
1815 {
1816 TYPE_NO_FORCE_BLK (type) = 1;
1817 TYPE_MODE (type) = BLKmode;
1818 }
1819 }
1820 break;
1821 }
1822
1823 case RECORD_TYPE:
1824 case UNION_TYPE:
1825 case QUAL_UNION_TYPE:
1826 {
1827 tree field;
1828 record_layout_info rli;
1829
1830 /* Initialize the layout information. */
1831 rli = start_record_layout (type);
1832
1833 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1834 in the reverse order in building the COND_EXPR that denotes
1835 its size. We reverse them again later. */
1836 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1837 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1838
1839 /* Place all the fields. */
1840 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1841 place_field (rli, field);
1842
1843 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1844 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1845
1846 if (lang_adjust_rli)
1847 (*lang_adjust_rli) (rli);
1848
1849 /* Finish laying out the record. */
1850 finish_record_layout (rli, /*free_p=*/true);
1851 }
1852 break;
1853
1854 default:
1855 gcc_unreachable ();
1856 }
1857
1858 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1859 records and unions, finish_record_layout already called this
1860 function. */
1861 if (TREE_CODE (type) != RECORD_TYPE
1862 && TREE_CODE (type) != UNION_TYPE
1863 && TREE_CODE (type) != QUAL_UNION_TYPE)
1864 finalize_type_size (type);
1865
1866 /* If an alias set has been set for this aggregate when it was incomplete,
1867 force it into alias set 0.
1868 This is too conservative, but we cannot call record_component_aliases
1869 here because some frontends still change the aggregates after
1870 layout_type. */
1871 if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
1872 TYPE_ALIAS_SET (type) = 0;
1873 }
1874 \f
1875 /* Create and return a type for signed integers of PRECISION bits. */
1876
1877 tree
1878 make_signed_type (int precision)
1879 {
1880 tree type = make_node (INTEGER_TYPE);
1881
1882 TYPE_PRECISION (type) = precision;
1883
1884 fixup_signed_type (type);
1885 return type;
1886 }
1887
1888 /* Create and return a type for unsigned integers of PRECISION bits. */
1889
1890 tree
1891 make_unsigned_type (int precision)
1892 {
1893 tree type = make_node (INTEGER_TYPE);
1894
1895 TYPE_PRECISION (type) = precision;
1896
1897 fixup_unsigned_type (type);
1898 return type;
1899 }
1900 \f
1901 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1902 value to enable integer types to be created. */
1903
1904 void
1905 initialize_sizetypes (bool signed_p)
1906 {
1907 tree t = make_node (INTEGER_TYPE);
1908
1909 TYPE_MODE (t) = SImode;
1910 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
1911 TYPE_USER_ALIGN (t) = 0;
1912 TYPE_IS_SIZETYPE (t) = 1;
1913 TYPE_UNSIGNED (t) = !signed_p;
1914 TYPE_SIZE (t) = build_int_cst (t, GET_MODE_BITSIZE (SImode));
1915 TYPE_SIZE_UNIT (t) = build_int_cst (t, GET_MODE_SIZE (SImode));
1916 TYPE_PRECISION (t) = GET_MODE_BITSIZE (SImode);
1917 TYPE_MIN_VALUE (t) = build_int_cst (t, 0);
1918
1919 /* 1000 avoids problems with possible overflow and is certainly
1920 larger than any size value we'd want to be storing. */
1921 TYPE_MAX_VALUE (t) = build_int_cst (t, 1000);
1922
1923 sizetype = t;
1924 bitsizetype = build_distinct_type_copy (t);
1925 }
1926
1927 /* Make sizetype a version of TYPE, and initialize *sizetype
1928 accordingly. We do this by overwriting the stub sizetype and
1929 bitsizetype nodes created by initialize_sizetypes. This makes sure
1930 that (a) anything stubby about them no longer exists, (b) any
1931 INTEGER_CSTs created with such a type, remain valid. */
1932
1933 void
1934 set_sizetype (tree type)
1935 {
1936 int oprecision = TYPE_PRECISION (type);
1937 /* The *bitsizetype types use a precision that avoids overflows when
1938 calculating signed sizes / offsets in bits. However, when
1939 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1940 precision. */
1941 int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
1942 2 * HOST_BITS_PER_WIDE_INT);
1943 tree t;
1944
1945 gcc_assert (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (sizetype));
1946
1947 t = build_distinct_type_copy (type);
1948 /* We do want to use sizetype's cache, as we will be replacing that
1949 type. */
1950 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (sizetype);
1951 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (sizetype);
1952 TREE_TYPE (TYPE_CACHED_VALUES (t)) = type;
1953 TYPE_UID (t) = TYPE_UID (sizetype);
1954 TYPE_IS_SIZETYPE (t) = 1;
1955
1956 /* Replace our original stub sizetype. */
1957 memcpy (sizetype, t, tree_size (sizetype));
1958 TYPE_MAIN_VARIANT (sizetype) = sizetype;
1959
1960 t = make_node (INTEGER_TYPE);
1961 TYPE_NAME (t) = get_identifier ("bit_size_type");
1962 /* We do want to use bitsizetype's cache, as we will be replacing that
1963 type. */
1964 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (bitsizetype);
1965 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (bitsizetype);
1966 TYPE_PRECISION (t) = precision;
1967 TYPE_UID (t) = TYPE_UID (bitsizetype);
1968 TYPE_IS_SIZETYPE (t) = 1;
1969
1970 /* Replace our original stub bitsizetype. */
1971 memcpy (bitsizetype, t, tree_size (bitsizetype));
1972 TYPE_MAIN_VARIANT (bitsizetype) = bitsizetype;
1973
1974 if (TYPE_UNSIGNED (type))
1975 {
1976 fixup_unsigned_type (bitsizetype);
1977 ssizetype = build_distinct_type_copy (make_signed_type (oprecision));
1978 TYPE_IS_SIZETYPE (ssizetype) = 1;
1979 sbitsizetype = build_distinct_type_copy (make_signed_type (precision));
1980 TYPE_IS_SIZETYPE (sbitsizetype) = 1;
1981 }
1982 else
1983 {
1984 fixup_signed_type (bitsizetype);
1985 ssizetype = sizetype;
1986 sbitsizetype = bitsizetype;
1987 }
1988 }
1989 \f
1990 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE,
1991 BOOLEAN_TYPE, or CHAR_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
1992 for TYPE, based on the PRECISION and whether or not the TYPE
1993 IS_UNSIGNED. PRECISION need not correspond to a width supported
1994 natively by the hardware; for example, on a machine with 8-bit,
1995 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
1996 61. */
1997
1998 void
1999 set_min_and_max_values_for_integral_type (tree type,
2000 int precision,
2001 bool is_unsigned)
2002 {
2003 tree min_value;
2004 tree max_value;
2005
2006 if (is_unsigned)
2007 {
2008 min_value = build_int_cst (type, 0);
2009 max_value
2010 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2011 ? -1
2012 : ((HOST_WIDE_INT) 1 << precision) - 1,
2013 precision - HOST_BITS_PER_WIDE_INT > 0
2014 ? ((unsigned HOST_WIDE_INT) ~0
2015 >> (HOST_BITS_PER_WIDE_INT
2016 - (precision - HOST_BITS_PER_WIDE_INT)))
2017 : 0);
2018 }
2019 else
2020 {
2021 min_value
2022 = build_int_cst_wide (type,
2023 (precision - HOST_BITS_PER_WIDE_INT > 0
2024 ? 0
2025 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2026 (((HOST_WIDE_INT) (-1)
2027 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2028 ? precision - HOST_BITS_PER_WIDE_INT - 1
2029 : 0))));
2030 max_value
2031 = build_int_cst_wide (type,
2032 (precision - HOST_BITS_PER_WIDE_INT > 0
2033 ? -1
2034 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2035 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2036 ? (((HOST_WIDE_INT) 1
2037 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2038 : 0));
2039 }
2040
2041 TYPE_MIN_VALUE (type) = min_value;
2042 TYPE_MAX_VALUE (type) = max_value;
2043 }
2044
2045 /* Set the extreme values of TYPE based on its precision in bits,
2046 then lay it out. Used when make_signed_type won't do
2047 because the tree code is not INTEGER_TYPE.
2048 E.g. for Pascal, when the -fsigned-char option is given. */
2049
2050 void
2051 fixup_signed_type (tree type)
2052 {
2053 int precision = TYPE_PRECISION (type);
2054
2055 /* We can not represent properly constants greater then
2056 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2057 as they are used by i386 vector extensions and friends. */
2058 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2059 precision = HOST_BITS_PER_WIDE_INT * 2;
2060
2061 set_min_and_max_values_for_integral_type (type, precision,
2062 /*is_unsigned=*/false);
2063
2064 /* Lay out the type: set its alignment, size, etc. */
2065 layout_type (type);
2066 }
2067
2068 /* Set the extreme values of TYPE based on its precision in bits,
2069 then lay it out. This is used both in `make_unsigned_type'
2070 and for enumeral types. */
2071
2072 void
2073 fixup_unsigned_type (tree type)
2074 {
2075 int precision = TYPE_PRECISION (type);
2076
2077 /* We can not represent properly constants greater then
2078 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2079 as they are used by i386 vector extensions and friends. */
2080 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2081 precision = HOST_BITS_PER_WIDE_INT * 2;
2082
2083 TYPE_UNSIGNED (type) = 1;
2084
2085 set_min_and_max_values_for_integral_type (type, precision,
2086 /*is_unsigned=*/true);
2087
2088 /* Lay out the type: set its alignment, size, etc. */
2089 layout_type (type);
2090 }
2091 \f
2092 /* Find the best machine mode to use when referencing a bit field of length
2093 BITSIZE bits starting at BITPOS.
2094
2095 The underlying object is known to be aligned to a boundary of ALIGN bits.
2096 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2097 larger than LARGEST_MODE (usually SImode).
2098
2099 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
2100 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
2101 mode meeting these conditions.
2102
2103 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
2104 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2105 all the conditions. */
2106
2107 enum machine_mode
2108 get_best_mode (int bitsize, int bitpos, unsigned int align,
2109 enum machine_mode largest_mode, int volatilep)
2110 {
2111 enum machine_mode mode;
2112 unsigned int unit = 0;
2113
2114 /* Find the narrowest integer mode that contains the bit field. */
2115 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2116 mode = GET_MODE_WIDER_MODE (mode))
2117 {
2118 unit = GET_MODE_BITSIZE (mode);
2119 if ((bitpos % unit) + bitsize <= unit)
2120 break;
2121 }
2122
2123 if (mode == VOIDmode
2124 /* It is tempting to omit the following line
2125 if STRICT_ALIGNMENT is true.
2126 But that is incorrect, since if the bitfield uses part of 3 bytes
2127 and we use a 4-byte mode, we could get a spurious segv
2128 if the extra 4th byte is past the end of memory.
2129 (Though at least one Unix compiler ignores this problem:
2130 that on the Sequent 386 machine. */
2131 || MIN (unit, BIGGEST_ALIGNMENT) > align
2132 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2133 return VOIDmode;
2134
2135 if (SLOW_BYTE_ACCESS && ! volatilep)
2136 {
2137 enum machine_mode wide_mode = VOIDmode, tmode;
2138
2139 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2140 tmode = GET_MODE_WIDER_MODE (tmode))
2141 {
2142 unit = GET_MODE_BITSIZE (tmode);
2143 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2144 && unit <= BITS_PER_WORD
2145 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2146 && (largest_mode == VOIDmode
2147 || unit <= GET_MODE_BITSIZE (largest_mode)))
2148 wide_mode = tmode;
2149 }
2150
2151 if (wide_mode != VOIDmode)
2152 return wide_mode;
2153 }
2154
2155 return mode;
2156 }
2157
2158 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2159 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2160
2161 void
2162 get_mode_bounds (enum machine_mode mode, int sign,
2163 enum machine_mode target_mode,
2164 rtx *mmin, rtx *mmax)
2165 {
2166 unsigned size = GET_MODE_BITSIZE (mode);
2167 unsigned HOST_WIDE_INT min_val, max_val;
2168
2169 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2170
2171 if (sign)
2172 {
2173 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2174 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2175 }
2176 else
2177 {
2178 min_val = 0;
2179 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2180 }
2181
2182 *mmin = gen_int_mode (min_val, target_mode);
2183 *mmax = gen_int_mode (max_val, target_mode);
2184 }
2185
2186 #include "gt-stor-layout.h"