machmode.h (int_n_data_t): New.
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "stringpool.h"
28 #include "varasm.h"
29 #include "print-tree.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "diagnostic-core.h"
36 #include "target.h"
37 #include "langhooks.h"
38 #include "regs.h"
39 #include "params.h"
40 #include "cgraph.h"
41 #include "tree-inline.h"
42 #include "tree-dump.h"
43 #include "gimplify.h"
44
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) stk_type_kind_last];
48
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
52
53 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
54 in the address spaces' address_mode, not pointer_mode. Set only by
55 internal_reference_types called only by a front end. */
56 static int reference_types_internal = 0;
57
58 static tree self_referential_size (tree);
59 static void finalize_record_size (record_layout_info);
60 static void finalize_type_size (tree);
61 static void place_union_field (record_layout_info, tree);
62 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
63 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
64 HOST_WIDE_INT, tree);
65 #endif
66 extern void debug_rli (record_layout_info);
67 \f
68 /* Show that REFERENCE_TYPES are internal and should use address_mode.
69 Called only by front end. */
70
71 void
72 internal_reference_types (void)
73 {
74 reference_types_internal = 1;
75 }
76
77 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
78 to serve as the actual size-expression for a type or decl. */
79
80 tree
81 variable_size (tree size)
82 {
83 /* Obviously. */
84 if (TREE_CONSTANT (size))
85 return size;
86
87 /* If the size is self-referential, we can't make a SAVE_EXPR (see
88 save_expr for the rationale). But we can do something else. */
89 if (CONTAINS_PLACEHOLDER_P (size))
90 return self_referential_size (size);
91
92 /* If we are in the global binding level, we can't make a SAVE_EXPR
93 since it may end up being shared across functions, so it is up
94 to the front-end to deal with this case. */
95 if (lang_hooks.decls.global_bindings_p ())
96 return size;
97
98 return save_expr (size);
99 }
100
101 /* An array of functions used for self-referential size computation. */
102 static GTY(()) vec<tree, va_gc> *size_functions;
103
104 /* Similar to copy_tree_r but do not copy component references involving
105 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
106 and substituted in substitute_in_expr. */
107
108 static tree
109 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
110 {
111 enum tree_code code = TREE_CODE (*tp);
112
113 /* Stop at types, decls, constants like copy_tree_r. */
114 if (TREE_CODE_CLASS (code) == tcc_type
115 || TREE_CODE_CLASS (code) == tcc_declaration
116 || TREE_CODE_CLASS (code) == tcc_constant)
117 {
118 *walk_subtrees = 0;
119 return NULL_TREE;
120 }
121
122 /* This is the pattern built in ada/make_aligning_type. */
123 else if (code == ADDR_EXPR
124 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
125 {
126 *walk_subtrees = 0;
127 return NULL_TREE;
128 }
129
130 /* Default case: the component reference. */
131 else if (code == COMPONENT_REF)
132 {
133 tree inner;
134 for (inner = TREE_OPERAND (*tp, 0);
135 REFERENCE_CLASS_P (inner);
136 inner = TREE_OPERAND (inner, 0))
137 ;
138
139 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
140 {
141 *walk_subtrees = 0;
142 return NULL_TREE;
143 }
144 }
145
146 /* We're not supposed to have them in self-referential size trees
147 because we wouldn't properly control when they are evaluated.
148 However, not creating superfluous SAVE_EXPRs requires accurate
149 tracking of readonly-ness all the way down to here, which we
150 cannot always guarantee in practice. So punt in this case. */
151 else if (code == SAVE_EXPR)
152 return error_mark_node;
153
154 else if (code == STATEMENT_LIST)
155 gcc_unreachable ();
156
157 return copy_tree_r (tp, walk_subtrees, data);
158 }
159
160 /* Given a SIZE expression that is self-referential, return an equivalent
161 expression to serve as the actual size expression for a type. */
162
163 static tree
164 self_referential_size (tree size)
165 {
166 static unsigned HOST_WIDE_INT fnno = 0;
167 vec<tree> self_refs = vNULL;
168 tree param_type_list = NULL, param_decl_list = NULL;
169 tree t, ref, return_type, fntype, fnname, fndecl;
170 unsigned int i;
171 char buf[128];
172 vec<tree, va_gc> *args = NULL;
173
174 /* Do not factor out simple operations. */
175 t = skip_simple_constant_arithmetic (size);
176 if (TREE_CODE (t) == CALL_EXPR)
177 return size;
178
179 /* Collect the list of self-references in the expression. */
180 find_placeholder_in_expr (size, &self_refs);
181 gcc_assert (self_refs.length () > 0);
182
183 /* Obtain a private copy of the expression. */
184 t = size;
185 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
186 return size;
187 size = t;
188
189 /* Build the parameter and argument lists in parallel; also
190 substitute the former for the latter in the expression. */
191 vec_alloc (args, self_refs.length ());
192 FOR_EACH_VEC_ELT (self_refs, i, ref)
193 {
194 tree subst, param_name, param_type, param_decl;
195
196 if (DECL_P (ref))
197 {
198 /* We shouldn't have true variables here. */
199 gcc_assert (TREE_READONLY (ref));
200 subst = ref;
201 }
202 /* This is the pattern built in ada/make_aligning_type. */
203 else if (TREE_CODE (ref) == ADDR_EXPR)
204 subst = ref;
205 /* Default case: the component reference. */
206 else
207 subst = TREE_OPERAND (ref, 1);
208
209 sprintf (buf, "p%d", i);
210 param_name = get_identifier (buf);
211 param_type = TREE_TYPE (ref);
212 param_decl
213 = build_decl (input_location, PARM_DECL, param_name, param_type);
214 if (targetm.calls.promote_prototypes (NULL_TREE)
215 && INTEGRAL_TYPE_P (param_type)
216 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
217 DECL_ARG_TYPE (param_decl) = integer_type_node;
218 else
219 DECL_ARG_TYPE (param_decl) = param_type;
220 DECL_ARTIFICIAL (param_decl) = 1;
221 TREE_READONLY (param_decl) = 1;
222
223 size = substitute_in_expr (size, subst, param_decl);
224
225 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
226 param_decl_list = chainon (param_decl, param_decl_list);
227 args->quick_push (ref);
228 }
229
230 self_refs.release ();
231
232 /* Append 'void' to indicate that the number of parameters is fixed. */
233 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
234
235 /* The 3 lists have been created in reverse order. */
236 param_type_list = nreverse (param_type_list);
237 param_decl_list = nreverse (param_decl_list);
238
239 /* Build the function type. */
240 return_type = TREE_TYPE (size);
241 fntype = build_function_type (return_type, param_type_list);
242
243 /* Build the function declaration. */
244 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
245 fnname = get_file_function_name (buf);
246 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
247 for (t = param_decl_list; t; t = DECL_CHAIN (t))
248 DECL_CONTEXT (t) = fndecl;
249 DECL_ARGUMENTS (fndecl) = param_decl_list;
250 DECL_RESULT (fndecl)
251 = build_decl (input_location, RESULT_DECL, 0, return_type);
252 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
253
254 /* The function has been created by the compiler and we don't
255 want to emit debug info for it. */
256 DECL_ARTIFICIAL (fndecl) = 1;
257 DECL_IGNORED_P (fndecl) = 1;
258
259 /* It is supposed to be "const" and never throw. */
260 TREE_READONLY (fndecl) = 1;
261 TREE_NOTHROW (fndecl) = 1;
262
263 /* We want it to be inlined when this is deemed profitable, as
264 well as discarded if every call has been integrated. */
265 DECL_DECLARED_INLINE_P (fndecl) = 1;
266
267 /* It is made up of a unique return statement. */
268 DECL_INITIAL (fndecl) = make_node (BLOCK);
269 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
270 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
271 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
272 TREE_STATIC (fndecl) = 1;
273
274 /* Put it onto the list of size functions. */
275 vec_safe_push (size_functions, fndecl);
276
277 /* Replace the original expression with a call to the size function. */
278 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
279 }
280
281 /* Take, queue and compile all the size functions. It is essential that
282 the size functions be gimplified at the very end of the compilation
283 in order to guarantee transparent handling of self-referential sizes.
284 Otherwise the GENERIC inliner would not be able to inline them back
285 at each of their call sites, thus creating artificial non-constant
286 size expressions which would trigger nasty problems later on. */
287
288 void
289 finalize_size_functions (void)
290 {
291 unsigned int i;
292 tree fndecl;
293
294 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
295 {
296 allocate_struct_function (fndecl, false);
297 set_cfun (NULL);
298 dump_function (TDI_original, fndecl);
299 gimplify_function_tree (fndecl);
300 dump_function (TDI_generic, fndecl);
301 cgraph_node::finalize_function (fndecl, false);
302 }
303
304 vec_free (size_functions);
305 }
306 \f
307 /* Return the machine mode to use for a nonscalar of SIZE bits. The
308 mode must be in class MCLASS, and have exactly that many value bits;
309 it may have padding as well. If LIMIT is nonzero, modes of wider
310 than MAX_FIXED_MODE_SIZE will not be used. */
311
312 enum machine_mode
313 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
314 {
315 enum machine_mode mode;
316 int i;
317
318 if (limit && size > MAX_FIXED_MODE_SIZE)
319 return BLKmode;
320
321 /* Get the first mode which has this size, in the specified class. */
322 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
323 mode = GET_MODE_WIDER_MODE (mode))
324 if (GET_MODE_PRECISION (mode) == size)
325 return mode;
326
327 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
328 for (i = 0; i < NUM_INT_N_ENTS; i ++)
329 if (int_n_data[i].bitsize == size
330 && int_n_enabled_p[i])
331 return int_n_data[i].m;
332
333 return BLKmode;
334 }
335
336 /* Similar, except passed a tree node. */
337
338 enum machine_mode
339 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
340 {
341 unsigned HOST_WIDE_INT uhwi;
342 unsigned int ui;
343
344 if (!tree_fits_uhwi_p (size))
345 return BLKmode;
346 uhwi = tree_to_uhwi (size);
347 ui = uhwi;
348 if (uhwi != ui)
349 return BLKmode;
350 return mode_for_size (ui, mclass, limit);
351 }
352
353 /* Similar, but never return BLKmode; return the narrowest mode that
354 contains at least the requested number of value bits. */
355
356 enum machine_mode
357 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
358 {
359 enum machine_mode mode = VOIDmode;
360 int i;
361
362 /* Get the first mode which has at least this size, in the
363 specified class. */
364 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
365 mode = GET_MODE_WIDER_MODE (mode))
366 if (GET_MODE_PRECISION (mode) >= size)
367 break;
368
369 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
370 for (i = 0; i < NUM_INT_N_ENTS; i ++)
371 if (int_n_data[i].bitsize >= size
372 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
373 && int_n_enabled_p[i])
374 mode = int_n_data[i].m;
375
376 if (mode == VOIDmode)
377 gcc_unreachable ();
378
379 return mode;
380 }
381
382 /* Find an integer mode of the exact same size, or BLKmode on failure. */
383
384 enum machine_mode
385 int_mode_for_mode (enum machine_mode mode)
386 {
387 switch (GET_MODE_CLASS (mode))
388 {
389 case MODE_INT:
390 case MODE_PARTIAL_INT:
391 break;
392
393 case MODE_COMPLEX_INT:
394 case MODE_COMPLEX_FLOAT:
395 case MODE_FLOAT:
396 case MODE_DECIMAL_FLOAT:
397 case MODE_VECTOR_INT:
398 case MODE_VECTOR_FLOAT:
399 case MODE_FRACT:
400 case MODE_ACCUM:
401 case MODE_UFRACT:
402 case MODE_UACCUM:
403 case MODE_VECTOR_FRACT:
404 case MODE_VECTOR_ACCUM:
405 case MODE_VECTOR_UFRACT:
406 case MODE_VECTOR_UACCUM:
407 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
408 break;
409
410 case MODE_RANDOM:
411 if (mode == BLKmode)
412 break;
413
414 /* ... fall through ... */
415
416 case MODE_CC:
417 default:
418 gcc_unreachable ();
419 }
420
421 return mode;
422 }
423
424 /* Find a mode that can be used for efficient bitwise operations on MODE.
425 Return BLKmode if no such mode exists. */
426
427 enum machine_mode
428 bitwise_mode_for_mode (enum machine_mode mode)
429 {
430 /* Quick exit if we already have a suitable mode. */
431 unsigned int bitsize = GET_MODE_BITSIZE (mode);
432 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
433 return mode;
434
435 /* Reuse the sanity checks from int_mode_for_mode. */
436 gcc_checking_assert ((int_mode_for_mode (mode), true));
437
438 /* Try to replace complex modes with complex modes. In general we
439 expect both components to be processed independently, so we only
440 care whether there is a register for the inner mode. */
441 if (COMPLEX_MODE_P (mode))
442 {
443 enum machine_mode trial = mode;
444 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
445 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
446 if (trial != BLKmode
447 && have_regs_of_mode[GET_MODE_INNER (trial)])
448 return trial;
449 }
450
451 /* Try to replace vector modes with vector modes. Also try using vector
452 modes if an integer mode would be too big. */
453 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
454 {
455 enum machine_mode trial = mode;
456 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
457 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
458 if (trial != BLKmode
459 && have_regs_of_mode[trial]
460 && targetm.vector_mode_supported_p (trial))
461 return trial;
462 }
463
464 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
465 return mode_for_size (bitsize, MODE_INT, true);
466 }
467
468 /* Find a type that can be used for efficient bitwise operations on MODE.
469 Return null if no such mode exists. */
470
471 tree
472 bitwise_type_for_mode (enum machine_mode mode)
473 {
474 mode = bitwise_mode_for_mode (mode);
475 if (mode == BLKmode)
476 return NULL_TREE;
477
478 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
479 tree inner_type = build_nonstandard_integer_type (inner_size, true);
480
481 if (VECTOR_MODE_P (mode))
482 return build_vector_type_for_mode (inner_type, mode);
483
484 if (COMPLEX_MODE_P (mode))
485 return build_complex_type (inner_type);
486
487 gcc_checking_assert (GET_MODE_INNER (mode) == VOIDmode);
488 return inner_type;
489 }
490
491 /* Find a mode that is suitable for representing a vector with
492 NUNITS elements of mode INNERMODE. Returns BLKmode if there
493 is no suitable mode. */
494
495 enum machine_mode
496 mode_for_vector (enum machine_mode innermode, unsigned nunits)
497 {
498 enum machine_mode mode;
499
500 /* First, look for a supported vector type. */
501 if (SCALAR_FLOAT_MODE_P (innermode))
502 mode = MIN_MODE_VECTOR_FLOAT;
503 else if (SCALAR_FRACT_MODE_P (innermode))
504 mode = MIN_MODE_VECTOR_FRACT;
505 else if (SCALAR_UFRACT_MODE_P (innermode))
506 mode = MIN_MODE_VECTOR_UFRACT;
507 else if (SCALAR_ACCUM_MODE_P (innermode))
508 mode = MIN_MODE_VECTOR_ACCUM;
509 else if (SCALAR_UACCUM_MODE_P (innermode))
510 mode = MIN_MODE_VECTOR_UACCUM;
511 else
512 mode = MIN_MODE_VECTOR_INT;
513
514 /* Do not check vector_mode_supported_p here. We'll do that
515 later in vector_type_mode. */
516 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
517 if (GET_MODE_NUNITS (mode) == nunits
518 && GET_MODE_INNER (mode) == innermode)
519 break;
520
521 /* For integers, try mapping it to a same-sized scalar mode. */
522 if (mode == VOIDmode
523 && GET_MODE_CLASS (innermode) == MODE_INT)
524 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
525 MODE_INT, 0);
526
527 if (mode == VOIDmode
528 || (GET_MODE_CLASS (mode) == MODE_INT
529 && !have_regs_of_mode[mode]))
530 return BLKmode;
531
532 return mode;
533 }
534
535 /* Return the alignment of MODE. This will be bounded by 1 and
536 BIGGEST_ALIGNMENT. */
537
538 unsigned int
539 get_mode_alignment (enum machine_mode mode)
540 {
541 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
542 }
543
544 /* Return the precision of the mode, or for a complex or vector mode the
545 precision of the mode of its elements. */
546
547 unsigned int
548 element_precision (enum machine_mode mode)
549 {
550 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
551 mode = GET_MODE_INNER (mode);
552
553 return GET_MODE_PRECISION (mode);
554 }
555
556 /* Return the natural mode of an array, given that it is SIZE bytes in
557 total and has elements of type ELEM_TYPE. */
558
559 static enum machine_mode
560 mode_for_array (tree elem_type, tree size)
561 {
562 tree elem_size;
563 unsigned HOST_WIDE_INT int_size, int_elem_size;
564 bool limit_p;
565
566 /* One-element arrays get the component type's mode. */
567 elem_size = TYPE_SIZE (elem_type);
568 if (simple_cst_equal (size, elem_size))
569 return TYPE_MODE (elem_type);
570
571 limit_p = true;
572 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
573 {
574 int_size = tree_to_uhwi (size);
575 int_elem_size = tree_to_uhwi (elem_size);
576 if (int_elem_size > 0
577 && int_size % int_elem_size == 0
578 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
579 int_size / int_elem_size))
580 limit_p = false;
581 }
582 return mode_for_size_tree (size, MODE_INT, limit_p);
583 }
584 \f
585 /* Subroutine of layout_decl: Force alignment required for the data type.
586 But if the decl itself wants greater alignment, don't override that. */
587
588 static inline void
589 do_type_align (tree type, tree decl)
590 {
591 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
592 {
593 DECL_ALIGN (decl) = TYPE_ALIGN (type);
594 if (TREE_CODE (decl) == FIELD_DECL)
595 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
596 }
597 }
598
599 /* Set the size, mode and alignment of a ..._DECL node.
600 TYPE_DECL does need this for C++.
601 Note that LABEL_DECL and CONST_DECL nodes do not need this,
602 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
603 Don't call layout_decl for them.
604
605 KNOWN_ALIGN is the amount of alignment we can assume this
606 decl has with no special effort. It is relevant only for FIELD_DECLs
607 and depends on the previous fields.
608 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
609 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
610 the record will be aligned to suit. */
611
612 void
613 layout_decl (tree decl, unsigned int known_align)
614 {
615 tree type = TREE_TYPE (decl);
616 enum tree_code code = TREE_CODE (decl);
617 rtx rtl = NULL_RTX;
618 location_t loc = DECL_SOURCE_LOCATION (decl);
619
620 if (code == CONST_DECL)
621 return;
622
623 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
624 || code == TYPE_DECL ||code == FIELD_DECL);
625
626 rtl = DECL_RTL_IF_SET (decl);
627
628 if (type == error_mark_node)
629 type = void_type_node;
630
631 /* Usually the size and mode come from the data type without change,
632 however, the front-end may set the explicit width of the field, so its
633 size may not be the same as the size of its type. This happens with
634 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
635 also happens with other fields. For example, the C++ front-end creates
636 zero-sized fields corresponding to empty base classes, and depends on
637 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
638 size in bytes from the size in bits. If we have already set the mode,
639 don't set it again since we can be called twice for FIELD_DECLs. */
640
641 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
642 if (DECL_MODE (decl) == VOIDmode)
643 DECL_MODE (decl) = TYPE_MODE (type);
644
645 if (DECL_SIZE (decl) == 0)
646 {
647 DECL_SIZE (decl) = TYPE_SIZE (type);
648 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
649 }
650 else if (DECL_SIZE_UNIT (decl) == 0)
651 DECL_SIZE_UNIT (decl)
652 = fold_convert_loc (loc, sizetype,
653 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
654 bitsize_unit_node));
655
656 if (code != FIELD_DECL)
657 /* For non-fields, update the alignment from the type. */
658 do_type_align (type, decl);
659 else
660 /* For fields, it's a bit more complicated... */
661 {
662 bool old_user_align = DECL_USER_ALIGN (decl);
663 bool zero_bitfield = false;
664 bool packed_p = DECL_PACKED (decl);
665 unsigned int mfa;
666
667 if (DECL_BIT_FIELD (decl))
668 {
669 DECL_BIT_FIELD_TYPE (decl) = type;
670
671 /* A zero-length bit-field affects the alignment of the next
672 field. In essence such bit-fields are not influenced by
673 any packing due to #pragma pack or attribute packed. */
674 if (integer_zerop (DECL_SIZE (decl))
675 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
676 {
677 zero_bitfield = true;
678 packed_p = false;
679 #ifdef PCC_BITFIELD_TYPE_MATTERS
680 if (PCC_BITFIELD_TYPE_MATTERS)
681 do_type_align (type, decl);
682 else
683 #endif
684 {
685 #ifdef EMPTY_FIELD_BOUNDARY
686 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
687 {
688 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
689 DECL_USER_ALIGN (decl) = 0;
690 }
691 #endif
692 }
693 }
694
695 /* See if we can use an ordinary integer mode for a bit-field.
696 Conditions are: a fixed size that is correct for another mode,
697 occupying a complete byte or bytes on proper boundary. */
698 if (TYPE_SIZE (type) != 0
699 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
700 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
701 {
702 enum machine_mode xmode
703 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
704 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
705
706 if (xmode != BLKmode
707 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
708 && (known_align == 0 || known_align >= xalign))
709 {
710 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
711 DECL_MODE (decl) = xmode;
712 DECL_BIT_FIELD (decl) = 0;
713 }
714 }
715
716 /* Turn off DECL_BIT_FIELD if we won't need it set. */
717 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
718 && known_align >= TYPE_ALIGN (type)
719 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
720 DECL_BIT_FIELD (decl) = 0;
721 }
722 else if (packed_p && DECL_USER_ALIGN (decl))
723 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
724 round up; we'll reduce it again below. We want packing to
725 supersede USER_ALIGN inherited from the type, but defer to
726 alignment explicitly specified on the field decl. */;
727 else
728 do_type_align (type, decl);
729
730 /* If the field is packed and not explicitly aligned, give it the
731 minimum alignment. Note that do_type_align may set
732 DECL_USER_ALIGN, so we need to check old_user_align instead. */
733 if (packed_p
734 && !old_user_align)
735 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
736
737 if (! packed_p && ! DECL_USER_ALIGN (decl))
738 {
739 /* Some targets (i.e. i386, VMS) limit struct field alignment
740 to a lower boundary than alignment of variables unless
741 it was overridden by attribute aligned. */
742 #ifdef BIGGEST_FIELD_ALIGNMENT
743 DECL_ALIGN (decl)
744 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
745 #endif
746 #ifdef ADJUST_FIELD_ALIGN
747 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
748 #endif
749 }
750
751 if (zero_bitfield)
752 mfa = initial_max_fld_align * BITS_PER_UNIT;
753 else
754 mfa = maximum_field_alignment;
755 /* Should this be controlled by DECL_USER_ALIGN, too? */
756 if (mfa != 0)
757 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
758 }
759
760 /* Evaluate nonconstant size only once, either now or as soon as safe. */
761 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
762 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
763 if (DECL_SIZE_UNIT (decl) != 0
764 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
765 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
766
767 /* If requested, warn about definitions of large data objects. */
768 if (warn_larger_than
769 && (code == VAR_DECL || code == PARM_DECL)
770 && ! DECL_EXTERNAL (decl))
771 {
772 tree size = DECL_SIZE_UNIT (decl);
773
774 if (size != 0 && TREE_CODE (size) == INTEGER_CST
775 && compare_tree_int (size, larger_than_size) > 0)
776 {
777 int size_as_int = TREE_INT_CST_LOW (size);
778
779 if (compare_tree_int (size, size_as_int) == 0)
780 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
781 else
782 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
783 decl, larger_than_size);
784 }
785 }
786
787 /* If the RTL was already set, update its mode and mem attributes. */
788 if (rtl)
789 {
790 PUT_MODE (rtl, DECL_MODE (decl));
791 SET_DECL_RTL (decl, 0);
792 set_mem_attributes (rtl, decl, 1);
793 SET_DECL_RTL (decl, rtl);
794 }
795 }
796
797 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
798 a previous call to layout_decl and calls it again. */
799
800 void
801 relayout_decl (tree decl)
802 {
803 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
804 DECL_MODE (decl) = VOIDmode;
805 if (!DECL_USER_ALIGN (decl))
806 DECL_ALIGN (decl) = 0;
807 SET_DECL_RTL (decl, 0);
808
809 layout_decl (decl, 0);
810 }
811 \f
812 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
813 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
814 is to be passed to all other layout functions for this record. It is the
815 responsibility of the caller to call `free' for the storage returned.
816 Note that garbage collection is not permitted until we finish laying
817 out the record. */
818
819 record_layout_info
820 start_record_layout (tree t)
821 {
822 record_layout_info rli = XNEW (struct record_layout_info_s);
823
824 rli->t = t;
825
826 /* If the type has a minimum specified alignment (via an attribute
827 declaration, for example) use it -- otherwise, start with a
828 one-byte alignment. */
829 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
830 rli->unpacked_align = rli->record_align;
831 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
832
833 #ifdef STRUCTURE_SIZE_BOUNDARY
834 /* Packed structures don't need to have minimum size. */
835 if (! TYPE_PACKED (t))
836 {
837 unsigned tmp;
838
839 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
840 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
841 if (maximum_field_alignment != 0)
842 tmp = MIN (tmp, maximum_field_alignment);
843 rli->record_align = MAX (rli->record_align, tmp);
844 }
845 #endif
846
847 rli->offset = size_zero_node;
848 rli->bitpos = bitsize_zero_node;
849 rli->prev_field = 0;
850 rli->pending_statics = 0;
851 rli->packed_maybe_necessary = 0;
852 rli->remaining_in_alignment = 0;
853
854 return rli;
855 }
856
857 /* Return the combined bit position for the byte offset OFFSET and the
858 bit position BITPOS.
859
860 These functions operate on byte and bit positions present in FIELD_DECLs
861 and assume that these expressions result in no (intermediate) overflow.
862 This assumption is necessary to fold the expressions as much as possible,
863 so as to avoid creating artificially variable-sized types in languages
864 supporting variable-sized types like Ada. */
865
866 tree
867 bit_from_pos (tree offset, tree bitpos)
868 {
869 if (TREE_CODE (offset) == PLUS_EXPR)
870 offset = size_binop (PLUS_EXPR,
871 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
872 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
873 else
874 offset = fold_convert (bitsizetype, offset);
875 return size_binop (PLUS_EXPR, bitpos,
876 size_binop (MULT_EXPR, offset, bitsize_unit_node));
877 }
878
879 /* Return the combined truncated byte position for the byte offset OFFSET and
880 the bit position BITPOS. */
881
882 tree
883 byte_from_pos (tree offset, tree bitpos)
884 {
885 tree bytepos;
886 if (TREE_CODE (bitpos) == MULT_EXPR
887 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
888 bytepos = TREE_OPERAND (bitpos, 0);
889 else
890 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
891 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
892 }
893
894 /* Split the bit position POS into a byte offset *POFFSET and a bit
895 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
896
897 void
898 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
899 tree pos)
900 {
901 tree toff_align = bitsize_int (off_align);
902 if (TREE_CODE (pos) == MULT_EXPR
903 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
904 {
905 *poffset = size_binop (MULT_EXPR,
906 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
907 size_int (off_align / BITS_PER_UNIT));
908 *pbitpos = bitsize_zero_node;
909 }
910 else
911 {
912 *poffset = size_binop (MULT_EXPR,
913 fold_convert (sizetype,
914 size_binop (FLOOR_DIV_EXPR, pos,
915 toff_align)),
916 size_int (off_align / BITS_PER_UNIT));
917 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
918 }
919 }
920
921 /* Given a pointer to bit and byte offsets and an offset alignment,
922 normalize the offsets so they are within the alignment. */
923
924 void
925 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
926 {
927 /* If the bit position is now larger than it should be, adjust it
928 downwards. */
929 if (compare_tree_int (*pbitpos, off_align) >= 0)
930 {
931 tree offset, bitpos;
932 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
933 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
934 *pbitpos = bitpos;
935 }
936 }
937
938 /* Print debugging information about the information in RLI. */
939
940 DEBUG_FUNCTION void
941 debug_rli (record_layout_info rli)
942 {
943 print_node_brief (stderr, "type", rli->t, 0);
944 print_node_brief (stderr, "\noffset", rli->offset, 0);
945 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
946
947 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
948 rli->record_align, rli->unpacked_align,
949 rli->offset_align);
950
951 /* The ms_struct code is the only that uses this. */
952 if (targetm.ms_bitfield_layout_p (rli->t))
953 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
954
955 if (rli->packed_maybe_necessary)
956 fprintf (stderr, "packed may be necessary\n");
957
958 if (!vec_safe_is_empty (rli->pending_statics))
959 {
960 fprintf (stderr, "pending statics:\n");
961 debug_vec_tree (rli->pending_statics);
962 }
963 }
964
965 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
966 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
967
968 void
969 normalize_rli (record_layout_info rli)
970 {
971 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
972 }
973
974 /* Returns the size in bytes allocated so far. */
975
976 tree
977 rli_size_unit_so_far (record_layout_info rli)
978 {
979 return byte_from_pos (rli->offset, rli->bitpos);
980 }
981
982 /* Returns the size in bits allocated so far. */
983
984 tree
985 rli_size_so_far (record_layout_info rli)
986 {
987 return bit_from_pos (rli->offset, rli->bitpos);
988 }
989
990 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
991 the next available location within the record is given by KNOWN_ALIGN.
992 Update the variable alignment fields in RLI, and return the alignment
993 to give the FIELD. */
994
995 unsigned int
996 update_alignment_for_field (record_layout_info rli, tree field,
997 unsigned int known_align)
998 {
999 /* The alignment required for FIELD. */
1000 unsigned int desired_align;
1001 /* The type of this field. */
1002 tree type = TREE_TYPE (field);
1003 /* True if the field was explicitly aligned by the user. */
1004 bool user_align;
1005 bool is_bitfield;
1006
1007 /* Do not attempt to align an ERROR_MARK node */
1008 if (TREE_CODE (type) == ERROR_MARK)
1009 return 0;
1010
1011 /* Lay out the field so we know what alignment it needs. */
1012 layout_decl (field, known_align);
1013 desired_align = DECL_ALIGN (field);
1014 user_align = DECL_USER_ALIGN (field);
1015
1016 is_bitfield = (type != error_mark_node
1017 && DECL_BIT_FIELD_TYPE (field)
1018 && ! integer_zerop (TYPE_SIZE (type)));
1019
1020 /* Record must have at least as much alignment as any field.
1021 Otherwise, the alignment of the field within the record is
1022 meaningless. */
1023 if (targetm.ms_bitfield_layout_p (rli->t))
1024 {
1025 /* Here, the alignment of the underlying type of a bitfield can
1026 affect the alignment of a record; even a zero-sized field
1027 can do this. The alignment should be to the alignment of
1028 the type, except that for zero-size bitfields this only
1029 applies if there was an immediately prior, nonzero-size
1030 bitfield. (That's the way it is, experimentally.) */
1031 if ((!is_bitfield && !DECL_PACKED (field))
1032 || ((DECL_SIZE (field) == NULL_TREE
1033 || !integer_zerop (DECL_SIZE (field)))
1034 ? !DECL_PACKED (field)
1035 : (rli->prev_field
1036 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1037 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1038 {
1039 unsigned int type_align = TYPE_ALIGN (type);
1040 type_align = MAX (type_align, desired_align);
1041 if (maximum_field_alignment != 0)
1042 type_align = MIN (type_align, maximum_field_alignment);
1043 rli->record_align = MAX (rli->record_align, type_align);
1044 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1045 }
1046 }
1047 #ifdef PCC_BITFIELD_TYPE_MATTERS
1048 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1049 {
1050 /* Named bit-fields cause the entire structure to have the
1051 alignment implied by their type. Some targets also apply the same
1052 rules to unnamed bitfields. */
1053 if (DECL_NAME (field) != 0
1054 || targetm.align_anon_bitfield ())
1055 {
1056 unsigned int type_align = TYPE_ALIGN (type);
1057
1058 #ifdef ADJUST_FIELD_ALIGN
1059 if (! TYPE_USER_ALIGN (type))
1060 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1061 #endif
1062
1063 /* Targets might chose to handle unnamed and hence possibly
1064 zero-width bitfield. Those are not influenced by #pragmas
1065 or packed attributes. */
1066 if (integer_zerop (DECL_SIZE (field)))
1067 {
1068 if (initial_max_fld_align)
1069 type_align = MIN (type_align,
1070 initial_max_fld_align * BITS_PER_UNIT);
1071 }
1072 else if (maximum_field_alignment != 0)
1073 type_align = MIN (type_align, maximum_field_alignment);
1074 else if (DECL_PACKED (field))
1075 type_align = MIN (type_align, BITS_PER_UNIT);
1076
1077 /* The alignment of the record is increased to the maximum
1078 of the current alignment, the alignment indicated on the
1079 field (i.e., the alignment specified by an __aligned__
1080 attribute), and the alignment indicated by the type of
1081 the field. */
1082 rli->record_align = MAX (rli->record_align, desired_align);
1083 rli->record_align = MAX (rli->record_align, type_align);
1084
1085 if (warn_packed)
1086 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1087 user_align |= TYPE_USER_ALIGN (type);
1088 }
1089 }
1090 #endif
1091 else
1092 {
1093 rli->record_align = MAX (rli->record_align, desired_align);
1094 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1095 }
1096
1097 TYPE_USER_ALIGN (rli->t) |= user_align;
1098
1099 return desired_align;
1100 }
1101
1102 /* Called from place_field to handle unions. */
1103
1104 static void
1105 place_union_field (record_layout_info rli, tree field)
1106 {
1107 update_alignment_for_field (rli, field, /*known_align=*/0);
1108
1109 DECL_FIELD_OFFSET (field) = size_zero_node;
1110 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1111 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1112
1113 /* If this is an ERROR_MARK return *after* having set the
1114 field at the start of the union. This helps when parsing
1115 invalid fields. */
1116 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1117 return;
1118
1119 /* We assume the union's size will be a multiple of a byte so we don't
1120 bother with BITPOS. */
1121 if (TREE_CODE (rli->t) == UNION_TYPE)
1122 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1123 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1124 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1125 DECL_SIZE_UNIT (field), rli->offset);
1126 }
1127
1128 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1129 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1130 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1131 units of alignment than the underlying TYPE. */
1132 static int
1133 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1134 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1135 {
1136 /* Note that the calculation of OFFSET might overflow; we calculate it so
1137 that we still get the right result as long as ALIGN is a power of two. */
1138 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1139
1140 offset = offset % align;
1141 return ((offset + size + align - 1) / align
1142 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1143 }
1144 #endif
1145
1146 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1147 is a FIELD_DECL to be added after those fields already present in
1148 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1149 callers that desire that behavior must manually perform that step.) */
1150
1151 void
1152 place_field (record_layout_info rli, tree field)
1153 {
1154 /* The alignment required for FIELD. */
1155 unsigned int desired_align;
1156 /* The alignment FIELD would have if we just dropped it into the
1157 record as it presently stands. */
1158 unsigned int known_align;
1159 unsigned int actual_align;
1160 /* The type of this field. */
1161 tree type = TREE_TYPE (field);
1162
1163 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1164
1165 /* If FIELD is static, then treat it like a separate variable, not
1166 really like a structure field. If it is a FUNCTION_DECL, it's a
1167 method. In both cases, all we do is lay out the decl, and we do
1168 it *after* the record is laid out. */
1169 if (TREE_CODE (field) == VAR_DECL)
1170 {
1171 vec_safe_push (rli->pending_statics, field);
1172 return;
1173 }
1174
1175 /* Enumerators and enum types which are local to this class need not
1176 be laid out. Likewise for initialized constant fields. */
1177 else if (TREE_CODE (field) != FIELD_DECL)
1178 return;
1179
1180 /* Unions are laid out very differently than records, so split
1181 that code off to another function. */
1182 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1183 {
1184 place_union_field (rli, field);
1185 return;
1186 }
1187
1188 else if (TREE_CODE (type) == ERROR_MARK)
1189 {
1190 /* Place this field at the current allocation position, so we
1191 maintain monotonicity. */
1192 DECL_FIELD_OFFSET (field) = rli->offset;
1193 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1194 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1195 return;
1196 }
1197
1198 /* Work out the known alignment so far. Note that A & (-A) is the
1199 value of the least-significant bit in A that is one. */
1200 if (! integer_zerop (rli->bitpos))
1201 known_align = (tree_to_uhwi (rli->bitpos)
1202 & - tree_to_uhwi (rli->bitpos));
1203 else if (integer_zerop (rli->offset))
1204 known_align = 0;
1205 else if (tree_fits_uhwi_p (rli->offset))
1206 known_align = (BITS_PER_UNIT
1207 * (tree_to_uhwi (rli->offset)
1208 & - tree_to_uhwi (rli->offset)));
1209 else
1210 known_align = rli->offset_align;
1211
1212 desired_align = update_alignment_for_field (rli, field, known_align);
1213 if (known_align == 0)
1214 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1215
1216 if (warn_packed && DECL_PACKED (field))
1217 {
1218 if (known_align >= TYPE_ALIGN (type))
1219 {
1220 if (TYPE_ALIGN (type) > desired_align)
1221 {
1222 if (STRICT_ALIGNMENT)
1223 warning (OPT_Wattributes, "packed attribute causes "
1224 "inefficient alignment for %q+D", field);
1225 /* Don't warn if DECL_PACKED was set by the type. */
1226 else if (!TYPE_PACKED (rli->t))
1227 warning (OPT_Wattributes, "packed attribute is "
1228 "unnecessary for %q+D", field);
1229 }
1230 }
1231 else
1232 rli->packed_maybe_necessary = 1;
1233 }
1234
1235 /* Does this field automatically have alignment it needs by virtue
1236 of the fields that precede it and the record's own alignment? */
1237 if (known_align < desired_align)
1238 {
1239 /* No, we need to skip space before this field.
1240 Bump the cumulative size to multiple of field alignment. */
1241
1242 if (!targetm.ms_bitfield_layout_p (rli->t)
1243 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1244 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1245
1246 /* If the alignment is still within offset_align, just align
1247 the bit position. */
1248 if (desired_align < rli->offset_align)
1249 rli->bitpos = round_up (rli->bitpos, desired_align);
1250 else
1251 {
1252 /* First adjust OFFSET by the partial bits, then align. */
1253 rli->offset
1254 = size_binop (PLUS_EXPR, rli->offset,
1255 fold_convert (sizetype,
1256 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1257 bitsize_unit_node)));
1258 rli->bitpos = bitsize_zero_node;
1259
1260 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1261 }
1262
1263 if (! TREE_CONSTANT (rli->offset))
1264 rli->offset_align = desired_align;
1265 if (targetm.ms_bitfield_layout_p (rli->t))
1266 rli->prev_field = NULL;
1267 }
1268
1269 /* Handle compatibility with PCC. Note that if the record has any
1270 variable-sized fields, we need not worry about compatibility. */
1271 #ifdef PCC_BITFIELD_TYPE_MATTERS
1272 if (PCC_BITFIELD_TYPE_MATTERS
1273 && ! targetm.ms_bitfield_layout_p (rli->t)
1274 && TREE_CODE (field) == FIELD_DECL
1275 && type != error_mark_node
1276 && DECL_BIT_FIELD (field)
1277 && (! DECL_PACKED (field)
1278 /* Enter for these packed fields only to issue a warning. */
1279 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1280 && maximum_field_alignment == 0
1281 && ! integer_zerop (DECL_SIZE (field))
1282 && tree_fits_uhwi_p (DECL_SIZE (field))
1283 && tree_fits_uhwi_p (rli->offset)
1284 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1285 {
1286 unsigned int type_align = TYPE_ALIGN (type);
1287 tree dsize = DECL_SIZE (field);
1288 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1289 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1290 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1291
1292 #ifdef ADJUST_FIELD_ALIGN
1293 if (! TYPE_USER_ALIGN (type))
1294 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1295 #endif
1296
1297 /* A bit field may not span more units of alignment of its type
1298 than its type itself. Advance to next boundary if necessary. */
1299 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1300 {
1301 if (DECL_PACKED (field))
1302 {
1303 if (warn_packed_bitfield_compat == 1)
1304 inform
1305 (input_location,
1306 "offset of packed bit-field %qD has changed in GCC 4.4",
1307 field);
1308 }
1309 else
1310 rli->bitpos = round_up (rli->bitpos, type_align);
1311 }
1312
1313 if (! DECL_PACKED (field))
1314 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1315 }
1316 #endif
1317
1318 #ifdef BITFIELD_NBYTES_LIMITED
1319 if (BITFIELD_NBYTES_LIMITED
1320 && ! targetm.ms_bitfield_layout_p (rli->t)
1321 && TREE_CODE (field) == FIELD_DECL
1322 && type != error_mark_node
1323 && DECL_BIT_FIELD_TYPE (field)
1324 && ! DECL_PACKED (field)
1325 && ! integer_zerop (DECL_SIZE (field))
1326 && tree_fits_uhwi_p (DECL_SIZE (field))
1327 && tree_fits_uhwi_p (rli->offset)
1328 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1329 {
1330 unsigned int type_align = TYPE_ALIGN (type);
1331 tree dsize = DECL_SIZE (field);
1332 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1333 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1334 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1335
1336 #ifdef ADJUST_FIELD_ALIGN
1337 if (! TYPE_USER_ALIGN (type))
1338 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1339 #endif
1340
1341 if (maximum_field_alignment != 0)
1342 type_align = MIN (type_align, maximum_field_alignment);
1343 /* ??? This test is opposite the test in the containing if
1344 statement, so this code is unreachable currently. */
1345 else if (DECL_PACKED (field))
1346 type_align = MIN (type_align, BITS_PER_UNIT);
1347
1348 /* A bit field may not span the unit of alignment of its type.
1349 Advance to next boundary if necessary. */
1350 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1351 rli->bitpos = round_up (rli->bitpos, type_align);
1352
1353 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1354 }
1355 #endif
1356
1357 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1358 A subtlety:
1359 When a bit field is inserted into a packed record, the whole
1360 size of the underlying type is used by one or more same-size
1361 adjacent bitfields. (That is, if its long:3, 32 bits is
1362 used in the record, and any additional adjacent long bitfields are
1363 packed into the same chunk of 32 bits. However, if the size
1364 changes, a new field of that size is allocated.) In an unpacked
1365 record, this is the same as using alignment, but not equivalent
1366 when packing.
1367
1368 Note: for compatibility, we use the type size, not the type alignment
1369 to determine alignment, since that matches the documentation */
1370
1371 if (targetm.ms_bitfield_layout_p (rli->t))
1372 {
1373 tree prev_saved = rli->prev_field;
1374 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1375
1376 /* This is a bitfield if it exists. */
1377 if (rli->prev_field)
1378 {
1379 /* If both are bitfields, nonzero, and the same size, this is
1380 the middle of a run. Zero declared size fields are special
1381 and handled as "end of run". (Note: it's nonzero declared
1382 size, but equal type sizes!) (Since we know that both
1383 the current and previous fields are bitfields by the
1384 time we check it, DECL_SIZE must be present for both.) */
1385 if (DECL_BIT_FIELD_TYPE (field)
1386 && !integer_zerop (DECL_SIZE (field))
1387 && !integer_zerop (DECL_SIZE (rli->prev_field))
1388 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1389 && tree_fits_uhwi_p (TYPE_SIZE (type))
1390 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1391 {
1392 /* We're in the middle of a run of equal type size fields; make
1393 sure we realign if we run out of bits. (Not decl size,
1394 type size!) */
1395 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1396
1397 if (rli->remaining_in_alignment < bitsize)
1398 {
1399 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1400
1401 /* out of bits; bump up to next 'word'. */
1402 rli->bitpos
1403 = size_binop (PLUS_EXPR, rli->bitpos,
1404 bitsize_int (rli->remaining_in_alignment));
1405 rli->prev_field = field;
1406 if (typesize < bitsize)
1407 rli->remaining_in_alignment = 0;
1408 else
1409 rli->remaining_in_alignment = typesize - bitsize;
1410 }
1411 else
1412 rli->remaining_in_alignment -= bitsize;
1413 }
1414 else
1415 {
1416 /* End of a run: if leaving a run of bitfields of the same type
1417 size, we have to "use up" the rest of the bits of the type
1418 size.
1419
1420 Compute the new position as the sum of the size for the prior
1421 type and where we first started working on that type.
1422 Note: since the beginning of the field was aligned then
1423 of course the end will be too. No round needed. */
1424
1425 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1426 {
1427 rli->bitpos
1428 = size_binop (PLUS_EXPR, rli->bitpos,
1429 bitsize_int (rli->remaining_in_alignment));
1430 }
1431 else
1432 /* We "use up" size zero fields; the code below should behave
1433 as if the prior field was not a bitfield. */
1434 prev_saved = NULL;
1435
1436 /* Cause a new bitfield to be captured, either this time (if
1437 currently a bitfield) or next time we see one. */
1438 if (!DECL_BIT_FIELD_TYPE (field)
1439 || integer_zerop (DECL_SIZE (field)))
1440 rli->prev_field = NULL;
1441 }
1442
1443 normalize_rli (rli);
1444 }
1445
1446 /* If we're starting a new run of same type size bitfields
1447 (or a run of non-bitfields), set up the "first of the run"
1448 fields.
1449
1450 That is, if the current field is not a bitfield, or if there
1451 was a prior bitfield the type sizes differ, or if there wasn't
1452 a prior bitfield the size of the current field is nonzero.
1453
1454 Note: we must be sure to test ONLY the type size if there was
1455 a prior bitfield and ONLY for the current field being zero if
1456 there wasn't. */
1457
1458 if (!DECL_BIT_FIELD_TYPE (field)
1459 || (prev_saved != NULL
1460 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1461 : !integer_zerop (DECL_SIZE (field)) ))
1462 {
1463 /* Never smaller than a byte for compatibility. */
1464 unsigned int type_align = BITS_PER_UNIT;
1465
1466 /* (When not a bitfield), we could be seeing a flex array (with
1467 no DECL_SIZE). Since we won't be using remaining_in_alignment
1468 until we see a bitfield (and come by here again) we just skip
1469 calculating it. */
1470 if (DECL_SIZE (field) != NULL
1471 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1472 && tree_fits_uhwi_p (DECL_SIZE (field)))
1473 {
1474 unsigned HOST_WIDE_INT bitsize
1475 = tree_to_uhwi (DECL_SIZE (field));
1476 unsigned HOST_WIDE_INT typesize
1477 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1478
1479 if (typesize < bitsize)
1480 rli->remaining_in_alignment = 0;
1481 else
1482 rli->remaining_in_alignment = typesize - bitsize;
1483 }
1484
1485 /* Now align (conventionally) for the new type. */
1486 type_align = TYPE_ALIGN (TREE_TYPE (field));
1487
1488 if (maximum_field_alignment != 0)
1489 type_align = MIN (type_align, maximum_field_alignment);
1490
1491 rli->bitpos = round_up (rli->bitpos, type_align);
1492
1493 /* If we really aligned, don't allow subsequent bitfields
1494 to undo that. */
1495 rli->prev_field = NULL;
1496 }
1497 }
1498
1499 /* Offset so far becomes the position of this field after normalizing. */
1500 normalize_rli (rli);
1501 DECL_FIELD_OFFSET (field) = rli->offset;
1502 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1503 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1504
1505 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1506 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1507 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1508
1509 /* If this field ended up more aligned than we thought it would be (we
1510 approximate this by seeing if its position changed), lay out the field
1511 again; perhaps we can use an integral mode for it now. */
1512 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1513 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1514 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1515 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1516 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1517 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1518 actual_align = (BITS_PER_UNIT
1519 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1520 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1521 else
1522 actual_align = DECL_OFFSET_ALIGN (field);
1523 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1524 store / extract bit field operations will check the alignment of the
1525 record against the mode of bit fields. */
1526
1527 if (known_align != actual_align)
1528 layout_decl (field, actual_align);
1529
1530 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1531 rli->prev_field = field;
1532
1533 /* Now add size of this field to the size of the record. If the size is
1534 not constant, treat the field as being a multiple of bytes and just
1535 adjust the offset, resetting the bit position. Otherwise, apportion the
1536 size amongst the bit position and offset. First handle the case of an
1537 unspecified size, which can happen when we have an invalid nested struct
1538 definition, such as struct j { struct j { int i; } }. The error message
1539 is printed in finish_struct. */
1540 if (DECL_SIZE (field) == 0)
1541 /* Do nothing. */;
1542 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1543 || TREE_OVERFLOW (DECL_SIZE (field)))
1544 {
1545 rli->offset
1546 = size_binop (PLUS_EXPR, rli->offset,
1547 fold_convert (sizetype,
1548 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1549 bitsize_unit_node)));
1550 rli->offset
1551 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1552 rli->bitpos = bitsize_zero_node;
1553 rli->offset_align = MIN (rli->offset_align, desired_align);
1554 }
1555 else if (targetm.ms_bitfield_layout_p (rli->t))
1556 {
1557 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1558
1559 /* If we ended a bitfield before the full length of the type then
1560 pad the struct out to the full length of the last type. */
1561 if ((DECL_CHAIN (field) == NULL
1562 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1563 && DECL_BIT_FIELD_TYPE (field)
1564 && !integer_zerop (DECL_SIZE (field)))
1565 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1566 bitsize_int (rli->remaining_in_alignment));
1567
1568 normalize_rli (rli);
1569 }
1570 else
1571 {
1572 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1573 normalize_rli (rli);
1574 }
1575 }
1576
1577 /* Assuming that all the fields have been laid out, this function uses
1578 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1579 indicated by RLI. */
1580
1581 static void
1582 finalize_record_size (record_layout_info rli)
1583 {
1584 tree unpadded_size, unpadded_size_unit;
1585
1586 /* Now we want just byte and bit offsets, so set the offset alignment
1587 to be a byte and then normalize. */
1588 rli->offset_align = BITS_PER_UNIT;
1589 normalize_rli (rli);
1590
1591 /* Determine the desired alignment. */
1592 #ifdef ROUND_TYPE_ALIGN
1593 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1594 rli->record_align);
1595 #else
1596 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1597 #endif
1598
1599 /* Compute the size so far. Be sure to allow for extra bits in the
1600 size in bytes. We have guaranteed above that it will be no more
1601 than a single byte. */
1602 unpadded_size = rli_size_so_far (rli);
1603 unpadded_size_unit = rli_size_unit_so_far (rli);
1604 if (! integer_zerop (rli->bitpos))
1605 unpadded_size_unit
1606 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1607
1608 if (TREE_CODE (unpadded_size_unit) == INTEGER_CST
1609 && !TREE_OVERFLOW (unpadded_size_unit)
1610 && !valid_constant_size_p (unpadded_size_unit))
1611 error ("type %qT is too large", rli->t);
1612
1613 /* Round the size up to be a multiple of the required alignment. */
1614 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1615 TYPE_SIZE_UNIT (rli->t)
1616 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1617
1618 if (TREE_CONSTANT (unpadded_size)
1619 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1620 && input_location != BUILTINS_LOCATION)
1621 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1622
1623 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1624 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1625 && TREE_CONSTANT (unpadded_size))
1626 {
1627 tree unpacked_size;
1628
1629 #ifdef ROUND_TYPE_ALIGN
1630 rli->unpacked_align
1631 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1632 #else
1633 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1634 #endif
1635
1636 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1637 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1638 {
1639 if (TYPE_NAME (rli->t))
1640 {
1641 tree name;
1642
1643 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1644 name = TYPE_NAME (rli->t);
1645 else
1646 name = DECL_NAME (TYPE_NAME (rli->t));
1647
1648 if (STRICT_ALIGNMENT)
1649 warning (OPT_Wpacked, "packed attribute causes inefficient "
1650 "alignment for %qE", name);
1651 else
1652 warning (OPT_Wpacked,
1653 "packed attribute is unnecessary for %qE", name);
1654 }
1655 else
1656 {
1657 if (STRICT_ALIGNMENT)
1658 warning (OPT_Wpacked,
1659 "packed attribute causes inefficient alignment");
1660 else
1661 warning (OPT_Wpacked, "packed attribute is unnecessary");
1662 }
1663 }
1664 }
1665 }
1666
1667 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1668
1669 void
1670 compute_record_mode (tree type)
1671 {
1672 tree field;
1673 enum machine_mode mode = VOIDmode;
1674
1675 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1676 However, if possible, we use a mode that fits in a register
1677 instead, in order to allow for better optimization down the
1678 line. */
1679 SET_TYPE_MODE (type, BLKmode);
1680
1681 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1682 return;
1683
1684 /* A record which has any BLKmode members must itself be
1685 BLKmode; it can't go in a register. Unless the member is
1686 BLKmode only because it isn't aligned. */
1687 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1688 {
1689 if (TREE_CODE (field) != FIELD_DECL)
1690 continue;
1691
1692 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1693 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1694 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1695 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1696 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1697 || ! tree_fits_uhwi_p (bit_position (field))
1698 || DECL_SIZE (field) == 0
1699 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1700 return;
1701
1702 /* If this field is the whole struct, remember its mode so
1703 that, say, we can put a double in a class into a DF
1704 register instead of forcing it to live in the stack. */
1705 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1706 mode = DECL_MODE (field);
1707
1708 /* With some targets, it is sub-optimal to access an aligned
1709 BLKmode structure as a scalar. */
1710 if (targetm.member_type_forces_blk (field, mode))
1711 return;
1712 }
1713
1714 /* If we only have one real field; use its mode if that mode's size
1715 matches the type's size. This only applies to RECORD_TYPE. This
1716 does not apply to unions. */
1717 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1718 && tree_fits_uhwi_p (TYPE_SIZE (type))
1719 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1720 SET_TYPE_MODE (type, mode);
1721 else
1722 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1723
1724 /* If structure's known alignment is less than what the scalar
1725 mode would need, and it matters, then stick with BLKmode. */
1726 if (TYPE_MODE (type) != BLKmode
1727 && STRICT_ALIGNMENT
1728 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1729 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1730 {
1731 /* If this is the only reason this type is BLKmode, then
1732 don't force containing types to be BLKmode. */
1733 TYPE_NO_FORCE_BLK (type) = 1;
1734 SET_TYPE_MODE (type, BLKmode);
1735 }
1736 }
1737
1738 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1739 out. */
1740
1741 static void
1742 finalize_type_size (tree type)
1743 {
1744 /* Normally, use the alignment corresponding to the mode chosen.
1745 However, where strict alignment is not required, avoid
1746 over-aligning structures, since most compilers do not do this
1747 alignment. */
1748
1749 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1750 && (STRICT_ALIGNMENT
1751 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1752 && TREE_CODE (type) != QUAL_UNION_TYPE
1753 && TREE_CODE (type) != ARRAY_TYPE)))
1754 {
1755 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1756
1757 /* Don't override a larger alignment requirement coming from a user
1758 alignment of one of the fields. */
1759 if (mode_align >= TYPE_ALIGN (type))
1760 {
1761 TYPE_ALIGN (type) = mode_align;
1762 TYPE_USER_ALIGN (type) = 0;
1763 }
1764 }
1765
1766 /* Do machine-dependent extra alignment. */
1767 #ifdef ROUND_TYPE_ALIGN
1768 TYPE_ALIGN (type)
1769 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1770 #endif
1771
1772 /* If we failed to find a simple way to calculate the unit size
1773 of the type, find it by division. */
1774 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1775 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1776 result will fit in sizetype. We will get more efficient code using
1777 sizetype, so we force a conversion. */
1778 TYPE_SIZE_UNIT (type)
1779 = fold_convert (sizetype,
1780 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1781 bitsize_unit_node));
1782
1783 if (TYPE_SIZE (type) != 0)
1784 {
1785 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1786 TYPE_SIZE_UNIT (type)
1787 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1788 }
1789
1790 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1791 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1792 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1793 if (TYPE_SIZE_UNIT (type) != 0
1794 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1795 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1796
1797 /* Also layout any other variants of the type. */
1798 if (TYPE_NEXT_VARIANT (type)
1799 || type != TYPE_MAIN_VARIANT (type))
1800 {
1801 tree variant;
1802 /* Record layout info of this variant. */
1803 tree size = TYPE_SIZE (type);
1804 tree size_unit = TYPE_SIZE_UNIT (type);
1805 unsigned int align = TYPE_ALIGN (type);
1806 unsigned int precision = TYPE_PRECISION (type);
1807 unsigned int user_align = TYPE_USER_ALIGN (type);
1808 enum machine_mode mode = TYPE_MODE (type);
1809
1810 /* Copy it into all variants. */
1811 for (variant = TYPE_MAIN_VARIANT (type);
1812 variant != 0;
1813 variant = TYPE_NEXT_VARIANT (variant))
1814 {
1815 TYPE_SIZE (variant) = size;
1816 TYPE_SIZE_UNIT (variant) = size_unit;
1817 TYPE_ALIGN (variant) = align;
1818 TYPE_PRECISION (variant) = precision;
1819 TYPE_USER_ALIGN (variant) = user_align;
1820 SET_TYPE_MODE (variant, mode);
1821 }
1822 }
1823 }
1824
1825 /* Return a new underlying object for a bitfield started with FIELD. */
1826
1827 static tree
1828 start_bitfield_representative (tree field)
1829 {
1830 tree repr = make_node (FIELD_DECL);
1831 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1832 /* Force the representative to begin at a BITS_PER_UNIT aligned
1833 boundary - C++ may use tail-padding of a base object to
1834 continue packing bits so the bitfield region does not start
1835 at bit zero (see g++.dg/abi/bitfield5.C for example).
1836 Unallocated bits may happen for other reasons as well,
1837 for example Ada which allows explicit bit-granular structure layout. */
1838 DECL_FIELD_BIT_OFFSET (repr)
1839 = size_binop (BIT_AND_EXPR,
1840 DECL_FIELD_BIT_OFFSET (field),
1841 bitsize_int (~(BITS_PER_UNIT - 1)));
1842 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1843 DECL_SIZE (repr) = DECL_SIZE (field);
1844 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1845 DECL_PACKED (repr) = DECL_PACKED (field);
1846 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1847 return repr;
1848 }
1849
1850 /* Finish up a bitfield group that was started by creating the underlying
1851 object REPR with the last field in the bitfield group FIELD. */
1852
1853 static void
1854 finish_bitfield_representative (tree repr, tree field)
1855 {
1856 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1857 enum machine_mode mode;
1858 tree nextf, size;
1859
1860 size = size_diffop (DECL_FIELD_OFFSET (field),
1861 DECL_FIELD_OFFSET (repr));
1862 gcc_assert (tree_fits_uhwi_p (size));
1863 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1864 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1865 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1866 + tree_to_uhwi (DECL_SIZE (field)));
1867
1868 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1869 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1870
1871 /* Now nothing tells us how to pad out bitsize ... */
1872 nextf = DECL_CHAIN (field);
1873 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1874 nextf = DECL_CHAIN (nextf);
1875 if (nextf)
1876 {
1877 tree maxsize;
1878 /* If there was an error, the field may be not laid out
1879 correctly. Don't bother to do anything. */
1880 if (TREE_TYPE (nextf) == error_mark_node)
1881 return;
1882 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1883 DECL_FIELD_OFFSET (repr));
1884 if (tree_fits_uhwi_p (maxsize))
1885 {
1886 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1887 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1888 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1889 /* If the group ends within a bitfield nextf does not need to be
1890 aligned to BITS_PER_UNIT. Thus round up. */
1891 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1892 }
1893 else
1894 maxbitsize = bitsize;
1895 }
1896 else
1897 {
1898 /* ??? If you consider that tail-padding of this struct might be
1899 re-used when deriving from it we cannot really do the following
1900 and thus need to set maxsize to bitsize? Also we cannot
1901 generally rely on maxsize to fold to an integer constant, so
1902 use bitsize as fallback for this case. */
1903 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1904 DECL_FIELD_OFFSET (repr));
1905 if (tree_fits_uhwi_p (maxsize))
1906 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1907 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1908 else
1909 maxbitsize = bitsize;
1910 }
1911
1912 /* Only if we don't artificially break up the representative in
1913 the middle of a large bitfield with different possibly
1914 overlapping representatives. And all representatives start
1915 at byte offset. */
1916 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1917
1918 /* Find the smallest nice mode to use. */
1919 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1920 mode = GET_MODE_WIDER_MODE (mode))
1921 if (GET_MODE_BITSIZE (mode) >= bitsize)
1922 break;
1923 if (mode != VOIDmode
1924 && (GET_MODE_BITSIZE (mode) > maxbitsize
1925 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1926 mode = VOIDmode;
1927
1928 if (mode == VOIDmode)
1929 {
1930 /* We really want a BLKmode representative only as a last resort,
1931 considering the member b in
1932 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1933 Otherwise we simply want to split the representative up
1934 allowing for overlaps within the bitfield region as required for
1935 struct { int a : 7; int b : 7;
1936 int c : 10; int d; } __attribute__((packed));
1937 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1938 DECL_SIZE (repr) = bitsize_int (bitsize);
1939 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1940 DECL_MODE (repr) = BLKmode;
1941 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1942 bitsize / BITS_PER_UNIT);
1943 }
1944 else
1945 {
1946 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1947 DECL_SIZE (repr) = bitsize_int (modesize);
1948 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1949 DECL_MODE (repr) = mode;
1950 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1951 }
1952
1953 /* Remember whether the bitfield group is at the end of the
1954 structure or not. */
1955 DECL_CHAIN (repr) = nextf;
1956 }
1957
1958 /* Compute and set FIELD_DECLs for the underlying objects we should
1959 use for bitfield access for the structure laid out with RLI. */
1960
1961 static void
1962 finish_bitfield_layout (record_layout_info rli)
1963 {
1964 tree field, prev;
1965 tree repr = NULL_TREE;
1966
1967 /* Unions would be special, for the ease of type-punning optimizations
1968 we could use the underlying type as hint for the representative
1969 if the bitfield would fit and the representative would not exceed
1970 the union in size. */
1971 if (TREE_CODE (rli->t) != RECORD_TYPE)
1972 return;
1973
1974 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1975 field; field = DECL_CHAIN (field))
1976 {
1977 if (TREE_CODE (field) != FIELD_DECL)
1978 continue;
1979
1980 /* In the C++ memory model, consecutive bit fields in a structure are
1981 considered one memory location and updating a memory location
1982 may not store into adjacent memory locations. */
1983 if (!repr
1984 && DECL_BIT_FIELD_TYPE (field))
1985 {
1986 /* Start new representative. */
1987 repr = start_bitfield_representative (field);
1988 }
1989 else if (repr
1990 && ! DECL_BIT_FIELD_TYPE (field))
1991 {
1992 /* Finish off new representative. */
1993 finish_bitfield_representative (repr, prev);
1994 repr = NULL_TREE;
1995 }
1996 else if (DECL_BIT_FIELD_TYPE (field))
1997 {
1998 gcc_assert (repr != NULL_TREE);
1999
2000 /* Zero-size bitfields finish off a representative and
2001 do not have a representative themselves. This is
2002 required by the C++ memory model. */
2003 if (integer_zerop (DECL_SIZE (field)))
2004 {
2005 finish_bitfield_representative (repr, prev);
2006 repr = NULL_TREE;
2007 }
2008
2009 /* We assume that either DECL_FIELD_OFFSET of the representative
2010 and each bitfield member is a constant or they are equal.
2011 This is because we need to be able to compute the bit-offset
2012 of each field relative to the representative in get_bit_range
2013 during RTL expansion.
2014 If these constraints are not met, simply force a new
2015 representative to be generated. That will at most
2016 generate worse code but still maintain correctness with
2017 respect to the C++ memory model. */
2018 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2019 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2020 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2021 DECL_FIELD_OFFSET (field), 0)))
2022 {
2023 finish_bitfield_representative (repr, prev);
2024 repr = start_bitfield_representative (field);
2025 }
2026 }
2027 else
2028 continue;
2029
2030 if (repr)
2031 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2032
2033 prev = field;
2034 }
2035
2036 if (repr)
2037 finish_bitfield_representative (repr, prev);
2038 }
2039
2040 /* Do all of the work required to layout the type indicated by RLI,
2041 once the fields have been laid out. This function will call `free'
2042 for RLI, unless FREE_P is false. Passing a value other than false
2043 for FREE_P is bad practice; this option only exists to support the
2044 G++ 3.2 ABI. */
2045
2046 void
2047 finish_record_layout (record_layout_info rli, int free_p)
2048 {
2049 tree variant;
2050
2051 /* Compute the final size. */
2052 finalize_record_size (rli);
2053
2054 /* Compute the TYPE_MODE for the record. */
2055 compute_record_mode (rli->t);
2056
2057 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2058 finalize_type_size (rli->t);
2059
2060 /* Compute bitfield representatives. */
2061 finish_bitfield_layout (rli);
2062
2063 /* Propagate TYPE_PACKED to variants. With C++ templates,
2064 handle_packed_attribute is too early to do this. */
2065 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2066 variant = TYPE_NEXT_VARIANT (variant))
2067 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2068
2069 /* Lay out any static members. This is done now because their type
2070 may use the record's type. */
2071 while (!vec_safe_is_empty (rli->pending_statics))
2072 layout_decl (rli->pending_statics->pop (), 0);
2073
2074 /* Clean up. */
2075 if (free_p)
2076 {
2077 vec_free (rli->pending_statics);
2078 free (rli);
2079 }
2080 }
2081 \f
2082
2083 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2084 NAME, its fields are chained in reverse on FIELDS.
2085
2086 If ALIGN_TYPE is non-null, it is given the same alignment as
2087 ALIGN_TYPE. */
2088
2089 void
2090 finish_builtin_struct (tree type, const char *name, tree fields,
2091 tree align_type)
2092 {
2093 tree tail, next;
2094
2095 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2096 {
2097 DECL_FIELD_CONTEXT (fields) = type;
2098 next = DECL_CHAIN (fields);
2099 DECL_CHAIN (fields) = tail;
2100 }
2101 TYPE_FIELDS (type) = tail;
2102
2103 if (align_type)
2104 {
2105 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2106 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2107 }
2108
2109 layout_type (type);
2110 #if 0 /* not yet, should get fixed properly later */
2111 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2112 #else
2113 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2114 TYPE_DECL, get_identifier (name), type);
2115 #endif
2116 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2117 layout_decl (TYPE_NAME (type), 0);
2118 }
2119
2120 /* Calculate the mode, size, and alignment for TYPE.
2121 For an array type, calculate the element separation as well.
2122 Record TYPE on the chain of permanent or temporary types
2123 so that dbxout will find out about it.
2124
2125 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2126 layout_type does nothing on such a type.
2127
2128 If the type is incomplete, its TYPE_SIZE remains zero. */
2129
2130 void
2131 layout_type (tree type)
2132 {
2133 gcc_assert (type);
2134
2135 if (type == error_mark_node)
2136 return;
2137
2138 /* Do nothing if type has been laid out before. */
2139 if (TYPE_SIZE (type))
2140 return;
2141
2142 switch (TREE_CODE (type))
2143 {
2144 case LANG_TYPE:
2145 /* This kind of type is the responsibility
2146 of the language-specific code. */
2147 gcc_unreachable ();
2148
2149 case BOOLEAN_TYPE:
2150 case INTEGER_TYPE:
2151 case ENUMERAL_TYPE:
2152 SET_TYPE_MODE (type,
2153 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2154 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2155 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2156 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2157 break;
2158
2159 case REAL_TYPE:
2160 SET_TYPE_MODE (type,
2161 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2162 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2163 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2164 break;
2165
2166 case FIXED_POINT_TYPE:
2167 /* TYPE_MODE (type) has been set already. */
2168 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2169 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2170 break;
2171
2172 case COMPLEX_TYPE:
2173 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2174 SET_TYPE_MODE (type,
2175 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2176 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2177 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2178 0));
2179 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2180 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2181 break;
2182
2183 case VECTOR_TYPE:
2184 {
2185 int nunits = TYPE_VECTOR_SUBPARTS (type);
2186 tree innertype = TREE_TYPE (type);
2187
2188 gcc_assert (!(nunits & (nunits - 1)));
2189
2190 /* Find an appropriate mode for the vector type. */
2191 if (TYPE_MODE (type) == VOIDmode)
2192 SET_TYPE_MODE (type,
2193 mode_for_vector (TYPE_MODE (innertype), nunits));
2194
2195 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2196 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2197 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2198 TYPE_SIZE_UNIT (innertype),
2199 size_int (nunits));
2200 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2201 bitsize_int (nunits));
2202
2203 /* For vector types, we do not default to the mode's alignment.
2204 Instead, query a target hook, defaulting to natural alignment.
2205 This prevents ABI changes depending on whether or not native
2206 vector modes are supported. */
2207 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2208
2209 /* However, if the underlying mode requires a bigger alignment than
2210 what the target hook provides, we cannot use the mode. For now,
2211 simply reject that case. */
2212 gcc_assert (TYPE_ALIGN (type)
2213 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2214 break;
2215 }
2216
2217 case VOID_TYPE:
2218 /* This is an incomplete type and so doesn't have a size. */
2219 TYPE_ALIGN (type) = 1;
2220 TYPE_USER_ALIGN (type) = 0;
2221 SET_TYPE_MODE (type, VOIDmode);
2222 break;
2223
2224 case OFFSET_TYPE:
2225 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2226 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2227 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2228 integral, which may be an __intN. */
2229 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2230 TYPE_PRECISION (type) = POINTER_SIZE;
2231 break;
2232
2233 case FUNCTION_TYPE:
2234 case METHOD_TYPE:
2235 /* It's hard to see what the mode and size of a function ought to
2236 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2237 make it consistent with that. */
2238 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2239 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2240 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2241 break;
2242
2243 case POINTER_TYPE:
2244 case REFERENCE_TYPE:
2245 {
2246 enum machine_mode mode = TYPE_MODE (type);
2247 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2248 {
2249 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2250 mode = targetm.addr_space.address_mode (as);
2251 }
2252
2253 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2254 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2255 TYPE_UNSIGNED (type) = 1;
2256 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2257 }
2258 break;
2259
2260 case ARRAY_TYPE:
2261 {
2262 tree index = TYPE_DOMAIN (type);
2263 tree element = TREE_TYPE (type);
2264
2265 build_pointer_type (element);
2266
2267 /* We need to know both bounds in order to compute the size. */
2268 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2269 && TYPE_SIZE (element))
2270 {
2271 tree ub = TYPE_MAX_VALUE (index);
2272 tree lb = TYPE_MIN_VALUE (index);
2273 tree element_size = TYPE_SIZE (element);
2274 tree length;
2275
2276 /* Make sure that an array of zero-sized element is zero-sized
2277 regardless of its extent. */
2278 if (integer_zerop (element_size))
2279 length = size_zero_node;
2280
2281 /* The computation should happen in the original signedness so
2282 that (possible) negative values are handled appropriately
2283 when determining overflow. */
2284 else
2285 {
2286 /* ??? When it is obvious that the range is signed
2287 represent it using ssizetype. */
2288 if (TREE_CODE (lb) == INTEGER_CST
2289 && TREE_CODE (ub) == INTEGER_CST
2290 && TYPE_UNSIGNED (TREE_TYPE (lb))
2291 && tree_int_cst_lt (ub, lb))
2292 {
2293 lb = wide_int_to_tree (ssizetype,
2294 offset_int::from (lb, SIGNED));
2295 ub = wide_int_to_tree (ssizetype,
2296 offset_int::from (ub, SIGNED));
2297 }
2298 length
2299 = fold_convert (sizetype,
2300 size_binop (PLUS_EXPR,
2301 build_int_cst (TREE_TYPE (lb), 1),
2302 size_binop (MINUS_EXPR, ub, lb)));
2303 }
2304
2305 /* ??? We have no way to distinguish a null-sized array from an
2306 array spanning the whole sizetype range, so we arbitrarily
2307 decide that [0, -1] is the only valid representation. */
2308 if (integer_zerop (length)
2309 && TREE_OVERFLOW (length)
2310 && integer_zerop (lb))
2311 length = size_zero_node;
2312
2313 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2314 fold_convert (bitsizetype,
2315 length));
2316
2317 /* If we know the size of the element, calculate the total size
2318 directly, rather than do some division thing below. This
2319 optimization helps Fortran assumed-size arrays (where the
2320 size of the array is determined at runtime) substantially. */
2321 if (TYPE_SIZE_UNIT (element))
2322 TYPE_SIZE_UNIT (type)
2323 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2324 }
2325
2326 /* Now round the alignment and size,
2327 using machine-dependent criteria if any. */
2328
2329 #ifdef ROUND_TYPE_ALIGN
2330 TYPE_ALIGN (type)
2331 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2332 #else
2333 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2334 #endif
2335 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2336 SET_TYPE_MODE (type, BLKmode);
2337 if (TYPE_SIZE (type) != 0
2338 && ! targetm.member_type_forces_blk (type, VOIDmode)
2339 /* BLKmode elements force BLKmode aggregate;
2340 else extract/store fields may lose. */
2341 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2342 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2343 {
2344 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2345 TYPE_SIZE (type)));
2346 if (TYPE_MODE (type) != BLKmode
2347 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2348 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2349 {
2350 TYPE_NO_FORCE_BLK (type) = 1;
2351 SET_TYPE_MODE (type, BLKmode);
2352 }
2353 }
2354 /* When the element size is constant, check that it is at least as
2355 large as the element alignment. */
2356 if (TYPE_SIZE_UNIT (element)
2357 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2358 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2359 TYPE_ALIGN_UNIT. */
2360 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2361 && !integer_zerop (TYPE_SIZE_UNIT (element))
2362 && compare_tree_int (TYPE_SIZE_UNIT (element),
2363 TYPE_ALIGN_UNIT (element)) < 0)
2364 error ("alignment of array elements is greater than element size");
2365 break;
2366 }
2367
2368 case RECORD_TYPE:
2369 case UNION_TYPE:
2370 case QUAL_UNION_TYPE:
2371 {
2372 tree field;
2373 record_layout_info rli;
2374
2375 /* Initialize the layout information. */
2376 rli = start_record_layout (type);
2377
2378 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2379 in the reverse order in building the COND_EXPR that denotes
2380 its size. We reverse them again later. */
2381 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2382 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2383
2384 /* Place all the fields. */
2385 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2386 place_field (rli, field);
2387
2388 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2389 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2390
2391 /* Finish laying out the record. */
2392 finish_record_layout (rli, /*free_p=*/true);
2393 }
2394 break;
2395
2396 default:
2397 gcc_unreachable ();
2398 }
2399
2400 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2401 records and unions, finish_record_layout already called this
2402 function. */
2403 if (TREE_CODE (type) != RECORD_TYPE
2404 && TREE_CODE (type) != UNION_TYPE
2405 && TREE_CODE (type) != QUAL_UNION_TYPE)
2406 finalize_type_size (type);
2407
2408 /* We should never see alias sets on incomplete aggregates. And we
2409 should not call layout_type on not incomplete aggregates. */
2410 if (AGGREGATE_TYPE_P (type))
2411 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2412 }
2413
2414 /* Return the least alignment required for type TYPE. */
2415
2416 unsigned int
2417 min_align_of_type (tree type)
2418 {
2419 unsigned int align = TYPE_ALIGN (type);
2420 align = MIN (align, BIGGEST_ALIGNMENT);
2421 if (!TYPE_USER_ALIGN (type))
2422 {
2423 #ifdef BIGGEST_FIELD_ALIGNMENT
2424 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2425 #endif
2426 unsigned int field_align = align;
2427 #ifdef ADJUST_FIELD_ALIGN
2428 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2429 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2430 ggc_free (field);
2431 #endif
2432 align = MIN (align, field_align);
2433 }
2434 return align / BITS_PER_UNIT;
2435 }
2436
2437 /* Vector types need to re-check the target flags each time we report
2438 the machine mode. We need to do this because attribute target can
2439 change the result of vector_mode_supported_p and have_regs_of_mode
2440 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2441 change on a per-function basis. */
2442 /* ??? Possibly a better solution is to run through all the types
2443 referenced by a function and re-compute the TYPE_MODE once, rather
2444 than make the TYPE_MODE macro call a function. */
2445
2446 enum machine_mode
2447 vector_type_mode (const_tree t)
2448 {
2449 enum machine_mode mode;
2450
2451 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2452
2453 mode = t->type_common.mode;
2454 if (VECTOR_MODE_P (mode)
2455 && (!targetm.vector_mode_supported_p (mode)
2456 || !have_regs_of_mode[mode]))
2457 {
2458 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2459
2460 /* For integers, try mapping it to a same-sized scalar mode. */
2461 if (GET_MODE_CLASS (innermode) == MODE_INT)
2462 {
2463 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2464 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2465
2466 if (mode != VOIDmode && have_regs_of_mode[mode])
2467 return mode;
2468 }
2469
2470 return BLKmode;
2471 }
2472
2473 return mode;
2474 }
2475 \f
2476 /* Create and return a type for signed integers of PRECISION bits. */
2477
2478 tree
2479 make_signed_type (int precision)
2480 {
2481 tree type = make_node (INTEGER_TYPE);
2482
2483 TYPE_PRECISION (type) = precision;
2484
2485 fixup_signed_type (type);
2486 return type;
2487 }
2488
2489 /* Create and return a type for unsigned integers of PRECISION bits. */
2490
2491 tree
2492 make_unsigned_type (int precision)
2493 {
2494 tree type = make_node (INTEGER_TYPE);
2495
2496 TYPE_PRECISION (type) = precision;
2497
2498 fixup_unsigned_type (type);
2499 return type;
2500 }
2501 \f
2502 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2503 and SATP. */
2504
2505 tree
2506 make_fract_type (int precision, int unsignedp, int satp)
2507 {
2508 tree type = make_node (FIXED_POINT_TYPE);
2509
2510 TYPE_PRECISION (type) = precision;
2511
2512 if (satp)
2513 TYPE_SATURATING (type) = 1;
2514
2515 /* Lay out the type: set its alignment, size, etc. */
2516 if (unsignedp)
2517 {
2518 TYPE_UNSIGNED (type) = 1;
2519 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2520 }
2521 else
2522 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2523 layout_type (type);
2524
2525 return type;
2526 }
2527
2528 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2529 and SATP. */
2530
2531 tree
2532 make_accum_type (int precision, int unsignedp, int satp)
2533 {
2534 tree type = make_node (FIXED_POINT_TYPE);
2535
2536 TYPE_PRECISION (type) = precision;
2537
2538 if (satp)
2539 TYPE_SATURATING (type) = 1;
2540
2541 /* Lay out the type: set its alignment, size, etc. */
2542 if (unsignedp)
2543 {
2544 TYPE_UNSIGNED (type) = 1;
2545 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2546 }
2547 else
2548 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2549 layout_type (type);
2550
2551 return type;
2552 }
2553
2554 /* Initialize sizetypes so layout_type can use them. */
2555
2556 void
2557 initialize_sizetypes (void)
2558 {
2559 int precision, bprecision;
2560
2561 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2562 if (strcmp (SIZETYPE, "unsigned int") == 0)
2563 precision = INT_TYPE_SIZE;
2564 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2565 precision = LONG_TYPE_SIZE;
2566 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2567 precision = LONG_LONG_TYPE_SIZE;
2568 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2569 precision = SHORT_TYPE_SIZE;
2570 else
2571 {
2572 int i;
2573
2574 precision = -1;
2575 for (i = 0; i < NUM_INT_N_ENTS; i++)
2576 if (int_n_enabled_p[i])
2577 {
2578 char name[50];
2579 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2580
2581 if (strcmp (name, SIZETYPE) == 0)
2582 {
2583 precision = int_n_data[i].bitsize;
2584 }
2585 }
2586 if (precision == -1)
2587 gcc_unreachable ();
2588 }
2589
2590 bprecision
2591 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2592 bprecision
2593 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2594 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2595 bprecision = HOST_BITS_PER_DOUBLE_INT;
2596
2597 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2598 sizetype = make_node (INTEGER_TYPE);
2599 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2600 TYPE_PRECISION (sizetype) = precision;
2601 TYPE_UNSIGNED (sizetype) = 1;
2602 bitsizetype = make_node (INTEGER_TYPE);
2603 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2604 TYPE_PRECISION (bitsizetype) = bprecision;
2605 TYPE_UNSIGNED (bitsizetype) = 1;
2606
2607 /* Now layout both types manually. */
2608 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2609 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2610 TYPE_SIZE (sizetype) = bitsize_int (precision);
2611 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2612 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2613
2614 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2615 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2616 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2617 TYPE_SIZE_UNIT (bitsizetype)
2618 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2619 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2620
2621 /* Create the signed variants of *sizetype. */
2622 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2623 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2624 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2625 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2626 }
2627 \f
2628 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2629 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2630 for TYPE, based on the PRECISION and whether or not the TYPE
2631 IS_UNSIGNED. PRECISION need not correspond to a width supported
2632 natively by the hardware; for example, on a machine with 8-bit,
2633 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2634 61. */
2635
2636 void
2637 set_min_and_max_values_for_integral_type (tree type,
2638 int precision,
2639 signop sgn)
2640 {
2641 /* For bitfields with zero width we end up creating integer types
2642 with zero precision. Don't assign any minimum/maximum values
2643 to those types, they don't have any valid value. */
2644 if (precision < 1)
2645 return;
2646
2647 TYPE_MIN_VALUE (type)
2648 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2649 TYPE_MAX_VALUE (type)
2650 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2651 }
2652
2653 /* Set the extreme values of TYPE based on its precision in bits,
2654 then lay it out. Used when make_signed_type won't do
2655 because the tree code is not INTEGER_TYPE.
2656 E.g. for Pascal, when the -fsigned-char option is given. */
2657
2658 void
2659 fixup_signed_type (tree type)
2660 {
2661 int precision = TYPE_PRECISION (type);
2662
2663 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2664
2665 /* Lay out the type: set its alignment, size, etc. */
2666 layout_type (type);
2667 }
2668
2669 /* Set the extreme values of TYPE based on its precision in bits,
2670 then lay it out. This is used both in `make_unsigned_type'
2671 and for enumeral types. */
2672
2673 void
2674 fixup_unsigned_type (tree type)
2675 {
2676 int precision = TYPE_PRECISION (type);
2677
2678 TYPE_UNSIGNED (type) = 1;
2679
2680 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2681
2682 /* Lay out the type: set its alignment, size, etc. */
2683 layout_type (type);
2684 }
2685 \f
2686 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2687 starting at BITPOS.
2688
2689 BITREGION_START is the bit position of the first bit in this
2690 sequence of bit fields. BITREGION_END is the last bit in this
2691 sequence. If these two fields are non-zero, we should restrict the
2692 memory access to that range. Otherwise, we are allowed to touch
2693 any adjacent non bit-fields.
2694
2695 ALIGN is the alignment of the underlying object in bits.
2696 VOLATILEP says whether the bitfield is volatile. */
2697
2698 bit_field_mode_iterator
2699 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2700 HOST_WIDE_INT bitregion_start,
2701 HOST_WIDE_INT bitregion_end,
2702 unsigned int align, bool volatilep)
2703 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2704 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2705 m_bitregion_end (bitregion_end), m_align (align),
2706 m_volatilep (volatilep), m_count (0)
2707 {
2708 if (!m_bitregion_end)
2709 {
2710 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2711 the bitfield is mapped and won't trap, provided that ALIGN isn't
2712 too large. The cap is the biggest required alignment for data,
2713 or at least the word size. And force one such chunk at least. */
2714 unsigned HOST_WIDE_INT units
2715 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2716 if (bitsize <= 0)
2717 bitsize = 1;
2718 m_bitregion_end = bitpos + bitsize + units - 1;
2719 m_bitregion_end -= m_bitregion_end % units + 1;
2720 }
2721 }
2722
2723 /* Calls to this function return successively larger modes that can be used
2724 to represent the bitfield. Return true if another bitfield mode is
2725 available, storing it in *OUT_MODE if so. */
2726
2727 bool
2728 bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
2729 {
2730 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2731 {
2732 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2733
2734 /* Skip modes that don't have full precision. */
2735 if (unit != GET_MODE_PRECISION (m_mode))
2736 continue;
2737
2738 /* Stop if the mode is too wide to handle efficiently. */
2739 if (unit > MAX_FIXED_MODE_SIZE)
2740 break;
2741
2742 /* Don't deliver more than one multiword mode; the smallest one
2743 should be used. */
2744 if (m_count > 0 && unit > BITS_PER_WORD)
2745 break;
2746
2747 /* Skip modes that are too small. */
2748 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2749 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2750 if (subend > unit)
2751 continue;
2752
2753 /* Stop if the mode goes outside the bitregion. */
2754 HOST_WIDE_INT start = m_bitpos - substart;
2755 if (m_bitregion_start && start < m_bitregion_start)
2756 break;
2757 HOST_WIDE_INT end = start + unit;
2758 if (end > m_bitregion_end + 1)
2759 break;
2760
2761 /* Stop if the mode requires too much alignment. */
2762 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2763 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2764 break;
2765
2766 *out_mode = m_mode;
2767 m_mode = GET_MODE_WIDER_MODE (m_mode);
2768 m_count++;
2769 return true;
2770 }
2771 return false;
2772 }
2773
2774 /* Return true if smaller modes are generally preferred for this kind
2775 of bitfield. */
2776
2777 bool
2778 bit_field_mode_iterator::prefer_smaller_modes ()
2779 {
2780 return (m_volatilep
2781 ? targetm.narrow_volatile_bitfield ()
2782 : !SLOW_BYTE_ACCESS);
2783 }
2784
2785 /* Find the best machine mode to use when referencing a bit field of length
2786 BITSIZE bits starting at BITPOS.
2787
2788 BITREGION_START is the bit position of the first bit in this
2789 sequence of bit fields. BITREGION_END is the last bit in this
2790 sequence. If these two fields are non-zero, we should restrict the
2791 memory access to that range. Otherwise, we are allowed to touch
2792 any adjacent non bit-fields.
2793
2794 The underlying object is known to be aligned to a boundary of ALIGN bits.
2795 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2796 larger than LARGEST_MODE (usually SImode).
2797
2798 If no mode meets all these conditions, we return VOIDmode.
2799
2800 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2801 smallest mode meeting these conditions.
2802
2803 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2804 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2805 all the conditions.
2806
2807 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2808 decide which of the above modes should be used. */
2809
2810 enum machine_mode
2811 get_best_mode (int bitsize, int bitpos,
2812 unsigned HOST_WIDE_INT bitregion_start,
2813 unsigned HOST_WIDE_INT bitregion_end,
2814 unsigned int align,
2815 enum machine_mode largest_mode, bool volatilep)
2816 {
2817 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2818 bitregion_end, align, volatilep);
2819 enum machine_mode widest_mode = VOIDmode;
2820 enum machine_mode mode;
2821 while (iter.next_mode (&mode)
2822 /* ??? For historical reasons, reject modes that would normally
2823 receive greater alignment, even if unaligned accesses are
2824 acceptable. This has both advantages and disadvantages.
2825 Removing this check means that something like:
2826
2827 struct s { unsigned int x; unsigned int y; };
2828 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2829
2830 can be implemented using a single load and compare on
2831 64-bit machines that have no alignment restrictions.
2832 For example, on powerpc64-linux-gnu, we would generate:
2833
2834 ld 3,0(3)
2835 cntlzd 3,3
2836 srdi 3,3,6
2837 blr
2838
2839 rather than:
2840
2841 lwz 9,0(3)
2842 cmpwi 7,9,0
2843 bne 7,.L3
2844 lwz 3,4(3)
2845 cntlzw 3,3
2846 srwi 3,3,5
2847 extsw 3,3
2848 blr
2849 .p2align 4,,15
2850 .L3:
2851 li 3,0
2852 blr
2853
2854 However, accessing more than one field can make life harder
2855 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2856 has a series of unsigned short copies followed by a series of
2857 unsigned short comparisons. With this check, both the copies
2858 and comparisons remain 16-bit accesses and FRE is able
2859 to eliminate the latter. Without the check, the comparisons
2860 can be done using 2 64-bit operations, which FRE isn't able
2861 to handle in the same way.
2862
2863 Either way, it would probably be worth disabling this check
2864 during expand. One particular example where removing the
2865 check would help is the get_best_mode call in store_bit_field.
2866 If we are given a memory bitregion of 128 bits that is aligned
2867 to a 64-bit boundary, and the bitfield we want to modify is
2868 in the second half of the bitregion, this check causes
2869 store_bitfield to turn the memory into a 64-bit reference
2870 to the _first_ half of the region. We later use
2871 adjust_bitfield_address to get a reference to the correct half,
2872 but doing so looks to adjust_bitfield_address as though we are
2873 moving past the end of the original object, so it drops the
2874 associated MEM_EXPR and MEM_OFFSET. Removing the check
2875 causes store_bit_field to keep a 128-bit memory reference,
2876 so that the final bitfield reference still has a MEM_EXPR
2877 and MEM_OFFSET. */
2878 && GET_MODE_ALIGNMENT (mode) <= align
2879 && (largest_mode == VOIDmode
2880 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2881 {
2882 widest_mode = mode;
2883 if (iter.prefer_smaller_modes ())
2884 break;
2885 }
2886 return widest_mode;
2887 }
2888
2889 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2890 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2891
2892 void
2893 get_mode_bounds (enum machine_mode mode, int sign,
2894 enum machine_mode target_mode,
2895 rtx *mmin, rtx *mmax)
2896 {
2897 unsigned size = GET_MODE_PRECISION (mode);
2898 unsigned HOST_WIDE_INT min_val, max_val;
2899
2900 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2901
2902 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2903 if (mode == BImode)
2904 {
2905 if (STORE_FLAG_VALUE < 0)
2906 {
2907 min_val = STORE_FLAG_VALUE;
2908 max_val = 0;
2909 }
2910 else
2911 {
2912 min_val = 0;
2913 max_val = STORE_FLAG_VALUE;
2914 }
2915 }
2916 else if (sign)
2917 {
2918 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2919 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2920 }
2921 else
2922 {
2923 min_val = 0;
2924 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2925 }
2926
2927 *mmin = gen_int_mode (min_val, target_mode);
2928 *mmax = gen_int_mode (max_val, target_mode);
2929 }
2930
2931 #include "gt-stor-layout.h"