re PR c++/21166 (g++ gives error on reference to packed structure elements)
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "output.h"
34 #include "toplev.h"
35 #include "ggc.h"
36 #include "target.h"
37 #include "langhooks.h"
38 #include "regs.h"
39 #include "params.h"
40
41 /* Data type for the expressions representing sizes of data types.
42 It is the first integer type laid out. */
43 tree sizetype_tab[(int) TYPE_KIND_LAST];
44
45 /* If nonzero, this is an upper limit on alignment of structure fields.
46 The value is measured in bits. */
47 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
48 /* ... and its original value in bytes, specified via -fpack-struct=<value>. */
49 unsigned int initial_max_fld_align = TARGET_DEFAULT_PACK_STRUCT;
50
51 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
52 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
53 called only by a front end. */
54 static int reference_types_internal = 0;
55
56 static void finalize_record_size (record_layout_info);
57 static void finalize_type_size (tree);
58 static void place_union_field (record_layout_info, tree);
59 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
60 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
61 HOST_WIDE_INT, tree);
62 #endif
63 extern void debug_rli (record_layout_info);
64 \f
65 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
66
67 static GTY(()) tree pending_sizes;
68
69 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
70 by front end. */
71
72 void
73 internal_reference_types (void)
74 {
75 reference_types_internal = 1;
76 }
77
78 /* Get a list of all the objects put on the pending sizes list. */
79
80 tree
81 get_pending_sizes (void)
82 {
83 tree chain = pending_sizes;
84
85 pending_sizes = 0;
86 return chain;
87 }
88
89 /* Add EXPR to the pending sizes list. */
90
91 void
92 put_pending_size (tree expr)
93 {
94 /* Strip any simple arithmetic from EXPR to see if it has an underlying
95 SAVE_EXPR. */
96 expr = skip_simple_arithmetic (expr);
97
98 if (TREE_CODE (expr) == SAVE_EXPR)
99 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
100 }
101
102 /* Put a chain of objects into the pending sizes list, which must be
103 empty. */
104
105 void
106 put_pending_sizes (tree chain)
107 {
108 gcc_assert (!pending_sizes);
109 pending_sizes = chain;
110 }
111
112 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
113 to serve as the actual size-expression for a type or decl. */
114
115 tree
116 variable_size (tree size)
117 {
118 tree save;
119
120 /* If the language-processor is to take responsibility for variable-sized
121 items (e.g., languages which have elaboration procedures like Ada),
122 just return SIZE unchanged. Likewise for self-referential sizes and
123 constant sizes. */
124 if (TREE_CONSTANT (size)
125 || lang_hooks.decls.global_bindings_p () < 0
126 || CONTAINS_PLACEHOLDER_P (size))
127 return size;
128
129 size = save_expr (size);
130
131 /* If an array with a variable number of elements is declared, and
132 the elements require destruction, we will emit a cleanup for the
133 array. That cleanup is run both on normal exit from the block
134 and in the exception-handler for the block. Normally, when code
135 is used in both ordinary code and in an exception handler it is
136 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
137 not wish to do that here; the array-size is the same in both
138 places. */
139 save = skip_simple_arithmetic (size);
140
141 if (cfun && cfun->x_dont_save_pending_sizes_p)
142 /* The front-end doesn't want us to keep a list of the expressions
143 that determine sizes for variable size objects. Trust it. */
144 return size;
145
146 if (lang_hooks.decls.global_bindings_p ())
147 {
148 if (TREE_CONSTANT (size))
149 error ("type size can%'t be explicitly evaluated");
150 else
151 error ("variable-size type declared outside of any function");
152
153 return size_one_node;
154 }
155
156 put_pending_size (save);
157
158 return size;
159 }
160 \f
161 #ifndef MAX_FIXED_MODE_SIZE
162 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
163 #endif
164
165 /* Return the machine mode to use for a nonscalar of SIZE bits. The
166 mode must be in class CLASS, and have exactly that many value bits;
167 it may have padding as well. If LIMIT is nonzero, modes of wider
168 than MAX_FIXED_MODE_SIZE will not be used. */
169
170 enum machine_mode
171 mode_for_size (unsigned int size, enum mode_class class, int limit)
172 {
173 enum machine_mode mode;
174
175 if (limit && size > MAX_FIXED_MODE_SIZE)
176 return BLKmode;
177
178 /* Get the first mode which has this size, in the specified class. */
179 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
180 mode = GET_MODE_WIDER_MODE (mode))
181 if (GET_MODE_PRECISION (mode) == size)
182 return mode;
183
184 return BLKmode;
185 }
186
187 /* Similar, except passed a tree node. */
188
189 enum machine_mode
190 mode_for_size_tree (tree size, enum mode_class class, int limit)
191 {
192 if (TREE_CODE (size) != INTEGER_CST
193 || TREE_OVERFLOW (size)
194 /* What we really want to say here is that the size can fit in a
195 host integer, but we know there's no way we'd find a mode for
196 this many bits, so there's no point in doing the precise test. */
197 || compare_tree_int (size, 1000) > 0)
198 return BLKmode;
199 else
200 return mode_for_size (tree_low_cst (size, 1), class, limit);
201 }
202
203 /* Similar, but never return BLKmode; return the narrowest mode that
204 contains at least the requested number of value bits. */
205
206 enum machine_mode
207 smallest_mode_for_size (unsigned int size, enum mode_class class)
208 {
209 enum machine_mode mode;
210
211 /* Get the first mode which has at least this size, in the
212 specified class. */
213 for (mode = GET_CLASS_NARROWEST_MODE (class); mode != VOIDmode;
214 mode = GET_MODE_WIDER_MODE (mode))
215 if (GET_MODE_PRECISION (mode) >= size)
216 return mode;
217
218 gcc_unreachable ();
219 }
220
221 /* Find an integer mode of the exact same size, or BLKmode on failure. */
222
223 enum machine_mode
224 int_mode_for_mode (enum machine_mode mode)
225 {
226 switch (GET_MODE_CLASS (mode))
227 {
228 case MODE_INT:
229 case MODE_PARTIAL_INT:
230 break;
231
232 case MODE_COMPLEX_INT:
233 case MODE_COMPLEX_FLOAT:
234 case MODE_FLOAT:
235 case MODE_VECTOR_INT:
236 case MODE_VECTOR_FLOAT:
237 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
238 break;
239
240 case MODE_RANDOM:
241 if (mode == BLKmode)
242 break;
243
244 /* ... fall through ... */
245
246 case MODE_CC:
247 default:
248 gcc_unreachable ();
249 }
250
251 return mode;
252 }
253
254 /* Return the alignment of MODE. This will be bounded by 1 and
255 BIGGEST_ALIGNMENT. */
256
257 unsigned int
258 get_mode_alignment (enum machine_mode mode)
259 {
260 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
261 }
262
263 \f
264 /* Subroutine of layout_decl: Force alignment required for the data type.
265 But if the decl itself wants greater alignment, don't override that. */
266
267 static inline void
268 do_type_align (tree type, tree decl)
269 {
270 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
271 {
272 DECL_ALIGN (decl) = TYPE_ALIGN (type);
273 if (TREE_CODE (decl) == FIELD_DECL)
274 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
275 }
276 }
277
278 /* Set the size, mode and alignment of a ..._DECL node.
279 TYPE_DECL does need this for C++.
280 Note that LABEL_DECL and CONST_DECL nodes do not need this,
281 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
282 Don't call layout_decl for them.
283
284 KNOWN_ALIGN is the amount of alignment we can assume this
285 decl has with no special effort. It is relevant only for FIELD_DECLs
286 and depends on the previous fields.
287 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
288 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
289 the record will be aligned to suit. */
290
291 void
292 layout_decl (tree decl, unsigned int known_align)
293 {
294 tree type = TREE_TYPE (decl);
295 enum tree_code code = TREE_CODE (decl);
296 rtx rtl = NULL_RTX;
297
298 if (code == CONST_DECL)
299 return;
300
301 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
302 || code == TYPE_DECL ||code == FIELD_DECL);
303
304 rtl = DECL_RTL_IF_SET (decl);
305
306 if (type == error_mark_node)
307 type = void_type_node;
308
309 /* Usually the size and mode come from the data type without change,
310 however, the front-end may set the explicit width of the field, so its
311 size may not be the same as the size of its type. This happens with
312 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
313 also happens with other fields. For example, the C++ front-end creates
314 zero-sized fields corresponding to empty base classes, and depends on
315 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
316 size in bytes from the size in bits. If we have already set the mode,
317 don't set it again since we can be called twice for FIELD_DECLs. */
318
319 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
320 if (DECL_MODE (decl) == VOIDmode)
321 DECL_MODE (decl) = TYPE_MODE (type);
322
323 if (DECL_SIZE (decl) == 0)
324 {
325 DECL_SIZE (decl) = TYPE_SIZE (type);
326 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
327 }
328 else if (DECL_SIZE_UNIT (decl) == 0)
329 DECL_SIZE_UNIT (decl)
330 = fold_convert (sizetype, size_binop (CEIL_DIV_EXPR, DECL_SIZE (decl),
331 bitsize_unit_node));
332
333 if (code != FIELD_DECL)
334 /* For non-fields, update the alignment from the type. */
335 do_type_align (type, decl);
336 else
337 /* For fields, it's a bit more complicated... */
338 {
339 bool old_user_align = DECL_USER_ALIGN (decl);
340
341 if (DECL_BIT_FIELD (decl))
342 {
343 DECL_BIT_FIELD_TYPE (decl) = type;
344
345 /* A zero-length bit-field affects the alignment of the next
346 field. */
347 if (integer_zerop (DECL_SIZE (decl))
348 && ! DECL_PACKED (decl)
349 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
350 {
351 #ifdef PCC_BITFIELD_TYPE_MATTERS
352 if (PCC_BITFIELD_TYPE_MATTERS)
353 do_type_align (type, decl);
354 else
355 #endif
356 {
357 #ifdef EMPTY_FIELD_BOUNDARY
358 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
359 {
360 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
361 DECL_USER_ALIGN (decl) = 0;
362 }
363 #endif
364 }
365 }
366
367 /* See if we can use an ordinary integer mode for a bit-field.
368 Conditions are: a fixed size that is correct for another mode
369 and occupying a complete byte or bytes on proper boundary. */
370 if (TYPE_SIZE (type) != 0
371 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
372 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
373 {
374 enum machine_mode xmode
375 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
376
377 if (xmode != BLKmode
378 && (known_align == 0
379 || known_align >= GET_MODE_ALIGNMENT (xmode)))
380 {
381 DECL_ALIGN (decl) = MAX (GET_MODE_ALIGNMENT (xmode),
382 DECL_ALIGN (decl));
383 DECL_MODE (decl) = xmode;
384 DECL_BIT_FIELD (decl) = 0;
385 }
386 }
387
388 /* Turn off DECL_BIT_FIELD if we won't need it set. */
389 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
390 && known_align >= TYPE_ALIGN (type)
391 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
392 DECL_BIT_FIELD (decl) = 0;
393 }
394 else if (DECL_PACKED (decl) && DECL_USER_ALIGN (decl))
395 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
396 round up; we'll reduce it again below. We want packing to
397 supersede USER_ALIGN inherited from the type, but defer to
398 alignment explicitly specified on the field decl. */;
399 else
400 do_type_align (type, decl);
401
402 /* If the field is of variable size, we can't misalign it since we
403 have no way to make a temporary to align the result. But this
404 isn't an issue if the decl is not addressable. Likewise if it
405 is of unknown size.
406
407 Note that do_type_align may set DECL_USER_ALIGN, so we need to
408 check old_user_align instead. */
409 if (DECL_PACKED (decl)
410 && !old_user_align
411 && (DECL_NONADDRESSABLE_P (decl)
412 || DECL_SIZE_UNIT (decl) == 0
413 || TREE_CODE (DECL_SIZE_UNIT (decl)) == INTEGER_CST))
414 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
415
416 if (! DECL_USER_ALIGN (decl) && ! DECL_PACKED (decl))
417 {
418 /* Some targets (i.e. i386, VMS) limit struct field alignment
419 to a lower boundary than alignment of variables unless
420 it was overridden by attribute aligned. */
421 #ifdef BIGGEST_FIELD_ALIGNMENT
422 DECL_ALIGN (decl)
423 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
424 #endif
425 #ifdef ADJUST_FIELD_ALIGN
426 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
427 #endif
428 }
429
430 /* Should this be controlled by DECL_USER_ALIGN, too? */
431 if (maximum_field_alignment != 0)
432 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), maximum_field_alignment);
433 }
434
435 /* Evaluate nonconstant size only once, either now or as soon as safe. */
436 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
437 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
438 if (DECL_SIZE_UNIT (decl) != 0
439 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
440 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
441
442 /* If requested, warn about definitions of large data objects. */
443 if (warn_larger_than
444 && (code == VAR_DECL || code == PARM_DECL)
445 && ! DECL_EXTERNAL (decl))
446 {
447 tree size = DECL_SIZE_UNIT (decl);
448
449 if (size != 0 && TREE_CODE (size) == INTEGER_CST
450 && compare_tree_int (size, larger_than_size) > 0)
451 {
452 int size_as_int = TREE_INT_CST_LOW (size);
453
454 if (compare_tree_int (size, size_as_int) == 0)
455 warning (0, "size of %q+D is %d bytes", decl, size_as_int);
456 else
457 warning (0, "size of %q+D is larger than %wd bytes",
458 decl, larger_than_size);
459 }
460 }
461
462 /* If the RTL was already set, update its mode and mem attributes. */
463 if (rtl)
464 {
465 PUT_MODE (rtl, DECL_MODE (decl));
466 SET_DECL_RTL (decl, 0);
467 set_mem_attributes (rtl, decl, 1);
468 SET_DECL_RTL (decl, rtl);
469 }
470 }
471
472 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
473 a previous call to layout_decl and calls it again. */
474
475 void
476 relayout_decl (tree decl)
477 {
478 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
479 DECL_MODE (decl) = VOIDmode;
480 DECL_ALIGN (decl) = 0;
481 SET_DECL_RTL (decl, 0);
482
483 layout_decl (decl, 0);
484 }
485 \f
486 /* Hook for a front-end function that can modify the record layout as needed
487 immediately before it is finalized. */
488
489 static void (*lang_adjust_rli) (record_layout_info) = 0;
490
491 void
492 set_lang_adjust_rli (void (*f) (record_layout_info))
493 {
494 lang_adjust_rli = f;
495 }
496
497 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
498 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
499 is to be passed to all other layout functions for this record. It is the
500 responsibility of the caller to call `free' for the storage returned.
501 Note that garbage collection is not permitted until we finish laying
502 out the record. */
503
504 record_layout_info
505 start_record_layout (tree t)
506 {
507 record_layout_info rli = xmalloc (sizeof (struct record_layout_info_s));
508
509 rli->t = t;
510
511 /* If the type has a minimum specified alignment (via an attribute
512 declaration, for example) use it -- otherwise, start with a
513 one-byte alignment. */
514 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
515 rli->unpacked_align = rli->record_align;
516 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
517
518 #ifdef STRUCTURE_SIZE_BOUNDARY
519 /* Packed structures don't need to have minimum size. */
520 if (! TYPE_PACKED (t))
521 rli->record_align = MAX (rli->record_align, (unsigned) STRUCTURE_SIZE_BOUNDARY);
522 #endif
523
524 rli->offset = size_zero_node;
525 rli->bitpos = bitsize_zero_node;
526 rli->prev_field = 0;
527 rli->pending_statics = 0;
528 rli->packed_maybe_necessary = 0;
529
530 return rli;
531 }
532
533 /* These four routines perform computations that convert between
534 the offset/bitpos forms and byte and bit offsets. */
535
536 tree
537 bit_from_pos (tree offset, tree bitpos)
538 {
539 return size_binop (PLUS_EXPR, bitpos,
540 size_binop (MULT_EXPR,
541 fold_convert (bitsizetype, offset),
542 bitsize_unit_node));
543 }
544
545 tree
546 byte_from_pos (tree offset, tree bitpos)
547 {
548 return size_binop (PLUS_EXPR, offset,
549 fold_convert (sizetype,
550 size_binop (TRUNC_DIV_EXPR, bitpos,
551 bitsize_unit_node)));
552 }
553
554 void
555 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
556 tree pos)
557 {
558 *poffset = size_binop (MULT_EXPR,
559 fold_convert (sizetype,
560 size_binop (FLOOR_DIV_EXPR, pos,
561 bitsize_int (off_align))),
562 size_int (off_align / BITS_PER_UNIT));
563 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
564 }
565
566 /* Given a pointer to bit and byte offsets and an offset alignment,
567 normalize the offsets so they are within the alignment. */
568
569 void
570 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
571 {
572 /* If the bit position is now larger than it should be, adjust it
573 downwards. */
574 if (compare_tree_int (*pbitpos, off_align) >= 0)
575 {
576 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
577 bitsize_int (off_align));
578
579 *poffset
580 = size_binop (PLUS_EXPR, *poffset,
581 size_binop (MULT_EXPR,
582 fold_convert (sizetype, extra_aligns),
583 size_int (off_align / BITS_PER_UNIT)));
584
585 *pbitpos
586 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
587 }
588 }
589
590 /* Print debugging information about the information in RLI. */
591
592 void
593 debug_rli (record_layout_info rli)
594 {
595 print_node_brief (stderr, "type", rli->t, 0);
596 print_node_brief (stderr, "\noffset", rli->offset, 0);
597 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
598
599 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
600 rli->record_align, rli->unpacked_align,
601 rli->offset_align);
602 if (rli->packed_maybe_necessary)
603 fprintf (stderr, "packed may be necessary\n");
604
605 if (rli->pending_statics)
606 {
607 fprintf (stderr, "pending statics:\n");
608 debug_tree (rli->pending_statics);
609 }
610 }
611
612 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
613 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
614
615 void
616 normalize_rli (record_layout_info rli)
617 {
618 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
619 }
620
621 /* Returns the size in bytes allocated so far. */
622
623 tree
624 rli_size_unit_so_far (record_layout_info rli)
625 {
626 return byte_from_pos (rli->offset, rli->bitpos);
627 }
628
629 /* Returns the size in bits allocated so far. */
630
631 tree
632 rli_size_so_far (record_layout_info rli)
633 {
634 return bit_from_pos (rli->offset, rli->bitpos);
635 }
636
637 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
638 the next available location within the record is given by KNOWN_ALIGN.
639 Update the variable alignment fields in RLI, and return the alignment
640 to give the FIELD. */
641
642 unsigned int
643 update_alignment_for_field (record_layout_info rli, tree field,
644 unsigned int known_align)
645 {
646 /* The alignment required for FIELD. */
647 unsigned int desired_align;
648 /* The type of this field. */
649 tree type = TREE_TYPE (field);
650 /* True if the field was explicitly aligned by the user. */
651 bool user_align;
652 bool is_bitfield;
653
654 /* Lay out the field so we know what alignment it needs. */
655 layout_decl (field, known_align);
656 desired_align = DECL_ALIGN (field);
657 user_align = DECL_USER_ALIGN (field);
658
659 is_bitfield = (type != error_mark_node
660 && DECL_BIT_FIELD_TYPE (field)
661 && ! integer_zerop (TYPE_SIZE (type)));
662
663 /* Record must have at least as much alignment as any field.
664 Otherwise, the alignment of the field within the record is
665 meaningless. */
666 if (is_bitfield && targetm.ms_bitfield_layout_p (rli->t))
667 {
668 /* Here, the alignment of the underlying type of a bitfield can
669 affect the alignment of a record; even a zero-sized field
670 can do this. The alignment should be to the alignment of
671 the type, except that for zero-size bitfields this only
672 applies if there was an immediately prior, nonzero-size
673 bitfield. (That's the way it is, experimentally.) */
674 if (! integer_zerop (DECL_SIZE (field))
675 ? ! DECL_PACKED (field)
676 : (rli->prev_field
677 && DECL_BIT_FIELD_TYPE (rli->prev_field)
678 && ! integer_zerop (DECL_SIZE (rli->prev_field))))
679 {
680 unsigned int type_align = TYPE_ALIGN (type);
681 type_align = MAX (type_align, desired_align);
682 if (maximum_field_alignment != 0)
683 type_align = MIN (type_align, maximum_field_alignment);
684 rli->record_align = MAX (rli->record_align, type_align);
685 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
686 /* If we start a new run, make sure we start it properly aligned. */
687 if ((!rli->prev_field
688 || integer_zerop (DECL_SIZE (field))
689 || integer_zerop (DECL_SIZE (rli->prev_field))
690 || !host_integerp (DECL_SIZE (rli->prev_field), 0)
691 || !host_integerp (TYPE_SIZE (type), 0)
692 || !simple_cst_equal (TYPE_SIZE (type),
693 TYPE_SIZE (TREE_TYPE (rli->prev_field)))
694 || (rli->remaining_in_alignment
695 < tree_low_cst (DECL_SIZE (field), 0)))
696 && desired_align < type_align)
697 desired_align = type_align;
698 }
699 }
700 #ifdef PCC_BITFIELD_TYPE_MATTERS
701 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
702 {
703 /* Named bit-fields cause the entire structure to have the
704 alignment implied by their type. Some targets also apply the same
705 rules to unnamed bitfields. */
706 if (DECL_NAME (field) != 0
707 || targetm.align_anon_bitfield ())
708 {
709 unsigned int type_align = TYPE_ALIGN (type);
710
711 #ifdef ADJUST_FIELD_ALIGN
712 if (! TYPE_USER_ALIGN (type))
713 type_align = ADJUST_FIELD_ALIGN (field, type_align);
714 #endif
715
716 if (maximum_field_alignment != 0)
717 type_align = MIN (type_align, maximum_field_alignment);
718 else if (DECL_PACKED (field))
719 type_align = MIN (type_align, BITS_PER_UNIT);
720
721 /* The alignment of the record is increased to the maximum
722 of the current alignment, the alignment indicated on the
723 field (i.e., the alignment specified by an __aligned__
724 attribute), and the alignment indicated by the type of
725 the field. */
726 rli->record_align = MAX (rli->record_align, desired_align);
727 rli->record_align = MAX (rli->record_align, type_align);
728
729 if (warn_packed)
730 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
731 user_align |= TYPE_USER_ALIGN (type);
732 }
733 }
734 #endif
735 else
736 {
737 rli->record_align = MAX (rli->record_align, desired_align);
738 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
739 }
740
741 TYPE_USER_ALIGN (rli->t) |= user_align;
742
743 return desired_align;
744 }
745
746 /* Called from place_field to handle unions. */
747
748 static void
749 place_union_field (record_layout_info rli, tree field)
750 {
751 update_alignment_for_field (rli, field, /*known_align=*/0);
752
753 DECL_FIELD_OFFSET (field) = size_zero_node;
754 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
755 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
756
757 /* We assume the union's size will be a multiple of a byte so we don't
758 bother with BITPOS. */
759 if (TREE_CODE (rli->t) == UNION_TYPE)
760 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
761 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
762 rli->offset = fold_build3 (COND_EXPR, sizetype,
763 DECL_QUALIFIER (field),
764 DECL_SIZE_UNIT (field), rli->offset);
765 }
766
767 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
768 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
769 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
770 units of alignment than the underlying TYPE. */
771 static int
772 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
773 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
774 {
775 /* Note that the calculation of OFFSET might overflow; we calculate it so
776 that we still get the right result as long as ALIGN is a power of two. */
777 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
778
779 offset = offset % align;
780 return ((offset + size + align - 1) / align
781 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
782 / align));
783 }
784 #endif
785
786 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
787 is a FIELD_DECL to be added after those fields already present in
788 T. (FIELD is not actually added to the TYPE_FIELDS list here;
789 callers that desire that behavior must manually perform that step.) */
790
791 void
792 place_field (record_layout_info rli, tree field)
793 {
794 /* The alignment required for FIELD. */
795 unsigned int desired_align;
796 /* The alignment FIELD would have if we just dropped it into the
797 record as it presently stands. */
798 unsigned int known_align;
799 unsigned int actual_align;
800 /* The type of this field. */
801 tree type = TREE_TYPE (field);
802
803 if (TREE_CODE (field) == ERROR_MARK || TREE_CODE (type) == ERROR_MARK)
804 return;
805
806 /* If FIELD is static, then treat it like a separate variable, not
807 really like a structure field. If it is a FUNCTION_DECL, it's a
808 method. In both cases, all we do is lay out the decl, and we do
809 it *after* the record is laid out. */
810 if (TREE_CODE (field) == VAR_DECL)
811 {
812 rli->pending_statics = tree_cons (NULL_TREE, field,
813 rli->pending_statics);
814 return;
815 }
816
817 /* Enumerators and enum types which are local to this class need not
818 be laid out. Likewise for initialized constant fields. */
819 else if (TREE_CODE (field) != FIELD_DECL)
820 return;
821
822 /* Unions are laid out very differently than records, so split
823 that code off to another function. */
824 else if (TREE_CODE (rli->t) != RECORD_TYPE)
825 {
826 place_union_field (rli, field);
827 return;
828 }
829
830 /* Work out the known alignment so far. Note that A & (-A) is the
831 value of the least-significant bit in A that is one. */
832 if (! integer_zerop (rli->bitpos))
833 known_align = (tree_low_cst (rli->bitpos, 1)
834 & - tree_low_cst (rli->bitpos, 1));
835 else if (integer_zerop (rli->offset))
836 known_align = 0;
837 else if (host_integerp (rli->offset, 1))
838 known_align = (BITS_PER_UNIT
839 * (tree_low_cst (rli->offset, 1)
840 & - tree_low_cst (rli->offset, 1)));
841 else
842 known_align = rli->offset_align;
843
844 desired_align = update_alignment_for_field (rli, field, known_align);
845 if (known_align == 0)
846 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
847
848 if (warn_packed && DECL_PACKED (field))
849 {
850 if (known_align >= TYPE_ALIGN (type))
851 {
852 if (TYPE_ALIGN (type) > desired_align)
853 {
854 if (STRICT_ALIGNMENT)
855 warning (OPT_Wattributes, "packed attribute causes "
856 "inefficient alignment for %q+D", field);
857 else
858 warning (OPT_Wattributes, "packed attribute is "
859 "unnecessary for %q+D", field);
860 }
861 }
862 else
863 rli->packed_maybe_necessary = 1;
864 }
865
866 /* Does this field automatically have alignment it needs by virtue
867 of the fields that precede it and the record's own alignment? */
868 if (known_align < desired_align)
869 {
870 /* No, we need to skip space before this field.
871 Bump the cumulative size to multiple of field alignment. */
872
873 warning (OPT_Wpadded, "padding struct to align %q+D", field);
874
875 /* If the alignment is still within offset_align, just align
876 the bit position. */
877 if (desired_align < rli->offset_align)
878 rli->bitpos = round_up (rli->bitpos, desired_align);
879 else
880 {
881 /* First adjust OFFSET by the partial bits, then align. */
882 rli->offset
883 = size_binop (PLUS_EXPR, rli->offset,
884 fold_convert (sizetype,
885 size_binop (CEIL_DIV_EXPR, rli->bitpos,
886 bitsize_unit_node)));
887 rli->bitpos = bitsize_zero_node;
888
889 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
890 }
891
892 if (! TREE_CONSTANT (rli->offset))
893 rli->offset_align = desired_align;
894
895 }
896
897 /* Handle compatibility with PCC. Note that if the record has any
898 variable-sized fields, we need not worry about compatibility. */
899 #ifdef PCC_BITFIELD_TYPE_MATTERS
900 if (PCC_BITFIELD_TYPE_MATTERS
901 && ! targetm.ms_bitfield_layout_p (rli->t)
902 && TREE_CODE (field) == FIELD_DECL
903 && type != error_mark_node
904 && DECL_BIT_FIELD (field)
905 && ! DECL_PACKED (field)
906 && maximum_field_alignment == 0
907 && ! integer_zerop (DECL_SIZE (field))
908 && host_integerp (DECL_SIZE (field), 1)
909 && host_integerp (rli->offset, 1)
910 && host_integerp (TYPE_SIZE (type), 1))
911 {
912 unsigned int type_align = TYPE_ALIGN (type);
913 tree dsize = DECL_SIZE (field);
914 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
915 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
916 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
917
918 #ifdef ADJUST_FIELD_ALIGN
919 if (! TYPE_USER_ALIGN (type))
920 type_align = ADJUST_FIELD_ALIGN (field, type_align);
921 #endif
922
923 /* A bit field may not span more units of alignment of its type
924 than its type itself. Advance to next boundary if necessary. */
925 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
926 rli->bitpos = round_up (rli->bitpos, type_align);
927
928 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
929 }
930 #endif
931
932 #ifdef BITFIELD_NBYTES_LIMITED
933 if (BITFIELD_NBYTES_LIMITED
934 && ! targetm.ms_bitfield_layout_p (rli->t)
935 && TREE_CODE (field) == FIELD_DECL
936 && type != error_mark_node
937 && DECL_BIT_FIELD_TYPE (field)
938 && ! DECL_PACKED (field)
939 && ! integer_zerop (DECL_SIZE (field))
940 && host_integerp (DECL_SIZE (field), 1)
941 && host_integerp (rli->offset, 1)
942 && host_integerp (TYPE_SIZE (type), 1))
943 {
944 unsigned int type_align = TYPE_ALIGN (type);
945 tree dsize = DECL_SIZE (field);
946 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
947 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
948 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
949
950 #ifdef ADJUST_FIELD_ALIGN
951 if (! TYPE_USER_ALIGN (type))
952 type_align = ADJUST_FIELD_ALIGN (field, type_align);
953 #endif
954
955 if (maximum_field_alignment != 0)
956 type_align = MIN (type_align, maximum_field_alignment);
957 /* ??? This test is opposite the test in the containing if
958 statement, so this code is unreachable currently. */
959 else if (DECL_PACKED (field))
960 type_align = MIN (type_align, BITS_PER_UNIT);
961
962 /* A bit field may not span the unit of alignment of its type.
963 Advance to next boundary if necessary. */
964 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
965 rli->bitpos = round_up (rli->bitpos, type_align);
966
967 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
968 }
969 #endif
970
971 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
972 A subtlety:
973 When a bit field is inserted into a packed record, the whole
974 size of the underlying type is used by one or more same-size
975 adjacent bitfields. (That is, if its long:3, 32 bits is
976 used in the record, and any additional adjacent long bitfields are
977 packed into the same chunk of 32 bits. However, if the size
978 changes, a new field of that size is allocated.) In an unpacked
979 record, this is the same as using alignment, but not equivalent
980 when packing.
981
982 Note: for compatibility, we use the type size, not the type alignment
983 to determine alignment, since that matches the documentation */
984
985 if (targetm.ms_bitfield_layout_p (rli->t)
986 && ((DECL_BIT_FIELD_TYPE (field) && ! DECL_PACKED (field))
987 || (rli->prev_field && ! DECL_PACKED (rli->prev_field))))
988 {
989 /* At this point, either the prior or current are bitfields,
990 (possibly both), and we're dealing with MS packing. */
991 tree prev_saved = rli->prev_field;
992
993 /* Is the prior field a bitfield? If so, handle "runs" of same
994 type size fields. */
995 if (rli->prev_field /* necessarily a bitfield if it exists. */)
996 {
997 /* If both are bitfields, nonzero, and the same size, this is
998 the middle of a run. Zero declared size fields are special
999 and handled as "end of run". (Note: it's nonzero declared
1000 size, but equal type sizes!) (Since we know that both
1001 the current and previous fields are bitfields by the
1002 time we check it, DECL_SIZE must be present for both.) */
1003 if (DECL_BIT_FIELD_TYPE (field)
1004 && !integer_zerop (DECL_SIZE (field))
1005 && !integer_zerop (DECL_SIZE (rli->prev_field))
1006 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1007 && host_integerp (TYPE_SIZE (type), 0)
1008 && simple_cst_equal (TYPE_SIZE (type),
1009 TYPE_SIZE (TREE_TYPE (rli->prev_field))))
1010 {
1011 /* We're in the middle of a run of equal type size fields; make
1012 sure we realign if we run out of bits. (Not decl size,
1013 type size!) */
1014 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 0);
1015
1016 if (rli->remaining_in_alignment < bitsize)
1017 {
1018 /* If PREV_FIELD is packed, and we haven't lumped
1019 non-packed bitfields with it, treat this as if PREV_FIELD
1020 was not a bitfield. This avoids anomalies where a packed
1021 bitfield with long long base type can take up more
1022 space than a same-size bitfield with base type short. */
1023 if (rli->prev_packed)
1024 rli->prev_field = prev_saved = NULL;
1025 else
1026 {
1027 /* out of bits; bump up to next 'word'. */
1028 rli->offset = DECL_FIELD_OFFSET (rli->prev_field);
1029 rli->bitpos
1030 = size_binop (PLUS_EXPR, TYPE_SIZE (type),
1031 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1032 rli->prev_field = field;
1033 rli->remaining_in_alignment
1034 = tree_low_cst (TYPE_SIZE (type), 0) - bitsize;
1035 }
1036 }
1037 else
1038 rli->remaining_in_alignment -= bitsize;
1039 }
1040 else if (rli->prev_packed)
1041 rli->prev_field = prev_saved = NULL;
1042 else
1043 {
1044 /* End of a run: if leaving a run of bitfields of the same type
1045 size, we have to "use up" the rest of the bits of the type
1046 size.
1047
1048 Compute the new position as the sum of the size for the prior
1049 type and where we first started working on that type.
1050 Note: since the beginning of the field was aligned then
1051 of course the end will be too. No round needed. */
1052
1053 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1054 {
1055 tree type_size = TYPE_SIZE (TREE_TYPE (rli->prev_field));
1056
1057 /* If the desired alignment is greater or equal to TYPE_SIZE,
1058 we have already adjusted rli->bitpos / rli->offset above.
1059 */
1060 if ((unsigned HOST_WIDE_INT) tree_low_cst (type_size, 0)
1061 > desired_align)
1062 rli->bitpos
1063 = size_binop (PLUS_EXPR, type_size,
1064 DECL_FIELD_BIT_OFFSET (rli->prev_field));
1065 }
1066 else
1067 /* We "use up" size zero fields; the code below should behave
1068 as if the prior field was not a bitfield. */
1069 prev_saved = NULL;
1070
1071 /* Cause a new bitfield to be captured, either this time (if
1072 currently a bitfield) or next time we see one. */
1073 if (!DECL_BIT_FIELD_TYPE(field)
1074 || integer_zerop (DECL_SIZE (field)))
1075 rli->prev_field = NULL;
1076 }
1077
1078 rli->prev_packed = 0;
1079 normalize_rli (rli);
1080 }
1081
1082 /* If we're starting a new run of same size type bitfields
1083 (or a run of non-bitfields), set up the "first of the run"
1084 fields.
1085
1086 That is, if the current field is not a bitfield, or if there
1087 was a prior bitfield the type sizes differ, or if there wasn't
1088 a prior bitfield the size of the current field is nonzero.
1089
1090 Note: we must be sure to test ONLY the type size if there was
1091 a prior bitfield and ONLY for the current field being zero if
1092 there wasn't. */
1093
1094 if (!DECL_BIT_FIELD_TYPE (field)
1095 || ( prev_saved != NULL
1096 ? !simple_cst_equal (TYPE_SIZE (type),
1097 TYPE_SIZE (TREE_TYPE (prev_saved)))
1098 : !integer_zerop (DECL_SIZE (field)) ))
1099 {
1100 /* Never smaller than a byte for compatibility. */
1101 unsigned int type_align = BITS_PER_UNIT;
1102
1103 /* (When not a bitfield), we could be seeing a flex array (with
1104 no DECL_SIZE). Since we won't be using remaining_in_alignment
1105 until we see a bitfield (and come by here again) we just skip
1106 calculating it. */
1107 if (DECL_SIZE (field) != NULL
1108 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 0)
1109 && host_integerp (DECL_SIZE (field), 0))
1110 rli->remaining_in_alignment
1111 = tree_low_cst (TYPE_SIZE (TREE_TYPE(field)), 0)
1112 - tree_low_cst (DECL_SIZE (field), 0);
1113
1114 /* Now align (conventionally) for the new type. */
1115 if (!DECL_PACKED(field))
1116 type_align = MAX(TYPE_ALIGN (type), type_align);
1117
1118 if (prev_saved
1119 && DECL_BIT_FIELD_TYPE (prev_saved)
1120 /* If the previous bit-field is zero-sized, we've already
1121 accounted for its alignment needs (or ignored it, if
1122 appropriate) while placing it. */
1123 && ! integer_zerop (DECL_SIZE (prev_saved)))
1124 type_align = MAX (type_align,
1125 TYPE_ALIGN (TREE_TYPE (prev_saved)));
1126
1127 if (maximum_field_alignment != 0)
1128 type_align = MIN (type_align, maximum_field_alignment);
1129
1130 rli->bitpos = round_up (rli->bitpos, type_align);
1131
1132 /* If we really aligned, don't allow subsequent bitfields
1133 to undo that. */
1134 rli->prev_field = NULL;
1135 }
1136 }
1137
1138 /* Offset so far becomes the position of this field after normalizing. */
1139 normalize_rli (rli);
1140 DECL_FIELD_OFFSET (field) = rli->offset;
1141 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1142 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1143
1144 /* If this field ended up more aligned than we thought it would be (we
1145 approximate this by seeing if its position changed), lay out the field
1146 again; perhaps we can use an integral mode for it now. */
1147 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1148 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1149 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1150 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1151 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1152 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1153 actual_align = (BITS_PER_UNIT
1154 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1155 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1156 else
1157 actual_align = DECL_OFFSET_ALIGN (field);
1158 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1159 store / extract bit field operations will check the alignment of the
1160 record against the mode of bit fields. */
1161
1162 if (known_align != actual_align)
1163 layout_decl (field, actual_align);
1164
1165 if (DECL_BIT_FIELD_TYPE (field))
1166 {
1167 unsigned int type_align = TYPE_ALIGN (type);
1168
1169 /* Only the MS bitfields use this. We used to also put any kind of
1170 packed bit fields into prev_field, but that makes no sense, because
1171 an 8 bit packed bit field shouldn't impose more restriction on
1172 following fields than a char field, and the alignment requirements
1173 are also not fulfilled.
1174 There is no sane value to set rli->remaining_in_alignment to when
1175 a packed bitfield in prev_field is unaligned. */
1176 if (maximum_field_alignment != 0)
1177 type_align = MIN (type_align, maximum_field_alignment);
1178 gcc_assert (rli->prev_field
1179 || actual_align >= type_align || DECL_PACKED (field)
1180 || integer_zerop (DECL_SIZE (field))
1181 || !targetm.ms_bitfield_layout_p (rli->t));
1182 if (rli->prev_field == NULL && actual_align >= type_align
1183 && !integer_zerop (DECL_SIZE (field)))
1184 {
1185 rli->prev_field = field;
1186 /* rli->remaining_in_alignment has not been set if the bitfield
1187 has size zero, or if it is a packed bitfield. */
1188 rli->remaining_in_alignment
1189 = (tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 0)
1190 - tree_low_cst (DECL_SIZE (field), 0));
1191 rli->prev_packed = DECL_PACKED (field);
1192
1193 }
1194 else if (rli->prev_field && DECL_PACKED (field))
1195 {
1196 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 0);
1197
1198 if (rli->remaining_in_alignment < bitsize)
1199 rli->prev_field = NULL;
1200 else
1201 rli->remaining_in_alignment -= bitsize;
1202 }
1203 }
1204
1205 /* Now add size of this field to the size of the record. If the size is
1206 not constant, treat the field as being a multiple of bytes and just
1207 adjust the offset, resetting the bit position. Otherwise, apportion the
1208 size amongst the bit position and offset. First handle the case of an
1209 unspecified size, which can happen when we have an invalid nested struct
1210 definition, such as struct j { struct j { int i; } }. The error message
1211 is printed in finish_struct. */
1212 if (DECL_SIZE (field) == 0)
1213 /* Do nothing. */;
1214 else if (TREE_CODE (DECL_SIZE_UNIT (field)) != INTEGER_CST
1215 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field)))
1216 {
1217 rli->offset
1218 = size_binop (PLUS_EXPR, rli->offset,
1219 fold_convert (sizetype,
1220 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1221 bitsize_unit_node)));
1222 rli->offset
1223 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1224 rli->bitpos = bitsize_zero_node;
1225 rli->offset_align = MIN (rli->offset_align, desired_align);
1226 }
1227 else
1228 {
1229 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1230 normalize_rli (rli);
1231 }
1232 }
1233
1234 /* Assuming that all the fields have been laid out, this function uses
1235 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1236 indicated by RLI. */
1237
1238 static void
1239 finalize_record_size (record_layout_info rli)
1240 {
1241 tree unpadded_size, unpadded_size_unit;
1242
1243 /* Now we want just byte and bit offsets, so set the offset alignment
1244 to be a byte and then normalize. */
1245 rli->offset_align = BITS_PER_UNIT;
1246 normalize_rli (rli);
1247
1248 /* Determine the desired alignment. */
1249 #ifdef ROUND_TYPE_ALIGN
1250 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1251 rli->record_align);
1252 #else
1253 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1254 #endif
1255
1256 /* Compute the size so far. Be sure to allow for extra bits in the
1257 size in bytes. We have guaranteed above that it will be no more
1258 than a single byte. */
1259 unpadded_size = rli_size_so_far (rli);
1260 unpadded_size_unit = rli_size_unit_so_far (rli);
1261 if (! integer_zerop (rli->bitpos))
1262 unpadded_size_unit
1263 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1264
1265 /* Round the size up to be a multiple of the required alignment. */
1266 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1267 TYPE_SIZE_UNIT (rli->t)
1268 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1269
1270 if (TREE_CONSTANT (unpadded_size)
1271 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1272 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1273
1274 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1275 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1276 && TREE_CONSTANT (unpadded_size))
1277 {
1278 tree unpacked_size;
1279
1280 #ifdef ROUND_TYPE_ALIGN
1281 rli->unpacked_align
1282 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1283 #else
1284 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1285 #endif
1286
1287 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1288 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1289 {
1290 TYPE_PACKED (rli->t) = 0;
1291
1292 if (TYPE_NAME (rli->t))
1293 {
1294 const char *name;
1295
1296 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1297 name = IDENTIFIER_POINTER (TYPE_NAME (rli->t));
1298 else
1299 name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli->t)));
1300
1301 if (STRICT_ALIGNMENT)
1302 warning (OPT_Wpacked, "packed attribute causes inefficient "
1303 "alignment for %qs", name);
1304 else
1305 warning (OPT_Wpacked,
1306 "packed attribute is unnecessary for %qs", name);
1307 }
1308 else
1309 {
1310 if (STRICT_ALIGNMENT)
1311 warning (OPT_Wpacked,
1312 "packed attribute causes inefficient alignment");
1313 else
1314 warning (OPT_Wpacked, "packed attribute is unnecessary");
1315 }
1316 }
1317 }
1318 }
1319
1320 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1321
1322 void
1323 compute_record_mode (tree type)
1324 {
1325 tree field;
1326 enum machine_mode mode = VOIDmode;
1327
1328 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1329 However, if possible, we use a mode that fits in a register
1330 instead, in order to allow for better optimization down the
1331 line. */
1332 TYPE_MODE (type) = BLKmode;
1333
1334 if (! host_integerp (TYPE_SIZE (type), 1))
1335 return;
1336
1337 /* A record which has any BLKmode members must itself be
1338 BLKmode; it can't go in a register. Unless the member is
1339 BLKmode only because it isn't aligned. */
1340 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1341 {
1342 if (TREE_CODE (field) != FIELD_DECL)
1343 continue;
1344
1345 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1346 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1347 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1348 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1349 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1350 || ! host_integerp (bit_position (field), 1)
1351 || DECL_SIZE (field) == 0
1352 || ! host_integerp (DECL_SIZE (field), 1))
1353 return;
1354
1355 /* If this field is the whole struct, remember its mode so
1356 that, say, we can put a double in a class into a DF
1357 register instead of forcing it to live in the stack. */
1358 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1359 mode = DECL_MODE (field);
1360
1361 #ifdef MEMBER_TYPE_FORCES_BLK
1362 /* With some targets, eg. c4x, it is sub-optimal
1363 to access an aligned BLKmode structure as a scalar. */
1364
1365 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1366 return;
1367 #endif /* MEMBER_TYPE_FORCES_BLK */
1368 }
1369
1370 TYPE_MODE (type) = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1371
1372 /* If we only have one real field; use its mode if that mode's size
1373 matches the type's size. This only applies to RECORD_TYPE. This
1374 does not apply to unions. */
1375 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1376 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (TYPE_MODE (type)))
1377 TYPE_MODE (type) = mode;
1378
1379 /* If structure's known alignment is less than what the scalar
1380 mode would need, and it matters, then stick with BLKmode. */
1381 if (TYPE_MODE (type) != BLKmode
1382 && STRICT_ALIGNMENT
1383 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1384 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1385 {
1386 /* If this is the only reason this type is BLKmode, then
1387 don't force containing types to be BLKmode. */
1388 TYPE_NO_FORCE_BLK (type) = 1;
1389 TYPE_MODE (type) = BLKmode;
1390 }
1391 }
1392
1393 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1394 out. */
1395
1396 static void
1397 finalize_type_size (tree type)
1398 {
1399 /* Normally, use the alignment corresponding to the mode chosen.
1400 However, where strict alignment is not required, avoid
1401 over-aligning structures, since most compilers do not do this
1402 alignment. */
1403
1404 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1405 && (STRICT_ALIGNMENT
1406 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1407 && TREE_CODE (type) != QUAL_UNION_TYPE
1408 && TREE_CODE (type) != ARRAY_TYPE)))
1409 {
1410 TYPE_ALIGN (type) = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1411 TYPE_USER_ALIGN (type) = 0;
1412 }
1413
1414 /* Do machine-dependent extra alignment. */
1415 #ifdef ROUND_TYPE_ALIGN
1416 TYPE_ALIGN (type)
1417 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1418 #endif
1419
1420 /* If we failed to find a simple way to calculate the unit size
1421 of the type, find it by division. */
1422 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1423 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1424 result will fit in sizetype. We will get more efficient code using
1425 sizetype, so we force a conversion. */
1426 TYPE_SIZE_UNIT (type)
1427 = fold_convert (sizetype,
1428 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1429 bitsize_unit_node));
1430
1431 if (TYPE_SIZE (type) != 0)
1432 {
1433 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1434 TYPE_SIZE_UNIT (type) = round_up (TYPE_SIZE_UNIT (type),
1435 TYPE_ALIGN_UNIT (type));
1436 }
1437
1438 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1439 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1440 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1441 if (TYPE_SIZE_UNIT (type) != 0
1442 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1443 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1444
1445 /* Also layout any other variants of the type. */
1446 if (TYPE_NEXT_VARIANT (type)
1447 || type != TYPE_MAIN_VARIANT (type))
1448 {
1449 tree variant;
1450 /* Record layout info of this variant. */
1451 tree size = TYPE_SIZE (type);
1452 tree size_unit = TYPE_SIZE_UNIT (type);
1453 unsigned int align = TYPE_ALIGN (type);
1454 unsigned int user_align = TYPE_USER_ALIGN (type);
1455 enum machine_mode mode = TYPE_MODE (type);
1456
1457 /* Copy it into all variants. */
1458 for (variant = TYPE_MAIN_VARIANT (type);
1459 variant != 0;
1460 variant = TYPE_NEXT_VARIANT (variant))
1461 {
1462 TYPE_SIZE (variant) = size;
1463 TYPE_SIZE_UNIT (variant) = size_unit;
1464 TYPE_ALIGN (variant) = align;
1465 TYPE_USER_ALIGN (variant) = user_align;
1466 TYPE_MODE (variant) = mode;
1467 }
1468 }
1469 }
1470
1471 /* Do all of the work required to layout the type indicated by RLI,
1472 once the fields have been laid out. This function will call `free'
1473 for RLI, unless FREE_P is false. Passing a value other than false
1474 for FREE_P is bad practice; this option only exists to support the
1475 G++ 3.2 ABI. */
1476
1477 void
1478 finish_record_layout (record_layout_info rli, int free_p)
1479 {
1480 tree field;
1481
1482 /* Compute the final size. */
1483 finalize_record_size (rli);
1484
1485 /* Compute the TYPE_MODE for the record. */
1486 compute_record_mode (rli->t);
1487
1488 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1489 finalize_type_size (rli->t);
1490
1491 /* We might be able to clear DECL_PACKED on any members that happen
1492 to be suitably aligned (not forgetting the alignment of the type
1493 itself). */
1494 for (field = TYPE_FIELDS (rli->t); field; field = TREE_CHAIN (field))
1495 if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field)
1496 && DECL_OFFSET_ALIGN (field) >= TYPE_ALIGN (TREE_TYPE (field))
1497 && TYPE_ALIGN (rli->t) >= TYPE_ALIGN (TREE_TYPE (field)))
1498 DECL_PACKED (field) = 0;
1499
1500 /* Lay out any static members. This is done now because their type
1501 may use the record's type. */
1502 while (rli->pending_statics)
1503 {
1504 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1505 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1506 }
1507
1508 /* Clean up. */
1509 if (free_p)
1510 free (rli);
1511 }
1512 \f
1513
1514 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1515 NAME, its fields are chained in reverse on FIELDS.
1516
1517 If ALIGN_TYPE is non-null, it is given the same alignment as
1518 ALIGN_TYPE. */
1519
1520 void
1521 finish_builtin_struct (tree type, const char *name, tree fields,
1522 tree align_type)
1523 {
1524 tree tail, next;
1525
1526 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1527 {
1528 DECL_FIELD_CONTEXT (fields) = type;
1529 next = TREE_CHAIN (fields);
1530 TREE_CHAIN (fields) = tail;
1531 }
1532 TYPE_FIELDS (type) = tail;
1533
1534 if (align_type)
1535 {
1536 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1537 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1538 }
1539
1540 layout_type (type);
1541 #if 0 /* not yet, should get fixed properly later */
1542 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1543 #else
1544 TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type);
1545 #endif
1546 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1547 layout_decl (TYPE_NAME (type), 0);
1548 }
1549
1550 /* Calculate the mode, size, and alignment for TYPE.
1551 For an array type, calculate the element separation as well.
1552 Record TYPE on the chain of permanent or temporary types
1553 so that dbxout will find out about it.
1554
1555 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1556 layout_type does nothing on such a type.
1557
1558 If the type is incomplete, its TYPE_SIZE remains zero. */
1559
1560 void
1561 layout_type (tree type)
1562 {
1563 gcc_assert (type);
1564
1565 if (type == error_mark_node)
1566 return;
1567
1568 /* Do nothing if type has been laid out before. */
1569 if (TYPE_SIZE (type))
1570 return;
1571
1572 switch (TREE_CODE (type))
1573 {
1574 case LANG_TYPE:
1575 /* This kind of type is the responsibility
1576 of the language-specific code. */
1577 gcc_unreachable ();
1578
1579 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1580 if (TYPE_PRECISION (type) == 0)
1581 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1582
1583 /* ... fall through ... */
1584
1585 case INTEGER_TYPE:
1586 case ENUMERAL_TYPE:
1587 case CHAR_TYPE:
1588 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1589 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1590 TYPE_UNSIGNED (type) = 1;
1591
1592 TYPE_MODE (type) = smallest_mode_for_size (TYPE_PRECISION (type),
1593 MODE_INT);
1594 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1595 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1596 break;
1597
1598 case REAL_TYPE:
1599 TYPE_MODE (type) = mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0);
1600 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1601 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1602 break;
1603
1604 case COMPLEX_TYPE:
1605 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1606 TYPE_MODE (type)
1607 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1608 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
1609 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
1610 0);
1611 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1612 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1613 break;
1614
1615 case VECTOR_TYPE:
1616 {
1617 int nunits = TYPE_VECTOR_SUBPARTS (type);
1618 tree nunits_tree = build_int_cst (NULL_TREE, nunits);
1619 tree innertype = TREE_TYPE (type);
1620
1621 gcc_assert (!(nunits & (nunits - 1)));
1622
1623 /* Find an appropriate mode for the vector type. */
1624 if (TYPE_MODE (type) == VOIDmode)
1625 {
1626 enum machine_mode innermode = TYPE_MODE (innertype);
1627 enum machine_mode mode;
1628
1629 /* First, look for a supported vector type. */
1630 if (GET_MODE_CLASS (innermode) == MODE_FLOAT)
1631 mode = MIN_MODE_VECTOR_FLOAT;
1632 else
1633 mode = MIN_MODE_VECTOR_INT;
1634
1635 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
1636 if (GET_MODE_NUNITS (mode) == nunits
1637 && GET_MODE_INNER (mode) == innermode
1638 && targetm.vector_mode_supported_p (mode))
1639 break;
1640
1641 /* For integers, try mapping it to a same-sized scalar mode. */
1642 if (mode == VOIDmode
1643 && GET_MODE_CLASS (innermode) == MODE_INT)
1644 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
1645 MODE_INT, 0);
1646
1647 if (mode == VOIDmode || !have_regs_of_mode[mode])
1648 TYPE_MODE (type) = BLKmode;
1649 else
1650 TYPE_MODE (type) = mode;
1651 }
1652
1653 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1654 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
1655 TYPE_SIZE_UNIT (innertype),
1656 nunits_tree, 0);
1657 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
1658 nunits_tree, 0);
1659
1660 /* Always naturally align vectors. This prevents ABI changes
1661 depending on whether or not native vector modes are supported. */
1662 TYPE_ALIGN (type) = tree_low_cst (TYPE_SIZE (type), 0);
1663 break;
1664 }
1665
1666 case VOID_TYPE:
1667 /* This is an incomplete type and so doesn't have a size. */
1668 TYPE_ALIGN (type) = 1;
1669 TYPE_USER_ALIGN (type) = 0;
1670 TYPE_MODE (type) = VOIDmode;
1671 break;
1672
1673 case OFFSET_TYPE:
1674 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1675 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1676 /* A pointer might be MODE_PARTIAL_INT,
1677 but ptrdiff_t must be integral. */
1678 TYPE_MODE (type) = mode_for_size (POINTER_SIZE, MODE_INT, 0);
1679 break;
1680
1681 case FUNCTION_TYPE:
1682 case METHOD_TYPE:
1683 /* It's hard to see what the mode and size of a function ought to
1684 be, but we do know the alignment is FUNCTION_BOUNDARY, so
1685 make it consistent with that. */
1686 TYPE_MODE (type) = mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0);
1687 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
1688 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
1689 break;
1690
1691 case POINTER_TYPE:
1692 case REFERENCE_TYPE:
1693 {
1694
1695 enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
1696 && reference_types_internal)
1697 ? Pmode : TYPE_MODE (type));
1698
1699 int nbits = GET_MODE_BITSIZE (mode);
1700
1701 TYPE_SIZE (type) = bitsize_int (nbits);
1702 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1703 TYPE_UNSIGNED (type) = 1;
1704 TYPE_PRECISION (type) = nbits;
1705 }
1706 break;
1707
1708 case ARRAY_TYPE:
1709 {
1710 tree index = TYPE_DOMAIN (type);
1711 tree element = TREE_TYPE (type);
1712
1713 build_pointer_type (element);
1714
1715 /* We need to know both bounds in order to compute the size. */
1716 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1717 && TYPE_SIZE (element))
1718 {
1719 tree ub = TYPE_MAX_VALUE (index);
1720 tree lb = TYPE_MIN_VALUE (index);
1721 tree length;
1722 tree element_size;
1723
1724 /* The initial subtraction should happen in the original type so
1725 that (possible) negative values are handled appropriately. */
1726 length = size_binop (PLUS_EXPR, size_one_node,
1727 fold_convert (sizetype,
1728 fold_build2 (MINUS_EXPR,
1729 TREE_TYPE (lb),
1730 ub, lb)));
1731
1732 /* Special handling for arrays of bits (for Chill). */
1733 element_size = TYPE_SIZE (element);
1734 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1735 && (integer_zerop (TYPE_MAX_VALUE (element))
1736 || integer_onep (TYPE_MAX_VALUE (element)))
1737 && host_integerp (TYPE_MIN_VALUE (element), 1))
1738 {
1739 HOST_WIDE_INT maxvalue
1740 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1741 HOST_WIDE_INT minvalue
1742 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1743
1744 if (maxvalue - minvalue == 1
1745 && (maxvalue == 1 || maxvalue == 0))
1746 element_size = integer_one_node;
1747 }
1748
1749 /* If neither bound is a constant and sizetype is signed, make
1750 sure the size is never negative. We should really do this
1751 if *either* bound is non-constant, but this is the best
1752 compromise between C and Ada. */
1753 if (!TYPE_UNSIGNED (sizetype)
1754 && TREE_CODE (TYPE_MIN_VALUE (index)) != INTEGER_CST
1755 && TREE_CODE (TYPE_MAX_VALUE (index)) != INTEGER_CST)
1756 length = size_binop (MAX_EXPR, length, size_zero_node);
1757
1758 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1759 fold_convert (bitsizetype,
1760 length));
1761
1762 /* If we know the size of the element, calculate the total
1763 size directly, rather than do some division thing below.
1764 This optimization helps Fortran assumed-size arrays
1765 (where the size of the array is determined at runtime)
1766 substantially.
1767 Note that we can't do this in the case where the size of
1768 the elements is one bit since TYPE_SIZE_UNIT cannot be
1769 set correctly in that case. */
1770 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
1771 TYPE_SIZE_UNIT (type)
1772 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1773 }
1774
1775 /* Now round the alignment and size,
1776 using machine-dependent criteria if any. */
1777
1778 #ifdef ROUND_TYPE_ALIGN
1779 TYPE_ALIGN (type)
1780 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1781 #else
1782 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1783 #endif
1784 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
1785 TYPE_MODE (type) = BLKmode;
1786 if (TYPE_SIZE (type) != 0
1787 #ifdef MEMBER_TYPE_FORCES_BLK
1788 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
1789 #endif
1790 /* BLKmode elements force BLKmode aggregate;
1791 else extract/store fields may lose. */
1792 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
1793 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
1794 {
1795 /* One-element arrays get the component type's mode. */
1796 if (simple_cst_equal (TYPE_SIZE (type),
1797 TYPE_SIZE (TREE_TYPE (type))))
1798 TYPE_MODE (type) = TYPE_MODE (TREE_TYPE (type));
1799 else
1800 TYPE_MODE (type)
1801 = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1);
1802
1803 if (TYPE_MODE (type) != BLKmode
1804 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
1805 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type))
1806 && TYPE_MODE (type) != BLKmode)
1807 {
1808 TYPE_NO_FORCE_BLK (type) = 1;
1809 TYPE_MODE (type) = BLKmode;
1810 }
1811 }
1812 break;
1813 }
1814
1815 case RECORD_TYPE:
1816 case UNION_TYPE:
1817 case QUAL_UNION_TYPE:
1818 {
1819 tree field;
1820 record_layout_info rli;
1821
1822 /* Initialize the layout information. */
1823 rli = start_record_layout (type);
1824
1825 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1826 in the reverse order in building the COND_EXPR that denotes
1827 its size. We reverse them again later. */
1828 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1829 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1830
1831 /* Place all the fields. */
1832 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1833 place_field (rli, field);
1834
1835 if (TREE_CODE (type) == QUAL_UNION_TYPE)
1836 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
1837
1838 if (lang_adjust_rli)
1839 (*lang_adjust_rli) (rli);
1840
1841 /* Finish laying out the record. */
1842 finish_record_layout (rli, /*free_p=*/true);
1843 }
1844 break;
1845
1846 default:
1847 gcc_unreachable ();
1848 }
1849
1850 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1851 records and unions, finish_record_layout already called this
1852 function. */
1853 if (TREE_CODE (type) != RECORD_TYPE
1854 && TREE_CODE (type) != UNION_TYPE
1855 && TREE_CODE (type) != QUAL_UNION_TYPE)
1856 finalize_type_size (type);
1857
1858 /* If an alias set has been set for this aggregate when it was incomplete,
1859 force it into alias set 0.
1860 This is too conservative, but we cannot call record_component_aliases
1861 here because some frontends still change the aggregates after
1862 layout_type. */
1863 if (AGGREGATE_TYPE_P (type) && TYPE_ALIAS_SET_KNOWN_P (type))
1864 TYPE_ALIAS_SET (type) = 0;
1865 }
1866 \f
1867 /* Create and return a type for signed integers of PRECISION bits. */
1868
1869 tree
1870 make_signed_type (int precision)
1871 {
1872 tree type = make_node (INTEGER_TYPE);
1873
1874 TYPE_PRECISION (type) = precision;
1875
1876 fixup_signed_type (type);
1877 return type;
1878 }
1879
1880 /* Create and return a type for unsigned integers of PRECISION bits. */
1881
1882 tree
1883 make_unsigned_type (int precision)
1884 {
1885 tree type = make_node (INTEGER_TYPE);
1886
1887 TYPE_PRECISION (type) = precision;
1888
1889 fixup_unsigned_type (type);
1890 return type;
1891 }
1892 \f
1893 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1894 value to enable integer types to be created. */
1895
1896 void
1897 initialize_sizetypes (bool signed_p)
1898 {
1899 tree t = make_node (INTEGER_TYPE);
1900
1901 TYPE_MODE (t) = SImode;
1902 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
1903 TYPE_USER_ALIGN (t) = 0;
1904 TYPE_IS_SIZETYPE (t) = 1;
1905 TYPE_UNSIGNED (t) = !signed_p;
1906 TYPE_SIZE (t) = build_int_cst (t, GET_MODE_BITSIZE (SImode));
1907 TYPE_SIZE_UNIT (t) = build_int_cst (t, GET_MODE_SIZE (SImode));
1908 TYPE_PRECISION (t) = GET_MODE_BITSIZE (SImode);
1909 TYPE_MIN_VALUE (t) = build_int_cst (t, 0);
1910
1911 /* 1000 avoids problems with possible overflow and is certainly
1912 larger than any size value we'd want to be storing. */
1913 TYPE_MAX_VALUE (t) = build_int_cst (t, 1000);
1914
1915 sizetype = t;
1916 bitsizetype = build_distinct_type_copy (t);
1917 }
1918
1919 /* Make sizetype a version of TYPE, and initialize *sizetype
1920 accordingly. We do this by overwriting the stub sizetype and
1921 bitsizetype nodes created by initialize_sizetypes. This makes sure
1922 that (a) anything stubby about them no longer exists, (b) any
1923 INTEGER_CSTs created with such a type, remain valid. */
1924
1925 void
1926 set_sizetype (tree type)
1927 {
1928 int oprecision = TYPE_PRECISION (type);
1929 /* The *bitsizetype types use a precision that avoids overflows when
1930 calculating signed sizes / offsets in bits. However, when
1931 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1932 precision. */
1933 int precision = MIN (oprecision + BITS_PER_UNIT_LOG + 1,
1934 2 * HOST_BITS_PER_WIDE_INT);
1935 tree t;
1936
1937 gcc_assert (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (sizetype));
1938
1939 t = build_distinct_type_copy (type);
1940 /* We do want to use sizetype's cache, as we will be replacing that
1941 type. */
1942 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (sizetype);
1943 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (sizetype);
1944 TREE_TYPE (TYPE_CACHED_VALUES (t)) = type;
1945 TYPE_UID (t) = TYPE_UID (sizetype);
1946 TYPE_IS_SIZETYPE (t) = 1;
1947
1948 /* Replace our original stub sizetype. */
1949 memcpy (sizetype, t, tree_size (sizetype));
1950 TYPE_MAIN_VARIANT (sizetype) = sizetype;
1951
1952 t = make_node (INTEGER_TYPE);
1953 TYPE_NAME (t) = get_identifier ("bit_size_type");
1954 /* We do want to use bitsizetype's cache, as we will be replacing that
1955 type. */
1956 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (bitsizetype);
1957 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (bitsizetype);
1958 TYPE_PRECISION (t) = precision;
1959 TYPE_UID (t) = TYPE_UID (bitsizetype);
1960 TYPE_IS_SIZETYPE (t) = 1;
1961 /* Replace our original stub bitsizetype. */
1962 memcpy (bitsizetype, t, tree_size (bitsizetype));
1963
1964 if (TYPE_UNSIGNED (type))
1965 {
1966 fixup_unsigned_type (bitsizetype);
1967 ssizetype = build_distinct_type_copy (make_signed_type (oprecision));
1968 TYPE_IS_SIZETYPE (ssizetype) = 1;
1969 sbitsizetype = build_distinct_type_copy (make_signed_type (precision));
1970 TYPE_IS_SIZETYPE (sbitsizetype) = 1;
1971 }
1972 else
1973 {
1974 fixup_signed_type (bitsizetype);
1975 ssizetype = sizetype;
1976 sbitsizetype = bitsizetype;
1977 }
1978 }
1979 \f
1980 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE,
1981 BOOLEAN_TYPE, or CHAR_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
1982 for TYPE, based on the PRECISION and whether or not the TYPE
1983 IS_UNSIGNED. PRECISION need not correspond to a width supported
1984 natively by the hardware; for example, on a machine with 8-bit,
1985 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
1986 61. */
1987
1988 void
1989 set_min_and_max_values_for_integral_type (tree type,
1990 int precision,
1991 bool is_unsigned)
1992 {
1993 tree min_value;
1994 tree max_value;
1995
1996 if (is_unsigned)
1997 {
1998 min_value = build_int_cst (type, 0);
1999 max_value
2000 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2001 ? -1
2002 : ((HOST_WIDE_INT) 1 << precision) - 1,
2003 precision - HOST_BITS_PER_WIDE_INT > 0
2004 ? ((unsigned HOST_WIDE_INT) ~0
2005 >> (HOST_BITS_PER_WIDE_INT
2006 - (precision - HOST_BITS_PER_WIDE_INT)))
2007 : 0);
2008 }
2009 else
2010 {
2011 min_value
2012 = build_int_cst_wide (type,
2013 (precision - HOST_BITS_PER_WIDE_INT > 0
2014 ? 0
2015 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2016 (((HOST_WIDE_INT) (-1)
2017 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2018 ? precision - HOST_BITS_PER_WIDE_INT - 1
2019 : 0))));
2020 max_value
2021 = build_int_cst_wide (type,
2022 (precision - HOST_BITS_PER_WIDE_INT > 0
2023 ? -1
2024 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2025 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2026 ? (((HOST_WIDE_INT) 1
2027 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2028 : 0));
2029 }
2030
2031 TYPE_MIN_VALUE (type) = min_value;
2032 TYPE_MAX_VALUE (type) = max_value;
2033 }
2034
2035 /* Set the extreme values of TYPE based on its precision in bits,
2036 then lay it out. Used when make_signed_type won't do
2037 because the tree code is not INTEGER_TYPE.
2038 E.g. for Pascal, when the -fsigned-char option is given. */
2039
2040 void
2041 fixup_signed_type (tree type)
2042 {
2043 int precision = TYPE_PRECISION (type);
2044
2045 /* We can not represent properly constants greater then
2046 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2047 as they are used by i386 vector extensions and friends. */
2048 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2049 precision = HOST_BITS_PER_WIDE_INT * 2;
2050
2051 set_min_and_max_values_for_integral_type (type, precision,
2052 /*is_unsigned=*/false);
2053
2054 /* Lay out the type: set its alignment, size, etc. */
2055 layout_type (type);
2056 }
2057
2058 /* Set the extreme values of TYPE based on its precision in bits,
2059 then lay it out. This is used both in `make_unsigned_type'
2060 and for enumeral types. */
2061
2062 void
2063 fixup_unsigned_type (tree type)
2064 {
2065 int precision = TYPE_PRECISION (type);
2066
2067 /* We can not represent properly constants greater then
2068 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2069 as they are used by i386 vector extensions and friends. */
2070 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2071 precision = HOST_BITS_PER_WIDE_INT * 2;
2072
2073 TYPE_UNSIGNED (type) = 1;
2074
2075 set_min_and_max_values_for_integral_type (type, precision,
2076 /*is_unsigned=*/true);
2077
2078 /* Lay out the type: set its alignment, size, etc. */
2079 layout_type (type);
2080 }
2081 \f
2082 /* Find the best machine mode to use when referencing a bit field of length
2083 BITSIZE bits starting at BITPOS.
2084
2085 The underlying object is known to be aligned to a boundary of ALIGN bits.
2086 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2087 larger than LARGEST_MODE (usually SImode).
2088
2089 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
2090 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
2091 mode meeting these conditions.
2092
2093 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
2094 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2095 all the conditions. */
2096
2097 enum machine_mode
2098 get_best_mode (int bitsize, int bitpos, unsigned int align,
2099 enum machine_mode largest_mode, int volatilep)
2100 {
2101 enum machine_mode mode;
2102 unsigned int unit = 0;
2103
2104 /* Find the narrowest integer mode that contains the bit field. */
2105 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2106 mode = GET_MODE_WIDER_MODE (mode))
2107 {
2108 unit = GET_MODE_BITSIZE (mode);
2109 if ((bitpos % unit) + bitsize <= unit)
2110 break;
2111 }
2112
2113 if (mode == VOIDmode
2114 /* It is tempting to omit the following line
2115 if STRICT_ALIGNMENT is true.
2116 But that is incorrect, since if the bitfield uses part of 3 bytes
2117 and we use a 4-byte mode, we could get a spurious segv
2118 if the extra 4th byte is past the end of memory.
2119 (Though at least one Unix compiler ignores this problem:
2120 that on the Sequent 386 machine. */
2121 || MIN (unit, BIGGEST_ALIGNMENT) > align
2122 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2123 return VOIDmode;
2124
2125 if (SLOW_BYTE_ACCESS && ! volatilep)
2126 {
2127 enum machine_mode wide_mode = VOIDmode, tmode;
2128
2129 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2130 tmode = GET_MODE_WIDER_MODE (tmode))
2131 {
2132 unit = GET_MODE_BITSIZE (tmode);
2133 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2134 && unit <= BITS_PER_WORD
2135 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2136 && (largest_mode == VOIDmode
2137 || unit <= GET_MODE_BITSIZE (largest_mode)))
2138 wide_mode = tmode;
2139 }
2140
2141 if (wide_mode != VOIDmode)
2142 return wide_mode;
2143 }
2144
2145 return mode;
2146 }
2147
2148 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2149 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2150
2151 void
2152 get_mode_bounds (enum machine_mode mode, int sign,
2153 enum machine_mode target_mode,
2154 rtx *mmin, rtx *mmax)
2155 {
2156 unsigned size = GET_MODE_BITSIZE (mode);
2157 unsigned HOST_WIDE_INT min_val, max_val;
2158
2159 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2160
2161 if (sign)
2162 {
2163 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2164 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2165 }
2166 else
2167 {
2168 min_val = 0;
2169 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2170 }
2171
2172 *mmin = gen_int_mode (min_val, target_mode);
2173 *mmax = gen_int_mode (max_val, target_mode);
2174 }
2175
2176 #include "gt-stor-layout.h"