stor-layout.c (self_referential_size): Set UNKNOWN_LOCATION on the newly built CALL_EXPR.
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "output.h"
34 #include "toplev.h"
35 #include "ggc.h"
36 #include "target.h"
37 #include "langhooks.h"
38 #include "regs.h"
39 #include "params.h"
40 #include "cgraph.h"
41 #include "tree-inline.h"
42 #include "tree-dump.h"
43 #include "gimple.h"
44
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) TYPE_KIND_LAST];
48
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
52 /* ... and its original value in bytes, specified via -fpack-struct=<value>. */
53 unsigned int initial_max_fld_align = TARGET_DEFAULT_PACK_STRUCT;
54
55 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
56 in the address spaces' address_mode, not pointer_mode. Set only by
57 internal_reference_types called only by a front end. */
58 static int reference_types_internal = 0;
59
60 static tree self_referential_size (tree);
61 static void finalize_record_size (record_layout_info);
62 static void finalize_type_size (tree);
63 static void place_union_field (record_layout_info, tree);
64 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
65 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
66 HOST_WIDE_INT, tree);
67 #endif
68 extern void debug_rli (record_layout_info);
69 \f
70 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
71
72 static GTY(()) VEC(tree,gc) *pending_sizes;
73
74 /* Show that REFERENCE_TYPES are internal and should use address_mode.
75 Called only by front end. */
76
77 void
78 internal_reference_types (void)
79 {
80 reference_types_internal = 1;
81 }
82
83 /* Get a VEC of all the objects put on the pending sizes list. */
84
85 VEC(tree,gc) *
86 get_pending_sizes (void)
87 {
88 VEC(tree,gc) *chain = pending_sizes;
89
90 pending_sizes = 0;
91 return chain;
92 }
93
94 /* Add EXPR to the pending sizes list. */
95
96 void
97 put_pending_size (tree expr)
98 {
99 /* Strip any simple arithmetic from EXPR to see if it has an underlying
100 SAVE_EXPR. */
101 expr = skip_simple_arithmetic (expr);
102
103 if (TREE_CODE (expr) == SAVE_EXPR)
104 VEC_safe_push (tree, gc, pending_sizes, expr);
105 }
106
107 /* Put a chain of objects into the pending sizes list, which must be
108 empty. */
109
110 void
111 put_pending_sizes (VEC(tree,gc) *chain)
112 {
113 gcc_assert (!pending_sizes);
114 pending_sizes = chain;
115 }
116
117 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
118 to serve as the actual size-expression for a type or decl. */
119
120 tree
121 variable_size (tree size)
122 {
123 tree save;
124
125 /* Obviously. */
126 if (TREE_CONSTANT (size))
127 return size;
128
129 /* If the size is self-referential, we can't make a SAVE_EXPR (see
130 save_expr for the rationale). But we can do something else. */
131 if (CONTAINS_PLACEHOLDER_P (size))
132 return self_referential_size (size);
133
134 /* If the language-processor is to take responsibility for variable-sized
135 items (e.g., languages which have elaboration procedures like Ada),
136 just return SIZE unchanged. */
137 if (lang_hooks.decls.global_bindings_p () < 0)
138 return size;
139
140 size = save_expr (size);
141
142 /* If an array with a variable number of elements is declared, and
143 the elements require destruction, we will emit a cleanup for the
144 array. That cleanup is run both on normal exit from the block
145 and in the exception-handler for the block. Normally, when code
146 is used in both ordinary code and in an exception handler it is
147 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
148 not wish to do that here; the array-size is the same in both
149 places. */
150 save = skip_simple_arithmetic (size);
151
152 if (cfun && cfun->dont_save_pending_sizes_p)
153 /* The front-end doesn't want us to keep a list of the expressions
154 that determine sizes for variable size objects. Trust it. */
155 return size;
156
157 if (lang_hooks.decls.global_bindings_p ())
158 {
159 if (TREE_CONSTANT (size))
160 error ("type size can%'t be explicitly evaluated");
161 else
162 error ("variable-size type declared outside of any function");
163
164 return size_one_node;
165 }
166
167 put_pending_size (save);
168
169 return size;
170 }
171
172 /* An array of functions used for self-referential size computation. */
173 static GTY(()) VEC (tree, gc) *size_functions;
174
175 /* Similar to copy_tree_r but do not copy component references involving
176 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
177 and substituted in substitute_in_expr. */
178
179 static tree
180 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
181 {
182 enum tree_code code = TREE_CODE (*tp);
183
184 /* Stop at types, decls, constants like copy_tree_r. */
185 if (TREE_CODE_CLASS (code) == tcc_type
186 || TREE_CODE_CLASS (code) == tcc_declaration
187 || TREE_CODE_CLASS (code) == tcc_constant)
188 {
189 *walk_subtrees = 0;
190 return NULL_TREE;
191 }
192
193 /* This is the pattern built in ada/make_aligning_type. */
194 else if (code == ADDR_EXPR
195 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
196 {
197 *walk_subtrees = 0;
198 return NULL_TREE;
199 }
200
201 /* Default case: the component reference. */
202 else if (code == COMPONENT_REF)
203 {
204 tree inner;
205 for (inner = TREE_OPERAND (*tp, 0);
206 REFERENCE_CLASS_P (inner);
207 inner = TREE_OPERAND (inner, 0))
208 ;
209
210 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
211 {
212 *walk_subtrees = 0;
213 return NULL_TREE;
214 }
215 }
216
217 /* We're not supposed to have them in self-referential size trees
218 because we wouldn't properly control when they are evaluated.
219 However, not creating superfluous SAVE_EXPRs requires accurate
220 tracking of readonly-ness all the way down to here, which we
221 cannot always guarantee in practice. So punt in this case. */
222 else if (code == SAVE_EXPR)
223 return error_mark_node;
224
225 return copy_tree_r (tp, walk_subtrees, data);
226 }
227
228 /* Given a SIZE expression that is self-referential, return an equivalent
229 expression to serve as the actual size expression for a type. */
230
231 static tree
232 self_referential_size (tree size)
233 {
234 static unsigned HOST_WIDE_INT fnno = 0;
235 VEC (tree, heap) *self_refs = NULL;
236 tree param_type_list = NULL, param_decl_list = NULL, arg_list = NULL;
237 tree t, ref, return_type, fntype, fnname, fndecl;
238 unsigned int i;
239 char buf[128];
240
241 /* Do not factor out simple operations. */
242 t = skip_simple_arithmetic (size);
243 if (TREE_CODE (t) == CALL_EXPR)
244 return size;
245
246 /* Collect the list of self-references in the expression. */
247 find_placeholder_in_expr (size, &self_refs);
248 gcc_assert (VEC_length (tree, self_refs) > 0);
249
250 /* Obtain a private copy of the expression. */
251 t = size;
252 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
253 return size;
254 size = t;
255
256 /* Build the parameter and argument lists in parallel; also
257 substitute the former for the latter in the expression. */
258 for (i = 0; VEC_iterate (tree, self_refs, i, ref); i++)
259 {
260 tree subst, param_name, param_type, param_decl;
261
262 if (DECL_P (ref))
263 {
264 /* We shouldn't have true variables here. */
265 gcc_assert (TREE_READONLY (ref));
266 subst = ref;
267 }
268 /* This is the pattern built in ada/make_aligning_type. */
269 else if (TREE_CODE (ref) == ADDR_EXPR)
270 subst = ref;
271 /* Default case: the component reference. */
272 else
273 subst = TREE_OPERAND (ref, 1);
274
275 sprintf (buf, "p%d", i);
276 param_name = get_identifier (buf);
277 param_type = TREE_TYPE (ref);
278 param_decl
279 = build_decl (input_location, PARM_DECL, param_name, param_type);
280 if (targetm.calls.promote_prototypes (NULL_TREE)
281 && INTEGRAL_TYPE_P (param_type)
282 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
283 DECL_ARG_TYPE (param_decl) = integer_type_node;
284 else
285 DECL_ARG_TYPE (param_decl) = param_type;
286 DECL_ARTIFICIAL (param_decl) = 1;
287 TREE_READONLY (param_decl) = 1;
288
289 size = substitute_in_expr (size, subst, param_decl);
290
291 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
292 param_decl_list = chainon (param_decl, param_decl_list);
293 arg_list = tree_cons (NULL_TREE, ref, arg_list);
294 }
295
296 VEC_free (tree, heap, self_refs);
297
298 /* Append 'void' to indicate that the number of parameters is fixed. */
299 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
300
301 /* The 3 lists have been created in reverse order. */
302 param_type_list = nreverse (param_type_list);
303 param_decl_list = nreverse (param_decl_list);
304 arg_list = nreverse (arg_list);
305
306 /* Build the function type. */
307 return_type = TREE_TYPE (size);
308 fntype = build_function_type (return_type, param_type_list);
309
310 /* Build the function declaration. */
311 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
312 fnname = get_file_function_name (buf);
313 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
314 for (t = param_decl_list; t; t = TREE_CHAIN (t))
315 DECL_CONTEXT (t) = fndecl;
316 DECL_ARGUMENTS (fndecl) = param_decl_list;
317 DECL_RESULT (fndecl)
318 = build_decl (input_location, RESULT_DECL, 0, return_type);
319 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
320
321 /* The function has been created by the compiler and we don't
322 want to emit debug info for it. */
323 DECL_ARTIFICIAL (fndecl) = 1;
324 DECL_IGNORED_P (fndecl) = 1;
325
326 /* It is supposed to be "const" and never throw. */
327 TREE_READONLY (fndecl) = 1;
328 TREE_NOTHROW (fndecl) = 1;
329
330 /* We want it to be inlined when this is deemed profitable, as
331 well as discarded if every call has been integrated. */
332 DECL_DECLARED_INLINE_P (fndecl) = 1;
333
334 /* It is made up of a unique return statement. */
335 DECL_INITIAL (fndecl) = make_node (BLOCK);
336 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
337 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
338 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
339 TREE_STATIC (fndecl) = 1;
340
341 /* Put it onto the list of size functions. */
342 VEC_safe_push (tree, gc, size_functions, fndecl);
343
344 /* Replace the original expression with a call to the size function. */
345 return build_function_call_expr (UNKNOWN_LOCATION, fndecl, arg_list);
346 }
347
348 /* Take, queue and compile all the size functions. It is essential that
349 the size functions be gimplified at the very end of the compilation
350 in order to guarantee transparent handling of self-referential sizes.
351 Otherwise the GENERIC inliner would not be able to inline them back
352 at each of their call sites, thus creating artificial non-constant
353 size expressions which would trigger nasty problems later on. */
354
355 void
356 finalize_size_functions (void)
357 {
358 unsigned int i;
359 tree fndecl;
360
361 for (i = 0; VEC_iterate(tree, size_functions, i, fndecl); i++)
362 {
363 dump_function (TDI_original, fndecl);
364 gimplify_function_tree (fndecl);
365 dump_function (TDI_generic, fndecl);
366 cgraph_finalize_function (fndecl, false);
367 }
368
369 VEC_free (tree, gc, size_functions);
370 }
371 \f
372 /* Return the machine mode to use for a nonscalar of SIZE bits. The
373 mode must be in class MCLASS, and have exactly that many value bits;
374 it may have padding as well. If LIMIT is nonzero, modes of wider
375 than MAX_FIXED_MODE_SIZE will not be used. */
376
377 enum machine_mode
378 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
379 {
380 enum machine_mode mode;
381
382 if (limit && size > MAX_FIXED_MODE_SIZE)
383 return BLKmode;
384
385 /* Get the first mode which has this size, in the specified class. */
386 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
387 mode = GET_MODE_WIDER_MODE (mode))
388 if (GET_MODE_PRECISION (mode) == size)
389 return mode;
390
391 return BLKmode;
392 }
393
394 /* Similar, except passed a tree node. */
395
396 enum machine_mode
397 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
398 {
399 unsigned HOST_WIDE_INT uhwi;
400 unsigned int ui;
401
402 if (!host_integerp (size, 1))
403 return BLKmode;
404 uhwi = tree_low_cst (size, 1);
405 ui = uhwi;
406 if (uhwi != ui)
407 return BLKmode;
408 return mode_for_size (ui, mclass, limit);
409 }
410
411 /* Similar, but never return BLKmode; return the narrowest mode that
412 contains at least the requested number of value bits. */
413
414 enum machine_mode
415 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
416 {
417 enum machine_mode mode;
418
419 /* Get the first mode which has at least this size, in the
420 specified class. */
421 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
422 mode = GET_MODE_WIDER_MODE (mode))
423 if (GET_MODE_PRECISION (mode) >= size)
424 return mode;
425
426 gcc_unreachable ();
427 }
428
429 /* Find an integer mode of the exact same size, or BLKmode on failure. */
430
431 enum machine_mode
432 int_mode_for_mode (enum machine_mode mode)
433 {
434 switch (GET_MODE_CLASS (mode))
435 {
436 case MODE_INT:
437 case MODE_PARTIAL_INT:
438 break;
439
440 case MODE_COMPLEX_INT:
441 case MODE_COMPLEX_FLOAT:
442 case MODE_FLOAT:
443 case MODE_DECIMAL_FLOAT:
444 case MODE_VECTOR_INT:
445 case MODE_VECTOR_FLOAT:
446 case MODE_FRACT:
447 case MODE_ACCUM:
448 case MODE_UFRACT:
449 case MODE_UACCUM:
450 case MODE_VECTOR_FRACT:
451 case MODE_VECTOR_ACCUM:
452 case MODE_VECTOR_UFRACT:
453 case MODE_VECTOR_UACCUM:
454 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
455 break;
456
457 case MODE_RANDOM:
458 if (mode == BLKmode)
459 break;
460
461 /* ... fall through ... */
462
463 case MODE_CC:
464 default:
465 gcc_unreachable ();
466 }
467
468 return mode;
469 }
470
471 /* Return the alignment of MODE. This will be bounded by 1 and
472 BIGGEST_ALIGNMENT. */
473
474 unsigned int
475 get_mode_alignment (enum machine_mode mode)
476 {
477 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
478 }
479
480 \f
481 /* Subroutine of layout_decl: Force alignment required for the data type.
482 But if the decl itself wants greater alignment, don't override that. */
483
484 static inline void
485 do_type_align (tree type, tree decl)
486 {
487 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
488 {
489 DECL_ALIGN (decl) = TYPE_ALIGN (type);
490 if (TREE_CODE (decl) == FIELD_DECL)
491 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
492 }
493 }
494
495 /* Set the size, mode and alignment of a ..._DECL node.
496 TYPE_DECL does need this for C++.
497 Note that LABEL_DECL and CONST_DECL nodes do not need this,
498 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
499 Don't call layout_decl for them.
500
501 KNOWN_ALIGN is the amount of alignment we can assume this
502 decl has with no special effort. It is relevant only for FIELD_DECLs
503 and depends on the previous fields.
504 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
505 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
506 the record will be aligned to suit. */
507
508 void
509 layout_decl (tree decl, unsigned int known_align)
510 {
511 tree type = TREE_TYPE (decl);
512 enum tree_code code = TREE_CODE (decl);
513 rtx rtl = NULL_RTX;
514 location_t loc = DECL_SOURCE_LOCATION (decl);
515
516 if (code == CONST_DECL)
517 return;
518
519 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
520 || code == TYPE_DECL ||code == FIELD_DECL);
521
522 rtl = DECL_RTL_IF_SET (decl);
523
524 if (type == error_mark_node)
525 type = void_type_node;
526
527 /* Usually the size and mode come from the data type without change,
528 however, the front-end may set the explicit width of the field, so its
529 size may not be the same as the size of its type. This happens with
530 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
531 also happens with other fields. For example, the C++ front-end creates
532 zero-sized fields corresponding to empty base classes, and depends on
533 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
534 size in bytes from the size in bits. If we have already set the mode,
535 don't set it again since we can be called twice for FIELD_DECLs. */
536
537 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
538 if (DECL_MODE (decl) == VOIDmode)
539 DECL_MODE (decl) = TYPE_MODE (type);
540
541 if (DECL_SIZE (decl) == 0)
542 {
543 DECL_SIZE (decl) = TYPE_SIZE (type);
544 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
545 }
546 else if (DECL_SIZE_UNIT (decl) == 0)
547 DECL_SIZE_UNIT (decl)
548 = fold_convert_loc (loc, sizetype,
549 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
550 bitsize_unit_node));
551
552 if (code != FIELD_DECL)
553 /* For non-fields, update the alignment from the type. */
554 do_type_align (type, decl);
555 else
556 /* For fields, it's a bit more complicated... */
557 {
558 bool old_user_align = DECL_USER_ALIGN (decl);
559 bool zero_bitfield = false;
560 bool packed_p = DECL_PACKED (decl);
561 unsigned int mfa;
562
563 if (DECL_BIT_FIELD (decl))
564 {
565 DECL_BIT_FIELD_TYPE (decl) = type;
566
567 /* A zero-length bit-field affects the alignment of the next
568 field. In essence such bit-fields are not influenced by
569 any packing due to #pragma pack or attribute packed. */
570 if (integer_zerop (DECL_SIZE (decl))
571 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
572 {
573 zero_bitfield = true;
574 packed_p = false;
575 #ifdef PCC_BITFIELD_TYPE_MATTERS
576 if (PCC_BITFIELD_TYPE_MATTERS)
577 do_type_align (type, decl);
578 else
579 #endif
580 {
581 #ifdef EMPTY_FIELD_BOUNDARY
582 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
583 {
584 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
585 DECL_USER_ALIGN (decl) = 0;
586 }
587 #endif
588 }
589 }
590
591 /* See if we can use an ordinary integer mode for a bit-field.
592 Conditions are: a fixed size that is correct for another mode
593 and occupying a complete byte or bytes on proper boundary. */
594 if (TYPE_SIZE (type) != 0
595 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
596 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
597 {
598 enum machine_mode xmode
599 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
600 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
601
602 if (xmode != BLKmode
603 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
604 && (known_align == 0 || known_align >= xalign))
605 {
606 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
607 DECL_MODE (decl) = xmode;
608 DECL_BIT_FIELD (decl) = 0;
609 }
610 }
611
612 /* Turn off DECL_BIT_FIELD if we won't need it set. */
613 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
614 && known_align >= TYPE_ALIGN (type)
615 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
616 DECL_BIT_FIELD (decl) = 0;
617 }
618 else if (packed_p && DECL_USER_ALIGN (decl))
619 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
620 round up; we'll reduce it again below. We want packing to
621 supersede USER_ALIGN inherited from the type, but defer to
622 alignment explicitly specified on the field decl. */;
623 else
624 do_type_align (type, decl);
625
626 /* If the field is packed and not explicitly aligned, give it the
627 minimum alignment. Note that do_type_align may set
628 DECL_USER_ALIGN, so we need to check old_user_align instead. */
629 if (packed_p
630 && !old_user_align)
631 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
632
633 if (! packed_p && ! DECL_USER_ALIGN (decl))
634 {
635 /* Some targets (i.e. i386, VMS) limit struct field alignment
636 to a lower boundary than alignment of variables unless
637 it was overridden by attribute aligned. */
638 #ifdef BIGGEST_FIELD_ALIGNMENT
639 DECL_ALIGN (decl)
640 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
641 #endif
642 #ifdef ADJUST_FIELD_ALIGN
643 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
644 #endif
645 }
646
647 if (zero_bitfield)
648 mfa = initial_max_fld_align * BITS_PER_UNIT;
649 else
650 mfa = maximum_field_alignment;
651 /* Should this be controlled by DECL_USER_ALIGN, too? */
652 if (mfa != 0)
653 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
654 }
655
656 /* Evaluate nonconstant size only once, either now or as soon as safe. */
657 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
658 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
659 if (DECL_SIZE_UNIT (decl) != 0
660 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
661 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
662
663 /* If requested, warn about definitions of large data objects. */
664 if (warn_larger_than
665 && (code == VAR_DECL || code == PARM_DECL)
666 && ! DECL_EXTERNAL (decl))
667 {
668 tree size = DECL_SIZE_UNIT (decl);
669
670 if (size != 0 && TREE_CODE (size) == INTEGER_CST
671 && compare_tree_int (size, larger_than_size) > 0)
672 {
673 int size_as_int = TREE_INT_CST_LOW (size);
674
675 if (compare_tree_int (size, size_as_int) == 0)
676 warning (OPT_Wlarger_than_eq, "size of %q+D is %d bytes", decl, size_as_int);
677 else
678 warning (OPT_Wlarger_than_eq, "size of %q+D is larger than %wd bytes",
679 decl, larger_than_size);
680 }
681 }
682
683 /* If the RTL was already set, update its mode and mem attributes. */
684 if (rtl)
685 {
686 PUT_MODE (rtl, DECL_MODE (decl));
687 SET_DECL_RTL (decl, 0);
688 set_mem_attributes (rtl, decl, 1);
689 SET_DECL_RTL (decl, rtl);
690 }
691 }
692
693 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
694 a previous call to layout_decl and calls it again. */
695
696 void
697 relayout_decl (tree decl)
698 {
699 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
700 DECL_MODE (decl) = VOIDmode;
701 if (!DECL_USER_ALIGN (decl))
702 DECL_ALIGN (decl) = 0;
703 SET_DECL_RTL (decl, 0);
704
705 layout_decl (decl, 0);
706 }
707 \f
708 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
709 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
710 is to be passed to all other layout functions for this record. It is the
711 responsibility of the caller to call `free' for the storage returned.
712 Note that garbage collection is not permitted until we finish laying
713 out the record. */
714
715 record_layout_info
716 start_record_layout (tree t)
717 {
718 record_layout_info rli = XNEW (struct record_layout_info_s);
719
720 rli->t = t;
721
722 /* If the type has a minimum specified alignment (via an attribute
723 declaration, for example) use it -- otherwise, start with a
724 one-byte alignment. */
725 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
726 rli->unpacked_align = rli->record_align;
727 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
728
729 #ifdef STRUCTURE_SIZE_BOUNDARY
730 /* Packed structures don't need to have minimum size. */
731 if (! TYPE_PACKED (t))
732 {
733 unsigned tmp;
734
735 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
736 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
737 if (maximum_field_alignment != 0)
738 tmp = MIN (tmp, maximum_field_alignment);
739 rli->record_align = MAX (rli->record_align, tmp);
740 }
741 #endif
742
743 rli->offset = size_zero_node;
744 rli->bitpos = bitsize_zero_node;
745 rli->prev_field = 0;
746 rli->pending_statics = 0;
747 rli->packed_maybe_necessary = 0;
748 rli->remaining_in_alignment = 0;
749
750 return rli;
751 }
752
753 /* These four routines perform computations that convert between
754 the offset/bitpos forms and byte and bit offsets. */
755
756 tree
757 bit_from_pos (tree offset, tree bitpos)
758 {
759 return size_binop (PLUS_EXPR, bitpos,
760 size_binop (MULT_EXPR,
761 fold_convert (bitsizetype, offset),
762 bitsize_unit_node));
763 }
764
765 tree
766 byte_from_pos (tree offset, tree bitpos)
767 {
768 return size_binop (PLUS_EXPR, offset,
769 fold_convert (sizetype,
770 size_binop (TRUNC_DIV_EXPR, bitpos,
771 bitsize_unit_node)));
772 }
773
774 void
775 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
776 tree pos)
777 {
778 *poffset = size_binop (MULT_EXPR,
779 fold_convert (sizetype,
780 size_binop (FLOOR_DIV_EXPR, pos,
781 bitsize_int (off_align))),
782 size_int (off_align / BITS_PER_UNIT));
783 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
784 }
785
786 /* Given a pointer to bit and byte offsets and an offset alignment,
787 normalize the offsets so they are within the alignment. */
788
789 void
790 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
791 {
792 /* If the bit position is now larger than it should be, adjust it
793 downwards. */
794 if (compare_tree_int (*pbitpos, off_align) >= 0)
795 {
796 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
797 bitsize_int (off_align));
798
799 *poffset
800 = size_binop (PLUS_EXPR, *poffset,
801 size_binop (MULT_EXPR,
802 fold_convert (sizetype, extra_aligns),
803 size_int (off_align / BITS_PER_UNIT)));
804
805 *pbitpos
806 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
807 }
808 }
809
810 /* Print debugging information about the information in RLI. */
811
812 DEBUG_FUNCTION void
813 debug_rli (record_layout_info rli)
814 {
815 print_node_brief (stderr, "type", rli->t, 0);
816 print_node_brief (stderr, "\noffset", rli->offset, 0);
817 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
818
819 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
820 rli->record_align, rli->unpacked_align,
821 rli->offset_align);
822
823 /* The ms_struct code is the only that uses this. */
824 if (targetm.ms_bitfield_layout_p (rli->t))
825 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
826
827 if (rli->packed_maybe_necessary)
828 fprintf (stderr, "packed may be necessary\n");
829
830 if (rli->pending_statics)
831 {
832 fprintf (stderr, "pending statics:\n");
833 debug_tree (rli->pending_statics);
834 }
835 }
836
837 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
838 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
839
840 void
841 normalize_rli (record_layout_info rli)
842 {
843 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
844 }
845
846 /* Returns the size in bytes allocated so far. */
847
848 tree
849 rli_size_unit_so_far (record_layout_info rli)
850 {
851 return byte_from_pos (rli->offset, rli->bitpos);
852 }
853
854 /* Returns the size in bits allocated so far. */
855
856 tree
857 rli_size_so_far (record_layout_info rli)
858 {
859 return bit_from_pos (rli->offset, rli->bitpos);
860 }
861
862 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
863 the next available location within the record is given by KNOWN_ALIGN.
864 Update the variable alignment fields in RLI, and return the alignment
865 to give the FIELD. */
866
867 unsigned int
868 update_alignment_for_field (record_layout_info rli, tree field,
869 unsigned int known_align)
870 {
871 /* The alignment required for FIELD. */
872 unsigned int desired_align;
873 /* The type of this field. */
874 tree type = TREE_TYPE (field);
875 /* True if the field was explicitly aligned by the user. */
876 bool user_align;
877 bool is_bitfield;
878
879 /* Do not attempt to align an ERROR_MARK node */
880 if (TREE_CODE (type) == ERROR_MARK)
881 return 0;
882
883 /* Lay out the field so we know what alignment it needs. */
884 layout_decl (field, known_align);
885 desired_align = DECL_ALIGN (field);
886 user_align = DECL_USER_ALIGN (field);
887
888 is_bitfield = (type != error_mark_node
889 && DECL_BIT_FIELD_TYPE (field)
890 && ! integer_zerop (TYPE_SIZE (type)));
891
892 /* Record must have at least as much alignment as any field.
893 Otherwise, the alignment of the field within the record is
894 meaningless. */
895 if (targetm.ms_bitfield_layout_p (rli->t))
896 {
897 /* Here, the alignment of the underlying type of a bitfield can
898 affect the alignment of a record; even a zero-sized field
899 can do this. The alignment should be to the alignment of
900 the type, except that for zero-size bitfields this only
901 applies if there was an immediately prior, nonzero-size
902 bitfield. (That's the way it is, experimentally.) */
903 if ((!is_bitfield && !DECL_PACKED (field))
904 || (!integer_zerop (DECL_SIZE (field))
905 ? !DECL_PACKED (field)
906 : (rli->prev_field
907 && DECL_BIT_FIELD_TYPE (rli->prev_field)
908 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
909 {
910 unsigned int type_align = TYPE_ALIGN (type);
911 type_align = MAX (type_align, desired_align);
912 if (maximum_field_alignment != 0)
913 type_align = MIN (type_align, maximum_field_alignment);
914 rli->record_align = MAX (rli->record_align, type_align);
915 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
916 }
917 }
918 #ifdef PCC_BITFIELD_TYPE_MATTERS
919 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
920 {
921 /* Named bit-fields cause the entire structure to have the
922 alignment implied by their type. Some targets also apply the same
923 rules to unnamed bitfields. */
924 if (DECL_NAME (field) != 0
925 || targetm.align_anon_bitfield ())
926 {
927 unsigned int type_align = TYPE_ALIGN (type);
928
929 #ifdef ADJUST_FIELD_ALIGN
930 if (! TYPE_USER_ALIGN (type))
931 type_align = ADJUST_FIELD_ALIGN (field, type_align);
932 #endif
933
934 /* Targets might chose to handle unnamed and hence possibly
935 zero-width bitfield. Those are not influenced by #pragmas
936 or packed attributes. */
937 if (integer_zerop (DECL_SIZE (field)))
938 {
939 if (initial_max_fld_align)
940 type_align = MIN (type_align,
941 initial_max_fld_align * BITS_PER_UNIT);
942 }
943 else if (maximum_field_alignment != 0)
944 type_align = MIN (type_align, maximum_field_alignment);
945 else if (DECL_PACKED (field))
946 type_align = MIN (type_align, BITS_PER_UNIT);
947
948 /* The alignment of the record is increased to the maximum
949 of the current alignment, the alignment indicated on the
950 field (i.e., the alignment specified by an __aligned__
951 attribute), and the alignment indicated by the type of
952 the field. */
953 rli->record_align = MAX (rli->record_align, desired_align);
954 rli->record_align = MAX (rli->record_align, type_align);
955
956 if (warn_packed)
957 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
958 user_align |= TYPE_USER_ALIGN (type);
959 }
960 }
961 #endif
962 else
963 {
964 rli->record_align = MAX (rli->record_align, desired_align);
965 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
966 }
967
968 TYPE_USER_ALIGN (rli->t) |= user_align;
969
970 return desired_align;
971 }
972
973 /* Called from place_field to handle unions. */
974
975 static void
976 place_union_field (record_layout_info rli, tree field)
977 {
978 update_alignment_for_field (rli, field, /*known_align=*/0);
979
980 DECL_FIELD_OFFSET (field) = size_zero_node;
981 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
982 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
983
984 /* If this is an ERROR_MARK return *after* having set the
985 field at the start of the union. This helps when parsing
986 invalid fields. */
987 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
988 return;
989
990 /* We assume the union's size will be a multiple of a byte so we don't
991 bother with BITPOS. */
992 if (TREE_CODE (rli->t) == UNION_TYPE)
993 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
994 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
995 rli->offset = fold_build3_loc (input_location, COND_EXPR, sizetype,
996 DECL_QUALIFIER (field),
997 DECL_SIZE_UNIT (field), rli->offset);
998 }
999
1000 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1001 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1002 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1003 units of alignment than the underlying TYPE. */
1004 static int
1005 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1006 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1007 {
1008 /* Note that the calculation of OFFSET might overflow; we calculate it so
1009 that we still get the right result as long as ALIGN is a power of two. */
1010 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1011
1012 offset = offset % align;
1013 return ((offset + size + align - 1) / align
1014 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
1015 / align));
1016 }
1017 #endif
1018
1019 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1020 is a FIELD_DECL to be added after those fields already present in
1021 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1022 callers that desire that behavior must manually perform that step.) */
1023
1024 void
1025 place_field (record_layout_info rli, tree field)
1026 {
1027 /* The alignment required for FIELD. */
1028 unsigned int desired_align;
1029 /* The alignment FIELD would have if we just dropped it into the
1030 record as it presently stands. */
1031 unsigned int known_align;
1032 unsigned int actual_align;
1033 /* The type of this field. */
1034 tree type = TREE_TYPE (field);
1035
1036 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1037
1038 /* If FIELD is static, then treat it like a separate variable, not
1039 really like a structure field. If it is a FUNCTION_DECL, it's a
1040 method. In both cases, all we do is lay out the decl, and we do
1041 it *after* the record is laid out. */
1042 if (TREE_CODE (field) == VAR_DECL)
1043 {
1044 rli->pending_statics = tree_cons (NULL_TREE, field,
1045 rli->pending_statics);
1046 return;
1047 }
1048
1049 /* Enumerators and enum types which are local to this class need not
1050 be laid out. Likewise for initialized constant fields. */
1051 else if (TREE_CODE (field) != FIELD_DECL)
1052 return;
1053
1054 /* Unions are laid out very differently than records, so split
1055 that code off to another function. */
1056 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1057 {
1058 place_union_field (rli, field);
1059 return;
1060 }
1061
1062 else if (TREE_CODE (type) == ERROR_MARK)
1063 {
1064 /* Place this field at the current allocation position, so we
1065 maintain monotonicity. */
1066 DECL_FIELD_OFFSET (field) = rli->offset;
1067 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1068 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1069 return;
1070 }
1071
1072 /* Work out the known alignment so far. Note that A & (-A) is the
1073 value of the least-significant bit in A that is one. */
1074 if (! integer_zerop (rli->bitpos))
1075 known_align = (tree_low_cst (rli->bitpos, 1)
1076 & - tree_low_cst (rli->bitpos, 1));
1077 else if (integer_zerop (rli->offset))
1078 known_align = 0;
1079 else if (host_integerp (rli->offset, 1))
1080 known_align = (BITS_PER_UNIT
1081 * (tree_low_cst (rli->offset, 1)
1082 & - tree_low_cst (rli->offset, 1)));
1083 else
1084 known_align = rli->offset_align;
1085
1086 desired_align = update_alignment_for_field (rli, field, known_align);
1087 if (known_align == 0)
1088 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1089
1090 if (warn_packed && DECL_PACKED (field))
1091 {
1092 if (known_align >= TYPE_ALIGN (type))
1093 {
1094 if (TYPE_ALIGN (type) > desired_align)
1095 {
1096 if (STRICT_ALIGNMENT)
1097 warning (OPT_Wattributes, "packed attribute causes "
1098 "inefficient alignment for %q+D", field);
1099 /* Don't warn if DECL_PACKED was set by the type. */
1100 else if (!TYPE_PACKED (rli->t))
1101 warning (OPT_Wattributes, "packed attribute is "
1102 "unnecessary for %q+D", field);
1103 }
1104 }
1105 else
1106 rli->packed_maybe_necessary = 1;
1107 }
1108
1109 /* Does this field automatically have alignment it needs by virtue
1110 of the fields that precede it and the record's own alignment?
1111 We already align ms_struct fields, so don't re-align them. */
1112 if (known_align < desired_align
1113 && !targetm.ms_bitfield_layout_p (rli->t))
1114 {
1115 /* No, we need to skip space before this field.
1116 Bump the cumulative size to multiple of field alignment. */
1117
1118 if (DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1119 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1120
1121 /* If the alignment is still within offset_align, just align
1122 the bit position. */
1123 if (desired_align < rli->offset_align)
1124 rli->bitpos = round_up (rli->bitpos, desired_align);
1125 else
1126 {
1127 /* First adjust OFFSET by the partial bits, then align. */
1128 rli->offset
1129 = size_binop (PLUS_EXPR, rli->offset,
1130 fold_convert (sizetype,
1131 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1132 bitsize_unit_node)));
1133 rli->bitpos = bitsize_zero_node;
1134
1135 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1136 }
1137
1138 if (! TREE_CONSTANT (rli->offset))
1139 rli->offset_align = desired_align;
1140
1141 }
1142
1143 /* Handle compatibility with PCC. Note that if the record has any
1144 variable-sized fields, we need not worry about compatibility. */
1145 #ifdef PCC_BITFIELD_TYPE_MATTERS
1146 if (PCC_BITFIELD_TYPE_MATTERS
1147 && ! targetm.ms_bitfield_layout_p (rli->t)
1148 && TREE_CODE (field) == FIELD_DECL
1149 && type != error_mark_node
1150 && DECL_BIT_FIELD (field)
1151 && (! DECL_PACKED (field)
1152 /* Enter for these packed fields only to issue a warning. */
1153 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1154 && maximum_field_alignment == 0
1155 && ! integer_zerop (DECL_SIZE (field))
1156 && host_integerp (DECL_SIZE (field), 1)
1157 && host_integerp (rli->offset, 1)
1158 && host_integerp (TYPE_SIZE (type), 1))
1159 {
1160 unsigned int type_align = TYPE_ALIGN (type);
1161 tree dsize = DECL_SIZE (field);
1162 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1163 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1164 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1165
1166 #ifdef ADJUST_FIELD_ALIGN
1167 if (! TYPE_USER_ALIGN (type))
1168 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1169 #endif
1170
1171 /* A bit field may not span more units of alignment of its type
1172 than its type itself. Advance to next boundary if necessary. */
1173 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1174 {
1175 if (DECL_PACKED (field))
1176 {
1177 if (warn_packed_bitfield_compat == 1)
1178 inform
1179 (input_location,
1180 "Offset of packed bit-field %qD has changed in GCC 4.4",
1181 field);
1182 }
1183 else
1184 rli->bitpos = round_up_loc (input_location, rli->bitpos, type_align);
1185 }
1186
1187 if (! DECL_PACKED (field))
1188 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1189 }
1190 #endif
1191
1192 #ifdef BITFIELD_NBYTES_LIMITED
1193 if (BITFIELD_NBYTES_LIMITED
1194 && ! targetm.ms_bitfield_layout_p (rli->t)
1195 && TREE_CODE (field) == FIELD_DECL
1196 && type != error_mark_node
1197 && DECL_BIT_FIELD_TYPE (field)
1198 && ! DECL_PACKED (field)
1199 && ! integer_zerop (DECL_SIZE (field))
1200 && host_integerp (DECL_SIZE (field), 1)
1201 && host_integerp (rli->offset, 1)
1202 && host_integerp (TYPE_SIZE (type), 1))
1203 {
1204 unsigned int type_align = TYPE_ALIGN (type);
1205 tree dsize = DECL_SIZE (field);
1206 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1207 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1208 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1209
1210 #ifdef ADJUST_FIELD_ALIGN
1211 if (! TYPE_USER_ALIGN (type))
1212 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1213 #endif
1214
1215 if (maximum_field_alignment != 0)
1216 type_align = MIN (type_align, maximum_field_alignment);
1217 /* ??? This test is opposite the test in the containing if
1218 statement, so this code is unreachable currently. */
1219 else if (DECL_PACKED (field))
1220 type_align = MIN (type_align, BITS_PER_UNIT);
1221
1222 /* A bit field may not span the unit of alignment of its type.
1223 Advance to next boundary if necessary. */
1224 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1225 rli->bitpos = round_up (rli->bitpos, type_align);
1226
1227 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1228 }
1229 #endif
1230
1231 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1232 A subtlety:
1233 When a bit field is inserted into a packed record, the whole
1234 size of the underlying type is used by one or more same-size
1235 adjacent bitfields. (That is, if its long:3, 32 bits is
1236 used in the record, and any additional adjacent long bitfields are
1237 packed into the same chunk of 32 bits. However, if the size
1238 changes, a new field of that size is allocated.) In an unpacked
1239 record, this is the same as using alignment, but not equivalent
1240 when packing.
1241
1242 Note: for compatibility, we use the type size, not the type alignment
1243 to determine alignment, since that matches the documentation */
1244
1245 if (targetm.ms_bitfield_layout_p (rli->t))
1246 {
1247 tree prev_saved = rli->prev_field;
1248 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1249
1250 /* This is a bitfield if it exists. */
1251 if (rli->prev_field)
1252 {
1253 /* If both are bitfields, nonzero, and the same size, this is
1254 the middle of a run. Zero declared size fields are special
1255 and handled as "end of run". (Note: it's nonzero declared
1256 size, but equal type sizes!) (Since we know that both
1257 the current and previous fields are bitfields by the
1258 time we check it, DECL_SIZE must be present for both.) */
1259 if (DECL_BIT_FIELD_TYPE (field)
1260 && !integer_zerop (DECL_SIZE (field))
1261 && !integer_zerop (DECL_SIZE (rli->prev_field))
1262 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1263 && host_integerp (TYPE_SIZE (type), 0)
1264 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1265 {
1266 /* We're in the middle of a run of equal type size fields; make
1267 sure we realign if we run out of bits. (Not decl size,
1268 type size!) */
1269 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
1270
1271 if (rli->remaining_in_alignment < bitsize)
1272 {
1273 HOST_WIDE_INT typesize = tree_low_cst (TYPE_SIZE (type), 1);
1274
1275 /* out of bits; bump up to next 'word'. */
1276 rli->bitpos
1277 = size_binop (PLUS_EXPR, rli->bitpos,
1278 bitsize_int (rli->remaining_in_alignment));
1279 rli->prev_field = field;
1280 if (typesize < bitsize)
1281 rli->remaining_in_alignment = 0;
1282 else
1283 rli->remaining_in_alignment = typesize - bitsize;
1284 }
1285 else
1286 rli->remaining_in_alignment -= bitsize;
1287 }
1288 else
1289 {
1290 /* End of a run: if leaving a run of bitfields of the same type
1291 size, we have to "use up" the rest of the bits of the type
1292 size.
1293
1294 Compute the new position as the sum of the size for the prior
1295 type and where we first started working on that type.
1296 Note: since the beginning of the field was aligned then
1297 of course the end will be too. No round needed. */
1298
1299 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1300 {
1301 rli->bitpos
1302 = size_binop (PLUS_EXPR, rli->bitpos,
1303 bitsize_int (rli->remaining_in_alignment));
1304 }
1305 else
1306 /* We "use up" size zero fields; the code below should behave
1307 as if the prior field was not a bitfield. */
1308 prev_saved = NULL;
1309
1310 /* Cause a new bitfield to be captured, either this time (if
1311 currently a bitfield) or next time we see one. */
1312 if (!DECL_BIT_FIELD_TYPE(field)
1313 || integer_zerop (DECL_SIZE (field)))
1314 rli->prev_field = NULL;
1315 }
1316
1317 normalize_rli (rli);
1318 }
1319
1320 /* If we're starting a new run of same size type bitfields
1321 (or a run of non-bitfields), set up the "first of the run"
1322 fields.
1323
1324 That is, if the current field is not a bitfield, or if there
1325 was a prior bitfield the type sizes differ, or if there wasn't
1326 a prior bitfield the size of the current field is nonzero.
1327
1328 Note: we must be sure to test ONLY the type size if there was
1329 a prior bitfield and ONLY for the current field being zero if
1330 there wasn't. */
1331
1332 if (!DECL_BIT_FIELD_TYPE (field)
1333 || (prev_saved != NULL
1334 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1335 : !integer_zerop (DECL_SIZE (field)) ))
1336 {
1337 /* Never smaller than a byte for compatibility. */
1338 unsigned int type_align = BITS_PER_UNIT;
1339
1340 /* (When not a bitfield), we could be seeing a flex array (with
1341 no DECL_SIZE). Since we won't be using remaining_in_alignment
1342 until we see a bitfield (and come by here again) we just skip
1343 calculating it. */
1344 if (DECL_SIZE (field) != NULL
1345 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 1)
1346 && host_integerp (DECL_SIZE (field), 1))
1347 {
1348 unsigned HOST_WIDE_INT bitsize
1349 = tree_low_cst (DECL_SIZE (field), 1);
1350 unsigned HOST_WIDE_INT typesize
1351 = tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 1);
1352
1353 if (typesize < bitsize)
1354 rli->remaining_in_alignment = 0;
1355 else
1356 rli->remaining_in_alignment = typesize - bitsize;
1357 }
1358
1359 /* Now align (conventionally) for the new type. */
1360 type_align = TYPE_ALIGN (TREE_TYPE (field));
1361
1362 if (maximum_field_alignment != 0)
1363 type_align = MIN (type_align, maximum_field_alignment);
1364
1365 rli->bitpos = round_up_loc (input_location, rli->bitpos, type_align);
1366
1367 /* If we really aligned, don't allow subsequent bitfields
1368 to undo that. */
1369 rli->prev_field = NULL;
1370 }
1371 }
1372
1373 /* Offset so far becomes the position of this field after normalizing. */
1374 normalize_rli (rli);
1375 DECL_FIELD_OFFSET (field) = rli->offset;
1376 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1377 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1378
1379 /* If this field ended up more aligned than we thought it would be (we
1380 approximate this by seeing if its position changed), lay out the field
1381 again; perhaps we can use an integral mode for it now. */
1382 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1383 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1384 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1385 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1386 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1387 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1388 actual_align = (BITS_PER_UNIT
1389 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1390 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1391 else
1392 actual_align = DECL_OFFSET_ALIGN (field);
1393 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1394 store / extract bit field operations will check the alignment of the
1395 record against the mode of bit fields. */
1396
1397 if (known_align != actual_align)
1398 layout_decl (field, actual_align);
1399
1400 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1401 rli->prev_field = field;
1402
1403 /* Now add size of this field to the size of the record. If the size is
1404 not constant, treat the field as being a multiple of bytes and just
1405 adjust the offset, resetting the bit position. Otherwise, apportion the
1406 size amongst the bit position and offset. First handle the case of an
1407 unspecified size, which can happen when we have an invalid nested struct
1408 definition, such as struct j { struct j { int i; } }. The error message
1409 is printed in finish_struct. */
1410 if (DECL_SIZE (field) == 0)
1411 /* Do nothing. */;
1412 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1413 || TREE_OVERFLOW (DECL_SIZE (field)))
1414 {
1415 rli->offset
1416 = size_binop (PLUS_EXPR, rli->offset,
1417 fold_convert (sizetype,
1418 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1419 bitsize_unit_node)));
1420 rli->offset
1421 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1422 rli->bitpos = bitsize_zero_node;
1423 rli->offset_align = MIN (rli->offset_align, desired_align);
1424 }
1425 else if (targetm.ms_bitfield_layout_p (rli->t))
1426 {
1427 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1428
1429 /* If we ended a bitfield before the full length of the type then
1430 pad the struct out to the full length of the last type. */
1431 if ((TREE_CHAIN (field) == NULL
1432 || TREE_CODE (TREE_CHAIN (field)) != FIELD_DECL)
1433 && DECL_BIT_FIELD_TYPE (field)
1434 && !integer_zerop (DECL_SIZE (field)))
1435 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1436 bitsize_int (rli->remaining_in_alignment));
1437
1438 normalize_rli (rli);
1439 }
1440 else
1441 {
1442 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1443 normalize_rli (rli);
1444 }
1445 }
1446
1447 /* Assuming that all the fields have been laid out, this function uses
1448 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1449 indicated by RLI. */
1450
1451 static void
1452 finalize_record_size (record_layout_info rli)
1453 {
1454 tree unpadded_size, unpadded_size_unit;
1455
1456 /* Now we want just byte and bit offsets, so set the offset alignment
1457 to be a byte and then normalize. */
1458 rli->offset_align = BITS_PER_UNIT;
1459 normalize_rli (rli);
1460
1461 /* Determine the desired alignment. */
1462 #ifdef ROUND_TYPE_ALIGN
1463 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1464 rli->record_align);
1465 #else
1466 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1467 #endif
1468
1469 /* Compute the size so far. Be sure to allow for extra bits in the
1470 size in bytes. We have guaranteed above that it will be no more
1471 than a single byte. */
1472 unpadded_size = rli_size_so_far (rli);
1473 unpadded_size_unit = rli_size_unit_so_far (rli);
1474 if (! integer_zerop (rli->bitpos))
1475 unpadded_size_unit
1476 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1477
1478 /* Round the size up to be a multiple of the required alignment. */
1479 TYPE_SIZE (rli->t) = round_up_loc (input_location, unpadded_size,
1480 TYPE_ALIGN (rli->t));
1481 TYPE_SIZE_UNIT (rli->t)
1482 = round_up_loc (input_location, unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1483
1484 if (TREE_CONSTANT (unpadded_size)
1485 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1486 && input_location != BUILTINS_LOCATION)
1487 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1488
1489 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1490 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1491 && TREE_CONSTANT (unpadded_size))
1492 {
1493 tree unpacked_size;
1494
1495 #ifdef ROUND_TYPE_ALIGN
1496 rli->unpacked_align
1497 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1498 #else
1499 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1500 #endif
1501
1502 unpacked_size = round_up_loc (input_location, TYPE_SIZE (rli->t), rli->unpacked_align);
1503 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1504 {
1505 if (TYPE_NAME (rli->t))
1506 {
1507 tree name;
1508
1509 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1510 name = TYPE_NAME (rli->t);
1511 else
1512 name = DECL_NAME (TYPE_NAME (rli->t));
1513
1514 if (STRICT_ALIGNMENT)
1515 warning (OPT_Wpacked, "packed attribute causes inefficient "
1516 "alignment for %qE", name);
1517 else
1518 warning (OPT_Wpacked,
1519 "packed attribute is unnecessary for %qE", name);
1520 }
1521 else
1522 {
1523 if (STRICT_ALIGNMENT)
1524 warning (OPT_Wpacked,
1525 "packed attribute causes inefficient alignment");
1526 else
1527 warning (OPT_Wpacked, "packed attribute is unnecessary");
1528 }
1529 }
1530 }
1531 }
1532
1533 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1534
1535 void
1536 compute_record_mode (tree type)
1537 {
1538 tree field;
1539 enum machine_mode mode = VOIDmode;
1540
1541 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1542 However, if possible, we use a mode that fits in a register
1543 instead, in order to allow for better optimization down the
1544 line. */
1545 SET_TYPE_MODE (type, BLKmode);
1546
1547 if (! host_integerp (TYPE_SIZE (type), 1))
1548 return;
1549
1550 /* A record which has any BLKmode members must itself be
1551 BLKmode; it can't go in a register. Unless the member is
1552 BLKmode only because it isn't aligned. */
1553 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1554 {
1555 if (TREE_CODE (field) != FIELD_DECL)
1556 continue;
1557
1558 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1559 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1560 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1561 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1562 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1563 || ! host_integerp (bit_position (field), 1)
1564 || DECL_SIZE (field) == 0
1565 || ! host_integerp (DECL_SIZE (field), 1))
1566 return;
1567
1568 /* If this field is the whole struct, remember its mode so
1569 that, say, we can put a double in a class into a DF
1570 register instead of forcing it to live in the stack. */
1571 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1572 mode = DECL_MODE (field);
1573
1574 #ifdef MEMBER_TYPE_FORCES_BLK
1575 /* With some targets, eg. c4x, it is sub-optimal
1576 to access an aligned BLKmode structure as a scalar. */
1577
1578 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1579 return;
1580 #endif /* MEMBER_TYPE_FORCES_BLK */
1581 }
1582
1583 /* If we only have one real field; use its mode if that mode's size
1584 matches the type's size. This only applies to RECORD_TYPE. This
1585 does not apply to unions. */
1586 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1587 && host_integerp (TYPE_SIZE (type), 1)
1588 && GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
1589 SET_TYPE_MODE (type, mode);
1590 else
1591 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1592
1593 /* If structure's known alignment is less than what the scalar
1594 mode would need, and it matters, then stick with BLKmode. */
1595 if (TYPE_MODE (type) != BLKmode
1596 && STRICT_ALIGNMENT
1597 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1598 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1599 {
1600 /* If this is the only reason this type is BLKmode, then
1601 don't force containing types to be BLKmode. */
1602 TYPE_NO_FORCE_BLK (type) = 1;
1603 SET_TYPE_MODE (type, BLKmode);
1604 }
1605 }
1606
1607 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1608 out. */
1609
1610 static void
1611 finalize_type_size (tree type)
1612 {
1613 /* Normally, use the alignment corresponding to the mode chosen.
1614 However, where strict alignment is not required, avoid
1615 over-aligning structures, since most compilers do not do this
1616 alignment. */
1617
1618 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1619 && (STRICT_ALIGNMENT
1620 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1621 && TREE_CODE (type) != QUAL_UNION_TYPE
1622 && TREE_CODE (type) != ARRAY_TYPE)))
1623 {
1624 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1625
1626 /* Don't override a larger alignment requirement coming from a user
1627 alignment of one of the fields. */
1628 if (mode_align >= TYPE_ALIGN (type))
1629 {
1630 TYPE_ALIGN (type) = mode_align;
1631 TYPE_USER_ALIGN (type) = 0;
1632 }
1633 }
1634
1635 /* Do machine-dependent extra alignment. */
1636 #ifdef ROUND_TYPE_ALIGN
1637 TYPE_ALIGN (type)
1638 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1639 #endif
1640
1641 /* If we failed to find a simple way to calculate the unit size
1642 of the type, find it by division. */
1643 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1644 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1645 result will fit in sizetype. We will get more efficient code using
1646 sizetype, so we force a conversion. */
1647 TYPE_SIZE_UNIT (type)
1648 = fold_convert (sizetype,
1649 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1650 bitsize_unit_node));
1651
1652 if (TYPE_SIZE (type) != 0)
1653 {
1654 TYPE_SIZE (type) = round_up_loc (input_location,
1655 TYPE_SIZE (type), TYPE_ALIGN (type));
1656 TYPE_SIZE_UNIT (type) = round_up_loc (input_location, TYPE_SIZE_UNIT (type),
1657 TYPE_ALIGN_UNIT (type));
1658 }
1659
1660 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1661 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1662 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1663 if (TYPE_SIZE_UNIT (type) != 0
1664 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1665 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1666
1667 /* Also layout any other variants of the type. */
1668 if (TYPE_NEXT_VARIANT (type)
1669 || type != TYPE_MAIN_VARIANT (type))
1670 {
1671 tree variant;
1672 /* Record layout info of this variant. */
1673 tree size = TYPE_SIZE (type);
1674 tree size_unit = TYPE_SIZE_UNIT (type);
1675 unsigned int align = TYPE_ALIGN (type);
1676 unsigned int user_align = TYPE_USER_ALIGN (type);
1677 enum machine_mode mode = TYPE_MODE (type);
1678
1679 /* Copy it into all variants. */
1680 for (variant = TYPE_MAIN_VARIANT (type);
1681 variant != 0;
1682 variant = TYPE_NEXT_VARIANT (variant))
1683 {
1684 TYPE_SIZE (variant) = size;
1685 TYPE_SIZE_UNIT (variant) = size_unit;
1686 TYPE_ALIGN (variant) = align;
1687 TYPE_USER_ALIGN (variant) = user_align;
1688 SET_TYPE_MODE (variant, mode);
1689 }
1690 }
1691 }
1692
1693 /* Do all of the work required to layout the type indicated by RLI,
1694 once the fields have been laid out. This function will call `free'
1695 for RLI, unless FREE_P is false. Passing a value other than false
1696 for FREE_P is bad practice; this option only exists to support the
1697 G++ 3.2 ABI. */
1698
1699 void
1700 finish_record_layout (record_layout_info rli, int free_p)
1701 {
1702 tree variant;
1703
1704 /* Compute the final size. */
1705 finalize_record_size (rli);
1706
1707 /* Compute the TYPE_MODE for the record. */
1708 compute_record_mode (rli->t);
1709
1710 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1711 finalize_type_size (rli->t);
1712
1713 /* Propagate TYPE_PACKED to variants. With C++ templates,
1714 handle_packed_attribute is too early to do this. */
1715 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
1716 variant = TYPE_NEXT_VARIANT (variant))
1717 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
1718
1719 /* Lay out any static members. This is done now because their type
1720 may use the record's type. */
1721 while (rli->pending_statics)
1722 {
1723 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1724 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1725 }
1726
1727 /* Clean up. */
1728 if (free_p)
1729 free (rli);
1730 }
1731 \f
1732
1733 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1734 NAME, its fields are chained in reverse on FIELDS.
1735
1736 If ALIGN_TYPE is non-null, it is given the same alignment as
1737 ALIGN_TYPE. */
1738
1739 void
1740 finish_builtin_struct (tree type, const char *name, tree fields,
1741 tree align_type)
1742 {
1743 tree tail, next;
1744
1745 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1746 {
1747 DECL_FIELD_CONTEXT (fields) = type;
1748 next = TREE_CHAIN (fields);
1749 TREE_CHAIN (fields) = tail;
1750 }
1751 TYPE_FIELDS (type) = tail;
1752
1753 if (align_type)
1754 {
1755 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1756 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1757 }
1758
1759 layout_type (type);
1760 #if 0 /* not yet, should get fixed properly later */
1761 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1762 #else
1763 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
1764 TYPE_DECL, get_identifier (name), type);
1765 #endif
1766 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1767 layout_decl (TYPE_NAME (type), 0);
1768 }
1769
1770 /* Calculate the mode, size, and alignment for TYPE.
1771 For an array type, calculate the element separation as well.
1772 Record TYPE on the chain of permanent or temporary types
1773 so that dbxout will find out about it.
1774
1775 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1776 layout_type does nothing on such a type.
1777
1778 If the type is incomplete, its TYPE_SIZE remains zero. */
1779
1780 void
1781 layout_type (tree type)
1782 {
1783 gcc_assert (type);
1784
1785 if (type == error_mark_node)
1786 return;
1787
1788 /* Do nothing if type has been laid out before. */
1789 if (TYPE_SIZE (type))
1790 return;
1791
1792 switch (TREE_CODE (type))
1793 {
1794 case LANG_TYPE:
1795 /* This kind of type is the responsibility
1796 of the language-specific code. */
1797 gcc_unreachable ();
1798
1799 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1800 if (TYPE_PRECISION (type) == 0)
1801 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1802
1803 /* ... fall through ... */
1804
1805 case INTEGER_TYPE:
1806 case ENUMERAL_TYPE:
1807 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1808 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1809 TYPE_UNSIGNED (type) = 1;
1810
1811 SET_TYPE_MODE (type,
1812 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
1813 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1814 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1815 break;
1816
1817 case REAL_TYPE:
1818 SET_TYPE_MODE (type,
1819 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
1820 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1821 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1822 break;
1823
1824 case FIXED_POINT_TYPE:
1825 /* TYPE_MODE (type) has been set already. */
1826 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1827 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1828 break;
1829
1830 case COMPLEX_TYPE:
1831 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1832 SET_TYPE_MODE (type,
1833 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1834 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
1835 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
1836 0));
1837 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1838 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1839 break;
1840
1841 case VECTOR_TYPE:
1842 {
1843 int nunits = TYPE_VECTOR_SUBPARTS (type);
1844 tree innertype = TREE_TYPE (type);
1845
1846 gcc_assert (!(nunits & (nunits - 1)));
1847
1848 /* Find an appropriate mode for the vector type. */
1849 if (TYPE_MODE (type) == VOIDmode)
1850 {
1851 enum machine_mode innermode = TYPE_MODE (innertype);
1852 enum machine_mode mode;
1853
1854 /* First, look for a supported vector type. */
1855 if (SCALAR_FLOAT_MODE_P (innermode))
1856 mode = MIN_MODE_VECTOR_FLOAT;
1857 else if (SCALAR_FRACT_MODE_P (innermode))
1858 mode = MIN_MODE_VECTOR_FRACT;
1859 else if (SCALAR_UFRACT_MODE_P (innermode))
1860 mode = MIN_MODE_VECTOR_UFRACT;
1861 else if (SCALAR_ACCUM_MODE_P (innermode))
1862 mode = MIN_MODE_VECTOR_ACCUM;
1863 else if (SCALAR_UACCUM_MODE_P (innermode))
1864 mode = MIN_MODE_VECTOR_UACCUM;
1865 else
1866 mode = MIN_MODE_VECTOR_INT;
1867
1868 /* Do not check vector_mode_supported_p here. We'll do that
1869 later in vector_type_mode. */
1870 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
1871 if (GET_MODE_NUNITS (mode) == nunits
1872 && GET_MODE_INNER (mode) == innermode)
1873 break;
1874
1875 /* For integers, try mapping it to a same-sized scalar mode. */
1876 if (mode == VOIDmode
1877 && GET_MODE_CLASS (innermode) == MODE_INT)
1878 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
1879 MODE_INT, 0);
1880
1881 if (mode == VOIDmode ||
1882 (GET_MODE_CLASS (mode) == MODE_INT
1883 && !have_regs_of_mode[mode]))
1884 SET_TYPE_MODE (type, BLKmode);
1885 else
1886 SET_TYPE_MODE (type, mode);
1887 }
1888
1889 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
1890 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1891 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
1892 TYPE_SIZE_UNIT (innertype),
1893 size_int (nunits), 0);
1894 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
1895 bitsize_int (nunits), 0);
1896
1897 /* Always naturally align vectors. This prevents ABI changes
1898 depending on whether or not native vector modes are supported. */
1899 TYPE_ALIGN (type) = tree_low_cst (TYPE_SIZE (type), 0);
1900 break;
1901 }
1902
1903 case VOID_TYPE:
1904 /* This is an incomplete type and so doesn't have a size. */
1905 TYPE_ALIGN (type) = 1;
1906 TYPE_USER_ALIGN (type) = 0;
1907 SET_TYPE_MODE (type, VOIDmode);
1908 break;
1909
1910 case OFFSET_TYPE:
1911 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1912 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1913 /* A pointer might be MODE_PARTIAL_INT,
1914 but ptrdiff_t must be integral. */
1915 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
1916 TYPE_PRECISION (type) = POINTER_SIZE;
1917 break;
1918
1919 case FUNCTION_TYPE:
1920 case METHOD_TYPE:
1921 /* It's hard to see what the mode and size of a function ought to
1922 be, but we do know the alignment is FUNCTION_BOUNDARY, so
1923 make it consistent with that. */
1924 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
1925 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
1926 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
1927 break;
1928
1929 case POINTER_TYPE:
1930 case REFERENCE_TYPE:
1931 {
1932 enum machine_mode mode = TYPE_MODE (type);
1933 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
1934 {
1935 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
1936 mode = targetm.addr_space.address_mode (as);
1937 }
1938
1939 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
1940 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1941 TYPE_UNSIGNED (type) = 1;
1942 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
1943 }
1944 break;
1945
1946 case ARRAY_TYPE:
1947 {
1948 tree index = TYPE_DOMAIN (type);
1949 tree element = TREE_TYPE (type);
1950
1951 build_pointer_type (element);
1952
1953 /* We need to know both bounds in order to compute the size. */
1954 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1955 && TYPE_SIZE (element))
1956 {
1957 tree ub = TYPE_MAX_VALUE (index);
1958 tree lb = TYPE_MIN_VALUE (index);
1959 tree element_size = TYPE_SIZE (element);
1960 tree length;
1961
1962 /* Make sure that an array of zero-sized element is zero-sized
1963 regardless of its extent. */
1964 if (integer_zerop (element_size))
1965 length = size_zero_node;
1966
1967 /* The initial subtraction should happen in the original type so
1968 that (possible) negative values are handled appropriately. */
1969 else
1970 length
1971 = size_binop (PLUS_EXPR, size_one_node,
1972 fold_convert (sizetype,
1973 fold_build2_loc (input_location,
1974 MINUS_EXPR,
1975 TREE_TYPE (lb),
1976 ub, lb)));
1977
1978 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1979 fold_convert (bitsizetype,
1980 length));
1981
1982 /* If we know the size of the element, calculate the total size
1983 directly, rather than do some division thing below. This
1984 optimization helps Fortran assumed-size arrays (where the
1985 size of the array is determined at runtime) substantially. */
1986 if (TYPE_SIZE_UNIT (element))
1987 TYPE_SIZE_UNIT (type)
1988 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1989 }
1990
1991 /* Now round the alignment and size,
1992 using machine-dependent criteria if any. */
1993
1994 #ifdef ROUND_TYPE_ALIGN
1995 TYPE_ALIGN (type)
1996 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
1997 #else
1998 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
1999 #endif
2000 if (!TYPE_SIZE (element))
2001 /* We don't know the size of the underlying element type, so
2002 our alignment calculations will be wrong, forcing us to
2003 fall back on structural equality. */
2004 SET_TYPE_STRUCTURAL_EQUALITY (type);
2005 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2006 SET_TYPE_MODE (type, BLKmode);
2007 if (TYPE_SIZE (type) != 0
2008 #ifdef MEMBER_TYPE_FORCES_BLK
2009 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
2010 #endif
2011 /* BLKmode elements force BLKmode aggregate;
2012 else extract/store fields may lose. */
2013 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2014 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2015 {
2016 /* One-element arrays get the component type's mode. */
2017 if (simple_cst_equal (TYPE_SIZE (type),
2018 TYPE_SIZE (TREE_TYPE (type))))
2019 SET_TYPE_MODE (type, TYPE_MODE (TREE_TYPE (type)));
2020 else
2021 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type),
2022 MODE_INT, 1));
2023
2024 if (TYPE_MODE (type) != BLKmode
2025 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2026 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2027 {
2028 TYPE_NO_FORCE_BLK (type) = 1;
2029 SET_TYPE_MODE (type, BLKmode);
2030 }
2031 }
2032 /* When the element size is constant, check that it is at least as
2033 large as the element alignment. */
2034 if (TYPE_SIZE_UNIT (element)
2035 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2036 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2037 TYPE_ALIGN_UNIT. */
2038 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2039 && !integer_zerop (TYPE_SIZE_UNIT (element))
2040 && compare_tree_int (TYPE_SIZE_UNIT (element),
2041 TYPE_ALIGN_UNIT (element)) < 0)
2042 error ("alignment of array elements is greater than element size");
2043 break;
2044 }
2045
2046 case RECORD_TYPE:
2047 case UNION_TYPE:
2048 case QUAL_UNION_TYPE:
2049 {
2050 tree field;
2051 record_layout_info rli;
2052
2053 /* Initialize the layout information. */
2054 rli = start_record_layout (type);
2055
2056 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2057 in the reverse order in building the COND_EXPR that denotes
2058 its size. We reverse them again later. */
2059 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2060 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2061
2062 /* Place all the fields. */
2063 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2064 place_field (rli, field);
2065
2066 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2067 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2068
2069 /* Finish laying out the record. */
2070 finish_record_layout (rli, /*free_p=*/true);
2071 }
2072 break;
2073
2074 default:
2075 gcc_unreachable ();
2076 }
2077
2078 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2079 records and unions, finish_record_layout already called this
2080 function. */
2081 if (TREE_CODE (type) != RECORD_TYPE
2082 && TREE_CODE (type) != UNION_TYPE
2083 && TREE_CODE (type) != QUAL_UNION_TYPE)
2084 finalize_type_size (type);
2085
2086 /* We should never see alias sets on incomplete aggregates. And we
2087 should not call layout_type on not incomplete aggregates. */
2088 if (AGGREGATE_TYPE_P (type))
2089 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2090 }
2091
2092 /* Vector types need to re-check the target flags each time we report
2093 the machine mode. We need to do this because attribute target can
2094 change the result of vector_mode_supported_p and have_regs_of_mode
2095 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2096 change on a per-function basis. */
2097 /* ??? Possibly a better solution is to run through all the types
2098 referenced by a function and re-compute the TYPE_MODE once, rather
2099 than make the TYPE_MODE macro call a function. */
2100
2101 enum machine_mode
2102 vector_type_mode (const_tree t)
2103 {
2104 enum machine_mode mode;
2105
2106 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2107
2108 mode = t->type.mode;
2109 if (VECTOR_MODE_P (mode)
2110 && (!targetm.vector_mode_supported_p (mode)
2111 || !have_regs_of_mode[mode]))
2112 {
2113 enum machine_mode innermode = TREE_TYPE (t)->type.mode;
2114
2115 /* For integers, try mapping it to a same-sized scalar mode. */
2116 if (GET_MODE_CLASS (innermode) == MODE_INT)
2117 {
2118 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2119 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2120
2121 if (mode != VOIDmode && have_regs_of_mode[mode])
2122 return mode;
2123 }
2124
2125 return BLKmode;
2126 }
2127
2128 return mode;
2129 }
2130 \f
2131 /* Create and return a type for signed integers of PRECISION bits. */
2132
2133 tree
2134 make_signed_type (int precision)
2135 {
2136 tree type = make_node (INTEGER_TYPE);
2137
2138 TYPE_PRECISION (type) = precision;
2139
2140 fixup_signed_type (type);
2141 return type;
2142 }
2143
2144 /* Create and return a type for unsigned integers of PRECISION bits. */
2145
2146 tree
2147 make_unsigned_type (int precision)
2148 {
2149 tree type = make_node (INTEGER_TYPE);
2150
2151 TYPE_PRECISION (type) = precision;
2152
2153 fixup_unsigned_type (type);
2154 return type;
2155 }
2156 \f
2157 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2158 and SATP. */
2159
2160 tree
2161 make_fract_type (int precision, int unsignedp, int satp)
2162 {
2163 tree type = make_node (FIXED_POINT_TYPE);
2164
2165 TYPE_PRECISION (type) = precision;
2166
2167 if (satp)
2168 TYPE_SATURATING (type) = 1;
2169
2170 /* Lay out the type: set its alignment, size, etc. */
2171 if (unsignedp)
2172 {
2173 TYPE_UNSIGNED (type) = 1;
2174 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2175 }
2176 else
2177 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2178 layout_type (type);
2179
2180 return type;
2181 }
2182
2183 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2184 and SATP. */
2185
2186 tree
2187 make_accum_type (int precision, int unsignedp, int satp)
2188 {
2189 tree type = make_node (FIXED_POINT_TYPE);
2190
2191 TYPE_PRECISION (type) = precision;
2192
2193 if (satp)
2194 TYPE_SATURATING (type) = 1;
2195
2196 /* Lay out the type: set its alignment, size, etc. */
2197 if (unsignedp)
2198 {
2199 TYPE_UNSIGNED (type) = 1;
2200 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2201 }
2202 else
2203 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2204 layout_type (type);
2205
2206 return type;
2207 }
2208
2209 /* Initialize sizetype and bitsizetype to a reasonable and temporary
2210 value to enable integer types to be created. */
2211
2212 void
2213 initialize_sizetypes (void)
2214 {
2215 tree t = make_node (INTEGER_TYPE);
2216 int precision = GET_MODE_BITSIZE (SImode);
2217
2218 SET_TYPE_MODE (t, SImode);
2219 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
2220 TYPE_IS_SIZETYPE (t) = 1;
2221 TYPE_UNSIGNED (t) = 1;
2222 TYPE_SIZE (t) = build_int_cst (t, precision);
2223 TYPE_SIZE_UNIT (t) = build_int_cst (t, GET_MODE_SIZE (SImode));
2224 TYPE_PRECISION (t) = precision;
2225
2226 set_min_and_max_values_for_integral_type (t, precision, true);
2227
2228 sizetype = t;
2229 bitsizetype = build_distinct_type_copy (t);
2230 }
2231
2232 /* Make sizetype a version of TYPE, and initialize *sizetype accordingly.
2233 We do this by overwriting the stub sizetype and bitsizetype nodes created
2234 by initialize_sizetypes. This makes sure that (a) anything stubby about
2235 them no longer exists and (b) any INTEGER_CSTs created with such a type,
2236 remain valid. */
2237
2238 void
2239 set_sizetype (tree type)
2240 {
2241 tree t, max;
2242 int oprecision = TYPE_PRECISION (type);
2243 /* The *bitsizetype types use a precision that avoids overflows when
2244 calculating signed sizes / offsets in bits. However, when
2245 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
2246 precision. */
2247 int precision
2248 = MIN (oprecision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2249 precision
2250 = GET_MODE_PRECISION (smallest_mode_for_size (precision, MODE_INT));
2251 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2252 precision = HOST_BITS_PER_WIDE_INT * 2;
2253
2254 /* sizetype must be an unsigned type. */
2255 gcc_assert (TYPE_UNSIGNED (type));
2256
2257 t = build_distinct_type_copy (type);
2258 /* We want to use sizetype's cache, as we will be replacing that type. */
2259 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (sizetype);
2260 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (sizetype);
2261 TREE_TYPE (TYPE_CACHED_VALUES (t)) = type;
2262 TYPE_UID (t) = TYPE_UID (sizetype);
2263 TYPE_IS_SIZETYPE (t) = 1;
2264
2265 /* Replace our original stub sizetype. */
2266 memcpy (sizetype, t, tree_size (sizetype));
2267 TYPE_MAIN_VARIANT (sizetype) = sizetype;
2268 TYPE_CANONICAL (sizetype) = sizetype;
2269
2270 /* sizetype is unsigned but we need to fix TYPE_MAX_VALUE so that it is
2271 sign-extended in a way consistent with force_fit_type. */
2272 max = TYPE_MAX_VALUE (sizetype);
2273 TYPE_MAX_VALUE (sizetype)
2274 = double_int_to_tree (sizetype, tree_to_double_int (max));
2275
2276 t = make_node (INTEGER_TYPE);
2277 TYPE_NAME (t) = get_identifier ("bit_size_type");
2278 /* We want to use bitsizetype's cache, as we will be replacing that type. */
2279 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (bitsizetype);
2280 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (bitsizetype);
2281 TYPE_PRECISION (t) = precision;
2282 TYPE_UID (t) = TYPE_UID (bitsizetype);
2283 TYPE_IS_SIZETYPE (t) = 1;
2284
2285 /* Replace our original stub bitsizetype. */
2286 memcpy (bitsizetype, t, tree_size (bitsizetype));
2287 TYPE_MAIN_VARIANT (bitsizetype) = bitsizetype;
2288 TYPE_CANONICAL (bitsizetype) = bitsizetype;
2289
2290 fixup_unsigned_type (bitsizetype);
2291
2292 /* Create the signed variants of *sizetype. */
2293 ssizetype = make_signed_type (oprecision);
2294 TYPE_IS_SIZETYPE (ssizetype) = 1;
2295 sbitsizetype = make_signed_type (precision);
2296 TYPE_IS_SIZETYPE (sbitsizetype) = 1;
2297 }
2298 \f
2299 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2300 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2301 for TYPE, based on the PRECISION and whether or not the TYPE
2302 IS_UNSIGNED. PRECISION need not correspond to a width supported
2303 natively by the hardware; for example, on a machine with 8-bit,
2304 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2305 61. */
2306
2307 void
2308 set_min_and_max_values_for_integral_type (tree type,
2309 int precision,
2310 bool is_unsigned)
2311 {
2312 tree min_value;
2313 tree max_value;
2314
2315 if (is_unsigned)
2316 {
2317 min_value = build_int_cst (type, 0);
2318 max_value
2319 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2320 ? -1
2321 : ((HOST_WIDE_INT) 1 << precision) - 1,
2322 precision - HOST_BITS_PER_WIDE_INT > 0
2323 ? ((unsigned HOST_WIDE_INT) ~0
2324 >> (HOST_BITS_PER_WIDE_INT
2325 - (precision - HOST_BITS_PER_WIDE_INT)))
2326 : 0);
2327 }
2328 else
2329 {
2330 min_value
2331 = build_int_cst_wide (type,
2332 (precision - HOST_BITS_PER_WIDE_INT > 0
2333 ? 0
2334 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2335 (((HOST_WIDE_INT) (-1)
2336 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2337 ? precision - HOST_BITS_PER_WIDE_INT - 1
2338 : 0))));
2339 max_value
2340 = build_int_cst_wide (type,
2341 (precision - HOST_BITS_PER_WIDE_INT > 0
2342 ? -1
2343 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2344 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2345 ? (((HOST_WIDE_INT) 1
2346 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2347 : 0));
2348 }
2349
2350 TYPE_MIN_VALUE (type) = min_value;
2351 TYPE_MAX_VALUE (type) = max_value;
2352 }
2353
2354 /* Set the extreme values of TYPE based on its precision in bits,
2355 then lay it out. Used when make_signed_type won't do
2356 because the tree code is not INTEGER_TYPE.
2357 E.g. for Pascal, when the -fsigned-char option is given. */
2358
2359 void
2360 fixup_signed_type (tree type)
2361 {
2362 int precision = TYPE_PRECISION (type);
2363
2364 /* We can not represent properly constants greater then
2365 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2366 as they are used by i386 vector extensions and friends. */
2367 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2368 precision = HOST_BITS_PER_WIDE_INT * 2;
2369
2370 set_min_and_max_values_for_integral_type (type, precision,
2371 /*is_unsigned=*/false);
2372
2373 /* Lay out the type: set its alignment, size, etc. */
2374 layout_type (type);
2375 }
2376
2377 /* Set the extreme values of TYPE based on its precision in bits,
2378 then lay it out. This is used both in `make_unsigned_type'
2379 and for enumeral types. */
2380
2381 void
2382 fixup_unsigned_type (tree type)
2383 {
2384 int precision = TYPE_PRECISION (type);
2385
2386 /* We can not represent properly constants greater then
2387 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2388 as they are used by i386 vector extensions and friends. */
2389 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2390 precision = HOST_BITS_PER_WIDE_INT * 2;
2391
2392 TYPE_UNSIGNED (type) = 1;
2393
2394 set_min_and_max_values_for_integral_type (type, precision,
2395 /*is_unsigned=*/true);
2396
2397 /* Lay out the type: set its alignment, size, etc. */
2398 layout_type (type);
2399 }
2400 \f
2401 /* Find the best machine mode to use when referencing a bit field of length
2402 BITSIZE bits starting at BITPOS.
2403
2404 The underlying object is known to be aligned to a boundary of ALIGN bits.
2405 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2406 larger than LARGEST_MODE (usually SImode).
2407
2408 If no mode meets all these conditions, we return VOIDmode.
2409
2410 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2411 smallest mode meeting these conditions.
2412
2413 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2414 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2415 all the conditions.
2416
2417 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2418 decide which of the above modes should be used. */
2419
2420 enum machine_mode
2421 get_best_mode (int bitsize, int bitpos, unsigned int align,
2422 enum machine_mode largest_mode, int volatilep)
2423 {
2424 enum machine_mode mode;
2425 unsigned int unit = 0;
2426
2427 /* Find the narrowest integer mode that contains the bit field. */
2428 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2429 mode = GET_MODE_WIDER_MODE (mode))
2430 {
2431 unit = GET_MODE_BITSIZE (mode);
2432 if ((bitpos % unit) + bitsize <= unit)
2433 break;
2434 }
2435
2436 if (mode == VOIDmode
2437 /* It is tempting to omit the following line
2438 if STRICT_ALIGNMENT is true.
2439 But that is incorrect, since if the bitfield uses part of 3 bytes
2440 and we use a 4-byte mode, we could get a spurious segv
2441 if the extra 4th byte is past the end of memory.
2442 (Though at least one Unix compiler ignores this problem:
2443 that on the Sequent 386 machine. */
2444 || MIN (unit, BIGGEST_ALIGNMENT) > align
2445 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2446 return VOIDmode;
2447
2448 if ((SLOW_BYTE_ACCESS && ! volatilep)
2449 || (volatilep && !targetm.narrow_volatile_bitfield ()))
2450 {
2451 enum machine_mode wide_mode = VOIDmode, tmode;
2452
2453 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2454 tmode = GET_MODE_WIDER_MODE (tmode))
2455 {
2456 unit = GET_MODE_BITSIZE (tmode);
2457 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2458 && unit <= BITS_PER_WORD
2459 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2460 && (largest_mode == VOIDmode
2461 || unit <= GET_MODE_BITSIZE (largest_mode)))
2462 wide_mode = tmode;
2463 }
2464
2465 if (wide_mode != VOIDmode)
2466 return wide_mode;
2467 }
2468
2469 return mode;
2470 }
2471
2472 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2473 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2474
2475 void
2476 get_mode_bounds (enum machine_mode mode, int sign,
2477 enum machine_mode target_mode,
2478 rtx *mmin, rtx *mmax)
2479 {
2480 unsigned size = GET_MODE_BITSIZE (mode);
2481 unsigned HOST_WIDE_INT min_val, max_val;
2482
2483 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2484
2485 if (sign)
2486 {
2487 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2488 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2489 }
2490 else
2491 {
2492 min_val = 0;
2493 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2494 }
2495
2496 *mmin = gen_int_mode (min_val, target_mode);
2497 *mmax = gen_int_mode (max_val, target_mode);
2498 }
2499
2500 #include "gt-stor-layout.h"