re PR tree-optimization/43528 (ICE: in tree_low_cst, at tree.c:6198 with -mms-bitfiel...
[gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "output.h"
34 #include "toplev.h"
35 #include "ggc.h"
36 #include "target.h"
37 #include "langhooks.h"
38 #include "regs.h"
39 #include "params.h"
40 #include "cgraph.h"
41 #include "tree-inline.h"
42 #include "tree-dump.h"
43 #include "gimple.h"
44
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) TYPE_KIND_LAST];
48
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
52 /* ... and its original value in bytes, specified via -fpack-struct=<value>. */
53 unsigned int initial_max_fld_align = TARGET_DEFAULT_PACK_STRUCT;
54
55 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
56 in the address spaces' address_mode, not pointer_mode. Set only by
57 internal_reference_types called only by a front end. */
58 static int reference_types_internal = 0;
59
60 static tree self_referential_size (tree);
61 static void finalize_record_size (record_layout_info);
62 static void finalize_type_size (tree);
63 static void place_union_field (record_layout_info, tree);
64 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
65 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
66 HOST_WIDE_INT, tree);
67 #endif
68 extern void debug_rli (record_layout_info);
69 \f
70 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
71
72 static GTY(()) tree pending_sizes;
73
74 /* Show that REFERENCE_TYPES are internal and should use address_mode.
75 Called only by front end. */
76
77 void
78 internal_reference_types (void)
79 {
80 reference_types_internal = 1;
81 }
82
83 /* Get a list of all the objects put on the pending sizes list. */
84
85 tree
86 get_pending_sizes (void)
87 {
88 tree chain = pending_sizes;
89
90 pending_sizes = 0;
91 return chain;
92 }
93
94 /* Add EXPR to the pending sizes list. */
95
96 void
97 put_pending_size (tree expr)
98 {
99 /* Strip any simple arithmetic from EXPR to see if it has an underlying
100 SAVE_EXPR. */
101 expr = skip_simple_arithmetic (expr);
102
103 if (TREE_CODE (expr) == SAVE_EXPR)
104 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
105 }
106
107 /* Put a chain of objects into the pending sizes list, which must be
108 empty. */
109
110 void
111 put_pending_sizes (tree chain)
112 {
113 gcc_assert (!pending_sizes);
114 pending_sizes = chain;
115 }
116
117 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
118 to serve as the actual size-expression for a type or decl. */
119
120 tree
121 variable_size (tree size)
122 {
123 tree save;
124
125 /* Obviously. */
126 if (TREE_CONSTANT (size))
127 return size;
128
129 /* If the size is self-referential, we can't make a SAVE_EXPR (see
130 save_expr for the rationale). But we can do something else. */
131 if (CONTAINS_PLACEHOLDER_P (size))
132 return self_referential_size (size);
133
134 /* If the language-processor is to take responsibility for variable-sized
135 items (e.g., languages which have elaboration procedures like Ada),
136 just return SIZE unchanged. */
137 if (lang_hooks.decls.global_bindings_p () < 0)
138 return size;
139
140 size = save_expr (size);
141
142 /* If an array with a variable number of elements is declared, and
143 the elements require destruction, we will emit a cleanup for the
144 array. That cleanup is run both on normal exit from the block
145 and in the exception-handler for the block. Normally, when code
146 is used in both ordinary code and in an exception handler it is
147 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
148 not wish to do that here; the array-size is the same in both
149 places. */
150 save = skip_simple_arithmetic (size);
151
152 if (cfun && cfun->dont_save_pending_sizes_p)
153 /* The front-end doesn't want us to keep a list of the expressions
154 that determine sizes for variable size objects. Trust it. */
155 return size;
156
157 if (lang_hooks.decls.global_bindings_p ())
158 {
159 if (TREE_CONSTANT (size))
160 error ("type size can%'t be explicitly evaluated");
161 else
162 error ("variable-size type declared outside of any function");
163
164 return size_one_node;
165 }
166
167 put_pending_size (save);
168
169 return size;
170 }
171
172 /* An array of functions used for self-referential size computation. */
173 static GTY(()) VEC (tree, gc) *size_functions;
174
175 /* Similar to copy_tree_r but do not copy component references involving
176 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
177 and substituted in substitute_in_expr. */
178
179 static tree
180 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
181 {
182 enum tree_code code = TREE_CODE (*tp);
183
184 /* Stop at types, decls, constants like copy_tree_r. */
185 if (TREE_CODE_CLASS (code) == tcc_type
186 || TREE_CODE_CLASS (code) == tcc_declaration
187 || TREE_CODE_CLASS (code) == tcc_constant)
188 {
189 *walk_subtrees = 0;
190 return NULL_TREE;
191 }
192
193 /* This is the pattern built in ada/make_aligning_type. */
194 else if (code == ADDR_EXPR
195 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
196 {
197 *walk_subtrees = 0;
198 return NULL_TREE;
199 }
200
201 /* Default case: the component reference. */
202 else if (code == COMPONENT_REF)
203 {
204 tree inner;
205 for (inner = TREE_OPERAND (*tp, 0);
206 REFERENCE_CLASS_P (inner);
207 inner = TREE_OPERAND (inner, 0))
208 ;
209
210 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
211 {
212 *walk_subtrees = 0;
213 return NULL_TREE;
214 }
215 }
216
217 /* We're not supposed to have them in self-referential size trees
218 because we wouldn't properly control when they are evaluated.
219 However, not creating superfluous SAVE_EXPRs requires accurate
220 tracking of readonly-ness all the way down to here, which we
221 cannot always guarantee in practice. So punt in this case. */
222 else if (code == SAVE_EXPR)
223 return error_mark_node;
224
225 return copy_tree_r (tp, walk_subtrees, data);
226 }
227
228 /* Given a SIZE expression that is self-referential, return an equivalent
229 expression to serve as the actual size expression for a type. */
230
231 static tree
232 self_referential_size (tree size)
233 {
234 static unsigned HOST_WIDE_INT fnno = 0;
235 VEC (tree, heap) *self_refs = NULL;
236 tree param_type_list = NULL, param_decl_list = NULL, arg_list = NULL;
237 tree t, ref, return_type, fntype, fnname, fndecl;
238 unsigned int i;
239 char buf[128];
240
241 /* Do not factor out simple operations. */
242 t = skip_simple_arithmetic (size);
243 if (TREE_CODE (t) == CALL_EXPR)
244 return size;
245
246 /* Collect the list of self-references in the expression. */
247 find_placeholder_in_expr (size, &self_refs);
248 gcc_assert (VEC_length (tree, self_refs) > 0);
249
250 /* Obtain a private copy of the expression. */
251 t = size;
252 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
253 return size;
254 size = t;
255
256 /* Build the parameter and argument lists in parallel; also
257 substitute the former for the latter in the expression. */
258 for (i = 0; VEC_iterate (tree, self_refs, i, ref); i++)
259 {
260 tree subst, param_name, param_type, param_decl;
261
262 if (DECL_P (ref))
263 {
264 /* We shouldn't have true variables here. */
265 gcc_assert (TREE_READONLY (ref));
266 subst = ref;
267 }
268 /* This is the pattern built in ada/make_aligning_type. */
269 else if (TREE_CODE (ref) == ADDR_EXPR)
270 subst = ref;
271 /* Default case: the component reference. */
272 else
273 subst = TREE_OPERAND (ref, 1);
274
275 sprintf (buf, "p%d", i);
276 param_name = get_identifier (buf);
277 param_type = TREE_TYPE (ref);
278 param_decl
279 = build_decl (input_location, PARM_DECL, param_name, param_type);
280 if (targetm.calls.promote_prototypes (NULL_TREE)
281 && INTEGRAL_TYPE_P (param_type)
282 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
283 DECL_ARG_TYPE (param_decl) = integer_type_node;
284 else
285 DECL_ARG_TYPE (param_decl) = param_type;
286 DECL_ARTIFICIAL (param_decl) = 1;
287 TREE_READONLY (param_decl) = 1;
288
289 size = substitute_in_expr (size, subst, param_decl);
290
291 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
292 param_decl_list = chainon (param_decl, param_decl_list);
293 arg_list = tree_cons (NULL_TREE, ref, arg_list);
294 }
295
296 VEC_free (tree, heap, self_refs);
297
298 /* Append 'void' to indicate that the number of parameters is fixed. */
299 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
300
301 /* The 3 lists have been created in reverse order. */
302 param_type_list = nreverse (param_type_list);
303 param_decl_list = nreverse (param_decl_list);
304 arg_list = nreverse (arg_list);
305
306 /* Build the function type. */
307 return_type = TREE_TYPE (size);
308 fntype = build_function_type (return_type, param_type_list);
309
310 /* Build the function declaration. */
311 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
312 fnname = get_file_function_name (buf);
313 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
314 for (t = param_decl_list; t; t = TREE_CHAIN (t))
315 DECL_CONTEXT (t) = fndecl;
316 DECL_ARGUMENTS (fndecl) = param_decl_list;
317 DECL_RESULT (fndecl)
318 = build_decl (input_location, RESULT_DECL, 0, return_type);
319 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
320
321 /* The function has been created by the compiler and we don't
322 want to emit debug info for it. */
323 DECL_ARTIFICIAL (fndecl) = 1;
324 DECL_IGNORED_P (fndecl) = 1;
325
326 /* It is supposed to be "const" and never throw. */
327 TREE_READONLY (fndecl) = 1;
328 TREE_NOTHROW (fndecl) = 1;
329
330 /* We want it to be inlined when this is deemed profitable, as
331 well as discarded if every call has been integrated. */
332 DECL_DECLARED_INLINE_P (fndecl) = 1;
333
334 /* It is made up of a unique return statement. */
335 DECL_INITIAL (fndecl) = make_node (BLOCK);
336 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
337 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
338 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
339 TREE_STATIC (fndecl) = 1;
340
341 /* Put it onto the list of size functions. */
342 VEC_safe_push (tree, gc, size_functions, fndecl);
343
344 /* Replace the original expression with a call to the size function. */
345 return build_function_call_expr (input_location, fndecl, arg_list);
346 }
347
348 /* Take, queue and compile all the size functions. It is essential that
349 the size functions be gimplified at the very end of the compilation
350 in order to guarantee transparent handling of self-referential sizes.
351 Otherwise the GENERIC inliner would not be able to inline them back
352 at each of their call sites, thus creating artificial non-constant
353 size expressions which would trigger nasty problems later on. */
354
355 void
356 finalize_size_functions (void)
357 {
358 unsigned int i;
359 tree fndecl;
360
361 for (i = 0; VEC_iterate(tree, size_functions, i, fndecl); i++)
362 {
363 dump_function (TDI_original, fndecl);
364 gimplify_function_tree (fndecl);
365 dump_function (TDI_generic, fndecl);
366 cgraph_finalize_function (fndecl, false);
367 }
368
369 VEC_free (tree, gc, size_functions);
370 }
371 \f
372 #ifndef MAX_FIXED_MODE_SIZE
373 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
374 #endif
375
376 /* Return the machine mode to use for a nonscalar of SIZE bits. The
377 mode must be in class MCLASS, and have exactly that many value bits;
378 it may have padding as well. If LIMIT is nonzero, modes of wider
379 than MAX_FIXED_MODE_SIZE will not be used. */
380
381 enum machine_mode
382 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
383 {
384 enum machine_mode mode;
385
386 if (limit && size > MAX_FIXED_MODE_SIZE)
387 return BLKmode;
388
389 /* Get the first mode which has this size, in the specified class. */
390 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
391 mode = GET_MODE_WIDER_MODE (mode))
392 if (GET_MODE_PRECISION (mode) == size)
393 return mode;
394
395 return BLKmode;
396 }
397
398 /* Similar, except passed a tree node. */
399
400 enum machine_mode
401 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
402 {
403 unsigned HOST_WIDE_INT uhwi;
404 unsigned int ui;
405
406 if (!host_integerp (size, 1))
407 return BLKmode;
408 uhwi = tree_low_cst (size, 1);
409 ui = uhwi;
410 if (uhwi != ui)
411 return BLKmode;
412 return mode_for_size (ui, mclass, limit);
413 }
414
415 /* Similar, but never return BLKmode; return the narrowest mode that
416 contains at least the requested number of value bits. */
417
418 enum machine_mode
419 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
420 {
421 enum machine_mode mode;
422
423 /* Get the first mode which has at least this size, in the
424 specified class. */
425 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
426 mode = GET_MODE_WIDER_MODE (mode))
427 if (GET_MODE_PRECISION (mode) >= size)
428 return mode;
429
430 gcc_unreachable ();
431 }
432
433 /* Find an integer mode of the exact same size, or BLKmode on failure. */
434
435 enum machine_mode
436 int_mode_for_mode (enum machine_mode mode)
437 {
438 switch (GET_MODE_CLASS (mode))
439 {
440 case MODE_INT:
441 case MODE_PARTIAL_INT:
442 break;
443
444 case MODE_COMPLEX_INT:
445 case MODE_COMPLEX_FLOAT:
446 case MODE_FLOAT:
447 case MODE_DECIMAL_FLOAT:
448 case MODE_VECTOR_INT:
449 case MODE_VECTOR_FLOAT:
450 case MODE_FRACT:
451 case MODE_ACCUM:
452 case MODE_UFRACT:
453 case MODE_UACCUM:
454 case MODE_VECTOR_FRACT:
455 case MODE_VECTOR_ACCUM:
456 case MODE_VECTOR_UFRACT:
457 case MODE_VECTOR_UACCUM:
458 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
459 break;
460
461 case MODE_RANDOM:
462 if (mode == BLKmode)
463 break;
464
465 /* ... fall through ... */
466
467 case MODE_CC:
468 default:
469 gcc_unreachable ();
470 }
471
472 return mode;
473 }
474
475 /* Return the alignment of MODE. This will be bounded by 1 and
476 BIGGEST_ALIGNMENT. */
477
478 unsigned int
479 get_mode_alignment (enum machine_mode mode)
480 {
481 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
482 }
483
484 \f
485 /* Subroutine of layout_decl: Force alignment required for the data type.
486 But if the decl itself wants greater alignment, don't override that. */
487
488 static inline void
489 do_type_align (tree type, tree decl)
490 {
491 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
492 {
493 DECL_ALIGN (decl) = TYPE_ALIGN (type);
494 if (TREE_CODE (decl) == FIELD_DECL)
495 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
496 }
497 }
498
499 /* Set the size, mode and alignment of a ..._DECL node.
500 TYPE_DECL does need this for C++.
501 Note that LABEL_DECL and CONST_DECL nodes do not need this,
502 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
503 Don't call layout_decl for them.
504
505 KNOWN_ALIGN is the amount of alignment we can assume this
506 decl has with no special effort. It is relevant only for FIELD_DECLs
507 and depends on the previous fields.
508 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
509 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
510 the record will be aligned to suit. */
511
512 void
513 layout_decl (tree decl, unsigned int known_align)
514 {
515 tree type = TREE_TYPE (decl);
516 enum tree_code code = TREE_CODE (decl);
517 rtx rtl = NULL_RTX;
518 location_t loc = DECL_SOURCE_LOCATION (decl);
519
520 if (code == CONST_DECL)
521 return;
522
523 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
524 || code == TYPE_DECL ||code == FIELD_DECL);
525
526 rtl = DECL_RTL_IF_SET (decl);
527
528 if (type == error_mark_node)
529 type = void_type_node;
530
531 /* Usually the size and mode come from the data type without change,
532 however, the front-end may set the explicit width of the field, so its
533 size may not be the same as the size of its type. This happens with
534 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
535 also happens with other fields. For example, the C++ front-end creates
536 zero-sized fields corresponding to empty base classes, and depends on
537 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
538 size in bytes from the size in bits. If we have already set the mode,
539 don't set it again since we can be called twice for FIELD_DECLs. */
540
541 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
542 if (DECL_MODE (decl) == VOIDmode)
543 DECL_MODE (decl) = TYPE_MODE (type);
544
545 if (DECL_SIZE (decl) == 0)
546 {
547 DECL_SIZE (decl) = TYPE_SIZE (type);
548 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
549 }
550 else if (DECL_SIZE_UNIT (decl) == 0)
551 DECL_SIZE_UNIT (decl)
552 = fold_convert_loc (loc, sizetype,
553 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
554 bitsize_unit_node));
555
556 if (code != FIELD_DECL)
557 /* For non-fields, update the alignment from the type. */
558 do_type_align (type, decl);
559 else
560 /* For fields, it's a bit more complicated... */
561 {
562 bool old_user_align = DECL_USER_ALIGN (decl);
563 bool zero_bitfield = false;
564 bool packed_p = DECL_PACKED (decl);
565 unsigned int mfa;
566
567 if (DECL_BIT_FIELD (decl))
568 {
569 DECL_BIT_FIELD_TYPE (decl) = type;
570
571 /* A zero-length bit-field affects the alignment of the next
572 field. In essence such bit-fields are not influenced by
573 any packing due to #pragma pack or attribute packed. */
574 if (integer_zerop (DECL_SIZE (decl))
575 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
576 {
577 zero_bitfield = true;
578 packed_p = false;
579 #ifdef PCC_BITFIELD_TYPE_MATTERS
580 if (PCC_BITFIELD_TYPE_MATTERS)
581 do_type_align (type, decl);
582 else
583 #endif
584 {
585 #ifdef EMPTY_FIELD_BOUNDARY
586 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
587 {
588 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
589 DECL_USER_ALIGN (decl) = 0;
590 }
591 #endif
592 }
593 }
594
595 /* See if we can use an ordinary integer mode for a bit-field.
596 Conditions are: a fixed size that is correct for another mode
597 and occupying a complete byte or bytes on proper boundary. */
598 if (TYPE_SIZE (type) != 0
599 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
600 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
601 {
602 enum machine_mode xmode
603 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
604 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
605
606 if (xmode != BLKmode
607 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
608 && (known_align == 0 || known_align >= xalign))
609 {
610 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
611 DECL_MODE (decl) = xmode;
612 DECL_BIT_FIELD (decl) = 0;
613 }
614 }
615
616 /* Turn off DECL_BIT_FIELD if we won't need it set. */
617 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
618 && known_align >= TYPE_ALIGN (type)
619 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
620 DECL_BIT_FIELD (decl) = 0;
621 }
622 else if (packed_p && DECL_USER_ALIGN (decl))
623 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
624 round up; we'll reduce it again below. We want packing to
625 supersede USER_ALIGN inherited from the type, but defer to
626 alignment explicitly specified on the field decl. */;
627 else
628 do_type_align (type, decl);
629
630 /* If the field is packed and not explicitly aligned, give it the
631 minimum alignment. Note that do_type_align may set
632 DECL_USER_ALIGN, so we need to check old_user_align instead. */
633 if (packed_p
634 && !old_user_align)
635 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
636
637 if (! packed_p && ! DECL_USER_ALIGN (decl))
638 {
639 /* Some targets (i.e. i386, VMS) limit struct field alignment
640 to a lower boundary than alignment of variables unless
641 it was overridden by attribute aligned. */
642 #ifdef BIGGEST_FIELD_ALIGNMENT
643 DECL_ALIGN (decl)
644 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
645 #endif
646 #ifdef ADJUST_FIELD_ALIGN
647 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
648 #endif
649 }
650
651 if (zero_bitfield)
652 mfa = initial_max_fld_align * BITS_PER_UNIT;
653 else
654 mfa = maximum_field_alignment;
655 /* Should this be controlled by DECL_USER_ALIGN, too? */
656 if (mfa != 0)
657 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
658 }
659
660 /* Evaluate nonconstant size only once, either now or as soon as safe. */
661 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
662 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
663 if (DECL_SIZE_UNIT (decl) != 0
664 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
665 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
666
667 /* If requested, warn about definitions of large data objects. */
668 if (warn_larger_than
669 && (code == VAR_DECL || code == PARM_DECL)
670 && ! DECL_EXTERNAL (decl))
671 {
672 tree size = DECL_SIZE_UNIT (decl);
673
674 if (size != 0 && TREE_CODE (size) == INTEGER_CST
675 && compare_tree_int (size, larger_than_size) > 0)
676 {
677 int size_as_int = TREE_INT_CST_LOW (size);
678
679 if (compare_tree_int (size, size_as_int) == 0)
680 warning (OPT_Wlarger_than_eq, "size of %q+D is %d bytes", decl, size_as_int);
681 else
682 warning (OPT_Wlarger_than_eq, "size of %q+D is larger than %wd bytes",
683 decl, larger_than_size);
684 }
685 }
686
687 /* If the RTL was already set, update its mode and mem attributes. */
688 if (rtl)
689 {
690 PUT_MODE (rtl, DECL_MODE (decl));
691 SET_DECL_RTL (decl, 0);
692 set_mem_attributes (rtl, decl, 1);
693 SET_DECL_RTL (decl, rtl);
694 }
695 }
696
697 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
698 a previous call to layout_decl and calls it again. */
699
700 void
701 relayout_decl (tree decl)
702 {
703 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
704 DECL_MODE (decl) = VOIDmode;
705 if (!DECL_USER_ALIGN (decl))
706 DECL_ALIGN (decl) = 0;
707 SET_DECL_RTL (decl, 0);
708
709 layout_decl (decl, 0);
710 }
711 \f
712 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
713 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
714 is to be passed to all other layout functions for this record. It is the
715 responsibility of the caller to call `free' for the storage returned.
716 Note that garbage collection is not permitted until we finish laying
717 out the record. */
718
719 record_layout_info
720 start_record_layout (tree t)
721 {
722 record_layout_info rli = XNEW (struct record_layout_info_s);
723
724 rli->t = t;
725
726 /* If the type has a minimum specified alignment (via an attribute
727 declaration, for example) use it -- otherwise, start with a
728 one-byte alignment. */
729 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
730 rli->unpacked_align = rli->record_align;
731 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
732
733 #ifdef STRUCTURE_SIZE_BOUNDARY
734 /* Packed structures don't need to have minimum size. */
735 if (! TYPE_PACKED (t))
736 {
737 unsigned tmp;
738
739 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
740 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
741 if (maximum_field_alignment != 0)
742 tmp = MIN (tmp, maximum_field_alignment);
743 rli->record_align = MAX (rli->record_align, tmp);
744 }
745 #endif
746
747 rli->offset = size_zero_node;
748 rli->bitpos = bitsize_zero_node;
749 rli->prev_field = 0;
750 rli->pending_statics = 0;
751 rli->packed_maybe_necessary = 0;
752 rli->remaining_in_alignment = 0;
753
754 return rli;
755 }
756
757 /* These four routines perform computations that convert between
758 the offset/bitpos forms and byte and bit offsets. */
759
760 tree
761 bit_from_pos (tree offset, tree bitpos)
762 {
763 return size_binop (PLUS_EXPR, bitpos,
764 size_binop (MULT_EXPR,
765 fold_convert (bitsizetype, offset),
766 bitsize_unit_node));
767 }
768
769 tree
770 byte_from_pos (tree offset, tree bitpos)
771 {
772 return size_binop (PLUS_EXPR, offset,
773 fold_convert (sizetype,
774 size_binop (TRUNC_DIV_EXPR, bitpos,
775 bitsize_unit_node)));
776 }
777
778 void
779 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
780 tree pos)
781 {
782 *poffset = size_binop (MULT_EXPR,
783 fold_convert (sizetype,
784 size_binop (FLOOR_DIV_EXPR, pos,
785 bitsize_int (off_align))),
786 size_int (off_align / BITS_PER_UNIT));
787 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
788 }
789
790 /* Given a pointer to bit and byte offsets and an offset alignment,
791 normalize the offsets so they are within the alignment. */
792
793 void
794 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
795 {
796 /* If the bit position is now larger than it should be, adjust it
797 downwards. */
798 if (compare_tree_int (*pbitpos, off_align) >= 0)
799 {
800 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
801 bitsize_int (off_align));
802
803 *poffset
804 = size_binop (PLUS_EXPR, *poffset,
805 size_binop (MULT_EXPR,
806 fold_convert (sizetype, extra_aligns),
807 size_int (off_align / BITS_PER_UNIT)));
808
809 *pbitpos
810 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
811 }
812 }
813
814 /* Print debugging information about the information in RLI. */
815
816 void
817 debug_rli (record_layout_info rli)
818 {
819 print_node_brief (stderr, "type", rli->t, 0);
820 print_node_brief (stderr, "\noffset", rli->offset, 0);
821 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
822
823 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
824 rli->record_align, rli->unpacked_align,
825 rli->offset_align);
826
827 /* The ms_struct code is the only that uses this. */
828 if (targetm.ms_bitfield_layout_p (rli->t))
829 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
830
831 if (rli->packed_maybe_necessary)
832 fprintf (stderr, "packed may be necessary\n");
833
834 if (rli->pending_statics)
835 {
836 fprintf (stderr, "pending statics:\n");
837 debug_tree (rli->pending_statics);
838 }
839 }
840
841 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
842 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
843
844 void
845 normalize_rli (record_layout_info rli)
846 {
847 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
848 }
849
850 /* Returns the size in bytes allocated so far. */
851
852 tree
853 rli_size_unit_so_far (record_layout_info rli)
854 {
855 return byte_from_pos (rli->offset, rli->bitpos);
856 }
857
858 /* Returns the size in bits allocated so far. */
859
860 tree
861 rli_size_so_far (record_layout_info rli)
862 {
863 return bit_from_pos (rli->offset, rli->bitpos);
864 }
865
866 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
867 the next available location within the record is given by KNOWN_ALIGN.
868 Update the variable alignment fields in RLI, and return the alignment
869 to give the FIELD. */
870
871 unsigned int
872 update_alignment_for_field (record_layout_info rli, tree field,
873 unsigned int known_align)
874 {
875 /* The alignment required for FIELD. */
876 unsigned int desired_align;
877 /* The type of this field. */
878 tree type = TREE_TYPE (field);
879 /* True if the field was explicitly aligned by the user. */
880 bool user_align;
881 bool is_bitfield;
882
883 /* Do not attempt to align an ERROR_MARK node */
884 if (TREE_CODE (type) == ERROR_MARK)
885 return 0;
886
887 /* Lay out the field so we know what alignment it needs. */
888 layout_decl (field, known_align);
889 desired_align = DECL_ALIGN (field);
890 user_align = DECL_USER_ALIGN (field);
891
892 is_bitfield = (type != error_mark_node
893 && DECL_BIT_FIELD_TYPE (field)
894 && ! integer_zerop (TYPE_SIZE (type)));
895
896 /* Record must have at least as much alignment as any field.
897 Otherwise, the alignment of the field within the record is
898 meaningless. */
899 if (targetm.ms_bitfield_layout_p (rli->t))
900 {
901 /* Here, the alignment of the underlying type of a bitfield can
902 affect the alignment of a record; even a zero-sized field
903 can do this. The alignment should be to the alignment of
904 the type, except that for zero-size bitfields this only
905 applies if there was an immediately prior, nonzero-size
906 bitfield. (That's the way it is, experimentally.) */
907 if ((!is_bitfield && !DECL_PACKED (field))
908 || (!integer_zerop (DECL_SIZE (field))
909 ? !DECL_PACKED (field)
910 : (rli->prev_field
911 && DECL_BIT_FIELD_TYPE (rli->prev_field)
912 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
913 {
914 unsigned int type_align = TYPE_ALIGN (type);
915 type_align = MAX (type_align, desired_align);
916 if (maximum_field_alignment != 0)
917 type_align = MIN (type_align, maximum_field_alignment);
918 rli->record_align = MAX (rli->record_align, type_align);
919 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
920 }
921 }
922 #ifdef PCC_BITFIELD_TYPE_MATTERS
923 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
924 {
925 /* Named bit-fields cause the entire structure to have the
926 alignment implied by their type. Some targets also apply the same
927 rules to unnamed bitfields. */
928 if (DECL_NAME (field) != 0
929 || targetm.align_anon_bitfield ())
930 {
931 unsigned int type_align = TYPE_ALIGN (type);
932
933 #ifdef ADJUST_FIELD_ALIGN
934 if (! TYPE_USER_ALIGN (type))
935 type_align = ADJUST_FIELD_ALIGN (field, type_align);
936 #endif
937
938 /* Targets might chose to handle unnamed and hence possibly
939 zero-width bitfield. Those are not influenced by #pragmas
940 or packed attributes. */
941 if (integer_zerop (DECL_SIZE (field)))
942 {
943 if (initial_max_fld_align)
944 type_align = MIN (type_align,
945 initial_max_fld_align * BITS_PER_UNIT);
946 }
947 else if (maximum_field_alignment != 0)
948 type_align = MIN (type_align, maximum_field_alignment);
949 else if (DECL_PACKED (field))
950 type_align = MIN (type_align, BITS_PER_UNIT);
951
952 /* The alignment of the record is increased to the maximum
953 of the current alignment, the alignment indicated on the
954 field (i.e., the alignment specified by an __aligned__
955 attribute), and the alignment indicated by the type of
956 the field. */
957 rli->record_align = MAX (rli->record_align, desired_align);
958 rli->record_align = MAX (rli->record_align, type_align);
959
960 if (warn_packed)
961 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
962 user_align |= TYPE_USER_ALIGN (type);
963 }
964 }
965 #endif
966 else
967 {
968 rli->record_align = MAX (rli->record_align, desired_align);
969 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
970 }
971
972 TYPE_USER_ALIGN (rli->t) |= user_align;
973
974 return desired_align;
975 }
976
977 /* Called from place_field to handle unions. */
978
979 static void
980 place_union_field (record_layout_info rli, tree field)
981 {
982 update_alignment_for_field (rli, field, /*known_align=*/0);
983
984 DECL_FIELD_OFFSET (field) = size_zero_node;
985 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
986 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
987
988 /* If this is an ERROR_MARK return *after* having set the
989 field at the start of the union. This helps when parsing
990 invalid fields. */
991 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
992 return;
993
994 /* We assume the union's size will be a multiple of a byte so we don't
995 bother with BITPOS. */
996 if (TREE_CODE (rli->t) == UNION_TYPE)
997 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
998 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
999 rli->offset = fold_build3_loc (input_location, COND_EXPR, sizetype,
1000 DECL_QUALIFIER (field),
1001 DECL_SIZE_UNIT (field), rli->offset);
1002 }
1003
1004 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1005 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1006 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1007 units of alignment than the underlying TYPE. */
1008 static int
1009 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1010 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1011 {
1012 /* Note that the calculation of OFFSET might overflow; we calculate it so
1013 that we still get the right result as long as ALIGN is a power of two. */
1014 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1015
1016 offset = offset % align;
1017 return ((offset + size + align - 1) / align
1018 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
1019 / align));
1020 }
1021 #endif
1022
1023 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1024 is a FIELD_DECL to be added after those fields already present in
1025 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1026 callers that desire that behavior must manually perform that step.) */
1027
1028 void
1029 place_field (record_layout_info rli, tree field)
1030 {
1031 /* The alignment required for FIELD. */
1032 unsigned int desired_align;
1033 /* The alignment FIELD would have if we just dropped it into the
1034 record as it presently stands. */
1035 unsigned int known_align;
1036 unsigned int actual_align;
1037 /* The type of this field. */
1038 tree type = TREE_TYPE (field);
1039
1040 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1041
1042 /* If FIELD is static, then treat it like a separate variable, not
1043 really like a structure field. If it is a FUNCTION_DECL, it's a
1044 method. In both cases, all we do is lay out the decl, and we do
1045 it *after* the record is laid out. */
1046 if (TREE_CODE (field) == VAR_DECL)
1047 {
1048 rli->pending_statics = tree_cons (NULL_TREE, field,
1049 rli->pending_statics);
1050 return;
1051 }
1052
1053 /* Enumerators and enum types which are local to this class need not
1054 be laid out. Likewise for initialized constant fields. */
1055 else if (TREE_CODE (field) != FIELD_DECL)
1056 return;
1057
1058 /* Unions are laid out very differently than records, so split
1059 that code off to another function. */
1060 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1061 {
1062 place_union_field (rli, field);
1063 return;
1064 }
1065
1066 else if (TREE_CODE (type) == ERROR_MARK)
1067 {
1068 /* Place this field at the current allocation position, so we
1069 maintain monotonicity. */
1070 DECL_FIELD_OFFSET (field) = rli->offset;
1071 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1072 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1073 return;
1074 }
1075
1076 /* Work out the known alignment so far. Note that A & (-A) is the
1077 value of the least-significant bit in A that is one. */
1078 if (! integer_zerop (rli->bitpos))
1079 known_align = (tree_low_cst (rli->bitpos, 1)
1080 & - tree_low_cst (rli->bitpos, 1));
1081 else if (integer_zerop (rli->offset))
1082 known_align = 0;
1083 else if (host_integerp (rli->offset, 1))
1084 known_align = (BITS_PER_UNIT
1085 * (tree_low_cst (rli->offset, 1)
1086 & - tree_low_cst (rli->offset, 1)));
1087 else
1088 known_align = rli->offset_align;
1089
1090 desired_align = update_alignment_for_field (rli, field, known_align);
1091 if (known_align == 0)
1092 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1093
1094 if (warn_packed && DECL_PACKED (field))
1095 {
1096 if (known_align >= TYPE_ALIGN (type))
1097 {
1098 if (TYPE_ALIGN (type) > desired_align)
1099 {
1100 if (STRICT_ALIGNMENT)
1101 warning (OPT_Wattributes, "packed attribute causes "
1102 "inefficient alignment for %q+D", field);
1103 /* Don't warn if DECL_PACKED was set by the type. */
1104 else if (!TYPE_PACKED (rli->t))
1105 warning (OPT_Wattributes, "packed attribute is "
1106 "unnecessary for %q+D", field);
1107 }
1108 }
1109 else
1110 rli->packed_maybe_necessary = 1;
1111 }
1112
1113 /* Does this field automatically have alignment it needs by virtue
1114 of the fields that precede it and the record's own alignment?
1115 We already align ms_struct fields, so don't re-align them. */
1116 if (known_align < desired_align
1117 && !targetm.ms_bitfield_layout_p (rli->t))
1118 {
1119 /* No, we need to skip space before this field.
1120 Bump the cumulative size to multiple of field alignment. */
1121
1122 if (DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1123 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1124
1125 /* If the alignment is still within offset_align, just align
1126 the bit position. */
1127 if (desired_align < rli->offset_align)
1128 rli->bitpos = round_up (rli->bitpos, desired_align);
1129 else
1130 {
1131 /* First adjust OFFSET by the partial bits, then align. */
1132 rli->offset
1133 = size_binop (PLUS_EXPR, rli->offset,
1134 fold_convert (sizetype,
1135 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1136 bitsize_unit_node)));
1137 rli->bitpos = bitsize_zero_node;
1138
1139 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1140 }
1141
1142 if (! TREE_CONSTANT (rli->offset))
1143 rli->offset_align = desired_align;
1144
1145 }
1146
1147 /* Handle compatibility with PCC. Note that if the record has any
1148 variable-sized fields, we need not worry about compatibility. */
1149 #ifdef PCC_BITFIELD_TYPE_MATTERS
1150 if (PCC_BITFIELD_TYPE_MATTERS
1151 && ! targetm.ms_bitfield_layout_p (rli->t)
1152 && TREE_CODE (field) == FIELD_DECL
1153 && type != error_mark_node
1154 && DECL_BIT_FIELD (field)
1155 && (! DECL_PACKED (field)
1156 /* Enter for these packed fields only to issue a warning. */
1157 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1158 && maximum_field_alignment == 0
1159 && ! integer_zerop (DECL_SIZE (field))
1160 && host_integerp (DECL_SIZE (field), 1)
1161 && host_integerp (rli->offset, 1)
1162 && host_integerp (TYPE_SIZE (type), 1))
1163 {
1164 unsigned int type_align = TYPE_ALIGN (type);
1165 tree dsize = DECL_SIZE (field);
1166 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1167 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1168 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1169
1170 #ifdef ADJUST_FIELD_ALIGN
1171 if (! TYPE_USER_ALIGN (type))
1172 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1173 #endif
1174
1175 /* A bit field may not span more units of alignment of its type
1176 than its type itself. Advance to next boundary if necessary. */
1177 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1178 {
1179 if (DECL_PACKED (field))
1180 {
1181 if (warn_packed_bitfield_compat == 1)
1182 inform
1183 (input_location,
1184 "Offset of packed bit-field %qD has changed in GCC 4.4",
1185 field);
1186 }
1187 else
1188 rli->bitpos = round_up_loc (input_location, rli->bitpos, type_align);
1189 }
1190
1191 if (! DECL_PACKED (field))
1192 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1193 }
1194 #endif
1195
1196 #ifdef BITFIELD_NBYTES_LIMITED
1197 if (BITFIELD_NBYTES_LIMITED
1198 && ! targetm.ms_bitfield_layout_p (rli->t)
1199 && TREE_CODE (field) == FIELD_DECL
1200 && type != error_mark_node
1201 && DECL_BIT_FIELD_TYPE (field)
1202 && ! DECL_PACKED (field)
1203 && ! integer_zerop (DECL_SIZE (field))
1204 && host_integerp (DECL_SIZE (field), 1)
1205 && host_integerp (rli->offset, 1)
1206 && host_integerp (TYPE_SIZE (type), 1))
1207 {
1208 unsigned int type_align = TYPE_ALIGN (type);
1209 tree dsize = DECL_SIZE (field);
1210 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1211 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1212 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1213
1214 #ifdef ADJUST_FIELD_ALIGN
1215 if (! TYPE_USER_ALIGN (type))
1216 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1217 #endif
1218
1219 if (maximum_field_alignment != 0)
1220 type_align = MIN (type_align, maximum_field_alignment);
1221 /* ??? This test is opposite the test in the containing if
1222 statement, so this code is unreachable currently. */
1223 else if (DECL_PACKED (field))
1224 type_align = MIN (type_align, BITS_PER_UNIT);
1225
1226 /* A bit field may not span the unit of alignment of its type.
1227 Advance to next boundary if necessary. */
1228 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1229 rli->bitpos = round_up (rli->bitpos, type_align);
1230
1231 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1232 }
1233 #endif
1234
1235 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1236 A subtlety:
1237 When a bit field is inserted into a packed record, the whole
1238 size of the underlying type is used by one or more same-size
1239 adjacent bitfields. (That is, if its long:3, 32 bits is
1240 used in the record, and any additional adjacent long bitfields are
1241 packed into the same chunk of 32 bits. However, if the size
1242 changes, a new field of that size is allocated.) In an unpacked
1243 record, this is the same as using alignment, but not equivalent
1244 when packing.
1245
1246 Note: for compatibility, we use the type size, not the type alignment
1247 to determine alignment, since that matches the documentation */
1248
1249 if (targetm.ms_bitfield_layout_p (rli->t))
1250 {
1251 tree prev_saved = rli->prev_field;
1252 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1253
1254 /* This is a bitfield if it exists. */
1255 if (rli->prev_field)
1256 {
1257 /* If both are bitfields, nonzero, and the same size, this is
1258 the middle of a run. Zero declared size fields are special
1259 and handled as "end of run". (Note: it's nonzero declared
1260 size, but equal type sizes!) (Since we know that both
1261 the current and previous fields are bitfields by the
1262 time we check it, DECL_SIZE must be present for both.) */
1263 if (DECL_BIT_FIELD_TYPE (field)
1264 && !integer_zerop (DECL_SIZE (field))
1265 && !integer_zerop (DECL_SIZE (rli->prev_field))
1266 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1267 && host_integerp (TYPE_SIZE (type), 0)
1268 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1269 {
1270 /* We're in the middle of a run of equal type size fields; make
1271 sure we realign if we run out of bits. (Not decl size,
1272 type size!) */
1273 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
1274
1275 if (rli->remaining_in_alignment < bitsize)
1276 {
1277 HOST_WIDE_INT typesize = tree_low_cst (TYPE_SIZE (type), 1);
1278
1279 /* out of bits; bump up to next 'word'. */
1280 rli->bitpos
1281 = size_binop (PLUS_EXPR, rli->bitpos,
1282 bitsize_int (rli->remaining_in_alignment));
1283 rli->prev_field = field;
1284 if (typesize < bitsize)
1285 rli->remaining_in_alignment = 0;
1286 else
1287 rli->remaining_in_alignment = typesize - bitsize;
1288 }
1289 else
1290 rli->remaining_in_alignment -= bitsize;
1291 }
1292 else
1293 {
1294 /* End of a run: if leaving a run of bitfields of the same type
1295 size, we have to "use up" the rest of the bits of the type
1296 size.
1297
1298 Compute the new position as the sum of the size for the prior
1299 type and where we first started working on that type.
1300 Note: since the beginning of the field was aligned then
1301 of course the end will be too. No round needed. */
1302
1303 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1304 {
1305 rli->bitpos
1306 = size_binop (PLUS_EXPR, rli->bitpos,
1307 bitsize_int (rli->remaining_in_alignment));
1308 }
1309 else
1310 /* We "use up" size zero fields; the code below should behave
1311 as if the prior field was not a bitfield. */
1312 prev_saved = NULL;
1313
1314 /* Cause a new bitfield to be captured, either this time (if
1315 currently a bitfield) or next time we see one. */
1316 if (!DECL_BIT_FIELD_TYPE(field)
1317 || integer_zerop (DECL_SIZE (field)))
1318 rli->prev_field = NULL;
1319 }
1320
1321 normalize_rli (rli);
1322 }
1323
1324 /* If we're starting a new run of same size type bitfields
1325 (or a run of non-bitfields), set up the "first of the run"
1326 fields.
1327
1328 That is, if the current field is not a bitfield, or if there
1329 was a prior bitfield the type sizes differ, or if there wasn't
1330 a prior bitfield the size of the current field is nonzero.
1331
1332 Note: we must be sure to test ONLY the type size if there was
1333 a prior bitfield and ONLY for the current field being zero if
1334 there wasn't. */
1335
1336 if (!DECL_BIT_FIELD_TYPE (field)
1337 || (prev_saved != NULL
1338 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1339 : !integer_zerop (DECL_SIZE (field)) ))
1340 {
1341 /* Never smaller than a byte for compatibility. */
1342 unsigned int type_align = BITS_PER_UNIT;
1343
1344 /* (When not a bitfield), we could be seeing a flex array (with
1345 no DECL_SIZE). Since we won't be using remaining_in_alignment
1346 until we see a bitfield (and come by here again) we just skip
1347 calculating it. */
1348 if (DECL_SIZE (field) != NULL
1349 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 1)
1350 && host_integerp (DECL_SIZE (field), 1))
1351 {
1352 unsigned HOST_WIDE_INT bitsize
1353 = tree_low_cst (DECL_SIZE (field), 1);
1354 unsigned HOST_WIDE_INT typesize
1355 = tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 1);
1356
1357 if (typesize < bitsize)
1358 rli->remaining_in_alignment = 0;
1359 else
1360 rli->remaining_in_alignment = typesize - bitsize;
1361 }
1362
1363 /* Now align (conventionally) for the new type. */
1364 type_align = TYPE_ALIGN (TREE_TYPE (field));
1365
1366 if (maximum_field_alignment != 0)
1367 type_align = MIN (type_align, maximum_field_alignment);
1368
1369 rli->bitpos = round_up_loc (input_location, rli->bitpos, type_align);
1370
1371 /* If we really aligned, don't allow subsequent bitfields
1372 to undo that. */
1373 rli->prev_field = NULL;
1374 }
1375 }
1376
1377 /* Offset so far becomes the position of this field after normalizing. */
1378 normalize_rli (rli);
1379 DECL_FIELD_OFFSET (field) = rli->offset;
1380 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1381 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1382
1383 /* If this field ended up more aligned than we thought it would be (we
1384 approximate this by seeing if its position changed), lay out the field
1385 again; perhaps we can use an integral mode for it now. */
1386 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1387 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1388 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1389 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1390 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1391 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1392 actual_align = (BITS_PER_UNIT
1393 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1394 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1395 else
1396 actual_align = DECL_OFFSET_ALIGN (field);
1397 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1398 store / extract bit field operations will check the alignment of the
1399 record against the mode of bit fields. */
1400
1401 if (known_align != actual_align)
1402 layout_decl (field, actual_align);
1403
1404 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1405 rli->prev_field = field;
1406
1407 /* Now add size of this field to the size of the record. If the size is
1408 not constant, treat the field as being a multiple of bytes and just
1409 adjust the offset, resetting the bit position. Otherwise, apportion the
1410 size amongst the bit position and offset. First handle the case of an
1411 unspecified size, which can happen when we have an invalid nested struct
1412 definition, such as struct j { struct j { int i; } }. The error message
1413 is printed in finish_struct. */
1414 if (DECL_SIZE (field) == 0)
1415 /* Do nothing. */;
1416 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1417 || TREE_OVERFLOW (DECL_SIZE (field)))
1418 {
1419 rli->offset
1420 = size_binop (PLUS_EXPR, rli->offset,
1421 fold_convert (sizetype,
1422 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1423 bitsize_unit_node)));
1424 rli->offset
1425 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1426 rli->bitpos = bitsize_zero_node;
1427 rli->offset_align = MIN (rli->offset_align, desired_align);
1428 }
1429 else if (targetm.ms_bitfield_layout_p (rli->t))
1430 {
1431 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1432
1433 /* If we ended a bitfield before the full length of the type then
1434 pad the struct out to the full length of the last type. */
1435 if ((TREE_CHAIN (field) == NULL
1436 || TREE_CODE (TREE_CHAIN (field)) != FIELD_DECL)
1437 && DECL_BIT_FIELD_TYPE (field)
1438 && !integer_zerop (DECL_SIZE (field)))
1439 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1440 bitsize_int (rli->remaining_in_alignment));
1441
1442 normalize_rli (rli);
1443 }
1444 else
1445 {
1446 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1447 normalize_rli (rli);
1448 }
1449 }
1450
1451 /* Assuming that all the fields have been laid out, this function uses
1452 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1453 indicated by RLI. */
1454
1455 static void
1456 finalize_record_size (record_layout_info rli)
1457 {
1458 tree unpadded_size, unpadded_size_unit;
1459
1460 /* Now we want just byte and bit offsets, so set the offset alignment
1461 to be a byte and then normalize. */
1462 rli->offset_align = BITS_PER_UNIT;
1463 normalize_rli (rli);
1464
1465 /* Determine the desired alignment. */
1466 #ifdef ROUND_TYPE_ALIGN
1467 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1468 rli->record_align);
1469 #else
1470 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1471 #endif
1472
1473 /* Compute the size so far. Be sure to allow for extra bits in the
1474 size in bytes. We have guaranteed above that it will be no more
1475 than a single byte. */
1476 unpadded_size = rli_size_so_far (rli);
1477 unpadded_size_unit = rli_size_unit_so_far (rli);
1478 if (! integer_zerop (rli->bitpos))
1479 unpadded_size_unit
1480 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1481
1482 /* Round the size up to be a multiple of the required alignment. */
1483 TYPE_SIZE (rli->t) = round_up_loc (input_location, unpadded_size,
1484 TYPE_ALIGN (rli->t));
1485 TYPE_SIZE_UNIT (rli->t)
1486 = round_up_loc (input_location, unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1487
1488 if (TREE_CONSTANT (unpadded_size)
1489 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1490 && input_location != BUILTINS_LOCATION)
1491 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1492
1493 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1494 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1495 && TREE_CONSTANT (unpadded_size))
1496 {
1497 tree unpacked_size;
1498
1499 #ifdef ROUND_TYPE_ALIGN
1500 rli->unpacked_align
1501 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1502 #else
1503 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1504 #endif
1505
1506 unpacked_size = round_up_loc (input_location, TYPE_SIZE (rli->t), rli->unpacked_align);
1507 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1508 {
1509 TYPE_PACKED (rli->t) = 0;
1510
1511 if (TYPE_NAME (rli->t))
1512 {
1513 tree name;
1514
1515 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1516 name = TYPE_NAME (rli->t);
1517 else
1518 name = DECL_NAME (TYPE_NAME (rli->t));
1519
1520 if (STRICT_ALIGNMENT)
1521 warning (OPT_Wpacked, "packed attribute causes inefficient "
1522 "alignment for %qE", name);
1523 else
1524 warning (OPT_Wpacked,
1525 "packed attribute is unnecessary for %qE", name);
1526 }
1527 else
1528 {
1529 if (STRICT_ALIGNMENT)
1530 warning (OPT_Wpacked,
1531 "packed attribute causes inefficient alignment");
1532 else
1533 warning (OPT_Wpacked, "packed attribute is unnecessary");
1534 }
1535 }
1536 }
1537 }
1538
1539 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1540
1541 void
1542 compute_record_mode (tree type)
1543 {
1544 tree field;
1545 enum machine_mode mode = VOIDmode;
1546
1547 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1548 However, if possible, we use a mode that fits in a register
1549 instead, in order to allow for better optimization down the
1550 line. */
1551 SET_TYPE_MODE (type, BLKmode);
1552
1553 if (! host_integerp (TYPE_SIZE (type), 1))
1554 return;
1555
1556 /* A record which has any BLKmode members must itself be
1557 BLKmode; it can't go in a register. Unless the member is
1558 BLKmode only because it isn't aligned. */
1559 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1560 {
1561 if (TREE_CODE (field) != FIELD_DECL)
1562 continue;
1563
1564 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1565 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1566 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1567 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1568 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1569 || ! host_integerp (bit_position (field), 1)
1570 || DECL_SIZE (field) == 0
1571 || ! host_integerp (DECL_SIZE (field), 1))
1572 return;
1573
1574 /* If this field is the whole struct, remember its mode so
1575 that, say, we can put a double in a class into a DF
1576 register instead of forcing it to live in the stack. */
1577 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1578 mode = DECL_MODE (field);
1579
1580 #ifdef MEMBER_TYPE_FORCES_BLK
1581 /* With some targets, eg. c4x, it is sub-optimal
1582 to access an aligned BLKmode structure as a scalar. */
1583
1584 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1585 return;
1586 #endif /* MEMBER_TYPE_FORCES_BLK */
1587 }
1588
1589 /* If we only have one real field; use its mode if that mode's size
1590 matches the type's size. This only applies to RECORD_TYPE. This
1591 does not apply to unions. */
1592 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1593 && host_integerp (TYPE_SIZE (type), 1)
1594 && GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
1595 SET_TYPE_MODE (type, mode);
1596 else
1597 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1598
1599 /* If structure's known alignment is less than what the scalar
1600 mode would need, and it matters, then stick with BLKmode. */
1601 if (TYPE_MODE (type) != BLKmode
1602 && STRICT_ALIGNMENT
1603 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1604 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1605 {
1606 /* If this is the only reason this type is BLKmode, then
1607 don't force containing types to be BLKmode. */
1608 TYPE_NO_FORCE_BLK (type) = 1;
1609 SET_TYPE_MODE (type, BLKmode);
1610 }
1611 }
1612
1613 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1614 out. */
1615
1616 static void
1617 finalize_type_size (tree type)
1618 {
1619 /* Normally, use the alignment corresponding to the mode chosen.
1620 However, where strict alignment is not required, avoid
1621 over-aligning structures, since most compilers do not do this
1622 alignment. */
1623
1624 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1625 && (STRICT_ALIGNMENT
1626 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1627 && TREE_CODE (type) != QUAL_UNION_TYPE
1628 && TREE_CODE (type) != ARRAY_TYPE)))
1629 {
1630 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1631
1632 /* Don't override a larger alignment requirement coming from a user
1633 alignment of one of the fields. */
1634 if (mode_align >= TYPE_ALIGN (type))
1635 {
1636 TYPE_ALIGN (type) = mode_align;
1637 TYPE_USER_ALIGN (type) = 0;
1638 }
1639 }
1640
1641 /* Do machine-dependent extra alignment. */
1642 #ifdef ROUND_TYPE_ALIGN
1643 TYPE_ALIGN (type)
1644 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1645 #endif
1646
1647 /* If we failed to find a simple way to calculate the unit size
1648 of the type, find it by division. */
1649 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1650 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1651 result will fit in sizetype. We will get more efficient code using
1652 sizetype, so we force a conversion. */
1653 TYPE_SIZE_UNIT (type)
1654 = fold_convert (sizetype,
1655 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1656 bitsize_unit_node));
1657
1658 if (TYPE_SIZE (type) != 0)
1659 {
1660 TYPE_SIZE (type) = round_up_loc (input_location,
1661 TYPE_SIZE (type), TYPE_ALIGN (type));
1662 TYPE_SIZE_UNIT (type) = round_up_loc (input_location, TYPE_SIZE_UNIT (type),
1663 TYPE_ALIGN_UNIT (type));
1664 }
1665
1666 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1667 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1668 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1669 if (TYPE_SIZE_UNIT (type) != 0
1670 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1671 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1672
1673 /* Also layout any other variants of the type. */
1674 if (TYPE_NEXT_VARIANT (type)
1675 || type != TYPE_MAIN_VARIANT (type))
1676 {
1677 tree variant;
1678 /* Record layout info of this variant. */
1679 tree size = TYPE_SIZE (type);
1680 tree size_unit = TYPE_SIZE_UNIT (type);
1681 unsigned int align = TYPE_ALIGN (type);
1682 unsigned int user_align = TYPE_USER_ALIGN (type);
1683 enum machine_mode mode = TYPE_MODE (type);
1684
1685 /* Copy it into all variants. */
1686 for (variant = TYPE_MAIN_VARIANT (type);
1687 variant != 0;
1688 variant = TYPE_NEXT_VARIANT (variant))
1689 {
1690 TYPE_SIZE (variant) = size;
1691 TYPE_SIZE_UNIT (variant) = size_unit;
1692 TYPE_ALIGN (variant) = align;
1693 TYPE_USER_ALIGN (variant) = user_align;
1694 SET_TYPE_MODE (variant, mode);
1695 }
1696 }
1697 }
1698
1699 /* Do all of the work required to layout the type indicated by RLI,
1700 once the fields have been laid out. This function will call `free'
1701 for RLI, unless FREE_P is false. Passing a value other than false
1702 for FREE_P is bad practice; this option only exists to support the
1703 G++ 3.2 ABI. */
1704
1705 void
1706 finish_record_layout (record_layout_info rli, int free_p)
1707 {
1708 tree variant;
1709
1710 /* Compute the final size. */
1711 finalize_record_size (rli);
1712
1713 /* Compute the TYPE_MODE for the record. */
1714 compute_record_mode (rli->t);
1715
1716 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1717 finalize_type_size (rli->t);
1718
1719 /* Propagate TYPE_PACKED to variants. With C++ templates,
1720 handle_packed_attribute is too early to do this. */
1721 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
1722 variant = TYPE_NEXT_VARIANT (variant))
1723 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
1724
1725 /* Lay out any static members. This is done now because their type
1726 may use the record's type. */
1727 while (rli->pending_statics)
1728 {
1729 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1730 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1731 }
1732
1733 /* Clean up. */
1734 if (free_p)
1735 free (rli);
1736 }
1737 \f
1738
1739 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1740 NAME, its fields are chained in reverse on FIELDS.
1741
1742 If ALIGN_TYPE is non-null, it is given the same alignment as
1743 ALIGN_TYPE. */
1744
1745 void
1746 finish_builtin_struct (tree type, const char *name, tree fields,
1747 tree align_type)
1748 {
1749 tree tail, next;
1750
1751 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1752 {
1753 DECL_FIELD_CONTEXT (fields) = type;
1754 next = TREE_CHAIN (fields);
1755 TREE_CHAIN (fields) = tail;
1756 }
1757 TYPE_FIELDS (type) = tail;
1758
1759 if (align_type)
1760 {
1761 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1762 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1763 }
1764
1765 layout_type (type);
1766 #if 0 /* not yet, should get fixed properly later */
1767 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1768 #else
1769 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
1770 TYPE_DECL, get_identifier (name), type);
1771 #endif
1772 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1773 layout_decl (TYPE_NAME (type), 0);
1774 }
1775
1776 /* Calculate the mode, size, and alignment for TYPE.
1777 For an array type, calculate the element separation as well.
1778 Record TYPE on the chain of permanent or temporary types
1779 so that dbxout will find out about it.
1780
1781 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1782 layout_type does nothing on such a type.
1783
1784 If the type is incomplete, its TYPE_SIZE remains zero. */
1785
1786 void
1787 layout_type (tree type)
1788 {
1789 gcc_assert (type);
1790
1791 if (type == error_mark_node)
1792 return;
1793
1794 /* Do nothing if type has been laid out before. */
1795 if (TYPE_SIZE (type))
1796 return;
1797
1798 switch (TREE_CODE (type))
1799 {
1800 case LANG_TYPE:
1801 /* This kind of type is the responsibility
1802 of the language-specific code. */
1803 gcc_unreachable ();
1804
1805 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1806 if (TYPE_PRECISION (type) == 0)
1807 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1808
1809 /* ... fall through ... */
1810
1811 case INTEGER_TYPE:
1812 case ENUMERAL_TYPE:
1813 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1814 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1815 TYPE_UNSIGNED (type) = 1;
1816
1817 SET_TYPE_MODE (type,
1818 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
1819 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1820 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1821 break;
1822
1823 case REAL_TYPE:
1824 SET_TYPE_MODE (type,
1825 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
1826 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1827 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1828 break;
1829
1830 case FIXED_POINT_TYPE:
1831 /* TYPE_MODE (type) has been set already. */
1832 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1833 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1834 break;
1835
1836 case COMPLEX_TYPE:
1837 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1838 SET_TYPE_MODE (type,
1839 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1840 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
1841 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
1842 0));
1843 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1844 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1845 break;
1846
1847 case VECTOR_TYPE:
1848 {
1849 int nunits = TYPE_VECTOR_SUBPARTS (type);
1850 tree innertype = TREE_TYPE (type);
1851
1852 gcc_assert (!(nunits & (nunits - 1)));
1853
1854 /* Find an appropriate mode for the vector type. */
1855 if (TYPE_MODE (type) == VOIDmode)
1856 {
1857 enum machine_mode innermode = TYPE_MODE (innertype);
1858 enum machine_mode mode;
1859
1860 /* First, look for a supported vector type. */
1861 if (SCALAR_FLOAT_MODE_P (innermode))
1862 mode = MIN_MODE_VECTOR_FLOAT;
1863 else if (SCALAR_FRACT_MODE_P (innermode))
1864 mode = MIN_MODE_VECTOR_FRACT;
1865 else if (SCALAR_UFRACT_MODE_P (innermode))
1866 mode = MIN_MODE_VECTOR_UFRACT;
1867 else if (SCALAR_ACCUM_MODE_P (innermode))
1868 mode = MIN_MODE_VECTOR_ACCUM;
1869 else if (SCALAR_UACCUM_MODE_P (innermode))
1870 mode = MIN_MODE_VECTOR_UACCUM;
1871 else
1872 mode = MIN_MODE_VECTOR_INT;
1873
1874 /* Do not check vector_mode_supported_p here. We'll do that
1875 later in vector_type_mode. */
1876 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
1877 if (GET_MODE_NUNITS (mode) == nunits
1878 && GET_MODE_INNER (mode) == innermode)
1879 break;
1880
1881 /* For integers, try mapping it to a same-sized scalar mode. */
1882 if (mode == VOIDmode
1883 && GET_MODE_CLASS (innermode) == MODE_INT)
1884 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
1885 MODE_INT, 0);
1886
1887 if (mode == VOIDmode ||
1888 (GET_MODE_CLASS (mode) == MODE_INT
1889 && !have_regs_of_mode[mode]))
1890 SET_TYPE_MODE (type, BLKmode);
1891 else
1892 SET_TYPE_MODE (type, mode);
1893 }
1894
1895 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
1896 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1897 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
1898 TYPE_SIZE_UNIT (innertype),
1899 size_int (nunits), 0);
1900 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
1901 bitsize_int (nunits), 0);
1902
1903 /* Always naturally align vectors. This prevents ABI changes
1904 depending on whether or not native vector modes are supported. */
1905 TYPE_ALIGN (type) = tree_low_cst (TYPE_SIZE (type), 0);
1906 break;
1907 }
1908
1909 case VOID_TYPE:
1910 /* This is an incomplete type and so doesn't have a size. */
1911 TYPE_ALIGN (type) = 1;
1912 TYPE_USER_ALIGN (type) = 0;
1913 SET_TYPE_MODE (type, VOIDmode);
1914 break;
1915
1916 case OFFSET_TYPE:
1917 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1918 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1919 /* A pointer might be MODE_PARTIAL_INT,
1920 but ptrdiff_t must be integral. */
1921 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
1922 TYPE_PRECISION (type) = POINTER_SIZE;
1923 break;
1924
1925 case FUNCTION_TYPE:
1926 case METHOD_TYPE:
1927 /* It's hard to see what the mode and size of a function ought to
1928 be, but we do know the alignment is FUNCTION_BOUNDARY, so
1929 make it consistent with that. */
1930 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
1931 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
1932 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
1933 break;
1934
1935 case POINTER_TYPE:
1936 case REFERENCE_TYPE:
1937 {
1938 enum machine_mode mode = TYPE_MODE (type);
1939 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
1940 {
1941 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
1942 mode = targetm.addr_space.address_mode (as);
1943 }
1944
1945 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
1946 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1947 TYPE_UNSIGNED (type) = 1;
1948 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
1949 }
1950 break;
1951
1952 case ARRAY_TYPE:
1953 {
1954 tree index = TYPE_DOMAIN (type);
1955 tree element = TREE_TYPE (type);
1956
1957 build_pointer_type (element);
1958
1959 /* We need to know both bounds in order to compute the size. */
1960 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1961 && TYPE_SIZE (element))
1962 {
1963 tree ub = TYPE_MAX_VALUE (index);
1964 tree lb = TYPE_MIN_VALUE (index);
1965 tree element_size = TYPE_SIZE (element);
1966 tree length;
1967
1968 /* Make sure that an array of zero-sized element is zero-sized
1969 regardless of its extent. */
1970 if (integer_zerop (element_size))
1971 length = size_zero_node;
1972
1973 /* The initial subtraction should happen in the original type so
1974 that (possible) negative values are handled appropriately. */
1975 else
1976 length
1977 = size_binop (PLUS_EXPR, size_one_node,
1978 fold_convert (sizetype,
1979 fold_build2_loc (input_location,
1980 MINUS_EXPR,
1981 TREE_TYPE (lb),
1982 ub, lb)));
1983
1984 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1985 fold_convert (bitsizetype,
1986 length));
1987
1988 /* If we know the size of the element, calculate the total size
1989 directly, rather than do some division thing below. This
1990 optimization helps Fortran assumed-size arrays (where the
1991 size of the array is determined at runtime) substantially. */
1992 if (TYPE_SIZE_UNIT (element))
1993 TYPE_SIZE_UNIT (type)
1994 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
1995 }
1996
1997 /* Now round the alignment and size,
1998 using machine-dependent criteria if any. */
1999
2000 #ifdef ROUND_TYPE_ALIGN
2001 TYPE_ALIGN (type)
2002 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2003 #else
2004 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2005 #endif
2006 if (!TYPE_SIZE (element))
2007 /* We don't know the size of the underlying element type, so
2008 our alignment calculations will be wrong, forcing us to
2009 fall back on structural equality. */
2010 SET_TYPE_STRUCTURAL_EQUALITY (type);
2011 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2012 SET_TYPE_MODE (type, BLKmode);
2013 if (TYPE_SIZE (type) != 0
2014 #ifdef MEMBER_TYPE_FORCES_BLK
2015 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
2016 #endif
2017 /* BLKmode elements force BLKmode aggregate;
2018 else extract/store fields may lose. */
2019 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2020 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2021 {
2022 /* One-element arrays get the component type's mode. */
2023 if (simple_cst_equal (TYPE_SIZE (type),
2024 TYPE_SIZE (TREE_TYPE (type))))
2025 SET_TYPE_MODE (type, TYPE_MODE (TREE_TYPE (type)));
2026 else
2027 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type),
2028 MODE_INT, 1));
2029
2030 if (TYPE_MODE (type) != BLKmode
2031 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2032 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2033 {
2034 TYPE_NO_FORCE_BLK (type) = 1;
2035 SET_TYPE_MODE (type, BLKmode);
2036 }
2037 }
2038 /* When the element size is constant, check that it is at least as
2039 large as the element alignment. */
2040 if (TYPE_SIZE_UNIT (element)
2041 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2042 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2043 TYPE_ALIGN_UNIT. */
2044 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2045 && !integer_zerop (TYPE_SIZE_UNIT (element))
2046 && compare_tree_int (TYPE_SIZE_UNIT (element),
2047 TYPE_ALIGN_UNIT (element)) < 0)
2048 error ("alignment of array elements is greater than element size");
2049 break;
2050 }
2051
2052 case RECORD_TYPE:
2053 case UNION_TYPE:
2054 case QUAL_UNION_TYPE:
2055 {
2056 tree field;
2057 record_layout_info rli;
2058
2059 /* Initialize the layout information. */
2060 rli = start_record_layout (type);
2061
2062 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2063 in the reverse order in building the COND_EXPR that denotes
2064 its size. We reverse them again later. */
2065 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2066 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2067
2068 /* Place all the fields. */
2069 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2070 place_field (rli, field);
2071
2072 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2073 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2074
2075 /* Finish laying out the record. */
2076 finish_record_layout (rli, /*free_p=*/true);
2077 }
2078 break;
2079
2080 default:
2081 gcc_unreachable ();
2082 }
2083
2084 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2085 records and unions, finish_record_layout already called this
2086 function. */
2087 if (TREE_CODE (type) != RECORD_TYPE
2088 && TREE_CODE (type) != UNION_TYPE
2089 && TREE_CODE (type) != QUAL_UNION_TYPE)
2090 finalize_type_size (type);
2091
2092 /* We should never see alias sets on incomplete aggregates. And we
2093 should not call layout_type on not incomplete aggregates. */
2094 if (AGGREGATE_TYPE_P (type))
2095 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2096 }
2097
2098 /* Vector types need to re-check the target flags each time we report
2099 the machine mode. We need to do this because attribute target can
2100 change the result of vector_mode_supported_p and have_regs_of_mode
2101 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2102 change on a per-function basis. */
2103 /* ??? Possibly a better solution is to run through all the types
2104 referenced by a function and re-compute the TYPE_MODE once, rather
2105 than make the TYPE_MODE macro call a function. */
2106
2107 enum machine_mode
2108 vector_type_mode (const_tree t)
2109 {
2110 enum machine_mode mode;
2111
2112 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2113
2114 mode = t->type.mode;
2115 if (VECTOR_MODE_P (mode)
2116 && (!targetm.vector_mode_supported_p (mode)
2117 || !have_regs_of_mode[mode]))
2118 {
2119 enum machine_mode innermode = TREE_TYPE (t)->type.mode;
2120
2121 /* For integers, try mapping it to a same-sized scalar mode. */
2122 if (GET_MODE_CLASS (innermode) == MODE_INT)
2123 {
2124 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2125 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2126
2127 if (mode != VOIDmode && have_regs_of_mode[mode])
2128 return mode;
2129 }
2130
2131 return BLKmode;
2132 }
2133
2134 return mode;
2135 }
2136 \f
2137 /* Create and return a type for signed integers of PRECISION bits. */
2138
2139 tree
2140 make_signed_type (int precision)
2141 {
2142 tree type = make_node (INTEGER_TYPE);
2143
2144 TYPE_PRECISION (type) = precision;
2145
2146 fixup_signed_type (type);
2147 return type;
2148 }
2149
2150 /* Create and return a type for unsigned integers of PRECISION bits. */
2151
2152 tree
2153 make_unsigned_type (int precision)
2154 {
2155 tree type = make_node (INTEGER_TYPE);
2156
2157 TYPE_PRECISION (type) = precision;
2158
2159 fixup_unsigned_type (type);
2160 return type;
2161 }
2162 \f
2163 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2164 and SATP. */
2165
2166 tree
2167 make_fract_type (int precision, int unsignedp, int satp)
2168 {
2169 tree type = make_node (FIXED_POINT_TYPE);
2170
2171 TYPE_PRECISION (type) = precision;
2172
2173 if (satp)
2174 TYPE_SATURATING (type) = 1;
2175
2176 /* Lay out the type: set its alignment, size, etc. */
2177 if (unsignedp)
2178 {
2179 TYPE_UNSIGNED (type) = 1;
2180 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2181 }
2182 else
2183 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2184 layout_type (type);
2185
2186 return type;
2187 }
2188
2189 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2190 and SATP. */
2191
2192 tree
2193 make_accum_type (int precision, int unsignedp, int satp)
2194 {
2195 tree type = make_node (FIXED_POINT_TYPE);
2196
2197 TYPE_PRECISION (type) = precision;
2198
2199 if (satp)
2200 TYPE_SATURATING (type) = 1;
2201
2202 /* Lay out the type: set its alignment, size, etc. */
2203 if (unsignedp)
2204 {
2205 TYPE_UNSIGNED (type) = 1;
2206 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2207 }
2208 else
2209 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2210 layout_type (type);
2211
2212 return type;
2213 }
2214
2215 /* Initialize sizetype and bitsizetype to a reasonable and temporary
2216 value to enable integer types to be created. */
2217
2218 void
2219 initialize_sizetypes (bool signed_p)
2220 {
2221 tree t = make_node (INTEGER_TYPE);
2222 int precision = GET_MODE_BITSIZE (SImode);
2223
2224 SET_TYPE_MODE (t, SImode);
2225 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
2226 TYPE_USER_ALIGN (t) = 0;
2227 TYPE_IS_SIZETYPE (t) = 1;
2228 TYPE_UNSIGNED (t) = !signed_p;
2229 TYPE_SIZE (t) = build_int_cst (t, precision);
2230 TYPE_SIZE_UNIT (t) = build_int_cst (t, GET_MODE_SIZE (SImode));
2231 TYPE_PRECISION (t) = precision;
2232
2233 /* Set TYPE_MIN_VALUE and TYPE_MAX_VALUE. */
2234 set_min_and_max_values_for_integral_type (t, precision, !signed_p);
2235
2236 sizetype = t;
2237 bitsizetype = build_distinct_type_copy (t);
2238 }
2239
2240 /* Make sizetype a version of TYPE, and initialize *sizetype
2241 accordingly. We do this by overwriting the stub sizetype and
2242 bitsizetype nodes created by initialize_sizetypes. This makes sure
2243 that (a) anything stubby about them no longer exists, (b) any
2244 INTEGER_CSTs created with such a type, remain valid. */
2245
2246 void
2247 set_sizetype (tree type)
2248 {
2249 tree t;
2250 int oprecision = TYPE_PRECISION (type);
2251 /* The *bitsizetype types use a precision that avoids overflows when
2252 calculating signed sizes / offsets in bits. However, when
2253 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
2254 precision. */
2255 int precision
2256 = MIN (oprecision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2257 precision
2258 = GET_MODE_PRECISION (smallest_mode_for_size (precision, MODE_INT));
2259 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2260 precision = HOST_BITS_PER_WIDE_INT * 2;
2261
2262 gcc_assert (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (sizetype));
2263
2264 t = build_distinct_type_copy (type);
2265 /* We do want to use sizetype's cache, as we will be replacing that
2266 type. */
2267 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (sizetype);
2268 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (sizetype);
2269 TREE_TYPE (TYPE_CACHED_VALUES (t)) = type;
2270 TYPE_UID (t) = TYPE_UID (sizetype);
2271 TYPE_IS_SIZETYPE (t) = 1;
2272
2273 /* Replace our original stub sizetype. */
2274 memcpy (sizetype, t, tree_size (sizetype));
2275 TYPE_MAIN_VARIANT (sizetype) = sizetype;
2276 TYPE_CANONICAL (sizetype) = sizetype;
2277
2278 t = make_node (INTEGER_TYPE);
2279 TYPE_NAME (t) = get_identifier ("bit_size_type");
2280 /* We do want to use bitsizetype's cache, as we will be replacing that
2281 type. */
2282 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (bitsizetype);
2283 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (bitsizetype);
2284 TYPE_PRECISION (t) = precision;
2285 TYPE_UID (t) = TYPE_UID (bitsizetype);
2286 TYPE_IS_SIZETYPE (t) = 1;
2287
2288 /* Replace our original stub bitsizetype. */
2289 memcpy (bitsizetype, t, tree_size (bitsizetype));
2290 TYPE_MAIN_VARIANT (bitsizetype) = bitsizetype;
2291 TYPE_CANONICAL (bitsizetype) = bitsizetype;
2292
2293 if (TYPE_UNSIGNED (type))
2294 {
2295 fixup_unsigned_type (bitsizetype);
2296 ssizetype = make_signed_type (oprecision);
2297 TYPE_IS_SIZETYPE (ssizetype) = 1;
2298 sbitsizetype = make_signed_type (precision);
2299 TYPE_IS_SIZETYPE (sbitsizetype) = 1;
2300 }
2301 else
2302 {
2303 fixup_signed_type (bitsizetype);
2304 ssizetype = sizetype;
2305 sbitsizetype = bitsizetype;
2306 }
2307
2308 /* If SIZETYPE is unsigned, we need to fix TYPE_MAX_VALUE so that
2309 it is sign extended in a way consistent with force_fit_type. */
2310 if (TYPE_UNSIGNED (type))
2311 {
2312 tree orig_max, new_max;
2313
2314 orig_max = TYPE_MAX_VALUE (sizetype);
2315
2316 /* Build a new node with the same values, but a different type.
2317 Sign extend it to ensure consistency. */
2318 new_max = build_int_cst_wide_type (sizetype,
2319 TREE_INT_CST_LOW (orig_max),
2320 TREE_INT_CST_HIGH (orig_max));
2321 TYPE_MAX_VALUE (sizetype) = new_max;
2322 }
2323 }
2324 \f
2325 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2326 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2327 for TYPE, based on the PRECISION and whether or not the TYPE
2328 IS_UNSIGNED. PRECISION need not correspond to a width supported
2329 natively by the hardware; for example, on a machine with 8-bit,
2330 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2331 61. */
2332
2333 void
2334 set_min_and_max_values_for_integral_type (tree type,
2335 int precision,
2336 bool is_unsigned)
2337 {
2338 tree min_value;
2339 tree max_value;
2340
2341 if (is_unsigned)
2342 {
2343 min_value = build_int_cst (type, 0);
2344 max_value
2345 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2346 ? -1
2347 : ((HOST_WIDE_INT) 1 << precision) - 1,
2348 precision - HOST_BITS_PER_WIDE_INT > 0
2349 ? ((unsigned HOST_WIDE_INT) ~0
2350 >> (HOST_BITS_PER_WIDE_INT
2351 - (precision - HOST_BITS_PER_WIDE_INT)))
2352 : 0);
2353 }
2354 else
2355 {
2356 min_value
2357 = build_int_cst_wide (type,
2358 (precision - HOST_BITS_PER_WIDE_INT > 0
2359 ? 0
2360 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2361 (((HOST_WIDE_INT) (-1)
2362 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2363 ? precision - HOST_BITS_PER_WIDE_INT - 1
2364 : 0))));
2365 max_value
2366 = build_int_cst_wide (type,
2367 (precision - HOST_BITS_PER_WIDE_INT > 0
2368 ? -1
2369 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2370 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2371 ? (((HOST_WIDE_INT) 1
2372 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2373 : 0));
2374 }
2375
2376 TYPE_MIN_VALUE (type) = min_value;
2377 TYPE_MAX_VALUE (type) = max_value;
2378 }
2379
2380 /* Set the extreme values of TYPE based on its precision in bits,
2381 then lay it out. Used when make_signed_type won't do
2382 because the tree code is not INTEGER_TYPE.
2383 E.g. for Pascal, when the -fsigned-char option is given. */
2384
2385 void
2386 fixup_signed_type (tree type)
2387 {
2388 int precision = TYPE_PRECISION (type);
2389
2390 /* We can not represent properly constants greater then
2391 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2392 as they are used by i386 vector extensions and friends. */
2393 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2394 precision = HOST_BITS_PER_WIDE_INT * 2;
2395
2396 set_min_and_max_values_for_integral_type (type, precision,
2397 /*is_unsigned=*/false);
2398
2399 /* Lay out the type: set its alignment, size, etc. */
2400 layout_type (type);
2401 }
2402
2403 /* Set the extreme values of TYPE based on its precision in bits,
2404 then lay it out. This is used both in `make_unsigned_type'
2405 and for enumeral types. */
2406
2407 void
2408 fixup_unsigned_type (tree type)
2409 {
2410 int precision = TYPE_PRECISION (type);
2411
2412 /* We can not represent properly constants greater then
2413 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2414 as they are used by i386 vector extensions and friends. */
2415 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2416 precision = HOST_BITS_PER_WIDE_INT * 2;
2417
2418 TYPE_UNSIGNED (type) = 1;
2419
2420 set_min_and_max_values_for_integral_type (type, precision,
2421 /*is_unsigned=*/true);
2422
2423 /* Lay out the type: set its alignment, size, etc. */
2424 layout_type (type);
2425 }
2426 \f
2427 /* Find the best machine mode to use when referencing a bit field of length
2428 BITSIZE bits starting at BITPOS.
2429
2430 The underlying object is known to be aligned to a boundary of ALIGN bits.
2431 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2432 larger than LARGEST_MODE (usually SImode).
2433
2434 If no mode meets all these conditions, we return VOIDmode.
2435
2436 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2437 smallest mode meeting these conditions.
2438
2439 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2440 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2441 all the conditions.
2442
2443 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2444 decide which of the above modes should be used. */
2445
2446 enum machine_mode
2447 get_best_mode (int bitsize, int bitpos, unsigned int align,
2448 enum machine_mode largest_mode, int volatilep)
2449 {
2450 enum machine_mode mode;
2451 unsigned int unit = 0;
2452
2453 /* Find the narrowest integer mode that contains the bit field. */
2454 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2455 mode = GET_MODE_WIDER_MODE (mode))
2456 {
2457 unit = GET_MODE_BITSIZE (mode);
2458 if ((bitpos % unit) + bitsize <= unit)
2459 break;
2460 }
2461
2462 if (mode == VOIDmode
2463 /* It is tempting to omit the following line
2464 if STRICT_ALIGNMENT is true.
2465 But that is incorrect, since if the bitfield uses part of 3 bytes
2466 and we use a 4-byte mode, we could get a spurious segv
2467 if the extra 4th byte is past the end of memory.
2468 (Though at least one Unix compiler ignores this problem:
2469 that on the Sequent 386 machine. */
2470 || MIN (unit, BIGGEST_ALIGNMENT) > align
2471 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2472 return VOIDmode;
2473
2474 if ((SLOW_BYTE_ACCESS && ! volatilep)
2475 || (volatilep && !targetm.narrow_volatile_bitfield ()))
2476 {
2477 enum machine_mode wide_mode = VOIDmode, tmode;
2478
2479 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2480 tmode = GET_MODE_WIDER_MODE (tmode))
2481 {
2482 unit = GET_MODE_BITSIZE (tmode);
2483 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2484 && unit <= BITS_PER_WORD
2485 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2486 && (largest_mode == VOIDmode
2487 || unit <= GET_MODE_BITSIZE (largest_mode)))
2488 wide_mode = tmode;
2489 }
2490
2491 if (wide_mode != VOIDmode)
2492 return wide_mode;
2493 }
2494
2495 return mode;
2496 }
2497
2498 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2499 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2500
2501 void
2502 get_mode_bounds (enum machine_mode mode, int sign,
2503 enum machine_mode target_mode,
2504 rtx *mmin, rtx *mmax)
2505 {
2506 unsigned size = GET_MODE_BITSIZE (mode);
2507 unsigned HOST_WIDE_INT min_val, max_val;
2508
2509 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2510
2511 if (sign)
2512 {
2513 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2514 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2515 }
2516 else
2517 {
2518 min_val = 0;
2519 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2520 }
2521
2522 *mmin = gen_int_mode (min_val, target_mode);
2523 *mmax = gen_int_mode (max_val, target_mode);
2524 }
2525
2526 #include "gt-stor-layout.h"