Daily bump.
[gcc.git] / gcc / trans-mem.c
1 /* Passes for transactional memory support.
2 Copyright (C) 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tree.h"
24 #include "gimple.h"
25 #include "tree-flow.h"
26 #include "tree-pass.h"
27 #include "tree-inline.h"
28 #include "diagnostic-core.h"
29 #include "demangle.h"
30 #include "output.h"
31 #include "trans-mem.h"
32 #include "params.h"
33 #include "target.h"
34 #include "langhooks.h"
35 #include "tree-pretty-print.h"
36 #include "gimple-pretty-print.h"
37
38
39 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
40 #define PROB_ALWAYS (REG_BR_PROB_BASE)
41
42 #define A_RUNINSTRUMENTEDCODE 0x0001
43 #define A_RUNUNINSTRUMENTEDCODE 0x0002
44 #define A_SAVELIVEVARIABLES 0x0004
45 #define A_RESTORELIVEVARIABLES 0x0008
46 #define A_ABORTTRANSACTION 0x0010
47
48 #define AR_USERABORT 0x0001
49 #define AR_USERRETRY 0x0002
50 #define AR_TMCONFLICT 0x0004
51 #define AR_EXCEPTIONBLOCKABORT 0x0008
52 #define AR_OUTERABORT 0x0010
53
54 #define MODE_SERIALIRREVOCABLE 0x0000
55
56
57 /* The representation of a transaction changes several times during the
58 lowering process. In the beginning, in the front-end we have the
59 GENERIC tree TRANSACTION_EXPR. For example,
60
61 __transaction {
62 local++;
63 if (++global == 10)
64 __tm_abort;
65 }
66
67 During initial gimplification (gimplify.c) the TRANSACTION_EXPR node is
68 trivially replaced with a GIMPLE_TRANSACTION node.
69
70 During pass_lower_tm, we examine the body of transactions looking
71 for aborts. Transactions that do not contain an abort may be
72 merged into an outer transaction. We also add a TRY-FINALLY node
73 to arrange for the transaction to be committed on any exit.
74
75 [??? Think about how this arrangement affects throw-with-commit
76 and throw-with-abort operations. In this case we want the TRY to
77 handle gotos, but not to catch any exceptions because the transaction
78 will already be closed.]
79
80 GIMPLE_TRANSACTION [label=NULL] {
81 try {
82 local = local + 1;
83 t0 = global;
84 t1 = t0 + 1;
85 global = t1;
86 if (t1 == 10)
87 __builtin___tm_abort ();
88 } finally {
89 __builtin___tm_commit ();
90 }
91 }
92
93 During pass_lower_eh, we create EH regions for the transactions,
94 intermixed with the regular EH stuff. This gives us a nice persistent
95 mapping (all the way through rtl) from transactional memory operation
96 back to the transaction, which allows us to get the abnormal edges
97 correct to model transaction aborts and restarts:
98
99 GIMPLE_TRANSACTION [label=over]
100 local = local + 1;
101 t0 = global;
102 t1 = t0 + 1;
103 global = t1;
104 if (t1 == 10)
105 __builtin___tm_abort ();
106 __builtin___tm_commit ();
107 over:
108
109 This is the end of all_lowering_passes, and so is what is present
110 during the IPA passes, and through all of the optimization passes.
111
112 During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all
113 functions and mark functions for cloning.
114
115 At the end of gimple optimization, before exiting SSA form,
116 pass_tm_edges replaces statements that perform transactional
117 memory operations with the appropriate TM builtins, and swap
118 out function calls with their transactional clones. At this
119 point we introduce the abnormal transaction restart edges and
120 complete lowering of the GIMPLE_TRANSACTION node.
121
122 x = __builtin___tm_start (MAY_ABORT);
123 eh_label:
124 if (x & abort_transaction)
125 goto over;
126 local = local + 1;
127 t0 = __builtin___tm_load (global);
128 t1 = t0 + 1;
129 __builtin___tm_store (&global, t1);
130 if (t1 == 10)
131 __builtin___tm_abort ();
132 __builtin___tm_commit ();
133 over:
134 */
135
136 \f
137 /* Return the attributes we want to examine for X, or NULL if it's not
138 something we examine. We look at function types, but allow pointers
139 to function types and function decls and peek through. */
140
141 static tree
142 get_attrs_for (const_tree x)
143 {
144 switch (TREE_CODE (x))
145 {
146 case FUNCTION_DECL:
147 return TYPE_ATTRIBUTES (TREE_TYPE (x));
148 break;
149
150 default:
151 if (TYPE_P (x))
152 return NULL;
153 x = TREE_TYPE (x);
154 if (TREE_CODE (x) != POINTER_TYPE)
155 return NULL;
156 /* FALLTHRU */
157
158 case POINTER_TYPE:
159 x = TREE_TYPE (x);
160 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
161 return NULL;
162 /* FALLTHRU */
163
164 case FUNCTION_TYPE:
165 case METHOD_TYPE:
166 return TYPE_ATTRIBUTES (x);
167 }
168 }
169
170 /* Return true if X has been marked TM_PURE. */
171
172 bool
173 is_tm_pure (const_tree x)
174 {
175 unsigned flags;
176
177 switch (TREE_CODE (x))
178 {
179 case FUNCTION_DECL:
180 case FUNCTION_TYPE:
181 case METHOD_TYPE:
182 break;
183
184 default:
185 if (TYPE_P (x))
186 return false;
187 x = TREE_TYPE (x);
188 if (TREE_CODE (x) != POINTER_TYPE)
189 return false;
190 /* FALLTHRU */
191
192 case POINTER_TYPE:
193 x = TREE_TYPE (x);
194 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
195 return false;
196 break;
197 }
198
199 flags = flags_from_decl_or_type (x);
200 return (flags & ECF_TM_PURE) != 0;
201 }
202
203 /* Return true if X has been marked TM_IRREVOCABLE. */
204
205 static bool
206 is_tm_irrevocable (tree x)
207 {
208 tree attrs = get_attrs_for (x);
209
210 if (attrs && lookup_attribute ("transaction_unsafe", attrs))
211 return true;
212
213 /* A call to the irrevocable builtin is by definition,
214 irrevocable. */
215 if (TREE_CODE (x) == ADDR_EXPR)
216 x = TREE_OPERAND (x, 0);
217 if (TREE_CODE (x) == FUNCTION_DECL
218 && DECL_BUILT_IN_CLASS (x) == BUILT_IN_NORMAL
219 && DECL_FUNCTION_CODE (x) == BUILT_IN_TM_IRREVOCABLE)
220 return true;
221
222 return false;
223 }
224
225 /* Return true if X has been marked TM_SAFE. */
226
227 bool
228 is_tm_safe (const_tree x)
229 {
230 if (flag_tm)
231 {
232 tree attrs = get_attrs_for (x);
233 if (attrs)
234 {
235 if (lookup_attribute ("transaction_safe", attrs))
236 return true;
237 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
238 return true;
239 }
240 }
241 return false;
242 }
243
244 /* Return true if CALL is const, or tm_pure. */
245
246 static bool
247 is_tm_pure_call (gimple call)
248 {
249 tree fn = gimple_call_fn (call);
250
251 if (TREE_CODE (fn) == ADDR_EXPR)
252 {
253 fn = TREE_OPERAND (fn, 0);
254 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
255 }
256 else
257 fn = TREE_TYPE (fn);
258
259 return is_tm_pure (fn);
260 }
261
262 /* Return true if X has been marked TM_CALLABLE. */
263
264 static bool
265 is_tm_callable (tree x)
266 {
267 tree attrs = get_attrs_for (x);
268 if (attrs)
269 {
270 if (lookup_attribute ("transaction_callable", attrs))
271 return true;
272 if (lookup_attribute ("transaction_safe", attrs))
273 return true;
274 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
275 return true;
276 }
277 return false;
278 }
279
280 /* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER. */
281
282 bool
283 is_tm_may_cancel_outer (tree x)
284 {
285 tree attrs = get_attrs_for (x);
286 if (attrs)
287 return lookup_attribute ("transaction_may_cancel_outer", attrs) != NULL;
288 return false;
289 }
290
291 /* Return true for built in functions that "end" a transaction. */
292
293 bool
294 is_tm_ending_fndecl (tree fndecl)
295 {
296 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
297 switch (DECL_FUNCTION_CODE (fndecl))
298 {
299 case BUILT_IN_TM_COMMIT:
300 case BUILT_IN_TM_COMMIT_EH:
301 case BUILT_IN_TM_ABORT:
302 case BUILT_IN_TM_IRREVOCABLE:
303 return true;
304 default:
305 break;
306 }
307
308 return false;
309 }
310
311 /* Return true if STMT is a TM load. */
312
313 static bool
314 is_tm_load (gimple stmt)
315 {
316 tree fndecl;
317
318 if (gimple_code (stmt) != GIMPLE_CALL)
319 return false;
320
321 fndecl = gimple_call_fndecl (stmt);
322 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
323 && BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl)));
324 }
325
326 /* Same as above, but for simple TM loads, that is, not the
327 after-write, after-read, etc optimized variants. */
328
329 static bool
330 is_tm_simple_load (gimple stmt)
331 {
332 tree fndecl;
333
334 if (gimple_code (stmt) != GIMPLE_CALL)
335 return false;
336
337 fndecl = gimple_call_fndecl (stmt);
338 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
339 {
340 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
341 return (fcode == BUILT_IN_TM_LOAD_1
342 || fcode == BUILT_IN_TM_LOAD_2
343 || fcode == BUILT_IN_TM_LOAD_4
344 || fcode == BUILT_IN_TM_LOAD_8
345 || fcode == BUILT_IN_TM_LOAD_FLOAT
346 || fcode == BUILT_IN_TM_LOAD_DOUBLE
347 || fcode == BUILT_IN_TM_LOAD_LDOUBLE
348 || fcode == BUILT_IN_TM_LOAD_M64
349 || fcode == BUILT_IN_TM_LOAD_M128
350 || fcode == BUILT_IN_TM_LOAD_M256);
351 }
352 return false;
353 }
354
355 /* Return true if STMT is a TM store. */
356
357 static bool
358 is_tm_store (gimple stmt)
359 {
360 tree fndecl;
361
362 if (gimple_code (stmt) != GIMPLE_CALL)
363 return false;
364
365 fndecl = gimple_call_fndecl (stmt);
366 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
367 && BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl)));
368 }
369
370 /* Same as above, but for simple TM stores, that is, not the
371 after-write, after-read, etc optimized variants. */
372
373 static bool
374 is_tm_simple_store (gimple stmt)
375 {
376 tree fndecl;
377
378 if (gimple_code (stmt) != GIMPLE_CALL)
379 return false;
380
381 fndecl = gimple_call_fndecl (stmt);
382 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
383 {
384 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
385 return (fcode == BUILT_IN_TM_STORE_1
386 || fcode == BUILT_IN_TM_STORE_2
387 || fcode == BUILT_IN_TM_STORE_4
388 || fcode == BUILT_IN_TM_STORE_8
389 || fcode == BUILT_IN_TM_STORE_FLOAT
390 || fcode == BUILT_IN_TM_STORE_DOUBLE
391 || fcode == BUILT_IN_TM_STORE_LDOUBLE
392 || fcode == BUILT_IN_TM_STORE_M64
393 || fcode == BUILT_IN_TM_STORE_M128
394 || fcode == BUILT_IN_TM_STORE_M256);
395 }
396 return false;
397 }
398
399 /* Return true if FNDECL is BUILT_IN_TM_ABORT. */
400
401 static bool
402 is_tm_abort (tree fndecl)
403 {
404 return (fndecl
405 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
406 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_TM_ABORT);
407 }
408
409 /* Build a GENERIC tree for a user abort. This is called by front ends
410 while transforming the __tm_abort statement. */
411
412 tree
413 build_tm_abort_call (location_t loc, bool is_outer)
414 {
415 return build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_TM_ABORT), 1,
416 build_int_cst (integer_type_node,
417 AR_USERABORT
418 | (is_outer ? AR_OUTERABORT : 0)));
419 }
420
421 /* Common gateing function for several of the TM passes. */
422
423 static bool
424 gate_tm (void)
425 {
426 return flag_tm;
427 }
428 \f
429 /* Map for aribtrary function replacement under TM, as created
430 by the tm_wrap attribute. */
431
432 static GTY((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
433 htab_t tm_wrap_map;
434
435 void
436 record_tm_replacement (tree from, tree to)
437 {
438 struct tree_map **slot, *h;
439
440 /* Do not inline wrapper functions that will get replaced in the TM
441 pass.
442
443 Suppose you have foo() that will get replaced into tmfoo(). Make
444 sure the inliner doesn't try to outsmart us and inline foo()
445 before we get a chance to do the TM replacement. */
446 DECL_UNINLINABLE (from) = 1;
447
448 if (tm_wrap_map == NULL)
449 tm_wrap_map = htab_create_ggc (32, tree_map_hash, tree_map_eq, 0);
450
451 h = ggc_alloc_tree_map ();
452 h->hash = htab_hash_pointer (from);
453 h->base.from = from;
454 h->to = to;
455
456 slot = (struct tree_map **)
457 htab_find_slot_with_hash (tm_wrap_map, h, h->hash, INSERT);
458 *slot = h;
459 }
460
461 /* Return a TM-aware replacement function for DECL. */
462
463 static tree
464 find_tm_replacement_function (tree fndecl)
465 {
466 if (tm_wrap_map)
467 {
468 struct tree_map *h, in;
469
470 in.base.from = fndecl;
471 in.hash = htab_hash_pointer (fndecl);
472 h = (struct tree_map *) htab_find_with_hash (tm_wrap_map, &in, in.hash);
473 if (h)
474 return h->to;
475 }
476
477 /* ??? We may well want TM versions of most of the common <string.h>
478 functions. For now, we've already these two defined. */
479 /* Adjust expand_call_tm() attributes as necessary for the cases
480 handled here: */
481 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
482 switch (DECL_FUNCTION_CODE (fndecl))
483 {
484 case BUILT_IN_MEMCPY:
485 return builtin_decl_explicit (BUILT_IN_TM_MEMCPY);
486 case BUILT_IN_MEMMOVE:
487 return builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
488 case BUILT_IN_MEMSET:
489 return builtin_decl_explicit (BUILT_IN_TM_MEMSET);
490 default:
491 return NULL;
492 }
493
494 return NULL;
495 }
496
497 /* When appropriate, record TM replacement for memory allocation functions.
498
499 FROM is the FNDECL to wrap. */
500 void
501 tm_malloc_replacement (tree from)
502 {
503 const char *str;
504 tree to;
505
506 if (TREE_CODE (from) != FUNCTION_DECL)
507 return;
508
509 /* If we have a previous replacement, the user must be explicitly
510 wrapping malloc/calloc/free. They better know what they're
511 doing... */
512 if (find_tm_replacement_function (from))
513 return;
514
515 str = IDENTIFIER_POINTER (DECL_NAME (from));
516
517 if (!strcmp (str, "malloc"))
518 to = builtin_decl_explicit (BUILT_IN_TM_MALLOC);
519 else if (!strcmp (str, "calloc"))
520 to = builtin_decl_explicit (BUILT_IN_TM_CALLOC);
521 else if (!strcmp (str, "free"))
522 to = builtin_decl_explicit (BUILT_IN_TM_FREE);
523 else
524 return;
525
526 TREE_NOTHROW (to) = 0;
527
528 record_tm_replacement (from, to);
529 }
530 \f
531 /* Diagnostics for tm_safe functions/regions. Called by the front end
532 once we've lowered the function to high-gimple. */
533
534 /* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq.
535 Process exactly one statement. WI->INFO is set to non-null when in
536 the context of a tm_safe function, and null for a __transaction block. */
537
538 #define DIAG_TM_OUTER 1
539 #define DIAG_TM_SAFE 2
540 #define DIAG_TM_RELAXED 4
541
542 struct diagnose_tm
543 {
544 unsigned int summary_flags : 8;
545 unsigned int block_flags : 8;
546 unsigned int func_flags : 8;
547 unsigned int saw_volatile : 1;
548 gimple stmt;
549 };
550
551 /* Tree callback function for diagnose_tm pass. */
552
553 static tree
554 diagnose_tm_1_op (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
555 void *data)
556 {
557 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
558 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
559 enum tree_code code = TREE_CODE (*tp);
560
561 if ((code == VAR_DECL
562 || code == RESULT_DECL
563 || code == PARM_DECL)
564 && d->block_flags & (DIAG_TM_SAFE | DIAG_TM_RELAXED)
565 && TREE_THIS_VOLATILE (TREE_TYPE (*tp))
566 && !d->saw_volatile)
567 {
568 d->saw_volatile = 1;
569 error_at (gimple_location (d->stmt),
570 "invalid volatile use of %qD inside transaction",
571 *tp);
572 }
573
574 return NULL_TREE;
575 }
576
577 static tree
578 diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p,
579 struct walk_stmt_info *wi)
580 {
581 gimple stmt = gsi_stmt (*gsi);
582 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
583
584 /* Save stmt for use in leaf analysis. */
585 d->stmt = stmt;
586
587 switch (gimple_code (stmt))
588 {
589 case GIMPLE_CALL:
590 {
591 tree fn = gimple_call_fn (stmt);
592
593 if ((d->summary_flags & DIAG_TM_OUTER) == 0
594 && is_tm_may_cancel_outer (fn))
595 error_at (gimple_location (stmt),
596 "%<transaction_may_cancel_outer%> function call not within"
597 " outer transaction or %<transaction_may_cancel_outer%>");
598
599 if (d->summary_flags & DIAG_TM_SAFE)
600 {
601 bool is_safe, direct_call_p;
602 tree replacement;
603
604 if (TREE_CODE (fn) == ADDR_EXPR
605 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL)
606 {
607 direct_call_p = true;
608 replacement = TREE_OPERAND (fn, 0);
609 replacement = find_tm_replacement_function (replacement);
610 if (replacement)
611 fn = replacement;
612 }
613 else
614 {
615 direct_call_p = false;
616 replacement = NULL_TREE;
617 }
618
619 if (is_tm_safe_or_pure (fn))
620 is_safe = true;
621 else if (is_tm_callable (fn) || is_tm_irrevocable (fn))
622 {
623 /* A function explicitly marked transaction_callable as
624 opposed to transaction_safe is being defined to be
625 unsafe as part of its ABI, regardless of its contents. */
626 is_safe = false;
627 }
628 else if (direct_call_p)
629 {
630 if (flags_from_decl_or_type (fn) & ECF_TM_BUILTIN)
631 is_safe = true;
632 else if (replacement)
633 {
634 /* ??? At present we've been considering replacements
635 merely transaction_callable, and therefore might
636 enter irrevocable. The tm_wrap attribute has not
637 yet made it into the new language spec. */
638 is_safe = false;
639 }
640 else
641 {
642 /* ??? Diagnostics for unmarked direct calls moved into
643 the IPA pass. Section 3.2 of the spec details how
644 functions not marked should be considered "implicitly
645 safe" based on having examined the function body. */
646 is_safe = true;
647 }
648 }
649 else
650 {
651 /* An unmarked indirect call. Consider it unsafe even
652 though optimization may yet figure out how to inline. */
653 is_safe = false;
654 }
655
656 if (!is_safe)
657 {
658 if (TREE_CODE (fn) == ADDR_EXPR)
659 fn = TREE_OPERAND (fn, 0);
660 if (d->block_flags & DIAG_TM_SAFE)
661 {
662 if (direct_call_p)
663 error_at (gimple_location (stmt),
664 "unsafe function call %qD within "
665 "atomic transaction", fn);
666 else
667 {
668 if (!DECL_P (fn) || DECL_NAME (fn))
669 error_at (gimple_location (stmt),
670 "unsafe function call %qE within "
671 "atomic transaction", fn);
672 else
673 error_at (gimple_location (stmt),
674 "unsafe indirect function call within "
675 "atomic transaction");
676 }
677 }
678 else
679 {
680 if (direct_call_p)
681 error_at (gimple_location (stmt),
682 "unsafe function call %qD within "
683 "%<transaction_safe%> function", fn);
684 else
685 {
686 if (!DECL_P (fn) || DECL_NAME (fn))
687 error_at (gimple_location (stmt),
688 "unsafe function call %qE within "
689 "%<transaction_safe%> function", fn);
690 else
691 error_at (gimple_location (stmt),
692 "unsafe indirect function call within "
693 "%<transaction_safe%> function");
694 }
695 }
696 }
697 }
698 }
699 break;
700
701 case GIMPLE_ASM:
702 /* ??? We ought to come up with a way to add attributes to
703 asm statements, and then add "transaction_safe" to it.
704 Either that or get the language spec to resurrect __tm_waiver. */
705 if (d->block_flags & DIAG_TM_SAFE)
706 error_at (gimple_location (stmt),
707 "asm not allowed in atomic transaction");
708 else if (d->func_flags & DIAG_TM_SAFE)
709 error_at (gimple_location (stmt),
710 "asm not allowed in %<transaction_safe%> function");
711 break;
712
713 case GIMPLE_TRANSACTION:
714 {
715 unsigned char inner_flags = DIAG_TM_SAFE;
716
717 if (gimple_transaction_subcode (stmt) & GTMA_IS_RELAXED)
718 {
719 if (d->block_flags & DIAG_TM_SAFE)
720 error_at (gimple_location (stmt),
721 "relaxed transaction in atomic transaction");
722 else if (d->func_flags & DIAG_TM_SAFE)
723 error_at (gimple_location (stmt),
724 "relaxed transaction in %<transaction_safe%> function");
725 inner_flags = DIAG_TM_RELAXED;
726 }
727 else if (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER)
728 {
729 if (d->block_flags)
730 error_at (gimple_location (stmt),
731 "outer transaction in transaction");
732 else if (d->func_flags & DIAG_TM_OUTER)
733 error_at (gimple_location (stmt),
734 "outer transaction in "
735 "%<transaction_may_cancel_outer%> function");
736 else if (d->func_flags & DIAG_TM_SAFE)
737 error_at (gimple_location (stmt),
738 "outer transaction in %<transaction_safe%> function");
739 inner_flags |= DIAG_TM_OUTER;
740 }
741
742 *handled_ops_p = true;
743 if (gimple_transaction_body (stmt))
744 {
745 struct walk_stmt_info wi_inner;
746 struct diagnose_tm d_inner;
747
748 memset (&d_inner, 0, sizeof (d_inner));
749 d_inner.func_flags = d->func_flags;
750 d_inner.block_flags = d->block_flags | inner_flags;
751 d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags;
752
753 memset (&wi_inner, 0, sizeof (wi_inner));
754 wi_inner.info = &d_inner;
755
756 walk_gimple_seq (gimple_transaction_body (stmt),
757 diagnose_tm_1, diagnose_tm_1_op, &wi_inner);
758 }
759 }
760 break;
761
762 default:
763 break;
764 }
765
766 return NULL_TREE;
767 }
768
769 static unsigned int
770 diagnose_tm_blocks (void)
771 {
772 struct walk_stmt_info wi;
773 struct diagnose_tm d;
774
775 memset (&d, 0, sizeof (d));
776 if (is_tm_may_cancel_outer (current_function_decl))
777 d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE;
778 else if (is_tm_safe (current_function_decl))
779 d.func_flags = DIAG_TM_SAFE;
780 d.summary_flags = d.func_flags;
781
782 memset (&wi, 0, sizeof (wi));
783 wi.info = &d;
784
785 walk_gimple_seq (gimple_body (current_function_decl),
786 diagnose_tm_1, diagnose_tm_1_op, &wi);
787
788 return 0;
789 }
790
791 struct gimple_opt_pass pass_diagnose_tm_blocks =
792 {
793 {
794 GIMPLE_PASS,
795 "*diagnose_tm_blocks", /* name */
796 gate_tm, /* gate */
797 diagnose_tm_blocks, /* execute */
798 NULL, /* sub */
799 NULL, /* next */
800 0, /* static_pass_number */
801 TV_TRANS_MEM, /* tv_id */
802 PROP_gimple_any, /* properties_required */
803 0, /* properties_provided */
804 0, /* properties_destroyed */
805 0, /* todo_flags_start */
806 0, /* todo_flags_finish */
807 }
808 };
809 \f
810 /* Instead of instrumenting thread private memory, we save the
811 addresses in a log which we later use to save/restore the addresses
812 upon transaction start/restart.
813
814 The log is keyed by address, where each element contains individual
815 statements among different code paths that perform the store.
816
817 This log is later used to generate either plain save/restore of the
818 addresses upon transaction start/restart, or calls to the ITM_L*
819 logging functions.
820
821 So for something like:
822
823 struct large { int x[1000]; };
824 struct large lala = { 0 };
825 __transaction {
826 lala.x[i] = 123;
827 ...
828 }
829
830 We can either save/restore:
831
832 lala = { 0 };
833 trxn = _ITM_startTransaction ();
834 if (trxn & a_saveLiveVariables)
835 tmp_lala1 = lala.x[i];
836 else if (a & a_restoreLiveVariables)
837 lala.x[i] = tmp_lala1;
838
839 or use the logging functions:
840
841 lala = { 0 };
842 trxn = _ITM_startTransaction ();
843 _ITM_LU4 (&lala.x[i]);
844
845 Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as
846 far up the dominator tree to shadow all of the writes to a given
847 location (thus reducing the total number of logging calls), but not
848 so high as to be called on a path that does not perform a
849 write. */
850
851 /* One individual log entry. We may have multiple statements for the
852 same location if neither dominate each other (on different
853 execution paths). */
854 typedef struct tm_log_entry
855 {
856 /* Address to save. */
857 tree addr;
858 /* Entry block for the transaction this address occurs in. */
859 basic_block entry_block;
860 /* Dominating statements the store occurs in. */
861 gimple_vec stmts;
862 /* Initially, while we are building the log, we place a nonzero
863 value here to mean that this address *will* be saved with a
864 save/restore sequence. Later, when generating the save sequence
865 we place the SSA temp generated here. */
866 tree save_var;
867 } *tm_log_entry_t;
868
869 /* The actual log. */
870 static htab_t tm_log;
871
872 /* Addresses to log with a save/restore sequence. These should be in
873 dominator order. */
874 static VEC(tree,heap) *tm_log_save_addresses;
875
876 /* Map for an SSA_NAME originally pointing to a non aliased new piece
877 of memory (malloc, alloc, etc). */
878 static htab_t tm_new_mem_hash;
879
880 enum thread_memory_type
881 {
882 mem_non_local = 0,
883 mem_thread_local,
884 mem_transaction_local,
885 mem_max
886 };
887
888 typedef struct tm_new_mem_map
889 {
890 /* SSA_NAME being dereferenced. */
891 tree val;
892 enum thread_memory_type local_new_memory;
893 } tm_new_mem_map_t;
894
895 /* Htab support. Return hash value for a `tm_log_entry'. */
896 static hashval_t
897 tm_log_hash (const void *p)
898 {
899 const struct tm_log_entry *log = (const struct tm_log_entry *) p;
900 return iterative_hash_expr (log->addr, 0);
901 }
902
903 /* Htab support. Return true if two log entries are the same. */
904 static int
905 tm_log_eq (const void *p1, const void *p2)
906 {
907 const struct tm_log_entry *log1 = (const struct tm_log_entry *) p1;
908 const struct tm_log_entry *log2 = (const struct tm_log_entry *) p2;
909
910 /* FIXME:
911
912 rth: I suggest that we get rid of the component refs etc.
913 I.e. resolve the reference to base + offset.
914
915 We may need to actually finish a merge with mainline for this,
916 since we'd like to be presented with Richi's MEM_REF_EXPRs more
917 often than not. But in the meantime your tm_log_entry could save
918 the results of get_inner_reference.
919
920 See: g++.dg/tm/pr46653.C
921 */
922
923 /* Special case plain equality because operand_equal_p() below will
924 return FALSE if the addresses are equal but they have
925 side-effects (e.g. a volatile address). */
926 if (log1->addr == log2->addr)
927 return true;
928
929 return operand_equal_p (log1->addr, log2->addr, 0);
930 }
931
932 /* Htab support. Free one tm_log_entry. */
933 static void
934 tm_log_free (void *p)
935 {
936 struct tm_log_entry *lp = (struct tm_log_entry *) p;
937 VEC_free (gimple, heap, lp->stmts);
938 free (lp);
939 }
940
941 /* Initialize logging data structures. */
942 static void
943 tm_log_init (void)
944 {
945 tm_log = htab_create (10, tm_log_hash, tm_log_eq, tm_log_free);
946 tm_new_mem_hash = htab_create (5, struct_ptr_hash, struct_ptr_eq, free);
947 tm_log_save_addresses = VEC_alloc (tree, heap, 5);
948 }
949
950 /* Free logging data structures. */
951 static void
952 tm_log_delete (void)
953 {
954 htab_delete (tm_log);
955 htab_delete (tm_new_mem_hash);
956 VEC_free (tree, heap, tm_log_save_addresses);
957 }
958
959 /* Return true if MEM is a transaction invariant memory for the TM
960 region starting at REGION_ENTRY_BLOCK. */
961 static bool
962 transaction_invariant_address_p (const_tree mem, basic_block region_entry_block)
963 {
964 if ((TREE_CODE (mem) == INDIRECT_REF || TREE_CODE (mem) == MEM_REF)
965 && TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME)
966 {
967 basic_block def_bb;
968
969 def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0)));
970 return def_bb != region_entry_block
971 && dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb);
972 }
973
974 mem = strip_invariant_refs (mem);
975 return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem));
976 }
977
978 /* Given an address ADDR in STMT, find it in the memory log or add it,
979 making sure to keep only the addresses highest in the dominator
980 tree.
981
982 ENTRY_BLOCK is the entry_block for the transaction.
983
984 If we find the address in the log, make sure it's either the same
985 address, or an equivalent one that dominates ADDR.
986
987 If we find the address, but neither ADDR dominates the found
988 address, nor the found one dominates ADDR, we're on different
989 execution paths. Add it.
990
991 If known, ENTRY_BLOCK is the entry block for the region, otherwise
992 NULL. */
993 static void
994 tm_log_add (basic_block entry_block, tree addr, gimple stmt)
995 {
996 void **slot;
997 struct tm_log_entry l, *lp;
998
999 l.addr = addr;
1000 slot = htab_find_slot (tm_log, &l, INSERT);
1001 if (!*slot)
1002 {
1003 tree type = TREE_TYPE (addr);
1004
1005 lp = XNEW (struct tm_log_entry);
1006 lp->addr = addr;
1007 *slot = lp;
1008
1009 /* Small invariant addresses can be handled as save/restores. */
1010 if (entry_block
1011 && transaction_invariant_address_p (lp->addr, entry_block)
1012 && TYPE_SIZE_UNIT (type) != NULL
1013 && host_integerp (TYPE_SIZE_UNIT (type), 1)
1014 && (tree_low_cst (TYPE_SIZE_UNIT (type), 1)
1015 < PARAM_VALUE (PARAM_TM_MAX_AGGREGATE_SIZE))
1016 /* We must be able to copy this type normally. I.e., no
1017 special constructors and the like. */
1018 && !TREE_ADDRESSABLE (type))
1019 {
1020 lp->save_var = create_tmp_reg (TREE_TYPE (lp->addr), "tm_save");
1021 add_referenced_var (lp->save_var);
1022 lp->stmts = NULL;
1023 lp->entry_block = entry_block;
1024 /* Save addresses separately in dominator order so we don't
1025 get confused by overlapping addresses in the save/restore
1026 sequence. */
1027 VEC_safe_push (tree, heap, tm_log_save_addresses, lp->addr);
1028 }
1029 else
1030 {
1031 /* Use the logging functions. */
1032 lp->stmts = VEC_alloc (gimple, heap, 5);
1033 VEC_quick_push (gimple, lp->stmts, stmt);
1034 lp->save_var = NULL;
1035 }
1036 }
1037 else
1038 {
1039 size_t i;
1040 gimple oldstmt;
1041
1042 lp = (struct tm_log_entry *) *slot;
1043
1044 /* If we're generating a save/restore sequence, we don't care
1045 about statements. */
1046 if (lp->save_var)
1047 return;
1048
1049 for (i = 0; VEC_iterate (gimple, lp->stmts, i, oldstmt); ++i)
1050 {
1051 if (stmt == oldstmt)
1052 return;
1053 /* We already have a store to the same address, higher up the
1054 dominator tree. Nothing to do. */
1055 if (dominated_by_p (CDI_DOMINATORS,
1056 gimple_bb (stmt), gimple_bb (oldstmt)))
1057 return;
1058 /* We should be processing blocks in dominator tree order. */
1059 gcc_assert (!dominated_by_p (CDI_DOMINATORS,
1060 gimple_bb (oldstmt), gimple_bb (stmt)));
1061 }
1062 /* Store is on a different code path. */
1063 VEC_safe_push (gimple, heap, lp->stmts, stmt);
1064 }
1065 }
1066
1067 /* Gimplify the address of a TARGET_MEM_REF. Return the SSA_NAME
1068 result, insert the new statements before GSI. */
1069
1070 static tree
1071 gimplify_addr (gimple_stmt_iterator *gsi, tree x)
1072 {
1073 if (TREE_CODE (x) == TARGET_MEM_REF)
1074 x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x);
1075 else
1076 x = build_fold_addr_expr (x);
1077 return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT);
1078 }
1079
1080 /* Instrument one address with the logging functions.
1081 ADDR is the address to save.
1082 STMT is the statement before which to place it. */
1083 static void
1084 tm_log_emit_stmt (tree addr, gimple stmt)
1085 {
1086 tree type = TREE_TYPE (addr);
1087 tree size = TYPE_SIZE_UNIT (type);
1088 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1089 gimple log;
1090 enum built_in_function code = BUILT_IN_TM_LOG;
1091
1092 if (type == float_type_node)
1093 code = BUILT_IN_TM_LOG_FLOAT;
1094 else if (type == double_type_node)
1095 code = BUILT_IN_TM_LOG_DOUBLE;
1096 else if (type == long_double_type_node)
1097 code = BUILT_IN_TM_LOG_LDOUBLE;
1098 else if (host_integerp (size, 1))
1099 {
1100 unsigned int n = tree_low_cst (size, 1);
1101 switch (n)
1102 {
1103 case 1:
1104 code = BUILT_IN_TM_LOG_1;
1105 break;
1106 case 2:
1107 code = BUILT_IN_TM_LOG_2;
1108 break;
1109 case 4:
1110 code = BUILT_IN_TM_LOG_4;
1111 break;
1112 case 8:
1113 code = BUILT_IN_TM_LOG_8;
1114 break;
1115 default:
1116 code = BUILT_IN_TM_LOG;
1117 if (TREE_CODE (type) == VECTOR_TYPE)
1118 {
1119 if (n == 8 && builtin_decl_explicit (BUILT_IN_TM_LOG_M64))
1120 code = BUILT_IN_TM_LOG_M64;
1121 else if (n == 16 && builtin_decl_explicit (BUILT_IN_TM_LOG_M128))
1122 code = BUILT_IN_TM_LOG_M128;
1123 else if (n == 32 && builtin_decl_explicit (BUILT_IN_TM_LOG_M256))
1124 code = BUILT_IN_TM_LOG_M256;
1125 }
1126 break;
1127 }
1128 }
1129
1130 addr = gimplify_addr (&gsi, addr);
1131 if (code == BUILT_IN_TM_LOG)
1132 log = gimple_build_call (builtin_decl_explicit (code), 2, addr, size);
1133 else
1134 log = gimple_build_call (builtin_decl_explicit (code), 1, addr);
1135 gsi_insert_before (&gsi, log, GSI_SAME_STMT);
1136 }
1137
1138 /* Go through the log and instrument address that must be instrumented
1139 with the logging functions. Leave the save/restore addresses for
1140 later. */
1141 static void
1142 tm_log_emit (void)
1143 {
1144 htab_iterator hi;
1145 struct tm_log_entry *lp;
1146
1147 FOR_EACH_HTAB_ELEMENT (tm_log, lp, tm_log_entry_t, hi)
1148 {
1149 size_t i;
1150 gimple stmt;
1151
1152 if (dump_file)
1153 {
1154 fprintf (dump_file, "TM thread private mem logging: ");
1155 print_generic_expr (dump_file, lp->addr, 0);
1156 fprintf (dump_file, "\n");
1157 }
1158
1159 if (lp->save_var)
1160 {
1161 if (dump_file)
1162 fprintf (dump_file, "DUMPING to variable\n");
1163 continue;
1164 }
1165 else
1166 {
1167 if (dump_file)
1168 fprintf (dump_file, "DUMPING with logging functions\n");
1169 for (i = 0; VEC_iterate (gimple, lp->stmts, i, stmt); ++i)
1170 tm_log_emit_stmt (lp->addr, stmt);
1171 }
1172 }
1173 }
1174
1175 /* Emit the save sequence for the corresponding addresses in the log.
1176 ENTRY_BLOCK is the entry block for the transaction.
1177 BB is the basic block to insert the code in. */
1178 static void
1179 tm_log_emit_saves (basic_block entry_block, basic_block bb)
1180 {
1181 size_t i;
1182 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1183 gimple stmt;
1184 struct tm_log_entry l, *lp;
1185
1186 for (i = 0; i < VEC_length (tree, tm_log_save_addresses); ++i)
1187 {
1188 l.addr = VEC_index (tree, tm_log_save_addresses, i);
1189 lp = (struct tm_log_entry *) *htab_find_slot (tm_log, &l, NO_INSERT);
1190 gcc_assert (lp->save_var != NULL);
1191
1192 /* We only care about variables in the current transaction. */
1193 if (lp->entry_block != entry_block)
1194 continue;
1195
1196 stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr));
1197
1198 /* Make sure we can create an SSA_NAME for this type. For
1199 instance, aggregates aren't allowed, in which case the system
1200 will create a VOP for us and everything will just work. */
1201 if (is_gimple_reg_type (TREE_TYPE (lp->save_var)))
1202 {
1203 lp->save_var = make_ssa_name (lp->save_var, stmt);
1204 gimple_assign_set_lhs (stmt, lp->save_var);
1205 }
1206
1207 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1208 }
1209 }
1210
1211 /* Emit the restore sequence for the corresponding addresses in the log.
1212 ENTRY_BLOCK is the entry block for the transaction.
1213 BB is the basic block to insert the code in. */
1214 static void
1215 tm_log_emit_restores (basic_block entry_block, basic_block bb)
1216 {
1217 int i;
1218 struct tm_log_entry l, *lp;
1219 gimple_stmt_iterator gsi;
1220 gimple stmt;
1221
1222 for (i = VEC_length (tree, tm_log_save_addresses) - 1; i >= 0; i--)
1223 {
1224 l.addr = VEC_index (tree, tm_log_save_addresses, i);
1225 lp = (struct tm_log_entry *) *htab_find_slot (tm_log, &l, NO_INSERT);
1226 gcc_assert (lp->save_var != NULL);
1227
1228 /* We only care about variables in the current transaction. */
1229 if (lp->entry_block != entry_block)
1230 continue;
1231
1232 /* Restores are in LIFO order from the saves in case we have
1233 overlaps. */
1234 gsi = gsi_start_bb (bb);
1235
1236 stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var);
1237 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1238 }
1239 }
1240
1241 /* Emit the checks for performing either a save or a restore sequence.
1242
1243 TRXN_PROP is either A_SAVELIVEVARIABLES or A_RESTORELIVEVARIABLES.
1244
1245 The code sequence is inserted in a new basic block created in
1246 END_BB which is inserted between BEFORE_BB and the destination of
1247 FALLTHRU_EDGE.
1248
1249 STATUS is the return value from _ITM_beginTransaction.
1250 ENTRY_BLOCK is the entry block for the transaction.
1251 EMITF is a callback to emit the actual save/restore code.
1252
1253 The basic block containing the conditional checking for TRXN_PROP
1254 is returned. */
1255 static basic_block
1256 tm_log_emit_save_or_restores (basic_block entry_block,
1257 unsigned trxn_prop,
1258 tree status,
1259 void (*emitf)(basic_block, basic_block),
1260 basic_block before_bb,
1261 edge fallthru_edge,
1262 basic_block *end_bb)
1263 {
1264 basic_block cond_bb, code_bb;
1265 gimple cond_stmt, stmt;
1266 gimple_stmt_iterator gsi;
1267 tree t1, t2;
1268 int old_flags = fallthru_edge->flags;
1269
1270 cond_bb = create_empty_bb (before_bb);
1271 code_bb = create_empty_bb (cond_bb);
1272 *end_bb = create_empty_bb (code_bb);
1273 redirect_edge_pred (fallthru_edge, *end_bb);
1274 fallthru_edge->flags = EDGE_FALLTHRU;
1275 make_edge (before_bb, cond_bb, old_flags);
1276
1277 set_immediate_dominator (CDI_DOMINATORS, cond_bb, before_bb);
1278 set_immediate_dominator (CDI_DOMINATORS, code_bb, cond_bb);
1279
1280 gsi = gsi_last_bb (cond_bb);
1281
1282 /* t1 = status & A_{property}. */
1283 t1 = make_rename_temp (TREE_TYPE (status), NULL);
1284 t2 = build_int_cst (TREE_TYPE (status), trxn_prop);
1285 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1, status, t2);
1286 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1287
1288 /* if (t1). */
1289 t2 = build_int_cst (TREE_TYPE (status), 0);
1290 cond_stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
1291 gsi_insert_after (&gsi, cond_stmt, GSI_CONTINUE_LINKING);
1292
1293 emitf (entry_block, code_bb);
1294
1295 make_edge (cond_bb, code_bb, EDGE_TRUE_VALUE);
1296 make_edge (cond_bb, *end_bb, EDGE_FALSE_VALUE);
1297 make_edge (code_bb, *end_bb, EDGE_FALLTHRU);
1298
1299 return cond_bb;
1300 }
1301 \f
1302 static tree lower_sequence_tm (gimple_stmt_iterator *, bool *,
1303 struct walk_stmt_info *);
1304 static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *,
1305 struct walk_stmt_info *);
1306
1307 /* Evaluate an address X being dereferenced and determine if it
1308 originally points to a non aliased new chunk of memory (malloc,
1309 alloca, etc).
1310
1311 Return MEM_THREAD_LOCAL if it points to a thread-local address.
1312 Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address.
1313 Return MEM_NON_LOCAL otherwise.
1314
1315 ENTRY_BLOCK is the entry block to the transaction containing the
1316 dereference of X. */
1317 static enum thread_memory_type
1318 thread_private_new_memory (basic_block entry_block, tree x)
1319 {
1320 gimple stmt = NULL;
1321 enum tree_code code;
1322 void **slot;
1323 tm_new_mem_map_t elt, *elt_p;
1324 tree val = x;
1325 enum thread_memory_type retval = mem_transaction_local;
1326
1327 if (!entry_block
1328 || TREE_CODE (x) != SSA_NAME
1329 /* Possible uninitialized use, or a function argument. In
1330 either case, we don't care. */
1331 || SSA_NAME_IS_DEFAULT_DEF (x))
1332 return mem_non_local;
1333
1334 /* Look in cache first. */
1335 elt.val = x;
1336 slot = htab_find_slot (tm_new_mem_hash, &elt, INSERT);
1337 elt_p = (tm_new_mem_map_t *) *slot;
1338 if (elt_p)
1339 return elt_p->local_new_memory;
1340
1341 /* Optimistically assume the memory is transaction local during
1342 processing. This catches recursion into this variable. */
1343 *slot = elt_p = XNEW (tm_new_mem_map_t);
1344 elt_p->val = val;
1345 elt_p->local_new_memory = mem_transaction_local;
1346
1347 /* Search DEF chain to find the original definition of this address. */
1348 do
1349 {
1350 if (ptr_deref_may_alias_global_p (x))
1351 {
1352 /* Address escapes. This is not thread-private. */
1353 retval = mem_non_local;
1354 goto new_memory_ret;
1355 }
1356
1357 stmt = SSA_NAME_DEF_STMT (x);
1358
1359 /* If the malloc call is outside the transaction, this is
1360 thread-local. */
1361 if (retval != mem_thread_local
1362 && !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), entry_block))
1363 retval = mem_thread_local;
1364
1365 if (is_gimple_assign (stmt))
1366 {
1367 code = gimple_assign_rhs_code (stmt);
1368 /* x = foo ==> foo */
1369 if (code == SSA_NAME)
1370 x = gimple_assign_rhs1 (stmt);
1371 /* x = foo + n ==> foo */
1372 else if (code == POINTER_PLUS_EXPR)
1373 x = gimple_assign_rhs1 (stmt);
1374 /* x = (cast*) foo ==> foo */
1375 else if (code == VIEW_CONVERT_EXPR || code == NOP_EXPR)
1376 x = gimple_assign_rhs1 (stmt);
1377 else
1378 {
1379 retval = mem_non_local;
1380 goto new_memory_ret;
1381 }
1382 }
1383 else
1384 {
1385 if (gimple_code (stmt) == GIMPLE_PHI)
1386 {
1387 unsigned int i;
1388 enum thread_memory_type mem;
1389 tree phi_result = gimple_phi_result (stmt);
1390
1391 /* If any of the ancestors are non-local, we are sure to
1392 be non-local. Otherwise we can avoid doing anything
1393 and inherit what has already been generated. */
1394 retval = mem_max;
1395 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
1396 {
1397 tree op = PHI_ARG_DEF (stmt, i);
1398
1399 /* Exclude self-assignment. */
1400 if (phi_result == op)
1401 continue;
1402
1403 mem = thread_private_new_memory (entry_block, op);
1404 if (mem == mem_non_local)
1405 {
1406 retval = mem;
1407 goto new_memory_ret;
1408 }
1409 retval = MIN (retval, mem);
1410 }
1411 goto new_memory_ret;
1412 }
1413 break;
1414 }
1415 }
1416 while (TREE_CODE (x) == SSA_NAME);
1417
1418 if (stmt && is_gimple_call (stmt) && gimple_call_flags (stmt) & ECF_MALLOC)
1419 /* Thread-local or transaction-local. */
1420 ;
1421 else
1422 retval = mem_non_local;
1423
1424 new_memory_ret:
1425 elt_p->local_new_memory = retval;
1426 return retval;
1427 }
1428
1429 /* Determine whether X has to be instrumented using a read
1430 or write barrier.
1431
1432 ENTRY_BLOCK is the entry block for the region where stmt resides
1433 in. NULL if unknown.
1434
1435 STMT is the statement in which X occurs in. It is used for thread
1436 private memory instrumentation. If no TPM instrumentation is
1437 desired, STMT should be null. */
1438 static bool
1439 requires_barrier (basic_block entry_block, tree x, gimple stmt)
1440 {
1441 tree orig = x;
1442 while (handled_component_p (x))
1443 x = TREE_OPERAND (x, 0);
1444
1445 switch (TREE_CODE (x))
1446 {
1447 case INDIRECT_REF:
1448 case MEM_REF:
1449 {
1450 enum thread_memory_type ret;
1451
1452 ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0));
1453 if (ret == mem_non_local)
1454 return true;
1455 if (stmt && ret == mem_thread_local)
1456 /* ?? Should we pass `orig', or the INDIRECT_REF X. ?? */
1457 tm_log_add (entry_block, orig, stmt);
1458
1459 /* Transaction-locals require nothing at all. For malloc, a
1460 transaction restart frees the memory and we reallocate.
1461 For alloca, the stack pointer gets reset by the retry and
1462 we reallocate. */
1463 return false;
1464 }
1465
1466 case TARGET_MEM_REF:
1467 if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR)
1468 return true;
1469 x = TREE_OPERAND (TMR_BASE (x), 0);
1470 if (TREE_CODE (x) == PARM_DECL)
1471 return false;
1472 gcc_assert (TREE_CODE (x) == VAR_DECL);
1473 /* FALLTHRU */
1474
1475 case PARM_DECL:
1476 case RESULT_DECL:
1477 case VAR_DECL:
1478 if (DECL_BY_REFERENCE (x))
1479 {
1480 /* ??? This value is a pointer, but aggregate_value_p has been
1481 jigged to return true which confuses needs_to_live_in_memory.
1482 This ought to be cleaned up generically.
1483
1484 FIXME: Verify this still happens after the next mainline
1485 merge. Testcase ie g++.dg/tm/pr47554.C.
1486 */
1487 return false;
1488 }
1489
1490 if (is_global_var (x))
1491 return !TREE_READONLY (x);
1492 if (/* FIXME: This condition should actually go below in the
1493 tm_log_add() call, however is_call_clobbered() depends on
1494 aliasing info which is not available during
1495 gimplification. Since requires_barrier() gets called
1496 during lower_sequence_tm/gimplification, leave the call
1497 to needs_to_live_in_memory until we eliminate
1498 lower_sequence_tm altogether. */
1499 needs_to_live_in_memory (x))
1500 return true;
1501 else
1502 {
1503 /* For local memory that doesn't escape (aka thread private
1504 memory), we can either save the value at the beginning of
1505 the transaction and restore on restart, or call a tm
1506 function to dynamically save and restore on restart
1507 (ITM_L*). */
1508 if (stmt)
1509 tm_log_add (entry_block, orig, stmt);
1510 return false;
1511 }
1512
1513 default:
1514 return false;
1515 }
1516 }
1517
1518 /* Mark the GIMPLE_ASSIGN statement as appropriate for being inside
1519 a transaction region. */
1520
1521 static void
1522 examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi)
1523 {
1524 gimple stmt = gsi_stmt (*gsi);
1525
1526 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_rhs1 (stmt), NULL))
1527 *state |= GTMA_HAVE_LOAD;
1528 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_lhs (stmt), NULL))
1529 *state |= GTMA_HAVE_STORE;
1530 }
1531
1532 /* Mark a GIMPLE_CALL as appropriate for being inside a transaction. */
1533
1534 static void
1535 examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi)
1536 {
1537 gimple stmt = gsi_stmt (*gsi);
1538 tree fn;
1539
1540 if (is_tm_pure_call (stmt))
1541 return;
1542
1543 /* Check if this call is a transaction abort. */
1544 fn = gimple_call_fndecl (stmt);
1545 if (is_tm_abort (fn))
1546 *state |= GTMA_HAVE_ABORT;
1547
1548 /* Note that something may happen. */
1549 *state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE;
1550 }
1551
1552 /* Lower a GIMPLE_TRANSACTION statement. */
1553
1554 static void
1555 lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi)
1556 {
1557 gimple g, stmt = gsi_stmt (*gsi);
1558 unsigned int *outer_state = (unsigned int *) wi->info;
1559 unsigned int this_state = 0;
1560 struct walk_stmt_info this_wi;
1561
1562 /* First, lower the body. The scanning that we do inside gives
1563 us some idea of what we're dealing with. */
1564 memset (&this_wi, 0, sizeof (this_wi));
1565 this_wi.info = (void *) &this_state;
1566 walk_gimple_seq (gimple_transaction_body (stmt),
1567 lower_sequence_tm, NULL, &this_wi);
1568
1569 /* If there was absolutely nothing transaction related inside the
1570 transaction, we may elide it. Likewise if this is a nested
1571 transaction and does not contain an abort. */
1572 if (this_state == 0
1573 || (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL))
1574 {
1575 if (outer_state)
1576 *outer_state |= this_state;
1577
1578 gsi_insert_seq_before (gsi, gimple_transaction_body (stmt),
1579 GSI_SAME_STMT);
1580 gimple_transaction_set_body (stmt, NULL);
1581
1582 gsi_remove (gsi, true);
1583 wi->removed_stmt = true;
1584 return;
1585 }
1586
1587 /* Wrap the body of the transaction in a try-finally node so that
1588 the commit call is always properly called. */
1589 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT), 0);
1590 if (flag_exceptions)
1591 {
1592 tree ptr;
1593 gimple_seq n_seq, e_seq;
1594
1595 n_seq = gimple_seq_alloc_with_stmt (g);
1596 e_seq = gimple_seq_alloc ();
1597
1598 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1599 1, integer_zero_node);
1600 ptr = create_tmp_var (ptr_type_node, NULL);
1601 gimple_call_set_lhs (g, ptr);
1602 gimple_seq_add_stmt (&e_seq, g);
1603
1604 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT_EH),
1605 1, ptr);
1606 gimple_seq_add_stmt (&e_seq, g);
1607
1608 g = gimple_build_eh_else (n_seq, e_seq);
1609 }
1610
1611 g = gimple_build_try (gimple_transaction_body (stmt),
1612 gimple_seq_alloc_with_stmt (g), GIMPLE_TRY_FINALLY);
1613 gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
1614
1615 gimple_transaction_set_body (stmt, NULL);
1616
1617 /* If the transaction calls abort or if this is an outer transaction,
1618 add an "over" label afterwards. */
1619 if ((this_state & (GTMA_HAVE_ABORT))
1620 || (gimple_transaction_subcode(stmt) & GTMA_IS_OUTER))
1621 {
1622 tree label = create_artificial_label (UNKNOWN_LOCATION);
1623 gimple_transaction_set_label (stmt, label);
1624 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
1625 }
1626
1627 /* Record the set of operations found for use later. */
1628 this_state |= gimple_transaction_subcode (stmt) & GTMA_DECLARATION_MASK;
1629 gimple_transaction_set_subcode (stmt, this_state);
1630 }
1631
1632 /* Iterate through the statements in the sequence, lowering them all
1633 as appropriate for being in a transaction. */
1634
1635 static tree
1636 lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1637 struct walk_stmt_info *wi)
1638 {
1639 unsigned int *state = (unsigned int *) wi->info;
1640 gimple stmt = gsi_stmt (*gsi);
1641
1642 *handled_ops_p = true;
1643 switch (gimple_code (stmt))
1644 {
1645 case GIMPLE_ASSIGN:
1646 /* Only memory reads/writes need to be instrumented. */
1647 if (gimple_assign_single_p (stmt))
1648 examine_assign_tm (state, gsi);
1649 break;
1650
1651 case GIMPLE_CALL:
1652 examine_call_tm (state, gsi);
1653 break;
1654
1655 case GIMPLE_ASM:
1656 *state |= GTMA_MAY_ENTER_IRREVOCABLE;
1657 break;
1658
1659 case GIMPLE_TRANSACTION:
1660 lower_transaction (gsi, wi);
1661 break;
1662
1663 default:
1664 *handled_ops_p = !gimple_has_substatements (stmt);
1665 break;
1666 }
1667
1668 return NULL_TREE;
1669 }
1670
1671 /* Iterate through the statements in the sequence, lowering them all
1672 as appropriate for being outside of a transaction. */
1673
1674 static tree
1675 lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1676 struct walk_stmt_info * wi)
1677 {
1678 gimple stmt = gsi_stmt (*gsi);
1679
1680 if (gimple_code (stmt) == GIMPLE_TRANSACTION)
1681 {
1682 *handled_ops_p = true;
1683 lower_transaction (gsi, wi);
1684 }
1685 else
1686 *handled_ops_p = !gimple_has_substatements (stmt);
1687
1688 return NULL_TREE;
1689 }
1690
1691 /* Main entry point for flattening GIMPLE_TRANSACTION constructs. After
1692 this, GIMPLE_TRANSACTION nodes still exist, but the nested body has
1693 been moved out, and all the data required for constructing a proper
1694 CFG has been recorded. */
1695
1696 static unsigned int
1697 execute_lower_tm (void)
1698 {
1699 struct walk_stmt_info wi;
1700
1701 /* Transactional clones aren't created until a later pass. */
1702 gcc_assert (!decl_is_tm_clone (current_function_decl));
1703
1704 memset (&wi, 0, sizeof (wi));
1705 walk_gimple_seq (gimple_body (current_function_decl),
1706 lower_sequence_no_tm, NULL, &wi);
1707
1708 return 0;
1709 }
1710
1711 struct gimple_opt_pass pass_lower_tm =
1712 {
1713 {
1714 GIMPLE_PASS,
1715 "tmlower", /* name */
1716 gate_tm, /* gate */
1717 execute_lower_tm, /* execute */
1718 NULL, /* sub */
1719 NULL, /* next */
1720 0, /* static_pass_number */
1721 TV_TRANS_MEM, /* tv_id */
1722 PROP_gimple_lcf, /* properties_required */
1723 0, /* properties_provided */
1724 0, /* properties_destroyed */
1725 0, /* todo_flags_start */
1726 TODO_dump_func /* todo_flags_finish */
1727 }
1728 };
1729 \f
1730 /* Collect region information for each transaction. */
1731
1732 struct tm_region
1733 {
1734 /* Link to the next unnested transaction. */
1735 struct tm_region *next;
1736
1737 /* Link to the next inner transaction. */
1738 struct tm_region *inner;
1739
1740 /* Link to the next outer transaction. */
1741 struct tm_region *outer;
1742
1743 /* The GIMPLE_TRANSACTION statement beginning this transaction. */
1744 gimple transaction_stmt;
1745
1746 /* The entry block to this region. */
1747 basic_block entry_block;
1748
1749 /* The set of all blocks that end the region; NULL if only EXIT_BLOCK.
1750 These blocks are still a part of the region (i.e., the border is
1751 inclusive). Note that this set is only complete for paths in the CFG
1752 starting at ENTRY_BLOCK, and that there is no exit block recorded for
1753 the edge to the "over" label. */
1754 bitmap exit_blocks;
1755
1756 /* The set of all blocks that have an TM_IRREVOCABLE call. */
1757 bitmap irr_blocks;
1758 };
1759
1760 /* True if there are pending edge statements to be committed for the
1761 current function being scanned in the tmmark pass. */
1762 bool pending_edge_inserts_p;
1763
1764 static struct tm_region *all_tm_regions;
1765 static bitmap_obstack tm_obstack;
1766
1767
1768 /* A subroutine of tm_region_init. Record the existance of the
1769 GIMPLE_TRANSACTION statement in a tree of tm_region elements. */
1770
1771 static struct tm_region *
1772 tm_region_init_0 (struct tm_region *outer, basic_block bb, gimple stmt)
1773 {
1774 struct tm_region *region;
1775
1776 region = (struct tm_region *)
1777 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1778
1779 if (outer)
1780 {
1781 region->next = outer->inner;
1782 outer->inner = region;
1783 }
1784 else
1785 {
1786 region->next = all_tm_regions;
1787 all_tm_regions = region;
1788 }
1789 region->inner = NULL;
1790 region->outer = outer;
1791
1792 region->transaction_stmt = stmt;
1793
1794 /* There are either one or two edges out of the block containing
1795 the GIMPLE_TRANSACTION, one to the actual region and one to the
1796 "over" label if the region contains an abort. The former will
1797 always be the one marked FALLTHRU. */
1798 region->entry_block = FALLTHRU_EDGE (bb)->dest;
1799
1800 region->exit_blocks = BITMAP_ALLOC (&tm_obstack);
1801 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1802
1803 return region;
1804 }
1805
1806 /* A subroutine of tm_region_init. Record all the exit and
1807 irrevocable blocks in BB into the region's exit_blocks and
1808 irr_blocks bitmaps. Returns the new region being scanned. */
1809
1810 static struct tm_region *
1811 tm_region_init_1 (struct tm_region *region, basic_block bb)
1812 {
1813 gimple_stmt_iterator gsi;
1814 gimple g;
1815
1816 if (!region
1817 || (!region->irr_blocks && !region->exit_blocks))
1818 return region;
1819
1820 /* Check to see if this is the end of a region by seeing if it
1821 contains a call to __builtin_tm_commit{,_eh}. Note that the
1822 outermost region for DECL_IS_TM_CLONE need not collect this. */
1823 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1824 {
1825 g = gsi_stmt (gsi);
1826 if (gimple_code (g) == GIMPLE_CALL)
1827 {
1828 tree fn = gimple_call_fndecl (g);
1829 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
1830 {
1831 if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT
1832 || DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT_EH)
1833 && region->exit_blocks)
1834 {
1835 bitmap_set_bit (region->exit_blocks, bb->index);
1836 region = region->outer;
1837 break;
1838 }
1839 if (DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_IRREVOCABLE)
1840 bitmap_set_bit (region->irr_blocks, bb->index);
1841 }
1842 }
1843 }
1844 return region;
1845 }
1846
1847 /* Collect all of the transaction regions within the current function
1848 and record them in ALL_TM_REGIONS. The REGION parameter may specify
1849 an "outermost" region for use by tm clones. */
1850
1851 static void
1852 tm_region_init (struct tm_region *region)
1853 {
1854 gimple g;
1855 edge_iterator ei;
1856 edge e;
1857 basic_block bb;
1858 VEC(basic_block, heap) *queue = NULL;
1859 bitmap visited_blocks = BITMAP_ALLOC (NULL);
1860 struct tm_region *old_region;
1861 struct tm_region **region_worklist;
1862
1863 all_tm_regions = region;
1864 bb = single_succ (ENTRY_BLOCK_PTR);
1865
1866 /* We could store this information in bb->aux, but we may get called
1867 through get_all_tm_blocks() from another pass that may be already
1868 using bb->aux. */
1869 region_worklist =
1870 (struct tm_region **) xcalloc (sizeof (struct tm_region *),
1871 n_basic_blocks + NUM_FIXED_BLOCKS + 2);
1872
1873 VEC_safe_push (basic_block, heap, queue, bb);
1874 region_worklist[bb->index] = region;
1875 do
1876 {
1877 bb = VEC_pop (basic_block, queue);
1878 region = region_worklist[bb->index];
1879 region_worklist[bb->index] = NULL;
1880
1881 /* Record exit and irrevocable blocks. */
1882 region = tm_region_init_1 (region, bb);
1883
1884 /* Check for the last statement in the block beginning a new region. */
1885 g = last_stmt (bb);
1886 old_region = region;
1887 if (g && gimple_code (g) == GIMPLE_TRANSACTION)
1888 region = tm_region_init_0 (region, bb, g);
1889
1890 /* Process subsequent blocks. */
1891 FOR_EACH_EDGE (e, ei, bb->succs)
1892 if (!bitmap_bit_p (visited_blocks, e->dest->index))
1893 {
1894 bitmap_set_bit (visited_blocks, e->dest->index);
1895 VEC_safe_push (basic_block, heap, queue, e->dest);
1896
1897 /* If the current block started a new region, make sure that only
1898 the entry block of the new region is associated with this region.
1899 Other successors are still part of the old region. */
1900 if (old_region != region && e->dest != region->entry_block)
1901 region_worklist[e->dest->index] = old_region;
1902 else
1903 region_worklist[e->dest->index] = region;
1904 }
1905 }
1906 while (!VEC_empty (basic_block, queue));
1907 VEC_free (basic_block, heap, queue);
1908 BITMAP_FREE (visited_blocks);
1909 free (region_worklist);
1910 }
1911
1912 /* The "gate" function for all transactional memory expansion and optimization
1913 passes. We collect region information for each top-level transaction, and
1914 if we don't find any, we skip all of the TM passes. Each region will have
1915 all of the exit blocks recorded, and the originating statement. */
1916
1917 static bool
1918 gate_tm_init (void)
1919 {
1920 if (!flag_tm)
1921 return false;
1922
1923 calculate_dominance_info (CDI_DOMINATORS);
1924 bitmap_obstack_initialize (&tm_obstack);
1925
1926 /* If the function is a TM_CLONE, then the entire function is the region. */
1927 if (decl_is_tm_clone (current_function_decl))
1928 {
1929 struct tm_region *region = (struct tm_region *)
1930 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1931 memset (region, 0, sizeof (*region));
1932 region->entry_block = single_succ (ENTRY_BLOCK_PTR);
1933 /* For a clone, the entire function is the region. But even if
1934 we don't need to record any exit blocks, we may need to
1935 record irrevocable blocks. */
1936 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1937
1938 tm_region_init (region);
1939 }
1940 else
1941 {
1942 tm_region_init (NULL);
1943
1944 /* If we didn't find any regions, cleanup and skip the whole tree
1945 of tm-related optimizations. */
1946 if (all_tm_regions == NULL)
1947 {
1948 bitmap_obstack_release (&tm_obstack);
1949 return false;
1950 }
1951 }
1952
1953 return true;
1954 }
1955
1956 struct gimple_opt_pass pass_tm_init =
1957 {
1958 {
1959 GIMPLE_PASS,
1960 "*tminit", /* name */
1961 gate_tm_init, /* gate */
1962 NULL, /* execute */
1963 NULL, /* sub */
1964 NULL, /* next */
1965 0, /* static_pass_number */
1966 TV_TRANS_MEM, /* tv_id */
1967 PROP_ssa | PROP_cfg, /* properties_required */
1968 0, /* properties_provided */
1969 0, /* properties_destroyed */
1970 0, /* todo_flags_start */
1971 0, /* todo_flags_finish */
1972 }
1973 };
1974 \f
1975 /* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region
1976 represented by STATE. */
1977
1978 static inline void
1979 transaction_subcode_ior (struct tm_region *region, unsigned flags)
1980 {
1981 if (region && region->transaction_stmt)
1982 {
1983 flags |= gimple_transaction_subcode (region->transaction_stmt);
1984 gimple_transaction_set_subcode (region->transaction_stmt, flags);
1985 }
1986 }
1987
1988 /* Construct a memory load in a transactional context. Return the
1989 gimple statement performing the load, or NULL if there is no
1990 TM_LOAD builtin of the appropriate size to do the load.
1991
1992 LOC is the location to use for the new statement(s). */
1993
1994 static gimple
1995 build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
1996 {
1997 enum built_in_function code = END_BUILTINS;
1998 tree t, type = TREE_TYPE (rhs), decl;
1999 gimple gcall;
2000
2001 if (type == float_type_node)
2002 code = BUILT_IN_TM_LOAD_FLOAT;
2003 else if (type == double_type_node)
2004 code = BUILT_IN_TM_LOAD_DOUBLE;
2005 else if (type == long_double_type_node)
2006 code = BUILT_IN_TM_LOAD_LDOUBLE;
2007 else if (TYPE_SIZE_UNIT (type) != NULL
2008 && host_integerp (TYPE_SIZE_UNIT (type), 1))
2009 {
2010 switch (tree_low_cst (TYPE_SIZE_UNIT (type), 1))
2011 {
2012 case 1:
2013 code = BUILT_IN_TM_LOAD_1;
2014 break;
2015 case 2:
2016 code = BUILT_IN_TM_LOAD_2;
2017 break;
2018 case 4:
2019 code = BUILT_IN_TM_LOAD_4;
2020 break;
2021 case 8:
2022 code = BUILT_IN_TM_LOAD_8;
2023 break;
2024 }
2025 }
2026
2027 if (code == END_BUILTINS)
2028 {
2029 decl = targetm.vectorize.builtin_tm_load (type);
2030 if (!decl)
2031 return NULL;
2032 }
2033 else
2034 decl = builtin_decl_explicit (code);
2035
2036 t = gimplify_addr (gsi, rhs);
2037 gcall = gimple_build_call (decl, 1, t);
2038 gimple_set_location (gcall, loc);
2039
2040 t = TREE_TYPE (TREE_TYPE (decl));
2041 if (useless_type_conversion_p (type, t))
2042 {
2043 gimple_call_set_lhs (gcall, lhs);
2044 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2045 }
2046 else
2047 {
2048 gimple g;
2049 tree temp;
2050
2051 temp = make_rename_temp (t, NULL);
2052 gimple_call_set_lhs (gcall, temp);
2053 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2054
2055 t = fold_build1 (VIEW_CONVERT_EXPR, type, temp);
2056 g = gimple_build_assign (lhs, t);
2057 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2058 }
2059
2060 return gcall;
2061 }
2062
2063
2064 /* Similarly for storing TYPE in a transactional context. */
2065
2066 static gimple
2067 build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2068 {
2069 enum built_in_function code = END_BUILTINS;
2070 tree t, fn, type = TREE_TYPE (rhs), simple_type;
2071 gimple gcall;
2072
2073 if (type == float_type_node)
2074 code = BUILT_IN_TM_STORE_FLOAT;
2075 else if (type == double_type_node)
2076 code = BUILT_IN_TM_STORE_DOUBLE;
2077 else if (type == long_double_type_node)
2078 code = BUILT_IN_TM_STORE_LDOUBLE;
2079 else if (TYPE_SIZE_UNIT (type) != NULL
2080 && host_integerp (TYPE_SIZE_UNIT (type), 1))
2081 {
2082 switch (tree_low_cst (TYPE_SIZE_UNIT (type), 1))
2083 {
2084 case 1:
2085 code = BUILT_IN_TM_STORE_1;
2086 break;
2087 case 2:
2088 code = BUILT_IN_TM_STORE_2;
2089 break;
2090 case 4:
2091 code = BUILT_IN_TM_STORE_4;
2092 break;
2093 case 8:
2094 code = BUILT_IN_TM_STORE_8;
2095 break;
2096 }
2097 }
2098
2099 if (code == END_BUILTINS)
2100 {
2101 fn = targetm.vectorize.builtin_tm_store (type);
2102 if (!fn)
2103 return NULL;
2104 }
2105 else
2106 fn = builtin_decl_explicit (code);
2107
2108 simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))));
2109
2110 if (TREE_CODE (rhs) == CONSTRUCTOR)
2111 {
2112 /* Handle the easy initialization to zero. */
2113 if (CONSTRUCTOR_ELTS (rhs) == 0)
2114 rhs = build_int_cst (simple_type, 0);
2115 else
2116 {
2117 /* ...otherwise punt to the caller and probably use
2118 BUILT_IN_TM_MEMMOVE, because we can't wrap a
2119 VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce
2120 valid gimple. */
2121 return NULL;
2122 }
2123 }
2124 else if (!useless_type_conversion_p (simple_type, type))
2125 {
2126 gimple g;
2127 tree temp;
2128
2129 temp = make_rename_temp (simple_type, NULL);
2130 t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs);
2131 g = gimple_build_assign (temp, t);
2132 gimple_set_location (g, loc);
2133 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2134
2135 rhs = temp;
2136 }
2137
2138 t = gimplify_addr (gsi, lhs);
2139 gcall = gimple_build_call (fn, 2, t, rhs);
2140 gimple_set_location (gcall, loc);
2141 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2142
2143 return gcall;
2144 }
2145
2146
2147 /* Expand an assignment statement into transactional builtins. */
2148
2149 static void
2150 expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi)
2151 {
2152 gimple stmt = gsi_stmt (*gsi);
2153 location_t loc = gimple_location (stmt);
2154 tree lhs = gimple_assign_lhs (stmt);
2155 tree rhs = gimple_assign_rhs1 (stmt);
2156 bool store_p = requires_barrier (region->entry_block, lhs, NULL);
2157 bool load_p = requires_barrier (region->entry_block, rhs, NULL);
2158 gimple gcall = NULL;
2159
2160 if (!load_p && !store_p)
2161 {
2162 /* Add thread private addresses to log if applicable. */
2163 requires_barrier (region->entry_block, lhs, stmt);
2164 gsi_next (gsi);
2165 return;
2166 }
2167
2168 gsi_remove (gsi, true);
2169
2170 if (load_p && !store_p)
2171 {
2172 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2173 gcall = build_tm_load (loc, lhs, rhs, gsi);
2174 }
2175 else if (store_p && !load_p)
2176 {
2177 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2178 gcall = build_tm_store (loc, lhs, rhs, gsi);
2179 }
2180 if (!gcall)
2181 {
2182 tree lhs_addr, rhs_addr, tmp;
2183
2184 if (load_p)
2185 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2186 if (store_p)
2187 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2188
2189 /* ??? Figure out if there's any possible overlap between the LHS
2190 and the RHS and if not, use MEMCPY. */
2191
2192 if (load_p && is_gimple_reg (lhs))
2193 {
2194 tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2195 lhs_addr = build_fold_addr_expr (tmp);
2196 }
2197 else
2198 {
2199 tmp = NULL_TREE;
2200 lhs_addr = gimplify_addr (gsi, lhs);
2201 }
2202 rhs_addr = gimplify_addr (gsi, rhs);
2203 gcall = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_MEMMOVE),
2204 3, lhs_addr, rhs_addr,
2205 TYPE_SIZE_UNIT (TREE_TYPE (lhs)));
2206 gimple_set_location (gcall, loc);
2207 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2208
2209 if (tmp)
2210 {
2211 gcall = gimple_build_assign (lhs, tmp);
2212 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2213 }
2214 }
2215
2216 /* Now that we have the load/store in its instrumented form, add
2217 thread private addresses to the log if applicable. */
2218 if (!store_p)
2219 requires_barrier (region->entry_block, lhs, gcall);
2220
2221 /* add_stmt_to_tm_region (region, gcall); */
2222 }
2223
2224
2225 /* Expand a call statement as appropriate for a transaction. That is,
2226 either verify that the call does not affect the transaction, or
2227 redirect the call to a clone that handles transactions, or change
2228 the transaction state to IRREVOCABLE. Return true if the call is
2229 one of the builtins that end a transaction. */
2230
2231 static bool
2232 expand_call_tm (struct tm_region *region,
2233 gimple_stmt_iterator *gsi)
2234 {
2235 gimple stmt = gsi_stmt (*gsi);
2236 tree lhs = gimple_call_lhs (stmt);
2237 tree fn_decl;
2238 struct cgraph_node *node;
2239 bool retval = false;
2240
2241 fn_decl = gimple_call_fndecl (stmt);
2242
2243 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMCPY)
2244 || fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMMOVE))
2245 transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD);
2246 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMSET))
2247 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2248
2249 if (is_tm_pure_call (stmt))
2250 return false;
2251
2252 if (fn_decl)
2253 retval = is_tm_ending_fndecl (fn_decl);
2254 if (!retval)
2255 {
2256 /* Assume all non-const/pure calls write to memory, except
2257 transaction ending builtins. */
2258 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2259 }
2260
2261 /* For indirect calls, we already generated a call into the runtime. */
2262 if (!fn_decl)
2263 {
2264 tree fn = gimple_call_fn (stmt);
2265
2266 /* We are guaranteed never to go irrevocable on a safe or pure
2267 call, and the pure call was handled above. */
2268 if (is_tm_safe (fn))
2269 return false;
2270 else
2271 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2272
2273 return false;
2274 }
2275
2276 node = cgraph_get_node (fn_decl);
2277 /* All calls should have cgraph here. */
2278 gcc_assert (node);
2279 if (node->local.tm_may_enter_irr)
2280 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2281
2282 if (is_tm_abort (fn_decl))
2283 {
2284 transaction_subcode_ior (region, GTMA_HAVE_ABORT);
2285 return true;
2286 }
2287
2288 /* Instrument the store if needed.
2289
2290 If the assignment happens inside the function call (return slot
2291 optimization), there is no instrumentation to be done, since
2292 the callee should have done the right thing. */
2293 if (lhs && requires_barrier (region->entry_block, lhs, stmt)
2294 && !gimple_call_return_slot_opt_p (stmt))
2295 {
2296 tree tmp = make_rename_temp (TREE_TYPE (lhs), NULL);
2297 location_t loc = gimple_location (stmt);
2298 edge fallthru_edge = NULL;
2299
2300 /* Remember if the call was going to throw. */
2301 if (stmt_can_throw_internal (stmt))
2302 {
2303 edge_iterator ei;
2304 edge e;
2305 basic_block bb = gimple_bb (stmt);
2306
2307 FOR_EACH_EDGE (e, ei, bb->succs)
2308 if (e->flags & EDGE_FALLTHRU)
2309 {
2310 fallthru_edge = e;
2311 break;
2312 }
2313 }
2314
2315 gimple_call_set_lhs (stmt, tmp);
2316 update_stmt (stmt);
2317 stmt = gimple_build_assign (lhs, tmp);
2318 gimple_set_location (stmt, loc);
2319
2320 /* We cannot throw in the middle of a BB. If the call was going
2321 to throw, place the instrumentation on the fallthru edge, so
2322 the call remains the last statement in the block. */
2323 if (fallthru_edge)
2324 {
2325 gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (stmt);
2326 gimple_stmt_iterator fallthru_gsi = gsi_start (fallthru_seq);
2327 expand_assign_tm (region, &fallthru_gsi);
2328 gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq);
2329 pending_edge_inserts_p = true;
2330 }
2331 else
2332 {
2333 gsi_insert_after (gsi, stmt, GSI_CONTINUE_LINKING);
2334 expand_assign_tm (region, gsi);
2335 }
2336
2337 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2338 }
2339
2340 return retval;
2341 }
2342
2343
2344 /* Expand all statements in BB as appropriate for being inside
2345 a transaction. */
2346
2347 static void
2348 expand_block_tm (struct tm_region *region, basic_block bb)
2349 {
2350 gimple_stmt_iterator gsi;
2351
2352 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2353 {
2354 gimple stmt = gsi_stmt (gsi);
2355 switch (gimple_code (stmt))
2356 {
2357 case GIMPLE_ASSIGN:
2358 /* Only memory reads/writes need to be instrumented. */
2359 if (gimple_assign_single_p (stmt)
2360 && !gimple_clobber_p (stmt))
2361 {
2362 expand_assign_tm (region, &gsi);
2363 continue;
2364 }
2365 break;
2366
2367 case GIMPLE_CALL:
2368 if (expand_call_tm (region, &gsi))
2369 return;
2370 break;
2371
2372 case GIMPLE_ASM:
2373 gcc_unreachable ();
2374
2375 default:
2376 break;
2377 }
2378 if (!gsi_end_p (gsi))
2379 gsi_next (&gsi);
2380 }
2381 }
2382
2383 /* Return the list of basic-blocks in REGION.
2384
2385 STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks
2386 following a TM_IRREVOCABLE call. */
2387
2388 static VEC (basic_block, heap) *
2389 get_tm_region_blocks (basic_block entry_block,
2390 bitmap exit_blocks,
2391 bitmap irr_blocks,
2392 bitmap all_region_blocks,
2393 bool stop_at_irrevocable_p)
2394 {
2395 VEC(basic_block, heap) *bbs = NULL;
2396 unsigned i;
2397 edge e;
2398 edge_iterator ei;
2399 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2400
2401 i = 0;
2402 VEC_safe_push (basic_block, heap, bbs, entry_block);
2403 bitmap_set_bit (visited_blocks, entry_block->index);
2404
2405 do
2406 {
2407 basic_block bb = VEC_index (basic_block, bbs, i++);
2408
2409 if (exit_blocks &&
2410 bitmap_bit_p (exit_blocks, bb->index))
2411 continue;
2412
2413 if (stop_at_irrevocable_p
2414 && irr_blocks
2415 && bitmap_bit_p (irr_blocks, bb->index))
2416 continue;
2417
2418 FOR_EACH_EDGE (e, ei, bb->succs)
2419 if (!bitmap_bit_p (visited_blocks, e->dest->index))
2420 {
2421 bitmap_set_bit (visited_blocks, e->dest->index);
2422 VEC_safe_push (basic_block, heap, bbs, e->dest);
2423 }
2424 }
2425 while (i < VEC_length (basic_block, bbs));
2426
2427 if (all_region_blocks)
2428 bitmap_ior_into (all_region_blocks, visited_blocks);
2429
2430 BITMAP_FREE (visited_blocks);
2431 return bbs;
2432 }
2433
2434 /* Set the IN_TRANSACTION for all gimple statements that appear in a
2435 transaction. */
2436
2437 void
2438 compute_transaction_bits (void)
2439 {
2440 struct tm_region *region;
2441 VEC (basic_block, heap) *queue;
2442 unsigned int i;
2443 gimple_stmt_iterator gsi;
2444 basic_block bb;
2445
2446 /* ?? Perhaps we need to abstract gate_tm_init further, because we
2447 certainly don't need it to calculate CDI_DOMINATOR info. */
2448 gate_tm_init ();
2449
2450 for (region = all_tm_regions; region; region = region->next)
2451 {
2452 queue = get_tm_region_blocks (region->entry_block,
2453 region->exit_blocks,
2454 region->irr_blocks,
2455 NULL,
2456 /*stop_at_irr_p=*/true);
2457 for (i = 0; VEC_iterate (basic_block, queue, i, bb); ++i)
2458 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2459 {
2460 gimple stmt = gsi_stmt (gsi);
2461 gimple_set_in_transaction (stmt, true);
2462 }
2463 VEC_free (basic_block, heap, queue);
2464 }
2465
2466 if (all_tm_regions)
2467 bitmap_obstack_release (&tm_obstack);
2468 }
2469
2470 /* Entry point to the MARK phase of TM expansion. Here we replace
2471 transactional memory statements with calls to builtins, and function
2472 calls with their transactional clones (if available). But we don't
2473 yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges. */
2474
2475 static unsigned int
2476 execute_tm_mark (void)
2477 {
2478 struct tm_region *region;
2479 basic_block bb;
2480 VEC (basic_block, heap) *queue;
2481 size_t i;
2482
2483 queue = VEC_alloc (basic_block, heap, 10);
2484 pending_edge_inserts_p = false;
2485
2486 for (region = all_tm_regions; region ; region = region->next)
2487 {
2488 tm_log_init ();
2489 /* If we have a transaction... */
2490 if (region->exit_blocks)
2491 {
2492 unsigned int subcode
2493 = gimple_transaction_subcode (region->transaction_stmt);
2494
2495 /* Collect a new SUBCODE set, now that optimizations are done... */
2496 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2497 subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE
2498 | GTMA_MAY_ENTER_IRREVOCABLE);
2499 else
2500 subcode &= GTMA_DECLARATION_MASK;
2501 gimple_transaction_set_subcode (region->transaction_stmt, subcode);
2502 }
2503
2504 queue = get_tm_region_blocks (region->entry_block,
2505 region->exit_blocks,
2506 region->irr_blocks,
2507 NULL,
2508 /*stop_at_irr_p=*/true);
2509 for (i = 0; VEC_iterate (basic_block, queue, i, bb); ++i)
2510 expand_block_tm (region, bb);
2511 VEC_free (basic_block, heap, queue);
2512
2513 tm_log_emit ();
2514 }
2515
2516 if (pending_edge_inserts_p)
2517 gsi_commit_edge_inserts ();
2518 return 0;
2519 }
2520
2521 struct gimple_opt_pass pass_tm_mark =
2522 {
2523 {
2524 GIMPLE_PASS,
2525 "tmmark", /* name */
2526 NULL, /* gate */
2527 execute_tm_mark, /* execute */
2528 NULL, /* sub */
2529 NULL, /* next */
2530 0, /* static_pass_number */
2531 TV_TRANS_MEM, /* tv_id */
2532 PROP_ssa | PROP_cfg, /* properties_required */
2533 0, /* properties_provided */
2534 0, /* properties_destroyed */
2535 0, /* todo_flags_start */
2536 TODO_update_ssa
2537 | TODO_verify_ssa
2538 | TODO_dump_func, /* todo_flags_finish */
2539 }
2540 };
2541 \f
2542 /* Create an abnormal call edge from BB to the first block of the region
2543 represented by STATE. Also record the edge in the TM_RESTART map. */
2544
2545 static inline void
2546 make_tm_edge (gimple stmt, basic_block bb, struct tm_region *region)
2547 {
2548 void **slot;
2549 struct tm_restart_node *n, dummy;
2550
2551 if (cfun->gimple_df->tm_restart == NULL)
2552 cfun->gimple_df->tm_restart = htab_create_ggc (31, struct_ptr_hash,
2553 struct_ptr_eq, ggc_free);
2554
2555 dummy.stmt = stmt;
2556 dummy.label_or_list = gimple_block_label (region->entry_block);
2557 slot = htab_find_slot (cfun->gimple_df->tm_restart, &dummy, INSERT);
2558 n = (struct tm_restart_node *) *slot;
2559 if (n == NULL)
2560 {
2561 n = ggc_alloc_tm_restart_node ();
2562 *n = dummy;
2563 }
2564 else
2565 {
2566 tree old = n->label_or_list;
2567 if (TREE_CODE (old) == LABEL_DECL)
2568 old = tree_cons (NULL, old, NULL);
2569 n->label_or_list = tree_cons (NULL, dummy.label_or_list, old);
2570 }
2571
2572 make_edge (bb, region->entry_block, EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
2573 }
2574
2575
2576 /* Split block BB as necessary for every builtin function we added, and
2577 wire up the abnormal back edges implied by the transaction restart. */
2578
2579 static void
2580 expand_block_edges (struct tm_region *region, basic_block bb)
2581 {
2582 gimple_stmt_iterator gsi;
2583
2584 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2585 {
2586 gimple stmt = gsi_stmt (gsi);
2587
2588 /* ??? TM_COMMIT (and any other tm builtin function) in a nested
2589 transaction has an abnormal edge back to the outer-most transaction
2590 (there are no nested retries), while a TM_ABORT also has an abnormal
2591 backedge to the inner-most transaction. We haven't actually saved
2592 the inner-most transaction here. We should be able to get to it
2593 via the region_nr saved on STMT, and read the transaction_stmt from
2594 that, and find the first region block from there. */
2595 /* ??? Shouldn't we split for any non-pure, non-irrevocable function? */
2596 if (gimple_code (stmt) == GIMPLE_CALL
2597 && (gimple_call_flags (stmt) & ECF_TM_BUILTIN) != 0)
2598 {
2599 if (gsi_one_before_end_p (gsi))
2600 make_tm_edge (stmt, bb, region);
2601 else
2602 {
2603 edge e = split_block (bb, stmt);
2604 make_tm_edge (stmt, bb, region);
2605 bb = e->dest;
2606 gsi = gsi_start_bb (bb);
2607 }
2608
2609 /* Delete any tail-call annotation that may have been added.
2610 The tail-call pass may have mis-identified the commit as being
2611 a candidate because we had not yet added this restart edge. */
2612 gimple_call_set_tail (stmt, false);
2613 }
2614
2615 gsi_next (&gsi);
2616 }
2617 }
2618
2619 /* Expand the GIMPLE_TRANSACTION statement into the STM library call. */
2620
2621 static void
2622 expand_transaction (struct tm_region *region)
2623 {
2624 tree status, tm_start;
2625 basic_block atomic_bb, slice_bb;
2626 gimple_stmt_iterator gsi;
2627 tree t1, t2;
2628 gimple g;
2629 int flags, subcode;
2630
2631 tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2632 status = make_rename_temp (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state");
2633
2634 /* ??? There are plenty of bits here we're not computing. */
2635 subcode = gimple_transaction_subcode (region->transaction_stmt);
2636 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2637 flags = PR_DOESGOIRREVOCABLE | PR_UNINSTRUMENTEDCODE;
2638 else
2639 flags = PR_INSTRUMENTEDCODE;
2640 if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0)
2641 flags |= PR_HASNOIRREVOCABLE;
2642 /* If the transaction does not have an abort in lexical scope and is not
2643 marked as an outer transaction, then it will never abort. */
2644 if ((subcode & GTMA_HAVE_ABORT) == 0
2645 && (subcode & GTMA_IS_OUTER) == 0)
2646 flags |= PR_HASNOABORT;
2647 if ((subcode & GTMA_HAVE_STORE) == 0)
2648 flags |= PR_READONLY;
2649 t2 = build_int_cst (TREE_TYPE (status), flags);
2650 g = gimple_build_call (tm_start, 1, t2);
2651 gimple_call_set_lhs (g, status);
2652 gimple_set_location (g, gimple_location (region->transaction_stmt));
2653
2654 atomic_bb = gimple_bb (region->transaction_stmt);
2655
2656 if (!VEC_empty (tree, tm_log_save_addresses))
2657 tm_log_emit_saves (region->entry_block, atomic_bb);
2658
2659 gsi = gsi_last_bb (atomic_bb);
2660 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2661 gsi_remove (&gsi, true);
2662
2663 if (!VEC_empty (tree, tm_log_save_addresses))
2664 region->entry_block =
2665 tm_log_emit_save_or_restores (region->entry_block,
2666 A_RESTORELIVEVARIABLES,
2667 status,
2668 tm_log_emit_restores,
2669 atomic_bb,
2670 FALLTHRU_EDGE (atomic_bb),
2671 &slice_bb);
2672 else
2673 slice_bb = atomic_bb;
2674
2675 /* If we have an ABORT statement, create a test following the start
2676 call to perform the abort. */
2677 if (gimple_transaction_label (region->transaction_stmt))
2678 {
2679 edge e;
2680 basic_block test_bb;
2681
2682 test_bb = create_empty_bb (slice_bb);
2683 if (VEC_empty (tree, tm_log_save_addresses))
2684 region->entry_block = test_bb;
2685 gsi = gsi_last_bb (test_bb);
2686
2687 t1 = make_rename_temp (TREE_TYPE (status), NULL);
2688 t2 = build_int_cst (TREE_TYPE (status), A_ABORTTRANSACTION);
2689 g = gimple_build_assign_with_ops (BIT_AND_EXPR, t1, status, t2);
2690 gsi_insert_after (&gsi, g, GSI_CONTINUE_LINKING);
2691
2692 t2 = build_int_cst (TREE_TYPE (status), 0);
2693 g = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2694 gsi_insert_after (&gsi, g, GSI_CONTINUE_LINKING);
2695
2696 e = FALLTHRU_EDGE (slice_bb);
2697 redirect_edge_pred (e, test_bb);
2698 e->flags = EDGE_FALSE_VALUE;
2699 e->probability = PROB_ALWAYS - PROB_VERY_UNLIKELY;
2700
2701 e = BRANCH_EDGE (atomic_bb);
2702 redirect_edge_pred (e, test_bb);
2703 e->flags = EDGE_TRUE_VALUE;
2704 e->probability = PROB_VERY_UNLIKELY;
2705
2706 e = make_edge (slice_bb, test_bb, EDGE_FALLTHRU);
2707 }
2708
2709 /* If we've no abort, but we do have PHIs at the beginning of the atomic
2710 region, that means we've a loop at the beginning of the atomic region
2711 that shares the first block. This can cause problems with the abnormal
2712 edges we're about to add for the transaction restart. Solve this by
2713 adding a new empty block to receive the abnormal edges. */
2714 else if (phi_nodes (region->entry_block))
2715 {
2716 edge e;
2717 basic_block empty_bb;
2718
2719 region->entry_block = empty_bb = create_empty_bb (atomic_bb);
2720
2721 e = FALLTHRU_EDGE (atomic_bb);
2722 redirect_edge_pred (e, empty_bb);
2723
2724 e = make_edge (atomic_bb, empty_bb, EDGE_FALLTHRU);
2725 }
2726
2727 /* The GIMPLE_TRANSACTION statement no longer exists. */
2728 region->transaction_stmt = NULL;
2729 }
2730
2731 static void expand_regions (struct tm_region *);
2732
2733 /* Helper function for expand_regions. Expand REGION and recurse to
2734 the inner region. */
2735
2736 static void
2737 expand_regions_1 (struct tm_region *region)
2738 {
2739 if (region->exit_blocks)
2740 {
2741 unsigned int i;
2742 basic_block bb;
2743 VEC (basic_block, heap) *queue;
2744
2745 /* Collect the set of blocks in this region. Do this before
2746 splitting edges, so that we don't have to play with the
2747 dominator tree in the middle. */
2748 queue = get_tm_region_blocks (region->entry_block,
2749 region->exit_blocks,
2750 region->irr_blocks,
2751 NULL,
2752 /*stop_at_irr_p=*/false);
2753 expand_transaction (region);
2754 for (i = 0; VEC_iterate (basic_block, queue, i, bb); ++i)
2755 expand_block_edges (region, bb);
2756 VEC_free (basic_block, heap, queue);
2757 }
2758 if (region->inner)
2759 expand_regions (region->inner);
2760 }
2761
2762 /* Expand regions starting at REGION. */
2763
2764 static void
2765 expand_regions (struct tm_region *region)
2766 {
2767 while (region)
2768 {
2769 expand_regions_1 (region);
2770 region = region->next;
2771 }
2772 }
2773
2774 /* Entry point to the final expansion of transactional nodes. */
2775
2776 static unsigned int
2777 execute_tm_edges (void)
2778 {
2779 expand_regions (all_tm_regions);
2780 tm_log_delete ();
2781
2782 /* We've got to release the dominance info now, to indicate that it
2783 must be rebuilt completely. Otherwise we'll crash trying to update
2784 the SSA web in the TODO section following this pass. */
2785 free_dominance_info (CDI_DOMINATORS);
2786 bitmap_obstack_release (&tm_obstack);
2787 all_tm_regions = NULL;
2788
2789 return 0;
2790 }
2791
2792 struct gimple_opt_pass pass_tm_edges =
2793 {
2794 {
2795 GIMPLE_PASS,
2796 "tmedge", /* name */
2797 NULL, /* gate */
2798 execute_tm_edges, /* execute */
2799 NULL, /* sub */
2800 NULL, /* next */
2801 0, /* static_pass_number */
2802 TV_TRANS_MEM, /* tv_id */
2803 PROP_ssa | PROP_cfg, /* properties_required */
2804 0, /* properties_provided */
2805 0, /* properties_destroyed */
2806 0, /* todo_flags_start */
2807 TODO_update_ssa
2808 | TODO_verify_ssa
2809 | TODO_dump_func, /* todo_flags_finish */
2810 }
2811 };
2812 \f
2813 /* A unique TM memory operation. */
2814 typedef struct tm_memop
2815 {
2816 /* Unique ID that all memory operations to the same location have. */
2817 unsigned int value_id;
2818 /* Address of load/store. */
2819 tree addr;
2820 } *tm_memop_t;
2821
2822 /* Sets for solving data flow equations in the memory optimization pass. */
2823 struct tm_memopt_bitmaps
2824 {
2825 /* Stores available to this BB upon entry. Basically, stores that
2826 dominate this BB. */
2827 bitmap store_avail_in;
2828 /* Stores available at the end of this BB. */
2829 bitmap store_avail_out;
2830 bitmap store_antic_in;
2831 bitmap store_antic_out;
2832 /* Reads available to this BB upon entry. Basically, reads that
2833 dominate this BB. */
2834 bitmap read_avail_in;
2835 /* Reads available at the end of this BB. */
2836 bitmap read_avail_out;
2837 /* Reads performed in this BB. */
2838 bitmap read_local;
2839 /* Writes performed in this BB. */
2840 bitmap store_local;
2841
2842 /* Temporary storage for pass. */
2843 /* Is the current BB in the worklist? */
2844 bool avail_in_worklist_p;
2845 /* Have we visited this BB? */
2846 bool visited_p;
2847 };
2848
2849 static bitmap_obstack tm_memopt_obstack;
2850
2851 /* Unique counter for TM loads and stores. Loads and stores of the
2852 same address get the same ID. */
2853 static unsigned int tm_memopt_value_id;
2854 static htab_t tm_memopt_value_numbers;
2855
2856 #define STORE_AVAIL_IN(BB) \
2857 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in
2858 #define STORE_AVAIL_OUT(BB) \
2859 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out
2860 #define STORE_ANTIC_IN(BB) \
2861 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in
2862 #define STORE_ANTIC_OUT(BB) \
2863 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out
2864 #define READ_AVAIL_IN(BB) \
2865 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in
2866 #define READ_AVAIL_OUT(BB) \
2867 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out
2868 #define READ_LOCAL(BB) \
2869 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local
2870 #define STORE_LOCAL(BB) \
2871 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local
2872 #define AVAIL_IN_WORKLIST_P(BB) \
2873 ((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p
2874 #define BB_VISITED_P(BB) \
2875 ((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p
2876
2877 /* Htab support. Return a hash value for a `tm_memop'. */
2878 static hashval_t
2879 tm_memop_hash (const void *p)
2880 {
2881 const struct tm_memop *mem = (const struct tm_memop *) p;
2882 tree addr = mem->addr;
2883 /* We drill down to the SSA_NAME/DECL for the hash, but equality is
2884 actually done with operand_equal_p (see tm_memop_eq). */
2885 if (TREE_CODE (addr) == ADDR_EXPR)
2886 addr = TREE_OPERAND (addr, 0);
2887 return iterative_hash_expr (addr, 0);
2888 }
2889
2890 /* Htab support. Return true if two tm_memop's are the same. */
2891 static int
2892 tm_memop_eq (const void *p1, const void *p2)
2893 {
2894 const struct tm_memop *mem1 = (const struct tm_memop *) p1;
2895 const struct tm_memop *mem2 = (const struct tm_memop *) p2;
2896
2897 return operand_equal_p (mem1->addr, mem2->addr, 0);
2898 }
2899
2900 /* Given a TM load/store in STMT, return the value number for the address
2901 it accesses. */
2902
2903 static unsigned int
2904 tm_memopt_value_number (gimple stmt, enum insert_option op)
2905 {
2906 struct tm_memop tmpmem, *mem;
2907 void **slot;
2908
2909 gcc_assert (is_tm_load (stmt) || is_tm_store (stmt));
2910 tmpmem.addr = gimple_call_arg (stmt, 0);
2911 slot = htab_find_slot (tm_memopt_value_numbers, &tmpmem, op);
2912 if (*slot)
2913 mem = (struct tm_memop *) *slot;
2914 else if (op == INSERT)
2915 {
2916 mem = XNEW (struct tm_memop);
2917 *slot = mem;
2918 mem->value_id = tm_memopt_value_id++;
2919 mem->addr = tmpmem.addr;
2920 }
2921 else
2922 gcc_unreachable ();
2923 return mem->value_id;
2924 }
2925
2926 /* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL. */
2927
2928 static void
2929 tm_memopt_accumulate_memops (basic_block bb)
2930 {
2931 gimple_stmt_iterator gsi;
2932
2933 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2934 {
2935 gimple stmt = gsi_stmt (gsi);
2936 bitmap bits;
2937 unsigned int loc;
2938
2939 if (is_tm_store (stmt))
2940 bits = STORE_LOCAL (bb);
2941 else if (is_tm_load (stmt))
2942 bits = READ_LOCAL (bb);
2943 else
2944 continue;
2945
2946 loc = tm_memopt_value_number (stmt, INSERT);
2947 bitmap_set_bit (bits, loc);
2948 if (dump_file)
2949 {
2950 fprintf (dump_file, "TM memopt (%s): value num=%d, BB=%d, addr=",
2951 is_tm_load (stmt) ? "LOAD" : "STORE", loc,
2952 gimple_bb (stmt)->index);
2953 print_generic_expr (dump_file, gimple_call_arg (stmt, 0), 0);
2954 fprintf (dump_file, "\n");
2955 }
2956 }
2957 }
2958
2959 /* Prettily dump one of the memopt sets. BITS is the bitmap to dump. */
2960
2961 static void
2962 dump_tm_memopt_set (const char *set_name, bitmap bits)
2963 {
2964 unsigned i;
2965 bitmap_iterator bi;
2966 const char *comma = "";
2967
2968 fprintf (dump_file, "TM memopt: %s: [", set_name);
2969 EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi)
2970 {
2971 htab_iterator hi;
2972 struct tm_memop *mem;
2973
2974 /* Yeah, yeah, yeah. Whatever. This is just for debugging. */
2975 FOR_EACH_HTAB_ELEMENT (tm_memopt_value_numbers, mem, tm_memop_t, hi)
2976 if (mem->value_id == i)
2977 break;
2978 gcc_assert (mem->value_id == i);
2979 fprintf (dump_file, "%s", comma);
2980 comma = ", ";
2981 print_generic_expr (dump_file, mem->addr, 0);
2982 }
2983 fprintf (dump_file, "]\n");
2984 }
2985
2986 /* Prettily dump all of the memopt sets in BLOCKS. */
2987
2988 static void
2989 dump_tm_memopt_sets (VEC (basic_block, heap) *blocks)
2990 {
2991 size_t i;
2992 basic_block bb;
2993
2994 for (i = 0; VEC_iterate (basic_block, blocks, i, bb); ++i)
2995 {
2996 fprintf (dump_file, "------------BB %d---------\n", bb->index);
2997 dump_tm_memopt_set ("STORE_LOCAL", STORE_LOCAL (bb));
2998 dump_tm_memopt_set ("READ_LOCAL", READ_LOCAL (bb));
2999 dump_tm_memopt_set ("STORE_AVAIL_IN", STORE_AVAIL_IN (bb));
3000 dump_tm_memopt_set ("STORE_AVAIL_OUT", STORE_AVAIL_OUT (bb));
3001 dump_tm_memopt_set ("READ_AVAIL_IN", READ_AVAIL_IN (bb));
3002 dump_tm_memopt_set ("READ_AVAIL_OUT", READ_AVAIL_OUT (bb));
3003 }
3004 }
3005
3006 /* Compute {STORE,READ}_AVAIL_IN for the basic block BB. */
3007
3008 static void
3009 tm_memopt_compute_avin (basic_block bb)
3010 {
3011 edge e;
3012 unsigned ix;
3013
3014 /* Seed with the AVOUT of any predecessor. */
3015 for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
3016 {
3017 e = EDGE_PRED (bb, ix);
3018 /* Make sure we have already visited this BB, and is thus
3019 initialized.
3020
3021 If e->src->aux is NULL, this predecessor is actually on an
3022 enclosing transaction. We only care about the current
3023 transaction, so ignore it. */
3024 if (e->src->aux && BB_VISITED_P (e->src))
3025 {
3026 bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3027 bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3028 break;
3029 }
3030 }
3031
3032 for (; ix < EDGE_COUNT (bb->preds); ix++)
3033 {
3034 e = EDGE_PRED (bb, ix);
3035 if (e->src->aux && BB_VISITED_P (e->src))
3036 {
3037 bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3038 bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3039 }
3040 }
3041
3042 BB_VISITED_P (bb) = true;
3043 }
3044
3045 /* Compute the STORE_ANTIC_IN for the basic block BB. */
3046
3047 static void
3048 tm_memopt_compute_antin (basic_block bb)
3049 {
3050 edge e;
3051 unsigned ix;
3052
3053 /* Seed with the ANTIC_OUT of any successor. */
3054 for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++)
3055 {
3056 e = EDGE_SUCC (bb, ix);
3057 /* Make sure we have already visited this BB, and is thus
3058 initialized. */
3059 if (BB_VISITED_P (e->dest))
3060 {
3061 bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3062 break;
3063 }
3064 }
3065
3066 for (; ix < EDGE_COUNT (bb->succs); ix++)
3067 {
3068 e = EDGE_SUCC (bb, ix);
3069 if (BB_VISITED_P (e->dest))
3070 bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3071 }
3072
3073 BB_VISITED_P (bb) = true;
3074 }
3075
3076 /* Compute the AVAIL sets for every basic block in BLOCKS.
3077
3078 We compute {STORE,READ}_AVAIL_{OUT,IN} as follows:
3079
3080 AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb])
3081 AVAIL_IN[bb] = intersect (AVAIL_OUT[predecessors])
3082
3083 This is basically what we do in lcm's compute_available(), but here
3084 we calculate two sets of sets (one for STOREs and one for READs),
3085 and we work on a region instead of the entire CFG.
3086
3087 REGION is the TM region.
3088 BLOCKS are the basic blocks in the region. */
3089
3090 static void
3091 tm_memopt_compute_available (struct tm_region *region,
3092 VEC (basic_block, heap) *blocks)
3093 {
3094 edge e;
3095 basic_block *worklist, *qin, *qout, *qend, bb;
3096 unsigned int qlen, i;
3097 edge_iterator ei;
3098 bool changed;
3099
3100 /* Allocate a worklist array/queue. Entries are only added to the
3101 list if they were not already on the list. So the size is
3102 bounded by the number of basic blocks in the region. */
3103 qlen = VEC_length (basic_block, blocks) - 1;
3104 qin = qout = worklist =
3105 XNEWVEC (basic_block, qlen);
3106
3107 /* Put every block in the region on the worklist. */
3108 for (i = 0; VEC_iterate (basic_block, blocks, i, bb); ++i)
3109 {
3110 /* Seed AVAIL_OUT with the LOCAL set. */
3111 bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb));
3112 bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb));
3113
3114 AVAIL_IN_WORKLIST_P (bb) = true;
3115 /* No need to insert the entry block, since it has an AVIN of
3116 null, and an AVOUT that has already been seeded in. */
3117 if (bb != region->entry_block)
3118 *qin++ = bb;
3119 }
3120
3121 /* The entry block has been initialized with the local sets. */
3122 BB_VISITED_P (region->entry_block) = true;
3123
3124 qin = worklist;
3125 qend = &worklist[qlen];
3126
3127 /* Iterate until the worklist is empty. */
3128 while (qlen)
3129 {
3130 /* Take the first entry off the worklist. */
3131 bb = *qout++;
3132 qlen--;
3133
3134 if (qout >= qend)
3135 qout = worklist;
3136
3137 /* This block can be added to the worklist again if necessary. */
3138 AVAIL_IN_WORKLIST_P (bb) = false;
3139 tm_memopt_compute_avin (bb);
3140
3141 /* Note: We do not add the LOCAL sets here because we already
3142 seeded the AVAIL_OUT sets with them. */
3143 changed = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb));
3144 changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb));
3145 if (changed
3146 && (region->exit_blocks == NULL
3147 || !bitmap_bit_p (region->exit_blocks, bb->index)))
3148 /* If the out state of this block changed, then we need to add
3149 its successors to the worklist if they are not already in. */
3150 FOR_EACH_EDGE (e, ei, bb->succs)
3151 if (!AVAIL_IN_WORKLIST_P (e->dest) && e->dest != EXIT_BLOCK_PTR)
3152 {
3153 *qin++ = e->dest;
3154 AVAIL_IN_WORKLIST_P (e->dest) = true;
3155 qlen++;
3156
3157 if (qin >= qend)
3158 qin = worklist;
3159 }
3160 }
3161
3162 free (worklist);
3163
3164 if (dump_file)
3165 dump_tm_memopt_sets (blocks);
3166 }
3167
3168 /* Compute ANTIC sets for every basic block in BLOCKS.
3169
3170 We compute STORE_ANTIC_OUT as follows:
3171
3172 STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb])
3173 STORE_ANTIC_IN[bb] = intersect(STORE_ANTIC_OUT[successors])
3174
3175 REGION is the TM region.
3176 BLOCKS are the basic blocks in the region. */
3177
3178 static void
3179 tm_memopt_compute_antic (struct tm_region *region,
3180 VEC (basic_block, heap) *blocks)
3181 {
3182 edge e;
3183 basic_block *worklist, *qin, *qout, *qend, bb;
3184 unsigned int qlen;
3185 int i;
3186 edge_iterator ei;
3187
3188 /* Allocate a worklist array/queue. Entries are only added to the
3189 list if they were not already on the list. So the size is
3190 bounded by the number of basic blocks in the region. */
3191 qin = qout = worklist =
3192 XNEWVEC (basic_block, VEC_length (basic_block, blocks));
3193
3194 for (qlen = 0, i = VEC_length (basic_block, blocks) - 1; i >= 0; --i)
3195 {
3196 bb = VEC_index (basic_block, blocks, i);
3197
3198 /* Seed ANTIC_OUT with the LOCAL set. */
3199 bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb));
3200
3201 /* Put every block in the region on the worklist. */
3202 AVAIL_IN_WORKLIST_P (bb) = true;
3203 /* No need to insert exit blocks, since their ANTIC_IN is NULL,
3204 and their ANTIC_OUT has already been seeded in. */
3205 if (region->exit_blocks
3206 && !bitmap_bit_p (region->exit_blocks, bb->index))
3207 {
3208 qlen++;
3209 *qin++ = bb;
3210 }
3211 }
3212
3213 /* The exit blocks have been initialized with the local sets. */
3214 if (region->exit_blocks)
3215 {
3216 unsigned int i;
3217 bitmap_iterator bi;
3218 EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi)
3219 BB_VISITED_P (BASIC_BLOCK (i)) = true;
3220 }
3221
3222 qin = worklist;
3223 qend = &worklist[qlen];
3224
3225 /* Iterate until the worklist is empty. */
3226 while (qlen)
3227 {
3228 /* Take the first entry off the worklist. */
3229 bb = *qout++;
3230 qlen--;
3231
3232 if (qout >= qend)
3233 qout = worklist;
3234
3235 /* This block can be added to the worklist again if necessary. */
3236 AVAIL_IN_WORKLIST_P (bb) = false;
3237 tm_memopt_compute_antin (bb);
3238
3239 /* Note: We do not add the LOCAL sets here because we already
3240 seeded the ANTIC_OUT sets with them. */
3241 if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb))
3242 && bb != region->entry_block)
3243 /* If the out state of this block changed, then we need to add
3244 its predecessors to the worklist if they are not already in. */
3245 FOR_EACH_EDGE (e, ei, bb->preds)
3246 if (!AVAIL_IN_WORKLIST_P (e->src))
3247 {
3248 *qin++ = e->src;
3249 AVAIL_IN_WORKLIST_P (e->src) = true;
3250 qlen++;
3251
3252 if (qin >= qend)
3253 qin = worklist;
3254 }
3255 }
3256
3257 free (worklist);
3258
3259 if (dump_file)
3260 dump_tm_memopt_sets (blocks);
3261 }
3262
3263 /* Offsets of load variants from TM_LOAD. For example,
3264 BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*.
3265 See gtm-builtins.def. */
3266 #define TRANSFORM_RAR 1
3267 #define TRANSFORM_RAW 2
3268 #define TRANSFORM_RFW 3
3269 /* Offsets of store variants from TM_STORE. */
3270 #define TRANSFORM_WAR 1
3271 #define TRANSFORM_WAW 2
3272
3273 /* Inform about a load/store optimization. */
3274
3275 static void
3276 dump_tm_memopt_transform (gimple stmt)
3277 {
3278 if (dump_file)
3279 {
3280 fprintf (dump_file, "TM memopt: transforming: ");
3281 print_gimple_stmt (dump_file, stmt, 0, 0);
3282 fprintf (dump_file, "\n");
3283 }
3284 }
3285
3286 /* Perform a read/write optimization. Replaces the TM builtin in STMT
3287 by a builtin that is OFFSET entries down in the builtins table in
3288 gtm-builtins.def. */
3289
3290 static void
3291 tm_memopt_transform_stmt (unsigned int offset,
3292 gimple stmt,
3293 gimple_stmt_iterator *gsi)
3294 {
3295 tree fn = gimple_call_fn (stmt);
3296 gcc_assert (TREE_CODE (fn) == ADDR_EXPR);
3297 TREE_OPERAND (fn, 0)
3298 = builtin_decl_explicit ((enum built_in_function)
3299 (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0))
3300 + offset));
3301 gimple_call_set_fn (stmt, fn);
3302 gsi_replace (gsi, stmt, true);
3303 dump_tm_memopt_transform (stmt);
3304 }
3305
3306 /* Perform the actual TM memory optimization transformations in the
3307 basic blocks in BLOCKS. */
3308
3309 static void
3310 tm_memopt_transform_blocks (VEC (basic_block, heap) *blocks)
3311 {
3312 size_t i;
3313 basic_block bb;
3314 gimple_stmt_iterator gsi;
3315
3316 for (i = 0; VEC_iterate (basic_block, blocks, i, bb); ++i)
3317 {
3318 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3319 {
3320 gimple stmt = gsi_stmt (gsi);
3321 bitmap read_avail = READ_AVAIL_IN (bb);
3322 bitmap store_avail = STORE_AVAIL_IN (bb);
3323 bitmap store_antic = STORE_ANTIC_OUT (bb);
3324 unsigned int loc;
3325
3326 if (is_tm_simple_load (stmt))
3327 {
3328 loc = tm_memopt_value_number (stmt, NO_INSERT);
3329 if (store_avail && bitmap_bit_p (store_avail, loc))
3330 tm_memopt_transform_stmt (TRANSFORM_RAW, stmt, &gsi);
3331 else if (store_antic && bitmap_bit_p (store_antic, loc))
3332 {
3333 tm_memopt_transform_stmt (TRANSFORM_RFW, stmt, &gsi);
3334 bitmap_set_bit (store_avail, loc);
3335 }
3336 else if (read_avail && bitmap_bit_p (read_avail, loc))
3337 tm_memopt_transform_stmt (TRANSFORM_RAR, stmt, &gsi);
3338 else
3339 bitmap_set_bit (read_avail, loc);
3340 }
3341 else if (is_tm_simple_store (stmt))
3342 {
3343 loc = tm_memopt_value_number (stmt, NO_INSERT);
3344 if (store_avail && bitmap_bit_p (store_avail, loc))
3345 tm_memopt_transform_stmt (TRANSFORM_WAW, stmt, &gsi);
3346 else
3347 {
3348 if (read_avail && bitmap_bit_p (read_avail, loc))
3349 tm_memopt_transform_stmt (TRANSFORM_WAR, stmt, &gsi);
3350 bitmap_set_bit (store_avail, loc);
3351 }
3352 }
3353 }
3354 }
3355 }
3356
3357 /* Return a new set of bitmaps for a BB. */
3358
3359 static struct tm_memopt_bitmaps *
3360 tm_memopt_init_sets (void)
3361 {
3362 struct tm_memopt_bitmaps *b
3363 = XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps);
3364 b->store_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3365 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3366 b->store_antic_in = BITMAP_ALLOC (&tm_memopt_obstack);
3367 b->store_antic_out = BITMAP_ALLOC (&tm_memopt_obstack);
3368 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3369 b->read_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3370 b->read_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3371 b->read_local = BITMAP_ALLOC (&tm_memopt_obstack);
3372 b->store_local = BITMAP_ALLOC (&tm_memopt_obstack);
3373 return b;
3374 }
3375
3376 /* Free sets computed for each BB. */
3377
3378 static void
3379 tm_memopt_free_sets (VEC (basic_block, heap) *blocks)
3380 {
3381 size_t i;
3382 basic_block bb;
3383
3384 for (i = 0; VEC_iterate (basic_block, blocks, i, bb); ++i)
3385 bb->aux = NULL;
3386 }
3387
3388 /* Clear the visited bit for every basic block in BLOCKS. */
3389
3390 static void
3391 tm_memopt_clear_visited (VEC (basic_block, heap) *blocks)
3392 {
3393 size_t i;
3394 basic_block bb;
3395
3396 for (i = 0; VEC_iterate (basic_block, blocks, i, bb); ++i)
3397 BB_VISITED_P (bb) = false;
3398 }
3399
3400 /* Replace TM load/stores with hints for the runtime. We handle
3401 things like read-after-write, write-after-read, read-after-read,
3402 read-for-write, etc. */
3403
3404 static unsigned int
3405 execute_tm_memopt (void)
3406 {
3407 struct tm_region *region;
3408 VEC (basic_block, heap) *bbs;
3409
3410 tm_memopt_value_id = 0;
3411 tm_memopt_value_numbers = htab_create (10, tm_memop_hash, tm_memop_eq, free);
3412
3413 for (region = all_tm_regions; region; region = region->next)
3414 {
3415 /* All the TM stores/loads in the current region. */
3416 size_t i;
3417 basic_block bb;
3418
3419 bitmap_obstack_initialize (&tm_memopt_obstack);
3420
3421 /* Save all BBs for the current region. */
3422 bbs = get_tm_region_blocks (region->entry_block,
3423 region->exit_blocks,
3424 region->irr_blocks,
3425 NULL,
3426 false);
3427
3428 /* Collect all the memory operations. */
3429 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); ++i)
3430 {
3431 bb->aux = tm_memopt_init_sets ();
3432 tm_memopt_accumulate_memops (bb);
3433 }
3434
3435 /* Solve data flow equations and transform each block accordingly. */
3436 tm_memopt_clear_visited (bbs);
3437 tm_memopt_compute_available (region, bbs);
3438 tm_memopt_clear_visited (bbs);
3439 tm_memopt_compute_antic (region, bbs);
3440 tm_memopt_transform_blocks (bbs);
3441
3442 tm_memopt_free_sets (bbs);
3443 VEC_free (basic_block, heap, bbs);
3444 bitmap_obstack_release (&tm_memopt_obstack);
3445 htab_empty (tm_memopt_value_numbers);
3446 }
3447
3448 htab_delete (tm_memopt_value_numbers);
3449 return 0;
3450 }
3451
3452 static bool
3453 gate_tm_memopt (void)
3454 {
3455 return flag_tm && optimize > 0;
3456 }
3457
3458 struct gimple_opt_pass pass_tm_memopt =
3459 {
3460 {
3461 GIMPLE_PASS,
3462 "tmmemopt", /* name */
3463 gate_tm_memopt, /* gate */
3464 execute_tm_memopt, /* execute */
3465 NULL, /* sub */
3466 NULL, /* next */
3467 0, /* static_pass_number */
3468 TV_TRANS_MEM, /* tv_id */
3469 PROP_ssa | PROP_cfg, /* properties_required */
3470 0, /* properties_provided */
3471 0, /* properties_destroyed */
3472 0, /* todo_flags_start */
3473 TODO_dump_func, /* todo_flags_finish */
3474 }
3475 };
3476
3477 \f
3478 /* Interprocedual analysis for the creation of transactional clones.
3479 The aim of this pass is to find which functions are referenced in
3480 a non-irrevocable transaction context, and for those over which
3481 we have control (or user directive), create a version of the
3482 function which uses only the transactional interface to reference
3483 protected memories. This analysis proceeds in several steps:
3484
3485 (1) Collect the set of all possible transactional clones:
3486
3487 (a) For all local public functions marked tm_callable, push
3488 it onto the tm_callee queue.
3489
3490 (b) For all local functions, scan for calls in transaction blocks.
3491 Push the caller and callee onto the tm_caller and tm_callee
3492 queues. Count the number of callers for each callee.
3493
3494 (c) For each local function on the callee list, assume we will
3495 create a transactional clone. Push *all* calls onto the
3496 callee queues; count the number of clone callers separately
3497 to the number of original callers.
3498
3499 (2) Propagate irrevocable status up the dominator tree:
3500
3501 (a) Any external function on the callee list that is not marked
3502 tm_callable is irrevocable. Push all callers of such onto
3503 a worklist.
3504
3505 (b) For each function on the worklist, mark each block that
3506 contains an irrevocable call. Use the AND operator to
3507 propagate that mark up the dominator tree.
3508
3509 (c) If we reach the entry block for a possible transactional
3510 clone, then the transactional clone is irrevocable, and
3511 we should not create the clone after all. Push all
3512 callers onto the worklist.
3513
3514 (d) Place tm_irrevocable calls at the beginning of the relevant
3515 blocks. Special case here is the entry block for the entire
3516 transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for
3517 the library to begin the region in serial mode. Decrement
3518 the call count for all callees in the irrevocable region.
3519
3520 (3) Create the transactional clones:
3521
3522 Any tm_callee that still has a non-zero call count is cloned.
3523 */
3524
3525 /* This structure is stored in the AUX field of each cgraph_node. */
3526 struct tm_ipa_cg_data
3527 {
3528 /* The clone of the function that got created. */
3529 struct cgraph_node *clone;
3530
3531 /* The tm regions in the normal function. */
3532 struct tm_region *all_tm_regions;
3533
3534 /* The blocks of the normal/clone functions that contain irrevocable
3535 calls, or blocks that are post-dominated by irrevocable calls. */
3536 bitmap irrevocable_blocks_normal;
3537 bitmap irrevocable_blocks_clone;
3538
3539 /* The blocks of the normal function that are involved in transactions. */
3540 bitmap transaction_blocks_normal;
3541
3542 /* The number of callers to the transactional clone of this function
3543 from normal and transactional clones respectively. */
3544 unsigned tm_callers_normal;
3545 unsigned tm_callers_clone;
3546
3547 /* True if all calls to this function's transactional clone
3548 are irrevocable. Also automatically true if the function
3549 has no transactional clone. */
3550 bool is_irrevocable;
3551
3552 /* Flags indicating the presence of this function in various queues. */
3553 bool in_callee_queue;
3554 bool in_worklist;
3555
3556 /* Flags indicating the kind of scan desired while in the worklist. */
3557 bool want_irr_scan_normal;
3558 };
3559
3560 typedef struct cgraph_node *cgraph_node_p;
3561
3562 DEF_VEC_P (cgraph_node_p);
3563 DEF_VEC_ALLOC_P (cgraph_node_p, heap);
3564
3565 typedef VEC (cgraph_node_p, heap) *cgraph_node_queue;
3566
3567 /* Return the ipa data associated with NODE, allocating zeroed memory
3568 if necessary. TRAVERSE_ALIASES is true if we must traverse aliases
3569 and set *NODE accordingly. */
3570
3571 static struct tm_ipa_cg_data *
3572 get_cg_data (struct cgraph_node **node, bool traverse_aliases)
3573 {
3574 struct tm_ipa_cg_data *d;
3575
3576 if (traverse_aliases && (*node)->alias)
3577 *node = cgraph_get_node ((*node)->thunk.alias);
3578
3579 d = (struct tm_ipa_cg_data *) (*node)->aux;
3580
3581 if (d == NULL)
3582 {
3583 d = (struct tm_ipa_cg_data *)
3584 obstack_alloc (&tm_obstack.obstack, sizeof (*d));
3585 (*node)->aux = (void *) d;
3586 memset (d, 0, sizeof (*d));
3587 }
3588
3589 return d;
3590 }
3591
3592 /* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that
3593 it is already present. */
3594
3595 static void
3596 maybe_push_queue (struct cgraph_node *node,
3597 cgraph_node_queue *queue_p, bool *in_queue_p)
3598 {
3599 if (!*in_queue_p)
3600 {
3601 *in_queue_p = true;
3602 VEC_safe_push (cgraph_node_p, heap, *queue_p, node);
3603 }
3604 }
3605
3606 /* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone.
3607 Queue all callees within block BB. */
3608
3609 static void
3610 ipa_tm_scan_calls_block (cgraph_node_queue *callees_p,
3611 basic_block bb, bool for_clone)
3612 {
3613 gimple_stmt_iterator gsi;
3614
3615 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3616 {
3617 gimple stmt = gsi_stmt (gsi);
3618 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
3619 {
3620 tree fndecl = gimple_call_fndecl (stmt);
3621 if (fndecl)
3622 {
3623 struct tm_ipa_cg_data *d;
3624 unsigned *pcallers;
3625 struct cgraph_node *node;
3626
3627 if (is_tm_ending_fndecl (fndecl))
3628 continue;
3629 if (find_tm_replacement_function (fndecl))
3630 continue;
3631
3632 node = cgraph_get_node (fndecl);
3633 gcc_assert (node != NULL);
3634 d = get_cg_data (&node, true);
3635
3636 pcallers = (for_clone ? &d->tm_callers_clone
3637 : &d->tm_callers_normal);
3638 *pcallers += 1;
3639
3640 maybe_push_queue (node, callees_p, &d->in_callee_queue);
3641 }
3642 }
3643 }
3644 }
3645
3646 /* Scan all calls in NODE that are within a transaction region,
3647 and push the resulting nodes into the callee queue. */
3648
3649 static void
3650 ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d,
3651 cgraph_node_queue *callees_p)
3652 {
3653 struct tm_region *r;
3654
3655 d->transaction_blocks_normal = BITMAP_ALLOC (&tm_obstack);
3656 d->all_tm_regions = all_tm_regions;
3657
3658 for (r = all_tm_regions; r; r = r->next)
3659 {
3660 VEC (basic_block, heap) *bbs;
3661 basic_block bb;
3662 unsigned i;
3663
3664 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks, NULL,
3665 d->transaction_blocks_normal, false);
3666
3667 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
3668 ipa_tm_scan_calls_block (callees_p, bb, false);
3669
3670 VEC_free (basic_block, heap, bbs);
3671 }
3672 }
3673
3674 /* Scan all calls in NODE as if this is the transactional clone,
3675 and push the destinations into the callee queue. */
3676
3677 static void
3678 ipa_tm_scan_calls_clone (struct cgraph_node *node,
3679 cgraph_node_queue *callees_p)
3680 {
3681 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3682 basic_block bb;
3683
3684 FOR_EACH_BB_FN (bb, fn)
3685 ipa_tm_scan_calls_block (callees_p, bb, true);
3686 }
3687
3688 /* The function NODE has been detected to be irrevocable. Push all
3689 of its callers onto WORKLIST for the purpose of re-scanning them. */
3690
3691 static void
3692 ipa_tm_note_irrevocable (struct cgraph_node *node,
3693 cgraph_node_queue *worklist_p)
3694 {
3695 struct tm_ipa_cg_data *d = get_cg_data (&node, true);
3696 struct cgraph_edge *e;
3697
3698 d->is_irrevocable = true;
3699
3700 for (e = node->callers; e ; e = e->next_caller)
3701 {
3702 basic_block bb;
3703 struct cgraph_node *caller;
3704
3705 /* Don't examine recursive calls. */
3706 if (e->caller == node)
3707 continue;
3708 /* Even if we think we can go irrevocable, believe the user
3709 above all. */
3710 if (is_tm_safe_or_pure (e->caller->decl))
3711 continue;
3712
3713 caller = e->caller;
3714 d = get_cg_data (&caller, true);
3715
3716 /* Check if the callee is in a transactional region. If so,
3717 schedule the function for normal re-scan as well. */
3718 bb = gimple_bb (e->call_stmt);
3719 gcc_assert (bb != NULL);
3720 if (d->transaction_blocks_normal
3721 && bitmap_bit_p (d->transaction_blocks_normal, bb->index))
3722 d->want_irr_scan_normal = true;
3723
3724 maybe_push_queue (caller, worklist_p, &d->in_worklist);
3725 }
3726 }
3727
3728 /* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement
3729 within the block is irrevocable. */
3730
3731 static bool
3732 ipa_tm_scan_irr_block (basic_block bb)
3733 {
3734 gimple_stmt_iterator gsi;
3735 tree fn;
3736
3737 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3738 {
3739 gimple stmt = gsi_stmt (gsi);
3740 switch (gimple_code (stmt))
3741 {
3742 case GIMPLE_CALL:
3743 if (is_tm_pure_call (stmt))
3744 break;
3745
3746 fn = gimple_call_fn (stmt);
3747
3748 /* Functions with the attribute are by definition irrevocable. */
3749 if (is_tm_irrevocable (fn))
3750 return true;
3751
3752 /* For direct function calls, go ahead and check for replacement
3753 functions, or transitive irrevocable functions. For indirect
3754 functions, we'll ask the runtime. */
3755 if (TREE_CODE (fn) == ADDR_EXPR)
3756 {
3757 struct tm_ipa_cg_data *d;
3758 struct cgraph_node *node;
3759
3760 fn = TREE_OPERAND (fn, 0);
3761 if (is_tm_ending_fndecl (fn))
3762 break;
3763 if (find_tm_replacement_function (fn))
3764 break;
3765
3766 node = cgraph_get_node(fn);
3767 d = get_cg_data (&node, true);
3768
3769 /* Return true if irrevocable, but above all, believe
3770 the user. */
3771 if (d->is_irrevocable
3772 && !is_tm_safe_or_pure (fn))
3773 return true;
3774 }
3775 break;
3776
3777 case GIMPLE_ASM:
3778 /* ??? The Approved Method of indicating that an inline
3779 assembly statement is not relevant to the transaction
3780 is to wrap it in a __tm_waiver block. This is not
3781 yet implemented, so we can't check for it. */
3782 if (is_tm_safe (current_function_decl))
3783 {
3784 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
3785 SET_EXPR_LOCATION (t, gimple_location (stmt));
3786 TREE_BLOCK (t) = gimple_block (stmt);
3787 error ("%Kasm not allowed in %<transaction_safe%> function", t);
3788 }
3789 return true;
3790
3791 default:
3792 break;
3793 }
3794 }
3795
3796 return false;
3797 }
3798
3799 /* For each of the blocks seeded witin PQUEUE, walk the CFG looking
3800 for new irrevocable blocks, marking them in NEW_IRR. Don't bother
3801 scanning past OLD_IRR or EXIT_BLOCKS. */
3802
3803 static bool
3804 ipa_tm_scan_irr_blocks (VEC (basic_block, heap) **pqueue, bitmap new_irr,
3805 bitmap old_irr, bitmap exit_blocks)
3806 {
3807 bool any_new_irr = false;
3808 edge e;
3809 edge_iterator ei;
3810 bitmap visited_blocks = BITMAP_ALLOC (NULL);
3811
3812 do
3813 {
3814 basic_block bb = VEC_pop (basic_block, *pqueue);
3815
3816 /* Don't re-scan blocks we know already are irrevocable. */
3817 if (old_irr && bitmap_bit_p (old_irr, bb->index))
3818 continue;
3819
3820 if (ipa_tm_scan_irr_block (bb))
3821 {
3822 bitmap_set_bit (new_irr, bb->index);
3823 any_new_irr = true;
3824 }
3825 else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index))
3826 {
3827 FOR_EACH_EDGE (e, ei, bb->succs)
3828 if (!bitmap_bit_p (visited_blocks, e->dest->index))
3829 {
3830 bitmap_set_bit (visited_blocks, e->dest->index);
3831 VEC_safe_push (basic_block, heap, *pqueue, e->dest);
3832 }
3833 }
3834 }
3835 while (!VEC_empty (basic_block, *pqueue));
3836
3837 BITMAP_FREE (visited_blocks);
3838
3839 return any_new_irr;
3840 }
3841
3842 /* Propagate the irrevocable property both up and down the dominator tree.
3843 BB is the current block being scanned; EXIT_BLOCKS are the edges of the
3844 TM regions; OLD_IRR are the results of a previous scan of the dominator
3845 tree which has been fully propagated; NEW_IRR is the set of new blocks
3846 which are gaining the irrevocable property during the current scan. */
3847
3848 static void
3849 ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr,
3850 bitmap old_irr, bitmap exit_blocks)
3851 {
3852 VEC (basic_block, heap) *bbs;
3853 bitmap all_region_blocks;
3854
3855 /* If this block is in the old set, no need to rescan. */
3856 if (old_irr && bitmap_bit_p (old_irr, entry_block->index))
3857 return;
3858
3859 all_region_blocks = BITMAP_ALLOC (&tm_obstack);
3860 bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL,
3861 all_region_blocks, false);
3862 do
3863 {
3864 basic_block bb = VEC_pop (basic_block, bbs);
3865 bool this_irr = bitmap_bit_p (new_irr, bb->index);
3866 bool all_son_irr = false;
3867 edge_iterator ei;
3868 edge e;
3869
3870 /* Propagate up. If my children are, I am too, but we must have
3871 at least one child that is. */
3872 if (!this_irr)
3873 {
3874 FOR_EACH_EDGE (e, ei, bb->succs)
3875 {
3876 if (!bitmap_bit_p (new_irr, e->dest->index))
3877 {
3878 all_son_irr = false;
3879 break;
3880 }
3881 else
3882 all_son_irr = true;
3883 }
3884 if (all_son_irr)
3885 {
3886 /* Add block to new_irr if it hasn't already been processed. */
3887 if (!old_irr || !bitmap_bit_p (old_irr, bb->index))
3888 {
3889 bitmap_set_bit (new_irr, bb->index);
3890 this_irr = true;
3891 }
3892 }
3893 }
3894
3895 /* Propagate down to everyone we immediately dominate. */
3896 if (this_irr)
3897 {
3898 basic_block son;
3899 for (son = first_dom_son (CDI_DOMINATORS, bb);
3900 son;
3901 son = next_dom_son (CDI_DOMINATORS, son))
3902 {
3903 /* Make sure block is actually in a TM region, and it
3904 isn't already in old_irr. */
3905 if ((!old_irr || !bitmap_bit_p (old_irr, son->index))
3906 && bitmap_bit_p (all_region_blocks, son->index))
3907 bitmap_set_bit (new_irr, son->index);
3908 }
3909 }
3910 }
3911 while (!VEC_empty (basic_block, bbs));
3912
3913 BITMAP_FREE (all_region_blocks);
3914 VEC_free (basic_block, heap, bbs);
3915 }
3916
3917 static void
3918 ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone)
3919 {
3920 gimple_stmt_iterator gsi;
3921
3922 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3923 {
3924 gimple stmt = gsi_stmt (gsi);
3925 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
3926 {
3927 tree fndecl = gimple_call_fndecl (stmt);
3928 if (fndecl)
3929 {
3930 struct tm_ipa_cg_data *d;
3931 unsigned *pcallers;
3932 struct cgraph_node *tnode;
3933
3934 if (is_tm_ending_fndecl (fndecl))
3935 continue;
3936 if (find_tm_replacement_function (fndecl))
3937 continue;
3938
3939 tnode = cgraph_get_node (fndecl);
3940 d = get_cg_data (&tnode, true);
3941
3942 pcallers = (for_clone ? &d->tm_callers_clone
3943 : &d->tm_callers_normal);
3944
3945 gcc_assert (*pcallers > 0);
3946 *pcallers -= 1;
3947 }
3948 }
3949 }
3950 }
3951
3952 /* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions,
3953 as well as other irrevocable actions such as inline assembly. Mark all
3954 such blocks as irrevocable and decrement the number of calls to
3955 transactional clones. Return true if, for the transactional clone, the
3956 entire function is irrevocable. */
3957
3958 static bool
3959 ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone)
3960 {
3961 struct tm_ipa_cg_data *d;
3962 bitmap new_irr, old_irr;
3963 VEC (basic_block, heap) *queue;
3964 bool ret = false;
3965
3966 /* Builtin operators (operator new, and such). */
3967 if (DECL_STRUCT_FUNCTION (node->decl) == NULL
3968 || DECL_STRUCT_FUNCTION (node->decl)->cfg == NULL)
3969 return false;
3970
3971 current_function_decl = node->decl;
3972 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3973 calculate_dominance_info (CDI_DOMINATORS);
3974
3975 d = get_cg_data (&node, true);
3976 queue = VEC_alloc (basic_block, heap, 10);
3977 new_irr = BITMAP_ALLOC (&tm_obstack);
3978
3979 /* Scan each tm region, propagating irrevocable status through the tree. */
3980 if (for_clone)
3981 {
3982 old_irr = d->irrevocable_blocks_clone;
3983 VEC_quick_push (basic_block, queue, single_succ (ENTRY_BLOCK_PTR));
3984 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr, NULL))
3985 {
3986 ipa_tm_propagate_irr (single_succ (ENTRY_BLOCK_PTR), new_irr,
3987 old_irr, NULL);
3988 ret = bitmap_bit_p (new_irr, single_succ (ENTRY_BLOCK_PTR)->index);
3989 }
3990 }
3991 else
3992 {
3993 struct tm_region *region;
3994
3995 old_irr = d->irrevocable_blocks_normal;
3996 for (region = d->all_tm_regions; region; region = region->next)
3997 {
3998 VEC_quick_push (basic_block, queue, region->entry_block);
3999 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr,
4000 region->exit_blocks))
4001 ipa_tm_propagate_irr (region->entry_block, new_irr, old_irr,
4002 region->exit_blocks);
4003 }
4004 }
4005
4006 /* If we found any new irrevocable blocks, reduce the call count for
4007 transactional clones within the irrevocable blocks. Save the new
4008 set of irrevocable blocks for next time. */
4009 if (!bitmap_empty_p (new_irr))
4010 {
4011 bitmap_iterator bmi;
4012 unsigned i;
4013
4014 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4015 ipa_tm_decrement_clone_counts (BASIC_BLOCK (i), for_clone);
4016
4017 if (old_irr)
4018 {
4019 bitmap_ior_into (old_irr, new_irr);
4020 BITMAP_FREE (new_irr);
4021 }
4022 else if (for_clone)
4023 d->irrevocable_blocks_clone = new_irr;
4024 else
4025 d->irrevocable_blocks_normal = new_irr;
4026
4027 if (dump_file && new_irr)
4028 {
4029 const char *dname;
4030 bitmap_iterator bmi;
4031 unsigned i;
4032
4033 dname = lang_hooks.decl_printable_name (current_function_decl, 2);
4034 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4035 fprintf (dump_file, "%s: bb %d goes irrevocable\n", dname, i);
4036 }
4037 }
4038 else
4039 BITMAP_FREE (new_irr);
4040
4041 VEC_free (basic_block, heap, queue);
4042 pop_cfun ();
4043 current_function_decl = NULL;
4044
4045 return ret;
4046 }
4047
4048 /* Return true if, for the transactional clone of NODE, any call
4049 may enter irrevocable mode. */
4050
4051 static bool
4052 ipa_tm_mayenterirr_function (struct cgraph_node *node)
4053 {
4054 struct tm_ipa_cg_data *d;
4055 tree decl;
4056 unsigned flags;
4057
4058 d = get_cg_data (&node, true);
4059 decl = node->decl;
4060 flags = flags_from_decl_or_type (decl);
4061
4062 /* Handle some TM builtins. Ordinarily these aren't actually generated
4063 at this point, but handling these functions when written in by the
4064 user makes it easier to build unit tests. */
4065 if (flags & ECF_TM_BUILTIN)
4066 return false;
4067
4068 /* Filter out all functions that are marked. */
4069 if (flags & ECF_TM_PURE)
4070 return false;
4071 if (is_tm_safe (decl))
4072 return false;
4073 if (is_tm_irrevocable (decl))
4074 return true;
4075 if (is_tm_callable (decl))
4076 return true;
4077 if (find_tm_replacement_function (decl))
4078 return true;
4079
4080 /* If we aren't seeing the final version of the function we don't
4081 know what it will contain at runtime. */
4082 if (cgraph_function_body_availability (node) < AVAIL_AVAILABLE)
4083 return true;
4084
4085 /* If the function must go irrevocable, then of course true. */
4086 if (d->is_irrevocable)
4087 return true;
4088
4089 /* If there are any blocks marked irrevocable, then the function
4090 as a whole may enter irrevocable. */
4091 if (d->irrevocable_blocks_clone)
4092 return true;
4093
4094 /* We may have previously marked this function as tm_may_enter_irr;
4095 see pass_diagnose_tm_blocks. */
4096 if (node->local.tm_may_enter_irr)
4097 return true;
4098
4099 /* Recurse on the main body for aliases. In general, this will
4100 result in one of the bits above being set so that we will not
4101 have to recurse next time. */
4102 if (node->alias)
4103 return ipa_tm_mayenterirr_function (cgraph_get_node (node->thunk.alias));
4104
4105 /* What remains is unmarked local functions without items that force
4106 the function to go irrevocable. */
4107 return false;
4108 }
4109
4110 /* Diagnose calls from transaction_safe functions to unmarked
4111 functions that are determined to not be safe. */
4112
4113 static void
4114 ipa_tm_diagnose_tm_safe (struct cgraph_node *node)
4115 {
4116 struct cgraph_edge *e;
4117
4118 for (e = node->callees; e ; e = e->next_callee)
4119 if (!is_tm_callable (e->callee->decl)
4120 && e->callee->local.tm_may_enter_irr)
4121 error_at (gimple_location (e->call_stmt),
4122 "unsafe function call %qD within "
4123 "%<transaction_safe%> function", e->callee->decl);
4124 }
4125
4126 /* Diagnose call from atomic transactions to unmarked functions
4127 that are determined to not be safe. */
4128
4129 static void
4130 ipa_tm_diagnose_transaction (struct cgraph_node *node,
4131 struct tm_region *all_tm_regions)
4132 {
4133 struct tm_region *r;
4134
4135 for (r = all_tm_regions; r ; r = r->next)
4136 if (gimple_transaction_subcode (r->transaction_stmt) & GTMA_IS_RELAXED)
4137 {
4138 /* Atomic transactions can be nested inside relaxed. */
4139 if (r->inner)
4140 ipa_tm_diagnose_transaction (node, r->inner);
4141 }
4142 else
4143 {
4144 VEC (basic_block, heap) *bbs;
4145 gimple_stmt_iterator gsi;
4146 basic_block bb;
4147 size_t i;
4148
4149 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks,
4150 r->irr_blocks, NULL, false);
4151
4152 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); ++i)
4153 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4154 {
4155 gimple stmt = gsi_stmt (gsi);
4156 tree fndecl;
4157
4158 if (gimple_code (stmt) == GIMPLE_ASM)
4159 {
4160 error_at (gimple_location (stmt),
4161 "asm not allowed in atomic transaction");
4162 continue;
4163 }
4164
4165 if (!is_gimple_call (stmt))
4166 continue;
4167 fndecl = gimple_call_fndecl (stmt);
4168
4169 /* Indirect function calls have been diagnosed already. */
4170 if (!fndecl)
4171 continue;
4172
4173 /* Stop at the end of the transaction. */
4174 if (is_tm_ending_fndecl (fndecl))
4175 {
4176 if (bitmap_bit_p (r->exit_blocks, bb->index))
4177 break;
4178 continue;
4179 }
4180
4181 /* Marked functions have been diagnosed already. */
4182 if (is_tm_pure_call (stmt))
4183 continue;
4184 if (is_tm_callable (fndecl))
4185 continue;
4186
4187 if (cgraph_local_info (fndecl)->tm_may_enter_irr)
4188 error_at (gimple_location (stmt),
4189 "unsafe function call %qD within "
4190 "atomic transaction", fndecl);
4191 }
4192
4193 VEC_free (basic_block, heap, bbs);
4194 }
4195 }
4196
4197 /* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in
4198 OLD_DECL. The returned value is a freshly malloced pointer that
4199 should be freed by the caller. */
4200
4201 static tree
4202 tm_mangle (tree old_asm_id)
4203 {
4204 const char *old_asm_name;
4205 char *tm_name;
4206 void *alloc = NULL;
4207 struct demangle_component *dc;
4208 tree new_asm_id;
4209
4210 /* Determine if the symbol is already a valid C++ mangled name. Do this
4211 even for C, which might be interfacing with C++ code via appropriately
4212 ugly identifiers. */
4213 /* ??? We could probably do just as well checking for "_Z" and be done. */
4214 old_asm_name = IDENTIFIER_POINTER (old_asm_id);
4215 dc = cplus_demangle_v3_components (old_asm_name, DMGL_NO_OPTS, &alloc);
4216
4217 if (dc == NULL)
4218 {
4219 char length[8];
4220
4221 do_unencoded:
4222 sprintf (length, "%u", IDENTIFIER_LENGTH (old_asm_id));
4223 tm_name = concat ("_ZGTt", length, old_asm_name, NULL);
4224 }
4225 else
4226 {
4227 old_asm_name += 2; /* Skip _Z */
4228
4229 switch (dc->type)
4230 {
4231 case DEMANGLE_COMPONENT_TRANSACTION_CLONE:
4232 case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE:
4233 /* Don't play silly games, you! */
4234 goto do_unencoded;
4235
4236 case DEMANGLE_COMPONENT_HIDDEN_ALIAS:
4237 /* I'd really like to know if we can ever be passed one of
4238 these from the C++ front end. The Logical Thing would
4239 seem that hidden-alias should be outer-most, so that we
4240 get hidden-alias of a transaction-clone and not vice-versa. */
4241 old_asm_name += 2;
4242 break;
4243
4244 default:
4245 break;
4246 }
4247
4248 tm_name = concat ("_ZGTt", old_asm_name, NULL);
4249 }
4250 free (alloc);
4251
4252 new_asm_id = get_identifier (tm_name);
4253 free (tm_name);
4254
4255 return new_asm_id;
4256 }
4257
4258 static inline void
4259 ipa_tm_mark_needed_node (struct cgraph_node *node)
4260 {
4261 cgraph_mark_needed_node (node);
4262 /* ??? function_and_variable_visibility will reset
4263 the needed bit, without actually checking. */
4264 node->analyzed = 1;
4265 }
4266
4267 /* Callback data for ipa_tm_create_version_alias. */
4268 struct create_version_alias_info
4269 {
4270 struct cgraph_node *old_node;
4271 tree new_decl;
4272 };
4273
4274 /* A subroutine of ipa_tm_create_version, called via
4275 cgraph_for_node_and_aliases. Create new tm clones for each of
4276 the existing aliases. */
4277 static bool
4278 ipa_tm_create_version_alias (struct cgraph_node *node, void *data)
4279 {
4280 struct create_version_alias_info *info
4281 = (struct create_version_alias_info *)data;
4282 tree old_decl, new_decl, tm_name;
4283 struct cgraph_node *new_node;
4284
4285 if (!node->same_body_alias)
4286 return false;
4287
4288 old_decl = node->decl;
4289 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4290 new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl),
4291 TREE_CODE (old_decl), tm_name,
4292 TREE_TYPE (old_decl));
4293
4294 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4295 SET_DECL_RTL (new_decl, NULL);
4296
4297 /* Based loosely on C++'s make_alias_for(). */
4298 TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl);
4299 DECL_CONTEXT (new_decl) = DECL_CONTEXT (old_decl);
4300 DECL_LANG_SPECIFIC (new_decl) = DECL_LANG_SPECIFIC (old_decl);
4301 TREE_READONLY (new_decl) = TREE_READONLY (old_decl);
4302 DECL_EXTERNAL (new_decl) = 0;
4303 DECL_ARTIFICIAL (new_decl) = 1;
4304 TREE_ADDRESSABLE (new_decl) = 1;
4305 TREE_USED (new_decl) = 1;
4306 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4307
4308 /* Perform the same remapping to the comdat group. */
4309 if (DECL_ONE_ONLY (new_decl))
4310 DECL_COMDAT_GROUP (new_decl) = tm_mangle (DECL_COMDAT_GROUP (old_decl));
4311
4312 new_node = cgraph_same_body_alias (NULL, new_decl, info->new_decl);
4313 new_node->tm_clone = true;
4314 new_node->local.externally_visible = info->old_node->local.externally_visible;
4315 /* ?? Do not traverse aliases here. */
4316 get_cg_data (&node, false)->clone = new_node;
4317
4318 record_tm_clone_pair (old_decl, new_decl);
4319
4320 if (info->old_node->needed)
4321 ipa_tm_mark_needed_node (new_node);
4322 return false;
4323 }
4324
4325 /* Create a copy of the function (possibly declaration only) of OLD_NODE,
4326 appropriate for the transactional clone. */
4327
4328 static void
4329 ipa_tm_create_version (struct cgraph_node *old_node)
4330 {
4331 tree new_decl, old_decl, tm_name;
4332 struct cgraph_node *new_node;
4333
4334 old_decl = old_node->decl;
4335 new_decl = copy_node (old_decl);
4336
4337 /* DECL_ASSEMBLER_NAME needs to be set before we call
4338 cgraph_copy_node_for_versioning below, because cgraph_node will
4339 fill the assembler_name_hash. */
4340 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4341 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4342 SET_DECL_RTL (new_decl, NULL);
4343 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4344
4345 /* Perform the same remapping to the comdat group. */
4346 if (DECL_ONE_ONLY (new_decl))
4347 DECL_COMDAT_GROUP (new_decl) = tm_mangle (DECL_COMDAT_GROUP (old_decl));
4348
4349 new_node = cgraph_copy_node_for_versioning (old_node, new_decl, NULL, NULL);
4350 new_node->local.externally_visible = old_node->local.externally_visible;
4351 new_node->lowered = true;
4352 new_node->tm_clone = 1;
4353 get_cg_data (&old_node, true)->clone = new_node;
4354
4355 if (cgraph_function_body_availability (old_node) >= AVAIL_OVERWRITABLE)
4356 {
4357 /* Remap extern inline to static inline. */
4358 /* ??? Is it worth trying to use make_decl_one_only? */
4359 if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl))
4360 {
4361 DECL_EXTERNAL (new_decl) = 0;
4362 TREE_PUBLIC (new_decl) = 0;
4363 DECL_WEAK (new_decl) = 0;
4364 }
4365
4366 tree_function_versioning (old_decl, new_decl, NULL, false, NULL, false,
4367 NULL, NULL);
4368 }
4369
4370 record_tm_clone_pair (old_decl, new_decl);
4371
4372 cgraph_call_function_insertion_hooks (new_node);
4373 if (old_node->needed)
4374 ipa_tm_mark_needed_node (new_node);
4375
4376 /* Do the same thing, but for any aliases of the original node. */
4377 {
4378 struct create_version_alias_info data;
4379 data.old_node = old_node;
4380 data.new_decl = new_decl;
4381 cgraph_for_node_and_aliases (old_node, ipa_tm_create_version_alias,
4382 &data, true);
4383 }
4384 }
4385
4386 /* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB. */
4387
4388 static void
4389 ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region,
4390 basic_block bb)
4391 {
4392 gimple_stmt_iterator gsi;
4393 gimple g;
4394
4395 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
4396
4397 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE),
4398 1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE));
4399
4400 split_block_after_labels (bb);
4401 gsi = gsi_after_labels (bb);
4402 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
4403
4404 cgraph_create_edge (node,
4405 cgraph_get_create_node
4406 (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE)),
4407 g, 0,
4408 compute_call_stmt_bb_frequency (node->decl,
4409 gimple_bb (g)));
4410 }
4411
4412 /* Construct a call to TM_GETTMCLONE and insert it before GSI. */
4413
4414 static bool
4415 ipa_tm_insert_gettmclone_call (struct cgraph_node *node,
4416 struct tm_region *region,
4417 gimple_stmt_iterator *gsi, gimple stmt)
4418 {
4419 tree gettm_fn, ret, old_fn, callfn;
4420 gimple g, g2;
4421 bool safe;
4422
4423 old_fn = gimple_call_fn (stmt);
4424
4425 if (TREE_CODE (old_fn) == ADDR_EXPR)
4426 {
4427 tree fndecl = TREE_OPERAND (old_fn, 0);
4428 tree clone = get_tm_clone_pair (fndecl);
4429
4430 /* By transforming the call into a TM_GETTMCLONE, we are
4431 technically taking the address of the original function and
4432 its clone. Explain this so inlining will know this function
4433 is needed. */
4434 cgraph_mark_address_taken_node (cgraph_get_node (fndecl));
4435 if (clone)
4436 cgraph_mark_address_taken_node (cgraph_get_node (clone));
4437 }
4438
4439 safe = is_tm_safe (TREE_TYPE (old_fn));
4440 gettm_fn = builtin_decl_explicit (safe ? BUILT_IN_TM_GETTMCLONE_SAFE
4441 : BUILT_IN_TM_GETTMCLONE_IRR);
4442 ret = create_tmp_var (ptr_type_node, NULL);
4443 add_referenced_var (ret);
4444
4445 if (!safe)
4446 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
4447
4448 /* Discard OBJ_TYPE_REF, since we weren't able to fold it. */
4449 if (TREE_CODE (old_fn) == OBJ_TYPE_REF)
4450 old_fn = OBJ_TYPE_REF_EXPR (old_fn);
4451
4452 g = gimple_build_call (gettm_fn, 1, old_fn);
4453 ret = make_ssa_name (ret, g);
4454 gimple_call_set_lhs (g, ret);
4455
4456 gsi_insert_before (gsi, g, GSI_SAME_STMT);
4457
4458 cgraph_create_edge (node, cgraph_get_create_node (gettm_fn), g, 0,
4459 compute_call_stmt_bb_frequency (node->decl,
4460 gimple_bb(g)));
4461
4462 /* Cast return value from tm_gettmclone* into appropriate function
4463 pointer. */
4464 callfn = create_tmp_var (TREE_TYPE (old_fn), NULL);
4465 add_referenced_var (callfn);
4466 g2 = gimple_build_assign (callfn,
4467 fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret));
4468 callfn = make_ssa_name (callfn, g2);
4469 gimple_assign_set_lhs (g2, callfn);
4470 gsi_insert_before (gsi, g2, GSI_SAME_STMT);
4471
4472 /* ??? This is a hack to preserve the NOTHROW bit on the call,
4473 which we would have derived from the decl. Failure to save
4474 this bit means we might have to split the basic block. */
4475 if (gimple_call_nothrow_p (stmt))
4476 gimple_call_set_nothrow (stmt, true);
4477
4478 gimple_call_set_fn (stmt, callfn);
4479
4480 /* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS
4481 for a call statement. Fix it. */
4482 {
4483 tree lhs = gimple_call_lhs (stmt);
4484 tree rettype = TREE_TYPE (gimple_call_fntype (stmt));
4485 if (lhs
4486 && !useless_type_conversion_p (TREE_TYPE (lhs), rettype))
4487 {
4488 tree temp;
4489
4490 temp = make_rename_temp (rettype, 0);
4491 gimple_call_set_lhs (stmt, temp);
4492
4493 g2 = gimple_build_assign (lhs,
4494 fold_build1 (VIEW_CONVERT_EXPR,
4495 TREE_TYPE (lhs), temp));
4496 gsi_insert_after (gsi, g2, GSI_SAME_STMT);
4497 }
4498 }
4499
4500 update_stmt (stmt);
4501
4502 return true;
4503 }
4504
4505 /* Helper function for ipa_tm_transform_calls*. Given a call
4506 statement in GSI which resides inside transaction REGION, redirect
4507 the call to either its wrapper function, or its clone. */
4508
4509 static void
4510 ipa_tm_transform_calls_redirect (struct cgraph_node *node,
4511 struct tm_region *region,
4512 gimple_stmt_iterator *gsi,
4513 bool *need_ssa_rename_p)
4514 {
4515 gimple stmt = gsi_stmt (*gsi);
4516 struct cgraph_node *new_node;
4517 struct cgraph_edge *e = cgraph_edge (node, stmt);
4518 tree fndecl = gimple_call_fndecl (stmt);
4519
4520 /* For indirect calls, pass the address through the runtime. */
4521 if (fndecl == NULL)
4522 {
4523 *need_ssa_rename_p |=
4524 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
4525 return;
4526 }
4527
4528 /* Handle some TM builtins. Ordinarily these aren't actually generated
4529 at this point, but handling these functions when written in by the
4530 user makes it easier to build unit tests. */
4531 if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN)
4532 return;
4533
4534 /* Fixup recursive calls inside clones. */
4535 /* ??? Why did cgraph_copy_node_for_versioning update the call edges
4536 for recursion but not update the call statements themselves? */
4537 if (e->caller == e->callee && decl_is_tm_clone (current_function_decl))
4538 {
4539 gimple_call_set_fndecl (stmt, current_function_decl);
4540 return;
4541 }
4542
4543 /* If there is a replacement, use it. */
4544 fndecl = find_tm_replacement_function (fndecl);
4545 if (fndecl)
4546 {
4547 new_node = cgraph_get_create_node (fndecl);
4548
4549 /* ??? Mark all transaction_wrap functions tm_may_enter_irr.
4550
4551 We can't do this earlier in record_tm_replacement because
4552 cgraph_remove_unreachable_nodes is called before we inject
4553 references to the node. Further, we can't do this in some
4554 nice central place in ipa_tm_execute because we don't have
4555 the exact list of wrapper functions that would be used.
4556 Marking more wrappers than necessary results in the creation
4557 of unnecessary cgraph_nodes, which can cause some of the
4558 other IPA passes to crash.
4559
4560 We do need to mark these nodes so that we get the proper
4561 result in expand_call_tm. */
4562 /* ??? This seems broken. How is it that we're marking the
4563 CALLEE as may_enter_irr? Surely we should be marking the
4564 CALLER. Also note that find_tm_replacement_function also
4565 contains mappings into the TM runtime, e.g. memcpy. These
4566 we know won't go irrevocable. */
4567 new_node->local.tm_may_enter_irr = 1;
4568 }
4569 else
4570 {
4571 struct tm_ipa_cg_data *d;
4572 struct cgraph_node *tnode = e->callee;
4573
4574 d = get_cg_data (&tnode, true);
4575 new_node = d->clone;
4576
4577 /* As we've already skipped pure calls and appropriate builtins,
4578 and we've already marked irrevocable blocks, if we can't come
4579 up with a static replacement, then ask the runtime. */
4580 if (new_node == NULL)
4581 {
4582 *need_ssa_rename_p |=
4583 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
4584 return;
4585 }
4586
4587 fndecl = new_node->decl;
4588 }
4589
4590 cgraph_redirect_edge_callee (e, new_node);
4591 gimple_call_set_fndecl (stmt, fndecl);
4592 }
4593
4594 /* Helper function for ipa_tm_transform_calls. For a given BB,
4595 install calls to tm_irrevocable when IRR_BLOCKS are reached,
4596 redirect other calls to the generated transactional clone. */
4597
4598 static bool
4599 ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region,
4600 basic_block bb, bitmap irr_blocks)
4601 {
4602 gimple_stmt_iterator gsi;
4603 bool need_ssa_rename = false;
4604
4605 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
4606 {
4607 ipa_tm_insert_irr_call (node, region, bb);
4608 return true;
4609 }
4610
4611 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4612 {
4613 gimple stmt = gsi_stmt (gsi);
4614
4615 if (!is_gimple_call (stmt))
4616 continue;
4617 if (is_tm_pure_call (stmt))
4618 continue;
4619
4620 /* Redirect edges to the appropriate replacement or clone. */
4621 ipa_tm_transform_calls_redirect (node, region, &gsi, &need_ssa_rename);
4622 }
4623
4624 return need_ssa_rename;
4625 }
4626
4627 /* Walk the CFG for REGION, beginning at BB. Install calls to
4628 tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to
4629 the generated transactional clone. */
4630
4631 static bool
4632 ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region,
4633 basic_block bb, bitmap irr_blocks)
4634 {
4635 bool need_ssa_rename = false;
4636 edge e;
4637 edge_iterator ei;
4638 VEC(basic_block, heap) *queue = NULL;
4639 bitmap visited_blocks = BITMAP_ALLOC (NULL);
4640
4641 VEC_safe_push (basic_block, heap, queue, bb);
4642 do
4643 {
4644 bb = VEC_pop (basic_block, queue);
4645
4646 need_ssa_rename |=
4647 ipa_tm_transform_calls_1 (node, region, bb, irr_blocks);
4648
4649 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
4650 continue;
4651
4652 if (region && bitmap_bit_p (region->exit_blocks, bb->index))
4653 continue;
4654
4655 FOR_EACH_EDGE (e, ei, bb->succs)
4656 if (!bitmap_bit_p (visited_blocks, e->dest->index))
4657 {
4658 bitmap_set_bit (visited_blocks, e->dest->index);
4659 VEC_safe_push (basic_block, heap, queue, e->dest);
4660 }
4661 }
4662 while (!VEC_empty (basic_block, queue));
4663
4664 VEC_free (basic_block, heap, queue);
4665 BITMAP_FREE (visited_blocks);
4666
4667 return need_ssa_rename;
4668 }
4669
4670 /* Transform the calls within the TM regions within NODE. */
4671
4672 static void
4673 ipa_tm_transform_transaction (struct cgraph_node *node)
4674 {
4675 struct tm_ipa_cg_data *d;
4676 struct tm_region *region;
4677 bool need_ssa_rename = false;
4678
4679 d = get_cg_data (&node, true);
4680
4681 current_function_decl = node->decl;
4682 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4683 calculate_dominance_info (CDI_DOMINATORS);
4684
4685 for (region = d->all_tm_regions; region; region = region->next)
4686 {
4687 /* If we're sure to go irrevocable, don't transform anything. */
4688 if (d->irrevocable_blocks_normal
4689 && bitmap_bit_p (d->irrevocable_blocks_normal,
4690 region->entry_block->index))
4691 {
4692 transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE);
4693 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
4694 continue;
4695 }
4696
4697 need_ssa_rename |=
4698 ipa_tm_transform_calls (node, region, region->entry_block,
4699 d->irrevocable_blocks_normal);
4700 }
4701
4702 if (need_ssa_rename)
4703 update_ssa (TODO_update_ssa_only_virtuals);
4704
4705 pop_cfun ();
4706 current_function_decl = NULL;
4707 }
4708
4709 /* Transform the calls within the transactional clone of NODE. */
4710
4711 static void
4712 ipa_tm_transform_clone (struct cgraph_node *node)
4713 {
4714 struct tm_ipa_cg_data *d;
4715 bool need_ssa_rename;
4716
4717 d = get_cg_data (&node, true);
4718
4719 /* If this function makes no calls and has no irrevocable blocks,
4720 then there's nothing to do. */
4721 /* ??? Remove non-aborting top-level transactions. */
4722 if (!node->callees && !d->irrevocable_blocks_clone)
4723 return;
4724
4725 current_function_decl = d->clone->decl;
4726 push_cfun (DECL_STRUCT_FUNCTION (current_function_decl));
4727 calculate_dominance_info (CDI_DOMINATORS);
4728
4729 need_ssa_rename =
4730 ipa_tm_transform_calls (d->clone, NULL, single_succ (ENTRY_BLOCK_PTR),
4731 d->irrevocable_blocks_clone);
4732
4733 if (need_ssa_rename)
4734 update_ssa (TODO_update_ssa_only_virtuals);
4735
4736 pop_cfun ();
4737 current_function_decl = NULL;
4738 }
4739
4740 /* Main entry point for the transactional memory IPA pass. */
4741
4742 static unsigned int
4743 ipa_tm_execute (void)
4744 {
4745 cgraph_node_queue tm_callees = NULL;
4746 /* List of functions that will go irrevocable. */
4747 cgraph_node_queue irr_worklist = NULL;
4748
4749 struct cgraph_node *node;
4750 struct tm_ipa_cg_data *d;
4751 enum availability a;
4752 unsigned int i;
4753
4754 #ifdef ENABLE_CHECKING
4755 verify_cgraph ();
4756 #endif
4757
4758 bitmap_obstack_initialize (&tm_obstack);
4759
4760 /* For all local functions marked tm_callable, queue them. */
4761 for (node = cgraph_nodes; node; node = node->next)
4762 if (is_tm_callable (node->decl)
4763 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
4764 {
4765 d = get_cg_data (&node, true);
4766 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
4767 }
4768
4769 /* For all local reachable functions... */
4770 for (node = cgraph_nodes; node; node = node->next)
4771 if (node->reachable && node->lowered
4772 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
4773 {
4774 /* ... marked tm_pure, record that fact for the runtime by
4775 indicating that the pure function is its own tm_callable.
4776 No need to do this if the function's address can't be taken. */
4777 if (is_tm_pure (node->decl))
4778 {
4779 if (!node->local.local)
4780 record_tm_clone_pair (node->decl, node->decl);
4781 continue;
4782 }
4783
4784 current_function_decl = node->decl;
4785 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4786 calculate_dominance_info (CDI_DOMINATORS);
4787
4788 tm_region_init (NULL);
4789 if (all_tm_regions)
4790 {
4791 d = get_cg_data (&node, true);
4792
4793 /* Scan for calls that are in each transaction. */
4794 ipa_tm_scan_calls_transaction (d, &tm_callees);
4795
4796 /* Put it in the worklist so we can scan the function
4797 later (ipa_tm_scan_irr_function) and mark the
4798 irrevocable blocks. */
4799 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
4800 d->want_irr_scan_normal = true;
4801 }
4802
4803 pop_cfun ();
4804 current_function_decl = NULL;
4805 }
4806
4807 /* For every local function on the callee list, scan as if we will be
4808 creating a transactional clone, queueing all new functions we find
4809 along the way. */
4810 for (i = 0; i < VEC_length (cgraph_node_p, tm_callees); ++i)
4811 {
4812 node = VEC_index (cgraph_node_p, tm_callees, i);
4813 a = cgraph_function_body_availability (node);
4814 d = get_cg_data (&node, true);
4815
4816 /* Put it in the worklist so we can scan the function later
4817 (ipa_tm_scan_irr_function) and mark the irrevocable
4818 blocks. */
4819 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
4820
4821 /* Some callees cannot be arbitrarily cloned. These will always be
4822 irrevocable. Mark these now, so that we need not scan them. */
4823 if (is_tm_irrevocable (node->decl))
4824 ipa_tm_note_irrevocable (node, &irr_worklist);
4825 else if (a <= AVAIL_NOT_AVAILABLE
4826 && !is_tm_safe_or_pure (node->decl))
4827 ipa_tm_note_irrevocable (node, &irr_worklist);
4828 else if (a >= AVAIL_OVERWRITABLE)
4829 {
4830 if (!tree_versionable_function_p (node->decl))
4831 ipa_tm_note_irrevocable (node, &irr_worklist);
4832 else if (!d->is_irrevocable)
4833 {
4834 /* If this is an alias, make sure its base is queued as well.
4835 we need not scan the callees now, as the base will do. */
4836 if (node->alias)
4837 {
4838 node = cgraph_get_node (node->thunk.alias);
4839 d = get_cg_data (&node, true);
4840 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
4841 continue;
4842 }
4843
4844 /* Add all nodes called by this function into
4845 tm_callees as well. */
4846 ipa_tm_scan_calls_clone (node, &tm_callees);
4847 }
4848 }
4849 }
4850
4851 /* Iterate scans until no more work to be done. Prefer not to use
4852 VEC_pop because the worklist tends to follow a breadth-first
4853 search of the callgraph, which should allow convergance with a
4854 minimum number of scans. But we also don't want the worklist
4855 array to grow without bound, so we shift the array up periodically. */
4856 for (i = 0; i < VEC_length (cgraph_node_p, irr_worklist); ++i)
4857 {
4858 if (i > 256 && i == VEC_length (cgraph_node_p, irr_worklist) / 8)
4859 {
4860 VEC_block_remove (cgraph_node_p, irr_worklist, 0, i);
4861 i = 0;
4862 }
4863
4864 node = VEC_index (cgraph_node_p, irr_worklist, i);
4865 d = get_cg_data (&node, true);
4866 d->in_worklist = false;
4867
4868 if (d->want_irr_scan_normal)
4869 {
4870 d->want_irr_scan_normal = false;
4871 ipa_tm_scan_irr_function (node, false);
4872 }
4873 if (d->in_callee_queue && ipa_tm_scan_irr_function (node, true))
4874 ipa_tm_note_irrevocable (node, &irr_worklist);
4875 }
4876
4877 /* For every function on the callee list, collect the tm_may_enter_irr
4878 bit on the node. */
4879 VEC_truncate (cgraph_node_p, irr_worklist, 0);
4880 for (i = 0; i < VEC_length (cgraph_node_p, tm_callees); ++i)
4881 {
4882 node = VEC_index (cgraph_node_p, tm_callees, i);
4883 if (ipa_tm_mayenterirr_function (node))
4884 {
4885 d = get_cg_data (&node, true);
4886 gcc_assert (d->in_worklist == false);
4887 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
4888 }
4889 }
4890
4891 /* Propagate the tm_may_enter_irr bit to callers until stable. */
4892 for (i = 0; i < VEC_length (cgraph_node_p, irr_worklist); ++i)
4893 {
4894 struct cgraph_node *caller;
4895 struct cgraph_edge *e;
4896 struct ipa_ref *ref;
4897 unsigned j;
4898
4899 if (i > 256 && i == VEC_length (cgraph_node_p, irr_worklist) / 8)
4900 {
4901 VEC_block_remove (cgraph_node_p, irr_worklist, 0, i);
4902 i = 0;
4903 }
4904
4905 node = VEC_index (cgraph_node_p, irr_worklist, i);
4906 d = get_cg_data (&node, true);
4907 d->in_worklist = false;
4908 node->local.tm_may_enter_irr = true;
4909
4910 /* Propagate back to normal callers. */
4911 for (e = node->callers; e ; e = e->next_caller)
4912 {
4913 caller = e->caller;
4914 if (!is_tm_safe_or_pure (caller->decl)
4915 && !caller->local.tm_may_enter_irr)
4916 {
4917 d = get_cg_data (&caller, true);
4918 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
4919 }
4920 }
4921
4922 /* Propagate back to referring aliases as well. */
4923 for (j = 0; ipa_ref_list_refering_iterate (&node->ref_list, j, ref); j++)
4924 {
4925 caller = ref->refering.cgraph_node;
4926 if (ref->use == IPA_REF_ALIAS
4927 && !caller->local.tm_may_enter_irr)
4928 {
4929 /* ?? Do not traverse aliases here. */
4930 d = get_cg_data (&caller, false);
4931 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
4932 }
4933 }
4934 }
4935
4936 /* Now validate all tm_safe functions, and all atomic regions in
4937 other functions. */
4938 for (node = cgraph_nodes; node; node = node->next)
4939 if (node->reachable && node->lowered
4940 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
4941 {
4942 d = get_cg_data (&node, true);
4943 if (is_tm_safe (node->decl))
4944 ipa_tm_diagnose_tm_safe (node);
4945 else if (d->all_tm_regions)
4946 ipa_tm_diagnose_transaction (node, d->all_tm_regions);
4947 }
4948
4949 /* Create clones. Do those that are not irrevocable and have a
4950 positive call count. Do those publicly visible functions that
4951 the user directed us to clone. */
4952 for (i = 0; i < VEC_length (cgraph_node_p, tm_callees); ++i)
4953 {
4954 bool doit = false;
4955
4956 node = VEC_index (cgraph_node_p, tm_callees, i);
4957 if (node->same_body_alias)
4958 continue;
4959
4960 a = cgraph_function_body_availability (node);
4961 d = get_cg_data (&node, true);
4962
4963 if (a <= AVAIL_NOT_AVAILABLE)
4964 doit = is_tm_callable (node->decl);
4965 else if (a <= AVAIL_AVAILABLE && is_tm_callable (node->decl))
4966 doit = true;
4967 else if (!d->is_irrevocable
4968 && d->tm_callers_normal + d->tm_callers_clone > 0)
4969 doit = true;
4970
4971 if (doit)
4972 ipa_tm_create_version (node);
4973 }
4974
4975 /* Redirect calls to the new clones, and insert irrevocable marks. */
4976 for (i = 0; i < VEC_length (cgraph_node_p, tm_callees); ++i)
4977 {
4978 node = VEC_index (cgraph_node_p, tm_callees, i);
4979 if (node->analyzed)
4980 {
4981 d = get_cg_data (&node, true);
4982 if (d->clone)
4983 ipa_tm_transform_clone (node);
4984 }
4985 }
4986 for (node = cgraph_nodes; node; node = node->next)
4987 if (node->reachable && node->lowered
4988 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
4989 {
4990 d = get_cg_data (&node, true);
4991 if (d->all_tm_regions)
4992 ipa_tm_transform_transaction (node);
4993 }
4994
4995 /* Free and clear all data structures. */
4996 VEC_free (cgraph_node_p, heap, tm_callees);
4997 VEC_free (cgraph_node_p, heap, irr_worklist);
4998 bitmap_obstack_release (&tm_obstack);
4999
5000 for (node = cgraph_nodes; node; node = node->next)
5001 node->aux = NULL;
5002
5003 #ifdef ENABLE_CHECKING
5004 verify_cgraph ();
5005 #endif
5006
5007 return 0;
5008 }
5009
5010 struct simple_ipa_opt_pass pass_ipa_tm =
5011 {
5012 {
5013 SIMPLE_IPA_PASS,
5014 "tmipa", /* name */
5015 gate_tm, /* gate */
5016 ipa_tm_execute, /* execute */
5017 NULL, /* sub */
5018 NULL, /* next */
5019 0, /* static_pass_number */
5020 TV_TRANS_MEM, /* tv_id */
5021 PROP_ssa | PROP_cfg, /* properties_required */
5022 0, /* properties_provided */
5023 0, /* properties_destroyed */
5024 0, /* todo_flags_start */
5025 TODO_dump_func, /* todo_flags_finish */
5026 },
5027 };
5028
5029 #include "gt-trans-mem.h"