Add a test for PR66655
[gcc.git] / gcc / trans-mem.c
1 /* Passes for transactional memory support.
2 Copyright (C) 2008-2016 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "cgraph.h"
34 #include "gimple-pretty-print.h"
35 #include "diagnostic-core.h"
36 #include "fold-const.h"
37 #include "tree-eh.h"
38 #include "calls.h"
39 #include "gimplify.h"
40 #include "gimple-iterator.h"
41 #include "gimplify-me.h"
42 #include "gimple-walk.h"
43 #include "tree-cfg.h"
44 #include "tree-into-ssa.h"
45 #include "tree-inline.h"
46 #include "demangle.h"
47 #include "output.h"
48 #include "trans-mem.h"
49 #include "params.h"
50 #include "langhooks.h"
51 #include "cfgloop.h"
52 #include "tree-ssa-address.h"
53
54
55 #define A_RUNINSTRUMENTEDCODE 0x0001
56 #define A_RUNUNINSTRUMENTEDCODE 0x0002
57 #define A_SAVELIVEVARIABLES 0x0004
58 #define A_RESTORELIVEVARIABLES 0x0008
59 #define A_ABORTTRANSACTION 0x0010
60
61 #define AR_USERABORT 0x0001
62 #define AR_USERRETRY 0x0002
63 #define AR_TMCONFLICT 0x0004
64 #define AR_EXCEPTIONBLOCKABORT 0x0008
65 #define AR_OUTERABORT 0x0010
66
67 #define MODE_SERIALIRREVOCABLE 0x0000
68
69
70 /* The representation of a transaction changes several times during the
71 lowering process. In the beginning, in the front-end we have the
72 GENERIC tree TRANSACTION_EXPR. For example,
73
74 __transaction {
75 local++;
76 if (++global == 10)
77 __tm_abort;
78 }
79
80 During initial gimplification (gimplify.c) the TRANSACTION_EXPR node is
81 trivially replaced with a GIMPLE_TRANSACTION node.
82
83 During pass_lower_tm, we examine the body of transactions looking
84 for aborts. Transactions that do not contain an abort may be
85 merged into an outer transaction. We also add a TRY-FINALLY node
86 to arrange for the transaction to be committed on any exit.
87
88 [??? Think about how this arrangement affects throw-with-commit
89 and throw-with-abort operations. In this case we want the TRY to
90 handle gotos, but not to catch any exceptions because the transaction
91 will already be closed.]
92
93 GIMPLE_TRANSACTION [label=NULL] {
94 try {
95 local = local + 1;
96 t0 = global;
97 t1 = t0 + 1;
98 global = t1;
99 if (t1 == 10)
100 __builtin___tm_abort ();
101 } finally {
102 __builtin___tm_commit ();
103 }
104 }
105
106 During pass_lower_eh, we create EH regions for the transactions,
107 intermixed with the regular EH stuff. This gives us a nice persistent
108 mapping (all the way through rtl) from transactional memory operation
109 back to the transaction, which allows us to get the abnormal edges
110 correct to model transaction aborts and restarts:
111
112 GIMPLE_TRANSACTION [label=over]
113 local = local + 1;
114 t0 = global;
115 t1 = t0 + 1;
116 global = t1;
117 if (t1 == 10)
118 __builtin___tm_abort ();
119 __builtin___tm_commit ();
120 over:
121
122 This is the end of all_lowering_passes, and so is what is present
123 during the IPA passes, and through all of the optimization passes.
124
125 During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all
126 functions and mark functions for cloning.
127
128 At the end of gimple optimization, before exiting SSA form,
129 pass_tm_edges replaces statements that perform transactional
130 memory operations with the appropriate TM builtins, and swap
131 out function calls with their transactional clones. At this
132 point we introduce the abnormal transaction restart edges and
133 complete lowering of the GIMPLE_TRANSACTION node.
134
135 x = __builtin___tm_start (MAY_ABORT);
136 eh_label:
137 if (x & abort_transaction)
138 goto over;
139 local = local + 1;
140 t0 = __builtin___tm_load (global);
141 t1 = t0 + 1;
142 __builtin___tm_store (&global, t1);
143 if (t1 == 10)
144 __builtin___tm_abort ();
145 __builtin___tm_commit ();
146 over:
147 */
148
149 static void *expand_regions (struct tm_region *,
150 void *(*callback)(struct tm_region *, void *),
151 void *, bool);
152
153 \f
154 /* Return the attributes we want to examine for X, or NULL if it's not
155 something we examine. We look at function types, but allow pointers
156 to function types and function decls and peek through. */
157
158 static tree
159 get_attrs_for (const_tree x)
160 {
161 if (x == NULL_TREE)
162 return NULL_TREE;
163
164 switch (TREE_CODE (x))
165 {
166 case FUNCTION_DECL:
167 return TYPE_ATTRIBUTES (TREE_TYPE (x));
168 break;
169
170 default:
171 if (TYPE_P (x))
172 return NULL_TREE;
173 x = TREE_TYPE (x);
174 if (TREE_CODE (x) != POINTER_TYPE)
175 return NULL_TREE;
176 /* FALLTHRU */
177
178 case POINTER_TYPE:
179 x = TREE_TYPE (x);
180 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
181 return NULL_TREE;
182 /* FALLTHRU */
183
184 case FUNCTION_TYPE:
185 case METHOD_TYPE:
186 return TYPE_ATTRIBUTES (x);
187 }
188 }
189
190 /* Return true if X has been marked TM_PURE. */
191
192 bool
193 is_tm_pure (const_tree x)
194 {
195 unsigned flags;
196
197 switch (TREE_CODE (x))
198 {
199 case FUNCTION_DECL:
200 case FUNCTION_TYPE:
201 case METHOD_TYPE:
202 break;
203
204 default:
205 if (TYPE_P (x))
206 return false;
207 x = TREE_TYPE (x);
208 if (TREE_CODE (x) != POINTER_TYPE)
209 return false;
210 /* FALLTHRU */
211
212 case POINTER_TYPE:
213 x = TREE_TYPE (x);
214 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
215 return false;
216 break;
217 }
218
219 flags = flags_from_decl_or_type (x);
220 return (flags & ECF_TM_PURE) != 0;
221 }
222
223 /* Return true if X has been marked TM_IRREVOCABLE. */
224
225 static bool
226 is_tm_irrevocable (tree x)
227 {
228 tree attrs = get_attrs_for (x);
229
230 if (attrs && lookup_attribute ("transaction_unsafe", attrs))
231 return true;
232
233 /* A call to the irrevocable builtin is by definition,
234 irrevocable. */
235 if (TREE_CODE (x) == ADDR_EXPR)
236 x = TREE_OPERAND (x, 0);
237 if (TREE_CODE (x) == FUNCTION_DECL
238 && DECL_BUILT_IN_CLASS (x) == BUILT_IN_NORMAL
239 && DECL_FUNCTION_CODE (x) == BUILT_IN_TM_IRREVOCABLE)
240 return true;
241
242 return false;
243 }
244
245 /* Return true if X has been marked TM_SAFE. */
246
247 bool
248 is_tm_safe (const_tree x)
249 {
250 if (flag_tm)
251 {
252 tree attrs = get_attrs_for (x);
253 if (attrs)
254 {
255 if (lookup_attribute ("transaction_safe", attrs))
256 return true;
257 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
258 return true;
259 }
260 }
261 return false;
262 }
263
264 /* Return true if CALL is const, or tm_pure. */
265
266 static bool
267 is_tm_pure_call (gimple *call)
268 {
269 if (gimple_call_internal_p (call))
270 return (gimple_call_flags (call) & (ECF_CONST | ECF_TM_PURE)) != 0;
271
272 tree fn = gimple_call_fn (call);
273
274 if (TREE_CODE (fn) == ADDR_EXPR)
275 {
276 fn = TREE_OPERAND (fn, 0);
277 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
278 }
279 else
280 fn = TREE_TYPE (fn);
281
282 return is_tm_pure (fn);
283 }
284
285 /* Return true if X has been marked TM_CALLABLE. */
286
287 static bool
288 is_tm_callable (tree x)
289 {
290 tree attrs = get_attrs_for (x);
291 if (attrs)
292 {
293 if (lookup_attribute ("transaction_callable", attrs))
294 return true;
295 if (lookup_attribute ("transaction_safe", attrs))
296 return true;
297 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
298 return true;
299 }
300 return false;
301 }
302
303 /* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER. */
304
305 bool
306 is_tm_may_cancel_outer (tree x)
307 {
308 tree attrs = get_attrs_for (x);
309 if (attrs)
310 return lookup_attribute ("transaction_may_cancel_outer", attrs) != NULL;
311 return false;
312 }
313
314 /* Return true for built in functions that "end" a transaction. */
315
316 bool
317 is_tm_ending_fndecl (tree fndecl)
318 {
319 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
320 switch (DECL_FUNCTION_CODE (fndecl))
321 {
322 case BUILT_IN_TM_COMMIT:
323 case BUILT_IN_TM_COMMIT_EH:
324 case BUILT_IN_TM_ABORT:
325 case BUILT_IN_TM_IRREVOCABLE:
326 return true;
327 default:
328 break;
329 }
330
331 return false;
332 }
333
334 /* Return true if STMT is a built in function call that "ends" a
335 transaction. */
336
337 bool
338 is_tm_ending (gimple *stmt)
339 {
340 tree fndecl;
341
342 if (gimple_code (stmt) != GIMPLE_CALL)
343 return false;
344
345 fndecl = gimple_call_fndecl (stmt);
346 return (fndecl != NULL_TREE
347 && is_tm_ending_fndecl (fndecl));
348 }
349
350 /* Return true if STMT is a TM load. */
351
352 static bool
353 is_tm_load (gimple *stmt)
354 {
355 tree fndecl;
356
357 if (gimple_code (stmt) != GIMPLE_CALL)
358 return false;
359
360 fndecl = gimple_call_fndecl (stmt);
361 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
362 && BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl)));
363 }
364
365 /* Same as above, but for simple TM loads, that is, not the
366 after-write, after-read, etc optimized variants. */
367
368 static bool
369 is_tm_simple_load (gimple *stmt)
370 {
371 tree fndecl;
372
373 if (gimple_code (stmt) != GIMPLE_CALL)
374 return false;
375
376 fndecl = gimple_call_fndecl (stmt);
377 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
378 {
379 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
380 return (fcode == BUILT_IN_TM_LOAD_1
381 || fcode == BUILT_IN_TM_LOAD_2
382 || fcode == BUILT_IN_TM_LOAD_4
383 || fcode == BUILT_IN_TM_LOAD_8
384 || fcode == BUILT_IN_TM_LOAD_FLOAT
385 || fcode == BUILT_IN_TM_LOAD_DOUBLE
386 || fcode == BUILT_IN_TM_LOAD_LDOUBLE
387 || fcode == BUILT_IN_TM_LOAD_M64
388 || fcode == BUILT_IN_TM_LOAD_M128
389 || fcode == BUILT_IN_TM_LOAD_M256);
390 }
391 return false;
392 }
393
394 /* Return true if STMT is a TM store. */
395
396 static bool
397 is_tm_store (gimple *stmt)
398 {
399 tree fndecl;
400
401 if (gimple_code (stmt) != GIMPLE_CALL)
402 return false;
403
404 fndecl = gimple_call_fndecl (stmt);
405 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
406 && BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl)));
407 }
408
409 /* Same as above, but for simple TM stores, that is, not the
410 after-write, after-read, etc optimized variants. */
411
412 static bool
413 is_tm_simple_store (gimple *stmt)
414 {
415 tree fndecl;
416
417 if (gimple_code (stmt) != GIMPLE_CALL)
418 return false;
419
420 fndecl = gimple_call_fndecl (stmt);
421 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
422 {
423 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
424 return (fcode == BUILT_IN_TM_STORE_1
425 || fcode == BUILT_IN_TM_STORE_2
426 || fcode == BUILT_IN_TM_STORE_4
427 || fcode == BUILT_IN_TM_STORE_8
428 || fcode == BUILT_IN_TM_STORE_FLOAT
429 || fcode == BUILT_IN_TM_STORE_DOUBLE
430 || fcode == BUILT_IN_TM_STORE_LDOUBLE
431 || fcode == BUILT_IN_TM_STORE_M64
432 || fcode == BUILT_IN_TM_STORE_M128
433 || fcode == BUILT_IN_TM_STORE_M256);
434 }
435 return false;
436 }
437
438 /* Return true if FNDECL is BUILT_IN_TM_ABORT. */
439
440 static bool
441 is_tm_abort (tree fndecl)
442 {
443 return (fndecl
444 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
445 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_TM_ABORT);
446 }
447
448 /* Build a GENERIC tree for a user abort. This is called by front ends
449 while transforming the __tm_abort statement. */
450
451 tree
452 build_tm_abort_call (location_t loc, bool is_outer)
453 {
454 return build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_TM_ABORT), 1,
455 build_int_cst (integer_type_node,
456 AR_USERABORT
457 | (is_outer ? AR_OUTERABORT : 0)));
458 }
459 \f
460 /* Map for aribtrary function replacement under TM, as created
461 by the tm_wrap attribute. */
462
463 struct tm_wrapper_hasher : ggc_cache_ptr_hash<tree_map>
464 {
465 static inline hashval_t hash (tree_map *m) { return m->hash; }
466 static inline bool
467 equal (tree_map *a, tree_map *b)
468 {
469 return a->base.from == b->base.from;
470 }
471
472 static int
473 keep_cache_entry (tree_map *&m)
474 {
475 return ggc_marked_p (m->base.from);
476 }
477 };
478
479 static GTY((cache)) hash_table<tm_wrapper_hasher> *tm_wrap_map;
480
481 void
482 record_tm_replacement (tree from, tree to)
483 {
484 struct tree_map **slot, *h;
485
486 /* Do not inline wrapper functions that will get replaced in the TM
487 pass.
488
489 Suppose you have foo() that will get replaced into tmfoo(). Make
490 sure the inliner doesn't try to outsmart us and inline foo()
491 before we get a chance to do the TM replacement. */
492 DECL_UNINLINABLE (from) = 1;
493
494 if (tm_wrap_map == NULL)
495 tm_wrap_map = hash_table<tm_wrapper_hasher>::create_ggc (32);
496
497 h = ggc_alloc<tree_map> ();
498 h->hash = htab_hash_pointer (from);
499 h->base.from = from;
500 h->to = to;
501
502 slot = tm_wrap_map->find_slot_with_hash (h, h->hash, INSERT);
503 *slot = h;
504 }
505
506 /* Return a TM-aware replacement function for DECL. */
507
508 static tree
509 find_tm_replacement_function (tree fndecl)
510 {
511 if (tm_wrap_map)
512 {
513 struct tree_map *h, in;
514
515 in.base.from = fndecl;
516 in.hash = htab_hash_pointer (fndecl);
517 h = tm_wrap_map->find_with_hash (&in, in.hash);
518 if (h)
519 return h->to;
520 }
521
522 /* ??? We may well want TM versions of most of the common <string.h>
523 functions. For now, we've already these two defined. */
524 /* Adjust expand_call_tm() attributes as necessary for the cases
525 handled here: */
526 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
527 switch (DECL_FUNCTION_CODE (fndecl))
528 {
529 case BUILT_IN_MEMCPY:
530 return builtin_decl_explicit (BUILT_IN_TM_MEMCPY);
531 case BUILT_IN_MEMMOVE:
532 return builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
533 case BUILT_IN_MEMSET:
534 return builtin_decl_explicit (BUILT_IN_TM_MEMSET);
535 default:
536 return NULL;
537 }
538
539 return NULL;
540 }
541
542 /* When appropriate, record TM replacement for memory allocation functions.
543
544 FROM is the FNDECL to wrap. */
545 void
546 tm_malloc_replacement (tree from)
547 {
548 const char *str;
549 tree to;
550
551 if (TREE_CODE (from) != FUNCTION_DECL)
552 return;
553
554 /* If we have a previous replacement, the user must be explicitly
555 wrapping malloc/calloc/free. They better know what they're
556 doing... */
557 if (find_tm_replacement_function (from))
558 return;
559
560 str = IDENTIFIER_POINTER (DECL_NAME (from));
561
562 if (!strcmp (str, "malloc"))
563 to = builtin_decl_explicit (BUILT_IN_TM_MALLOC);
564 else if (!strcmp (str, "calloc"))
565 to = builtin_decl_explicit (BUILT_IN_TM_CALLOC);
566 else if (!strcmp (str, "free"))
567 to = builtin_decl_explicit (BUILT_IN_TM_FREE);
568 else
569 return;
570
571 TREE_NOTHROW (to) = 0;
572
573 record_tm_replacement (from, to);
574 }
575 \f
576 /* Diagnostics for tm_safe functions/regions. Called by the front end
577 once we've lowered the function to high-gimple. */
578
579 /* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq.
580 Process exactly one statement. WI->INFO is set to non-null when in
581 the context of a tm_safe function, and null for a __transaction block. */
582
583 #define DIAG_TM_OUTER 1
584 #define DIAG_TM_SAFE 2
585 #define DIAG_TM_RELAXED 4
586
587 struct diagnose_tm
588 {
589 unsigned int summary_flags : 8;
590 unsigned int block_flags : 8;
591 unsigned int func_flags : 8;
592 unsigned int saw_volatile : 1;
593 gimple *stmt;
594 };
595
596 /* Return true if T is a volatile lvalue of some kind. */
597
598 static bool
599 volatile_lvalue_p (tree t)
600 {
601 return ((SSA_VAR_P (t) || REFERENCE_CLASS_P (t))
602 && TREE_THIS_VOLATILE (TREE_TYPE (t)));
603 }
604
605 /* Tree callback function for diagnose_tm pass. */
606
607 static tree
608 diagnose_tm_1_op (tree *tp, int *walk_subtrees, void *data)
609 {
610 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
611 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
612
613 if (TYPE_P (*tp))
614 *walk_subtrees = false;
615 else if (volatile_lvalue_p (*tp)
616 && !d->saw_volatile)
617 {
618 d->saw_volatile = 1;
619 if (d->block_flags & DIAG_TM_SAFE)
620 error_at (gimple_location (d->stmt),
621 "invalid use of volatile lvalue inside transaction");
622 else if (d->func_flags & DIAG_TM_SAFE)
623 error_at (gimple_location (d->stmt),
624 "invalid use of volatile lvalue inside %<transaction_safe%>"
625 "function");
626 }
627
628 return NULL_TREE;
629 }
630
631 static inline bool
632 is_tm_safe_or_pure (const_tree x)
633 {
634 return is_tm_safe (x) || is_tm_pure (x);
635 }
636
637 static tree
638 diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p,
639 struct walk_stmt_info *wi)
640 {
641 gimple *stmt = gsi_stmt (*gsi);
642 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
643
644 /* Save stmt for use in leaf analysis. */
645 d->stmt = stmt;
646
647 switch (gimple_code (stmt))
648 {
649 case GIMPLE_CALL:
650 {
651 tree fn = gimple_call_fn (stmt);
652
653 if ((d->summary_flags & DIAG_TM_OUTER) == 0
654 && is_tm_may_cancel_outer (fn))
655 error_at (gimple_location (stmt),
656 "%<transaction_may_cancel_outer%> function call not within"
657 " outer transaction or %<transaction_may_cancel_outer%>");
658
659 if (d->summary_flags & DIAG_TM_SAFE)
660 {
661 bool is_safe, direct_call_p;
662 tree replacement;
663
664 if (TREE_CODE (fn) == ADDR_EXPR
665 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL)
666 {
667 direct_call_p = true;
668 replacement = TREE_OPERAND (fn, 0);
669 replacement = find_tm_replacement_function (replacement);
670 if (replacement)
671 fn = replacement;
672 }
673 else
674 {
675 direct_call_p = false;
676 replacement = NULL_TREE;
677 }
678
679 if (is_tm_safe_or_pure (fn))
680 is_safe = true;
681 else if (is_tm_callable (fn) || is_tm_irrevocable (fn))
682 {
683 /* A function explicitly marked transaction_callable as
684 opposed to transaction_safe is being defined to be
685 unsafe as part of its ABI, regardless of its contents. */
686 is_safe = false;
687 }
688 else if (direct_call_p)
689 {
690 if (IS_TYPE_OR_DECL_P (fn)
691 && flags_from_decl_or_type (fn) & ECF_TM_BUILTIN)
692 is_safe = true;
693 else if (replacement)
694 {
695 /* ??? At present we've been considering replacements
696 merely transaction_callable, and therefore might
697 enter irrevocable. The tm_wrap attribute has not
698 yet made it into the new language spec. */
699 is_safe = false;
700 }
701 else
702 {
703 /* ??? Diagnostics for unmarked direct calls moved into
704 the IPA pass. Section 3.2 of the spec details how
705 functions not marked should be considered "implicitly
706 safe" based on having examined the function body. */
707 is_safe = true;
708 }
709 }
710 else
711 {
712 /* An unmarked indirect call. Consider it unsafe even
713 though optimization may yet figure out how to inline. */
714 is_safe = false;
715 }
716
717 if (!is_safe)
718 {
719 if (TREE_CODE (fn) == ADDR_EXPR)
720 fn = TREE_OPERAND (fn, 0);
721 if (d->block_flags & DIAG_TM_SAFE)
722 {
723 if (direct_call_p)
724 error_at (gimple_location (stmt),
725 "unsafe function call %qD within "
726 "atomic transaction", fn);
727 else
728 {
729 if (!DECL_P (fn) || DECL_NAME (fn))
730 error_at (gimple_location (stmt),
731 "unsafe function call %qE within "
732 "atomic transaction", fn);
733 else
734 error_at (gimple_location (stmt),
735 "unsafe indirect function call within "
736 "atomic transaction");
737 }
738 }
739 else
740 {
741 if (direct_call_p)
742 error_at (gimple_location (stmt),
743 "unsafe function call %qD within "
744 "%<transaction_safe%> function", fn);
745 else
746 {
747 if (!DECL_P (fn) || DECL_NAME (fn))
748 error_at (gimple_location (stmt),
749 "unsafe function call %qE within "
750 "%<transaction_safe%> function", fn);
751 else
752 error_at (gimple_location (stmt),
753 "unsafe indirect function call within "
754 "%<transaction_safe%> function");
755 }
756 }
757 }
758 }
759 }
760 break;
761
762 case GIMPLE_ASM:
763 /* ??? We ought to come up with a way to add attributes to
764 asm statements, and then add "transaction_safe" to it.
765 Either that or get the language spec to resurrect __tm_waiver. */
766 if (d->block_flags & DIAG_TM_SAFE)
767 error_at (gimple_location (stmt),
768 "asm not allowed in atomic transaction");
769 else if (d->func_flags & DIAG_TM_SAFE)
770 error_at (gimple_location (stmt),
771 "asm not allowed in %<transaction_safe%> function");
772 break;
773
774 case GIMPLE_TRANSACTION:
775 {
776 gtransaction *trans_stmt = as_a <gtransaction *> (stmt);
777 unsigned char inner_flags = DIAG_TM_SAFE;
778
779 if (gimple_transaction_subcode (trans_stmt) & GTMA_IS_RELAXED)
780 {
781 if (d->block_flags & DIAG_TM_SAFE)
782 error_at (gimple_location (stmt),
783 "relaxed transaction in atomic transaction");
784 else if (d->func_flags & DIAG_TM_SAFE)
785 error_at (gimple_location (stmt),
786 "relaxed transaction in %<transaction_safe%> function");
787 inner_flags = DIAG_TM_RELAXED;
788 }
789 else if (gimple_transaction_subcode (trans_stmt) & GTMA_IS_OUTER)
790 {
791 if (d->block_flags)
792 error_at (gimple_location (stmt),
793 "outer transaction in transaction");
794 else if (d->func_flags & DIAG_TM_OUTER)
795 error_at (gimple_location (stmt),
796 "outer transaction in "
797 "%<transaction_may_cancel_outer%> function");
798 else if (d->func_flags & DIAG_TM_SAFE)
799 error_at (gimple_location (stmt),
800 "outer transaction in %<transaction_safe%> function");
801 inner_flags |= DIAG_TM_OUTER;
802 }
803
804 *handled_ops_p = true;
805 if (gimple_transaction_body (trans_stmt))
806 {
807 struct walk_stmt_info wi_inner;
808 struct diagnose_tm d_inner;
809
810 memset (&d_inner, 0, sizeof (d_inner));
811 d_inner.func_flags = d->func_flags;
812 d_inner.block_flags = d->block_flags | inner_flags;
813 d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags;
814
815 memset (&wi_inner, 0, sizeof (wi_inner));
816 wi_inner.info = &d_inner;
817
818 walk_gimple_seq (gimple_transaction_body (trans_stmt),
819 diagnose_tm_1, diagnose_tm_1_op, &wi_inner);
820 }
821 }
822 break;
823
824 default:
825 break;
826 }
827
828 return NULL_TREE;
829 }
830
831 static unsigned int
832 diagnose_tm_blocks (void)
833 {
834 struct walk_stmt_info wi;
835 struct diagnose_tm d;
836
837 memset (&d, 0, sizeof (d));
838 if (is_tm_may_cancel_outer (current_function_decl))
839 d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE;
840 else if (is_tm_safe (current_function_decl))
841 d.func_flags = DIAG_TM_SAFE;
842 d.summary_flags = d.func_flags;
843
844 memset (&wi, 0, sizeof (wi));
845 wi.info = &d;
846
847 walk_gimple_seq (gimple_body (current_function_decl),
848 diagnose_tm_1, diagnose_tm_1_op, &wi);
849
850 return 0;
851 }
852
853 namespace {
854
855 const pass_data pass_data_diagnose_tm_blocks =
856 {
857 GIMPLE_PASS, /* type */
858 "*diagnose_tm_blocks", /* name */
859 OPTGROUP_NONE, /* optinfo_flags */
860 TV_TRANS_MEM, /* tv_id */
861 PROP_gimple_any, /* properties_required */
862 0, /* properties_provided */
863 0, /* properties_destroyed */
864 0, /* todo_flags_start */
865 0, /* todo_flags_finish */
866 };
867
868 class pass_diagnose_tm_blocks : public gimple_opt_pass
869 {
870 public:
871 pass_diagnose_tm_blocks (gcc::context *ctxt)
872 : gimple_opt_pass (pass_data_diagnose_tm_blocks, ctxt)
873 {}
874
875 /* opt_pass methods: */
876 virtual bool gate (function *) { return flag_tm; }
877 virtual unsigned int execute (function *) { return diagnose_tm_blocks (); }
878
879 }; // class pass_diagnose_tm_blocks
880
881 } // anon namespace
882
883 gimple_opt_pass *
884 make_pass_diagnose_tm_blocks (gcc::context *ctxt)
885 {
886 return new pass_diagnose_tm_blocks (ctxt);
887 }
888 \f
889 /* Instead of instrumenting thread private memory, we save the
890 addresses in a log which we later use to save/restore the addresses
891 upon transaction start/restart.
892
893 The log is keyed by address, where each element contains individual
894 statements among different code paths that perform the store.
895
896 This log is later used to generate either plain save/restore of the
897 addresses upon transaction start/restart, or calls to the ITM_L*
898 logging functions.
899
900 So for something like:
901
902 struct large { int x[1000]; };
903 struct large lala = { 0 };
904 __transaction {
905 lala.x[i] = 123;
906 ...
907 }
908
909 We can either save/restore:
910
911 lala = { 0 };
912 trxn = _ITM_startTransaction ();
913 if (trxn & a_saveLiveVariables)
914 tmp_lala1 = lala.x[i];
915 else if (a & a_restoreLiveVariables)
916 lala.x[i] = tmp_lala1;
917
918 or use the logging functions:
919
920 lala = { 0 };
921 trxn = _ITM_startTransaction ();
922 _ITM_LU4 (&lala.x[i]);
923
924 Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as
925 far up the dominator tree to shadow all of the writes to a given
926 location (thus reducing the total number of logging calls), but not
927 so high as to be called on a path that does not perform a
928 write. */
929
930 /* One individual log entry. We may have multiple statements for the
931 same location if neither dominate each other (on different
932 execution paths). */
933 struct tm_log_entry
934 {
935 /* Address to save. */
936 tree addr;
937 /* Entry block for the transaction this address occurs in. */
938 basic_block entry_block;
939 /* Dominating statements the store occurs in. */
940 vec<gimple *> stmts;
941 /* Initially, while we are building the log, we place a nonzero
942 value here to mean that this address *will* be saved with a
943 save/restore sequence. Later, when generating the save sequence
944 we place the SSA temp generated here. */
945 tree save_var;
946 };
947
948
949 /* Log entry hashtable helpers. */
950
951 struct log_entry_hasher : pointer_hash <tm_log_entry>
952 {
953 static inline hashval_t hash (const tm_log_entry *);
954 static inline bool equal (const tm_log_entry *, const tm_log_entry *);
955 static inline void remove (tm_log_entry *);
956 };
957
958 /* Htab support. Return hash value for a `tm_log_entry'. */
959 inline hashval_t
960 log_entry_hasher::hash (const tm_log_entry *log)
961 {
962 return iterative_hash_expr (log->addr, 0);
963 }
964
965 /* Htab support. Return true if two log entries are the same. */
966 inline bool
967 log_entry_hasher::equal (const tm_log_entry *log1, const tm_log_entry *log2)
968 {
969 /* FIXME:
970
971 rth: I suggest that we get rid of the component refs etc.
972 I.e. resolve the reference to base + offset.
973
974 We may need to actually finish a merge with mainline for this,
975 since we'd like to be presented with Richi's MEM_REF_EXPRs more
976 often than not. But in the meantime your tm_log_entry could save
977 the results of get_inner_reference.
978
979 See: g++.dg/tm/pr46653.C
980 */
981
982 /* Special case plain equality because operand_equal_p() below will
983 return FALSE if the addresses are equal but they have
984 side-effects (e.g. a volatile address). */
985 if (log1->addr == log2->addr)
986 return true;
987
988 return operand_equal_p (log1->addr, log2->addr, 0);
989 }
990
991 /* Htab support. Free one tm_log_entry. */
992 inline void
993 log_entry_hasher::remove (tm_log_entry *lp)
994 {
995 lp->stmts.release ();
996 free (lp);
997 }
998
999
1000 /* The actual log. */
1001 static hash_table<log_entry_hasher> *tm_log;
1002
1003 /* Addresses to log with a save/restore sequence. These should be in
1004 dominator order. */
1005 static vec<tree> tm_log_save_addresses;
1006
1007 enum thread_memory_type
1008 {
1009 mem_non_local = 0,
1010 mem_thread_local,
1011 mem_transaction_local,
1012 mem_max
1013 };
1014
1015 struct tm_new_mem_map
1016 {
1017 /* SSA_NAME being dereferenced. */
1018 tree val;
1019 enum thread_memory_type local_new_memory;
1020 };
1021
1022 /* Hashtable helpers. */
1023
1024 struct tm_mem_map_hasher : free_ptr_hash <tm_new_mem_map>
1025 {
1026 static inline hashval_t hash (const tm_new_mem_map *);
1027 static inline bool equal (const tm_new_mem_map *, const tm_new_mem_map *);
1028 };
1029
1030 inline hashval_t
1031 tm_mem_map_hasher::hash (const tm_new_mem_map *v)
1032 {
1033 return (intptr_t)v->val >> 4;
1034 }
1035
1036 inline bool
1037 tm_mem_map_hasher::equal (const tm_new_mem_map *v, const tm_new_mem_map *c)
1038 {
1039 return v->val == c->val;
1040 }
1041
1042 /* Map for an SSA_NAME originally pointing to a non aliased new piece
1043 of memory (malloc, alloc, etc). */
1044 static hash_table<tm_mem_map_hasher> *tm_new_mem_hash;
1045
1046 /* Initialize logging data structures. */
1047 static void
1048 tm_log_init (void)
1049 {
1050 tm_log = new hash_table<log_entry_hasher> (10);
1051 tm_new_mem_hash = new hash_table<tm_mem_map_hasher> (5);
1052 tm_log_save_addresses.create (5);
1053 }
1054
1055 /* Free logging data structures. */
1056 static void
1057 tm_log_delete (void)
1058 {
1059 delete tm_log;
1060 tm_log = NULL;
1061 delete tm_new_mem_hash;
1062 tm_new_mem_hash = NULL;
1063 tm_log_save_addresses.release ();
1064 }
1065
1066 /* Return true if MEM is a transaction invariant memory for the TM
1067 region starting at REGION_ENTRY_BLOCK. */
1068 static bool
1069 transaction_invariant_address_p (const_tree mem, basic_block region_entry_block)
1070 {
1071 if ((TREE_CODE (mem) == INDIRECT_REF || TREE_CODE (mem) == MEM_REF)
1072 && TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME)
1073 {
1074 basic_block def_bb;
1075
1076 def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0)));
1077 return def_bb != region_entry_block
1078 && dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb);
1079 }
1080
1081 mem = strip_invariant_refs (mem);
1082 return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem));
1083 }
1084
1085 /* Given an address ADDR in STMT, find it in the memory log or add it,
1086 making sure to keep only the addresses highest in the dominator
1087 tree.
1088
1089 ENTRY_BLOCK is the entry_block for the transaction.
1090
1091 If we find the address in the log, make sure it's either the same
1092 address, or an equivalent one that dominates ADDR.
1093
1094 If we find the address, but neither ADDR dominates the found
1095 address, nor the found one dominates ADDR, we're on different
1096 execution paths. Add it.
1097
1098 If known, ENTRY_BLOCK is the entry block for the region, otherwise
1099 NULL. */
1100 static void
1101 tm_log_add (basic_block entry_block, tree addr, gimple *stmt)
1102 {
1103 tm_log_entry **slot;
1104 struct tm_log_entry l, *lp;
1105
1106 l.addr = addr;
1107 slot = tm_log->find_slot (&l, INSERT);
1108 if (!*slot)
1109 {
1110 tree type = TREE_TYPE (addr);
1111
1112 lp = XNEW (struct tm_log_entry);
1113 lp->addr = addr;
1114 *slot = lp;
1115
1116 /* Small invariant addresses can be handled as save/restores. */
1117 if (entry_block
1118 && transaction_invariant_address_p (lp->addr, entry_block)
1119 && TYPE_SIZE_UNIT (type) != NULL
1120 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
1121 && ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE_UNIT (type))
1122 < PARAM_VALUE (PARAM_TM_MAX_AGGREGATE_SIZE))
1123 /* We must be able to copy this type normally. I.e., no
1124 special constructors and the like. */
1125 && !TREE_ADDRESSABLE (type))
1126 {
1127 lp->save_var = create_tmp_reg (TREE_TYPE (lp->addr), "tm_save");
1128 lp->stmts.create (0);
1129 lp->entry_block = entry_block;
1130 /* Save addresses separately in dominator order so we don't
1131 get confused by overlapping addresses in the save/restore
1132 sequence. */
1133 tm_log_save_addresses.safe_push (lp->addr);
1134 }
1135 else
1136 {
1137 /* Use the logging functions. */
1138 lp->stmts.create (5);
1139 lp->stmts.quick_push (stmt);
1140 lp->save_var = NULL;
1141 }
1142 }
1143 else
1144 {
1145 size_t i;
1146 gimple *oldstmt;
1147
1148 lp = *slot;
1149
1150 /* If we're generating a save/restore sequence, we don't care
1151 about statements. */
1152 if (lp->save_var)
1153 return;
1154
1155 for (i = 0; lp->stmts.iterate (i, &oldstmt); ++i)
1156 {
1157 if (stmt == oldstmt)
1158 return;
1159 /* We already have a store to the same address, higher up the
1160 dominator tree. Nothing to do. */
1161 if (dominated_by_p (CDI_DOMINATORS,
1162 gimple_bb (stmt), gimple_bb (oldstmt)))
1163 return;
1164 /* We should be processing blocks in dominator tree order. */
1165 gcc_assert (!dominated_by_p (CDI_DOMINATORS,
1166 gimple_bb (oldstmt), gimple_bb (stmt)));
1167 }
1168 /* Store is on a different code path. */
1169 lp->stmts.safe_push (stmt);
1170 }
1171 }
1172
1173 /* Gimplify the address of a TARGET_MEM_REF. Return the SSA_NAME
1174 result, insert the new statements before GSI. */
1175
1176 static tree
1177 gimplify_addr (gimple_stmt_iterator *gsi, tree x)
1178 {
1179 if (TREE_CODE (x) == TARGET_MEM_REF)
1180 x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x);
1181 else
1182 x = build_fold_addr_expr (x);
1183 return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT);
1184 }
1185
1186 /* Instrument one address with the logging functions.
1187 ADDR is the address to save.
1188 STMT is the statement before which to place it. */
1189 static void
1190 tm_log_emit_stmt (tree addr, gimple *stmt)
1191 {
1192 tree type = TREE_TYPE (addr);
1193 tree size = TYPE_SIZE_UNIT (type);
1194 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1195 gimple *log;
1196 enum built_in_function code = BUILT_IN_TM_LOG;
1197
1198 if (type == float_type_node)
1199 code = BUILT_IN_TM_LOG_FLOAT;
1200 else if (type == double_type_node)
1201 code = BUILT_IN_TM_LOG_DOUBLE;
1202 else if (type == long_double_type_node)
1203 code = BUILT_IN_TM_LOG_LDOUBLE;
1204 else if (tree_fits_uhwi_p (size))
1205 {
1206 unsigned int n = tree_to_uhwi (size);
1207 switch (n)
1208 {
1209 case 1:
1210 code = BUILT_IN_TM_LOG_1;
1211 break;
1212 case 2:
1213 code = BUILT_IN_TM_LOG_2;
1214 break;
1215 case 4:
1216 code = BUILT_IN_TM_LOG_4;
1217 break;
1218 case 8:
1219 code = BUILT_IN_TM_LOG_8;
1220 break;
1221 default:
1222 code = BUILT_IN_TM_LOG;
1223 if (TREE_CODE (type) == VECTOR_TYPE)
1224 {
1225 if (n == 8 && builtin_decl_explicit (BUILT_IN_TM_LOG_M64))
1226 code = BUILT_IN_TM_LOG_M64;
1227 else if (n == 16 && builtin_decl_explicit (BUILT_IN_TM_LOG_M128))
1228 code = BUILT_IN_TM_LOG_M128;
1229 else if (n == 32 && builtin_decl_explicit (BUILT_IN_TM_LOG_M256))
1230 code = BUILT_IN_TM_LOG_M256;
1231 }
1232 break;
1233 }
1234 }
1235
1236 addr = gimplify_addr (&gsi, addr);
1237 if (code == BUILT_IN_TM_LOG)
1238 log = gimple_build_call (builtin_decl_explicit (code), 2, addr, size);
1239 else
1240 log = gimple_build_call (builtin_decl_explicit (code), 1, addr);
1241 gsi_insert_before (&gsi, log, GSI_SAME_STMT);
1242 }
1243
1244 /* Go through the log and instrument address that must be instrumented
1245 with the logging functions. Leave the save/restore addresses for
1246 later. */
1247 static void
1248 tm_log_emit (void)
1249 {
1250 hash_table<log_entry_hasher>::iterator hi;
1251 struct tm_log_entry *lp;
1252
1253 FOR_EACH_HASH_TABLE_ELEMENT (*tm_log, lp, tm_log_entry_t, hi)
1254 {
1255 size_t i;
1256 gimple *stmt;
1257
1258 if (dump_file)
1259 {
1260 fprintf (dump_file, "TM thread private mem logging: ");
1261 print_generic_expr (dump_file, lp->addr, 0);
1262 fprintf (dump_file, "\n");
1263 }
1264
1265 if (lp->save_var)
1266 {
1267 if (dump_file)
1268 fprintf (dump_file, "DUMPING to variable\n");
1269 continue;
1270 }
1271 else
1272 {
1273 if (dump_file)
1274 fprintf (dump_file, "DUMPING with logging functions\n");
1275 for (i = 0; lp->stmts.iterate (i, &stmt); ++i)
1276 tm_log_emit_stmt (lp->addr, stmt);
1277 }
1278 }
1279 }
1280
1281 /* Emit the save sequence for the corresponding addresses in the log.
1282 ENTRY_BLOCK is the entry block for the transaction.
1283 BB is the basic block to insert the code in. */
1284 static void
1285 tm_log_emit_saves (basic_block entry_block, basic_block bb)
1286 {
1287 size_t i;
1288 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1289 gimple *stmt;
1290 struct tm_log_entry l, *lp;
1291
1292 for (i = 0; i < tm_log_save_addresses.length (); ++i)
1293 {
1294 l.addr = tm_log_save_addresses[i];
1295 lp = *(tm_log->find_slot (&l, NO_INSERT));
1296 gcc_assert (lp->save_var != NULL);
1297
1298 /* We only care about variables in the current transaction. */
1299 if (lp->entry_block != entry_block)
1300 continue;
1301
1302 stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr));
1303
1304 /* Make sure we can create an SSA_NAME for this type. For
1305 instance, aggregates aren't allowed, in which case the system
1306 will create a VOP for us and everything will just work. */
1307 if (is_gimple_reg_type (TREE_TYPE (lp->save_var)))
1308 {
1309 lp->save_var = make_ssa_name (lp->save_var, stmt);
1310 gimple_assign_set_lhs (stmt, lp->save_var);
1311 }
1312
1313 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1314 }
1315 }
1316
1317 /* Emit the restore sequence for the corresponding addresses in the log.
1318 ENTRY_BLOCK is the entry block for the transaction.
1319 BB is the basic block to insert the code in. */
1320 static void
1321 tm_log_emit_restores (basic_block entry_block, basic_block bb)
1322 {
1323 int i;
1324 struct tm_log_entry l, *lp;
1325 gimple_stmt_iterator gsi;
1326 gimple *stmt;
1327
1328 for (i = tm_log_save_addresses.length () - 1; i >= 0; i--)
1329 {
1330 l.addr = tm_log_save_addresses[i];
1331 lp = *(tm_log->find_slot (&l, NO_INSERT));
1332 gcc_assert (lp->save_var != NULL);
1333
1334 /* We only care about variables in the current transaction. */
1335 if (lp->entry_block != entry_block)
1336 continue;
1337
1338 /* Restores are in LIFO order from the saves in case we have
1339 overlaps. */
1340 gsi = gsi_start_bb (bb);
1341
1342 stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var);
1343 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1344 }
1345 }
1346
1347 \f
1348 static tree lower_sequence_tm (gimple_stmt_iterator *, bool *,
1349 struct walk_stmt_info *);
1350 static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *,
1351 struct walk_stmt_info *);
1352
1353 /* Evaluate an address X being dereferenced and determine if it
1354 originally points to a non aliased new chunk of memory (malloc,
1355 alloca, etc).
1356
1357 Return MEM_THREAD_LOCAL if it points to a thread-local address.
1358 Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address.
1359 Return MEM_NON_LOCAL otherwise.
1360
1361 ENTRY_BLOCK is the entry block to the transaction containing the
1362 dereference of X. */
1363 static enum thread_memory_type
1364 thread_private_new_memory (basic_block entry_block, tree x)
1365 {
1366 gimple *stmt = NULL;
1367 enum tree_code code;
1368 tm_new_mem_map **slot;
1369 tm_new_mem_map elt, *elt_p;
1370 tree val = x;
1371 enum thread_memory_type retval = mem_transaction_local;
1372
1373 if (!entry_block
1374 || TREE_CODE (x) != SSA_NAME
1375 /* Possible uninitialized use, or a function argument. In
1376 either case, we don't care. */
1377 || SSA_NAME_IS_DEFAULT_DEF (x))
1378 return mem_non_local;
1379
1380 /* Look in cache first. */
1381 elt.val = x;
1382 slot = tm_new_mem_hash->find_slot (&elt, INSERT);
1383 elt_p = *slot;
1384 if (elt_p)
1385 return elt_p->local_new_memory;
1386
1387 /* Optimistically assume the memory is transaction local during
1388 processing. This catches recursion into this variable. */
1389 *slot = elt_p = XNEW (tm_new_mem_map);
1390 elt_p->val = val;
1391 elt_p->local_new_memory = mem_transaction_local;
1392
1393 /* Search DEF chain to find the original definition of this address. */
1394 do
1395 {
1396 if (ptr_deref_may_alias_global_p (x))
1397 {
1398 /* Address escapes. This is not thread-private. */
1399 retval = mem_non_local;
1400 goto new_memory_ret;
1401 }
1402
1403 stmt = SSA_NAME_DEF_STMT (x);
1404
1405 /* If the malloc call is outside the transaction, this is
1406 thread-local. */
1407 if (retval != mem_thread_local
1408 && !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), entry_block))
1409 retval = mem_thread_local;
1410
1411 if (is_gimple_assign (stmt))
1412 {
1413 code = gimple_assign_rhs_code (stmt);
1414 /* x = foo ==> foo */
1415 if (code == SSA_NAME)
1416 x = gimple_assign_rhs1 (stmt);
1417 /* x = foo + n ==> foo */
1418 else if (code == POINTER_PLUS_EXPR)
1419 x = gimple_assign_rhs1 (stmt);
1420 /* x = (cast*) foo ==> foo */
1421 else if (code == VIEW_CONVERT_EXPR || CONVERT_EXPR_CODE_P (code))
1422 x = gimple_assign_rhs1 (stmt);
1423 /* x = c ? op1 : op2 == > op1 or op2 just like a PHI */
1424 else if (code == COND_EXPR)
1425 {
1426 tree op1 = gimple_assign_rhs2 (stmt);
1427 tree op2 = gimple_assign_rhs3 (stmt);
1428 enum thread_memory_type mem;
1429 retval = thread_private_new_memory (entry_block, op1);
1430 if (retval == mem_non_local)
1431 goto new_memory_ret;
1432 mem = thread_private_new_memory (entry_block, op2);
1433 retval = MIN (retval, mem);
1434 goto new_memory_ret;
1435 }
1436 else
1437 {
1438 retval = mem_non_local;
1439 goto new_memory_ret;
1440 }
1441 }
1442 else
1443 {
1444 if (gimple_code (stmt) == GIMPLE_PHI)
1445 {
1446 unsigned int i;
1447 enum thread_memory_type mem;
1448 tree phi_result = gimple_phi_result (stmt);
1449
1450 /* If any of the ancestors are non-local, we are sure to
1451 be non-local. Otherwise we can avoid doing anything
1452 and inherit what has already been generated. */
1453 retval = mem_max;
1454 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
1455 {
1456 tree op = PHI_ARG_DEF (stmt, i);
1457
1458 /* Exclude self-assignment. */
1459 if (phi_result == op)
1460 continue;
1461
1462 mem = thread_private_new_memory (entry_block, op);
1463 if (mem == mem_non_local)
1464 {
1465 retval = mem;
1466 goto new_memory_ret;
1467 }
1468 retval = MIN (retval, mem);
1469 }
1470 goto new_memory_ret;
1471 }
1472 break;
1473 }
1474 }
1475 while (TREE_CODE (x) == SSA_NAME);
1476
1477 if (stmt && is_gimple_call (stmt) && gimple_call_flags (stmt) & ECF_MALLOC)
1478 /* Thread-local or transaction-local. */
1479 ;
1480 else
1481 retval = mem_non_local;
1482
1483 new_memory_ret:
1484 elt_p->local_new_memory = retval;
1485 return retval;
1486 }
1487
1488 /* Determine whether X has to be instrumented using a read
1489 or write barrier.
1490
1491 ENTRY_BLOCK is the entry block for the region where stmt resides
1492 in. NULL if unknown.
1493
1494 STMT is the statement in which X occurs in. It is used for thread
1495 private memory instrumentation. If no TPM instrumentation is
1496 desired, STMT should be null. */
1497 static bool
1498 requires_barrier (basic_block entry_block, tree x, gimple *stmt)
1499 {
1500 tree orig = x;
1501 while (handled_component_p (x))
1502 x = TREE_OPERAND (x, 0);
1503
1504 switch (TREE_CODE (x))
1505 {
1506 case INDIRECT_REF:
1507 case MEM_REF:
1508 {
1509 enum thread_memory_type ret;
1510
1511 ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0));
1512 if (ret == mem_non_local)
1513 return true;
1514 if (stmt && ret == mem_thread_local)
1515 /* ?? Should we pass `orig', or the INDIRECT_REF X. ?? */
1516 tm_log_add (entry_block, orig, stmt);
1517
1518 /* Transaction-locals require nothing at all. For malloc, a
1519 transaction restart frees the memory and we reallocate.
1520 For alloca, the stack pointer gets reset by the retry and
1521 we reallocate. */
1522 return false;
1523 }
1524
1525 case TARGET_MEM_REF:
1526 if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR)
1527 return true;
1528 x = TREE_OPERAND (TMR_BASE (x), 0);
1529 if (TREE_CODE (x) == PARM_DECL)
1530 return false;
1531 gcc_assert (TREE_CODE (x) == VAR_DECL);
1532 /* FALLTHRU */
1533
1534 case PARM_DECL:
1535 case RESULT_DECL:
1536 case VAR_DECL:
1537 if (DECL_BY_REFERENCE (x))
1538 {
1539 /* ??? This value is a pointer, but aggregate_value_p has been
1540 jigged to return true which confuses needs_to_live_in_memory.
1541 This ought to be cleaned up generically.
1542
1543 FIXME: Verify this still happens after the next mainline
1544 merge. Testcase ie g++.dg/tm/pr47554.C.
1545 */
1546 return false;
1547 }
1548
1549 if (is_global_var (x))
1550 return !TREE_READONLY (x);
1551 if (/* FIXME: This condition should actually go below in the
1552 tm_log_add() call, however is_call_clobbered() depends on
1553 aliasing info which is not available during
1554 gimplification. Since requires_barrier() gets called
1555 during lower_sequence_tm/gimplification, leave the call
1556 to needs_to_live_in_memory until we eliminate
1557 lower_sequence_tm altogether. */
1558 needs_to_live_in_memory (x))
1559 return true;
1560 else
1561 {
1562 /* For local memory that doesn't escape (aka thread private
1563 memory), we can either save the value at the beginning of
1564 the transaction and restore on restart, or call a tm
1565 function to dynamically save and restore on restart
1566 (ITM_L*). */
1567 if (stmt)
1568 tm_log_add (entry_block, orig, stmt);
1569 return false;
1570 }
1571
1572 default:
1573 return false;
1574 }
1575 }
1576
1577 /* Mark the GIMPLE_ASSIGN statement as appropriate for being inside
1578 a transaction region. */
1579
1580 static void
1581 examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi)
1582 {
1583 gimple *stmt = gsi_stmt (*gsi);
1584
1585 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_rhs1 (stmt), NULL))
1586 *state |= GTMA_HAVE_LOAD;
1587 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_lhs (stmt), NULL))
1588 *state |= GTMA_HAVE_STORE;
1589 }
1590
1591 /* Mark a GIMPLE_CALL as appropriate for being inside a transaction. */
1592
1593 static void
1594 examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi)
1595 {
1596 gimple *stmt = gsi_stmt (*gsi);
1597 tree fn;
1598
1599 if (is_tm_pure_call (stmt))
1600 return;
1601
1602 /* Check if this call is a transaction abort. */
1603 fn = gimple_call_fndecl (stmt);
1604 if (is_tm_abort (fn))
1605 *state |= GTMA_HAVE_ABORT;
1606
1607 /* Note that something may happen. */
1608 *state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE;
1609 }
1610
1611 /* Iterate through the statements in the sequence, moving labels
1612 (and thus edges) of transactions from "label_norm" to "label_uninst". */
1613
1614 static tree
1615 make_tm_uninst (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1616 struct walk_stmt_info *)
1617 {
1618 gimple *stmt = gsi_stmt (*gsi);
1619
1620 if (gtransaction *txn = dyn_cast <gtransaction *> (stmt))
1621 {
1622 *handled_ops_p = true;
1623 txn->label_uninst = txn->label_norm;
1624 txn->label_norm = NULL;
1625 }
1626 else
1627 *handled_ops_p = !gimple_has_substatements (stmt);
1628
1629 return NULL_TREE;
1630 }
1631
1632 /* Lower a GIMPLE_TRANSACTION statement. */
1633
1634 static void
1635 lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi)
1636 {
1637 gimple *g;
1638 gtransaction *stmt = as_a <gtransaction *> (gsi_stmt (*gsi));
1639 unsigned int *outer_state = (unsigned int *) wi->info;
1640 unsigned int this_state = 0;
1641 struct walk_stmt_info this_wi;
1642
1643 /* First, lower the body. The scanning that we do inside gives
1644 us some idea of what we're dealing with. */
1645 memset (&this_wi, 0, sizeof (this_wi));
1646 this_wi.info = (void *) &this_state;
1647 walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
1648 lower_sequence_tm, NULL, &this_wi);
1649
1650 /* If there was absolutely nothing transaction related inside the
1651 transaction, we may elide it. Likewise if this is a nested
1652 transaction and does not contain an abort. */
1653 if (this_state == 0
1654 || (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL))
1655 {
1656 if (outer_state)
1657 *outer_state |= this_state;
1658
1659 gsi_insert_seq_before (gsi, gimple_transaction_body (stmt),
1660 GSI_SAME_STMT);
1661 gimple_transaction_set_body (stmt, NULL);
1662
1663 gsi_remove (gsi, true);
1664 wi->removed_stmt = true;
1665 return;
1666 }
1667
1668 /* Wrap the body of the transaction in a try-finally node so that
1669 the commit call is always properly called. */
1670 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT), 0);
1671 if (flag_exceptions)
1672 {
1673 tree ptr;
1674 gimple_seq n_seq, e_seq;
1675
1676 n_seq = gimple_seq_alloc_with_stmt (g);
1677 e_seq = NULL;
1678
1679 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1680 1, integer_zero_node);
1681 ptr = create_tmp_var (ptr_type_node);
1682 gimple_call_set_lhs (g, ptr);
1683 gimple_seq_add_stmt (&e_seq, g);
1684
1685 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT_EH),
1686 1, ptr);
1687 gimple_seq_add_stmt (&e_seq, g);
1688
1689 g = gimple_build_eh_else (n_seq, e_seq);
1690 }
1691
1692 g = gimple_build_try (gimple_transaction_body (stmt),
1693 gimple_seq_alloc_with_stmt (g), GIMPLE_TRY_FINALLY);
1694
1695 /* For a (potentially) outer transaction, create two paths. */
1696 gimple_seq uninst = NULL;
1697 if (outer_state == NULL)
1698 {
1699 uninst = copy_gimple_seq_and_replace_locals (g);
1700 /* In the uninstrumented copy, reset inner transactions to have only
1701 an uninstrumented code path. */
1702 memset (&this_wi, 0, sizeof (this_wi));
1703 walk_gimple_seq (uninst, make_tm_uninst, NULL, &this_wi);
1704 }
1705
1706 tree label1 = create_artificial_label (UNKNOWN_LOCATION);
1707 gsi_insert_after (gsi, gimple_build_label (label1), GSI_CONTINUE_LINKING);
1708 gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
1709 gimple_transaction_set_label_norm (stmt, label1);
1710
1711 /* If the transaction calls abort or if this is an outer transaction,
1712 add an "over" label afterwards. */
1713 tree label3 = NULL;
1714 if ((this_state & GTMA_HAVE_ABORT)
1715 || outer_state == NULL
1716 || (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER))
1717 {
1718 label3 = create_artificial_label (UNKNOWN_LOCATION);
1719 gimple_transaction_set_label_over (stmt, label3);
1720 }
1721
1722 if (uninst != NULL)
1723 {
1724 gsi_insert_after (gsi, gimple_build_goto (label3), GSI_CONTINUE_LINKING);
1725
1726 tree label2 = create_artificial_label (UNKNOWN_LOCATION);
1727 gsi_insert_after (gsi, gimple_build_label (label2), GSI_CONTINUE_LINKING);
1728 gsi_insert_seq_after (gsi, uninst, GSI_CONTINUE_LINKING);
1729 gimple_transaction_set_label_uninst (stmt, label2);
1730 }
1731
1732 if (label3 != NULL)
1733 gsi_insert_after (gsi, gimple_build_label (label3), GSI_CONTINUE_LINKING);
1734
1735 gimple_transaction_set_body (stmt, NULL);
1736
1737 /* Record the set of operations found for use later. */
1738 this_state |= gimple_transaction_subcode (stmt) & GTMA_DECLARATION_MASK;
1739 gimple_transaction_set_subcode (stmt, this_state);
1740 }
1741
1742 /* Iterate through the statements in the sequence, lowering them all
1743 as appropriate for being in a transaction. */
1744
1745 static tree
1746 lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1747 struct walk_stmt_info *wi)
1748 {
1749 unsigned int *state = (unsigned int *) wi->info;
1750 gimple *stmt = gsi_stmt (*gsi);
1751
1752 *handled_ops_p = true;
1753 switch (gimple_code (stmt))
1754 {
1755 case GIMPLE_ASSIGN:
1756 /* Only memory reads/writes need to be instrumented. */
1757 if (gimple_assign_single_p (stmt))
1758 examine_assign_tm (state, gsi);
1759 break;
1760
1761 case GIMPLE_CALL:
1762 examine_call_tm (state, gsi);
1763 break;
1764
1765 case GIMPLE_ASM:
1766 *state |= GTMA_MAY_ENTER_IRREVOCABLE;
1767 break;
1768
1769 case GIMPLE_TRANSACTION:
1770 lower_transaction (gsi, wi);
1771 break;
1772
1773 default:
1774 *handled_ops_p = !gimple_has_substatements (stmt);
1775 break;
1776 }
1777
1778 return NULL_TREE;
1779 }
1780
1781 /* Iterate through the statements in the sequence, lowering them all
1782 as appropriate for being outside of a transaction. */
1783
1784 static tree
1785 lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1786 struct walk_stmt_info * wi)
1787 {
1788 gimple *stmt = gsi_stmt (*gsi);
1789
1790 if (gimple_code (stmt) == GIMPLE_TRANSACTION)
1791 {
1792 *handled_ops_p = true;
1793 lower_transaction (gsi, wi);
1794 }
1795 else
1796 *handled_ops_p = !gimple_has_substatements (stmt);
1797
1798 return NULL_TREE;
1799 }
1800
1801 /* Main entry point for flattening GIMPLE_TRANSACTION constructs. After
1802 this, GIMPLE_TRANSACTION nodes still exist, but the nested body has
1803 been moved out, and all the data required for constructing a proper
1804 CFG has been recorded. */
1805
1806 static unsigned int
1807 execute_lower_tm (void)
1808 {
1809 struct walk_stmt_info wi;
1810 gimple_seq body;
1811
1812 /* Transactional clones aren't created until a later pass. */
1813 gcc_assert (!decl_is_tm_clone (current_function_decl));
1814
1815 body = gimple_body (current_function_decl);
1816 memset (&wi, 0, sizeof (wi));
1817 walk_gimple_seq_mod (&body, lower_sequence_no_tm, NULL, &wi);
1818 gimple_set_body (current_function_decl, body);
1819
1820 return 0;
1821 }
1822
1823 namespace {
1824
1825 const pass_data pass_data_lower_tm =
1826 {
1827 GIMPLE_PASS, /* type */
1828 "tmlower", /* name */
1829 OPTGROUP_NONE, /* optinfo_flags */
1830 TV_TRANS_MEM, /* tv_id */
1831 PROP_gimple_lcf, /* properties_required */
1832 0, /* properties_provided */
1833 0, /* properties_destroyed */
1834 0, /* todo_flags_start */
1835 0, /* todo_flags_finish */
1836 };
1837
1838 class pass_lower_tm : public gimple_opt_pass
1839 {
1840 public:
1841 pass_lower_tm (gcc::context *ctxt)
1842 : gimple_opt_pass (pass_data_lower_tm, ctxt)
1843 {}
1844
1845 /* opt_pass methods: */
1846 virtual bool gate (function *) { return flag_tm; }
1847 virtual unsigned int execute (function *) { return execute_lower_tm (); }
1848
1849 }; // class pass_lower_tm
1850
1851 } // anon namespace
1852
1853 gimple_opt_pass *
1854 make_pass_lower_tm (gcc::context *ctxt)
1855 {
1856 return new pass_lower_tm (ctxt);
1857 }
1858 \f
1859 /* Collect region information for each transaction. */
1860
1861 struct tm_region
1862 {
1863 public:
1864
1865 /* The field "transaction_stmt" is initially a gtransaction *,
1866 but eventually gets lowered to a gcall *(to BUILT_IN_TM_START).
1867
1868 Helper method to get it as a gtransaction *, with code-checking
1869 in a checked-build. */
1870
1871 gtransaction *
1872 get_transaction_stmt () const
1873 {
1874 return as_a <gtransaction *> (transaction_stmt);
1875 }
1876
1877 public:
1878
1879 /* Link to the next unnested transaction. */
1880 struct tm_region *next;
1881
1882 /* Link to the next inner transaction. */
1883 struct tm_region *inner;
1884
1885 /* Link to the next outer transaction. */
1886 struct tm_region *outer;
1887
1888 /* The GIMPLE_TRANSACTION statement beginning this transaction.
1889 After TM_MARK, this gets replaced by a call to
1890 BUILT_IN_TM_START.
1891 Hence this will be either a gtransaction *or a gcall *. */
1892 gimple *transaction_stmt;
1893
1894 /* After TM_MARK expands the GIMPLE_TRANSACTION into a call to
1895 BUILT_IN_TM_START, this field is true if the transaction is an
1896 outer transaction. */
1897 bool original_transaction_was_outer;
1898
1899 /* Return value from BUILT_IN_TM_START. */
1900 tree tm_state;
1901
1902 /* The entry block to this region. This will always be the first
1903 block of the body of the transaction. */
1904 basic_block entry_block;
1905
1906 /* The first block after an expanded call to _ITM_beginTransaction. */
1907 basic_block restart_block;
1908
1909 /* The set of all blocks that end the region; NULL if only EXIT_BLOCK.
1910 These blocks are still a part of the region (i.e., the border is
1911 inclusive). Note that this set is only complete for paths in the CFG
1912 starting at ENTRY_BLOCK, and that there is no exit block recorded for
1913 the edge to the "over" label. */
1914 bitmap exit_blocks;
1915
1916 /* The set of all blocks that have an TM_IRREVOCABLE call. */
1917 bitmap irr_blocks;
1918 };
1919
1920 /* True if there are pending edge statements to be committed for the
1921 current function being scanned in the tmmark pass. */
1922 bool pending_edge_inserts_p;
1923
1924 static struct tm_region *all_tm_regions;
1925 static bitmap_obstack tm_obstack;
1926
1927
1928 /* A subroutine of tm_region_init. Record the existence of the
1929 GIMPLE_TRANSACTION statement in a tree of tm_region elements. */
1930
1931 static struct tm_region *
1932 tm_region_init_0 (struct tm_region *outer, basic_block bb,
1933 gtransaction *stmt)
1934 {
1935 struct tm_region *region;
1936
1937 region = (struct tm_region *)
1938 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1939
1940 if (outer)
1941 {
1942 region->next = outer->inner;
1943 outer->inner = region;
1944 }
1945 else
1946 {
1947 region->next = all_tm_regions;
1948 all_tm_regions = region;
1949 }
1950 region->inner = NULL;
1951 region->outer = outer;
1952
1953 region->transaction_stmt = stmt;
1954 region->original_transaction_was_outer = false;
1955 region->tm_state = NULL;
1956
1957 /* There are either one or two edges out of the block containing
1958 the GIMPLE_TRANSACTION, one to the actual region and one to the
1959 "over" label if the region contains an abort. The former will
1960 always be the one marked FALLTHRU. */
1961 region->entry_block = FALLTHRU_EDGE (bb)->dest;
1962
1963 region->exit_blocks = BITMAP_ALLOC (&tm_obstack);
1964 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1965
1966 return region;
1967 }
1968
1969 /* A subroutine of tm_region_init. Record all the exit and
1970 irrevocable blocks in BB into the region's exit_blocks and
1971 irr_blocks bitmaps. Returns the new region being scanned. */
1972
1973 static struct tm_region *
1974 tm_region_init_1 (struct tm_region *region, basic_block bb)
1975 {
1976 gimple_stmt_iterator gsi;
1977 gimple *g;
1978
1979 if (!region
1980 || (!region->irr_blocks && !region->exit_blocks))
1981 return region;
1982
1983 /* Check to see if this is the end of a region by seeing if it
1984 contains a call to __builtin_tm_commit{,_eh}. Note that the
1985 outermost region for DECL_IS_TM_CLONE need not collect this. */
1986 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1987 {
1988 g = gsi_stmt (gsi);
1989 if (gimple_code (g) == GIMPLE_CALL)
1990 {
1991 tree fn = gimple_call_fndecl (g);
1992 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
1993 {
1994 if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT
1995 || DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT_EH)
1996 && region->exit_blocks)
1997 {
1998 bitmap_set_bit (region->exit_blocks, bb->index);
1999 region = region->outer;
2000 break;
2001 }
2002 if (DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_IRREVOCABLE)
2003 bitmap_set_bit (region->irr_blocks, bb->index);
2004 }
2005 }
2006 }
2007 return region;
2008 }
2009
2010 /* Collect all of the transaction regions within the current function
2011 and record them in ALL_TM_REGIONS. The REGION parameter may specify
2012 an "outermost" region for use by tm clones. */
2013
2014 static void
2015 tm_region_init (struct tm_region *region)
2016 {
2017 gimple *g;
2018 edge_iterator ei;
2019 edge e;
2020 basic_block bb;
2021 auto_vec<basic_block> queue;
2022 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2023 struct tm_region *old_region;
2024 auto_vec<tm_region *> bb_regions;
2025
2026 all_tm_regions = region;
2027 bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2028
2029 /* We could store this information in bb->aux, but we may get called
2030 through get_all_tm_blocks() from another pass that may be already
2031 using bb->aux. */
2032 bb_regions.safe_grow_cleared (last_basic_block_for_fn (cfun));
2033
2034 queue.safe_push (bb);
2035 bb_regions[bb->index] = region;
2036 do
2037 {
2038 bb = queue.pop ();
2039 region = bb_regions[bb->index];
2040 bb_regions[bb->index] = NULL;
2041
2042 /* Record exit and irrevocable blocks. */
2043 region = tm_region_init_1 (region, bb);
2044
2045 /* Check for the last statement in the block beginning a new region. */
2046 g = last_stmt (bb);
2047 old_region = region;
2048 if (g)
2049 if (gtransaction *trans_stmt = dyn_cast <gtransaction *> (g))
2050 region = tm_region_init_0 (region, bb, trans_stmt);
2051
2052 /* Process subsequent blocks. */
2053 FOR_EACH_EDGE (e, ei, bb->succs)
2054 if (!bitmap_bit_p (visited_blocks, e->dest->index))
2055 {
2056 bitmap_set_bit (visited_blocks, e->dest->index);
2057 queue.safe_push (e->dest);
2058
2059 /* If the current block started a new region, make sure that only
2060 the entry block of the new region is associated with this region.
2061 Other successors are still part of the old region. */
2062 if (old_region != region && e->dest != region->entry_block)
2063 bb_regions[e->dest->index] = old_region;
2064 else
2065 bb_regions[e->dest->index] = region;
2066 }
2067 }
2068 while (!queue.is_empty ());
2069 BITMAP_FREE (visited_blocks);
2070 }
2071
2072 /* The "gate" function for all transactional memory expansion and optimization
2073 passes. We collect region information for each top-level transaction, and
2074 if we don't find any, we skip all of the TM passes. Each region will have
2075 all of the exit blocks recorded, and the originating statement. */
2076
2077 static bool
2078 gate_tm_init (void)
2079 {
2080 if (!flag_tm)
2081 return false;
2082
2083 calculate_dominance_info (CDI_DOMINATORS);
2084 bitmap_obstack_initialize (&tm_obstack);
2085
2086 /* If the function is a TM_CLONE, then the entire function is the region. */
2087 if (decl_is_tm_clone (current_function_decl))
2088 {
2089 struct tm_region *region = (struct tm_region *)
2090 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
2091 memset (region, 0, sizeof (*region));
2092 region->entry_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2093 /* For a clone, the entire function is the region. But even if
2094 we don't need to record any exit blocks, we may need to
2095 record irrevocable blocks. */
2096 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
2097
2098 tm_region_init (region);
2099 }
2100 else
2101 {
2102 tm_region_init (NULL);
2103
2104 /* If we didn't find any regions, cleanup and skip the whole tree
2105 of tm-related optimizations. */
2106 if (all_tm_regions == NULL)
2107 {
2108 bitmap_obstack_release (&tm_obstack);
2109 return false;
2110 }
2111 }
2112
2113 return true;
2114 }
2115
2116 namespace {
2117
2118 const pass_data pass_data_tm_init =
2119 {
2120 GIMPLE_PASS, /* type */
2121 "*tminit", /* name */
2122 OPTGROUP_NONE, /* optinfo_flags */
2123 TV_TRANS_MEM, /* tv_id */
2124 ( PROP_ssa | PROP_cfg ), /* properties_required */
2125 0, /* properties_provided */
2126 0, /* properties_destroyed */
2127 0, /* todo_flags_start */
2128 0, /* todo_flags_finish */
2129 };
2130
2131 class pass_tm_init : public gimple_opt_pass
2132 {
2133 public:
2134 pass_tm_init (gcc::context *ctxt)
2135 : gimple_opt_pass (pass_data_tm_init, ctxt)
2136 {}
2137
2138 /* opt_pass methods: */
2139 virtual bool gate (function *) { return gate_tm_init (); }
2140
2141 }; // class pass_tm_init
2142
2143 } // anon namespace
2144
2145 gimple_opt_pass *
2146 make_pass_tm_init (gcc::context *ctxt)
2147 {
2148 return new pass_tm_init (ctxt);
2149 }
2150 \f
2151 /* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region
2152 represented by STATE. */
2153
2154 static inline void
2155 transaction_subcode_ior (struct tm_region *region, unsigned flags)
2156 {
2157 if (region && region->transaction_stmt)
2158 {
2159 gtransaction *transaction_stmt = region->get_transaction_stmt ();
2160 flags |= gimple_transaction_subcode (transaction_stmt);
2161 gimple_transaction_set_subcode (transaction_stmt, flags);
2162 }
2163 }
2164
2165 /* Construct a memory load in a transactional context. Return the
2166 gimple statement performing the load, or NULL if there is no
2167 TM_LOAD builtin of the appropriate size to do the load.
2168
2169 LOC is the location to use for the new statement(s). */
2170
2171 static gcall *
2172 build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2173 {
2174 enum built_in_function code = END_BUILTINS;
2175 tree t, type = TREE_TYPE (rhs), decl;
2176 gcall *gcall;
2177
2178 if (type == float_type_node)
2179 code = BUILT_IN_TM_LOAD_FLOAT;
2180 else if (type == double_type_node)
2181 code = BUILT_IN_TM_LOAD_DOUBLE;
2182 else if (type == long_double_type_node)
2183 code = BUILT_IN_TM_LOAD_LDOUBLE;
2184 else if (TYPE_SIZE_UNIT (type) != NULL
2185 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2186 {
2187 switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
2188 {
2189 case 1:
2190 code = BUILT_IN_TM_LOAD_1;
2191 break;
2192 case 2:
2193 code = BUILT_IN_TM_LOAD_2;
2194 break;
2195 case 4:
2196 code = BUILT_IN_TM_LOAD_4;
2197 break;
2198 case 8:
2199 code = BUILT_IN_TM_LOAD_8;
2200 break;
2201 }
2202 }
2203
2204 if (code == END_BUILTINS)
2205 {
2206 decl = targetm.vectorize.builtin_tm_load (type);
2207 if (!decl)
2208 return NULL;
2209 }
2210 else
2211 decl = builtin_decl_explicit (code);
2212
2213 t = gimplify_addr (gsi, rhs);
2214 gcall = gimple_build_call (decl, 1, t);
2215 gimple_set_location (gcall, loc);
2216
2217 t = TREE_TYPE (TREE_TYPE (decl));
2218 if (useless_type_conversion_p (type, t))
2219 {
2220 gimple_call_set_lhs (gcall, lhs);
2221 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2222 }
2223 else
2224 {
2225 gimple *g;
2226 tree temp;
2227
2228 temp = create_tmp_reg (t);
2229 gimple_call_set_lhs (gcall, temp);
2230 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2231
2232 t = fold_build1 (VIEW_CONVERT_EXPR, type, temp);
2233 g = gimple_build_assign (lhs, t);
2234 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2235 }
2236
2237 return gcall;
2238 }
2239
2240
2241 /* Similarly for storing TYPE in a transactional context. */
2242
2243 static gcall *
2244 build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2245 {
2246 enum built_in_function code = END_BUILTINS;
2247 tree t, fn, type = TREE_TYPE (rhs), simple_type;
2248 gcall *gcall;
2249
2250 if (type == float_type_node)
2251 code = BUILT_IN_TM_STORE_FLOAT;
2252 else if (type == double_type_node)
2253 code = BUILT_IN_TM_STORE_DOUBLE;
2254 else if (type == long_double_type_node)
2255 code = BUILT_IN_TM_STORE_LDOUBLE;
2256 else if (TYPE_SIZE_UNIT (type) != NULL
2257 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2258 {
2259 switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
2260 {
2261 case 1:
2262 code = BUILT_IN_TM_STORE_1;
2263 break;
2264 case 2:
2265 code = BUILT_IN_TM_STORE_2;
2266 break;
2267 case 4:
2268 code = BUILT_IN_TM_STORE_4;
2269 break;
2270 case 8:
2271 code = BUILT_IN_TM_STORE_8;
2272 break;
2273 }
2274 }
2275
2276 if (code == END_BUILTINS)
2277 {
2278 fn = targetm.vectorize.builtin_tm_store (type);
2279 if (!fn)
2280 return NULL;
2281 }
2282 else
2283 fn = builtin_decl_explicit (code);
2284
2285 simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))));
2286
2287 if (TREE_CODE (rhs) == CONSTRUCTOR)
2288 {
2289 /* Handle the easy initialization to zero. */
2290 if (!CONSTRUCTOR_ELTS (rhs))
2291 rhs = build_int_cst (simple_type, 0);
2292 else
2293 {
2294 /* ...otherwise punt to the caller and probably use
2295 BUILT_IN_TM_MEMMOVE, because we can't wrap a
2296 VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce
2297 valid gimple. */
2298 return NULL;
2299 }
2300 }
2301 else if (!useless_type_conversion_p (simple_type, type))
2302 {
2303 gimple *g;
2304 tree temp;
2305
2306 temp = create_tmp_reg (simple_type);
2307 t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs);
2308 g = gimple_build_assign (temp, t);
2309 gimple_set_location (g, loc);
2310 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2311
2312 rhs = temp;
2313 }
2314
2315 t = gimplify_addr (gsi, lhs);
2316 gcall = gimple_build_call (fn, 2, t, rhs);
2317 gimple_set_location (gcall, loc);
2318 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2319
2320 return gcall;
2321 }
2322
2323
2324 /* Expand an assignment statement into transactional builtins. */
2325
2326 static void
2327 expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi)
2328 {
2329 gimple *stmt = gsi_stmt (*gsi);
2330 location_t loc = gimple_location (stmt);
2331 tree lhs = gimple_assign_lhs (stmt);
2332 tree rhs = gimple_assign_rhs1 (stmt);
2333 bool store_p = requires_barrier (region->entry_block, lhs, NULL);
2334 bool load_p = requires_barrier (region->entry_block, rhs, NULL);
2335 gimple *gcall = NULL;
2336
2337 if (!load_p && !store_p)
2338 {
2339 /* Add thread private addresses to log if applicable. */
2340 requires_barrier (region->entry_block, lhs, stmt);
2341 gsi_next (gsi);
2342 return;
2343 }
2344
2345 // Remove original load/store statement.
2346 gsi_remove (gsi, true);
2347
2348 if (load_p && !store_p)
2349 {
2350 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2351 gcall = build_tm_load (loc, lhs, rhs, gsi);
2352 }
2353 else if (store_p && !load_p)
2354 {
2355 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2356 gcall = build_tm_store (loc, lhs, rhs, gsi);
2357 }
2358 if (!gcall)
2359 {
2360 tree lhs_addr, rhs_addr, tmp;
2361
2362 if (load_p)
2363 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2364 if (store_p)
2365 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2366
2367 /* ??? Figure out if there's any possible overlap between the LHS
2368 and the RHS and if not, use MEMCPY. */
2369
2370 if (load_p && is_gimple_reg (lhs))
2371 {
2372 tmp = create_tmp_var (TREE_TYPE (lhs));
2373 lhs_addr = build_fold_addr_expr (tmp);
2374 }
2375 else
2376 {
2377 tmp = NULL_TREE;
2378 lhs_addr = gimplify_addr (gsi, lhs);
2379 }
2380 rhs_addr = gimplify_addr (gsi, rhs);
2381 gcall = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_MEMMOVE),
2382 3, lhs_addr, rhs_addr,
2383 TYPE_SIZE_UNIT (TREE_TYPE (lhs)));
2384 gimple_set_location (gcall, loc);
2385 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2386
2387 if (tmp)
2388 {
2389 gcall = gimple_build_assign (lhs, tmp);
2390 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2391 }
2392 }
2393
2394 /* Now that we have the load/store in its instrumented form, add
2395 thread private addresses to the log if applicable. */
2396 if (!store_p)
2397 requires_barrier (region->entry_block, lhs, gcall);
2398
2399 // The calls to build_tm_{store,load} above inserted the instrumented
2400 // call into the stream.
2401 // gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2402 }
2403
2404
2405 /* Expand a call statement as appropriate for a transaction. That is,
2406 either verify that the call does not affect the transaction, or
2407 redirect the call to a clone that handles transactions, or change
2408 the transaction state to IRREVOCABLE. Return true if the call is
2409 one of the builtins that end a transaction. */
2410
2411 static bool
2412 expand_call_tm (struct tm_region *region,
2413 gimple_stmt_iterator *gsi)
2414 {
2415 gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
2416 tree lhs = gimple_call_lhs (stmt);
2417 tree fn_decl;
2418 struct cgraph_node *node;
2419 bool retval = false;
2420
2421 fn_decl = gimple_call_fndecl (stmt);
2422
2423 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMCPY)
2424 || fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMMOVE))
2425 transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD);
2426 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMSET))
2427 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2428
2429 if (is_tm_pure_call (stmt))
2430 return false;
2431
2432 if (fn_decl)
2433 retval = is_tm_ending_fndecl (fn_decl);
2434 if (!retval)
2435 {
2436 /* Assume all non-const/pure calls write to memory, except
2437 transaction ending builtins. */
2438 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2439 }
2440
2441 /* For indirect calls, we already generated a call into the runtime. */
2442 if (!fn_decl)
2443 {
2444 tree fn = gimple_call_fn (stmt);
2445
2446 /* We are guaranteed never to go irrevocable on a safe or pure
2447 call, and the pure call was handled above. */
2448 if (is_tm_safe (fn))
2449 return false;
2450 else
2451 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2452
2453 return false;
2454 }
2455
2456 node = cgraph_node::get (fn_decl);
2457 /* All calls should have cgraph here. */
2458 if (!node)
2459 {
2460 /* We can have a nodeless call here if some pass after IPA-tm
2461 added uninstrumented calls. For example, loop distribution
2462 can transform certain loop constructs into __builtin_mem*
2463 calls. In this case, see if we have a suitable TM
2464 replacement and fill in the gaps. */
2465 gcc_assert (DECL_BUILT_IN_CLASS (fn_decl) == BUILT_IN_NORMAL);
2466 enum built_in_function code = DECL_FUNCTION_CODE (fn_decl);
2467 gcc_assert (code == BUILT_IN_MEMCPY
2468 || code == BUILT_IN_MEMMOVE
2469 || code == BUILT_IN_MEMSET);
2470
2471 tree repl = find_tm_replacement_function (fn_decl);
2472 if (repl)
2473 {
2474 gimple_call_set_fndecl (stmt, repl);
2475 update_stmt (stmt);
2476 node = cgraph_node::create (repl);
2477 node->local.tm_may_enter_irr = false;
2478 return expand_call_tm (region, gsi);
2479 }
2480 gcc_unreachable ();
2481 }
2482 if (node->local.tm_may_enter_irr)
2483 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2484
2485 if (is_tm_abort (fn_decl))
2486 {
2487 transaction_subcode_ior (region, GTMA_HAVE_ABORT);
2488 return true;
2489 }
2490
2491 /* Instrument the store if needed.
2492
2493 If the assignment happens inside the function call (return slot
2494 optimization), there is no instrumentation to be done, since
2495 the callee should have done the right thing. */
2496 if (lhs && requires_barrier (region->entry_block, lhs, stmt)
2497 && !gimple_call_return_slot_opt_p (stmt))
2498 {
2499 tree tmp = create_tmp_reg (TREE_TYPE (lhs));
2500 location_t loc = gimple_location (stmt);
2501 edge fallthru_edge = NULL;
2502 gassign *assign_stmt;
2503
2504 /* Remember if the call was going to throw. */
2505 if (stmt_can_throw_internal (stmt))
2506 {
2507 edge_iterator ei;
2508 edge e;
2509 basic_block bb = gimple_bb (stmt);
2510
2511 FOR_EACH_EDGE (e, ei, bb->succs)
2512 if (e->flags & EDGE_FALLTHRU)
2513 {
2514 fallthru_edge = e;
2515 break;
2516 }
2517 }
2518
2519 gimple_call_set_lhs (stmt, tmp);
2520 update_stmt (stmt);
2521 assign_stmt = gimple_build_assign (lhs, tmp);
2522 gimple_set_location (assign_stmt, loc);
2523
2524 /* We cannot throw in the middle of a BB. If the call was going
2525 to throw, place the instrumentation on the fallthru edge, so
2526 the call remains the last statement in the block. */
2527 if (fallthru_edge)
2528 {
2529 gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (assign_stmt);
2530 gimple_stmt_iterator fallthru_gsi = gsi_start (fallthru_seq);
2531 expand_assign_tm (region, &fallthru_gsi);
2532 gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq);
2533 pending_edge_inserts_p = true;
2534 }
2535 else
2536 {
2537 gsi_insert_after (gsi, assign_stmt, GSI_CONTINUE_LINKING);
2538 expand_assign_tm (region, gsi);
2539 }
2540
2541 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2542 }
2543
2544 return retval;
2545 }
2546
2547
2548 /* Expand all statements in BB as appropriate for being inside
2549 a transaction. */
2550
2551 static void
2552 expand_block_tm (struct tm_region *region, basic_block bb)
2553 {
2554 gimple_stmt_iterator gsi;
2555
2556 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2557 {
2558 gimple *stmt = gsi_stmt (gsi);
2559 switch (gimple_code (stmt))
2560 {
2561 case GIMPLE_ASSIGN:
2562 /* Only memory reads/writes need to be instrumented. */
2563 if (gimple_assign_single_p (stmt)
2564 && !gimple_clobber_p (stmt))
2565 {
2566 expand_assign_tm (region, &gsi);
2567 continue;
2568 }
2569 break;
2570
2571 case GIMPLE_CALL:
2572 if (expand_call_tm (region, &gsi))
2573 return;
2574 break;
2575
2576 case GIMPLE_ASM:
2577 gcc_unreachable ();
2578
2579 default:
2580 break;
2581 }
2582 if (!gsi_end_p (gsi))
2583 gsi_next (&gsi);
2584 }
2585 }
2586
2587 /* Return the list of basic-blocks in REGION.
2588
2589 STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks
2590 following a TM_IRREVOCABLE call.
2591
2592 INCLUDE_UNINSTRUMENTED_P is TRUE if we should include the
2593 uninstrumented code path blocks in the list of basic blocks
2594 returned, false otherwise. */
2595
2596 static vec<basic_block>
2597 get_tm_region_blocks (basic_block entry_block,
2598 bitmap exit_blocks,
2599 bitmap irr_blocks,
2600 bitmap all_region_blocks,
2601 bool stop_at_irrevocable_p,
2602 bool include_uninstrumented_p = true)
2603 {
2604 vec<basic_block> bbs = vNULL;
2605 unsigned i;
2606 edge e;
2607 edge_iterator ei;
2608 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2609
2610 i = 0;
2611 bbs.safe_push (entry_block);
2612 bitmap_set_bit (visited_blocks, entry_block->index);
2613
2614 do
2615 {
2616 basic_block bb = bbs[i++];
2617
2618 if (exit_blocks &&
2619 bitmap_bit_p (exit_blocks, bb->index))
2620 continue;
2621
2622 if (stop_at_irrevocable_p
2623 && irr_blocks
2624 && bitmap_bit_p (irr_blocks, bb->index))
2625 continue;
2626
2627 FOR_EACH_EDGE (e, ei, bb->succs)
2628 if ((include_uninstrumented_p
2629 || !(e->flags & EDGE_TM_UNINSTRUMENTED))
2630 && !bitmap_bit_p (visited_blocks, e->dest->index))
2631 {
2632 bitmap_set_bit (visited_blocks, e->dest->index);
2633 bbs.safe_push (e->dest);
2634 }
2635 }
2636 while (i < bbs.length ());
2637
2638 if (all_region_blocks)
2639 bitmap_ior_into (all_region_blocks, visited_blocks);
2640
2641 BITMAP_FREE (visited_blocks);
2642 return bbs;
2643 }
2644
2645 // Callback data for collect_bb2reg.
2646 struct bb2reg_stuff
2647 {
2648 vec<tm_region *> *bb2reg;
2649 bool include_uninstrumented_p;
2650 };
2651
2652 // Callback for expand_regions, collect innermost region data for each bb.
2653 static void *
2654 collect_bb2reg (struct tm_region *region, void *data)
2655 {
2656 struct bb2reg_stuff *stuff = (struct bb2reg_stuff *)data;
2657 vec<tm_region *> *bb2reg = stuff->bb2reg;
2658 vec<basic_block> queue;
2659 unsigned int i;
2660 basic_block bb;
2661
2662 queue = get_tm_region_blocks (region->entry_block,
2663 region->exit_blocks,
2664 region->irr_blocks,
2665 NULL,
2666 /*stop_at_irr_p=*/true,
2667 stuff->include_uninstrumented_p);
2668
2669 // We expect expand_region to perform a post-order traversal of the region
2670 // tree. Therefore the last region seen for any bb is the innermost.
2671 FOR_EACH_VEC_ELT (queue, i, bb)
2672 (*bb2reg)[bb->index] = region;
2673
2674 queue.release ();
2675 return NULL;
2676 }
2677
2678 // Returns a vector, indexed by BB->INDEX, of the innermost tm_region to
2679 // which a basic block belongs. Note that we only consider the instrumented
2680 // code paths for the region; the uninstrumented code paths are ignored if
2681 // INCLUDE_UNINSTRUMENTED_P is false.
2682 //
2683 // ??? This data is very similar to the bb_regions array that is collected
2684 // during tm_region_init. Or, rather, this data is similar to what could
2685 // be used within tm_region_init. The actual computation in tm_region_init
2686 // begins and ends with bb_regions entirely full of NULL pointers, due to
2687 // the way in which pointers are swapped in and out of the array.
2688 //
2689 // ??? Our callers expect that blocks are not shared between transactions.
2690 // When the optimizers get too smart, and blocks are shared, then during
2691 // the tm_mark phase we'll add log entries to only one of the two transactions,
2692 // and in the tm_edge phase we'll add edges to the CFG that create invalid
2693 // cycles. The symptom being SSA defs that do not dominate their uses.
2694 // Note that the optimizers were locally correct with their transformation,
2695 // as we have no info within the program that suggests that the blocks cannot
2696 // be shared.
2697 //
2698 // ??? There is currently a hack inside tree-ssa-pre.c to work around the
2699 // only known instance of this block sharing.
2700
2701 static vec<tm_region *>
2702 get_bb_regions_instrumented (bool traverse_clones,
2703 bool include_uninstrumented_p)
2704 {
2705 unsigned n = last_basic_block_for_fn (cfun);
2706 struct bb2reg_stuff stuff;
2707 vec<tm_region *> ret;
2708
2709 ret.create (n);
2710 ret.safe_grow_cleared (n);
2711 stuff.bb2reg = &ret;
2712 stuff.include_uninstrumented_p = include_uninstrumented_p;
2713 expand_regions (all_tm_regions, collect_bb2reg, &stuff, traverse_clones);
2714
2715 return ret;
2716 }
2717
2718 /* Set the IN_TRANSACTION for all gimple statements that appear in a
2719 transaction. */
2720
2721 void
2722 compute_transaction_bits (void)
2723 {
2724 struct tm_region *region;
2725 vec<basic_block> queue;
2726 unsigned int i;
2727 basic_block bb;
2728
2729 /* ?? Perhaps we need to abstract gate_tm_init further, because we
2730 certainly don't need it to calculate CDI_DOMINATOR info. */
2731 gate_tm_init ();
2732
2733 FOR_EACH_BB_FN (bb, cfun)
2734 bb->flags &= ~BB_IN_TRANSACTION;
2735
2736 for (region = all_tm_regions; region; region = region->next)
2737 {
2738 queue = get_tm_region_blocks (region->entry_block,
2739 region->exit_blocks,
2740 region->irr_blocks,
2741 NULL,
2742 /*stop_at_irr_p=*/true);
2743 for (i = 0; queue.iterate (i, &bb); ++i)
2744 bb->flags |= BB_IN_TRANSACTION;
2745 queue.release ();
2746 }
2747
2748 if (all_tm_regions)
2749 bitmap_obstack_release (&tm_obstack);
2750 }
2751
2752 /* Replace the GIMPLE_TRANSACTION in this region with the corresponding
2753 call to BUILT_IN_TM_START. */
2754
2755 static void *
2756 expand_transaction (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2757 {
2758 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2759 basic_block transaction_bb = gimple_bb (region->transaction_stmt);
2760 tree tm_state = region->tm_state;
2761 tree tm_state_type = TREE_TYPE (tm_state);
2762 edge abort_edge = NULL;
2763 edge inst_edge = NULL;
2764 edge uninst_edge = NULL;
2765 edge fallthru_edge = NULL;
2766
2767 // Identify the various successors of the transaction start.
2768 {
2769 edge_iterator i;
2770 edge e;
2771 FOR_EACH_EDGE (e, i, transaction_bb->succs)
2772 {
2773 if (e->flags & EDGE_TM_ABORT)
2774 abort_edge = e;
2775 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
2776 uninst_edge = e;
2777 else
2778 inst_edge = e;
2779 if (e->flags & EDGE_FALLTHRU)
2780 fallthru_edge = e;
2781 }
2782 }
2783
2784 /* ??? There are plenty of bits here we're not computing. */
2785 {
2786 int subcode = gimple_transaction_subcode (region->get_transaction_stmt ());
2787 int flags = 0;
2788 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2789 flags |= PR_DOESGOIRREVOCABLE;
2790 if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0)
2791 flags |= PR_HASNOIRREVOCABLE;
2792 /* If the transaction does not have an abort in lexical scope and is not
2793 marked as an outer transaction, then it will never abort. */
2794 if ((subcode & GTMA_HAVE_ABORT) == 0 && (subcode & GTMA_IS_OUTER) == 0)
2795 flags |= PR_HASNOABORT;
2796 if ((subcode & GTMA_HAVE_STORE) == 0)
2797 flags |= PR_READONLY;
2798 if (inst_edge && !(subcode & GTMA_HAS_NO_INSTRUMENTATION))
2799 flags |= PR_INSTRUMENTEDCODE;
2800 if (uninst_edge)
2801 flags |= PR_UNINSTRUMENTEDCODE;
2802 if (subcode & GTMA_IS_OUTER)
2803 region->original_transaction_was_outer = true;
2804 tree t = build_int_cst (tm_state_type, flags);
2805 gcall *call = gimple_build_call (tm_start, 1, t);
2806 gimple_call_set_lhs (call, tm_state);
2807 gimple_set_location (call, gimple_location (region->transaction_stmt));
2808
2809 // Replace the GIMPLE_TRANSACTION with the call to BUILT_IN_TM_START.
2810 gimple_stmt_iterator gsi = gsi_last_bb (transaction_bb);
2811 gcc_assert (gsi_stmt (gsi) == region->transaction_stmt);
2812 gsi_insert_before (&gsi, call, GSI_SAME_STMT);
2813 gsi_remove (&gsi, true);
2814 region->transaction_stmt = call;
2815 }
2816
2817 // Generate log saves.
2818 if (!tm_log_save_addresses.is_empty ())
2819 tm_log_emit_saves (region->entry_block, transaction_bb);
2820
2821 // In the beginning, we've no tests to perform on transaction restart.
2822 // Note that after this point, transaction_bb becomes the "most recent
2823 // block containing tests for the transaction".
2824 region->restart_block = region->entry_block;
2825
2826 // Generate log restores.
2827 if (!tm_log_save_addresses.is_empty ())
2828 {
2829 basic_block test_bb = create_empty_bb (transaction_bb);
2830 basic_block code_bb = create_empty_bb (test_bb);
2831 basic_block join_bb = create_empty_bb (code_bb);
2832 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2833 add_bb_to_loop (code_bb, transaction_bb->loop_father);
2834 add_bb_to_loop (join_bb, transaction_bb->loop_father);
2835 if (region->restart_block == region->entry_block)
2836 region->restart_block = test_bb;
2837
2838 tree t1 = create_tmp_reg (tm_state_type);
2839 tree t2 = build_int_cst (tm_state_type, A_RESTORELIVEVARIABLES);
2840 gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2841 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2842 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2843
2844 t2 = build_int_cst (tm_state_type, 0);
2845 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2846 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2847
2848 tm_log_emit_restores (region->entry_block, code_bb);
2849
2850 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2851 edge et = make_edge (test_bb, code_bb, EDGE_TRUE_VALUE);
2852 edge ef = make_edge (test_bb, join_bb, EDGE_FALSE_VALUE);
2853 redirect_edge_pred (fallthru_edge, join_bb);
2854
2855 join_bb->frequency = test_bb->frequency = transaction_bb->frequency;
2856 join_bb->count = test_bb->count = transaction_bb->count;
2857
2858 ei->probability = PROB_ALWAYS;
2859 et->probability = PROB_LIKELY;
2860 ef->probability = PROB_UNLIKELY;
2861 et->count = apply_probability (test_bb->count, et->probability);
2862 ef->count = apply_probability (test_bb->count, ef->probability);
2863
2864 code_bb->count = et->count;
2865 code_bb->frequency = EDGE_FREQUENCY (et);
2866
2867 transaction_bb = join_bb;
2868 }
2869
2870 // If we have an ABORT edge, create a test to perform the abort.
2871 if (abort_edge)
2872 {
2873 basic_block test_bb = create_empty_bb (transaction_bb);
2874 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2875 if (region->restart_block == region->entry_block)
2876 region->restart_block = test_bb;
2877
2878 tree t1 = create_tmp_reg (tm_state_type);
2879 tree t2 = build_int_cst (tm_state_type, A_ABORTTRANSACTION);
2880 gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2881 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2882 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2883
2884 t2 = build_int_cst (tm_state_type, 0);
2885 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2886 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2887
2888 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2889 test_bb->frequency = transaction_bb->frequency;
2890 test_bb->count = transaction_bb->count;
2891 ei->probability = PROB_ALWAYS;
2892
2893 // Not abort edge. If both are live, chose one at random as we'll
2894 // we'll be fixing that up below.
2895 redirect_edge_pred (fallthru_edge, test_bb);
2896 fallthru_edge->flags = EDGE_FALSE_VALUE;
2897 fallthru_edge->probability = PROB_VERY_LIKELY;
2898 fallthru_edge->count
2899 = apply_probability (test_bb->count, fallthru_edge->probability);
2900
2901 // Abort/over edge.
2902 redirect_edge_pred (abort_edge, test_bb);
2903 abort_edge->flags = EDGE_TRUE_VALUE;
2904 abort_edge->probability = PROB_VERY_UNLIKELY;
2905 abort_edge->count
2906 = apply_probability (test_bb->count, abort_edge->probability);
2907
2908 transaction_bb = test_bb;
2909 }
2910
2911 // If we have both instrumented and uninstrumented code paths, select one.
2912 if (inst_edge && uninst_edge)
2913 {
2914 basic_block test_bb = create_empty_bb (transaction_bb);
2915 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2916 if (region->restart_block == region->entry_block)
2917 region->restart_block = test_bb;
2918
2919 tree t1 = create_tmp_reg (tm_state_type);
2920 tree t2 = build_int_cst (tm_state_type, A_RUNUNINSTRUMENTEDCODE);
2921
2922 gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2923 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2924 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2925
2926 t2 = build_int_cst (tm_state_type, 0);
2927 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2928 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2929
2930 // Create the edge into test_bb first, as we want to copy values
2931 // out of the fallthru edge.
2932 edge e = make_edge (transaction_bb, test_bb, fallthru_edge->flags);
2933 e->probability = fallthru_edge->probability;
2934 test_bb->count = e->count = fallthru_edge->count;
2935 test_bb->frequency = EDGE_FREQUENCY (e);
2936
2937 // Now update the edges to the inst/uninist implementations.
2938 // For now assume that the paths are equally likely. When using HTM,
2939 // we'll try the uninst path first and fallback to inst path if htm
2940 // buffers are exceeded. Without HTM we start with the inst path and
2941 // use the uninst path when falling back to serial mode.
2942 redirect_edge_pred (inst_edge, test_bb);
2943 inst_edge->flags = EDGE_FALSE_VALUE;
2944 inst_edge->probability = REG_BR_PROB_BASE / 2;
2945 inst_edge->count
2946 = apply_probability (test_bb->count, inst_edge->probability);
2947
2948 redirect_edge_pred (uninst_edge, test_bb);
2949 uninst_edge->flags = EDGE_TRUE_VALUE;
2950 uninst_edge->probability = REG_BR_PROB_BASE / 2;
2951 uninst_edge->count
2952 = apply_probability (test_bb->count, uninst_edge->probability);
2953 }
2954
2955 // If we have no previous special cases, and we have PHIs at the beginning
2956 // of the atomic region, this means we have a loop at the beginning of the
2957 // atomic region that shares the first block. This can cause problems with
2958 // the transaction restart abnormal edges to be added in the tm_edges pass.
2959 // Solve this by adding a new empty block to receive the abnormal edges.
2960 if (region->restart_block == region->entry_block
2961 && phi_nodes (region->entry_block))
2962 {
2963 basic_block empty_bb = create_empty_bb (transaction_bb);
2964 region->restart_block = empty_bb;
2965 add_bb_to_loop (empty_bb, transaction_bb->loop_father);
2966
2967 redirect_edge_pred (fallthru_edge, empty_bb);
2968 make_edge (transaction_bb, empty_bb, EDGE_FALLTHRU);
2969 }
2970
2971 return NULL;
2972 }
2973
2974 /* Generate the temporary to be used for the return value of
2975 BUILT_IN_TM_START. */
2976
2977 static void *
2978 generate_tm_state (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2979 {
2980 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2981 region->tm_state =
2982 create_tmp_reg (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state");
2983
2984 // Reset the subcode, post optimizations. We'll fill this in
2985 // again as we process blocks.
2986 if (region->exit_blocks)
2987 {
2988 gtransaction *transaction_stmt = region->get_transaction_stmt ();
2989 unsigned int subcode = gimple_transaction_subcode (transaction_stmt);
2990
2991 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2992 subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE
2993 | GTMA_MAY_ENTER_IRREVOCABLE
2994 | GTMA_HAS_NO_INSTRUMENTATION);
2995 else
2996 subcode &= GTMA_DECLARATION_MASK;
2997 gimple_transaction_set_subcode (transaction_stmt, subcode);
2998 }
2999
3000 return NULL;
3001 }
3002
3003 // Propagate flags from inner transactions outwards.
3004 static void
3005 propagate_tm_flags_out (struct tm_region *region)
3006 {
3007 if (region == NULL)
3008 return;
3009 propagate_tm_flags_out (region->inner);
3010
3011 if (region->outer && region->outer->transaction_stmt)
3012 {
3013 unsigned s
3014 = gimple_transaction_subcode (region->get_transaction_stmt ());
3015 s &= (GTMA_HAVE_ABORT | GTMA_HAVE_LOAD | GTMA_HAVE_STORE
3016 | GTMA_MAY_ENTER_IRREVOCABLE);
3017 s |= gimple_transaction_subcode (region->outer->get_transaction_stmt ());
3018 gimple_transaction_set_subcode (region->outer->get_transaction_stmt (),
3019 s);
3020 }
3021
3022 propagate_tm_flags_out (region->next);
3023 }
3024
3025 /* Entry point to the MARK phase of TM expansion. Here we replace
3026 transactional memory statements with calls to builtins, and function
3027 calls with their transactional clones (if available). But we don't
3028 yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges. */
3029
3030 static unsigned int
3031 execute_tm_mark (void)
3032 {
3033 pending_edge_inserts_p = false;
3034
3035 expand_regions (all_tm_regions, generate_tm_state, NULL,
3036 /*traverse_clones=*/true);
3037
3038 tm_log_init ();
3039
3040 vec<tm_region *> bb_regions
3041 = get_bb_regions_instrumented (/*traverse_clones=*/true,
3042 /*include_uninstrumented_p=*/false);
3043 struct tm_region *r;
3044 unsigned i;
3045
3046 // Expand memory operations into calls into the runtime.
3047 // This collects log entries as well.
3048 FOR_EACH_VEC_ELT (bb_regions, i, r)
3049 {
3050 if (r != NULL)
3051 {
3052 if (r->transaction_stmt)
3053 {
3054 unsigned sub
3055 = gimple_transaction_subcode (r->get_transaction_stmt ());
3056
3057 /* If we're sure to go irrevocable, there won't be
3058 anything to expand, since the run-time will go
3059 irrevocable right away. */
3060 if (sub & GTMA_DOES_GO_IRREVOCABLE
3061 && sub & GTMA_MAY_ENTER_IRREVOCABLE)
3062 continue;
3063 }
3064 expand_block_tm (r, BASIC_BLOCK_FOR_FN (cfun, i));
3065 }
3066 }
3067
3068 bb_regions.release ();
3069
3070 // Propagate flags from inner transactions outwards.
3071 propagate_tm_flags_out (all_tm_regions);
3072
3073 // Expand GIMPLE_TRANSACTIONs into calls into the runtime.
3074 expand_regions (all_tm_regions, expand_transaction, NULL,
3075 /*traverse_clones=*/false);
3076
3077 tm_log_emit ();
3078 tm_log_delete ();
3079
3080 if (pending_edge_inserts_p)
3081 gsi_commit_edge_inserts ();
3082 free_dominance_info (CDI_DOMINATORS);
3083 return 0;
3084 }
3085
3086 namespace {
3087
3088 const pass_data pass_data_tm_mark =
3089 {
3090 GIMPLE_PASS, /* type */
3091 "tmmark", /* name */
3092 OPTGROUP_NONE, /* optinfo_flags */
3093 TV_TRANS_MEM, /* tv_id */
3094 ( PROP_ssa | PROP_cfg ), /* properties_required */
3095 0, /* properties_provided */
3096 0, /* properties_destroyed */
3097 0, /* todo_flags_start */
3098 TODO_update_ssa, /* todo_flags_finish */
3099 };
3100
3101 class pass_tm_mark : public gimple_opt_pass
3102 {
3103 public:
3104 pass_tm_mark (gcc::context *ctxt)
3105 : gimple_opt_pass (pass_data_tm_mark, ctxt)
3106 {}
3107
3108 /* opt_pass methods: */
3109 virtual unsigned int execute (function *) { return execute_tm_mark (); }
3110
3111 }; // class pass_tm_mark
3112
3113 } // anon namespace
3114
3115 gimple_opt_pass *
3116 make_pass_tm_mark (gcc::context *ctxt)
3117 {
3118 return new pass_tm_mark (ctxt);
3119 }
3120 \f
3121
3122 /* Create an abnormal edge from STMT at iter, splitting the block
3123 as necessary. Adjust *PNEXT as needed for the split block. */
3124
3125 static inline void
3126 split_bb_make_tm_edge (gimple *stmt, basic_block dest_bb,
3127 gimple_stmt_iterator iter, gimple_stmt_iterator *pnext)
3128 {
3129 basic_block bb = gimple_bb (stmt);
3130 if (!gsi_one_before_end_p (iter))
3131 {
3132 edge e = split_block (bb, stmt);
3133 *pnext = gsi_start_bb (e->dest);
3134 }
3135 make_edge (bb, dest_bb, EDGE_ABNORMAL);
3136
3137 // Record the need for the edge for the benefit of the rtl passes.
3138 if (cfun->gimple_df->tm_restart == NULL)
3139 cfun->gimple_df->tm_restart
3140 = hash_table<tm_restart_hasher>::create_ggc (31);
3141
3142 struct tm_restart_node dummy;
3143 dummy.stmt = stmt;
3144 dummy.label_or_list = gimple_block_label (dest_bb);
3145
3146 tm_restart_node **slot = cfun->gimple_df->tm_restart->find_slot (&dummy,
3147 INSERT);
3148 struct tm_restart_node *n = *slot;
3149 if (n == NULL)
3150 {
3151 n = ggc_alloc<tm_restart_node> ();
3152 *n = dummy;
3153 }
3154 else
3155 {
3156 tree old = n->label_or_list;
3157 if (TREE_CODE (old) == LABEL_DECL)
3158 old = tree_cons (NULL, old, NULL);
3159 n->label_or_list = tree_cons (NULL, dummy.label_or_list, old);
3160 }
3161 }
3162
3163 /* Split block BB as necessary for every builtin function we added, and
3164 wire up the abnormal back edges implied by the transaction restart. */
3165
3166 static void
3167 expand_block_edges (struct tm_region *const region, basic_block bb)
3168 {
3169 gimple_stmt_iterator gsi, next_gsi;
3170
3171 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi = next_gsi)
3172 {
3173 gimple *stmt = gsi_stmt (gsi);
3174 gcall *call_stmt;
3175
3176 next_gsi = gsi;
3177 gsi_next (&next_gsi);
3178
3179 // ??? Shouldn't we split for any non-pure, non-irrevocable function?
3180 call_stmt = dyn_cast <gcall *> (stmt);
3181 if ((!call_stmt)
3182 || (gimple_call_flags (call_stmt) & ECF_TM_BUILTIN) == 0)
3183 continue;
3184
3185 if (DECL_FUNCTION_CODE (gimple_call_fndecl (call_stmt))
3186 == BUILT_IN_TM_ABORT)
3187 {
3188 // If we have a ``_transaction_cancel [[outer]]'', there is only
3189 // one abnormal edge: to the transaction marked OUTER.
3190 // All compiler-generated instances of BUILT_IN_TM_ABORT have a
3191 // constant argument, which we can examine here. Users invoking
3192 // TM_ABORT directly get what they deserve.
3193 tree arg = gimple_call_arg (call_stmt, 0);
3194 if (TREE_CODE (arg) == INTEGER_CST
3195 && (TREE_INT_CST_LOW (arg) & AR_OUTERABORT) != 0
3196 && !decl_is_tm_clone (current_function_decl))
3197 {
3198 // Find the GTMA_IS_OUTER transaction.
3199 for (struct tm_region *o = region; o; o = o->outer)
3200 if (o->original_transaction_was_outer)
3201 {
3202 split_bb_make_tm_edge (call_stmt, o->restart_block,
3203 gsi, &next_gsi);
3204 break;
3205 }
3206
3207 // Otherwise, the front-end should have semantically checked
3208 // outer aborts, but in either case the target region is not
3209 // within this function.
3210 continue;
3211 }
3212
3213 // Non-outer, TM aborts have an abnormal edge to the inner-most
3214 // transaction, the one being aborted;
3215 split_bb_make_tm_edge (call_stmt, region->restart_block, gsi,
3216 &next_gsi);
3217 }
3218
3219 // All TM builtins have an abnormal edge to the outer-most transaction.
3220 // We never restart inner transactions. For tm clones, we know a-priori
3221 // that the outer-most transaction is outside the function.
3222 if (decl_is_tm_clone (current_function_decl))
3223 continue;
3224
3225 if (cfun->gimple_df->tm_restart == NULL)
3226 cfun->gimple_df->tm_restart
3227 = hash_table<tm_restart_hasher>::create_ggc (31);
3228
3229 // All TM builtins have an abnormal edge to the outer-most transaction.
3230 // We never restart inner transactions.
3231 for (struct tm_region *o = region; o; o = o->outer)
3232 if (!o->outer)
3233 {
3234 split_bb_make_tm_edge (call_stmt, o->restart_block, gsi, &next_gsi);
3235 break;
3236 }
3237
3238 // Delete any tail-call annotation that may have been added.
3239 // The tail-call pass may have mis-identified the commit as being
3240 // a candidate because we had not yet added this restart edge.
3241 gimple_call_set_tail (call_stmt, false);
3242 }
3243 }
3244
3245 /* Entry point to the final expansion of transactional nodes. */
3246
3247 namespace {
3248
3249 const pass_data pass_data_tm_edges =
3250 {
3251 GIMPLE_PASS, /* type */
3252 "tmedge", /* name */
3253 OPTGROUP_NONE, /* optinfo_flags */
3254 TV_TRANS_MEM, /* tv_id */
3255 ( PROP_ssa | PROP_cfg ), /* properties_required */
3256 0, /* properties_provided */
3257 0, /* properties_destroyed */
3258 0, /* todo_flags_start */
3259 TODO_update_ssa, /* todo_flags_finish */
3260 };
3261
3262 class pass_tm_edges : public gimple_opt_pass
3263 {
3264 public:
3265 pass_tm_edges (gcc::context *ctxt)
3266 : gimple_opt_pass (pass_data_tm_edges, ctxt)
3267 {}
3268
3269 /* opt_pass methods: */
3270 virtual unsigned int execute (function *);
3271
3272 }; // class pass_tm_edges
3273
3274 unsigned int
3275 pass_tm_edges::execute (function *fun)
3276 {
3277 vec<tm_region *> bb_regions
3278 = get_bb_regions_instrumented (/*traverse_clones=*/false,
3279 /*include_uninstrumented_p=*/true);
3280 struct tm_region *r;
3281 unsigned i;
3282
3283 FOR_EACH_VEC_ELT (bb_regions, i, r)
3284 if (r != NULL)
3285 expand_block_edges (r, BASIC_BLOCK_FOR_FN (fun, i));
3286
3287 bb_regions.release ();
3288
3289 /* We've got to release the dominance info now, to indicate that it
3290 must be rebuilt completely. Otherwise we'll crash trying to update
3291 the SSA web in the TODO section following this pass. */
3292 free_dominance_info (CDI_DOMINATORS);
3293 bitmap_obstack_release (&tm_obstack);
3294 all_tm_regions = NULL;
3295
3296 return 0;
3297 }
3298
3299 } // anon namespace
3300
3301 gimple_opt_pass *
3302 make_pass_tm_edges (gcc::context *ctxt)
3303 {
3304 return new pass_tm_edges (ctxt);
3305 }
3306 \f
3307 /* Helper function for expand_regions. Expand REGION and recurse to
3308 the inner region. Call CALLBACK on each region. CALLBACK returns
3309 NULL to continue the traversal, otherwise a non-null value which
3310 this function will return as well. TRAVERSE_CLONES is true if we
3311 should traverse transactional clones. */
3312
3313 static void *
3314 expand_regions_1 (struct tm_region *region,
3315 void *(*callback)(struct tm_region *, void *),
3316 void *data,
3317 bool traverse_clones)
3318 {
3319 void *retval = NULL;
3320 if (region->exit_blocks
3321 || (traverse_clones && decl_is_tm_clone (current_function_decl)))
3322 {
3323 retval = callback (region, data);
3324 if (retval)
3325 return retval;
3326 }
3327 if (region->inner)
3328 {
3329 retval = expand_regions (region->inner, callback, data, traverse_clones);
3330 if (retval)
3331 return retval;
3332 }
3333 return retval;
3334 }
3335
3336 /* Traverse the regions enclosed and including REGION. Execute
3337 CALLBACK for each region, passing DATA. CALLBACK returns NULL to
3338 continue the traversal, otherwise a non-null value which this
3339 function will return as well. TRAVERSE_CLONES is true if we should
3340 traverse transactional clones. */
3341
3342 static void *
3343 expand_regions (struct tm_region *region,
3344 void *(*callback)(struct tm_region *, void *),
3345 void *data,
3346 bool traverse_clones)
3347 {
3348 void *retval = NULL;
3349 while (region)
3350 {
3351 retval = expand_regions_1 (region, callback, data, traverse_clones);
3352 if (retval)
3353 return retval;
3354 region = region->next;
3355 }
3356 return retval;
3357 }
3358
3359 \f
3360 /* A unique TM memory operation. */
3361 struct tm_memop
3362 {
3363 /* Unique ID that all memory operations to the same location have. */
3364 unsigned int value_id;
3365 /* Address of load/store. */
3366 tree addr;
3367 };
3368
3369 /* TM memory operation hashtable helpers. */
3370
3371 struct tm_memop_hasher : free_ptr_hash <tm_memop>
3372 {
3373 static inline hashval_t hash (const tm_memop *);
3374 static inline bool equal (const tm_memop *, const tm_memop *);
3375 };
3376
3377 /* Htab support. Return a hash value for a `tm_memop'. */
3378 inline hashval_t
3379 tm_memop_hasher::hash (const tm_memop *mem)
3380 {
3381 tree addr = mem->addr;
3382 /* We drill down to the SSA_NAME/DECL for the hash, but equality is
3383 actually done with operand_equal_p (see tm_memop_eq). */
3384 if (TREE_CODE (addr) == ADDR_EXPR)
3385 addr = TREE_OPERAND (addr, 0);
3386 return iterative_hash_expr (addr, 0);
3387 }
3388
3389 /* Htab support. Return true if two tm_memop's are the same. */
3390 inline bool
3391 tm_memop_hasher::equal (const tm_memop *mem1, const tm_memop *mem2)
3392 {
3393 return operand_equal_p (mem1->addr, mem2->addr, 0);
3394 }
3395
3396 /* Sets for solving data flow equations in the memory optimization pass. */
3397 struct tm_memopt_bitmaps
3398 {
3399 /* Stores available to this BB upon entry. Basically, stores that
3400 dominate this BB. */
3401 bitmap store_avail_in;
3402 /* Stores available at the end of this BB. */
3403 bitmap store_avail_out;
3404 bitmap store_antic_in;
3405 bitmap store_antic_out;
3406 /* Reads available to this BB upon entry. Basically, reads that
3407 dominate this BB. */
3408 bitmap read_avail_in;
3409 /* Reads available at the end of this BB. */
3410 bitmap read_avail_out;
3411 /* Reads performed in this BB. */
3412 bitmap read_local;
3413 /* Writes performed in this BB. */
3414 bitmap store_local;
3415
3416 /* Temporary storage for pass. */
3417 /* Is the current BB in the worklist? */
3418 bool avail_in_worklist_p;
3419 /* Have we visited this BB? */
3420 bool visited_p;
3421 };
3422
3423 static bitmap_obstack tm_memopt_obstack;
3424
3425 /* Unique counter for TM loads and stores. Loads and stores of the
3426 same address get the same ID. */
3427 static unsigned int tm_memopt_value_id;
3428 static hash_table<tm_memop_hasher> *tm_memopt_value_numbers;
3429
3430 #define STORE_AVAIL_IN(BB) \
3431 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in
3432 #define STORE_AVAIL_OUT(BB) \
3433 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out
3434 #define STORE_ANTIC_IN(BB) \
3435 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in
3436 #define STORE_ANTIC_OUT(BB) \
3437 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out
3438 #define READ_AVAIL_IN(BB) \
3439 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in
3440 #define READ_AVAIL_OUT(BB) \
3441 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out
3442 #define READ_LOCAL(BB) \
3443 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local
3444 #define STORE_LOCAL(BB) \
3445 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local
3446 #define AVAIL_IN_WORKLIST_P(BB) \
3447 ((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p
3448 #define BB_VISITED_P(BB) \
3449 ((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p
3450
3451 /* Given a TM load/store in STMT, return the value number for the address
3452 it accesses. */
3453
3454 static unsigned int
3455 tm_memopt_value_number (gimple *stmt, enum insert_option op)
3456 {
3457 struct tm_memop tmpmem, *mem;
3458 tm_memop **slot;
3459
3460 gcc_assert (is_tm_load (stmt) || is_tm_store (stmt));
3461 tmpmem.addr = gimple_call_arg (stmt, 0);
3462 slot = tm_memopt_value_numbers->find_slot (&tmpmem, op);
3463 if (*slot)
3464 mem = *slot;
3465 else if (op == INSERT)
3466 {
3467 mem = XNEW (struct tm_memop);
3468 *slot = mem;
3469 mem->value_id = tm_memopt_value_id++;
3470 mem->addr = tmpmem.addr;
3471 }
3472 else
3473 gcc_unreachable ();
3474 return mem->value_id;
3475 }
3476
3477 /* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL. */
3478
3479 static void
3480 tm_memopt_accumulate_memops (basic_block bb)
3481 {
3482 gimple_stmt_iterator gsi;
3483
3484 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3485 {
3486 gimple *stmt = gsi_stmt (gsi);
3487 bitmap bits;
3488 unsigned int loc;
3489
3490 if (is_tm_store (stmt))
3491 bits = STORE_LOCAL (bb);
3492 else if (is_tm_load (stmt))
3493 bits = READ_LOCAL (bb);
3494 else
3495 continue;
3496
3497 loc = tm_memopt_value_number (stmt, INSERT);
3498 bitmap_set_bit (bits, loc);
3499 if (dump_file)
3500 {
3501 fprintf (dump_file, "TM memopt (%s): value num=%d, BB=%d, addr=",
3502 is_tm_load (stmt) ? "LOAD" : "STORE", loc,
3503 gimple_bb (stmt)->index);
3504 print_generic_expr (dump_file, gimple_call_arg (stmt, 0), 0);
3505 fprintf (dump_file, "\n");
3506 }
3507 }
3508 }
3509
3510 /* Prettily dump one of the memopt sets. BITS is the bitmap to dump. */
3511
3512 static void
3513 dump_tm_memopt_set (const char *set_name, bitmap bits)
3514 {
3515 unsigned i;
3516 bitmap_iterator bi;
3517 const char *comma = "";
3518
3519 fprintf (dump_file, "TM memopt: %s: [", set_name);
3520 EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi)
3521 {
3522 hash_table<tm_memop_hasher>::iterator hi;
3523 struct tm_memop *mem = NULL;
3524
3525 /* Yeah, yeah, yeah. Whatever. This is just for debugging. */
3526 FOR_EACH_HASH_TABLE_ELEMENT (*tm_memopt_value_numbers, mem, tm_memop_t, hi)
3527 if (mem->value_id == i)
3528 break;
3529 gcc_assert (mem->value_id == i);
3530 fprintf (dump_file, "%s", comma);
3531 comma = ", ";
3532 print_generic_expr (dump_file, mem->addr, 0);
3533 }
3534 fprintf (dump_file, "]\n");
3535 }
3536
3537 /* Prettily dump all of the memopt sets in BLOCKS. */
3538
3539 static void
3540 dump_tm_memopt_sets (vec<basic_block> blocks)
3541 {
3542 size_t i;
3543 basic_block bb;
3544
3545 for (i = 0; blocks.iterate (i, &bb); ++i)
3546 {
3547 fprintf (dump_file, "------------BB %d---------\n", bb->index);
3548 dump_tm_memopt_set ("STORE_LOCAL", STORE_LOCAL (bb));
3549 dump_tm_memopt_set ("READ_LOCAL", READ_LOCAL (bb));
3550 dump_tm_memopt_set ("STORE_AVAIL_IN", STORE_AVAIL_IN (bb));
3551 dump_tm_memopt_set ("STORE_AVAIL_OUT", STORE_AVAIL_OUT (bb));
3552 dump_tm_memopt_set ("READ_AVAIL_IN", READ_AVAIL_IN (bb));
3553 dump_tm_memopt_set ("READ_AVAIL_OUT", READ_AVAIL_OUT (bb));
3554 }
3555 }
3556
3557 /* Compute {STORE,READ}_AVAIL_IN for the basic block BB. */
3558
3559 static void
3560 tm_memopt_compute_avin (basic_block bb)
3561 {
3562 edge e;
3563 unsigned ix;
3564
3565 /* Seed with the AVOUT of any predecessor. */
3566 for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
3567 {
3568 e = EDGE_PRED (bb, ix);
3569 /* Make sure we have already visited this BB, and is thus
3570 initialized.
3571
3572 If e->src->aux is NULL, this predecessor is actually on an
3573 enclosing transaction. We only care about the current
3574 transaction, so ignore it. */
3575 if (e->src->aux && BB_VISITED_P (e->src))
3576 {
3577 bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3578 bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3579 break;
3580 }
3581 }
3582
3583 for (; ix < EDGE_COUNT (bb->preds); ix++)
3584 {
3585 e = EDGE_PRED (bb, ix);
3586 if (e->src->aux && BB_VISITED_P (e->src))
3587 {
3588 bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3589 bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3590 }
3591 }
3592
3593 BB_VISITED_P (bb) = true;
3594 }
3595
3596 /* Compute the STORE_ANTIC_IN for the basic block BB. */
3597
3598 static void
3599 tm_memopt_compute_antin (basic_block bb)
3600 {
3601 edge e;
3602 unsigned ix;
3603
3604 /* Seed with the ANTIC_OUT of any successor. */
3605 for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++)
3606 {
3607 e = EDGE_SUCC (bb, ix);
3608 /* Make sure we have already visited this BB, and is thus
3609 initialized. */
3610 if (BB_VISITED_P (e->dest))
3611 {
3612 bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3613 break;
3614 }
3615 }
3616
3617 for (; ix < EDGE_COUNT (bb->succs); ix++)
3618 {
3619 e = EDGE_SUCC (bb, ix);
3620 if (BB_VISITED_P (e->dest))
3621 bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3622 }
3623
3624 BB_VISITED_P (bb) = true;
3625 }
3626
3627 /* Compute the AVAIL sets for every basic block in BLOCKS.
3628
3629 We compute {STORE,READ}_AVAIL_{OUT,IN} as follows:
3630
3631 AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb])
3632 AVAIL_IN[bb] = intersect (AVAIL_OUT[predecessors])
3633
3634 This is basically what we do in lcm's compute_available(), but here
3635 we calculate two sets of sets (one for STOREs and one for READs),
3636 and we work on a region instead of the entire CFG.
3637
3638 REGION is the TM region.
3639 BLOCKS are the basic blocks in the region. */
3640
3641 static void
3642 tm_memopt_compute_available (struct tm_region *region,
3643 vec<basic_block> blocks)
3644 {
3645 edge e;
3646 basic_block *worklist, *qin, *qout, *qend, bb;
3647 unsigned int qlen, i;
3648 edge_iterator ei;
3649 bool changed;
3650
3651 /* Allocate a worklist array/queue. Entries are only added to the
3652 list if they were not already on the list. So the size is
3653 bounded by the number of basic blocks in the region. */
3654 qlen = blocks.length () - 1;
3655 qin = qout = worklist =
3656 XNEWVEC (basic_block, qlen);
3657
3658 /* Put every block in the region on the worklist. */
3659 for (i = 0; blocks.iterate (i, &bb); ++i)
3660 {
3661 /* Seed AVAIL_OUT with the LOCAL set. */
3662 bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb));
3663 bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb));
3664
3665 AVAIL_IN_WORKLIST_P (bb) = true;
3666 /* No need to insert the entry block, since it has an AVIN of
3667 null, and an AVOUT that has already been seeded in. */
3668 if (bb != region->entry_block)
3669 *qin++ = bb;
3670 }
3671
3672 /* The entry block has been initialized with the local sets. */
3673 BB_VISITED_P (region->entry_block) = true;
3674
3675 qin = worklist;
3676 qend = &worklist[qlen];
3677
3678 /* Iterate until the worklist is empty. */
3679 while (qlen)
3680 {
3681 /* Take the first entry off the worklist. */
3682 bb = *qout++;
3683 qlen--;
3684
3685 if (qout >= qend)
3686 qout = worklist;
3687
3688 /* This block can be added to the worklist again if necessary. */
3689 AVAIL_IN_WORKLIST_P (bb) = false;
3690 tm_memopt_compute_avin (bb);
3691
3692 /* Note: We do not add the LOCAL sets here because we already
3693 seeded the AVAIL_OUT sets with them. */
3694 changed = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb));
3695 changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb));
3696 if (changed
3697 && (region->exit_blocks == NULL
3698 || !bitmap_bit_p (region->exit_blocks, bb->index)))
3699 /* If the out state of this block changed, then we need to add
3700 its successors to the worklist if they are not already in. */
3701 FOR_EACH_EDGE (e, ei, bb->succs)
3702 if (!AVAIL_IN_WORKLIST_P (e->dest)
3703 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
3704 {
3705 *qin++ = e->dest;
3706 AVAIL_IN_WORKLIST_P (e->dest) = true;
3707 qlen++;
3708
3709 if (qin >= qend)
3710 qin = worklist;
3711 }
3712 }
3713
3714 free (worklist);
3715
3716 if (dump_file)
3717 dump_tm_memopt_sets (blocks);
3718 }
3719
3720 /* Compute ANTIC sets for every basic block in BLOCKS.
3721
3722 We compute STORE_ANTIC_OUT as follows:
3723
3724 STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb])
3725 STORE_ANTIC_IN[bb] = intersect(STORE_ANTIC_OUT[successors])
3726
3727 REGION is the TM region.
3728 BLOCKS are the basic blocks in the region. */
3729
3730 static void
3731 tm_memopt_compute_antic (struct tm_region *region,
3732 vec<basic_block> blocks)
3733 {
3734 edge e;
3735 basic_block *worklist, *qin, *qout, *qend, bb;
3736 unsigned int qlen;
3737 int i;
3738 edge_iterator ei;
3739
3740 /* Allocate a worklist array/queue. Entries are only added to the
3741 list if they were not already on the list. So the size is
3742 bounded by the number of basic blocks in the region. */
3743 qin = qout = worklist = XNEWVEC (basic_block, blocks.length ());
3744
3745 for (qlen = 0, i = blocks.length () - 1; i >= 0; --i)
3746 {
3747 bb = blocks[i];
3748
3749 /* Seed ANTIC_OUT with the LOCAL set. */
3750 bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb));
3751
3752 /* Put every block in the region on the worklist. */
3753 AVAIL_IN_WORKLIST_P (bb) = true;
3754 /* No need to insert exit blocks, since their ANTIC_IN is NULL,
3755 and their ANTIC_OUT has already been seeded in. */
3756 if (region->exit_blocks
3757 && !bitmap_bit_p (region->exit_blocks, bb->index))
3758 {
3759 qlen++;
3760 *qin++ = bb;
3761 }
3762 }
3763
3764 /* The exit blocks have been initialized with the local sets. */
3765 if (region->exit_blocks)
3766 {
3767 unsigned int i;
3768 bitmap_iterator bi;
3769 EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi)
3770 BB_VISITED_P (BASIC_BLOCK_FOR_FN (cfun, i)) = true;
3771 }
3772
3773 qin = worklist;
3774 qend = &worklist[qlen];
3775
3776 /* Iterate until the worklist is empty. */
3777 while (qlen)
3778 {
3779 /* Take the first entry off the worklist. */
3780 bb = *qout++;
3781 qlen--;
3782
3783 if (qout >= qend)
3784 qout = worklist;
3785
3786 /* This block can be added to the worklist again if necessary. */
3787 AVAIL_IN_WORKLIST_P (bb) = false;
3788 tm_memopt_compute_antin (bb);
3789
3790 /* Note: We do not add the LOCAL sets here because we already
3791 seeded the ANTIC_OUT sets with them. */
3792 if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb))
3793 && bb != region->entry_block)
3794 /* If the out state of this block changed, then we need to add
3795 its predecessors to the worklist if they are not already in. */
3796 FOR_EACH_EDGE (e, ei, bb->preds)
3797 if (!AVAIL_IN_WORKLIST_P (e->src))
3798 {
3799 *qin++ = e->src;
3800 AVAIL_IN_WORKLIST_P (e->src) = true;
3801 qlen++;
3802
3803 if (qin >= qend)
3804 qin = worklist;
3805 }
3806 }
3807
3808 free (worklist);
3809
3810 if (dump_file)
3811 dump_tm_memopt_sets (blocks);
3812 }
3813
3814 /* Offsets of load variants from TM_LOAD. For example,
3815 BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*.
3816 See gtm-builtins.def. */
3817 #define TRANSFORM_RAR 1
3818 #define TRANSFORM_RAW 2
3819 #define TRANSFORM_RFW 3
3820 /* Offsets of store variants from TM_STORE. */
3821 #define TRANSFORM_WAR 1
3822 #define TRANSFORM_WAW 2
3823
3824 /* Inform about a load/store optimization. */
3825
3826 static void
3827 dump_tm_memopt_transform (gimple *stmt)
3828 {
3829 if (dump_file)
3830 {
3831 fprintf (dump_file, "TM memopt: transforming: ");
3832 print_gimple_stmt (dump_file, stmt, 0, 0);
3833 fprintf (dump_file, "\n");
3834 }
3835 }
3836
3837 /* Perform a read/write optimization. Replaces the TM builtin in STMT
3838 by a builtin that is OFFSET entries down in the builtins table in
3839 gtm-builtins.def. */
3840
3841 static void
3842 tm_memopt_transform_stmt (unsigned int offset,
3843 gcall *stmt,
3844 gimple_stmt_iterator *gsi)
3845 {
3846 tree fn = gimple_call_fn (stmt);
3847 gcc_assert (TREE_CODE (fn) == ADDR_EXPR);
3848 TREE_OPERAND (fn, 0)
3849 = builtin_decl_explicit ((enum built_in_function)
3850 (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0))
3851 + offset));
3852 gimple_call_set_fn (stmt, fn);
3853 gsi_replace (gsi, stmt, true);
3854 dump_tm_memopt_transform (stmt);
3855 }
3856
3857 /* Perform the actual TM memory optimization transformations in the
3858 basic blocks in BLOCKS. */
3859
3860 static void
3861 tm_memopt_transform_blocks (vec<basic_block> blocks)
3862 {
3863 size_t i;
3864 basic_block bb;
3865 gimple_stmt_iterator gsi;
3866
3867 for (i = 0; blocks.iterate (i, &bb); ++i)
3868 {
3869 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3870 {
3871 gimple *stmt = gsi_stmt (gsi);
3872 bitmap read_avail = READ_AVAIL_IN (bb);
3873 bitmap store_avail = STORE_AVAIL_IN (bb);
3874 bitmap store_antic = STORE_ANTIC_OUT (bb);
3875 unsigned int loc;
3876
3877 if (is_tm_simple_load (stmt))
3878 {
3879 gcall *call_stmt = as_a <gcall *> (stmt);
3880 loc = tm_memopt_value_number (stmt, NO_INSERT);
3881 if (store_avail && bitmap_bit_p (store_avail, loc))
3882 tm_memopt_transform_stmt (TRANSFORM_RAW, call_stmt, &gsi);
3883 else if (store_antic && bitmap_bit_p (store_antic, loc))
3884 {
3885 tm_memopt_transform_stmt (TRANSFORM_RFW, call_stmt, &gsi);
3886 bitmap_set_bit (store_avail, loc);
3887 }
3888 else if (read_avail && bitmap_bit_p (read_avail, loc))
3889 tm_memopt_transform_stmt (TRANSFORM_RAR, call_stmt, &gsi);
3890 else
3891 bitmap_set_bit (read_avail, loc);
3892 }
3893 else if (is_tm_simple_store (stmt))
3894 {
3895 gcall *call_stmt = as_a <gcall *> (stmt);
3896 loc = tm_memopt_value_number (stmt, NO_INSERT);
3897 if (store_avail && bitmap_bit_p (store_avail, loc))
3898 tm_memopt_transform_stmt (TRANSFORM_WAW, call_stmt, &gsi);
3899 else
3900 {
3901 if (read_avail && bitmap_bit_p (read_avail, loc))
3902 tm_memopt_transform_stmt (TRANSFORM_WAR, call_stmt, &gsi);
3903 bitmap_set_bit (store_avail, loc);
3904 }
3905 }
3906 }
3907 }
3908 }
3909
3910 /* Return a new set of bitmaps for a BB. */
3911
3912 static struct tm_memopt_bitmaps *
3913 tm_memopt_init_sets (void)
3914 {
3915 struct tm_memopt_bitmaps *b
3916 = XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps);
3917 b->store_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3918 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3919 b->store_antic_in = BITMAP_ALLOC (&tm_memopt_obstack);
3920 b->store_antic_out = BITMAP_ALLOC (&tm_memopt_obstack);
3921 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3922 b->read_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3923 b->read_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3924 b->read_local = BITMAP_ALLOC (&tm_memopt_obstack);
3925 b->store_local = BITMAP_ALLOC (&tm_memopt_obstack);
3926 return b;
3927 }
3928
3929 /* Free sets computed for each BB. */
3930
3931 static void
3932 tm_memopt_free_sets (vec<basic_block> blocks)
3933 {
3934 size_t i;
3935 basic_block bb;
3936
3937 for (i = 0; blocks.iterate (i, &bb); ++i)
3938 bb->aux = NULL;
3939 }
3940
3941 /* Clear the visited bit for every basic block in BLOCKS. */
3942
3943 static void
3944 tm_memopt_clear_visited (vec<basic_block> blocks)
3945 {
3946 size_t i;
3947 basic_block bb;
3948
3949 for (i = 0; blocks.iterate (i, &bb); ++i)
3950 BB_VISITED_P (bb) = false;
3951 }
3952
3953 /* Replace TM load/stores with hints for the runtime. We handle
3954 things like read-after-write, write-after-read, read-after-read,
3955 read-for-write, etc. */
3956
3957 static unsigned int
3958 execute_tm_memopt (void)
3959 {
3960 struct tm_region *region;
3961 vec<basic_block> bbs;
3962
3963 tm_memopt_value_id = 0;
3964 tm_memopt_value_numbers = new hash_table<tm_memop_hasher> (10);
3965
3966 for (region = all_tm_regions; region; region = region->next)
3967 {
3968 /* All the TM stores/loads in the current region. */
3969 size_t i;
3970 basic_block bb;
3971
3972 bitmap_obstack_initialize (&tm_memopt_obstack);
3973
3974 /* Save all BBs for the current region. */
3975 bbs = get_tm_region_blocks (region->entry_block,
3976 region->exit_blocks,
3977 region->irr_blocks,
3978 NULL,
3979 false);
3980
3981 /* Collect all the memory operations. */
3982 for (i = 0; bbs.iterate (i, &bb); ++i)
3983 {
3984 bb->aux = tm_memopt_init_sets ();
3985 tm_memopt_accumulate_memops (bb);
3986 }
3987
3988 /* Solve data flow equations and transform each block accordingly. */
3989 tm_memopt_clear_visited (bbs);
3990 tm_memopt_compute_available (region, bbs);
3991 tm_memopt_clear_visited (bbs);
3992 tm_memopt_compute_antic (region, bbs);
3993 tm_memopt_transform_blocks (bbs);
3994
3995 tm_memopt_free_sets (bbs);
3996 bbs.release ();
3997 bitmap_obstack_release (&tm_memopt_obstack);
3998 tm_memopt_value_numbers->empty ();
3999 }
4000
4001 delete tm_memopt_value_numbers;
4002 tm_memopt_value_numbers = NULL;
4003 return 0;
4004 }
4005
4006 namespace {
4007
4008 const pass_data pass_data_tm_memopt =
4009 {
4010 GIMPLE_PASS, /* type */
4011 "tmmemopt", /* name */
4012 OPTGROUP_NONE, /* optinfo_flags */
4013 TV_TRANS_MEM, /* tv_id */
4014 ( PROP_ssa | PROP_cfg ), /* properties_required */
4015 0, /* properties_provided */
4016 0, /* properties_destroyed */
4017 0, /* todo_flags_start */
4018 0, /* todo_flags_finish */
4019 };
4020
4021 class pass_tm_memopt : public gimple_opt_pass
4022 {
4023 public:
4024 pass_tm_memopt (gcc::context *ctxt)
4025 : gimple_opt_pass (pass_data_tm_memopt, ctxt)
4026 {}
4027
4028 /* opt_pass methods: */
4029 virtual bool gate (function *) { return flag_tm && optimize > 0; }
4030 virtual unsigned int execute (function *) { return execute_tm_memopt (); }
4031
4032 }; // class pass_tm_memopt
4033
4034 } // anon namespace
4035
4036 gimple_opt_pass *
4037 make_pass_tm_memopt (gcc::context *ctxt)
4038 {
4039 return new pass_tm_memopt (ctxt);
4040 }
4041
4042 \f
4043 /* Interprocedual analysis for the creation of transactional clones.
4044 The aim of this pass is to find which functions are referenced in
4045 a non-irrevocable transaction context, and for those over which
4046 we have control (or user directive), create a version of the
4047 function which uses only the transactional interface to reference
4048 protected memories. This analysis proceeds in several steps:
4049
4050 (1) Collect the set of all possible transactional clones:
4051
4052 (a) For all local public functions marked tm_callable, push
4053 it onto the tm_callee queue.
4054
4055 (b) For all local functions, scan for calls in transaction blocks.
4056 Push the caller and callee onto the tm_caller and tm_callee
4057 queues. Count the number of callers for each callee.
4058
4059 (c) For each local function on the callee list, assume we will
4060 create a transactional clone. Push *all* calls onto the
4061 callee queues; count the number of clone callers separately
4062 to the number of original callers.
4063
4064 (2) Propagate irrevocable status up the dominator tree:
4065
4066 (a) Any external function on the callee list that is not marked
4067 tm_callable is irrevocable. Push all callers of such onto
4068 a worklist.
4069
4070 (b) For each function on the worklist, mark each block that
4071 contains an irrevocable call. Use the AND operator to
4072 propagate that mark up the dominator tree.
4073
4074 (c) If we reach the entry block for a possible transactional
4075 clone, then the transactional clone is irrevocable, and
4076 we should not create the clone after all. Push all
4077 callers onto the worklist.
4078
4079 (d) Place tm_irrevocable calls at the beginning of the relevant
4080 blocks. Special case here is the entry block for the entire
4081 transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for
4082 the library to begin the region in serial mode. Decrement
4083 the call count for all callees in the irrevocable region.
4084
4085 (3) Create the transactional clones:
4086
4087 Any tm_callee that still has a non-zero call count is cloned.
4088 */
4089
4090 /* This structure is stored in the AUX field of each cgraph_node. */
4091 struct tm_ipa_cg_data
4092 {
4093 /* The clone of the function that got created. */
4094 struct cgraph_node *clone;
4095
4096 /* The tm regions in the normal function. */
4097 struct tm_region *all_tm_regions;
4098
4099 /* The blocks of the normal/clone functions that contain irrevocable
4100 calls, or blocks that are post-dominated by irrevocable calls. */
4101 bitmap irrevocable_blocks_normal;
4102 bitmap irrevocable_blocks_clone;
4103
4104 /* The blocks of the normal function that are involved in transactions. */
4105 bitmap transaction_blocks_normal;
4106
4107 /* The number of callers to the transactional clone of this function
4108 from normal and transactional clones respectively. */
4109 unsigned tm_callers_normal;
4110 unsigned tm_callers_clone;
4111
4112 /* True if all calls to this function's transactional clone
4113 are irrevocable. Also automatically true if the function
4114 has no transactional clone. */
4115 bool is_irrevocable;
4116
4117 /* Flags indicating the presence of this function in various queues. */
4118 bool in_callee_queue;
4119 bool in_worklist;
4120
4121 /* Flags indicating the kind of scan desired while in the worklist. */
4122 bool want_irr_scan_normal;
4123 };
4124
4125 typedef vec<cgraph_node *> cgraph_node_queue;
4126
4127 /* Return the ipa data associated with NODE, allocating zeroed memory
4128 if necessary. TRAVERSE_ALIASES is true if we must traverse aliases
4129 and set *NODE accordingly. */
4130
4131 static struct tm_ipa_cg_data *
4132 get_cg_data (struct cgraph_node **node, bool traverse_aliases)
4133 {
4134 struct tm_ipa_cg_data *d;
4135
4136 if (traverse_aliases && (*node)->alias)
4137 *node = (*node)->get_alias_target ();
4138
4139 d = (struct tm_ipa_cg_data *) (*node)->aux;
4140
4141 if (d == NULL)
4142 {
4143 d = (struct tm_ipa_cg_data *)
4144 obstack_alloc (&tm_obstack.obstack, sizeof (*d));
4145 (*node)->aux = (void *) d;
4146 memset (d, 0, sizeof (*d));
4147 }
4148
4149 return d;
4150 }
4151
4152 /* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that
4153 it is already present. */
4154
4155 static void
4156 maybe_push_queue (struct cgraph_node *node,
4157 cgraph_node_queue *queue_p, bool *in_queue_p)
4158 {
4159 if (!*in_queue_p)
4160 {
4161 *in_queue_p = true;
4162 queue_p->safe_push (node);
4163 }
4164 }
4165
4166 /* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone.
4167 Queue all callees within block BB. */
4168
4169 static void
4170 ipa_tm_scan_calls_block (cgraph_node_queue *callees_p,
4171 basic_block bb, bool for_clone)
4172 {
4173 gimple_stmt_iterator gsi;
4174
4175 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4176 {
4177 gimple *stmt = gsi_stmt (gsi);
4178 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4179 {
4180 tree fndecl = gimple_call_fndecl (stmt);
4181 if (fndecl)
4182 {
4183 struct tm_ipa_cg_data *d;
4184 unsigned *pcallers;
4185 struct cgraph_node *node;
4186
4187 if (is_tm_ending_fndecl (fndecl))
4188 continue;
4189 if (find_tm_replacement_function (fndecl))
4190 continue;
4191
4192 node = cgraph_node::get (fndecl);
4193 gcc_assert (node != NULL);
4194 d = get_cg_data (&node, true);
4195
4196 pcallers = (for_clone ? &d->tm_callers_clone
4197 : &d->tm_callers_normal);
4198 *pcallers += 1;
4199
4200 maybe_push_queue (node, callees_p, &d->in_callee_queue);
4201 }
4202 }
4203 }
4204 }
4205
4206 /* Scan all calls in NODE that are within a transaction region,
4207 and push the resulting nodes into the callee queue. */
4208
4209 static void
4210 ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d,
4211 cgraph_node_queue *callees_p)
4212 {
4213 d->transaction_blocks_normal = BITMAP_ALLOC (&tm_obstack);
4214 d->all_tm_regions = all_tm_regions;
4215
4216 for (tm_region *r = all_tm_regions; r; r = r->next)
4217 {
4218 vec<basic_block> bbs;
4219 basic_block bb;
4220 unsigned i;
4221
4222 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks, NULL,
4223 d->transaction_blocks_normal, false, false);
4224
4225 FOR_EACH_VEC_ELT (bbs, i, bb)
4226 ipa_tm_scan_calls_block (callees_p, bb, false);
4227
4228 bbs.release ();
4229 }
4230 }
4231
4232 /* Scan all calls in NODE as if this is the transactional clone,
4233 and push the destinations into the callee queue. */
4234
4235 static void
4236 ipa_tm_scan_calls_clone (struct cgraph_node *node,
4237 cgraph_node_queue *callees_p)
4238 {
4239 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
4240 basic_block bb;
4241
4242 FOR_EACH_BB_FN (bb, fn)
4243 ipa_tm_scan_calls_block (callees_p, bb, true);
4244 }
4245
4246 /* The function NODE has been detected to be irrevocable. Push all
4247 of its callers onto WORKLIST for the purpose of re-scanning them. */
4248
4249 static void
4250 ipa_tm_note_irrevocable (struct cgraph_node *node,
4251 cgraph_node_queue *worklist_p)
4252 {
4253 struct tm_ipa_cg_data *d = get_cg_data (&node, true);
4254 struct cgraph_edge *e;
4255
4256 d->is_irrevocable = true;
4257
4258 for (e = node->callers; e ; e = e->next_caller)
4259 {
4260 basic_block bb;
4261 struct cgraph_node *caller;
4262
4263 /* Don't examine recursive calls. */
4264 if (e->caller == node)
4265 continue;
4266 /* Even if we think we can go irrevocable, believe the user
4267 above all. */
4268 if (is_tm_safe_or_pure (e->caller->decl))
4269 continue;
4270
4271 caller = e->caller;
4272 d = get_cg_data (&caller, true);
4273
4274 /* Check if the callee is in a transactional region. If so,
4275 schedule the function for normal re-scan as well. */
4276 bb = gimple_bb (e->call_stmt);
4277 gcc_assert (bb != NULL);
4278 if (d->transaction_blocks_normal
4279 && bitmap_bit_p (d->transaction_blocks_normal, bb->index))
4280 d->want_irr_scan_normal = true;
4281
4282 maybe_push_queue (caller, worklist_p, &d->in_worklist);
4283 }
4284 }
4285
4286 /* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement
4287 within the block is irrevocable. */
4288
4289 static bool
4290 ipa_tm_scan_irr_block (basic_block bb)
4291 {
4292 gimple_stmt_iterator gsi;
4293 tree fn;
4294
4295 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4296 {
4297 gimple *stmt = gsi_stmt (gsi);
4298 switch (gimple_code (stmt))
4299 {
4300 case GIMPLE_ASSIGN:
4301 if (gimple_assign_single_p (stmt))
4302 {
4303 tree lhs = gimple_assign_lhs (stmt);
4304 tree rhs = gimple_assign_rhs1 (stmt);
4305 if (volatile_lvalue_p (lhs) || volatile_lvalue_p (rhs))
4306 return true;
4307 }
4308 break;
4309
4310 case GIMPLE_CALL:
4311 {
4312 tree lhs = gimple_call_lhs (stmt);
4313 if (lhs && volatile_lvalue_p (lhs))
4314 return true;
4315
4316 if (is_tm_pure_call (stmt))
4317 break;
4318
4319 fn = gimple_call_fn (stmt);
4320
4321 /* Functions with the attribute are by definition irrevocable. */
4322 if (is_tm_irrevocable (fn))
4323 return true;
4324
4325 /* For direct function calls, go ahead and check for replacement
4326 functions, or transitive irrevocable functions. For indirect
4327 functions, we'll ask the runtime. */
4328 if (TREE_CODE (fn) == ADDR_EXPR)
4329 {
4330 struct tm_ipa_cg_data *d;
4331 struct cgraph_node *node;
4332
4333 fn = TREE_OPERAND (fn, 0);
4334 if (is_tm_ending_fndecl (fn))
4335 break;
4336 if (find_tm_replacement_function (fn))
4337 break;
4338
4339 node = cgraph_node::get (fn);
4340 d = get_cg_data (&node, true);
4341
4342 /* Return true if irrevocable, but above all, believe
4343 the user. */
4344 if (d->is_irrevocable
4345 && !is_tm_safe_or_pure (fn))
4346 return true;
4347 }
4348 break;
4349 }
4350
4351 case GIMPLE_ASM:
4352 /* ??? The Approved Method of indicating that an inline
4353 assembly statement is not relevant to the transaction
4354 is to wrap it in a __tm_waiver block. This is not
4355 yet implemented, so we can't check for it. */
4356 if (is_tm_safe (current_function_decl))
4357 {
4358 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
4359 SET_EXPR_LOCATION (t, gimple_location (stmt));
4360 error ("%Kasm not allowed in %<transaction_safe%> function", t);
4361 }
4362 return true;
4363
4364 default:
4365 break;
4366 }
4367 }
4368
4369 return false;
4370 }
4371
4372 /* For each of the blocks seeded witin PQUEUE, walk the CFG looking
4373 for new irrevocable blocks, marking them in NEW_IRR. Don't bother
4374 scanning past OLD_IRR or EXIT_BLOCKS. */
4375
4376 static bool
4377 ipa_tm_scan_irr_blocks (vec<basic_block> *pqueue, bitmap new_irr,
4378 bitmap old_irr, bitmap exit_blocks)
4379 {
4380 bool any_new_irr = false;
4381 edge e;
4382 edge_iterator ei;
4383 bitmap visited_blocks = BITMAP_ALLOC (NULL);
4384
4385 do
4386 {
4387 basic_block bb = pqueue->pop ();
4388
4389 /* Don't re-scan blocks we know already are irrevocable. */
4390 if (old_irr && bitmap_bit_p (old_irr, bb->index))
4391 continue;
4392
4393 if (ipa_tm_scan_irr_block (bb))
4394 {
4395 bitmap_set_bit (new_irr, bb->index);
4396 any_new_irr = true;
4397 }
4398 else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index))
4399 {
4400 FOR_EACH_EDGE (e, ei, bb->succs)
4401 if (!bitmap_bit_p (visited_blocks, e->dest->index))
4402 {
4403 bitmap_set_bit (visited_blocks, e->dest->index);
4404 pqueue->safe_push (e->dest);
4405 }
4406 }
4407 }
4408 while (!pqueue->is_empty ());
4409
4410 BITMAP_FREE (visited_blocks);
4411
4412 return any_new_irr;
4413 }
4414
4415 /* Propagate the irrevocable property both up and down the dominator tree.
4416 BB is the current block being scanned; EXIT_BLOCKS are the edges of the
4417 TM regions; OLD_IRR are the results of a previous scan of the dominator
4418 tree which has been fully propagated; NEW_IRR is the set of new blocks
4419 which are gaining the irrevocable property during the current scan. */
4420
4421 static void
4422 ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr,
4423 bitmap old_irr, bitmap exit_blocks)
4424 {
4425 vec<basic_block> bbs;
4426 bitmap all_region_blocks;
4427
4428 /* If this block is in the old set, no need to rescan. */
4429 if (old_irr && bitmap_bit_p (old_irr, entry_block->index))
4430 return;
4431
4432 all_region_blocks = BITMAP_ALLOC (&tm_obstack);
4433 bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL,
4434 all_region_blocks, false);
4435 do
4436 {
4437 basic_block bb = bbs.pop ();
4438 bool this_irr = bitmap_bit_p (new_irr, bb->index);
4439 bool all_son_irr = false;
4440 edge_iterator ei;
4441 edge e;
4442
4443 /* Propagate up. If my children are, I am too, but we must have
4444 at least one child that is. */
4445 if (!this_irr)
4446 {
4447 FOR_EACH_EDGE (e, ei, bb->succs)
4448 {
4449 if (!bitmap_bit_p (new_irr, e->dest->index))
4450 {
4451 all_son_irr = false;
4452 break;
4453 }
4454 else
4455 all_son_irr = true;
4456 }
4457 if (all_son_irr)
4458 {
4459 /* Add block to new_irr if it hasn't already been processed. */
4460 if (!old_irr || !bitmap_bit_p (old_irr, bb->index))
4461 {
4462 bitmap_set_bit (new_irr, bb->index);
4463 this_irr = true;
4464 }
4465 }
4466 }
4467
4468 /* Propagate down to everyone we immediately dominate. */
4469 if (this_irr)
4470 {
4471 basic_block son;
4472 for (son = first_dom_son (CDI_DOMINATORS, bb);
4473 son;
4474 son = next_dom_son (CDI_DOMINATORS, son))
4475 {
4476 /* Make sure block is actually in a TM region, and it
4477 isn't already in old_irr. */
4478 if ((!old_irr || !bitmap_bit_p (old_irr, son->index))
4479 && bitmap_bit_p (all_region_blocks, son->index))
4480 bitmap_set_bit (new_irr, son->index);
4481 }
4482 }
4483 }
4484 while (!bbs.is_empty ());
4485
4486 BITMAP_FREE (all_region_blocks);
4487 bbs.release ();
4488 }
4489
4490 static void
4491 ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone)
4492 {
4493 gimple_stmt_iterator gsi;
4494
4495 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4496 {
4497 gimple *stmt = gsi_stmt (gsi);
4498 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4499 {
4500 tree fndecl = gimple_call_fndecl (stmt);
4501 if (fndecl)
4502 {
4503 struct tm_ipa_cg_data *d;
4504 unsigned *pcallers;
4505 struct cgraph_node *tnode;
4506
4507 if (is_tm_ending_fndecl (fndecl))
4508 continue;
4509 if (find_tm_replacement_function (fndecl))
4510 continue;
4511
4512 tnode = cgraph_node::get (fndecl);
4513 d = get_cg_data (&tnode, true);
4514
4515 pcallers = (for_clone ? &d->tm_callers_clone
4516 : &d->tm_callers_normal);
4517
4518 gcc_assert (*pcallers > 0);
4519 *pcallers -= 1;
4520 }
4521 }
4522 }
4523 }
4524
4525 /* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions,
4526 as well as other irrevocable actions such as inline assembly. Mark all
4527 such blocks as irrevocable and decrement the number of calls to
4528 transactional clones. Return true if, for the transactional clone, the
4529 entire function is irrevocable. */
4530
4531 static bool
4532 ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone)
4533 {
4534 struct tm_ipa_cg_data *d;
4535 bitmap new_irr, old_irr;
4536 bool ret = false;
4537
4538 /* Builtin operators (operator new, and such). */
4539 if (DECL_STRUCT_FUNCTION (node->decl) == NULL
4540 || DECL_STRUCT_FUNCTION (node->decl)->cfg == NULL)
4541 return false;
4542
4543 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4544 calculate_dominance_info (CDI_DOMINATORS);
4545
4546 d = get_cg_data (&node, true);
4547 auto_vec<basic_block, 10> queue;
4548 new_irr = BITMAP_ALLOC (&tm_obstack);
4549
4550 /* Scan each tm region, propagating irrevocable status through the tree. */
4551 if (for_clone)
4552 {
4553 old_irr = d->irrevocable_blocks_clone;
4554 queue.quick_push (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4555 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr, NULL))
4556 {
4557 ipa_tm_propagate_irr (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4558 new_irr,
4559 old_irr, NULL);
4560 ret = bitmap_bit_p (new_irr,
4561 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->index);
4562 }
4563 }
4564 else
4565 {
4566 struct tm_region *region;
4567
4568 old_irr = d->irrevocable_blocks_normal;
4569 for (region = d->all_tm_regions; region; region = region->next)
4570 {
4571 queue.quick_push (region->entry_block);
4572 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr,
4573 region->exit_blocks))
4574 ipa_tm_propagate_irr (region->entry_block, new_irr, old_irr,
4575 region->exit_blocks);
4576 }
4577 }
4578
4579 /* If we found any new irrevocable blocks, reduce the call count for
4580 transactional clones within the irrevocable blocks. Save the new
4581 set of irrevocable blocks for next time. */
4582 if (!bitmap_empty_p (new_irr))
4583 {
4584 bitmap_iterator bmi;
4585 unsigned i;
4586
4587 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4588 ipa_tm_decrement_clone_counts (BASIC_BLOCK_FOR_FN (cfun, i),
4589 for_clone);
4590
4591 if (old_irr)
4592 {
4593 bitmap_ior_into (old_irr, new_irr);
4594 BITMAP_FREE (new_irr);
4595 }
4596 else if (for_clone)
4597 d->irrevocable_blocks_clone = new_irr;
4598 else
4599 d->irrevocable_blocks_normal = new_irr;
4600
4601 if (dump_file && new_irr)
4602 {
4603 const char *dname;
4604 bitmap_iterator bmi;
4605 unsigned i;
4606
4607 dname = lang_hooks.decl_printable_name (current_function_decl, 2);
4608 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4609 fprintf (dump_file, "%s: bb %d goes irrevocable\n", dname, i);
4610 }
4611 }
4612 else
4613 BITMAP_FREE (new_irr);
4614
4615 pop_cfun ();
4616
4617 return ret;
4618 }
4619
4620 /* Return true if, for the transactional clone of NODE, any call
4621 may enter irrevocable mode. */
4622
4623 static bool
4624 ipa_tm_mayenterirr_function (struct cgraph_node *node)
4625 {
4626 struct tm_ipa_cg_data *d;
4627 tree decl;
4628 unsigned flags;
4629
4630 d = get_cg_data (&node, true);
4631 decl = node->decl;
4632 flags = flags_from_decl_or_type (decl);
4633
4634 /* Handle some TM builtins. Ordinarily these aren't actually generated
4635 at this point, but handling these functions when written in by the
4636 user makes it easier to build unit tests. */
4637 if (flags & ECF_TM_BUILTIN)
4638 return false;
4639
4640 /* Filter out all functions that are marked. */
4641 if (flags & ECF_TM_PURE)
4642 return false;
4643 if (is_tm_safe (decl))
4644 return false;
4645 if (is_tm_irrevocable (decl))
4646 return true;
4647 if (is_tm_callable (decl))
4648 return true;
4649 if (find_tm_replacement_function (decl))
4650 return true;
4651
4652 /* If we aren't seeing the final version of the function we don't
4653 know what it will contain at runtime. */
4654 if (node->get_availability () < AVAIL_AVAILABLE)
4655 return true;
4656
4657 /* If the function must go irrevocable, then of course true. */
4658 if (d->is_irrevocable)
4659 return true;
4660
4661 /* If there are any blocks marked irrevocable, then the function
4662 as a whole may enter irrevocable. */
4663 if (d->irrevocable_blocks_clone)
4664 return true;
4665
4666 /* We may have previously marked this function as tm_may_enter_irr;
4667 see pass_diagnose_tm_blocks. */
4668 if (node->local.tm_may_enter_irr)
4669 return true;
4670
4671 /* Recurse on the main body for aliases. In general, this will
4672 result in one of the bits above being set so that we will not
4673 have to recurse next time. */
4674 if (node->alias)
4675 return ipa_tm_mayenterirr_function (cgraph_node::get (node->thunk.alias));
4676
4677 /* What remains is unmarked local functions without items that force
4678 the function to go irrevocable. */
4679 return false;
4680 }
4681
4682 /* Diagnose calls from transaction_safe functions to unmarked
4683 functions that are determined to not be safe. */
4684
4685 static void
4686 ipa_tm_diagnose_tm_safe (struct cgraph_node *node)
4687 {
4688 struct cgraph_edge *e;
4689
4690 for (e = node->callees; e ; e = e->next_callee)
4691 if (!is_tm_callable (e->callee->decl)
4692 && e->callee->local.tm_may_enter_irr)
4693 error_at (gimple_location (e->call_stmt),
4694 "unsafe function call %qD within "
4695 "%<transaction_safe%> function", e->callee->decl);
4696 }
4697
4698 /* Diagnose call from atomic transactions to unmarked functions
4699 that are determined to not be safe. */
4700
4701 static void
4702 ipa_tm_diagnose_transaction (struct cgraph_node *node,
4703 struct tm_region *all_tm_regions)
4704 {
4705 struct tm_region *r;
4706
4707 for (r = all_tm_regions; r ; r = r->next)
4708 if (gimple_transaction_subcode (r->get_transaction_stmt ())
4709 & GTMA_IS_RELAXED)
4710 {
4711 /* Atomic transactions can be nested inside relaxed. */
4712 if (r->inner)
4713 ipa_tm_diagnose_transaction (node, r->inner);
4714 }
4715 else
4716 {
4717 vec<basic_block> bbs;
4718 gimple_stmt_iterator gsi;
4719 basic_block bb;
4720 size_t i;
4721
4722 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks,
4723 r->irr_blocks, NULL, false);
4724
4725 for (i = 0; bbs.iterate (i, &bb); ++i)
4726 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4727 {
4728 gimple *stmt = gsi_stmt (gsi);
4729 tree fndecl;
4730
4731 if (gimple_code (stmt) == GIMPLE_ASM)
4732 {
4733 error_at (gimple_location (stmt),
4734 "asm not allowed in atomic transaction");
4735 continue;
4736 }
4737
4738 if (!is_gimple_call (stmt))
4739 continue;
4740 fndecl = gimple_call_fndecl (stmt);
4741
4742 /* Indirect function calls have been diagnosed already. */
4743 if (!fndecl)
4744 continue;
4745
4746 /* Stop at the end of the transaction. */
4747 if (is_tm_ending_fndecl (fndecl))
4748 {
4749 if (bitmap_bit_p (r->exit_blocks, bb->index))
4750 break;
4751 continue;
4752 }
4753
4754 /* Marked functions have been diagnosed already. */
4755 if (is_tm_pure_call (stmt))
4756 continue;
4757 if (is_tm_callable (fndecl))
4758 continue;
4759
4760 if (cgraph_node::local_info (fndecl)->tm_may_enter_irr)
4761 error_at (gimple_location (stmt),
4762 "unsafe function call %qD within "
4763 "atomic transaction", fndecl);
4764 }
4765
4766 bbs.release ();
4767 }
4768 }
4769
4770 /* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in
4771 OLD_DECL. The returned value is a freshly malloced pointer that
4772 should be freed by the caller. */
4773
4774 static tree
4775 tm_mangle (tree old_asm_id)
4776 {
4777 const char *old_asm_name;
4778 char *tm_name;
4779 void *alloc = NULL;
4780 struct demangle_component *dc;
4781 tree new_asm_id;
4782
4783 /* Determine if the symbol is already a valid C++ mangled name. Do this
4784 even for C, which might be interfacing with C++ code via appropriately
4785 ugly identifiers. */
4786 /* ??? We could probably do just as well checking for "_Z" and be done. */
4787 old_asm_name = IDENTIFIER_POINTER (old_asm_id);
4788 dc = cplus_demangle_v3_components (old_asm_name, DMGL_NO_OPTS, &alloc);
4789
4790 if (dc == NULL)
4791 {
4792 char length[8];
4793
4794 do_unencoded:
4795 sprintf (length, "%u", IDENTIFIER_LENGTH (old_asm_id));
4796 tm_name = concat ("_ZGTt", length, old_asm_name, NULL);
4797 }
4798 else
4799 {
4800 old_asm_name += 2; /* Skip _Z */
4801
4802 switch (dc->type)
4803 {
4804 case DEMANGLE_COMPONENT_TRANSACTION_CLONE:
4805 case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE:
4806 /* Don't play silly games, you! */
4807 goto do_unencoded;
4808
4809 case DEMANGLE_COMPONENT_HIDDEN_ALIAS:
4810 /* I'd really like to know if we can ever be passed one of
4811 these from the C++ front end. The Logical Thing would
4812 seem that hidden-alias should be outer-most, so that we
4813 get hidden-alias of a transaction-clone and not vice-versa. */
4814 old_asm_name += 2;
4815 break;
4816
4817 default:
4818 break;
4819 }
4820
4821 tm_name = concat ("_ZGTt", old_asm_name, NULL);
4822 }
4823 free (alloc);
4824
4825 new_asm_id = get_identifier (tm_name);
4826 free (tm_name);
4827
4828 return new_asm_id;
4829 }
4830
4831 static inline void
4832 ipa_tm_mark_force_output_node (struct cgraph_node *node)
4833 {
4834 node->mark_force_output ();
4835 node->analyzed = true;
4836 }
4837
4838 static inline void
4839 ipa_tm_mark_forced_by_abi_node (struct cgraph_node *node)
4840 {
4841 node->forced_by_abi = true;
4842 node->analyzed = true;
4843 }
4844
4845 /* Callback data for ipa_tm_create_version_alias. */
4846 struct create_version_alias_info
4847 {
4848 struct cgraph_node *old_node;
4849 tree new_decl;
4850 };
4851
4852 /* A subroutine of ipa_tm_create_version, called via
4853 cgraph_for_node_and_aliases. Create new tm clones for each of
4854 the existing aliases. */
4855 static bool
4856 ipa_tm_create_version_alias (struct cgraph_node *node, void *data)
4857 {
4858 struct create_version_alias_info *info
4859 = (struct create_version_alias_info *)data;
4860 tree old_decl, new_decl, tm_name;
4861 struct cgraph_node *new_node;
4862
4863 if (!node->cpp_implicit_alias)
4864 return false;
4865
4866 old_decl = node->decl;
4867 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4868 new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl),
4869 TREE_CODE (old_decl), tm_name,
4870 TREE_TYPE (old_decl));
4871
4872 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4873 SET_DECL_RTL (new_decl, NULL);
4874
4875 /* Based loosely on C++'s make_alias_for(). */
4876 TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl);
4877 DECL_CONTEXT (new_decl) = DECL_CONTEXT (old_decl);
4878 DECL_LANG_SPECIFIC (new_decl) = DECL_LANG_SPECIFIC (old_decl);
4879 TREE_READONLY (new_decl) = TREE_READONLY (old_decl);
4880 DECL_EXTERNAL (new_decl) = 0;
4881 DECL_ARTIFICIAL (new_decl) = 1;
4882 TREE_ADDRESSABLE (new_decl) = 1;
4883 TREE_USED (new_decl) = 1;
4884 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4885
4886 /* Perform the same remapping to the comdat group. */
4887 if (DECL_ONE_ONLY (new_decl))
4888 varpool_node::get (new_decl)->set_comdat_group
4889 (tm_mangle (decl_comdat_group_id (old_decl)));
4890
4891 new_node = cgraph_node::create_same_body_alias (new_decl, info->new_decl);
4892 new_node->tm_clone = true;
4893 new_node->externally_visible = info->old_node->externally_visible;
4894 new_node->no_reorder = info->old_node->no_reorder;
4895 /* ?? Do not traverse aliases here. */
4896 get_cg_data (&node, false)->clone = new_node;
4897
4898 record_tm_clone_pair (old_decl, new_decl);
4899
4900 if (info->old_node->force_output
4901 || info->old_node->ref_list.first_referring ())
4902 ipa_tm_mark_force_output_node (new_node);
4903 if (info->old_node->forced_by_abi)
4904 ipa_tm_mark_forced_by_abi_node (new_node);
4905 return false;
4906 }
4907
4908 /* Create a copy of the function (possibly declaration only) of OLD_NODE,
4909 appropriate for the transactional clone. */
4910
4911 static void
4912 ipa_tm_create_version (struct cgraph_node *old_node)
4913 {
4914 tree new_decl, old_decl, tm_name;
4915 struct cgraph_node *new_node;
4916
4917 old_decl = old_node->decl;
4918 new_decl = copy_node (old_decl);
4919
4920 /* DECL_ASSEMBLER_NAME needs to be set before we call
4921 cgraph_copy_node_for_versioning below, because cgraph_node will
4922 fill the assembler_name_hash. */
4923 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4924 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4925 SET_DECL_RTL (new_decl, NULL);
4926 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4927
4928 /* Perform the same remapping to the comdat group. */
4929 if (DECL_ONE_ONLY (new_decl))
4930 varpool_node::get (new_decl)->set_comdat_group
4931 (tm_mangle (DECL_COMDAT_GROUP (old_decl)));
4932
4933 gcc_assert (!old_node->ipa_transforms_to_apply.exists ());
4934 new_node = old_node->create_version_clone (new_decl, vNULL, NULL);
4935 new_node->local.local = false;
4936 new_node->externally_visible = old_node->externally_visible;
4937 new_node->lowered = true;
4938 new_node->tm_clone = 1;
4939 if (!old_node->implicit_section)
4940 new_node->set_section (old_node->get_section ());
4941 get_cg_data (&old_node, true)->clone = new_node;
4942
4943 if (old_node->get_availability () >= AVAIL_INTERPOSABLE)
4944 {
4945 /* Remap extern inline to static inline. */
4946 /* ??? Is it worth trying to use make_decl_one_only? */
4947 if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl))
4948 {
4949 DECL_EXTERNAL (new_decl) = 0;
4950 TREE_PUBLIC (new_decl) = 0;
4951 DECL_WEAK (new_decl) = 0;
4952 }
4953
4954 tree_function_versioning (old_decl, new_decl,
4955 NULL, false, NULL,
4956 false, NULL, NULL);
4957 }
4958
4959 record_tm_clone_pair (old_decl, new_decl);
4960
4961 symtab->call_cgraph_insertion_hooks (new_node);
4962 if (old_node->force_output
4963 || old_node->ref_list.first_referring ())
4964 ipa_tm_mark_force_output_node (new_node);
4965 if (old_node->forced_by_abi)
4966 ipa_tm_mark_forced_by_abi_node (new_node);
4967
4968 /* Do the same thing, but for any aliases of the original node. */
4969 {
4970 struct create_version_alias_info data;
4971 data.old_node = old_node;
4972 data.new_decl = new_decl;
4973 old_node->call_for_symbol_thunks_and_aliases (ipa_tm_create_version_alias,
4974 &data, true);
4975 }
4976 }
4977
4978 /* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB. */
4979
4980 static void
4981 ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region,
4982 basic_block bb)
4983 {
4984 gimple_stmt_iterator gsi;
4985 gcall *g;
4986
4987 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
4988
4989 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE),
4990 1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE));
4991
4992 split_block_after_labels (bb);
4993 gsi = gsi_after_labels (bb);
4994 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
4995
4996 node->create_edge (cgraph_node::get_create
4997 (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE)),
4998 g, 0,
4999 compute_call_stmt_bb_frequency (node->decl,
5000 gimple_bb (g)));
5001 }
5002
5003 /* Construct a call to TM_GETTMCLONE and insert it before GSI. */
5004
5005 static bool
5006 ipa_tm_insert_gettmclone_call (struct cgraph_node *node,
5007 struct tm_region *region,
5008 gimple_stmt_iterator *gsi, gcall *stmt)
5009 {
5010 tree gettm_fn, ret, old_fn, callfn;
5011 gcall *g;
5012 gassign *g2;
5013 bool safe;
5014
5015 old_fn = gimple_call_fn (stmt);
5016
5017 if (TREE_CODE (old_fn) == ADDR_EXPR)
5018 {
5019 tree fndecl = TREE_OPERAND (old_fn, 0);
5020 tree clone = get_tm_clone_pair (fndecl);
5021
5022 /* By transforming the call into a TM_GETTMCLONE, we are
5023 technically taking the address of the original function and
5024 its clone. Explain this so inlining will know this function
5025 is needed. */
5026 cgraph_node::get (fndecl)->mark_address_taken () ;
5027 if (clone)
5028 cgraph_node::get (clone)->mark_address_taken ();
5029 }
5030
5031 safe = is_tm_safe (TREE_TYPE (old_fn));
5032 gettm_fn = builtin_decl_explicit (safe ? BUILT_IN_TM_GETTMCLONE_SAFE
5033 : BUILT_IN_TM_GETTMCLONE_IRR);
5034 ret = create_tmp_var (ptr_type_node);
5035
5036 if (!safe)
5037 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5038
5039 /* Discard OBJ_TYPE_REF, since we weren't able to fold it. */
5040 if (TREE_CODE (old_fn) == OBJ_TYPE_REF)
5041 old_fn = OBJ_TYPE_REF_EXPR (old_fn);
5042
5043 g = gimple_build_call (gettm_fn, 1, old_fn);
5044 ret = make_ssa_name (ret, g);
5045 gimple_call_set_lhs (g, ret);
5046
5047 gsi_insert_before (gsi, g, GSI_SAME_STMT);
5048
5049 node->create_edge (cgraph_node::get_create (gettm_fn), g, 0,
5050 compute_call_stmt_bb_frequency (node->decl,
5051 gimple_bb (g)));
5052
5053 /* Cast return value from tm_gettmclone* into appropriate function
5054 pointer. */
5055 callfn = create_tmp_var (TREE_TYPE (old_fn));
5056 g2 = gimple_build_assign (callfn,
5057 fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret));
5058 callfn = make_ssa_name (callfn, g2);
5059 gimple_assign_set_lhs (g2, callfn);
5060 gsi_insert_before (gsi, g2, GSI_SAME_STMT);
5061
5062 /* ??? This is a hack to preserve the NOTHROW bit on the call,
5063 which we would have derived from the decl. Failure to save
5064 this bit means we might have to split the basic block. */
5065 if (gimple_call_nothrow_p (stmt))
5066 gimple_call_set_nothrow (stmt, true);
5067
5068 gimple_call_set_fn (stmt, callfn);
5069
5070 /* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS
5071 for a call statement. Fix it. */
5072 {
5073 tree lhs = gimple_call_lhs (stmt);
5074 tree rettype = TREE_TYPE (gimple_call_fntype (stmt));
5075 if (lhs
5076 && !useless_type_conversion_p (TREE_TYPE (lhs), rettype))
5077 {
5078 tree temp;
5079
5080 temp = create_tmp_reg (rettype);
5081 gimple_call_set_lhs (stmt, temp);
5082
5083 g2 = gimple_build_assign (lhs,
5084 fold_build1 (VIEW_CONVERT_EXPR,
5085 TREE_TYPE (lhs), temp));
5086 gsi_insert_after (gsi, g2, GSI_SAME_STMT);
5087 }
5088 }
5089
5090 update_stmt (stmt);
5091 cgraph_edge *e = cgraph_node::get (current_function_decl)->get_edge (stmt);
5092 if (e && e->indirect_info)
5093 e->indirect_info->polymorphic = false;
5094
5095 return true;
5096 }
5097
5098 /* Helper function for ipa_tm_transform_calls*. Given a call
5099 statement in GSI which resides inside transaction REGION, redirect
5100 the call to either its wrapper function, or its clone. */
5101
5102 static void
5103 ipa_tm_transform_calls_redirect (struct cgraph_node *node,
5104 struct tm_region *region,
5105 gimple_stmt_iterator *gsi,
5106 bool *need_ssa_rename_p)
5107 {
5108 gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
5109 struct cgraph_node *new_node;
5110 struct cgraph_edge *e = node->get_edge (stmt);
5111 tree fndecl = gimple_call_fndecl (stmt);
5112
5113 /* For indirect calls, pass the address through the runtime. */
5114 if (fndecl == NULL)
5115 {
5116 *need_ssa_rename_p |=
5117 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5118 return;
5119 }
5120
5121 /* Handle some TM builtins. Ordinarily these aren't actually generated
5122 at this point, but handling these functions when written in by the
5123 user makes it easier to build unit tests. */
5124 if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN)
5125 return;
5126
5127 /* Fixup recursive calls inside clones. */
5128 /* ??? Why did cgraph_copy_node_for_versioning update the call edges
5129 for recursion but not update the call statements themselves? */
5130 if (e->caller == e->callee && decl_is_tm_clone (current_function_decl))
5131 {
5132 gimple_call_set_fndecl (stmt, current_function_decl);
5133 return;
5134 }
5135
5136 /* If there is a replacement, use it. */
5137 fndecl = find_tm_replacement_function (fndecl);
5138 if (fndecl)
5139 {
5140 new_node = cgraph_node::get_create (fndecl);
5141
5142 /* ??? Mark all transaction_wrap functions tm_may_enter_irr.
5143
5144 We can't do this earlier in record_tm_replacement because
5145 cgraph_remove_unreachable_nodes is called before we inject
5146 references to the node. Further, we can't do this in some
5147 nice central place in ipa_tm_execute because we don't have
5148 the exact list of wrapper functions that would be used.
5149 Marking more wrappers than necessary results in the creation
5150 of unnecessary cgraph_nodes, which can cause some of the
5151 other IPA passes to crash.
5152
5153 We do need to mark these nodes so that we get the proper
5154 result in expand_call_tm. */
5155 /* ??? This seems broken. How is it that we're marking the
5156 CALLEE as may_enter_irr? Surely we should be marking the
5157 CALLER. Also note that find_tm_replacement_function also
5158 contains mappings into the TM runtime, e.g. memcpy. These
5159 we know won't go irrevocable. */
5160 new_node->local.tm_may_enter_irr = 1;
5161 }
5162 else
5163 {
5164 struct tm_ipa_cg_data *d;
5165 struct cgraph_node *tnode = e->callee;
5166
5167 d = get_cg_data (&tnode, true);
5168 new_node = d->clone;
5169
5170 /* As we've already skipped pure calls and appropriate builtins,
5171 and we've already marked irrevocable blocks, if we can't come
5172 up with a static replacement, then ask the runtime. */
5173 if (new_node == NULL)
5174 {
5175 *need_ssa_rename_p |=
5176 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5177 return;
5178 }
5179
5180 fndecl = new_node->decl;
5181 }
5182
5183 e->redirect_callee (new_node);
5184 gimple_call_set_fndecl (stmt, fndecl);
5185 }
5186
5187 /* Helper function for ipa_tm_transform_calls. For a given BB,
5188 install calls to tm_irrevocable when IRR_BLOCKS are reached,
5189 redirect other calls to the generated transactional clone. */
5190
5191 static bool
5192 ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region,
5193 basic_block bb, bitmap irr_blocks)
5194 {
5195 gimple_stmt_iterator gsi;
5196 bool need_ssa_rename = false;
5197
5198 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5199 {
5200 ipa_tm_insert_irr_call (node, region, bb);
5201 return true;
5202 }
5203
5204 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5205 {
5206 gimple *stmt = gsi_stmt (gsi);
5207
5208 if (!is_gimple_call (stmt))
5209 continue;
5210 if (is_tm_pure_call (stmt))
5211 continue;
5212
5213 /* Redirect edges to the appropriate replacement or clone. */
5214 ipa_tm_transform_calls_redirect (node, region, &gsi, &need_ssa_rename);
5215 }
5216
5217 return need_ssa_rename;
5218 }
5219
5220 /* Walk the CFG for REGION, beginning at BB. Install calls to
5221 tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to
5222 the generated transactional clone. */
5223
5224 static bool
5225 ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region,
5226 basic_block bb, bitmap irr_blocks)
5227 {
5228 bool need_ssa_rename = false;
5229 edge e;
5230 edge_iterator ei;
5231 auto_vec<basic_block> queue;
5232 bitmap visited_blocks = BITMAP_ALLOC (NULL);
5233
5234 queue.safe_push (bb);
5235 do
5236 {
5237 bb = queue.pop ();
5238
5239 need_ssa_rename |=
5240 ipa_tm_transform_calls_1 (node, region, bb, irr_blocks);
5241
5242 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5243 continue;
5244
5245 if (region && bitmap_bit_p (region->exit_blocks, bb->index))
5246 continue;
5247
5248 FOR_EACH_EDGE (e, ei, bb->succs)
5249 if (!bitmap_bit_p (visited_blocks, e->dest->index))
5250 {
5251 bitmap_set_bit (visited_blocks, e->dest->index);
5252 queue.safe_push (e->dest);
5253 }
5254 }
5255 while (!queue.is_empty ());
5256
5257 BITMAP_FREE (visited_blocks);
5258
5259 return need_ssa_rename;
5260 }
5261
5262 /* Transform the calls within the TM regions within NODE. */
5263
5264 static void
5265 ipa_tm_transform_transaction (struct cgraph_node *node)
5266 {
5267 struct tm_ipa_cg_data *d;
5268 struct tm_region *region;
5269 bool need_ssa_rename = false;
5270
5271 d = get_cg_data (&node, true);
5272
5273 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5274 calculate_dominance_info (CDI_DOMINATORS);
5275
5276 for (region = d->all_tm_regions; region; region = region->next)
5277 {
5278 /* If we're sure to go irrevocable, don't transform anything. */
5279 if (d->irrevocable_blocks_normal
5280 && bitmap_bit_p (d->irrevocable_blocks_normal,
5281 region->entry_block->index))
5282 {
5283 transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE
5284 | GTMA_MAY_ENTER_IRREVOCABLE
5285 | GTMA_HAS_NO_INSTRUMENTATION);
5286 continue;
5287 }
5288
5289 need_ssa_rename |=
5290 ipa_tm_transform_calls (node, region, region->entry_block,
5291 d->irrevocable_blocks_normal);
5292 }
5293
5294 if (need_ssa_rename)
5295 update_ssa (TODO_update_ssa_only_virtuals);
5296
5297 pop_cfun ();
5298 }
5299
5300 /* Transform the calls within the transactional clone of NODE. */
5301
5302 static void
5303 ipa_tm_transform_clone (struct cgraph_node *node)
5304 {
5305 struct tm_ipa_cg_data *d;
5306 bool need_ssa_rename;
5307
5308 d = get_cg_data (&node, true);
5309
5310 /* If this function makes no calls and has no irrevocable blocks,
5311 then there's nothing to do. */
5312 /* ??? Remove non-aborting top-level transactions. */
5313 if (!node->callees && !node->indirect_calls && !d->irrevocable_blocks_clone)
5314 return;
5315
5316 push_cfun (DECL_STRUCT_FUNCTION (d->clone->decl));
5317 calculate_dominance_info (CDI_DOMINATORS);
5318
5319 need_ssa_rename =
5320 ipa_tm_transform_calls (d->clone, NULL,
5321 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
5322 d->irrevocable_blocks_clone);
5323
5324 if (need_ssa_rename)
5325 update_ssa (TODO_update_ssa_only_virtuals);
5326
5327 pop_cfun ();
5328 }
5329
5330 /* Main entry point for the transactional memory IPA pass. */
5331
5332 static unsigned int
5333 ipa_tm_execute (void)
5334 {
5335 cgraph_node_queue tm_callees = cgraph_node_queue ();
5336 /* List of functions that will go irrevocable. */
5337 cgraph_node_queue irr_worklist = cgraph_node_queue ();
5338
5339 struct cgraph_node *node;
5340 struct tm_ipa_cg_data *d;
5341 enum availability a;
5342 unsigned int i;
5343
5344 cgraph_node::checking_verify_cgraph_nodes ();
5345
5346 bitmap_obstack_initialize (&tm_obstack);
5347 initialize_original_copy_tables ();
5348
5349 /* For all local functions marked tm_callable, queue them. */
5350 FOR_EACH_DEFINED_FUNCTION (node)
5351 if (is_tm_callable (node->decl)
5352 && node->get_availability () >= AVAIL_INTERPOSABLE)
5353 {
5354 d = get_cg_data (&node, true);
5355 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5356 }
5357
5358 /* For all local reachable functions... */
5359 FOR_EACH_DEFINED_FUNCTION (node)
5360 if (node->lowered
5361 && node->get_availability () >= AVAIL_INTERPOSABLE)
5362 {
5363 /* ... marked tm_pure, record that fact for the runtime by
5364 indicating that the pure function is its own tm_callable.
5365 No need to do this if the function's address can't be taken. */
5366 if (is_tm_pure (node->decl))
5367 {
5368 if (!node->local.local)
5369 record_tm_clone_pair (node->decl, node->decl);
5370 continue;
5371 }
5372
5373 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5374 calculate_dominance_info (CDI_DOMINATORS);
5375
5376 tm_region_init (NULL);
5377 if (all_tm_regions)
5378 {
5379 d = get_cg_data (&node, true);
5380
5381 /* Scan for calls that are in each transaction, and
5382 generate the uninstrumented code path. */
5383 ipa_tm_scan_calls_transaction (d, &tm_callees);
5384
5385 /* Put it in the worklist so we can scan the function
5386 later (ipa_tm_scan_irr_function) and mark the
5387 irrevocable blocks. */
5388 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5389 d->want_irr_scan_normal = true;
5390 }
5391
5392 pop_cfun ();
5393 }
5394
5395 /* For every local function on the callee list, scan as if we will be
5396 creating a transactional clone, queueing all new functions we find
5397 along the way. */
5398 for (i = 0; i < tm_callees.length (); ++i)
5399 {
5400 node = tm_callees[i];
5401 a = node->get_availability ();
5402 d = get_cg_data (&node, true);
5403
5404 /* Put it in the worklist so we can scan the function later
5405 (ipa_tm_scan_irr_function) and mark the irrevocable
5406 blocks. */
5407 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5408
5409 /* Some callees cannot be arbitrarily cloned. These will always be
5410 irrevocable. Mark these now, so that we need not scan them. */
5411 if (is_tm_irrevocable (node->decl))
5412 ipa_tm_note_irrevocable (node, &irr_worklist);
5413 else if (a <= AVAIL_NOT_AVAILABLE
5414 && !is_tm_safe_or_pure (node->decl))
5415 ipa_tm_note_irrevocable (node, &irr_worklist);
5416 else if (a >= AVAIL_INTERPOSABLE)
5417 {
5418 if (!tree_versionable_function_p (node->decl))
5419 ipa_tm_note_irrevocable (node, &irr_worklist);
5420 else if (!d->is_irrevocable)
5421 {
5422 /* If this is an alias, make sure its base is queued as well.
5423 we need not scan the callees now, as the base will do. */
5424 if (node->alias)
5425 {
5426 node = cgraph_node::get (node->thunk.alias);
5427 d = get_cg_data (&node, true);
5428 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5429 continue;
5430 }
5431
5432 /* Add all nodes called by this function into
5433 tm_callees as well. */
5434 ipa_tm_scan_calls_clone (node, &tm_callees);
5435 }
5436 }
5437 }
5438
5439 /* Iterate scans until no more work to be done. Prefer not to use
5440 vec::pop because the worklist tends to follow a breadth-first
5441 search of the callgraph, which should allow convergance with a
5442 minimum number of scans. But we also don't want the worklist
5443 array to grow without bound, so we shift the array up periodically. */
5444 for (i = 0; i < irr_worklist.length (); ++i)
5445 {
5446 if (i > 256 && i == irr_worklist.length () / 8)
5447 {
5448 irr_worklist.block_remove (0, i);
5449 i = 0;
5450 }
5451
5452 node = irr_worklist[i];
5453 d = get_cg_data (&node, true);
5454 d->in_worklist = false;
5455
5456 if (d->want_irr_scan_normal)
5457 {
5458 d->want_irr_scan_normal = false;
5459 ipa_tm_scan_irr_function (node, false);
5460 }
5461 if (d->in_callee_queue && ipa_tm_scan_irr_function (node, true))
5462 ipa_tm_note_irrevocable (node, &irr_worklist);
5463 }
5464
5465 /* For every function on the callee list, collect the tm_may_enter_irr
5466 bit on the node. */
5467 irr_worklist.truncate (0);
5468 for (i = 0; i < tm_callees.length (); ++i)
5469 {
5470 node = tm_callees[i];
5471 if (ipa_tm_mayenterirr_function (node))
5472 {
5473 d = get_cg_data (&node, true);
5474 gcc_assert (d->in_worklist == false);
5475 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5476 }
5477 }
5478
5479 /* Propagate the tm_may_enter_irr bit to callers until stable. */
5480 for (i = 0; i < irr_worklist.length (); ++i)
5481 {
5482 struct cgraph_node *caller;
5483 struct cgraph_edge *e;
5484 struct ipa_ref *ref;
5485
5486 if (i > 256 && i == irr_worklist.length () / 8)
5487 {
5488 irr_worklist.block_remove (0, i);
5489 i = 0;
5490 }
5491
5492 node = irr_worklist[i];
5493 d = get_cg_data (&node, true);
5494 d->in_worklist = false;
5495 node->local.tm_may_enter_irr = true;
5496
5497 /* Propagate back to normal callers. */
5498 for (e = node->callers; e ; e = e->next_caller)
5499 {
5500 caller = e->caller;
5501 if (!is_tm_safe_or_pure (caller->decl)
5502 && !caller->local.tm_may_enter_irr)
5503 {
5504 d = get_cg_data (&caller, true);
5505 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5506 }
5507 }
5508
5509 /* Propagate back to referring aliases as well. */
5510 FOR_EACH_ALIAS (node, ref)
5511 {
5512 caller = dyn_cast<cgraph_node *> (ref->referring);
5513 if (!caller->local.tm_may_enter_irr)
5514 {
5515 /* ?? Do not traverse aliases here. */
5516 d = get_cg_data (&caller, false);
5517 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5518 }
5519 }
5520 }
5521
5522 /* Now validate all tm_safe functions, and all atomic regions in
5523 other functions. */
5524 FOR_EACH_DEFINED_FUNCTION (node)
5525 if (node->lowered
5526 && node->get_availability () >= AVAIL_INTERPOSABLE)
5527 {
5528 d = get_cg_data (&node, true);
5529 if (is_tm_safe (node->decl))
5530 ipa_tm_diagnose_tm_safe (node);
5531 else if (d->all_tm_regions)
5532 ipa_tm_diagnose_transaction (node, d->all_tm_regions);
5533 }
5534
5535 /* Create clones. Do those that are not irrevocable and have a
5536 positive call count. Do those publicly visible functions that
5537 the user directed us to clone. */
5538 for (i = 0; i < tm_callees.length (); ++i)
5539 {
5540 bool doit = false;
5541
5542 node = tm_callees[i];
5543 if (node->cpp_implicit_alias)
5544 continue;
5545
5546 a = node->get_availability ();
5547 d = get_cg_data (&node, true);
5548
5549 if (a <= AVAIL_NOT_AVAILABLE)
5550 doit = is_tm_callable (node->decl);
5551 else if (a <= AVAIL_AVAILABLE && is_tm_callable (node->decl))
5552 doit = true;
5553 else if (!d->is_irrevocable
5554 && d->tm_callers_normal + d->tm_callers_clone > 0)
5555 doit = true;
5556
5557 if (doit)
5558 ipa_tm_create_version (node);
5559 }
5560
5561 /* Redirect calls to the new clones, and insert irrevocable marks. */
5562 for (i = 0; i < tm_callees.length (); ++i)
5563 {
5564 node = tm_callees[i];
5565 if (node->analyzed)
5566 {
5567 d = get_cg_data (&node, true);
5568 if (d->clone)
5569 ipa_tm_transform_clone (node);
5570 }
5571 }
5572 FOR_EACH_DEFINED_FUNCTION (node)
5573 if (node->lowered
5574 && node->get_availability () >= AVAIL_INTERPOSABLE)
5575 {
5576 d = get_cg_data (&node, true);
5577 if (d->all_tm_regions)
5578 ipa_tm_transform_transaction (node);
5579 }
5580
5581 /* Free and clear all data structures. */
5582 tm_callees.release ();
5583 irr_worklist.release ();
5584 bitmap_obstack_release (&tm_obstack);
5585 free_original_copy_tables ();
5586
5587 FOR_EACH_FUNCTION (node)
5588 node->aux = NULL;
5589
5590 cgraph_node::checking_verify_cgraph_nodes ();
5591
5592 return 0;
5593 }
5594
5595 namespace {
5596
5597 const pass_data pass_data_ipa_tm =
5598 {
5599 SIMPLE_IPA_PASS, /* type */
5600 "tmipa", /* name */
5601 OPTGROUP_NONE, /* optinfo_flags */
5602 TV_TRANS_MEM, /* tv_id */
5603 ( PROP_ssa | PROP_cfg ), /* properties_required */
5604 0, /* properties_provided */
5605 0, /* properties_destroyed */
5606 0, /* todo_flags_start */
5607 0, /* todo_flags_finish */
5608 };
5609
5610 class pass_ipa_tm : public simple_ipa_opt_pass
5611 {
5612 public:
5613 pass_ipa_tm (gcc::context *ctxt)
5614 : simple_ipa_opt_pass (pass_data_ipa_tm, ctxt)
5615 {}
5616
5617 /* opt_pass methods: */
5618 virtual bool gate (function *) { return flag_tm; }
5619 virtual unsigned int execute (function *) { return ipa_tm_execute (); }
5620
5621 }; // class pass_ipa_tm
5622
5623 } // anon namespace
5624
5625 simple_ipa_opt_pass *
5626 make_pass_ipa_tm (gcc::context *ctxt)
5627 {
5628 return new pass_ipa_tm (ctxt);
5629 }
5630
5631 #include "gt-trans-mem.h"