loop splitting
[gcc.git] / gcc / trans-mem.c
1 /* Passes for transactional memory support.
2 Copyright (C) 2008-2016 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@redhat.com>
4 and Aldy Hernandez <aldyh@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "cgraph.h"
34 #include "gimple-pretty-print.h"
35 #include "diagnostic-core.h"
36 #include "fold-const.h"
37 #include "tree-eh.h"
38 #include "calls.h"
39 #include "gimplify.h"
40 #include "gimple-iterator.h"
41 #include "gimplify-me.h"
42 #include "gimple-walk.h"
43 #include "tree-cfg.h"
44 #include "tree-into-ssa.h"
45 #include "tree-inline.h"
46 #include "demangle.h"
47 #include "output.h"
48 #include "trans-mem.h"
49 #include "params.h"
50 #include "langhooks.h"
51 #include "cfgloop.h"
52 #include "tree-ssa-address.h"
53
54
55 #define A_RUNINSTRUMENTEDCODE 0x0001
56 #define A_RUNUNINSTRUMENTEDCODE 0x0002
57 #define A_SAVELIVEVARIABLES 0x0004
58 #define A_RESTORELIVEVARIABLES 0x0008
59 #define A_ABORTTRANSACTION 0x0010
60
61 #define AR_USERABORT 0x0001
62 #define AR_USERRETRY 0x0002
63 #define AR_TMCONFLICT 0x0004
64 #define AR_EXCEPTIONBLOCKABORT 0x0008
65 #define AR_OUTERABORT 0x0010
66
67 #define MODE_SERIALIRREVOCABLE 0x0000
68
69
70 /* The representation of a transaction changes several times during the
71 lowering process. In the beginning, in the front-end we have the
72 GENERIC tree TRANSACTION_EXPR. For example,
73
74 __transaction {
75 local++;
76 if (++global == 10)
77 __tm_abort;
78 }
79
80 During initial gimplification (gimplify.c) the TRANSACTION_EXPR node is
81 trivially replaced with a GIMPLE_TRANSACTION node.
82
83 During pass_lower_tm, we examine the body of transactions looking
84 for aborts. Transactions that do not contain an abort may be
85 merged into an outer transaction. We also add a TRY-FINALLY node
86 to arrange for the transaction to be committed on any exit.
87
88 [??? Think about how this arrangement affects throw-with-commit
89 and throw-with-abort operations. In this case we want the TRY to
90 handle gotos, but not to catch any exceptions because the transaction
91 will already be closed.]
92
93 GIMPLE_TRANSACTION [label=NULL] {
94 try {
95 local = local + 1;
96 t0 = global;
97 t1 = t0 + 1;
98 global = t1;
99 if (t1 == 10)
100 __builtin___tm_abort ();
101 } finally {
102 __builtin___tm_commit ();
103 }
104 }
105
106 During pass_lower_eh, we create EH regions for the transactions,
107 intermixed with the regular EH stuff. This gives us a nice persistent
108 mapping (all the way through rtl) from transactional memory operation
109 back to the transaction, which allows us to get the abnormal edges
110 correct to model transaction aborts and restarts:
111
112 GIMPLE_TRANSACTION [label=over]
113 local = local + 1;
114 t0 = global;
115 t1 = t0 + 1;
116 global = t1;
117 if (t1 == 10)
118 __builtin___tm_abort ();
119 __builtin___tm_commit ();
120 over:
121
122 This is the end of all_lowering_passes, and so is what is present
123 during the IPA passes, and through all of the optimization passes.
124
125 During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all
126 functions and mark functions for cloning.
127
128 At the end of gimple optimization, before exiting SSA form,
129 pass_tm_edges replaces statements that perform transactional
130 memory operations with the appropriate TM builtins, and swap
131 out function calls with their transactional clones. At this
132 point we introduce the abnormal transaction restart edges and
133 complete lowering of the GIMPLE_TRANSACTION node.
134
135 x = __builtin___tm_start (MAY_ABORT);
136 eh_label:
137 if (x & abort_transaction)
138 goto over;
139 local = local + 1;
140 t0 = __builtin___tm_load (global);
141 t1 = t0 + 1;
142 __builtin___tm_store (&global, t1);
143 if (t1 == 10)
144 __builtin___tm_abort ();
145 __builtin___tm_commit ();
146 over:
147 */
148
149 static void *expand_regions (struct tm_region *,
150 void *(*callback)(struct tm_region *, void *),
151 void *, bool);
152
153 \f
154 /* Return the attributes we want to examine for X, or NULL if it's not
155 something we examine. We look at function types, but allow pointers
156 to function types and function decls and peek through. */
157
158 static tree
159 get_attrs_for (const_tree x)
160 {
161 if (x == NULL_TREE)
162 return NULL_TREE;
163
164 switch (TREE_CODE (x))
165 {
166 case FUNCTION_DECL:
167 return TYPE_ATTRIBUTES (TREE_TYPE (x));
168
169 default:
170 if (TYPE_P (x))
171 return NULL_TREE;
172 x = TREE_TYPE (x);
173 if (TREE_CODE (x) != POINTER_TYPE)
174 return NULL_TREE;
175 /* FALLTHRU */
176
177 case POINTER_TYPE:
178 x = TREE_TYPE (x);
179 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
180 return NULL_TREE;
181 /* FALLTHRU */
182
183 case FUNCTION_TYPE:
184 case METHOD_TYPE:
185 return TYPE_ATTRIBUTES (x);
186 }
187 }
188
189 /* Return true if X has been marked TM_PURE. */
190
191 bool
192 is_tm_pure (const_tree x)
193 {
194 unsigned flags;
195
196 switch (TREE_CODE (x))
197 {
198 case FUNCTION_DECL:
199 case FUNCTION_TYPE:
200 case METHOD_TYPE:
201 break;
202
203 default:
204 if (TYPE_P (x))
205 return false;
206 x = TREE_TYPE (x);
207 if (TREE_CODE (x) != POINTER_TYPE)
208 return false;
209 /* FALLTHRU */
210
211 case POINTER_TYPE:
212 x = TREE_TYPE (x);
213 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
214 return false;
215 break;
216 }
217
218 flags = flags_from_decl_or_type (x);
219 return (flags & ECF_TM_PURE) != 0;
220 }
221
222 /* Return true if X has been marked TM_IRREVOCABLE. */
223
224 static bool
225 is_tm_irrevocable (tree x)
226 {
227 tree attrs = get_attrs_for (x);
228
229 if (attrs && lookup_attribute ("transaction_unsafe", attrs))
230 return true;
231
232 /* A call to the irrevocable builtin is by definition,
233 irrevocable. */
234 if (TREE_CODE (x) == ADDR_EXPR)
235 x = TREE_OPERAND (x, 0);
236 if (TREE_CODE (x) == FUNCTION_DECL
237 && DECL_BUILT_IN_CLASS (x) == BUILT_IN_NORMAL
238 && DECL_FUNCTION_CODE (x) == BUILT_IN_TM_IRREVOCABLE)
239 return true;
240
241 return false;
242 }
243
244 /* Return true if X has been marked TM_SAFE. */
245
246 bool
247 is_tm_safe (const_tree x)
248 {
249 if (flag_tm)
250 {
251 tree attrs = get_attrs_for (x);
252 if (attrs)
253 {
254 if (lookup_attribute ("transaction_safe", attrs))
255 return true;
256 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
257 return true;
258 }
259 }
260 return false;
261 }
262
263 /* Return true if CALL is const, or tm_pure. */
264
265 static bool
266 is_tm_pure_call (gimple *call)
267 {
268 if (gimple_call_internal_p (call))
269 return (gimple_call_flags (call) & (ECF_CONST | ECF_TM_PURE)) != 0;
270
271 tree fn = gimple_call_fn (call);
272
273 if (TREE_CODE (fn) == ADDR_EXPR)
274 {
275 fn = TREE_OPERAND (fn, 0);
276 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
277 }
278 else
279 fn = TREE_TYPE (fn);
280
281 return is_tm_pure (fn);
282 }
283
284 /* Return true if X has been marked TM_CALLABLE. */
285
286 static bool
287 is_tm_callable (tree x)
288 {
289 tree attrs = get_attrs_for (x);
290 if (attrs)
291 {
292 if (lookup_attribute ("transaction_callable", attrs))
293 return true;
294 if (lookup_attribute ("transaction_safe", attrs))
295 return true;
296 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
297 return true;
298 }
299 return false;
300 }
301
302 /* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER. */
303
304 bool
305 is_tm_may_cancel_outer (tree x)
306 {
307 tree attrs = get_attrs_for (x);
308 if (attrs)
309 return lookup_attribute ("transaction_may_cancel_outer", attrs) != NULL;
310 return false;
311 }
312
313 /* Return true for built in functions that "end" a transaction. */
314
315 bool
316 is_tm_ending_fndecl (tree fndecl)
317 {
318 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
319 switch (DECL_FUNCTION_CODE (fndecl))
320 {
321 case BUILT_IN_TM_COMMIT:
322 case BUILT_IN_TM_COMMIT_EH:
323 case BUILT_IN_TM_ABORT:
324 case BUILT_IN_TM_IRREVOCABLE:
325 return true;
326 default:
327 break;
328 }
329
330 return false;
331 }
332
333 /* Return true if STMT is a built in function call that "ends" a
334 transaction. */
335
336 bool
337 is_tm_ending (gimple *stmt)
338 {
339 tree fndecl;
340
341 if (gimple_code (stmt) != GIMPLE_CALL)
342 return false;
343
344 fndecl = gimple_call_fndecl (stmt);
345 return (fndecl != NULL_TREE
346 && is_tm_ending_fndecl (fndecl));
347 }
348
349 /* Return true if STMT is a TM load. */
350
351 static bool
352 is_tm_load (gimple *stmt)
353 {
354 tree fndecl;
355
356 if (gimple_code (stmt) != GIMPLE_CALL)
357 return false;
358
359 fndecl = gimple_call_fndecl (stmt);
360 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
361 && BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl)));
362 }
363
364 /* Same as above, but for simple TM loads, that is, not the
365 after-write, after-read, etc optimized variants. */
366
367 static bool
368 is_tm_simple_load (gimple *stmt)
369 {
370 tree fndecl;
371
372 if (gimple_code (stmt) != GIMPLE_CALL)
373 return false;
374
375 fndecl = gimple_call_fndecl (stmt);
376 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
377 {
378 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
379 return (fcode == BUILT_IN_TM_LOAD_1
380 || fcode == BUILT_IN_TM_LOAD_2
381 || fcode == BUILT_IN_TM_LOAD_4
382 || fcode == BUILT_IN_TM_LOAD_8
383 || fcode == BUILT_IN_TM_LOAD_FLOAT
384 || fcode == BUILT_IN_TM_LOAD_DOUBLE
385 || fcode == BUILT_IN_TM_LOAD_LDOUBLE
386 || fcode == BUILT_IN_TM_LOAD_M64
387 || fcode == BUILT_IN_TM_LOAD_M128
388 || fcode == BUILT_IN_TM_LOAD_M256);
389 }
390 return false;
391 }
392
393 /* Return true if STMT is a TM store. */
394
395 static bool
396 is_tm_store (gimple *stmt)
397 {
398 tree fndecl;
399
400 if (gimple_code (stmt) != GIMPLE_CALL)
401 return false;
402
403 fndecl = gimple_call_fndecl (stmt);
404 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
405 && BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl)));
406 }
407
408 /* Same as above, but for simple TM stores, that is, not the
409 after-write, after-read, etc optimized variants. */
410
411 static bool
412 is_tm_simple_store (gimple *stmt)
413 {
414 tree fndecl;
415
416 if (gimple_code (stmt) != GIMPLE_CALL)
417 return false;
418
419 fndecl = gimple_call_fndecl (stmt);
420 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
421 {
422 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
423 return (fcode == BUILT_IN_TM_STORE_1
424 || fcode == BUILT_IN_TM_STORE_2
425 || fcode == BUILT_IN_TM_STORE_4
426 || fcode == BUILT_IN_TM_STORE_8
427 || fcode == BUILT_IN_TM_STORE_FLOAT
428 || fcode == BUILT_IN_TM_STORE_DOUBLE
429 || fcode == BUILT_IN_TM_STORE_LDOUBLE
430 || fcode == BUILT_IN_TM_STORE_M64
431 || fcode == BUILT_IN_TM_STORE_M128
432 || fcode == BUILT_IN_TM_STORE_M256);
433 }
434 return false;
435 }
436
437 /* Return true if FNDECL is BUILT_IN_TM_ABORT. */
438
439 static bool
440 is_tm_abort (tree fndecl)
441 {
442 return (fndecl
443 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
444 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_TM_ABORT);
445 }
446
447 /* Build a GENERIC tree for a user abort. This is called by front ends
448 while transforming the __tm_abort statement. */
449
450 tree
451 build_tm_abort_call (location_t loc, bool is_outer)
452 {
453 return build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_TM_ABORT), 1,
454 build_int_cst (integer_type_node,
455 AR_USERABORT
456 | (is_outer ? AR_OUTERABORT : 0)));
457 }
458 \f
459 /* Map for aribtrary function replacement under TM, as created
460 by the tm_wrap attribute. */
461
462 struct tm_wrapper_hasher : ggc_cache_ptr_hash<tree_map>
463 {
464 static inline hashval_t hash (tree_map *m) { return m->hash; }
465 static inline bool
466 equal (tree_map *a, tree_map *b)
467 {
468 return a->base.from == b->base.from;
469 }
470
471 static int
472 keep_cache_entry (tree_map *&m)
473 {
474 return ggc_marked_p (m->base.from);
475 }
476 };
477
478 static GTY((cache)) hash_table<tm_wrapper_hasher> *tm_wrap_map;
479
480 void
481 record_tm_replacement (tree from, tree to)
482 {
483 struct tree_map **slot, *h;
484
485 /* Do not inline wrapper functions that will get replaced in the TM
486 pass.
487
488 Suppose you have foo() that will get replaced into tmfoo(). Make
489 sure the inliner doesn't try to outsmart us and inline foo()
490 before we get a chance to do the TM replacement. */
491 DECL_UNINLINABLE (from) = 1;
492
493 if (tm_wrap_map == NULL)
494 tm_wrap_map = hash_table<tm_wrapper_hasher>::create_ggc (32);
495
496 h = ggc_alloc<tree_map> ();
497 h->hash = htab_hash_pointer (from);
498 h->base.from = from;
499 h->to = to;
500
501 slot = tm_wrap_map->find_slot_with_hash (h, h->hash, INSERT);
502 *slot = h;
503 }
504
505 /* Return a TM-aware replacement function for DECL. */
506
507 static tree
508 find_tm_replacement_function (tree fndecl)
509 {
510 if (tm_wrap_map)
511 {
512 struct tree_map *h, in;
513
514 in.base.from = fndecl;
515 in.hash = htab_hash_pointer (fndecl);
516 h = tm_wrap_map->find_with_hash (&in, in.hash);
517 if (h)
518 return h->to;
519 }
520
521 /* ??? We may well want TM versions of most of the common <string.h>
522 functions. For now, we've already these two defined. */
523 /* Adjust expand_call_tm() attributes as necessary for the cases
524 handled here: */
525 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
526 switch (DECL_FUNCTION_CODE (fndecl))
527 {
528 case BUILT_IN_MEMCPY:
529 return builtin_decl_explicit (BUILT_IN_TM_MEMCPY);
530 case BUILT_IN_MEMMOVE:
531 return builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
532 case BUILT_IN_MEMSET:
533 return builtin_decl_explicit (BUILT_IN_TM_MEMSET);
534 default:
535 return NULL;
536 }
537
538 return NULL;
539 }
540
541 /* When appropriate, record TM replacement for memory allocation functions.
542
543 FROM is the FNDECL to wrap. */
544 void
545 tm_malloc_replacement (tree from)
546 {
547 const char *str;
548 tree to;
549
550 if (TREE_CODE (from) != FUNCTION_DECL)
551 return;
552
553 /* If we have a previous replacement, the user must be explicitly
554 wrapping malloc/calloc/free. They better know what they're
555 doing... */
556 if (find_tm_replacement_function (from))
557 return;
558
559 str = IDENTIFIER_POINTER (DECL_NAME (from));
560
561 if (!strcmp (str, "malloc"))
562 to = builtin_decl_explicit (BUILT_IN_TM_MALLOC);
563 else if (!strcmp (str, "calloc"))
564 to = builtin_decl_explicit (BUILT_IN_TM_CALLOC);
565 else if (!strcmp (str, "free"))
566 to = builtin_decl_explicit (BUILT_IN_TM_FREE);
567 else
568 return;
569
570 TREE_NOTHROW (to) = 0;
571
572 record_tm_replacement (from, to);
573 }
574 \f
575 /* Diagnostics for tm_safe functions/regions. Called by the front end
576 once we've lowered the function to high-gimple. */
577
578 /* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq.
579 Process exactly one statement. WI->INFO is set to non-null when in
580 the context of a tm_safe function, and null for a __transaction block. */
581
582 #define DIAG_TM_OUTER 1
583 #define DIAG_TM_SAFE 2
584 #define DIAG_TM_RELAXED 4
585
586 struct diagnose_tm
587 {
588 unsigned int summary_flags : 8;
589 unsigned int block_flags : 8;
590 unsigned int func_flags : 8;
591 unsigned int saw_volatile : 1;
592 gimple *stmt;
593 };
594
595 /* Return true if T is a volatile lvalue of some kind. */
596
597 static bool
598 volatile_lvalue_p (tree t)
599 {
600 return ((SSA_VAR_P (t) || REFERENCE_CLASS_P (t))
601 && TREE_THIS_VOLATILE (TREE_TYPE (t)));
602 }
603
604 /* Tree callback function for diagnose_tm pass. */
605
606 static tree
607 diagnose_tm_1_op (tree *tp, int *walk_subtrees, void *data)
608 {
609 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
610 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
611
612 if (TYPE_P (*tp))
613 *walk_subtrees = false;
614 else if (volatile_lvalue_p (*tp)
615 && !d->saw_volatile)
616 {
617 d->saw_volatile = 1;
618 if (d->block_flags & DIAG_TM_SAFE)
619 error_at (gimple_location (d->stmt),
620 "invalid use of volatile lvalue inside transaction");
621 else if (d->func_flags & DIAG_TM_SAFE)
622 error_at (gimple_location (d->stmt),
623 "invalid use of volatile lvalue inside %<transaction_safe%>"
624 "function");
625 }
626
627 return NULL_TREE;
628 }
629
630 static inline bool
631 is_tm_safe_or_pure (const_tree x)
632 {
633 return is_tm_safe (x) || is_tm_pure (x);
634 }
635
636 static tree
637 diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p,
638 struct walk_stmt_info *wi)
639 {
640 gimple *stmt = gsi_stmt (*gsi);
641 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
642
643 /* Save stmt for use in leaf analysis. */
644 d->stmt = stmt;
645
646 switch (gimple_code (stmt))
647 {
648 case GIMPLE_CALL:
649 {
650 tree fn = gimple_call_fn (stmt);
651
652 if ((d->summary_flags & DIAG_TM_OUTER) == 0
653 && is_tm_may_cancel_outer (fn))
654 error_at (gimple_location (stmt),
655 "%<transaction_may_cancel_outer%> function call not within"
656 " outer transaction or %<transaction_may_cancel_outer%>");
657
658 if (d->summary_flags & DIAG_TM_SAFE)
659 {
660 bool is_safe, direct_call_p;
661 tree replacement;
662
663 if (TREE_CODE (fn) == ADDR_EXPR
664 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL)
665 {
666 direct_call_p = true;
667 replacement = TREE_OPERAND (fn, 0);
668 replacement = find_tm_replacement_function (replacement);
669 if (replacement)
670 fn = replacement;
671 }
672 else
673 {
674 direct_call_p = false;
675 replacement = NULL_TREE;
676 }
677
678 if (is_tm_safe_or_pure (fn))
679 is_safe = true;
680 else if (is_tm_callable (fn) || is_tm_irrevocable (fn))
681 {
682 /* A function explicitly marked transaction_callable as
683 opposed to transaction_safe is being defined to be
684 unsafe as part of its ABI, regardless of its contents. */
685 is_safe = false;
686 }
687 else if (direct_call_p)
688 {
689 if (IS_TYPE_OR_DECL_P (fn)
690 && flags_from_decl_or_type (fn) & ECF_TM_BUILTIN)
691 is_safe = true;
692 else if (replacement)
693 {
694 /* ??? At present we've been considering replacements
695 merely transaction_callable, and therefore might
696 enter irrevocable. The tm_wrap attribute has not
697 yet made it into the new language spec. */
698 is_safe = false;
699 }
700 else
701 {
702 /* ??? Diagnostics for unmarked direct calls moved into
703 the IPA pass. Section 3.2 of the spec details how
704 functions not marked should be considered "implicitly
705 safe" based on having examined the function body. */
706 is_safe = true;
707 }
708 }
709 else
710 {
711 /* An unmarked indirect call. Consider it unsafe even
712 though optimization may yet figure out how to inline. */
713 is_safe = false;
714 }
715
716 if (!is_safe)
717 {
718 if (TREE_CODE (fn) == ADDR_EXPR)
719 fn = TREE_OPERAND (fn, 0);
720 if (d->block_flags & DIAG_TM_SAFE)
721 {
722 if (direct_call_p)
723 error_at (gimple_location (stmt),
724 "unsafe function call %qD within "
725 "atomic transaction", fn);
726 else
727 {
728 if ((!DECL_P (fn) || DECL_NAME (fn))
729 && TREE_CODE (fn) != SSA_NAME)
730 error_at (gimple_location (stmt),
731 "unsafe function call %qE within "
732 "atomic transaction", fn);
733 else
734 error_at (gimple_location (stmt),
735 "unsafe indirect function call within "
736 "atomic transaction");
737 }
738 }
739 else
740 {
741 if (direct_call_p)
742 error_at (gimple_location (stmt),
743 "unsafe function call %qD within "
744 "%<transaction_safe%> function", fn);
745 else
746 {
747 if ((!DECL_P (fn) || DECL_NAME (fn))
748 && TREE_CODE (fn) != SSA_NAME)
749 error_at (gimple_location (stmt),
750 "unsafe function call %qE within "
751 "%<transaction_safe%> function", fn);
752 else
753 error_at (gimple_location (stmt),
754 "unsafe indirect function call within "
755 "%<transaction_safe%> function");
756 }
757 }
758 }
759 }
760 }
761 break;
762
763 case GIMPLE_ASM:
764 /* ??? We ought to come up with a way to add attributes to
765 asm statements, and then add "transaction_safe" to it.
766 Either that or get the language spec to resurrect __tm_waiver. */
767 if (d->block_flags & DIAG_TM_SAFE)
768 error_at (gimple_location (stmt),
769 "asm not allowed in atomic transaction");
770 else if (d->func_flags & DIAG_TM_SAFE)
771 error_at (gimple_location (stmt),
772 "asm not allowed in %<transaction_safe%> function");
773 break;
774
775 case GIMPLE_TRANSACTION:
776 {
777 gtransaction *trans_stmt = as_a <gtransaction *> (stmt);
778 unsigned char inner_flags = DIAG_TM_SAFE;
779
780 if (gimple_transaction_subcode (trans_stmt) & GTMA_IS_RELAXED)
781 {
782 if (d->block_flags & DIAG_TM_SAFE)
783 error_at (gimple_location (stmt),
784 "relaxed transaction in atomic transaction");
785 else if (d->func_flags & DIAG_TM_SAFE)
786 error_at (gimple_location (stmt),
787 "relaxed transaction in %<transaction_safe%> function");
788 inner_flags = DIAG_TM_RELAXED;
789 }
790 else if (gimple_transaction_subcode (trans_stmt) & GTMA_IS_OUTER)
791 {
792 if (d->block_flags)
793 error_at (gimple_location (stmt),
794 "outer transaction in transaction");
795 else if (d->func_flags & DIAG_TM_OUTER)
796 error_at (gimple_location (stmt),
797 "outer transaction in "
798 "%<transaction_may_cancel_outer%> function");
799 else if (d->func_flags & DIAG_TM_SAFE)
800 error_at (gimple_location (stmt),
801 "outer transaction in %<transaction_safe%> function");
802 inner_flags |= DIAG_TM_OUTER;
803 }
804
805 *handled_ops_p = true;
806 if (gimple_transaction_body (trans_stmt))
807 {
808 struct walk_stmt_info wi_inner;
809 struct diagnose_tm d_inner;
810
811 memset (&d_inner, 0, sizeof (d_inner));
812 d_inner.func_flags = d->func_flags;
813 d_inner.block_flags = d->block_flags | inner_flags;
814 d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags;
815
816 memset (&wi_inner, 0, sizeof (wi_inner));
817 wi_inner.info = &d_inner;
818
819 walk_gimple_seq (gimple_transaction_body (trans_stmt),
820 diagnose_tm_1, diagnose_tm_1_op, &wi_inner);
821 }
822 }
823 break;
824
825 default:
826 break;
827 }
828
829 return NULL_TREE;
830 }
831
832 static unsigned int
833 diagnose_tm_blocks (void)
834 {
835 struct walk_stmt_info wi;
836 struct diagnose_tm d;
837
838 memset (&d, 0, sizeof (d));
839 if (is_tm_may_cancel_outer (current_function_decl))
840 d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE;
841 else if (is_tm_safe (current_function_decl))
842 d.func_flags = DIAG_TM_SAFE;
843 d.summary_flags = d.func_flags;
844
845 memset (&wi, 0, sizeof (wi));
846 wi.info = &d;
847
848 walk_gimple_seq (gimple_body (current_function_decl),
849 diagnose_tm_1, diagnose_tm_1_op, &wi);
850
851 return 0;
852 }
853
854 namespace {
855
856 const pass_data pass_data_diagnose_tm_blocks =
857 {
858 GIMPLE_PASS, /* type */
859 "*diagnose_tm_blocks", /* name */
860 OPTGROUP_NONE, /* optinfo_flags */
861 TV_TRANS_MEM, /* tv_id */
862 PROP_gimple_any, /* properties_required */
863 0, /* properties_provided */
864 0, /* properties_destroyed */
865 0, /* todo_flags_start */
866 0, /* todo_flags_finish */
867 };
868
869 class pass_diagnose_tm_blocks : public gimple_opt_pass
870 {
871 public:
872 pass_diagnose_tm_blocks (gcc::context *ctxt)
873 : gimple_opt_pass (pass_data_diagnose_tm_blocks, ctxt)
874 {}
875
876 /* opt_pass methods: */
877 virtual bool gate (function *) { return flag_tm; }
878 virtual unsigned int execute (function *) { return diagnose_tm_blocks (); }
879
880 }; // class pass_diagnose_tm_blocks
881
882 } // anon namespace
883
884 gimple_opt_pass *
885 make_pass_diagnose_tm_blocks (gcc::context *ctxt)
886 {
887 return new pass_diagnose_tm_blocks (ctxt);
888 }
889 \f
890 /* Instead of instrumenting thread private memory, we save the
891 addresses in a log which we later use to save/restore the addresses
892 upon transaction start/restart.
893
894 The log is keyed by address, where each element contains individual
895 statements among different code paths that perform the store.
896
897 This log is later used to generate either plain save/restore of the
898 addresses upon transaction start/restart, or calls to the ITM_L*
899 logging functions.
900
901 So for something like:
902
903 struct large { int x[1000]; };
904 struct large lala = { 0 };
905 __transaction {
906 lala.x[i] = 123;
907 ...
908 }
909
910 We can either save/restore:
911
912 lala = { 0 };
913 trxn = _ITM_startTransaction ();
914 if (trxn & a_saveLiveVariables)
915 tmp_lala1 = lala.x[i];
916 else if (a & a_restoreLiveVariables)
917 lala.x[i] = tmp_lala1;
918
919 or use the logging functions:
920
921 lala = { 0 };
922 trxn = _ITM_startTransaction ();
923 _ITM_LU4 (&lala.x[i]);
924
925 Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as
926 far up the dominator tree to shadow all of the writes to a given
927 location (thus reducing the total number of logging calls), but not
928 so high as to be called on a path that does not perform a
929 write. */
930
931 /* One individual log entry. We may have multiple statements for the
932 same location if neither dominate each other (on different
933 execution paths). */
934 struct tm_log_entry
935 {
936 /* Address to save. */
937 tree addr;
938 /* Entry block for the transaction this address occurs in. */
939 basic_block entry_block;
940 /* Dominating statements the store occurs in. */
941 vec<gimple *> stmts;
942 /* Initially, while we are building the log, we place a nonzero
943 value here to mean that this address *will* be saved with a
944 save/restore sequence. Later, when generating the save sequence
945 we place the SSA temp generated here. */
946 tree save_var;
947 };
948
949
950 /* Log entry hashtable helpers. */
951
952 struct log_entry_hasher : pointer_hash <tm_log_entry>
953 {
954 static inline hashval_t hash (const tm_log_entry *);
955 static inline bool equal (const tm_log_entry *, const tm_log_entry *);
956 static inline void remove (tm_log_entry *);
957 };
958
959 /* Htab support. Return hash value for a `tm_log_entry'. */
960 inline hashval_t
961 log_entry_hasher::hash (const tm_log_entry *log)
962 {
963 return iterative_hash_expr (log->addr, 0);
964 }
965
966 /* Htab support. Return true if two log entries are the same. */
967 inline bool
968 log_entry_hasher::equal (const tm_log_entry *log1, const tm_log_entry *log2)
969 {
970 /* FIXME:
971
972 rth: I suggest that we get rid of the component refs etc.
973 I.e. resolve the reference to base + offset.
974
975 We may need to actually finish a merge with mainline for this,
976 since we'd like to be presented with Richi's MEM_REF_EXPRs more
977 often than not. But in the meantime your tm_log_entry could save
978 the results of get_inner_reference.
979
980 See: g++.dg/tm/pr46653.C
981 */
982
983 /* Special case plain equality because operand_equal_p() below will
984 return FALSE if the addresses are equal but they have
985 side-effects (e.g. a volatile address). */
986 if (log1->addr == log2->addr)
987 return true;
988
989 return operand_equal_p (log1->addr, log2->addr, 0);
990 }
991
992 /* Htab support. Free one tm_log_entry. */
993 inline void
994 log_entry_hasher::remove (tm_log_entry *lp)
995 {
996 lp->stmts.release ();
997 free (lp);
998 }
999
1000
1001 /* The actual log. */
1002 static hash_table<log_entry_hasher> *tm_log;
1003
1004 /* Addresses to log with a save/restore sequence. These should be in
1005 dominator order. */
1006 static vec<tree> tm_log_save_addresses;
1007
1008 enum thread_memory_type
1009 {
1010 mem_non_local = 0,
1011 mem_thread_local,
1012 mem_transaction_local,
1013 mem_max
1014 };
1015
1016 struct tm_new_mem_map
1017 {
1018 /* SSA_NAME being dereferenced. */
1019 tree val;
1020 enum thread_memory_type local_new_memory;
1021 };
1022
1023 /* Hashtable helpers. */
1024
1025 struct tm_mem_map_hasher : free_ptr_hash <tm_new_mem_map>
1026 {
1027 static inline hashval_t hash (const tm_new_mem_map *);
1028 static inline bool equal (const tm_new_mem_map *, const tm_new_mem_map *);
1029 };
1030
1031 inline hashval_t
1032 tm_mem_map_hasher::hash (const tm_new_mem_map *v)
1033 {
1034 return (intptr_t)v->val >> 4;
1035 }
1036
1037 inline bool
1038 tm_mem_map_hasher::equal (const tm_new_mem_map *v, const tm_new_mem_map *c)
1039 {
1040 return v->val == c->val;
1041 }
1042
1043 /* Map for an SSA_NAME originally pointing to a non aliased new piece
1044 of memory (malloc, alloc, etc). */
1045 static hash_table<tm_mem_map_hasher> *tm_new_mem_hash;
1046
1047 /* Initialize logging data structures. */
1048 static void
1049 tm_log_init (void)
1050 {
1051 tm_log = new hash_table<log_entry_hasher> (10);
1052 tm_new_mem_hash = new hash_table<tm_mem_map_hasher> (5);
1053 tm_log_save_addresses.create (5);
1054 }
1055
1056 /* Free logging data structures. */
1057 static void
1058 tm_log_delete (void)
1059 {
1060 delete tm_log;
1061 tm_log = NULL;
1062 delete tm_new_mem_hash;
1063 tm_new_mem_hash = NULL;
1064 tm_log_save_addresses.release ();
1065 }
1066
1067 /* Return true if MEM is a transaction invariant memory for the TM
1068 region starting at REGION_ENTRY_BLOCK. */
1069 static bool
1070 transaction_invariant_address_p (const_tree mem, basic_block region_entry_block)
1071 {
1072 if ((TREE_CODE (mem) == INDIRECT_REF || TREE_CODE (mem) == MEM_REF)
1073 && TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME)
1074 {
1075 basic_block def_bb;
1076
1077 def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0)));
1078 return def_bb != region_entry_block
1079 && dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb);
1080 }
1081
1082 mem = strip_invariant_refs (mem);
1083 return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem));
1084 }
1085
1086 /* Given an address ADDR in STMT, find it in the memory log or add it,
1087 making sure to keep only the addresses highest in the dominator
1088 tree.
1089
1090 ENTRY_BLOCK is the entry_block for the transaction.
1091
1092 If we find the address in the log, make sure it's either the same
1093 address, or an equivalent one that dominates ADDR.
1094
1095 If we find the address, but neither ADDR dominates the found
1096 address, nor the found one dominates ADDR, we're on different
1097 execution paths. Add it.
1098
1099 If known, ENTRY_BLOCK is the entry block for the region, otherwise
1100 NULL. */
1101 static void
1102 tm_log_add (basic_block entry_block, tree addr, gimple *stmt)
1103 {
1104 tm_log_entry **slot;
1105 struct tm_log_entry l, *lp;
1106
1107 l.addr = addr;
1108 slot = tm_log->find_slot (&l, INSERT);
1109 if (!*slot)
1110 {
1111 tree type = TREE_TYPE (addr);
1112
1113 lp = XNEW (struct tm_log_entry);
1114 lp->addr = addr;
1115 *slot = lp;
1116
1117 /* Small invariant addresses can be handled as save/restores. */
1118 if (entry_block
1119 && transaction_invariant_address_p (lp->addr, entry_block)
1120 && TYPE_SIZE_UNIT (type) != NULL
1121 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
1122 && ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE_UNIT (type))
1123 < PARAM_VALUE (PARAM_TM_MAX_AGGREGATE_SIZE))
1124 /* We must be able to copy this type normally. I.e., no
1125 special constructors and the like. */
1126 && !TREE_ADDRESSABLE (type))
1127 {
1128 lp->save_var = create_tmp_reg (TREE_TYPE (lp->addr), "tm_save");
1129 lp->stmts.create (0);
1130 lp->entry_block = entry_block;
1131 /* Save addresses separately in dominator order so we don't
1132 get confused by overlapping addresses in the save/restore
1133 sequence. */
1134 tm_log_save_addresses.safe_push (lp->addr);
1135 }
1136 else
1137 {
1138 /* Use the logging functions. */
1139 lp->stmts.create (5);
1140 lp->stmts.quick_push (stmt);
1141 lp->save_var = NULL;
1142 }
1143 }
1144 else
1145 {
1146 size_t i;
1147 gimple *oldstmt;
1148
1149 lp = *slot;
1150
1151 /* If we're generating a save/restore sequence, we don't care
1152 about statements. */
1153 if (lp->save_var)
1154 return;
1155
1156 for (i = 0; lp->stmts.iterate (i, &oldstmt); ++i)
1157 {
1158 if (stmt == oldstmt)
1159 return;
1160 /* We already have a store to the same address, higher up the
1161 dominator tree. Nothing to do. */
1162 if (dominated_by_p (CDI_DOMINATORS,
1163 gimple_bb (stmt), gimple_bb (oldstmt)))
1164 return;
1165 /* We should be processing blocks in dominator tree order. */
1166 gcc_assert (!dominated_by_p (CDI_DOMINATORS,
1167 gimple_bb (oldstmt), gimple_bb (stmt)));
1168 }
1169 /* Store is on a different code path. */
1170 lp->stmts.safe_push (stmt);
1171 }
1172 }
1173
1174 /* Gimplify the address of a TARGET_MEM_REF. Return the SSA_NAME
1175 result, insert the new statements before GSI. */
1176
1177 static tree
1178 gimplify_addr (gimple_stmt_iterator *gsi, tree x)
1179 {
1180 if (TREE_CODE (x) == TARGET_MEM_REF)
1181 x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x);
1182 else
1183 x = build_fold_addr_expr (x);
1184 return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT);
1185 }
1186
1187 /* Instrument one address with the logging functions.
1188 ADDR is the address to save.
1189 STMT is the statement before which to place it. */
1190 static void
1191 tm_log_emit_stmt (tree addr, gimple *stmt)
1192 {
1193 tree type = TREE_TYPE (addr);
1194 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1195 gimple *log;
1196 enum built_in_function code = BUILT_IN_TM_LOG;
1197
1198 if (type == float_type_node)
1199 code = BUILT_IN_TM_LOG_FLOAT;
1200 else if (type == double_type_node)
1201 code = BUILT_IN_TM_LOG_DOUBLE;
1202 else if (type == long_double_type_node)
1203 code = BUILT_IN_TM_LOG_LDOUBLE;
1204 else if (TYPE_SIZE (type) != NULL
1205 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1206 {
1207 unsigned HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
1208
1209 if (TREE_CODE (type) == VECTOR_TYPE)
1210 {
1211 switch (type_size)
1212 {
1213 case 64:
1214 code = BUILT_IN_TM_LOG_M64;
1215 break;
1216 case 128:
1217 code = BUILT_IN_TM_LOG_M128;
1218 break;
1219 case 256:
1220 code = BUILT_IN_TM_LOG_M256;
1221 break;
1222 default:
1223 goto unhandled_vec;
1224 }
1225 if (!builtin_decl_explicit_p (code))
1226 goto unhandled_vec;
1227 }
1228 else
1229 {
1230 unhandled_vec:
1231 switch (type_size)
1232 {
1233 case 8:
1234 code = BUILT_IN_TM_LOG_1;
1235 break;
1236 case 16:
1237 code = BUILT_IN_TM_LOG_2;
1238 break;
1239 case 32:
1240 code = BUILT_IN_TM_LOG_4;
1241 break;
1242 case 64:
1243 code = BUILT_IN_TM_LOG_8;
1244 break;
1245 }
1246 }
1247 }
1248
1249 if (code != BUILT_IN_TM_LOG && !builtin_decl_explicit_p (code))
1250 code = BUILT_IN_TM_LOG;
1251 tree decl = builtin_decl_explicit (code);
1252
1253 addr = gimplify_addr (&gsi, addr);
1254 if (code == BUILT_IN_TM_LOG)
1255 log = gimple_build_call (decl, 2, addr, TYPE_SIZE_UNIT (type));
1256 else
1257 log = gimple_build_call (decl, 1, addr);
1258 gsi_insert_before (&gsi, log, GSI_SAME_STMT);
1259 }
1260
1261 /* Go through the log and instrument address that must be instrumented
1262 with the logging functions. Leave the save/restore addresses for
1263 later. */
1264 static void
1265 tm_log_emit (void)
1266 {
1267 hash_table<log_entry_hasher>::iterator hi;
1268 struct tm_log_entry *lp;
1269
1270 FOR_EACH_HASH_TABLE_ELEMENT (*tm_log, lp, tm_log_entry_t, hi)
1271 {
1272 size_t i;
1273 gimple *stmt;
1274
1275 if (dump_file)
1276 {
1277 fprintf (dump_file, "TM thread private mem logging: ");
1278 print_generic_expr (dump_file, lp->addr, 0);
1279 fprintf (dump_file, "\n");
1280 }
1281
1282 if (lp->save_var)
1283 {
1284 if (dump_file)
1285 fprintf (dump_file, "DUMPING to variable\n");
1286 continue;
1287 }
1288 else
1289 {
1290 if (dump_file)
1291 fprintf (dump_file, "DUMPING with logging functions\n");
1292 for (i = 0; lp->stmts.iterate (i, &stmt); ++i)
1293 tm_log_emit_stmt (lp->addr, stmt);
1294 }
1295 }
1296 }
1297
1298 /* Emit the save sequence for the corresponding addresses in the log.
1299 ENTRY_BLOCK is the entry block for the transaction.
1300 BB is the basic block to insert the code in. */
1301 static void
1302 tm_log_emit_saves (basic_block entry_block, basic_block bb)
1303 {
1304 size_t i;
1305 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1306 gimple *stmt;
1307 struct tm_log_entry l, *lp;
1308
1309 for (i = 0; i < tm_log_save_addresses.length (); ++i)
1310 {
1311 l.addr = tm_log_save_addresses[i];
1312 lp = *(tm_log->find_slot (&l, NO_INSERT));
1313 gcc_assert (lp->save_var != NULL);
1314
1315 /* We only care about variables in the current transaction. */
1316 if (lp->entry_block != entry_block)
1317 continue;
1318
1319 stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr));
1320
1321 /* Make sure we can create an SSA_NAME for this type. For
1322 instance, aggregates aren't allowed, in which case the system
1323 will create a VOP for us and everything will just work. */
1324 if (is_gimple_reg_type (TREE_TYPE (lp->save_var)))
1325 {
1326 lp->save_var = make_ssa_name (lp->save_var, stmt);
1327 gimple_assign_set_lhs (stmt, lp->save_var);
1328 }
1329
1330 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1331 }
1332 }
1333
1334 /* Emit the restore sequence for the corresponding addresses in the log.
1335 ENTRY_BLOCK is the entry block for the transaction.
1336 BB is the basic block to insert the code in. */
1337 static void
1338 tm_log_emit_restores (basic_block entry_block, basic_block bb)
1339 {
1340 int i;
1341 struct tm_log_entry l, *lp;
1342 gimple_stmt_iterator gsi;
1343 gimple *stmt;
1344
1345 for (i = tm_log_save_addresses.length () - 1; i >= 0; i--)
1346 {
1347 l.addr = tm_log_save_addresses[i];
1348 lp = *(tm_log->find_slot (&l, NO_INSERT));
1349 gcc_assert (lp->save_var != NULL);
1350
1351 /* We only care about variables in the current transaction. */
1352 if (lp->entry_block != entry_block)
1353 continue;
1354
1355 /* Restores are in LIFO order from the saves in case we have
1356 overlaps. */
1357 gsi = gsi_start_bb (bb);
1358
1359 stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var);
1360 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1361 }
1362 }
1363
1364 \f
1365 static tree lower_sequence_tm (gimple_stmt_iterator *, bool *,
1366 struct walk_stmt_info *);
1367 static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *,
1368 struct walk_stmt_info *);
1369
1370 /* Evaluate an address X being dereferenced and determine if it
1371 originally points to a non aliased new chunk of memory (malloc,
1372 alloca, etc).
1373
1374 Return MEM_THREAD_LOCAL if it points to a thread-local address.
1375 Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address.
1376 Return MEM_NON_LOCAL otherwise.
1377
1378 ENTRY_BLOCK is the entry block to the transaction containing the
1379 dereference of X. */
1380 static enum thread_memory_type
1381 thread_private_new_memory (basic_block entry_block, tree x)
1382 {
1383 gimple *stmt = NULL;
1384 enum tree_code code;
1385 tm_new_mem_map **slot;
1386 tm_new_mem_map elt, *elt_p;
1387 tree val = x;
1388 enum thread_memory_type retval = mem_transaction_local;
1389
1390 if (!entry_block
1391 || TREE_CODE (x) != SSA_NAME
1392 /* Possible uninitialized use, or a function argument. In
1393 either case, we don't care. */
1394 || SSA_NAME_IS_DEFAULT_DEF (x))
1395 return mem_non_local;
1396
1397 /* Look in cache first. */
1398 elt.val = x;
1399 slot = tm_new_mem_hash->find_slot (&elt, INSERT);
1400 elt_p = *slot;
1401 if (elt_p)
1402 return elt_p->local_new_memory;
1403
1404 /* Optimistically assume the memory is transaction local during
1405 processing. This catches recursion into this variable. */
1406 *slot = elt_p = XNEW (tm_new_mem_map);
1407 elt_p->val = val;
1408 elt_p->local_new_memory = mem_transaction_local;
1409
1410 /* Search DEF chain to find the original definition of this address. */
1411 do
1412 {
1413 if (ptr_deref_may_alias_global_p (x))
1414 {
1415 /* Address escapes. This is not thread-private. */
1416 retval = mem_non_local;
1417 goto new_memory_ret;
1418 }
1419
1420 stmt = SSA_NAME_DEF_STMT (x);
1421
1422 /* If the malloc call is outside the transaction, this is
1423 thread-local. */
1424 if (retval != mem_thread_local
1425 && !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), entry_block))
1426 retval = mem_thread_local;
1427
1428 if (is_gimple_assign (stmt))
1429 {
1430 code = gimple_assign_rhs_code (stmt);
1431 /* x = foo ==> foo */
1432 if (code == SSA_NAME)
1433 x = gimple_assign_rhs1 (stmt);
1434 /* x = foo + n ==> foo */
1435 else if (code == POINTER_PLUS_EXPR)
1436 x = gimple_assign_rhs1 (stmt);
1437 /* x = (cast*) foo ==> foo */
1438 else if (code == VIEW_CONVERT_EXPR || CONVERT_EXPR_CODE_P (code))
1439 x = gimple_assign_rhs1 (stmt);
1440 /* x = c ? op1 : op2 == > op1 or op2 just like a PHI */
1441 else if (code == COND_EXPR)
1442 {
1443 tree op1 = gimple_assign_rhs2 (stmt);
1444 tree op2 = gimple_assign_rhs3 (stmt);
1445 enum thread_memory_type mem;
1446 retval = thread_private_new_memory (entry_block, op1);
1447 if (retval == mem_non_local)
1448 goto new_memory_ret;
1449 mem = thread_private_new_memory (entry_block, op2);
1450 retval = MIN (retval, mem);
1451 goto new_memory_ret;
1452 }
1453 else
1454 {
1455 retval = mem_non_local;
1456 goto new_memory_ret;
1457 }
1458 }
1459 else
1460 {
1461 if (gimple_code (stmt) == GIMPLE_PHI)
1462 {
1463 unsigned int i;
1464 enum thread_memory_type mem;
1465 tree phi_result = gimple_phi_result (stmt);
1466
1467 /* If any of the ancestors are non-local, we are sure to
1468 be non-local. Otherwise we can avoid doing anything
1469 and inherit what has already been generated. */
1470 retval = mem_max;
1471 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
1472 {
1473 tree op = PHI_ARG_DEF (stmt, i);
1474
1475 /* Exclude self-assignment. */
1476 if (phi_result == op)
1477 continue;
1478
1479 mem = thread_private_new_memory (entry_block, op);
1480 if (mem == mem_non_local)
1481 {
1482 retval = mem;
1483 goto new_memory_ret;
1484 }
1485 retval = MIN (retval, mem);
1486 }
1487 goto new_memory_ret;
1488 }
1489 break;
1490 }
1491 }
1492 while (TREE_CODE (x) == SSA_NAME);
1493
1494 if (stmt && is_gimple_call (stmt) && gimple_call_flags (stmt) & ECF_MALLOC)
1495 /* Thread-local or transaction-local. */
1496 ;
1497 else
1498 retval = mem_non_local;
1499
1500 new_memory_ret:
1501 elt_p->local_new_memory = retval;
1502 return retval;
1503 }
1504
1505 /* Determine whether X has to be instrumented using a read
1506 or write barrier.
1507
1508 ENTRY_BLOCK is the entry block for the region where stmt resides
1509 in. NULL if unknown.
1510
1511 STMT is the statement in which X occurs in. It is used for thread
1512 private memory instrumentation. If no TPM instrumentation is
1513 desired, STMT should be null. */
1514 static bool
1515 requires_barrier (basic_block entry_block, tree x, gimple *stmt)
1516 {
1517 tree orig = x;
1518 while (handled_component_p (x))
1519 x = TREE_OPERAND (x, 0);
1520
1521 switch (TREE_CODE (x))
1522 {
1523 case INDIRECT_REF:
1524 case MEM_REF:
1525 {
1526 enum thread_memory_type ret;
1527
1528 ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0));
1529 if (ret == mem_non_local)
1530 return true;
1531 if (stmt && ret == mem_thread_local)
1532 /* ?? Should we pass `orig', or the INDIRECT_REF X. ?? */
1533 tm_log_add (entry_block, orig, stmt);
1534
1535 /* Transaction-locals require nothing at all. For malloc, a
1536 transaction restart frees the memory and we reallocate.
1537 For alloca, the stack pointer gets reset by the retry and
1538 we reallocate. */
1539 return false;
1540 }
1541
1542 case TARGET_MEM_REF:
1543 if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR)
1544 return true;
1545 x = TREE_OPERAND (TMR_BASE (x), 0);
1546 if (TREE_CODE (x) == PARM_DECL)
1547 return false;
1548 gcc_assert (VAR_P (x));
1549 /* FALLTHRU */
1550
1551 case PARM_DECL:
1552 case RESULT_DECL:
1553 case VAR_DECL:
1554 if (DECL_BY_REFERENCE (x))
1555 {
1556 /* ??? This value is a pointer, but aggregate_value_p has been
1557 jigged to return true which confuses needs_to_live_in_memory.
1558 This ought to be cleaned up generically.
1559
1560 FIXME: Verify this still happens after the next mainline
1561 merge. Testcase ie g++.dg/tm/pr47554.C.
1562 */
1563 return false;
1564 }
1565
1566 if (is_global_var (x))
1567 return !TREE_READONLY (x);
1568 if (/* FIXME: This condition should actually go below in the
1569 tm_log_add() call, however is_call_clobbered() depends on
1570 aliasing info which is not available during
1571 gimplification. Since requires_barrier() gets called
1572 during lower_sequence_tm/gimplification, leave the call
1573 to needs_to_live_in_memory until we eliminate
1574 lower_sequence_tm altogether. */
1575 needs_to_live_in_memory (x))
1576 return true;
1577 else
1578 {
1579 /* For local memory that doesn't escape (aka thread private
1580 memory), we can either save the value at the beginning of
1581 the transaction and restore on restart, or call a tm
1582 function to dynamically save and restore on restart
1583 (ITM_L*). */
1584 if (stmt)
1585 tm_log_add (entry_block, orig, stmt);
1586 return false;
1587 }
1588
1589 default:
1590 return false;
1591 }
1592 }
1593
1594 /* Mark the GIMPLE_ASSIGN statement as appropriate for being inside
1595 a transaction region. */
1596
1597 static void
1598 examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi)
1599 {
1600 gimple *stmt = gsi_stmt (*gsi);
1601
1602 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_rhs1 (stmt), NULL))
1603 *state |= GTMA_HAVE_LOAD;
1604 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_lhs (stmt), NULL))
1605 *state |= GTMA_HAVE_STORE;
1606 }
1607
1608 /* Mark a GIMPLE_CALL as appropriate for being inside a transaction. */
1609
1610 static void
1611 examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi)
1612 {
1613 gimple *stmt = gsi_stmt (*gsi);
1614 tree fn;
1615
1616 if (is_tm_pure_call (stmt))
1617 return;
1618
1619 /* Check if this call is a transaction abort. */
1620 fn = gimple_call_fndecl (stmt);
1621 if (is_tm_abort (fn))
1622 *state |= GTMA_HAVE_ABORT;
1623
1624 /* Note that something may happen. */
1625 *state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE;
1626 }
1627
1628 /* Iterate through the statements in the sequence, moving labels
1629 (and thus edges) of transactions from "label_norm" to "label_uninst". */
1630
1631 static tree
1632 make_tm_uninst (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1633 struct walk_stmt_info *)
1634 {
1635 gimple *stmt = gsi_stmt (*gsi);
1636
1637 if (gtransaction *txn = dyn_cast <gtransaction *> (stmt))
1638 {
1639 *handled_ops_p = true;
1640 txn->label_uninst = txn->label_norm;
1641 txn->label_norm = NULL;
1642 }
1643 else
1644 *handled_ops_p = !gimple_has_substatements (stmt);
1645
1646 return NULL_TREE;
1647 }
1648
1649 /* Lower a GIMPLE_TRANSACTION statement. */
1650
1651 static void
1652 lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi)
1653 {
1654 gimple *g;
1655 gtransaction *stmt = as_a <gtransaction *> (gsi_stmt (*gsi));
1656 unsigned int *outer_state = (unsigned int *) wi->info;
1657 unsigned int this_state = 0;
1658 struct walk_stmt_info this_wi;
1659
1660 /* First, lower the body. The scanning that we do inside gives
1661 us some idea of what we're dealing with. */
1662 memset (&this_wi, 0, sizeof (this_wi));
1663 this_wi.info = (void *) &this_state;
1664 walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
1665 lower_sequence_tm, NULL, &this_wi);
1666
1667 /* If there was absolutely nothing transaction related inside the
1668 transaction, we may elide it. Likewise if this is a nested
1669 transaction and does not contain an abort. */
1670 if (this_state == 0
1671 || (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL))
1672 {
1673 if (outer_state)
1674 *outer_state |= this_state;
1675
1676 gsi_insert_seq_before (gsi, gimple_transaction_body (stmt),
1677 GSI_SAME_STMT);
1678 gimple_transaction_set_body (stmt, NULL);
1679
1680 gsi_remove (gsi, true);
1681 wi->removed_stmt = true;
1682 return;
1683 }
1684
1685 /* Wrap the body of the transaction in a try-finally node so that
1686 the commit call is always properly called. */
1687 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT), 0);
1688 if (flag_exceptions)
1689 {
1690 tree ptr;
1691 gimple_seq n_seq, e_seq;
1692
1693 n_seq = gimple_seq_alloc_with_stmt (g);
1694 e_seq = NULL;
1695
1696 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1697 1, integer_zero_node);
1698 ptr = create_tmp_var (ptr_type_node);
1699 gimple_call_set_lhs (g, ptr);
1700 gimple_seq_add_stmt (&e_seq, g);
1701
1702 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT_EH),
1703 1, ptr);
1704 gimple_seq_add_stmt (&e_seq, g);
1705
1706 g = gimple_build_eh_else (n_seq, e_seq);
1707 }
1708
1709 g = gimple_build_try (gimple_transaction_body (stmt),
1710 gimple_seq_alloc_with_stmt (g), GIMPLE_TRY_FINALLY);
1711
1712 /* For a (potentially) outer transaction, create two paths. */
1713 gimple_seq uninst = NULL;
1714 if (outer_state == NULL)
1715 {
1716 uninst = copy_gimple_seq_and_replace_locals (g);
1717 /* In the uninstrumented copy, reset inner transactions to have only
1718 an uninstrumented code path. */
1719 memset (&this_wi, 0, sizeof (this_wi));
1720 walk_gimple_seq (uninst, make_tm_uninst, NULL, &this_wi);
1721 }
1722
1723 tree label1 = create_artificial_label (UNKNOWN_LOCATION);
1724 gsi_insert_after (gsi, gimple_build_label (label1), GSI_CONTINUE_LINKING);
1725 gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
1726 gimple_transaction_set_label_norm (stmt, label1);
1727
1728 /* If the transaction calls abort or if this is an outer transaction,
1729 add an "over" label afterwards. */
1730 tree label3 = NULL;
1731 if ((this_state & GTMA_HAVE_ABORT)
1732 || outer_state == NULL
1733 || (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER))
1734 {
1735 label3 = create_artificial_label (UNKNOWN_LOCATION);
1736 gimple_transaction_set_label_over (stmt, label3);
1737 }
1738
1739 if (uninst != NULL)
1740 {
1741 gsi_insert_after (gsi, gimple_build_goto (label3), GSI_CONTINUE_LINKING);
1742
1743 tree label2 = create_artificial_label (UNKNOWN_LOCATION);
1744 gsi_insert_after (gsi, gimple_build_label (label2), GSI_CONTINUE_LINKING);
1745 gsi_insert_seq_after (gsi, uninst, GSI_CONTINUE_LINKING);
1746 gimple_transaction_set_label_uninst (stmt, label2);
1747 }
1748
1749 if (label3 != NULL)
1750 gsi_insert_after (gsi, gimple_build_label (label3), GSI_CONTINUE_LINKING);
1751
1752 gimple_transaction_set_body (stmt, NULL);
1753
1754 /* Record the set of operations found for use later. */
1755 this_state |= gimple_transaction_subcode (stmt) & GTMA_DECLARATION_MASK;
1756 gimple_transaction_set_subcode (stmt, this_state);
1757 }
1758
1759 /* Iterate through the statements in the sequence, lowering them all
1760 as appropriate for being in a transaction. */
1761
1762 static tree
1763 lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1764 struct walk_stmt_info *wi)
1765 {
1766 unsigned int *state = (unsigned int *) wi->info;
1767 gimple *stmt = gsi_stmt (*gsi);
1768
1769 *handled_ops_p = true;
1770 switch (gimple_code (stmt))
1771 {
1772 case GIMPLE_ASSIGN:
1773 /* Only memory reads/writes need to be instrumented. */
1774 if (gimple_assign_single_p (stmt))
1775 examine_assign_tm (state, gsi);
1776 break;
1777
1778 case GIMPLE_CALL:
1779 examine_call_tm (state, gsi);
1780 break;
1781
1782 case GIMPLE_ASM:
1783 *state |= GTMA_MAY_ENTER_IRREVOCABLE;
1784 break;
1785
1786 case GIMPLE_TRANSACTION:
1787 lower_transaction (gsi, wi);
1788 break;
1789
1790 default:
1791 *handled_ops_p = !gimple_has_substatements (stmt);
1792 break;
1793 }
1794
1795 return NULL_TREE;
1796 }
1797
1798 /* Iterate through the statements in the sequence, lowering them all
1799 as appropriate for being outside of a transaction. */
1800
1801 static tree
1802 lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1803 struct walk_stmt_info * wi)
1804 {
1805 gimple *stmt = gsi_stmt (*gsi);
1806
1807 if (gimple_code (stmt) == GIMPLE_TRANSACTION)
1808 {
1809 *handled_ops_p = true;
1810 lower_transaction (gsi, wi);
1811 }
1812 else
1813 *handled_ops_p = !gimple_has_substatements (stmt);
1814
1815 return NULL_TREE;
1816 }
1817
1818 /* Main entry point for flattening GIMPLE_TRANSACTION constructs. After
1819 this, GIMPLE_TRANSACTION nodes still exist, but the nested body has
1820 been moved out, and all the data required for constructing a proper
1821 CFG has been recorded. */
1822
1823 static unsigned int
1824 execute_lower_tm (void)
1825 {
1826 struct walk_stmt_info wi;
1827 gimple_seq body;
1828
1829 /* Transactional clones aren't created until a later pass. */
1830 gcc_assert (!decl_is_tm_clone (current_function_decl));
1831
1832 body = gimple_body (current_function_decl);
1833 memset (&wi, 0, sizeof (wi));
1834 walk_gimple_seq_mod (&body, lower_sequence_no_tm, NULL, &wi);
1835 gimple_set_body (current_function_decl, body);
1836
1837 return 0;
1838 }
1839
1840 namespace {
1841
1842 const pass_data pass_data_lower_tm =
1843 {
1844 GIMPLE_PASS, /* type */
1845 "tmlower", /* name */
1846 OPTGROUP_NONE, /* optinfo_flags */
1847 TV_TRANS_MEM, /* tv_id */
1848 PROP_gimple_lcf, /* properties_required */
1849 0, /* properties_provided */
1850 0, /* properties_destroyed */
1851 0, /* todo_flags_start */
1852 0, /* todo_flags_finish */
1853 };
1854
1855 class pass_lower_tm : public gimple_opt_pass
1856 {
1857 public:
1858 pass_lower_tm (gcc::context *ctxt)
1859 : gimple_opt_pass (pass_data_lower_tm, ctxt)
1860 {}
1861
1862 /* opt_pass methods: */
1863 virtual bool gate (function *) { return flag_tm; }
1864 virtual unsigned int execute (function *) { return execute_lower_tm (); }
1865
1866 }; // class pass_lower_tm
1867
1868 } // anon namespace
1869
1870 gimple_opt_pass *
1871 make_pass_lower_tm (gcc::context *ctxt)
1872 {
1873 return new pass_lower_tm (ctxt);
1874 }
1875 \f
1876 /* Collect region information for each transaction. */
1877
1878 struct tm_region
1879 {
1880 public:
1881
1882 /* The field "transaction_stmt" is initially a gtransaction *,
1883 but eventually gets lowered to a gcall *(to BUILT_IN_TM_START).
1884
1885 Helper method to get it as a gtransaction *, with code-checking
1886 in a checked-build. */
1887
1888 gtransaction *
1889 get_transaction_stmt () const
1890 {
1891 return as_a <gtransaction *> (transaction_stmt);
1892 }
1893
1894 public:
1895
1896 /* Link to the next unnested transaction. */
1897 struct tm_region *next;
1898
1899 /* Link to the next inner transaction. */
1900 struct tm_region *inner;
1901
1902 /* Link to the next outer transaction. */
1903 struct tm_region *outer;
1904
1905 /* The GIMPLE_TRANSACTION statement beginning this transaction.
1906 After TM_MARK, this gets replaced by a call to
1907 BUILT_IN_TM_START.
1908 Hence this will be either a gtransaction *or a gcall *. */
1909 gimple *transaction_stmt;
1910
1911 /* After TM_MARK expands the GIMPLE_TRANSACTION into a call to
1912 BUILT_IN_TM_START, this field is true if the transaction is an
1913 outer transaction. */
1914 bool original_transaction_was_outer;
1915
1916 /* Return value from BUILT_IN_TM_START. */
1917 tree tm_state;
1918
1919 /* The entry block to this region. This will always be the first
1920 block of the body of the transaction. */
1921 basic_block entry_block;
1922
1923 /* The first block after an expanded call to _ITM_beginTransaction. */
1924 basic_block restart_block;
1925
1926 /* The set of all blocks that end the region; NULL if only EXIT_BLOCK.
1927 These blocks are still a part of the region (i.e., the border is
1928 inclusive). Note that this set is only complete for paths in the CFG
1929 starting at ENTRY_BLOCK, and that there is no exit block recorded for
1930 the edge to the "over" label. */
1931 bitmap exit_blocks;
1932
1933 /* The set of all blocks that have an TM_IRREVOCABLE call. */
1934 bitmap irr_blocks;
1935 };
1936
1937 /* True if there are pending edge statements to be committed for the
1938 current function being scanned in the tmmark pass. */
1939 bool pending_edge_inserts_p;
1940
1941 static struct tm_region *all_tm_regions;
1942 static bitmap_obstack tm_obstack;
1943
1944
1945 /* A subroutine of tm_region_init. Record the existence of the
1946 GIMPLE_TRANSACTION statement in a tree of tm_region elements. */
1947
1948 static struct tm_region *
1949 tm_region_init_0 (struct tm_region *outer, basic_block bb,
1950 gtransaction *stmt)
1951 {
1952 struct tm_region *region;
1953
1954 region = (struct tm_region *)
1955 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1956
1957 if (outer)
1958 {
1959 region->next = outer->inner;
1960 outer->inner = region;
1961 }
1962 else
1963 {
1964 region->next = all_tm_regions;
1965 all_tm_regions = region;
1966 }
1967 region->inner = NULL;
1968 region->outer = outer;
1969
1970 region->transaction_stmt = stmt;
1971 region->original_transaction_was_outer = false;
1972 region->tm_state = NULL;
1973
1974 /* There are either one or two edges out of the block containing
1975 the GIMPLE_TRANSACTION, one to the actual region and one to the
1976 "over" label if the region contains an abort. The former will
1977 always be the one marked FALLTHRU. */
1978 region->entry_block = FALLTHRU_EDGE (bb)->dest;
1979
1980 region->exit_blocks = BITMAP_ALLOC (&tm_obstack);
1981 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1982
1983 return region;
1984 }
1985
1986 /* A subroutine of tm_region_init. Record all the exit and
1987 irrevocable blocks in BB into the region's exit_blocks and
1988 irr_blocks bitmaps. Returns the new region being scanned. */
1989
1990 static struct tm_region *
1991 tm_region_init_1 (struct tm_region *region, basic_block bb)
1992 {
1993 gimple_stmt_iterator gsi;
1994 gimple *g;
1995
1996 if (!region
1997 || (!region->irr_blocks && !region->exit_blocks))
1998 return region;
1999
2000 /* Check to see if this is the end of a region by seeing if it
2001 contains a call to __builtin_tm_commit{,_eh}. Note that the
2002 outermost region for DECL_IS_TM_CLONE need not collect this. */
2003 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
2004 {
2005 g = gsi_stmt (gsi);
2006 if (gimple_code (g) == GIMPLE_CALL)
2007 {
2008 tree fn = gimple_call_fndecl (g);
2009 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
2010 {
2011 if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT
2012 || DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT_EH)
2013 && region->exit_blocks)
2014 {
2015 bitmap_set_bit (region->exit_blocks, bb->index);
2016 region = region->outer;
2017 break;
2018 }
2019 if (DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_IRREVOCABLE)
2020 bitmap_set_bit (region->irr_blocks, bb->index);
2021 }
2022 }
2023 }
2024 return region;
2025 }
2026
2027 /* Collect all of the transaction regions within the current function
2028 and record them in ALL_TM_REGIONS. The REGION parameter may specify
2029 an "outermost" region for use by tm clones. */
2030
2031 static void
2032 tm_region_init (struct tm_region *region)
2033 {
2034 gimple *g;
2035 edge_iterator ei;
2036 edge e;
2037 basic_block bb;
2038 auto_vec<basic_block> queue;
2039 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2040 struct tm_region *old_region;
2041 auto_vec<tm_region *> bb_regions;
2042
2043 /* We could store this information in bb->aux, but we may get called
2044 through get_all_tm_blocks() from another pass that may be already
2045 using bb->aux. */
2046 bb_regions.safe_grow_cleared (last_basic_block_for_fn (cfun));
2047
2048 all_tm_regions = region;
2049 bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2050 queue.safe_push (bb);
2051 bitmap_set_bit (visited_blocks, bb->index);
2052 bb_regions[bb->index] = region;
2053
2054 do
2055 {
2056 bb = queue.pop ();
2057 region = bb_regions[bb->index];
2058 bb_regions[bb->index] = NULL;
2059
2060 /* Record exit and irrevocable blocks. */
2061 region = tm_region_init_1 (region, bb);
2062
2063 /* Check for the last statement in the block beginning a new region. */
2064 g = last_stmt (bb);
2065 old_region = region;
2066 if (g)
2067 if (gtransaction *trans_stmt = dyn_cast <gtransaction *> (g))
2068 region = tm_region_init_0 (region, bb, trans_stmt);
2069
2070 /* Process subsequent blocks. */
2071 FOR_EACH_EDGE (e, ei, bb->succs)
2072 if (!bitmap_bit_p (visited_blocks, e->dest->index))
2073 {
2074 bitmap_set_bit (visited_blocks, e->dest->index);
2075 queue.safe_push (e->dest);
2076
2077 /* If the current block started a new region, make sure that only
2078 the entry block of the new region is associated with this region.
2079 Other successors are still part of the old region. */
2080 if (old_region != region && e->dest != region->entry_block)
2081 bb_regions[e->dest->index] = old_region;
2082 else
2083 bb_regions[e->dest->index] = region;
2084 }
2085 }
2086 while (!queue.is_empty ());
2087 BITMAP_FREE (visited_blocks);
2088 }
2089
2090 /* The "gate" function for all transactional memory expansion and optimization
2091 passes. We collect region information for each top-level transaction, and
2092 if we don't find any, we skip all of the TM passes. Each region will have
2093 all of the exit blocks recorded, and the originating statement. */
2094
2095 static bool
2096 gate_tm_init (void)
2097 {
2098 if (!flag_tm)
2099 return false;
2100
2101 calculate_dominance_info (CDI_DOMINATORS);
2102 bitmap_obstack_initialize (&tm_obstack);
2103
2104 /* If the function is a TM_CLONE, then the entire function is the region. */
2105 if (decl_is_tm_clone (current_function_decl))
2106 {
2107 struct tm_region *region = (struct tm_region *)
2108 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
2109 memset (region, 0, sizeof (*region));
2110 region->entry_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2111 /* For a clone, the entire function is the region. But even if
2112 we don't need to record any exit blocks, we may need to
2113 record irrevocable blocks. */
2114 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
2115
2116 tm_region_init (region);
2117 }
2118 else
2119 {
2120 tm_region_init (NULL);
2121
2122 /* If we didn't find any regions, cleanup and skip the whole tree
2123 of tm-related optimizations. */
2124 if (all_tm_regions == NULL)
2125 {
2126 bitmap_obstack_release (&tm_obstack);
2127 return false;
2128 }
2129 }
2130
2131 return true;
2132 }
2133
2134 namespace {
2135
2136 const pass_data pass_data_tm_init =
2137 {
2138 GIMPLE_PASS, /* type */
2139 "*tminit", /* name */
2140 OPTGROUP_NONE, /* optinfo_flags */
2141 TV_TRANS_MEM, /* tv_id */
2142 ( PROP_ssa | PROP_cfg ), /* properties_required */
2143 0, /* properties_provided */
2144 0, /* properties_destroyed */
2145 0, /* todo_flags_start */
2146 0, /* todo_flags_finish */
2147 };
2148
2149 class pass_tm_init : public gimple_opt_pass
2150 {
2151 public:
2152 pass_tm_init (gcc::context *ctxt)
2153 : gimple_opt_pass (pass_data_tm_init, ctxt)
2154 {}
2155
2156 /* opt_pass methods: */
2157 virtual bool gate (function *) { return gate_tm_init (); }
2158
2159 }; // class pass_tm_init
2160
2161 } // anon namespace
2162
2163 gimple_opt_pass *
2164 make_pass_tm_init (gcc::context *ctxt)
2165 {
2166 return new pass_tm_init (ctxt);
2167 }
2168 \f
2169 /* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region
2170 represented by STATE. */
2171
2172 static inline void
2173 transaction_subcode_ior (struct tm_region *region, unsigned flags)
2174 {
2175 if (region && region->transaction_stmt)
2176 {
2177 gtransaction *transaction_stmt = region->get_transaction_stmt ();
2178 flags |= gimple_transaction_subcode (transaction_stmt);
2179 gimple_transaction_set_subcode (transaction_stmt, flags);
2180 }
2181 }
2182
2183 /* Construct a memory load in a transactional context. Return the
2184 gimple statement performing the load, or NULL if there is no
2185 TM_LOAD builtin of the appropriate size to do the load.
2186
2187 LOC is the location to use for the new statement(s). */
2188
2189 static gcall *
2190 build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2191 {
2192 tree t, type = TREE_TYPE (rhs);
2193 gcall *gcall;
2194
2195 built_in_function code;
2196 if (type == float_type_node)
2197 code = BUILT_IN_TM_LOAD_FLOAT;
2198 else if (type == double_type_node)
2199 code = BUILT_IN_TM_LOAD_DOUBLE;
2200 else if (type == long_double_type_node)
2201 code = BUILT_IN_TM_LOAD_LDOUBLE;
2202 else
2203 {
2204 if (TYPE_SIZE (type) == NULL || !tree_fits_uhwi_p (TYPE_SIZE (type)))
2205 return NULL;
2206 unsigned HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
2207
2208 if (TREE_CODE (type) == VECTOR_TYPE)
2209 {
2210 switch (type_size)
2211 {
2212 case 64:
2213 code = BUILT_IN_TM_LOAD_M64;
2214 break;
2215 case 128:
2216 code = BUILT_IN_TM_LOAD_M128;
2217 break;
2218 case 256:
2219 code = BUILT_IN_TM_LOAD_M256;
2220 break;
2221 default:
2222 goto unhandled_vec;
2223 }
2224 if (!builtin_decl_explicit_p (code))
2225 goto unhandled_vec;
2226 }
2227 else
2228 {
2229 unhandled_vec:
2230 switch (type_size)
2231 {
2232 case 8:
2233 code = BUILT_IN_TM_LOAD_1;
2234 break;
2235 case 16:
2236 code = BUILT_IN_TM_LOAD_2;
2237 break;
2238 case 32:
2239 code = BUILT_IN_TM_LOAD_4;
2240 break;
2241 case 64:
2242 code = BUILT_IN_TM_LOAD_8;
2243 break;
2244 default:
2245 return NULL;
2246 }
2247 }
2248 }
2249
2250 tree decl = builtin_decl_explicit (code);
2251 gcc_assert (decl);
2252
2253 t = gimplify_addr (gsi, rhs);
2254 gcall = gimple_build_call (decl, 1, t);
2255 gimple_set_location (gcall, loc);
2256
2257 t = TREE_TYPE (TREE_TYPE (decl));
2258 if (useless_type_conversion_p (type, t))
2259 {
2260 gimple_call_set_lhs (gcall, lhs);
2261 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2262 }
2263 else
2264 {
2265 gimple *g;
2266 tree temp;
2267
2268 temp = create_tmp_reg (t);
2269 gimple_call_set_lhs (gcall, temp);
2270 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2271
2272 t = fold_build1 (VIEW_CONVERT_EXPR, type, temp);
2273 g = gimple_build_assign (lhs, t);
2274 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2275 }
2276
2277 return gcall;
2278 }
2279
2280
2281 /* Similarly for storing TYPE in a transactional context. */
2282
2283 static gcall *
2284 build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2285 {
2286 tree t, fn, type = TREE_TYPE (rhs), simple_type;
2287 gcall *gcall;
2288
2289 built_in_function code;
2290 if (type == float_type_node)
2291 code = BUILT_IN_TM_STORE_FLOAT;
2292 else if (type == double_type_node)
2293 code = BUILT_IN_TM_STORE_DOUBLE;
2294 else if (type == long_double_type_node)
2295 code = BUILT_IN_TM_STORE_LDOUBLE;
2296 else
2297 {
2298 if (TYPE_SIZE (type) == NULL || !tree_fits_uhwi_p (TYPE_SIZE (type)))
2299 return NULL;
2300 unsigned HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type));
2301
2302 if (TREE_CODE (type) == VECTOR_TYPE)
2303 {
2304 switch (type_size)
2305 {
2306 case 64:
2307 code = BUILT_IN_TM_STORE_M64;
2308 break;
2309 case 128:
2310 code = BUILT_IN_TM_STORE_M128;
2311 break;
2312 case 256:
2313 code = BUILT_IN_TM_STORE_M256;
2314 break;
2315 default:
2316 goto unhandled_vec;
2317 }
2318 if (!builtin_decl_explicit_p (code))
2319 goto unhandled_vec;
2320 }
2321 else
2322 {
2323 unhandled_vec:
2324 switch (type_size)
2325 {
2326 case 8:
2327 code = BUILT_IN_TM_STORE_1;
2328 break;
2329 case 16:
2330 code = BUILT_IN_TM_STORE_2;
2331 break;
2332 case 32:
2333 code = BUILT_IN_TM_STORE_4;
2334 break;
2335 case 64:
2336 code = BUILT_IN_TM_STORE_8;
2337 break;
2338 default:
2339 return NULL;
2340 }
2341 }
2342 }
2343
2344 fn = builtin_decl_explicit (code);
2345 gcc_assert (fn);
2346
2347 simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))));
2348
2349 if (TREE_CODE (rhs) == CONSTRUCTOR)
2350 {
2351 /* Handle the easy initialization to zero. */
2352 if (!CONSTRUCTOR_ELTS (rhs))
2353 rhs = build_int_cst (simple_type, 0);
2354 else
2355 {
2356 /* ...otherwise punt to the caller and probably use
2357 BUILT_IN_TM_MEMMOVE, because we can't wrap a
2358 VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce
2359 valid gimple. */
2360 return NULL;
2361 }
2362 }
2363 else if (!useless_type_conversion_p (simple_type, type))
2364 {
2365 gimple *g;
2366 tree temp;
2367
2368 temp = create_tmp_reg (simple_type);
2369 t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs);
2370 g = gimple_build_assign (temp, t);
2371 gimple_set_location (g, loc);
2372 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2373
2374 rhs = temp;
2375 }
2376
2377 t = gimplify_addr (gsi, lhs);
2378 gcall = gimple_build_call (fn, 2, t, rhs);
2379 gimple_set_location (gcall, loc);
2380 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2381
2382 return gcall;
2383 }
2384
2385
2386 /* Expand an assignment statement into transactional builtins. */
2387
2388 static void
2389 expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi)
2390 {
2391 gimple *stmt = gsi_stmt (*gsi);
2392 location_t loc = gimple_location (stmt);
2393 tree lhs = gimple_assign_lhs (stmt);
2394 tree rhs = gimple_assign_rhs1 (stmt);
2395 bool store_p = requires_barrier (region->entry_block, lhs, NULL);
2396 bool load_p = requires_barrier (region->entry_block, rhs, NULL);
2397 gimple *gcall = NULL;
2398
2399 if (!load_p && !store_p)
2400 {
2401 /* Add thread private addresses to log if applicable. */
2402 requires_barrier (region->entry_block, lhs, stmt);
2403 gsi_next (gsi);
2404 return;
2405 }
2406
2407 if (load_p)
2408 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2409 if (store_p)
2410 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2411
2412 // Remove original load/store statement.
2413 gsi_remove (gsi, true);
2414
2415 // Attempt to use a simple load/store helper function.
2416 if (load_p && !store_p)
2417 gcall = build_tm_load (loc, lhs, rhs, gsi);
2418 else if (store_p && !load_p)
2419 gcall = build_tm_store (loc, lhs, rhs, gsi);
2420
2421 // If gcall has not been set, then we do not have a simple helper
2422 // function available for the type. This may be true of larger
2423 // structures, vectors, and non-standard float types.
2424 if (!gcall)
2425 {
2426 tree lhs_addr, rhs_addr, ltmp = NULL, copy_fn;
2427
2428 // If this is a type that we couldn't handle above, but it's
2429 // in a register, we must spill it to memory for the copy.
2430 if (is_gimple_reg (lhs))
2431 {
2432 ltmp = create_tmp_var (TREE_TYPE (lhs));
2433 lhs_addr = build_fold_addr_expr (ltmp);
2434 }
2435 else
2436 lhs_addr = gimplify_addr (gsi, lhs);
2437 if (is_gimple_reg (rhs))
2438 {
2439 tree rtmp = create_tmp_var (TREE_TYPE (rhs));
2440 rhs_addr = build_fold_addr_expr (rtmp);
2441 gcall = gimple_build_assign (rtmp, rhs);
2442 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2443 }
2444 else
2445 rhs_addr = gimplify_addr (gsi, rhs);
2446
2447 // Choose the appropriate memory transfer function.
2448 if (load_p && store_p)
2449 {
2450 // ??? Figure out if there's any possible overlap between
2451 // the LHS and the RHS and if not, use MEMCPY.
2452 copy_fn = builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
2453 }
2454 else if (load_p)
2455 {
2456 // Note that the store is non-transactional and cannot overlap.
2457 copy_fn = builtin_decl_explicit (BUILT_IN_TM_MEMCPY_RTWN);
2458 }
2459 else
2460 {
2461 // Note that the load is non-transactional and cannot overlap.
2462 copy_fn = builtin_decl_explicit (BUILT_IN_TM_MEMCPY_RNWT);
2463 }
2464
2465 gcall = gimple_build_call (copy_fn, 3, lhs_addr, rhs_addr,
2466 TYPE_SIZE_UNIT (TREE_TYPE (lhs)));
2467 gimple_set_location (gcall, loc);
2468 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2469
2470 if (ltmp)
2471 {
2472 gcall = gimple_build_assign (lhs, ltmp);
2473 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2474 }
2475 }
2476
2477 // Now that we have the load/store in its instrumented form, add
2478 // thread private addresses to the log if applicable.
2479 if (!store_p)
2480 requires_barrier (region->entry_block, lhs, gcall);
2481 }
2482
2483
2484 /* Expand a call statement as appropriate for a transaction. That is,
2485 either verify that the call does not affect the transaction, or
2486 redirect the call to a clone that handles transactions, or change
2487 the transaction state to IRREVOCABLE. Return true if the call is
2488 one of the builtins that end a transaction. */
2489
2490 static bool
2491 expand_call_tm (struct tm_region *region,
2492 gimple_stmt_iterator *gsi)
2493 {
2494 gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
2495 tree lhs = gimple_call_lhs (stmt);
2496 tree fn_decl;
2497 struct cgraph_node *node;
2498 bool retval = false;
2499
2500 fn_decl = gimple_call_fndecl (stmt);
2501
2502 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMCPY)
2503 || fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMMOVE))
2504 transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD);
2505 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMSET))
2506 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2507
2508 if (is_tm_pure_call (stmt))
2509 return false;
2510
2511 if (fn_decl)
2512 retval = is_tm_ending_fndecl (fn_decl);
2513 if (!retval)
2514 {
2515 /* Assume all non-const/pure calls write to memory, except
2516 transaction ending builtins. */
2517 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2518 }
2519
2520 /* For indirect calls, we already generated a call into the runtime. */
2521 if (!fn_decl)
2522 {
2523 tree fn = gimple_call_fn (stmt);
2524
2525 /* We are guaranteed never to go irrevocable on a safe or pure
2526 call, and the pure call was handled above. */
2527 if (is_tm_safe (fn))
2528 return false;
2529 else
2530 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2531
2532 return false;
2533 }
2534
2535 node = cgraph_node::get (fn_decl);
2536 /* All calls should have cgraph here. */
2537 if (!node)
2538 {
2539 /* We can have a nodeless call here if some pass after IPA-tm
2540 added uninstrumented calls. For example, loop distribution
2541 can transform certain loop constructs into __builtin_mem*
2542 calls. In this case, see if we have a suitable TM
2543 replacement and fill in the gaps. */
2544 gcc_assert (DECL_BUILT_IN_CLASS (fn_decl) == BUILT_IN_NORMAL);
2545 enum built_in_function code = DECL_FUNCTION_CODE (fn_decl);
2546 gcc_assert (code == BUILT_IN_MEMCPY
2547 || code == BUILT_IN_MEMMOVE
2548 || code == BUILT_IN_MEMSET);
2549
2550 tree repl = find_tm_replacement_function (fn_decl);
2551 if (repl)
2552 {
2553 gimple_call_set_fndecl (stmt, repl);
2554 update_stmt (stmt);
2555 node = cgraph_node::create (repl);
2556 node->local.tm_may_enter_irr = false;
2557 return expand_call_tm (region, gsi);
2558 }
2559 gcc_unreachable ();
2560 }
2561 if (node->local.tm_may_enter_irr)
2562 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2563
2564 if (is_tm_abort (fn_decl))
2565 {
2566 transaction_subcode_ior (region, GTMA_HAVE_ABORT);
2567 return true;
2568 }
2569
2570 /* Instrument the store if needed.
2571
2572 If the assignment happens inside the function call (return slot
2573 optimization), there is no instrumentation to be done, since
2574 the callee should have done the right thing. */
2575 if (lhs && requires_barrier (region->entry_block, lhs, stmt)
2576 && !gimple_call_return_slot_opt_p (stmt))
2577 {
2578 tree tmp = create_tmp_reg (TREE_TYPE (lhs));
2579 location_t loc = gimple_location (stmt);
2580 edge fallthru_edge = NULL;
2581 gassign *assign_stmt;
2582
2583 /* Remember if the call was going to throw. */
2584 if (stmt_can_throw_internal (stmt))
2585 {
2586 edge_iterator ei;
2587 edge e;
2588 basic_block bb = gimple_bb (stmt);
2589
2590 FOR_EACH_EDGE (e, ei, bb->succs)
2591 if (e->flags & EDGE_FALLTHRU)
2592 {
2593 fallthru_edge = e;
2594 break;
2595 }
2596 }
2597
2598 gimple_call_set_lhs (stmt, tmp);
2599 update_stmt (stmt);
2600 assign_stmt = gimple_build_assign (lhs, tmp);
2601 gimple_set_location (assign_stmt, loc);
2602
2603 /* We cannot throw in the middle of a BB. If the call was going
2604 to throw, place the instrumentation on the fallthru edge, so
2605 the call remains the last statement in the block. */
2606 if (fallthru_edge)
2607 {
2608 gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (assign_stmt);
2609 gimple_stmt_iterator fallthru_gsi = gsi_start (fallthru_seq);
2610 expand_assign_tm (region, &fallthru_gsi);
2611 gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq);
2612 pending_edge_inserts_p = true;
2613 }
2614 else
2615 {
2616 gsi_insert_after (gsi, assign_stmt, GSI_CONTINUE_LINKING);
2617 expand_assign_tm (region, gsi);
2618 }
2619
2620 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2621 }
2622
2623 return retval;
2624 }
2625
2626
2627 /* Expand all statements in BB as appropriate for being inside
2628 a transaction. */
2629
2630 static void
2631 expand_block_tm (struct tm_region *region, basic_block bb)
2632 {
2633 gimple_stmt_iterator gsi;
2634
2635 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2636 {
2637 gimple *stmt = gsi_stmt (gsi);
2638 switch (gimple_code (stmt))
2639 {
2640 case GIMPLE_ASSIGN:
2641 /* Only memory reads/writes need to be instrumented. */
2642 if (gimple_assign_single_p (stmt)
2643 && !gimple_clobber_p (stmt))
2644 {
2645 expand_assign_tm (region, &gsi);
2646 continue;
2647 }
2648 break;
2649
2650 case GIMPLE_CALL:
2651 if (expand_call_tm (region, &gsi))
2652 return;
2653 break;
2654
2655 case GIMPLE_ASM:
2656 gcc_unreachable ();
2657
2658 default:
2659 break;
2660 }
2661 if (!gsi_end_p (gsi))
2662 gsi_next (&gsi);
2663 }
2664 }
2665
2666 /* Return the list of basic-blocks in REGION.
2667
2668 STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks
2669 following a TM_IRREVOCABLE call.
2670
2671 INCLUDE_UNINSTRUMENTED_P is TRUE if we should include the
2672 uninstrumented code path blocks in the list of basic blocks
2673 returned, false otherwise. */
2674
2675 static vec<basic_block>
2676 get_tm_region_blocks (basic_block entry_block,
2677 bitmap exit_blocks,
2678 bitmap irr_blocks,
2679 bitmap all_region_blocks,
2680 bool stop_at_irrevocable_p,
2681 bool include_uninstrumented_p = true)
2682 {
2683 vec<basic_block> bbs = vNULL;
2684 unsigned i;
2685 edge e;
2686 edge_iterator ei;
2687 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2688
2689 i = 0;
2690 bbs.safe_push (entry_block);
2691 bitmap_set_bit (visited_blocks, entry_block->index);
2692
2693 do
2694 {
2695 basic_block bb = bbs[i++];
2696
2697 if (exit_blocks &&
2698 bitmap_bit_p (exit_blocks, bb->index))
2699 continue;
2700
2701 if (stop_at_irrevocable_p
2702 && irr_blocks
2703 && bitmap_bit_p (irr_blocks, bb->index))
2704 continue;
2705
2706 FOR_EACH_EDGE (e, ei, bb->succs)
2707 if ((include_uninstrumented_p
2708 || !(e->flags & EDGE_TM_UNINSTRUMENTED))
2709 && !bitmap_bit_p (visited_blocks, e->dest->index))
2710 {
2711 bitmap_set_bit (visited_blocks, e->dest->index);
2712 bbs.safe_push (e->dest);
2713 }
2714 }
2715 while (i < bbs.length ());
2716
2717 if (all_region_blocks)
2718 bitmap_ior_into (all_region_blocks, visited_blocks);
2719
2720 BITMAP_FREE (visited_blocks);
2721 return bbs;
2722 }
2723
2724 // Callback data for collect_bb2reg.
2725 struct bb2reg_stuff
2726 {
2727 vec<tm_region *> *bb2reg;
2728 bool include_uninstrumented_p;
2729 };
2730
2731 // Callback for expand_regions, collect innermost region data for each bb.
2732 static void *
2733 collect_bb2reg (struct tm_region *region, void *data)
2734 {
2735 struct bb2reg_stuff *stuff = (struct bb2reg_stuff *)data;
2736 vec<tm_region *> *bb2reg = stuff->bb2reg;
2737 vec<basic_block> queue;
2738 unsigned int i;
2739 basic_block bb;
2740
2741 queue = get_tm_region_blocks (region->entry_block,
2742 region->exit_blocks,
2743 region->irr_blocks,
2744 NULL,
2745 /*stop_at_irr_p=*/true,
2746 stuff->include_uninstrumented_p);
2747
2748 // We expect expand_region to perform a post-order traversal of the region
2749 // tree. Therefore the last region seen for any bb is the innermost.
2750 FOR_EACH_VEC_ELT (queue, i, bb)
2751 (*bb2reg)[bb->index] = region;
2752
2753 queue.release ();
2754 return NULL;
2755 }
2756
2757 // Returns a vector, indexed by BB->INDEX, of the innermost tm_region to
2758 // which a basic block belongs. Note that we only consider the instrumented
2759 // code paths for the region; the uninstrumented code paths are ignored if
2760 // INCLUDE_UNINSTRUMENTED_P is false.
2761 //
2762 // ??? This data is very similar to the bb_regions array that is collected
2763 // during tm_region_init. Or, rather, this data is similar to what could
2764 // be used within tm_region_init. The actual computation in tm_region_init
2765 // begins and ends with bb_regions entirely full of NULL pointers, due to
2766 // the way in which pointers are swapped in and out of the array.
2767 //
2768 // ??? Our callers expect that blocks are not shared between transactions.
2769 // When the optimizers get too smart, and blocks are shared, then during
2770 // the tm_mark phase we'll add log entries to only one of the two transactions,
2771 // and in the tm_edge phase we'll add edges to the CFG that create invalid
2772 // cycles. The symptom being SSA defs that do not dominate their uses.
2773 // Note that the optimizers were locally correct with their transformation,
2774 // as we have no info within the program that suggests that the blocks cannot
2775 // be shared.
2776 //
2777 // ??? There is currently a hack inside tree-ssa-pre.c to work around the
2778 // only known instance of this block sharing.
2779
2780 static vec<tm_region *>
2781 get_bb_regions_instrumented (bool traverse_clones,
2782 bool include_uninstrumented_p)
2783 {
2784 unsigned n = last_basic_block_for_fn (cfun);
2785 struct bb2reg_stuff stuff;
2786 vec<tm_region *> ret;
2787
2788 ret.create (n);
2789 ret.safe_grow_cleared (n);
2790 stuff.bb2reg = &ret;
2791 stuff.include_uninstrumented_p = include_uninstrumented_p;
2792 expand_regions (all_tm_regions, collect_bb2reg, &stuff, traverse_clones);
2793
2794 return ret;
2795 }
2796
2797 /* Set the IN_TRANSACTION for all gimple statements that appear in a
2798 transaction. */
2799
2800 void
2801 compute_transaction_bits (void)
2802 {
2803 struct tm_region *region;
2804 vec<basic_block> queue;
2805 unsigned int i;
2806 basic_block bb;
2807
2808 /* ?? Perhaps we need to abstract gate_tm_init further, because we
2809 certainly don't need it to calculate CDI_DOMINATOR info. */
2810 gate_tm_init ();
2811
2812 FOR_EACH_BB_FN (bb, cfun)
2813 bb->flags &= ~BB_IN_TRANSACTION;
2814
2815 for (region = all_tm_regions; region; region = region->next)
2816 {
2817 queue = get_tm_region_blocks (region->entry_block,
2818 region->exit_blocks,
2819 region->irr_blocks,
2820 NULL,
2821 /*stop_at_irr_p=*/true);
2822 for (i = 0; queue.iterate (i, &bb); ++i)
2823 bb->flags |= BB_IN_TRANSACTION;
2824 queue.release ();
2825 }
2826
2827 if (all_tm_regions)
2828 bitmap_obstack_release (&tm_obstack);
2829 }
2830
2831 /* Replace the GIMPLE_TRANSACTION in this region with the corresponding
2832 call to BUILT_IN_TM_START. */
2833
2834 static void *
2835 expand_transaction (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2836 {
2837 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2838 basic_block transaction_bb = gimple_bb (region->transaction_stmt);
2839 tree tm_state = region->tm_state;
2840 tree tm_state_type = TREE_TYPE (tm_state);
2841 edge abort_edge = NULL;
2842 edge inst_edge = NULL;
2843 edge uninst_edge = NULL;
2844 edge fallthru_edge = NULL;
2845
2846 // Identify the various successors of the transaction start.
2847 {
2848 edge_iterator i;
2849 edge e;
2850 FOR_EACH_EDGE (e, i, transaction_bb->succs)
2851 {
2852 if (e->flags & EDGE_TM_ABORT)
2853 abort_edge = e;
2854 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
2855 uninst_edge = e;
2856 else
2857 inst_edge = e;
2858 if (e->flags & EDGE_FALLTHRU)
2859 fallthru_edge = e;
2860 }
2861 }
2862
2863 /* ??? There are plenty of bits here we're not computing. */
2864 {
2865 int subcode = gimple_transaction_subcode (region->get_transaction_stmt ());
2866 int flags = 0;
2867 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2868 flags |= PR_DOESGOIRREVOCABLE;
2869 if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0)
2870 flags |= PR_HASNOIRREVOCABLE;
2871 /* If the transaction does not have an abort in lexical scope and is not
2872 marked as an outer transaction, then it will never abort. */
2873 if ((subcode & GTMA_HAVE_ABORT) == 0 && (subcode & GTMA_IS_OUTER) == 0)
2874 flags |= PR_HASNOABORT;
2875 if ((subcode & GTMA_HAVE_STORE) == 0)
2876 flags |= PR_READONLY;
2877 if (inst_edge && !(subcode & GTMA_HAS_NO_INSTRUMENTATION))
2878 flags |= PR_INSTRUMENTEDCODE;
2879 if (uninst_edge)
2880 flags |= PR_UNINSTRUMENTEDCODE;
2881 if (subcode & GTMA_IS_OUTER)
2882 region->original_transaction_was_outer = true;
2883 tree t = build_int_cst (tm_state_type, flags);
2884 gcall *call = gimple_build_call (tm_start, 1, t);
2885 gimple_call_set_lhs (call, tm_state);
2886 gimple_set_location (call, gimple_location (region->transaction_stmt));
2887
2888 // Replace the GIMPLE_TRANSACTION with the call to BUILT_IN_TM_START.
2889 gimple_stmt_iterator gsi = gsi_last_bb (transaction_bb);
2890 gcc_assert (gsi_stmt (gsi) == region->transaction_stmt);
2891 gsi_insert_before (&gsi, call, GSI_SAME_STMT);
2892 gsi_remove (&gsi, true);
2893 region->transaction_stmt = call;
2894 }
2895
2896 // Generate log saves.
2897 if (!tm_log_save_addresses.is_empty ())
2898 tm_log_emit_saves (region->entry_block, transaction_bb);
2899
2900 // In the beginning, we've no tests to perform on transaction restart.
2901 // Note that after this point, transaction_bb becomes the "most recent
2902 // block containing tests for the transaction".
2903 region->restart_block = region->entry_block;
2904
2905 // Generate log restores.
2906 if (!tm_log_save_addresses.is_empty ())
2907 {
2908 basic_block test_bb = create_empty_bb (transaction_bb);
2909 basic_block code_bb = create_empty_bb (test_bb);
2910 basic_block join_bb = create_empty_bb (code_bb);
2911 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2912 add_bb_to_loop (code_bb, transaction_bb->loop_father);
2913 add_bb_to_loop (join_bb, transaction_bb->loop_father);
2914 if (region->restart_block == region->entry_block)
2915 region->restart_block = test_bb;
2916
2917 tree t1 = create_tmp_reg (tm_state_type);
2918 tree t2 = build_int_cst (tm_state_type, A_RESTORELIVEVARIABLES);
2919 gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2920 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2921 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2922
2923 t2 = build_int_cst (tm_state_type, 0);
2924 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2925 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2926
2927 tm_log_emit_restores (region->entry_block, code_bb);
2928
2929 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2930 edge et = make_edge (test_bb, code_bb, EDGE_TRUE_VALUE);
2931 edge ef = make_edge (test_bb, join_bb, EDGE_FALSE_VALUE);
2932 redirect_edge_pred (fallthru_edge, join_bb);
2933
2934 join_bb->frequency = test_bb->frequency = transaction_bb->frequency;
2935 join_bb->count = test_bb->count = transaction_bb->count;
2936
2937 ei->probability = PROB_ALWAYS;
2938 et->probability = PROB_LIKELY;
2939 ef->probability = PROB_UNLIKELY;
2940 et->count = apply_probability (test_bb->count, et->probability);
2941 ef->count = apply_probability (test_bb->count, ef->probability);
2942
2943 code_bb->count = et->count;
2944 code_bb->frequency = EDGE_FREQUENCY (et);
2945
2946 transaction_bb = join_bb;
2947 }
2948
2949 // If we have an ABORT edge, create a test to perform the abort.
2950 if (abort_edge)
2951 {
2952 basic_block test_bb = create_empty_bb (transaction_bb);
2953 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2954 if (region->restart_block == region->entry_block)
2955 region->restart_block = test_bb;
2956
2957 tree t1 = create_tmp_reg (tm_state_type);
2958 tree t2 = build_int_cst (tm_state_type, A_ABORTTRANSACTION);
2959 gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
2960 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2961 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2962
2963 t2 = build_int_cst (tm_state_type, 0);
2964 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2965 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2966
2967 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2968 test_bb->frequency = transaction_bb->frequency;
2969 test_bb->count = transaction_bb->count;
2970 ei->probability = PROB_ALWAYS;
2971
2972 // Not abort edge. If both are live, chose one at random as we'll
2973 // we'll be fixing that up below.
2974 redirect_edge_pred (fallthru_edge, test_bb);
2975 fallthru_edge->flags = EDGE_FALSE_VALUE;
2976 fallthru_edge->probability = PROB_VERY_LIKELY;
2977 fallthru_edge->count
2978 = apply_probability (test_bb->count, fallthru_edge->probability);
2979
2980 // Abort/over edge.
2981 redirect_edge_pred (abort_edge, test_bb);
2982 abort_edge->flags = EDGE_TRUE_VALUE;
2983 abort_edge->probability = PROB_VERY_UNLIKELY;
2984 abort_edge->count
2985 = apply_probability (test_bb->count, abort_edge->probability);
2986
2987 transaction_bb = test_bb;
2988 }
2989
2990 // If we have both instrumented and uninstrumented code paths, select one.
2991 if (inst_edge && uninst_edge)
2992 {
2993 basic_block test_bb = create_empty_bb (transaction_bb);
2994 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2995 if (region->restart_block == region->entry_block)
2996 region->restart_block = test_bb;
2997
2998 tree t1 = create_tmp_reg (tm_state_type);
2999 tree t2 = build_int_cst (tm_state_type, A_RUNUNINSTRUMENTEDCODE);
3000
3001 gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2);
3002 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
3003 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
3004
3005 t2 = build_int_cst (tm_state_type, 0);
3006 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
3007 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
3008
3009 // Create the edge into test_bb first, as we want to copy values
3010 // out of the fallthru edge.
3011 edge e = make_edge (transaction_bb, test_bb, fallthru_edge->flags);
3012 e->probability = fallthru_edge->probability;
3013 test_bb->count = e->count = fallthru_edge->count;
3014 test_bb->frequency = EDGE_FREQUENCY (e);
3015
3016 // Now update the edges to the inst/uninist implementations.
3017 // For now assume that the paths are equally likely. When using HTM,
3018 // we'll try the uninst path first and fallback to inst path if htm
3019 // buffers are exceeded. Without HTM we start with the inst path and
3020 // use the uninst path when falling back to serial mode.
3021 redirect_edge_pred (inst_edge, test_bb);
3022 inst_edge->flags = EDGE_FALSE_VALUE;
3023 inst_edge->probability = REG_BR_PROB_BASE / 2;
3024 inst_edge->count
3025 = apply_probability (test_bb->count, inst_edge->probability);
3026
3027 redirect_edge_pred (uninst_edge, test_bb);
3028 uninst_edge->flags = EDGE_TRUE_VALUE;
3029 uninst_edge->probability = REG_BR_PROB_BASE / 2;
3030 uninst_edge->count
3031 = apply_probability (test_bb->count, uninst_edge->probability);
3032 }
3033
3034 // If we have no previous special cases, and we have PHIs at the beginning
3035 // of the atomic region, this means we have a loop at the beginning of the
3036 // atomic region that shares the first block. This can cause problems with
3037 // the transaction restart abnormal edges to be added in the tm_edges pass.
3038 // Solve this by adding a new empty block to receive the abnormal edges.
3039 if (region->restart_block == region->entry_block
3040 && phi_nodes (region->entry_block))
3041 {
3042 basic_block empty_bb = create_empty_bb (transaction_bb);
3043 region->restart_block = empty_bb;
3044 add_bb_to_loop (empty_bb, transaction_bb->loop_father);
3045
3046 redirect_edge_pred (fallthru_edge, empty_bb);
3047 make_edge (transaction_bb, empty_bb, EDGE_FALLTHRU);
3048 }
3049
3050 return NULL;
3051 }
3052
3053 /* Generate the temporary to be used for the return value of
3054 BUILT_IN_TM_START. */
3055
3056 static void *
3057 generate_tm_state (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
3058 {
3059 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
3060 region->tm_state =
3061 create_tmp_reg (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state");
3062
3063 // Reset the subcode, post optimizations. We'll fill this in
3064 // again as we process blocks.
3065 if (region->exit_blocks)
3066 {
3067 gtransaction *transaction_stmt = region->get_transaction_stmt ();
3068 unsigned int subcode = gimple_transaction_subcode (transaction_stmt);
3069
3070 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
3071 subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE
3072 | GTMA_MAY_ENTER_IRREVOCABLE
3073 | GTMA_HAS_NO_INSTRUMENTATION);
3074 else
3075 subcode &= GTMA_DECLARATION_MASK;
3076 gimple_transaction_set_subcode (transaction_stmt, subcode);
3077 }
3078
3079 return NULL;
3080 }
3081
3082 // Propagate flags from inner transactions outwards.
3083 static void
3084 propagate_tm_flags_out (struct tm_region *region)
3085 {
3086 if (region == NULL)
3087 return;
3088 propagate_tm_flags_out (region->inner);
3089
3090 if (region->outer && region->outer->transaction_stmt)
3091 {
3092 unsigned s
3093 = gimple_transaction_subcode (region->get_transaction_stmt ());
3094 s &= (GTMA_HAVE_ABORT | GTMA_HAVE_LOAD | GTMA_HAVE_STORE
3095 | GTMA_MAY_ENTER_IRREVOCABLE);
3096 s |= gimple_transaction_subcode (region->outer->get_transaction_stmt ());
3097 gimple_transaction_set_subcode (region->outer->get_transaction_stmt (),
3098 s);
3099 }
3100
3101 propagate_tm_flags_out (region->next);
3102 }
3103
3104 /* Entry point to the MARK phase of TM expansion. Here we replace
3105 transactional memory statements with calls to builtins, and function
3106 calls with their transactional clones (if available). But we don't
3107 yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges. */
3108
3109 static unsigned int
3110 execute_tm_mark (void)
3111 {
3112 pending_edge_inserts_p = false;
3113
3114 expand_regions (all_tm_regions, generate_tm_state, NULL,
3115 /*traverse_clones=*/true);
3116
3117 tm_log_init ();
3118
3119 vec<tm_region *> bb_regions
3120 = get_bb_regions_instrumented (/*traverse_clones=*/true,
3121 /*include_uninstrumented_p=*/false);
3122 struct tm_region *r;
3123 unsigned i;
3124
3125 // Expand memory operations into calls into the runtime.
3126 // This collects log entries as well.
3127 FOR_EACH_VEC_ELT (bb_regions, i, r)
3128 {
3129 if (r != NULL)
3130 {
3131 if (r->transaction_stmt)
3132 {
3133 unsigned sub
3134 = gimple_transaction_subcode (r->get_transaction_stmt ());
3135
3136 /* If we're sure to go irrevocable, there won't be
3137 anything to expand, since the run-time will go
3138 irrevocable right away. */
3139 if (sub & GTMA_DOES_GO_IRREVOCABLE
3140 && sub & GTMA_MAY_ENTER_IRREVOCABLE)
3141 continue;
3142 }
3143 expand_block_tm (r, BASIC_BLOCK_FOR_FN (cfun, i));
3144 }
3145 }
3146
3147 bb_regions.release ();
3148
3149 // Propagate flags from inner transactions outwards.
3150 propagate_tm_flags_out (all_tm_regions);
3151
3152 // Expand GIMPLE_TRANSACTIONs into calls into the runtime.
3153 expand_regions (all_tm_regions, expand_transaction, NULL,
3154 /*traverse_clones=*/false);
3155
3156 tm_log_emit ();
3157 tm_log_delete ();
3158
3159 if (pending_edge_inserts_p)
3160 gsi_commit_edge_inserts ();
3161 free_dominance_info (CDI_DOMINATORS);
3162 return 0;
3163 }
3164
3165 namespace {
3166
3167 const pass_data pass_data_tm_mark =
3168 {
3169 GIMPLE_PASS, /* type */
3170 "tmmark", /* name */
3171 OPTGROUP_NONE, /* optinfo_flags */
3172 TV_TRANS_MEM, /* tv_id */
3173 ( PROP_ssa | PROP_cfg ), /* properties_required */
3174 0, /* properties_provided */
3175 0, /* properties_destroyed */
3176 0, /* todo_flags_start */
3177 TODO_update_ssa, /* todo_flags_finish */
3178 };
3179
3180 class pass_tm_mark : public gimple_opt_pass
3181 {
3182 public:
3183 pass_tm_mark (gcc::context *ctxt)
3184 : gimple_opt_pass (pass_data_tm_mark, ctxt)
3185 {}
3186
3187 /* opt_pass methods: */
3188 virtual unsigned int execute (function *) { return execute_tm_mark (); }
3189
3190 }; // class pass_tm_mark
3191
3192 } // anon namespace
3193
3194 gimple_opt_pass *
3195 make_pass_tm_mark (gcc::context *ctxt)
3196 {
3197 return new pass_tm_mark (ctxt);
3198 }
3199 \f
3200
3201 /* Create an abnormal edge from STMT at iter, splitting the block
3202 as necessary. Adjust *PNEXT as needed for the split block. */
3203
3204 static inline void
3205 split_bb_make_tm_edge (gimple *stmt, basic_block dest_bb,
3206 gimple_stmt_iterator iter, gimple_stmt_iterator *pnext)
3207 {
3208 basic_block bb = gimple_bb (stmt);
3209 if (!gsi_one_before_end_p (iter))
3210 {
3211 edge e = split_block (bb, stmt);
3212 *pnext = gsi_start_bb (e->dest);
3213 }
3214 make_edge (bb, dest_bb, EDGE_ABNORMAL);
3215
3216 // Record the need for the edge for the benefit of the rtl passes.
3217 if (cfun->gimple_df->tm_restart == NULL)
3218 cfun->gimple_df->tm_restart
3219 = hash_table<tm_restart_hasher>::create_ggc (31);
3220
3221 struct tm_restart_node dummy;
3222 dummy.stmt = stmt;
3223 dummy.label_or_list = gimple_block_label (dest_bb);
3224
3225 tm_restart_node **slot = cfun->gimple_df->tm_restart->find_slot (&dummy,
3226 INSERT);
3227 struct tm_restart_node *n = *slot;
3228 if (n == NULL)
3229 {
3230 n = ggc_alloc<tm_restart_node> ();
3231 *n = dummy;
3232 }
3233 else
3234 {
3235 tree old = n->label_or_list;
3236 if (TREE_CODE (old) == LABEL_DECL)
3237 old = tree_cons (NULL, old, NULL);
3238 n->label_or_list = tree_cons (NULL, dummy.label_or_list, old);
3239 }
3240 }
3241
3242 /* Split block BB as necessary for every builtin function we added, and
3243 wire up the abnormal back edges implied by the transaction restart. */
3244
3245 static void
3246 expand_block_edges (struct tm_region *const region, basic_block bb)
3247 {
3248 gimple_stmt_iterator gsi, next_gsi;
3249
3250 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi = next_gsi)
3251 {
3252 gimple *stmt = gsi_stmt (gsi);
3253 gcall *call_stmt;
3254
3255 next_gsi = gsi;
3256 gsi_next (&next_gsi);
3257
3258 // ??? Shouldn't we split for any non-pure, non-irrevocable function?
3259 call_stmt = dyn_cast <gcall *> (stmt);
3260 if ((!call_stmt)
3261 || (gimple_call_flags (call_stmt) & ECF_TM_BUILTIN) == 0)
3262 continue;
3263
3264 if (DECL_FUNCTION_CODE (gimple_call_fndecl (call_stmt))
3265 == BUILT_IN_TM_ABORT)
3266 {
3267 // If we have a ``_transaction_cancel [[outer]]'', there is only
3268 // one abnormal edge: to the transaction marked OUTER.
3269 // All compiler-generated instances of BUILT_IN_TM_ABORT have a
3270 // constant argument, which we can examine here. Users invoking
3271 // TM_ABORT directly get what they deserve.
3272 tree arg = gimple_call_arg (call_stmt, 0);
3273 if (TREE_CODE (arg) == INTEGER_CST
3274 && (TREE_INT_CST_LOW (arg) & AR_OUTERABORT) != 0
3275 && !decl_is_tm_clone (current_function_decl))
3276 {
3277 // Find the GTMA_IS_OUTER transaction.
3278 for (struct tm_region *o = region; o; o = o->outer)
3279 if (o->original_transaction_was_outer)
3280 {
3281 split_bb_make_tm_edge (call_stmt, o->restart_block,
3282 gsi, &next_gsi);
3283 break;
3284 }
3285
3286 // Otherwise, the front-end should have semantically checked
3287 // outer aborts, but in either case the target region is not
3288 // within this function.
3289 continue;
3290 }
3291
3292 // Non-outer, TM aborts have an abnormal edge to the inner-most
3293 // transaction, the one being aborted;
3294 split_bb_make_tm_edge (call_stmt, region->restart_block, gsi,
3295 &next_gsi);
3296 }
3297
3298 // All TM builtins have an abnormal edge to the outer-most transaction.
3299 // We never restart inner transactions. For tm clones, we know a-priori
3300 // that the outer-most transaction is outside the function.
3301 if (decl_is_tm_clone (current_function_decl))
3302 continue;
3303
3304 if (cfun->gimple_df->tm_restart == NULL)
3305 cfun->gimple_df->tm_restart
3306 = hash_table<tm_restart_hasher>::create_ggc (31);
3307
3308 // All TM builtins have an abnormal edge to the outer-most transaction.
3309 // We never restart inner transactions.
3310 for (struct tm_region *o = region; o; o = o->outer)
3311 if (!o->outer)
3312 {
3313 split_bb_make_tm_edge (call_stmt, o->restart_block, gsi, &next_gsi);
3314 break;
3315 }
3316
3317 // Delete any tail-call annotation that may have been added.
3318 // The tail-call pass may have mis-identified the commit as being
3319 // a candidate because we had not yet added this restart edge.
3320 gimple_call_set_tail (call_stmt, false);
3321 }
3322 }
3323
3324 /* Entry point to the final expansion of transactional nodes. */
3325
3326 namespace {
3327
3328 const pass_data pass_data_tm_edges =
3329 {
3330 GIMPLE_PASS, /* type */
3331 "tmedge", /* name */
3332 OPTGROUP_NONE, /* optinfo_flags */
3333 TV_TRANS_MEM, /* tv_id */
3334 ( PROP_ssa | PROP_cfg ), /* properties_required */
3335 0, /* properties_provided */
3336 0, /* properties_destroyed */
3337 0, /* todo_flags_start */
3338 TODO_update_ssa, /* todo_flags_finish */
3339 };
3340
3341 class pass_tm_edges : public gimple_opt_pass
3342 {
3343 public:
3344 pass_tm_edges (gcc::context *ctxt)
3345 : gimple_opt_pass (pass_data_tm_edges, ctxt)
3346 {}
3347
3348 /* opt_pass methods: */
3349 virtual unsigned int execute (function *);
3350
3351 }; // class pass_tm_edges
3352
3353 unsigned int
3354 pass_tm_edges::execute (function *fun)
3355 {
3356 vec<tm_region *> bb_regions
3357 = get_bb_regions_instrumented (/*traverse_clones=*/false,
3358 /*include_uninstrumented_p=*/true);
3359 struct tm_region *r;
3360 unsigned i;
3361
3362 FOR_EACH_VEC_ELT (bb_regions, i, r)
3363 if (r != NULL)
3364 expand_block_edges (r, BASIC_BLOCK_FOR_FN (fun, i));
3365
3366 bb_regions.release ();
3367
3368 /* We've got to release the dominance info now, to indicate that it
3369 must be rebuilt completely. Otherwise we'll crash trying to update
3370 the SSA web in the TODO section following this pass. */
3371 free_dominance_info (CDI_DOMINATORS);
3372 bitmap_obstack_release (&tm_obstack);
3373 all_tm_regions = NULL;
3374
3375 return 0;
3376 }
3377
3378 } // anon namespace
3379
3380 gimple_opt_pass *
3381 make_pass_tm_edges (gcc::context *ctxt)
3382 {
3383 return new pass_tm_edges (ctxt);
3384 }
3385 \f
3386 /* Helper function for expand_regions. Expand REGION and recurse to
3387 the inner region. Call CALLBACK on each region. CALLBACK returns
3388 NULL to continue the traversal, otherwise a non-null value which
3389 this function will return as well. TRAVERSE_CLONES is true if we
3390 should traverse transactional clones. */
3391
3392 static void *
3393 expand_regions_1 (struct tm_region *region,
3394 void *(*callback)(struct tm_region *, void *),
3395 void *data,
3396 bool traverse_clones)
3397 {
3398 void *retval = NULL;
3399 if (region->exit_blocks
3400 || (traverse_clones && decl_is_tm_clone (current_function_decl)))
3401 {
3402 retval = callback (region, data);
3403 if (retval)
3404 return retval;
3405 }
3406 if (region->inner)
3407 {
3408 retval = expand_regions (region->inner, callback, data, traverse_clones);
3409 if (retval)
3410 return retval;
3411 }
3412 return retval;
3413 }
3414
3415 /* Traverse the regions enclosed and including REGION. Execute
3416 CALLBACK for each region, passing DATA. CALLBACK returns NULL to
3417 continue the traversal, otherwise a non-null value which this
3418 function will return as well. TRAVERSE_CLONES is true if we should
3419 traverse transactional clones. */
3420
3421 static void *
3422 expand_regions (struct tm_region *region,
3423 void *(*callback)(struct tm_region *, void *),
3424 void *data,
3425 bool traverse_clones)
3426 {
3427 void *retval = NULL;
3428 while (region)
3429 {
3430 retval = expand_regions_1 (region, callback, data, traverse_clones);
3431 if (retval)
3432 return retval;
3433 region = region->next;
3434 }
3435 return retval;
3436 }
3437
3438 \f
3439 /* A unique TM memory operation. */
3440 struct tm_memop
3441 {
3442 /* Unique ID that all memory operations to the same location have. */
3443 unsigned int value_id;
3444 /* Address of load/store. */
3445 tree addr;
3446 };
3447
3448 /* TM memory operation hashtable helpers. */
3449
3450 struct tm_memop_hasher : free_ptr_hash <tm_memop>
3451 {
3452 static inline hashval_t hash (const tm_memop *);
3453 static inline bool equal (const tm_memop *, const tm_memop *);
3454 };
3455
3456 /* Htab support. Return a hash value for a `tm_memop'. */
3457 inline hashval_t
3458 tm_memop_hasher::hash (const tm_memop *mem)
3459 {
3460 tree addr = mem->addr;
3461 /* We drill down to the SSA_NAME/DECL for the hash, but equality is
3462 actually done with operand_equal_p (see tm_memop_eq). */
3463 if (TREE_CODE (addr) == ADDR_EXPR)
3464 addr = TREE_OPERAND (addr, 0);
3465 return iterative_hash_expr (addr, 0);
3466 }
3467
3468 /* Htab support. Return true if two tm_memop's are the same. */
3469 inline bool
3470 tm_memop_hasher::equal (const tm_memop *mem1, const tm_memop *mem2)
3471 {
3472 return operand_equal_p (mem1->addr, mem2->addr, 0);
3473 }
3474
3475 /* Sets for solving data flow equations in the memory optimization pass. */
3476 struct tm_memopt_bitmaps
3477 {
3478 /* Stores available to this BB upon entry. Basically, stores that
3479 dominate this BB. */
3480 bitmap store_avail_in;
3481 /* Stores available at the end of this BB. */
3482 bitmap store_avail_out;
3483 bitmap store_antic_in;
3484 bitmap store_antic_out;
3485 /* Reads available to this BB upon entry. Basically, reads that
3486 dominate this BB. */
3487 bitmap read_avail_in;
3488 /* Reads available at the end of this BB. */
3489 bitmap read_avail_out;
3490 /* Reads performed in this BB. */
3491 bitmap read_local;
3492 /* Writes performed in this BB. */
3493 bitmap store_local;
3494
3495 /* Temporary storage for pass. */
3496 /* Is the current BB in the worklist? */
3497 bool avail_in_worklist_p;
3498 /* Have we visited this BB? */
3499 bool visited_p;
3500 };
3501
3502 static bitmap_obstack tm_memopt_obstack;
3503
3504 /* Unique counter for TM loads and stores. Loads and stores of the
3505 same address get the same ID. */
3506 static unsigned int tm_memopt_value_id;
3507 static hash_table<tm_memop_hasher> *tm_memopt_value_numbers;
3508
3509 #define STORE_AVAIL_IN(BB) \
3510 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in
3511 #define STORE_AVAIL_OUT(BB) \
3512 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out
3513 #define STORE_ANTIC_IN(BB) \
3514 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in
3515 #define STORE_ANTIC_OUT(BB) \
3516 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out
3517 #define READ_AVAIL_IN(BB) \
3518 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in
3519 #define READ_AVAIL_OUT(BB) \
3520 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out
3521 #define READ_LOCAL(BB) \
3522 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local
3523 #define STORE_LOCAL(BB) \
3524 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local
3525 #define AVAIL_IN_WORKLIST_P(BB) \
3526 ((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p
3527 #define BB_VISITED_P(BB) \
3528 ((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p
3529
3530 /* Given a TM load/store in STMT, return the value number for the address
3531 it accesses. */
3532
3533 static unsigned int
3534 tm_memopt_value_number (gimple *stmt, enum insert_option op)
3535 {
3536 struct tm_memop tmpmem, *mem;
3537 tm_memop **slot;
3538
3539 gcc_assert (is_tm_load (stmt) || is_tm_store (stmt));
3540 tmpmem.addr = gimple_call_arg (stmt, 0);
3541 slot = tm_memopt_value_numbers->find_slot (&tmpmem, op);
3542 if (*slot)
3543 mem = *slot;
3544 else if (op == INSERT)
3545 {
3546 mem = XNEW (struct tm_memop);
3547 *slot = mem;
3548 mem->value_id = tm_memopt_value_id++;
3549 mem->addr = tmpmem.addr;
3550 }
3551 else
3552 gcc_unreachable ();
3553 return mem->value_id;
3554 }
3555
3556 /* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL. */
3557
3558 static void
3559 tm_memopt_accumulate_memops (basic_block bb)
3560 {
3561 gimple_stmt_iterator gsi;
3562
3563 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3564 {
3565 gimple *stmt = gsi_stmt (gsi);
3566 bitmap bits;
3567 unsigned int loc;
3568
3569 if (is_tm_store (stmt))
3570 bits = STORE_LOCAL (bb);
3571 else if (is_tm_load (stmt))
3572 bits = READ_LOCAL (bb);
3573 else
3574 continue;
3575
3576 loc = tm_memopt_value_number (stmt, INSERT);
3577 bitmap_set_bit (bits, loc);
3578 if (dump_file)
3579 {
3580 fprintf (dump_file, "TM memopt (%s): value num=%d, BB=%d, addr=",
3581 is_tm_load (stmt) ? "LOAD" : "STORE", loc,
3582 gimple_bb (stmt)->index);
3583 print_generic_expr (dump_file, gimple_call_arg (stmt, 0), 0);
3584 fprintf (dump_file, "\n");
3585 }
3586 }
3587 }
3588
3589 /* Prettily dump one of the memopt sets. BITS is the bitmap to dump. */
3590
3591 static void
3592 dump_tm_memopt_set (const char *set_name, bitmap bits)
3593 {
3594 unsigned i;
3595 bitmap_iterator bi;
3596 const char *comma = "";
3597
3598 fprintf (dump_file, "TM memopt: %s: [", set_name);
3599 EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi)
3600 {
3601 hash_table<tm_memop_hasher>::iterator hi;
3602 struct tm_memop *mem = NULL;
3603
3604 /* Yeah, yeah, yeah. Whatever. This is just for debugging. */
3605 FOR_EACH_HASH_TABLE_ELEMENT (*tm_memopt_value_numbers, mem, tm_memop_t, hi)
3606 if (mem->value_id == i)
3607 break;
3608 gcc_assert (mem->value_id == i);
3609 fprintf (dump_file, "%s", comma);
3610 comma = ", ";
3611 print_generic_expr (dump_file, mem->addr, 0);
3612 }
3613 fprintf (dump_file, "]\n");
3614 }
3615
3616 /* Prettily dump all of the memopt sets in BLOCKS. */
3617
3618 static void
3619 dump_tm_memopt_sets (vec<basic_block> blocks)
3620 {
3621 size_t i;
3622 basic_block bb;
3623
3624 for (i = 0; blocks.iterate (i, &bb); ++i)
3625 {
3626 fprintf (dump_file, "------------BB %d---------\n", bb->index);
3627 dump_tm_memopt_set ("STORE_LOCAL", STORE_LOCAL (bb));
3628 dump_tm_memopt_set ("READ_LOCAL", READ_LOCAL (bb));
3629 dump_tm_memopt_set ("STORE_AVAIL_IN", STORE_AVAIL_IN (bb));
3630 dump_tm_memopt_set ("STORE_AVAIL_OUT", STORE_AVAIL_OUT (bb));
3631 dump_tm_memopt_set ("READ_AVAIL_IN", READ_AVAIL_IN (bb));
3632 dump_tm_memopt_set ("READ_AVAIL_OUT", READ_AVAIL_OUT (bb));
3633 }
3634 }
3635
3636 /* Compute {STORE,READ}_AVAIL_IN for the basic block BB. */
3637
3638 static void
3639 tm_memopt_compute_avin (basic_block bb)
3640 {
3641 edge e;
3642 unsigned ix;
3643
3644 /* Seed with the AVOUT of any predecessor. */
3645 for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
3646 {
3647 e = EDGE_PRED (bb, ix);
3648 /* Make sure we have already visited this BB, and is thus
3649 initialized.
3650
3651 If e->src->aux is NULL, this predecessor is actually on an
3652 enclosing transaction. We only care about the current
3653 transaction, so ignore it. */
3654 if (e->src->aux && BB_VISITED_P (e->src))
3655 {
3656 bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3657 bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3658 break;
3659 }
3660 }
3661
3662 for (; ix < EDGE_COUNT (bb->preds); ix++)
3663 {
3664 e = EDGE_PRED (bb, ix);
3665 if (e->src->aux && BB_VISITED_P (e->src))
3666 {
3667 bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3668 bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3669 }
3670 }
3671
3672 BB_VISITED_P (bb) = true;
3673 }
3674
3675 /* Compute the STORE_ANTIC_IN for the basic block BB. */
3676
3677 static void
3678 tm_memopt_compute_antin (basic_block bb)
3679 {
3680 edge e;
3681 unsigned ix;
3682
3683 /* Seed with the ANTIC_OUT of any successor. */
3684 for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++)
3685 {
3686 e = EDGE_SUCC (bb, ix);
3687 /* Make sure we have already visited this BB, and is thus
3688 initialized. */
3689 if (BB_VISITED_P (e->dest))
3690 {
3691 bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3692 break;
3693 }
3694 }
3695
3696 for (; ix < EDGE_COUNT (bb->succs); ix++)
3697 {
3698 e = EDGE_SUCC (bb, ix);
3699 if (BB_VISITED_P (e->dest))
3700 bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3701 }
3702
3703 BB_VISITED_P (bb) = true;
3704 }
3705
3706 /* Compute the AVAIL sets for every basic block in BLOCKS.
3707
3708 We compute {STORE,READ}_AVAIL_{OUT,IN} as follows:
3709
3710 AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb])
3711 AVAIL_IN[bb] = intersect (AVAIL_OUT[predecessors])
3712
3713 This is basically what we do in lcm's compute_available(), but here
3714 we calculate two sets of sets (one for STOREs and one for READs),
3715 and we work on a region instead of the entire CFG.
3716
3717 REGION is the TM region.
3718 BLOCKS are the basic blocks in the region. */
3719
3720 static void
3721 tm_memopt_compute_available (struct tm_region *region,
3722 vec<basic_block> blocks)
3723 {
3724 edge e;
3725 basic_block *worklist, *qin, *qout, *qend, bb;
3726 unsigned int qlen, i;
3727 edge_iterator ei;
3728 bool changed;
3729
3730 /* Allocate a worklist array/queue. Entries are only added to the
3731 list if they were not already on the list. So the size is
3732 bounded by the number of basic blocks in the region. */
3733 qlen = blocks.length () - 1;
3734 qin = qout = worklist =
3735 XNEWVEC (basic_block, qlen);
3736
3737 /* Put every block in the region on the worklist. */
3738 for (i = 0; blocks.iterate (i, &bb); ++i)
3739 {
3740 /* Seed AVAIL_OUT with the LOCAL set. */
3741 bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb));
3742 bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb));
3743
3744 AVAIL_IN_WORKLIST_P (bb) = true;
3745 /* No need to insert the entry block, since it has an AVIN of
3746 null, and an AVOUT that has already been seeded in. */
3747 if (bb != region->entry_block)
3748 *qin++ = bb;
3749 }
3750
3751 /* The entry block has been initialized with the local sets. */
3752 BB_VISITED_P (region->entry_block) = true;
3753
3754 qin = worklist;
3755 qend = &worklist[qlen];
3756
3757 /* Iterate until the worklist is empty. */
3758 while (qlen)
3759 {
3760 /* Take the first entry off the worklist. */
3761 bb = *qout++;
3762 qlen--;
3763
3764 if (qout >= qend)
3765 qout = worklist;
3766
3767 /* This block can be added to the worklist again if necessary. */
3768 AVAIL_IN_WORKLIST_P (bb) = false;
3769 tm_memopt_compute_avin (bb);
3770
3771 /* Note: We do not add the LOCAL sets here because we already
3772 seeded the AVAIL_OUT sets with them. */
3773 changed = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb));
3774 changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb));
3775 if (changed
3776 && (region->exit_blocks == NULL
3777 || !bitmap_bit_p (region->exit_blocks, bb->index)))
3778 /* If the out state of this block changed, then we need to add
3779 its successors to the worklist if they are not already in. */
3780 FOR_EACH_EDGE (e, ei, bb->succs)
3781 if (!AVAIL_IN_WORKLIST_P (e->dest)
3782 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
3783 {
3784 *qin++ = e->dest;
3785 AVAIL_IN_WORKLIST_P (e->dest) = true;
3786 qlen++;
3787
3788 if (qin >= qend)
3789 qin = worklist;
3790 }
3791 }
3792
3793 free (worklist);
3794
3795 if (dump_file)
3796 dump_tm_memopt_sets (blocks);
3797 }
3798
3799 /* Compute ANTIC sets for every basic block in BLOCKS.
3800
3801 We compute STORE_ANTIC_OUT as follows:
3802
3803 STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb])
3804 STORE_ANTIC_IN[bb] = intersect(STORE_ANTIC_OUT[successors])
3805
3806 REGION is the TM region.
3807 BLOCKS are the basic blocks in the region. */
3808
3809 static void
3810 tm_memopt_compute_antic (struct tm_region *region,
3811 vec<basic_block> blocks)
3812 {
3813 edge e;
3814 basic_block *worklist, *qin, *qout, *qend, bb;
3815 unsigned int qlen;
3816 int i;
3817 edge_iterator ei;
3818
3819 /* Allocate a worklist array/queue. Entries are only added to the
3820 list if they were not already on the list. So the size is
3821 bounded by the number of basic blocks in the region. */
3822 qin = qout = worklist = XNEWVEC (basic_block, blocks.length ());
3823
3824 for (qlen = 0, i = blocks.length () - 1; i >= 0; --i)
3825 {
3826 bb = blocks[i];
3827
3828 /* Seed ANTIC_OUT with the LOCAL set. */
3829 bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb));
3830
3831 /* Put every block in the region on the worklist. */
3832 AVAIL_IN_WORKLIST_P (bb) = true;
3833 /* No need to insert exit blocks, since their ANTIC_IN is NULL,
3834 and their ANTIC_OUT has already been seeded in. */
3835 if (region->exit_blocks
3836 && !bitmap_bit_p (region->exit_blocks, bb->index))
3837 {
3838 qlen++;
3839 *qin++ = bb;
3840 }
3841 }
3842
3843 /* The exit blocks have been initialized with the local sets. */
3844 if (region->exit_blocks)
3845 {
3846 unsigned int i;
3847 bitmap_iterator bi;
3848 EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi)
3849 BB_VISITED_P (BASIC_BLOCK_FOR_FN (cfun, i)) = true;
3850 }
3851
3852 qin = worklist;
3853 qend = &worklist[qlen];
3854
3855 /* Iterate until the worklist is empty. */
3856 while (qlen)
3857 {
3858 /* Take the first entry off the worklist. */
3859 bb = *qout++;
3860 qlen--;
3861
3862 if (qout >= qend)
3863 qout = worklist;
3864
3865 /* This block can be added to the worklist again if necessary. */
3866 AVAIL_IN_WORKLIST_P (bb) = false;
3867 tm_memopt_compute_antin (bb);
3868
3869 /* Note: We do not add the LOCAL sets here because we already
3870 seeded the ANTIC_OUT sets with them. */
3871 if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb))
3872 && bb != region->entry_block)
3873 /* If the out state of this block changed, then we need to add
3874 its predecessors to the worklist if they are not already in. */
3875 FOR_EACH_EDGE (e, ei, bb->preds)
3876 if (!AVAIL_IN_WORKLIST_P (e->src))
3877 {
3878 *qin++ = e->src;
3879 AVAIL_IN_WORKLIST_P (e->src) = true;
3880 qlen++;
3881
3882 if (qin >= qend)
3883 qin = worklist;
3884 }
3885 }
3886
3887 free (worklist);
3888
3889 if (dump_file)
3890 dump_tm_memopt_sets (blocks);
3891 }
3892
3893 /* Offsets of load variants from TM_LOAD. For example,
3894 BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*.
3895 See gtm-builtins.def. */
3896 #define TRANSFORM_RAR 1
3897 #define TRANSFORM_RAW 2
3898 #define TRANSFORM_RFW 3
3899 /* Offsets of store variants from TM_STORE. */
3900 #define TRANSFORM_WAR 1
3901 #define TRANSFORM_WAW 2
3902
3903 /* Inform about a load/store optimization. */
3904
3905 static void
3906 dump_tm_memopt_transform (gimple *stmt)
3907 {
3908 if (dump_file)
3909 {
3910 fprintf (dump_file, "TM memopt: transforming: ");
3911 print_gimple_stmt (dump_file, stmt, 0, 0);
3912 fprintf (dump_file, "\n");
3913 }
3914 }
3915
3916 /* Perform a read/write optimization. Replaces the TM builtin in STMT
3917 by a builtin that is OFFSET entries down in the builtins table in
3918 gtm-builtins.def. */
3919
3920 static void
3921 tm_memopt_transform_stmt (unsigned int offset,
3922 gcall *stmt,
3923 gimple_stmt_iterator *gsi)
3924 {
3925 tree fn = gimple_call_fn (stmt);
3926 gcc_assert (TREE_CODE (fn) == ADDR_EXPR);
3927 TREE_OPERAND (fn, 0)
3928 = builtin_decl_explicit ((enum built_in_function)
3929 (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0))
3930 + offset));
3931 gimple_call_set_fn (stmt, fn);
3932 gsi_replace (gsi, stmt, true);
3933 dump_tm_memopt_transform (stmt);
3934 }
3935
3936 /* Perform the actual TM memory optimization transformations in the
3937 basic blocks in BLOCKS. */
3938
3939 static void
3940 tm_memopt_transform_blocks (vec<basic_block> blocks)
3941 {
3942 size_t i;
3943 basic_block bb;
3944 gimple_stmt_iterator gsi;
3945
3946 for (i = 0; blocks.iterate (i, &bb); ++i)
3947 {
3948 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3949 {
3950 gimple *stmt = gsi_stmt (gsi);
3951 bitmap read_avail = READ_AVAIL_IN (bb);
3952 bitmap store_avail = STORE_AVAIL_IN (bb);
3953 bitmap store_antic = STORE_ANTIC_OUT (bb);
3954 unsigned int loc;
3955
3956 if (is_tm_simple_load (stmt))
3957 {
3958 gcall *call_stmt = as_a <gcall *> (stmt);
3959 loc = tm_memopt_value_number (stmt, NO_INSERT);
3960 if (store_avail && bitmap_bit_p (store_avail, loc))
3961 tm_memopt_transform_stmt (TRANSFORM_RAW, call_stmt, &gsi);
3962 else if (store_antic && bitmap_bit_p (store_antic, loc))
3963 {
3964 tm_memopt_transform_stmt (TRANSFORM_RFW, call_stmt, &gsi);
3965 bitmap_set_bit (store_avail, loc);
3966 }
3967 else if (read_avail && bitmap_bit_p (read_avail, loc))
3968 tm_memopt_transform_stmt (TRANSFORM_RAR, call_stmt, &gsi);
3969 else
3970 bitmap_set_bit (read_avail, loc);
3971 }
3972 else if (is_tm_simple_store (stmt))
3973 {
3974 gcall *call_stmt = as_a <gcall *> (stmt);
3975 loc = tm_memopt_value_number (stmt, NO_INSERT);
3976 if (store_avail && bitmap_bit_p (store_avail, loc))
3977 tm_memopt_transform_stmt (TRANSFORM_WAW, call_stmt, &gsi);
3978 else
3979 {
3980 if (read_avail && bitmap_bit_p (read_avail, loc))
3981 tm_memopt_transform_stmt (TRANSFORM_WAR, call_stmt, &gsi);
3982 bitmap_set_bit (store_avail, loc);
3983 }
3984 }
3985 }
3986 }
3987 }
3988
3989 /* Return a new set of bitmaps for a BB. */
3990
3991 static struct tm_memopt_bitmaps *
3992 tm_memopt_init_sets (void)
3993 {
3994 struct tm_memopt_bitmaps *b
3995 = XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps);
3996 b->store_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3997 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3998 b->store_antic_in = BITMAP_ALLOC (&tm_memopt_obstack);
3999 b->store_antic_out = BITMAP_ALLOC (&tm_memopt_obstack);
4000 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
4001 b->read_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
4002 b->read_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
4003 b->read_local = BITMAP_ALLOC (&tm_memopt_obstack);
4004 b->store_local = BITMAP_ALLOC (&tm_memopt_obstack);
4005 return b;
4006 }
4007
4008 /* Free sets computed for each BB. */
4009
4010 static void
4011 tm_memopt_free_sets (vec<basic_block> blocks)
4012 {
4013 size_t i;
4014 basic_block bb;
4015
4016 for (i = 0; blocks.iterate (i, &bb); ++i)
4017 bb->aux = NULL;
4018 }
4019
4020 /* Clear the visited bit for every basic block in BLOCKS. */
4021
4022 static void
4023 tm_memopt_clear_visited (vec<basic_block> blocks)
4024 {
4025 size_t i;
4026 basic_block bb;
4027
4028 for (i = 0; blocks.iterate (i, &bb); ++i)
4029 BB_VISITED_P (bb) = false;
4030 }
4031
4032 /* Replace TM load/stores with hints for the runtime. We handle
4033 things like read-after-write, write-after-read, read-after-read,
4034 read-for-write, etc. */
4035
4036 static unsigned int
4037 execute_tm_memopt (void)
4038 {
4039 struct tm_region *region;
4040 vec<basic_block> bbs;
4041
4042 tm_memopt_value_id = 0;
4043 tm_memopt_value_numbers = new hash_table<tm_memop_hasher> (10);
4044
4045 for (region = all_tm_regions; region; region = region->next)
4046 {
4047 /* All the TM stores/loads in the current region. */
4048 size_t i;
4049 basic_block bb;
4050
4051 bitmap_obstack_initialize (&tm_memopt_obstack);
4052
4053 /* Save all BBs for the current region. */
4054 bbs = get_tm_region_blocks (region->entry_block,
4055 region->exit_blocks,
4056 region->irr_blocks,
4057 NULL,
4058 false);
4059
4060 /* Collect all the memory operations. */
4061 for (i = 0; bbs.iterate (i, &bb); ++i)
4062 {
4063 bb->aux = tm_memopt_init_sets ();
4064 tm_memopt_accumulate_memops (bb);
4065 }
4066
4067 /* Solve data flow equations and transform each block accordingly. */
4068 tm_memopt_clear_visited (bbs);
4069 tm_memopt_compute_available (region, bbs);
4070 tm_memopt_clear_visited (bbs);
4071 tm_memopt_compute_antic (region, bbs);
4072 tm_memopt_transform_blocks (bbs);
4073
4074 tm_memopt_free_sets (bbs);
4075 bbs.release ();
4076 bitmap_obstack_release (&tm_memopt_obstack);
4077 tm_memopt_value_numbers->empty ();
4078 }
4079
4080 delete tm_memopt_value_numbers;
4081 tm_memopt_value_numbers = NULL;
4082 return 0;
4083 }
4084
4085 namespace {
4086
4087 const pass_data pass_data_tm_memopt =
4088 {
4089 GIMPLE_PASS, /* type */
4090 "tmmemopt", /* name */
4091 OPTGROUP_NONE, /* optinfo_flags */
4092 TV_TRANS_MEM, /* tv_id */
4093 ( PROP_ssa | PROP_cfg ), /* properties_required */
4094 0, /* properties_provided */
4095 0, /* properties_destroyed */
4096 0, /* todo_flags_start */
4097 0, /* todo_flags_finish */
4098 };
4099
4100 class pass_tm_memopt : public gimple_opt_pass
4101 {
4102 public:
4103 pass_tm_memopt (gcc::context *ctxt)
4104 : gimple_opt_pass (pass_data_tm_memopt, ctxt)
4105 {}
4106
4107 /* opt_pass methods: */
4108 virtual bool gate (function *) { return flag_tm && optimize > 0; }
4109 virtual unsigned int execute (function *) { return execute_tm_memopt (); }
4110
4111 }; // class pass_tm_memopt
4112
4113 } // anon namespace
4114
4115 gimple_opt_pass *
4116 make_pass_tm_memopt (gcc::context *ctxt)
4117 {
4118 return new pass_tm_memopt (ctxt);
4119 }
4120
4121 \f
4122 /* Interprocedual analysis for the creation of transactional clones.
4123 The aim of this pass is to find which functions are referenced in
4124 a non-irrevocable transaction context, and for those over which
4125 we have control (or user directive), create a version of the
4126 function which uses only the transactional interface to reference
4127 protected memories. This analysis proceeds in several steps:
4128
4129 (1) Collect the set of all possible transactional clones:
4130
4131 (a) For all local public functions marked tm_callable, push
4132 it onto the tm_callee queue.
4133
4134 (b) For all local functions, scan for calls in transaction blocks.
4135 Push the caller and callee onto the tm_caller and tm_callee
4136 queues. Count the number of callers for each callee.
4137
4138 (c) For each local function on the callee list, assume we will
4139 create a transactional clone. Push *all* calls onto the
4140 callee queues; count the number of clone callers separately
4141 to the number of original callers.
4142
4143 (2) Propagate irrevocable status up the dominator tree:
4144
4145 (a) Any external function on the callee list that is not marked
4146 tm_callable is irrevocable. Push all callers of such onto
4147 a worklist.
4148
4149 (b) For each function on the worklist, mark each block that
4150 contains an irrevocable call. Use the AND operator to
4151 propagate that mark up the dominator tree.
4152
4153 (c) If we reach the entry block for a possible transactional
4154 clone, then the transactional clone is irrevocable, and
4155 we should not create the clone after all. Push all
4156 callers onto the worklist.
4157
4158 (d) Place tm_irrevocable calls at the beginning of the relevant
4159 blocks. Special case here is the entry block for the entire
4160 transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for
4161 the library to begin the region in serial mode. Decrement
4162 the call count for all callees in the irrevocable region.
4163
4164 (3) Create the transactional clones:
4165
4166 Any tm_callee that still has a non-zero call count is cloned.
4167 */
4168
4169 /* This structure is stored in the AUX field of each cgraph_node. */
4170 struct tm_ipa_cg_data
4171 {
4172 /* The clone of the function that got created. */
4173 struct cgraph_node *clone;
4174
4175 /* The tm regions in the normal function. */
4176 struct tm_region *all_tm_regions;
4177
4178 /* The blocks of the normal/clone functions that contain irrevocable
4179 calls, or blocks that are post-dominated by irrevocable calls. */
4180 bitmap irrevocable_blocks_normal;
4181 bitmap irrevocable_blocks_clone;
4182
4183 /* The blocks of the normal function that are involved in transactions. */
4184 bitmap transaction_blocks_normal;
4185
4186 /* The number of callers to the transactional clone of this function
4187 from normal and transactional clones respectively. */
4188 unsigned tm_callers_normal;
4189 unsigned tm_callers_clone;
4190
4191 /* True if all calls to this function's transactional clone
4192 are irrevocable. Also automatically true if the function
4193 has no transactional clone. */
4194 bool is_irrevocable;
4195
4196 /* Flags indicating the presence of this function in various queues. */
4197 bool in_callee_queue;
4198 bool in_worklist;
4199
4200 /* Flags indicating the kind of scan desired while in the worklist. */
4201 bool want_irr_scan_normal;
4202 };
4203
4204 typedef vec<cgraph_node *> cgraph_node_queue;
4205
4206 /* Return the ipa data associated with NODE, allocating zeroed memory
4207 if necessary. TRAVERSE_ALIASES is true if we must traverse aliases
4208 and set *NODE accordingly. */
4209
4210 static struct tm_ipa_cg_data *
4211 get_cg_data (struct cgraph_node **node, bool traverse_aliases)
4212 {
4213 struct tm_ipa_cg_data *d;
4214
4215 if (traverse_aliases && (*node)->alias)
4216 *node = (*node)->get_alias_target ();
4217
4218 d = (struct tm_ipa_cg_data *) (*node)->aux;
4219
4220 if (d == NULL)
4221 {
4222 d = (struct tm_ipa_cg_data *)
4223 obstack_alloc (&tm_obstack.obstack, sizeof (*d));
4224 (*node)->aux = (void *) d;
4225 memset (d, 0, sizeof (*d));
4226 }
4227
4228 return d;
4229 }
4230
4231 /* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that
4232 it is already present. */
4233
4234 static void
4235 maybe_push_queue (struct cgraph_node *node,
4236 cgraph_node_queue *queue_p, bool *in_queue_p)
4237 {
4238 if (!*in_queue_p)
4239 {
4240 *in_queue_p = true;
4241 queue_p->safe_push (node);
4242 }
4243 }
4244
4245 /* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone.
4246 Queue all callees within block BB. */
4247
4248 static void
4249 ipa_tm_scan_calls_block (cgraph_node_queue *callees_p,
4250 basic_block bb, bool for_clone)
4251 {
4252 gimple_stmt_iterator gsi;
4253
4254 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4255 {
4256 gimple *stmt = gsi_stmt (gsi);
4257 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4258 {
4259 tree fndecl = gimple_call_fndecl (stmt);
4260 if (fndecl)
4261 {
4262 struct tm_ipa_cg_data *d;
4263 unsigned *pcallers;
4264 struct cgraph_node *node;
4265
4266 if (is_tm_ending_fndecl (fndecl))
4267 continue;
4268 if (find_tm_replacement_function (fndecl))
4269 continue;
4270
4271 node = cgraph_node::get (fndecl);
4272 gcc_assert (node != NULL);
4273 d = get_cg_data (&node, true);
4274
4275 pcallers = (for_clone ? &d->tm_callers_clone
4276 : &d->tm_callers_normal);
4277 *pcallers += 1;
4278
4279 maybe_push_queue (node, callees_p, &d->in_callee_queue);
4280 }
4281 }
4282 }
4283 }
4284
4285 /* Scan all calls in NODE that are within a transaction region,
4286 and push the resulting nodes into the callee queue. */
4287
4288 static void
4289 ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d,
4290 cgraph_node_queue *callees_p)
4291 {
4292 d->transaction_blocks_normal = BITMAP_ALLOC (&tm_obstack);
4293 d->all_tm_regions = all_tm_regions;
4294
4295 for (tm_region *r = all_tm_regions; r; r = r->next)
4296 {
4297 vec<basic_block> bbs;
4298 basic_block bb;
4299 unsigned i;
4300
4301 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks, NULL,
4302 d->transaction_blocks_normal, false, false);
4303
4304 FOR_EACH_VEC_ELT (bbs, i, bb)
4305 ipa_tm_scan_calls_block (callees_p, bb, false);
4306
4307 bbs.release ();
4308 }
4309 }
4310
4311 /* Scan all calls in NODE as if this is the transactional clone,
4312 and push the destinations into the callee queue. */
4313
4314 static void
4315 ipa_tm_scan_calls_clone (struct cgraph_node *node,
4316 cgraph_node_queue *callees_p)
4317 {
4318 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
4319 basic_block bb;
4320
4321 FOR_EACH_BB_FN (bb, fn)
4322 ipa_tm_scan_calls_block (callees_p, bb, true);
4323 }
4324
4325 /* The function NODE has been detected to be irrevocable. Push all
4326 of its callers onto WORKLIST for the purpose of re-scanning them. */
4327
4328 static void
4329 ipa_tm_note_irrevocable (struct cgraph_node *node,
4330 cgraph_node_queue *worklist_p)
4331 {
4332 struct tm_ipa_cg_data *d = get_cg_data (&node, true);
4333 struct cgraph_edge *e;
4334
4335 d->is_irrevocable = true;
4336
4337 for (e = node->callers; e ; e = e->next_caller)
4338 {
4339 basic_block bb;
4340 struct cgraph_node *caller;
4341
4342 /* Don't examine recursive calls. */
4343 if (e->caller == node)
4344 continue;
4345 /* Even if we think we can go irrevocable, believe the user
4346 above all. */
4347 if (is_tm_safe_or_pure (e->caller->decl))
4348 continue;
4349
4350 caller = e->caller;
4351 d = get_cg_data (&caller, true);
4352
4353 /* Check if the callee is in a transactional region. If so,
4354 schedule the function for normal re-scan as well. */
4355 bb = gimple_bb (e->call_stmt);
4356 gcc_assert (bb != NULL);
4357 if (d->transaction_blocks_normal
4358 && bitmap_bit_p (d->transaction_blocks_normal, bb->index))
4359 d->want_irr_scan_normal = true;
4360
4361 maybe_push_queue (caller, worklist_p, &d->in_worklist);
4362 }
4363 }
4364
4365 /* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement
4366 within the block is irrevocable. */
4367
4368 static bool
4369 ipa_tm_scan_irr_block (basic_block bb)
4370 {
4371 gimple_stmt_iterator gsi;
4372 tree fn;
4373
4374 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4375 {
4376 gimple *stmt = gsi_stmt (gsi);
4377 switch (gimple_code (stmt))
4378 {
4379 case GIMPLE_ASSIGN:
4380 if (gimple_assign_single_p (stmt))
4381 {
4382 tree lhs = gimple_assign_lhs (stmt);
4383 tree rhs = gimple_assign_rhs1 (stmt);
4384 if (volatile_lvalue_p (lhs) || volatile_lvalue_p (rhs))
4385 return true;
4386 }
4387 break;
4388
4389 case GIMPLE_CALL:
4390 {
4391 tree lhs = gimple_call_lhs (stmt);
4392 if (lhs && volatile_lvalue_p (lhs))
4393 return true;
4394
4395 if (is_tm_pure_call (stmt))
4396 break;
4397
4398 fn = gimple_call_fn (stmt);
4399
4400 /* Functions with the attribute are by definition irrevocable. */
4401 if (is_tm_irrevocable (fn))
4402 return true;
4403
4404 /* For direct function calls, go ahead and check for replacement
4405 functions, or transitive irrevocable functions. For indirect
4406 functions, we'll ask the runtime. */
4407 if (TREE_CODE (fn) == ADDR_EXPR)
4408 {
4409 struct tm_ipa_cg_data *d;
4410 struct cgraph_node *node;
4411
4412 fn = TREE_OPERAND (fn, 0);
4413 if (is_tm_ending_fndecl (fn))
4414 break;
4415 if (find_tm_replacement_function (fn))
4416 break;
4417
4418 node = cgraph_node::get (fn);
4419 d = get_cg_data (&node, true);
4420
4421 /* Return true if irrevocable, but above all, believe
4422 the user. */
4423 if (d->is_irrevocable
4424 && !is_tm_safe_or_pure (fn))
4425 return true;
4426 }
4427 break;
4428 }
4429
4430 case GIMPLE_ASM:
4431 /* ??? The Approved Method of indicating that an inline
4432 assembly statement is not relevant to the transaction
4433 is to wrap it in a __tm_waiver block. This is not
4434 yet implemented, so we can't check for it. */
4435 if (is_tm_safe (current_function_decl))
4436 {
4437 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
4438 SET_EXPR_LOCATION (t, gimple_location (stmt));
4439 error ("%Kasm not allowed in %<transaction_safe%> function", t);
4440 }
4441 return true;
4442
4443 default:
4444 break;
4445 }
4446 }
4447
4448 return false;
4449 }
4450
4451 /* For each of the blocks seeded witin PQUEUE, walk the CFG looking
4452 for new irrevocable blocks, marking them in NEW_IRR. Don't bother
4453 scanning past OLD_IRR or EXIT_BLOCKS. */
4454
4455 static bool
4456 ipa_tm_scan_irr_blocks (vec<basic_block> *pqueue, bitmap new_irr,
4457 bitmap old_irr, bitmap exit_blocks)
4458 {
4459 bool any_new_irr = false;
4460 edge e;
4461 edge_iterator ei;
4462 bitmap visited_blocks = BITMAP_ALLOC (NULL);
4463
4464 do
4465 {
4466 basic_block bb = pqueue->pop ();
4467
4468 /* Don't re-scan blocks we know already are irrevocable. */
4469 if (old_irr && bitmap_bit_p (old_irr, bb->index))
4470 continue;
4471
4472 if (ipa_tm_scan_irr_block (bb))
4473 {
4474 bitmap_set_bit (new_irr, bb->index);
4475 any_new_irr = true;
4476 }
4477 else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index))
4478 {
4479 FOR_EACH_EDGE (e, ei, bb->succs)
4480 if (!bitmap_bit_p (visited_blocks, e->dest->index))
4481 {
4482 bitmap_set_bit (visited_blocks, e->dest->index);
4483 pqueue->safe_push (e->dest);
4484 }
4485 }
4486 }
4487 while (!pqueue->is_empty ());
4488
4489 BITMAP_FREE (visited_blocks);
4490
4491 return any_new_irr;
4492 }
4493
4494 /* Propagate the irrevocable property both up and down the dominator tree.
4495 BB is the current block being scanned; EXIT_BLOCKS are the edges of the
4496 TM regions; OLD_IRR are the results of a previous scan of the dominator
4497 tree which has been fully propagated; NEW_IRR is the set of new blocks
4498 which are gaining the irrevocable property during the current scan. */
4499
4500 static void
4501 ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr,
4502 bitmap old_irr, bitmap exit_blocks)
4503 {
4504 vec<basic_block> bbs;
4505 bitmap all_region_blocks;
4506
4507 /* If this block is in the old set, no need to rescan. */
4508 if (old_irr && bitmap_bit_p (old_irr, entry_block->index))
4509 return;
4510
4511 all_region_blocks = BITMAP_ALLOC (&tm_obstack);
4512 bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL,
4513 all_region_blocks, false);
4514 do
4515 {
4516 basic_block bb = bbs.pop ();
4517 bool this_irr = bitmap_bit_p (new_irr, bb->index);
4518 bool all_son_irr = false;
4519 edge_iterator ei;
4520 edge e;
4521
4522 /* Propagate up. If my children are, I am too, but we must have
4523 at least one child that is. */
4524 if (!this_irr)
4525 {
4526 FOR_EACH_EDGE (e, ei, bb->succs)
4527 {
4528 if (!bitmap_bit_p (new_irr, e->dest->index))
4529 {
4530 all_son_irr = false;
4531 break;
4532 }
4533 else
4534 all_son_irr = true;
4535 }
4536 if (all_son_irr)
4537 {
4538 /* Add block to new_irr if it hasn't already been processed. */
4539 if (!old_irr || !bitmap_bit_p (old_irr, bb->index))
4540 {
4541 bitmap_set_bit (new_irr, bb->index);
4542 this_irr = true;
4543 }
4544 }
4545 }
4546
4547 /* Propagate down to everyone we immediately dominate. */
4548 if (this_irr)
4549 {
4550 basic_block son;
4551 for (son = first_dom_son (CDI_DOMINATORS, bb);
4552 son;
4553 son = next_dom_son (CDI_DOMINATORS, son))
4554 {
4555 /* Make sure block is actually in a TM region, and it
4556 isn't already in old_irr. */
4557 if ((!old_irr || !bitmap_bit_p (old_irr, son->index))
4558 && bitmap_bit_p (all_region_blocks, son->index))
4559 bitmap_set_bit (new_irr, son->index);
4560 }
4561 }
4562 }
4563 while (!bbs.is_empty ());
4564
4565 BITMAP_FREE (all_region_blocks);
4566 bbs.release ();
4567 }
4568
4569 static void
4570 ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone)
4571 {
4572 gimple_stmt_iterator gsi;
4573
4574 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4575 {
4576 gimple *stmt = gsi_stmt (gsi);
4577 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4578 {
4579 tree fndecl = gimple_call_fndecl (stmt);
4580 if (fndecl)
4581 {
4582 struct tm_ipa_cg_data *d;
4583 unsigned *pcallers;
4584 struct cgraph_node *tnode;
4585
4586 if (is_tm_ending_fndecl (fndecl))
4587 continue;
4588 if (find_tm_replacement_function (fndecl))
4589 continue;
4590
4591 tnode = cgraph_node::get (fndecl);
4592 d = get_cg_data (&tnode, true);
4593
4594 pcallers = (for_clone ? &d->tm_callers_clone
4595 : &d->tm_callers_normal);
4596
4597 gcc_assert (*pcallers > 0);
4598 *pcallers -= 1;
4599 }
4600 }
4601 }
4602 }
4603
4604 /* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions,
4605 as well as other irrevocable actions such as inline assembly. Mark all
4606 such blocks as irrevocable and decrement the number of calls to
4607 transactional clones. Return true if, for the transactional clone, the
4608 entire function is irrevocable. */
4609
4610 static bool
4611 ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone)
4612 {
4613 struct tm_ipa_cg_data *d;
4614 bitmap new_irr, old_irr;
4615 bool ret = false;
4616
4617 /* Builtin operators (operator new, and such). */
4618 if (DECL_STRUCT_FUNCTION (node->decl) == NULL
4619 || DECL_STRUCT_FUNCTION (node->decl)->cfg == NULL)
4620 return false;
4621
4622 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4623 calculate_dominance_info (CDI_DOMINATORS);
4624
4625 d = get_cg_data (&node, true);
4626 auto_vec<basic_block, 10> queue;
4627 new_irr = BITMAP_ALLOC (&tm_obstack);
4628
4629 /* Scan each tm region, propagating irrevocable status through the tree. */
4630 if (for_clone)
4631 {
4632 old_irr = d->irrevocable_blocks_clone;
4633 queue.quick_push (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4634 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr, NULL))
4635 {
4636 ipa_tm_propagate_irr (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4637 new_irr,
4638 old_irr, NULL);
4639 ret = bitmap_bit_p (new_irr,
4640 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->index);
4641 }
4642 }
4643 else
4644 {
4645 struct tm_region *region;
4646
4647 old_irr = d->irrevocable_blocks_normal;
4648 for (region = d->all_tm_regions; region; region = region->next)
4649 {
4650 queue.quick_push (region->entry_block);
4651 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr,
4652 region->exit_blocks))
4653 ipa_tm_propagate_irr (region->entry_block, new_irr, old_irr,
4654 region->exit_blocks);
4655 }
4656 }
4657
4658 /* If we found any new irrevocable blocks, reduce the call count for
4659 transactional clones within the irrevocable blocks. Save the new
4660 set of irrevocable blocks for next time. */
4661 if (!bitmap_empty_p (new_irr))
4662 {
4663 bitmap_iterator bmi;
4664 unsigned i;
4665
4666 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4667 ipa_tm_decrement_clone_counts (BASIC_BLOCK_FOR_FN (cfun, i),
4668 for_clone);
4669
4670 if (old_irr)
4671 {
4672 bitmap_ior_into (old_irr, new_irr);
4673 BITMAP_FREE (new_irr);
4674 }
4675 else if (for_clone)
4676 d->irrevocable_blocks_clone = new_irr;
4677 else
4678 d->irrevocable_blocks_normal = new_irr;
4679
4680 if (dump_file && new_irr)
4681 {
4682 const char *dname;
4683 bitmap_iterator bmi;
4684 unsigned i;
4685
4686 dname = lang_hooks.decl_printable_name (current_function_decl, 2);
4687 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4688 fprintf (dump_file, "%s: bb %d goes irrevocable\n", dname, i);
4689 }
4690 }
4691 else
4692 BITMAP_FREE (new_irr);
4693
4694 pop_cfun ();
4695
4696 return ret;
4697 }
4698
4699 /* Return true if, for the transactional clone of NODE, any call
4700 may enter irrevocable mode. */
4701
4702 static bool
4703 ipa_tm_mayenterirr_function (struct cgraph_node *node)
4704 {
4705 struct tm_ipa_cg_data *d;
4706 tree decl;
4707 unsigned flags;
4708
4709 d = get_cg_data (&node, true);
4710 decl = node->decl;
4711 flags = flags_from_decl_or_type (decl);
4712
4713 /* Handle some TM builtins. Ordinarily these aren't actually generated
4714 at this point, but handling these functions when written in by the
4715 user makes it easier to build unit tests. */
4716 if (flags & ECF_TM_BUILTIN)
4717 return false;
4718
4719 /* Filter out all functions that are marked. */
4720 if (flags & ECF_TM_PURE)
4721 return false;
4722 if (is_tm_safe (decl))
4723 return false;
4724 if (is_tm_irrevocable (decl))
4725 return true;
4726 if (is_tm_callable (decl))
4727 return true;
4728 if (find_tm_replacement_function (decl))
4729 return true;
4730
4731 /* If we aren't seeing the final version of the function we don't
4732 know what it will contain at runtime. */
4733 if (node->get_availability () < AVAIL_AVAILABLE)
4734 return true;
4735
4736 /* If the function must go irrevocable, then of course true. */
4737 if (d->is_irrevocable)
4738 return true;
4739
4740 /* If there are any blocks marked irrevocable, then the function
4741 as a whole may enter irrevocable. */
4742 if (d->irrevocable_blocks_clone)
4743 return true;
4744
4745 /* We may have previously marked this function as tm_may_enter_irr;
4746 see pass_diagnose_tm_blocks. */
4747 if (node->local.tm_may_enter_irr)
4748 return true;
4749
4750 /* Recurse on the main body for aliases. In general, this will
4751 result in one of the bits above being set so that we will not
4752 have to recurse next time. */
4753 if (node->alias)
4754 return ipa_tm_mayenterirr_function (cgraph_node::get (node->thunk.alias));
4755
4756 /* What remains is unmarked local functions without items that force
4757 the function to go irrevocable. */
4758 return false;
4759 }
4760
4761 /* Diagnose calls from transaction_safe functions to unmarked
4762 functions that are determined to not be safe. */
4763
4764 static void
4765 ipa_tm_diagnose_tm_safe (struct cgraph_node *node)
4766 {
4767 struct cgraph_edge *e;
4768
4769 for (e = node->callees; e ; e = e->next_callee)
4770 if (!is_tm_callable (e->callee->decl)
4771 && e->callee->local.tm_may_enter_irr)
4772 error_at (gimple_location (e->call_stmt),
4773 "unsafe function call %qD within "
4774 "%<transaction_safe%> function", e->callee->decl);
4775 }
4776
4777 /* Diagnose call from atomic transactions to unmarked functions
4778 that are determined to not be safe. */
4779
4780 static void
4781 ipa_tm_diagnose_transaction (struct cgraph_node *node,
4782 struct tm_region *all_tm_regions)
4783 {
4784 struct tm_region *r;
4785
4786 for (r = all_tm_regions; r ; r = r->next)
4787 if (gimple_transaction_subcode (r->get_transaction_stmt ())
4788 & GTMA_IS_RELAXED)
4789 {
4790 /* Atomic transactions can be nested inside relaxed. */
4791 if (r->inner)
4792 ipa_tm_diagnose_transaction (node, r->inner);
4793 }
4794 else
4795 {
4796 vec<basic_block> bbs;
4797 gimple_stmt_iterator gsi;
4798 basic_block bb;
4799 size_t i;
4800
4801 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks,
4802 r->irr_blocks, NULL, false);
4803
4804 for (i = 0; bbs.iterate (i, &bb); ++i)
4805 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4806 {
4807 gimple *stmt = gsi_stmt (gsi);
4808 tree fndecl;
4809
4810 if (gimple_code (stmt) == GIMPLE_ASM)
4811 {
4812 error_at (gimple_location (stmt),
4813 "asm not allowed in atomic transaction");
4814 continue;
4815 }
4816
4817 if (!is_gimple_call (stmt))
4818 continue;
4819 fndecl = gimple_call_fndecl (stmt);
4820
4821 /* Indirect function calls have been diagnosed already. */
4822 if (!fndecl)
4823 continue;
4824
4825 /* Stop at the end of the transaction. */
4826 if (is_tm_ending_fndecl (fndecl))
4827 {
4828 if (bitmap_bit_p (r->exit_blocks, bb->index))
4829 break;
4830 continue;
4831 }
4832
4833 /* Marked functions have been diagnosed already. */
4834 if (is_tm_pure_call (stmt))
4835 continue;
4836 if (is_tm_callable (fndecl))
4837 continue;
4838
4839 if (cgraph_node::local_info (fndecl)->tm_may_enter_irr)
4840 error_at (gimple_location (stmt),
4841 "unsafe function call %qD within "
4842 "atomic transaction", fndecl);
4843 }
4844
4845 bbs.release ();
4846 }
4847 }
4848
4849 /* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in
4850 OLD_DECL. The returned value is a freshly malloced pointer that
4851 should be freed by the caller. */
4852
4853 static tree
4854 tm_mangle (tree old_asm_id)
4855 {
4856 const char *old_asm_name;
4857 char *tm_name;
4858 void *alloc = NULL;
4859 struct demangle_component *dc;
4860 tree new_asm_id;
4861
4862 /* Determine if the symbol is already a valid C++ mangled name. Do this
4863 even for C, which might be interfacing with C++ code via appropriately
4864 ugly identifiers. */
4865 /* ??? We could probably do just as well checking for "_Z" and be done. */
4866 old_asm_name = IDENTIFIER_POINTER (old_asm_id);
4867 dc = cplus_demangle_v3_components (old_asm_name, DMGL_NO_OPTS, &alloc);
4868
4869 if (dc == NULL)
4870 {
4871 char length[8];
4872
4873 do_unencoded:
4874 sprintf (length, "%u", IDENTIFIER_LENGTH (old_asm_id));
4875 tm_name = concat ("_ZGTt", length, old_asm_name, NULL);
4876 }
4877 else
4878 {
4879 old_asm_name += 2; /* Skip _Z */
4880
4881 switch (dc->type)
4882 {
4883 case DEMANGLE_COMPONENT_TRANSACTION_CLONE:
4884 case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE:
4885 /* Don't play silly games, you! */
4886 goto do_unencoded;
4887
4888 case DEMANGLE_COMPONENT_HIDDEN_ALIAS:
4889 /* I'd really like to know if we can ever be passed one of
4890 these from the C++ front end. The Logical Thing would
4891 seem that hidden-alias should be outer-most, so that we
4892 get hidden-alias of a transaction-clone and not vice-versa. */
4893 old_asm_name += 2;
4894 break;
4895
4896 default:
4897 break;
4898 }
4899
4900 tm_name = concat ("_ZGTt", old_asm_name, NULL);
4901 }
4902 free (alloc);
4903
4904 new_asm_id = get_identifier (tm_name);
4905 free (tm_name);
4906
4907 return new_asm_id;
4908 }
4909
4910 static inline void
4911 ipa_tm_mark_force_output_node (struct cgraph_node *node)
4912 {
4913 node->mark_force_output ();
4914 node->analyzed = true;
4915 }
4916
4917 static inline void
4918 ipa_tm_mark_forced_by_abi_node (struct cgraph_node *node)
4919 {
4920 node->forced_by_abi = true;
4921 node->analyzed = true;
4922 }
4923
4924 /* Callback data for ipa_tm_create_version_alias. */
4925 struct create_version_alias_info
4926 {
4927 struct cgraph_node *old_node;
4928 tree new_decl;
4929 };
4930
4931 /* A subroutine of ipa_tm_create_version, called via
4932 cgraph_for_node_and_aliases. Create new tm clones for each of
4933 the existing aliases. */
4934 static bool
4935 ipa_tm_create_version_alias (struct cgraph_node *node, void *data)
4936 {
4937 struct create_version_alias_info *info
4938 = (struct create_version_alias_info *)data;
4939 tree old_decl, new_decl, tm_name;
4940 struct cgraph_node *new_node;
4941
4942 if (!node->cpp_implicit_alias)
4943 return false;
4944
4945 old_decl = node->decl;
4946 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4947 new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl),
4948 TREE_CODE (old_decl), tm_name,
4949 TREE_TYPE (old_decl));
4950
4951 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4952 SET_DECL_RTL (new_decl, NULL);
4953
4954 /* Based loosely on C++'s make_alias_for(). */
4955 TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl);
4956 DECL_CONTEXT (new_decl) = DECL_CONTEXT (old_decl);
4957 DECL_LANG_SPECIFIC (new_decl) = DECL_LANG_SPECIFIC (old_decl);
4958 TREE_READONLY (new_decl) = TREE_READONLY (old_decl);
4959 DECL_EXTERNAL (new_decl) = 0;
4960 DECL_ARTIFICIAL (new_decl) = 1;
4961 TREE_ADDRESSABLE (new_decl) = 1;
4962 TREE_USED (new_decl) = 1;
4963 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4964
4965 /* Perform the same remapping to the comdat group. */
4966 if (DECL_ONE_ONLY (new_decl))
4967 varpool_node::get (new_decl)->set_comdat_group
4968 (tm_mangle (decl_comdat_group_id (old_decl)));
4969
4970 new_node = cgraph_node::create_same_body_alias (new_decl, info->new_decl);
4971 new_node->tm_clone = true;
4972 new_node->externally_visible = info->old_node->externally_visible;
4973 new_node->no_reorder = info->old_node->no_reorder;
4974 /* ?? Do not traverse aliases here. */
4975 get_cg_data (&node, false)->clone = new_node;
4976
4977 record_tm_clone_pair (old_decl, new_decl);
4978
4979 if (info->old_node->force_output
4980 || info->old_node->ref_list.first_referring ())
4981 ipa_tm_mark_force_output_node (new_node);
4982 if (info->old_node->forced_by_abi)
4983 ipa_tm_mark_forced_by_abi_node (new_node);
4984 return false;
4985 }
4986
4987 /* Create a copy of the function (possibly declaration only) of OLD_NODE,
4988 appropriate for the transactional clone. */
4989
4990 static void
4991 ipa_tm_create_version (struct cgraph_node *old_node)
4992 {
4993 tree new_decl, old_decl, tm_name;
4994 struct cgraph_node *new_node;
4995
4996 old_decl = old_node->decl;
4997 new_decl = copy_node (old_decl);
4998
4999 /* DECL_ASSEMBLER_NAME needs to be set before we call
5000 cgraph_copy_node_for_versioning below, because cgraph_node will
5001 fill the assembler_name_hash. */
5002 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
5003 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
5004 SET_DECL_RTL (new_decl, NULL);
5005 TREE_SYMBOL_REFERENCED (tm_name) = 1;
5006
5007 /* Perform the same remapping to the comdat group. */
5008 if (DECL_ONE_ONLY (new_decl))
5009 varpool_node::get (new_decl)->set_comdat_group
5010 (tm_mangle (DECL_COMDAT_GROUP (old_decl)));
5011
5012 gcc_assert (!old_node->ipa_transforms_to_apply.exists ());
5013 new_node = old_node->create_version_clone (new_decl, vNULL, NULL);
5014 new_node->local.local = false;
5015 new_node->externally_visible = old_node->externally_visible;
5016 new_node->lowered = true;
5017 new_node->tm_clone = 1;
5018 if (!old_node->implicit_section)
5019 new_node->set_section (old_node->get_section ());
5020 get_cg_data (&old_node, true)->clone = new_node;
5021
5022 if (old_node->get_availability () >= AVAIL_INTERPOSABLE)
5023 {
5024 /* Remap extern inline to static inline. */
5025 /* ??? Is it worth trying to use make_decl_one_only? */
5026 if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl))
5027 {
5028 DECL_EXTERNAL (new_decl) = 0;
5029 TREE_PUBLIC (new_decl) = 0;
5030 DECL_WEAK (new_decl) = 0;
5031 }
5032
5033 tree_function_versioning (old_decl, new_decl,
5034 NULL, false, NULL,
5035 false, NULL, NULL);
5036 }
5037
5038 record_tm_clone_pair (old_decl, new_decl);
5039
5040 symtab->call_cgraph_insertion_hooks (new_node);
5041 if (old_node->force_output
5042 || old_node->ref_list.first_referring ())
5043 ipa_tm_mark_force_output_node (new_node);
5044 if (old_node->forced_by_abi)
5045 ipa_tm_mark_forced_by_abi_node (new_node);
5046
5047 /* Do the same thing, but for any aliases of the original node. */
5048 {
5049 struct create_version_alias_info data;
5050 data.old_node = old_node;
5051 data.new_decl = new_decl;
5052 old_node->call_for_symbol_thunks_and_aliases (ipa_tm_create_version_alias,
5053 &data, true);
5054 }
5055 }
5056
5057 /* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB. */
5058
5059 static void
5060 ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region,
5061 basic_block bb)
5062 {
5063 gimple_stmt_iterator gsi;
5064 gcall *g;
5065
5066 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5067
5068 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE),
5069 1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE));
5070
5071 split_block_after_labels (bb);
5072 gsi = gsi_after_labels (bb);
5073 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
5074
5075 node->create_edge (cgraph_node::get_create
5076 (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE)),
5077 g, 0,
5078 compute_call_stmt_bb_frequency (node->decl,
5079 gimple_bb (g)));
5080 }
5081
5082 /* Construct a call to TM_GETTMCLONE and insert it before GSI. */
5083
5084 static bool
5085 ipa_tm_insert_gettmclone_call (struct cgraph_node *node,
5086 struct tm_region *region,
5087 gimple_stmt_iterator *gsi, gcall *stmt)
5088 {
5089 tree gettm_fn, ret, old_fn, callfn;
5090 gcall *g;
5091 gassign *g2;
5092 bool safe;
5093
5094 old_fn = gimple_call_fn (stmt);
5095
5096 if (TREE_CODE (old_fn) == ADDR_EXPR)
5097 {
5098 tree fndecl = TREE_OPERAND (old_fn, 0);
5099 tree clone = get_tm_clone_pair (fndecl);
5100
5101 /* By transforming the call into a TM_GETTMCLONE, we are
5102 technically taking the address of the original function and
5103 its clone. Explain this so inlining will know this function
5104 is needed. */
5105 cgraph_node::get (fndecl)->mark_address_taken () ;
5106 if (clone)
5107 cgraph_node::get (clone)->mark_address_taken ();
5108 }
5109
5110 safe = is_tm_safe (TREE_TYPE (old_fn));
5111 gettm_fn = builtin_decl_explicit (safe ? BUILT_IN_TM_GETTMCLONE_SAFE
5112 : BUILT_IN_TM_GETTMCLONE_IRR);
5113 ret = create_tmp_var (ptr_type_node);
5114
5115 if (!safe)
5116 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5117
5118 /* Discard OBJ_TYPE_REF, since we weren't able to fold it. */
5119 if (TREE_CODE (old_fn) == OBJ_TYPE_REF)
5120 old_fn = OBJ_TYPE_REF_EXPR (old_fn);
5121
5122 g = gimple_build_call (gettm_fn, 1, old_fn);
5123 ret = make_ssa_name (ret, g);
5124 gimple_call_set_lhs (g, ret);
5125
5126 gsi_insert_before (gsi, g, GSI_SAME_STMT);
5127
5128 node->create_edge (cgraph_node::get_create (gettm_fn), g, 0,
5129 compute_call_stmt_bb_frequency (node->decl,
5130 gimple_bb (g)));
5131
5132 /* Cast return value from tm_gettmclone* into appropriate function
5133 pointer. */
5134 callfn = create_tmp_var (TREE_TYPE (old_fn));
5135 g2 = gimple_build_assign (callfn,
5136 fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret));
5137 callfn = make_ssa_name (callfn, g2);
5138 gimple_assign_set_lhs (g2, callfn);
5139 gsi_insert_before (gsi, g2, GSI_SAME_STMT);
5140
5141 /* ??? This is a hack to preserve the NOTHROW bit on the call,
5142 which we would have derived from the decl. Failure to save
5143 this bit means we might have to split the basic block. */
5144 if (gimple_call_nothrow_p (stmt))
5145 gimple_call_set_nothrow (stmt, true);
5146
5147 gimple_call_set_fn (stmt, callfn);
5148
5149 /* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS
5150 for a call statement. Fix it. */
5151 {
5152 tree lhs = gimple_call_lhs (stmt);
5153 tree rettype = TREE_TYPE (gimple_call_fntype (stmt));
5154 if (lhs
5155 && !useless_type_conversion_p (TREE_TYPE (lhs), rettype))
5156 {
5157 tree temp;
5158
5159 temp = create_tmp_reg (rettype);
5160 gimple_call_set_lhs (stmt, temp);
5161
5162 g2 = gimple_build_assign (lhs,
5163 fold_build1 (VIEW_CONVERT_EXPR,
5164 TREE_TYPE (lhs), temp));
5165 gsi_insert_after (gsi, g2, GSI_SAME_STMT);
5166 }
5167 }
5168
5169 update_stmt (stmt);
5170 cgraph_edge *e = cgraph_node::get (current_function_decl)->get_edge (stmt);
5171 if (e && e->indirect_info)
5172 e->indirect_info->polymorphic = false;
5173
5174 return true;
5175 }
5176
5177 /* Helper function for ipa_tm_transform_calls*. Given a call
5178 statement in GSI which resides inside transaction REGION, redirect
5179 the call to either its wrapper function, or its clone. */
5180
5181 static void
5182 ipa_tm_transform_calls_redirect (struct cgraph_node *node,
5183 struct tm_region *region,
5184 gimple_stmt_iterator *gsi,
5185 bool *need_ssa_rename_p)
5186 {
5187 gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
5188 struct cgraph_node *new_node;
5189 struct cgraph_edge *e = node->get_edge (stmt);
5190 tree fndecl = gimple_call_fndecl (stmt);
5191
5192 /* For indirect calls, pass the address through the runtime. */
5193 if (fndecl == NULL)
5194 {
5195 *need_ssa_rename_p |=
5196 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5197 return;
5198 }
5199
5200 /* Handle some TM builtins. Ordinarily these aren't actually generated
5201 at this point, but handling these functions when written in by the
5202 user makes it easier to build unit tests. */
5203 if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN)
5204 return;
5205
5206 /* Fixup recursive calls inside clones. */
5207 /* ??? Why did cgraph_copy_node_for_versioning update the call edges
5208 for recursion but not update the call statements themselves? */
5209 if (e->caller == e->callee && decl_is_tm_clone (current_function_decl))
5210 {
5211 gimple_call_set_fndecl (stmt, current_function_decl);
5212 return;
5213 }
5214
5215 /* If there is a replacement, use it. */
5216 fndecl = find_tm_replacement_function (fndecl);
5217 if (fndecl)
5218 {
5219 new_node = cgraph_node::get_create (fndecl);
5220
5221 /* ??? Mark all transaction_wrap functions tm_may_enter_irr.
5222
5223 We can't do this earlier in record_tm_replacement because
5224 cgraph_remove_unreachable_nodes is called before we inject
5225 references to the node. Further, we can't do this in some
5226 nice central place in ipa_tm_execute because we don't have
5227 the exact list of wrapper functions that would be used.
5228 Marking more wrappers than necessary results in the creation
5229 of unnecessary cgraph_nodes, which can cause some of the
5230 other IPA passes to crash.
5231
5232 We do need to mark these nodes so that we get the proper
5233 result in expand_call_tm. */
5234 /* ??? This seems broken. How is it that we're marking the
5235 CALLEE as may_enter_irr? Surely we should be marking the
5236 CALLER. Also note that find_tm_replacement_function also
5237 contains mappings into the TM runtime, e.g. memcpy. These
5238 we know won't go irrevocable. */
5239 new_node->local.tm_may_enter_irr = 1;
5240 }
5241 else
5242 {
5243 struct tm_ipa_cg_data *d;
5244 struct cgraph_node *tnode = e->callee;
5245
5246 d = get_cg_data (&tnode, true);
5247 new_node = d->clone;
5248
5249 /* As we've already skipped pure calls and appropriate builtins,
5250 and we've already marked irrevocable blocks, if we can't come
5251 up with a static replacement, then ask the runtime. */
5252 if (new_node == NULL)
5253 {
5254 *need_ssa_rename_p |=
5255 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5256 return;
5257 }
5258
5259 fndecl = new_node->decl;
5260 }
5261
5262 e->redirect_callee (new_node);
5263 gimple_call_set_fndecl (stmt, fndecl);
5264 }
5265
5266 /* Helper function for ipa_tm_transform_calls. For a given BB,
5267 install calls to tm_irrevocable when IRR_BLOCKS are reached,
5268 redirect other calls to the generated transactional clone. */
5269
5270 static bool
5271 ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region,
5272 basic_block bb, bitmap irr_blocks)
5273 {
5274 gimple_stmt_iterator gsi;
5275 bool need_ssa_rename = false;
5276
5277 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5278 {
5279 ipa_tm_insert_irr_call (node, region, bb);
5280 return true;
5281 }
5282
5283 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5284 {
5285 gimple *stmt = gsi_stmt (gsi);
5286
5287 if (!is_gimple_call (stmt))
5288 continue;
5289 if (is_tm_pure_call (stmt))
5290 continue;
5291
5292 /* Redirect edges to the appropriate replacement or clone. */
5293 ipa_tm_transform_calls_redirect (node, region, &gsi, &need_ssa_rename);
5294 }
5295
5296 return need_ssa_rename;
5297 }
5298
5299 /* Walk the CFG for REGION, beginning at BB. Install calls to
5300 tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to
5301 the generated transactional clone. */
5302
5303 static bool
5304 ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region,
5305 basic_block bb, bitmap irr_blocks)
5306 {
5307 bool need_ssa_rename = false;
5308 edge e;
5309 edge_iterator ei;
5310 auto_vec<basic_block> queue;
5311 bitmap visited_blocks = BITMAP_ALLOC (NULL);
5312
5313 queue.safe_push (bb);
5314 do
5315 {
5316 bb = queue.pop ();
5317
5318 need_ssa_rename |=
5319 ipa_tm_transform_calls_1 (node, region, bb, irr_blocks);
5320
5321 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5322 continue;
5323
5324 if (region && bitmap_bit_p (region->exit_blocks, bb->index))
5325 continue;
5326
5327 FOR_EACH_EDGE (e, ei, bb->succs)
5328 if (!bitmap_bit_p (visited_blocks, e->dest->index))
5329 {
5330 bitmap_set_bit (visited_blocks, e->dest->index);
5331 queue.safe_push (e->dest);
5332 }
5333 }
5334 while (!queue.is_empty ());
5335
5336 BITMAP_FREE (visited_blocks);
5337
5338 return need_ssa_rename;
5339 }
5340
5341 /* Transform the calls within the TM regions within NODE. */
5342
5343 static void
5344 ipa_tm_transform_transaction (struct cgraph_node *node)
5345 {
5346 struct tm_ipa_cg_data *d;
5347 struct tm_region *region;
5348 bool need_ssa_rename = false;
5349
5350 d = get_cg_data (&node, true);
5351
5352 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5353 calculate_dominance_info (CDI_DOMINATORS);
5354
5355 for (region = d->all_tm_regions; region; region = region->next)
5356 {
5357 /* If we're sure to go irrevocable, don't transform anything. */
5358 if (d->irrevocable_blocks_normal
5359 && bitmap_bit_p (d->irrevocable_blocks_normal,
5360 region->entry_block->index))
5361 {
5362 transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE
5363 | GTMA_MAY_ENTER_IRREVOCABLE
5364 | GTMA_HAS_NO_INSTRUMENTATION);
5365 continue;
5366 }
5367
5368 need_ssa_rename |=
5369 ipa_tm_transform_calls (node, region, region->entry_block,
5370 d->irrevocable_blocks_normal);
5371 }
5372
5373 if (need_ssa_rename)
5374 update_ssa (TODO_update_ssa_only_virtuals);
5375
5376 pop_cfun ();
5377 }
5378
5379 /* Transform the calls within the transactional clone of NODE. */
5380
5381 static void
5382 ipa_tm_transform_clone (struct cgraph_node *node)
5383 {
5384 struct tm_ipa_cg_data *d;
5385 bool need_ssa_rename;
5386
5387 d = get_cg_data (&node, true);
5388
5389 /* If this function makes no calls and has no irrevocable blocks,
5390 then there's nothing to do. */
5391 /* ??? Remove non-aborting top-level transactions. */
5392 if (!node->callees && !node->indirect_calls && !d->irrevocable_blocks_clone)
5393 return;
5394
5395 push_cfun (DECL_STRUCT_FUNCTION (d->clone->decl));
5396 calculate_dominance_info (CDI_DOMINATORS);
5397
5398 need_ssa_rename =
5399 ipa_tm_transform_calls (d->clone, NULL,
5400 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
5401 d->irrevocable_blocks_clone);
5402
5403 if (need_ssa_rename)
5404 update_ssa (TODO_update_ssa_only_virtuals);
5405
5406 pop_cfun ();
5407 }
5408
5409 /* Main entry point for the transactional memory IPA pass. */
5410
5411 static unsigned int
5412 ipa_tm_execute (void)
5413 {
5414 cgraph_node_queue tm_callees = cgraph_node_queue ();
5415 /* List of functions that will go irrevocable. */
5416 cgraph_node_queue irr_worklist = cgraph_node_queue ();
5417
5418 struct cgraph_node *node;
5419 struct tm_ipa_cg_data *d;
5420 enum availability a;
5421 unsigned int i;
5422
5423 cgraph_node::checking_verify_cgraph_nodes ();
5424
5425 bitmap_obstack_initialize (&tm_obstack);
5426 initialize_original_copy_tables ();
5427
5428 /* For all local functions marked tm_callable, queue them. */
5429 FOR_EACH_DEFINED_FUNCTION (node)
5430 if (is_tm_callable (node->decl)
5431 && node->get_availability () >= AVAIL_INTERPOSABLE)
5432 {
5433 d = get_cg_data (&node, true);
5434 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5435 }
5436
5437 /* For all local reachable functions... */
5438 FOR_EACH_DEFINED_FUNCTION (node)
5439 if (node->lowered
5440 && node->get_availability () >= AVAIL_INTERPOSABLE)
5441 {
5442 /* ... marked tm_pure, record that fact for the runtime by
5443 indicating that the pure function is its own tm_callable.
5444 No need to do this if the function's address can't be taken. */
5445 if (is_tm_pure (node->decl))
5446 {
5447 if (!node->local.local)
5448 record_tm_clone_pair (node->decl, node->decl);
5449 continue;
5450 }
5451
5452 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5453 calculate_dominance_info (CDI_DOMINATORS);
5454
5455 tm_region_init (NULL);
5456 if (all_tm_regions)
5457 {
5458 d = get_cg_data (&node, true);
5459
5460 /* Scan for calls that are in each transaction, and
5461 generate the uninstrumented code path. */
5462 ipa_tm_scan_calls_transaction (d, &tm_callees);
5463
5464 /* Put it in the worklist so we can scan the function
5465 later (ipa_tm_scan_irr_function) and mark the
5466 irrevocable blocks. */
5467 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5468 d->want_irr_scan_normal = true;
5469 }
5470
5471 pop_cfun ();
5472 }
5473
5474 /* For every local function on the callee list, scan as if we will be
5475 creating a transactional clone, queueing all new functions we find
5476 along the way. */
5477 for (i = 0; i < tm_callees.length (); ++i)
5478 {
5479 node = tm_callees[i];
5480 a = node->get_availability ();
5481 d = get_cg_data (&node, true);
5482
5483 /* Put it in the worklist so we can scan the function later
5484 (ipa_tm_scan_irr_function) and mark the irrevocable
5485 blocks. */
5486 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5487
5488 /* Some callees cannot be arbitrarily cloned. These will always be
5489 irrevocable. Mark these now, so that we need not scan them. */
5490 if (is_tm_irrevocable (node->decl))
5491 ipa_tm_note_irrevocable (node, &irr_worklist);
5492 else if (a <= AVAIL_NOT_AVAILABLE
5493 && !is_tm_safe_or_pure (node->decl))
5494 ipa_tm_note_irrevocable (node, &irr_worklist);
5495 else if (a >= AVAIL_INTERPOSABLE)
5496 {
5497 if (!tree_versionable_function_p (node->decl))
5498 ipa_tm_note_irrevocable (node, &irr_worklist);
5499 else if (!d->is_irrevocable)
5500 {
5501 /* If this is an alias, make sure its base is queued as well.
5502 we need not scan the callees now, as the base will do. */
5503 if (node->alias)
5504 {
5505 node = cgraph_node::get (node->thunk.alias);
5506 d = get_cg_data (&node, true);
5507 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5508 continue;
5509 }
5510
5511 /* Add all nodes called by this function into
5512 tm_callees as well. */
5513 ipa_tm_scan_calls_clone (node, &tm_callees);
5514 }
5515 }
5516 }
5517
5518 /* Iterate scans until no more work to be done. Prefer not to use
5519 vec::pop because the worklist tends to follow a breadth-first
5520 search of the callgraph, which should allow convergance with a
5521 minimum number of scans. But we also don't want the worklist
5522 array to grow without bound, so we shift the array up periodically. */
5523 for (i = 0; i < irr_worklist.length (); ++i)
5524 {
5525 if (i > 256 && i == irr_worklist.length () / 8)
5526 {
5527 irr_worklist.block_remove (0, i);
5528 i = 0;
5529 }
5530
5531 node = irr_worklist[i];
5532 d = get_cg_data (&node, true);
5533 d->in_worklist = false;
5534
5535 if (d->want_irr_scan_normal)
5536 {
5537 d->want_irr_scan_normal = false;
5538 ipa_tm_scan_irr_function (node, false);
5539 }
5540 if (d->in_callee_queue && ipa_tm_scan_irr_function (node, true))
5541 ipa_tm_note_irrevocable (node, &irr_worklist);
5542 }
5543
5544 /* For every function on the callee list, collect the tm_may_enter_irr
5545 bit on the node. */
5546 irr_worklist.truncate (0);
5547 for (i = 0; i < tm_callees.length (); ++i)
5548 {
5549 node = tm_callees[i];
5550 if (ipa_tm_mayenterirr_function (node))
5551 {
5552 d = get_cg_data (&node, true);
5553 gcc_assert (d->in_worklist == false);
5554 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5555 }
5556 }
5557
5558 /* Propagate the tm_may_enter_irr bit to callers until stable. */
5559 for (i = 0; i < irr_worklist.length (); ++i)
5560 {
5561 struct cgraph_node *caller;
5562 struct cgraph_edge *e;
5563 struct ipa_ref *ref;
5564
5565 if (i > 256 && i == irr_worklist.length () / 8)
5566 {
5567 irr_worklist.block_remove (0, i);
5568 i = 0;
5569 }
5570
5571 node = irr_worklist[i];
5572 d = get_cg_data (&node, true);
5573 d->in_worklist = false;
5574 node->local.tm_may_enter_irr = true;
5575
5576 /* Propagate back to normal callers. */
5577 for (e = node->callers; e ; e = e->next_caller)
5578 {
5579 caller = e->caller;
5580 if (!is_tm_safe_or_pure (caller->decl)
5581 && !caller->local.tm_may_enter_irr)
5582 {
5583 d = get_cg_data (&caller, true);
5584 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5585 }
5586 }
5587
5588 /* Propagate back to referring aliases as well. */
5589 FOR_EACH_ALIAS (node, ref)
5590 {
5591 caller = dyn_cast<cgraph_node *> (ref->referring);
5592 if (!caller->local.tm_may_enter_irr)
5593 {
5594 /* ?? Do not traverse aliases here. */
5595 d = get_cg_data (&caller, false);
5596 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5597 }
5598 }
5599 }
5600
5601 /* Now validate all tm_safe functions, and all atomic regions in
5602 other functions. */
5603 FOR_EACH_DEFINED_FUNCTION (node)
5604 if (node->lowered
5605 && node->get_availability () >= AVAIL_INTERPOSABLE)
5606 {
5607 d = get_cg_data (&node, true);
5608 if (is_tm_safe (node->decl))
5609 ipa_tm_diagnose_tm_safe (node);
5610 else if (d->all_tm_regions)
5611 ipa_tm_diagnose_transaction (node, d->all_tm_regions);
5612 }
5613
5614 /* Create clones. Do those that are not irrevocable and have a
5615 positive call count. Do those publicly visible functions that
5616 the user directed us to clone. */
5617 for (i = 0; i < tm_callees.length (); ++i)
5618 {
5619 bool doit = false;
5620
5621 node = tm_callees[i];
5622 if (node->cpp_implicit_alias)
5623 continue;
5624
5625 a = node->get_availability ();
5626 d = get_cg_data (&node, true);
5627
5628 if (a <= AVAIL_NOT_AVAILABLE)
5629 doit = is_tm_callable (node->decl);
5630 else if (a <= AVAIL_AVAILABLE && is_tm_callable (node->decl))
5631 doit = true;
5632 else if (!d->is_irrevocable
5633 && d->tm_callers_normal + d->tm_callers_clone > 0)
5634 doit = true;
5635
5636 if (doit)
5637 ipa_tm_create_version (node);
5638 }
5639
5640 /* Redirect calls to the new clones, and insert irrevocable marks. */
5641 for (i = 0; i < tm_callees.length (); ++i)
5642 {
5643 node = tm_callees[i];
5644 if (node->analyzed)
5645 {
5646 d = get_cg_data (&node, true);
5647 if (d->clone)
5648 ipa_tm_transform_clone (node);
5649 }
5650 }
5651 FOR_EACH_DEFINED_FUNCTION (node)
5652 if (node->lowered
5653 && node->get_availability () >= AVAIL_INTERPOSABLE)
5654 {
5655 d = get_cg_data (&node, true);
5656 if (d->all_tm_regions)
5657 ipa_tm_transform_transaction (node);
5658 }
5659
5660 /* Free and clear all data structures. */
5661 tm_callees.release ();
5662 irr_worklist.release ();
5663 bitmap_obstack_release (&tm_obstack);
5664 free_original_copy_tables ();
5665
5666 FOR_EACH_FUNCTION (node)
5667 node->aux = NULL;
5668
5669 cgraph_node::checking_verify_cgraph_nodes ();
5670
5671 return 0;
5672 }
5673
5674 namespace {
5675
5676 const pass_data pass_data_ipa_tm =
5677 {
5678 SIMPLE_IPA_PASS, /* type */
5679 "tmipa", /* name */
5680 OPTGROUP_NONE, /* optinfo_flags */
5681 TV_TRANS_MEM, /* tv_id */
5682 ( PROP_ssa | PROP_cfg ), /* properties_required */
5683 0, /* properties_provided */
5684 0, /* properties_destroyed */
5685 0, /* todo_flags_start */
5686 0, /* todo_flags_finish */
5687 };
5688
5689 class pass_ipa_tm : public simple_ipa_opt_pass
5690 {
5691 public:
5692 pass_ipa_tm (gcc::context *ctxt)
5693 : simple_ipa_opt_pass (pass_data_ipa_tm, ctxt)
5694 {}
5695
5696 /* opt_pass methods: */
5697 virtual bool gate (function *) { return flag_tm; }
5698 virtual unsigned int execute (function *) { return ipa_tm_execute (); }
5699
5700 }; // class pass_ipa_tm
5701
5702 } // anon namespace
5703
5704 simple_ipa_opt_pass *
5705 make_pass_ipa_tm (gcc::context *ctxt)
5706 {
5707 return new pass_ipa_tm (ctxt);
5708 }
5709
5710 #include "gt-trans-mem.h"