s390.c (s390_function_value): Rename to ...
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
130
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
133 {
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
144
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
151
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
156
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
161 }
162
163 void
164 init_empty_tree_cfg (void)
165 {
166 init_empty_tree_cfg_for_function (cfun);
167 }
168
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
172
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
175
176 static void
177 build_gimple_cfg (gimple_seq seq)
178 {
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
181
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
183
184 init_empty_tree_cfg ();
185
186 found_computed_goto = 0;
187 make_blocks (seq);
188
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
196
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
200
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
204
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
207
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
212
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
219
220 /* Debugging dumps. */
221
222 /* Write the flowgraph to a VCG file. */
223 {
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
227 {
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
230 }
231 }
232 }
233
234 static unsigned int
235 execute_build_cfg (void)
236 {
237 gimple_seq body = gimple_body (current_function_decl);
238
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
242 {
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
245 }
246 return 0;
247 }
248
249 struct gimple_opt_pass pass_build_cfg =
250 {
251 {
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg
265 | TODO_dump_func /* todo_flags_finish */
266 }
267 };
268
269
270 /* Return true if T is a computed goto. */
271
272 static bool
273 computed_goto_p (gimple t)
274 {
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
277 }
278
279
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
284
285 static void
286 factor_computed_gotos (void)
287 {
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
293
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
297
298 FOR_EACH_BB (bb)
299 {
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
302
303 if (gsi_end_p (gsi))
304 continue;
305
306 last = gsi_stmt (gsi);
307
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
312
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
315 {
316 gimple assignment;
317
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
322 {
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
325
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
331
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
339
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
343 }
344
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
348
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
351 }
352 }
353 }
354
355
356 /* Build a flowgraph for the sequence of stmts SEQ. */
357
358 static void
359 make_blocks (gimple_seq seq)
360 {
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
366
367 while (!gsi_end_p (i))
368 {
369 gimple prev_stmt;
370
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
373
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
378 {
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
383 }
384
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
388
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
391
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
395 {
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
404 {
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
415 }
416 start_new_block = true;
417 }
418
419 gsi_next (&i);
420 first_stmt_of_seq = false;
421 }
422 }
423
424
425 /* Create and return a new empty basic block after bb AFTER. */
426
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
429 {
430 basic_block bb;
431
432 gcc_assert (!e);
433
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
438
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
443
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
446
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
449 {
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
452 }
453
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
456
457 n_basic_blocks++;
458 last_basic_block++;
459
460 return bb;
461 }
462
463
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
467
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
469
470 void
471 fold_cond_expr_cond (void)
472 {
473 basic_block bb;
474
475 FOR_EACH_BB (bb)
476 {
477 gimple stmt = last_stmt (bb);
478
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
480 {
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
484
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
489 {
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
492 }
493 else
494 zerop = onep = false;
495
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
503 }
504 }
505 }
506
507 /* Join all the blocks in the flowgraph. */
508
509 static void
510 make_edges (void)
511 {
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
514
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
518
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
521 {
522 gimple last = last_stmt (bb);
523 bool fallthru;
524
525 if (last)
526 {
527 enum gimple_code code = gimple_code (last);
528 switch (code)
529 {
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
553
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
560
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
564
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
572
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
580
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
585
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
597
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
602
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
606
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
611
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
620
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
624 {
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
633
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
641
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
644 {
645 basic_block switch_bb = single_succ (cur_region->entry);
646
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
649 {
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
653 }
654
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
658
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
662 }
663 break;
664
665 default:
666 gcc_unreachable ();
667 }
668 break;
669
670 default:
671 gcc_assert (!stmt_ends_bb_p (last));
672 fallthru = true;
673 }
674 }
675 else
676 fallthru = true;
677
678 if (fallthru)
679 {
680 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
681 if (last)
682 assign_discriminator (gimple_location (last), bb->next_bb);
683 }
684 }
685
686 if (root_omp_region)
687 free_omp_regions ();
688
689 /* Fold COND_EXPR_COND of each COND_EXPR. */
690 fold_cond_expr_cond ();
691 }
692
693 /* Trivial hash function for a location_t. ITEM is a pointer to
694 a hash table entry that maps a location_t to a discriminator. */
695
696 static unsigned int
697 locus_map_hash (const void *item)
698 {
699 return ((const struct locus_discrim_map *) item)->locus;
700 }
701
702 /* Equality function for the locus-to-discriminator map. VA and VB
703 point to the two hash table entries to compare. */
704
705 static int
706 locus_map_eq (const void *va, const void *vb)
707 {
708 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
709 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
710 return a->locus == b->locus;
711 }
712
713 /* Find the next available discriminator value for LOCUS. The
714 discriminator distinguishes among several basic blocks that
715 share a common locus, allowing for more accurate sample-based
716 profiling. */
717
718 static int
719 next_discriminator_for_locus (location_t locus)
720 {
721 struct locus_discrim_map item;
722 struct locus_discrim_map **slot;
723
724 item.locus = locus;
725 item.discriminator = 0;
726 slot = (struct locus_discrim_map **)
727 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
728 (hashval_t) locus, INSERT);
729 gcc_assert (slot);
730 if (*slot == HTAB_EMPTY_ENTRY)
731 {
732 *slot = XNEW (struct locus_discrim_map);
733 gcc_assert (*slot);
734 (*slot)->locus = locus;
735 (*slot)->discriminator = 0;
736 }
737 (*slot)->discriminator++;
738 return (*slot)->discriminator;
739 }
740
741 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
742
743 static bool
744 same_line_p (location_t locus1, location_t locus2)
745 {
746 expanded_location from, to;
747
748 if (locus1 == locus2)
749 return true;
750
751 from = expand_location (locus1);
752 to = expand_location (locus2);
753
754 if (from.line != to.line)
755 return false;
756 if (from.file == to.file)
757 return true;
758 return (from.file != NULL
759 && to.file != NULL
760 && strcmp (from.file, to.file) == 0);
761 }
762
763 /* Assign a unique discriminator value to block BB if it begins at the same
764 LOCUS as its predecessor block. */
765
766 static void
767 assign_discriminator (location_t locus, basic_block bb)
768 {
769 gimple first_in_to_bb, last_in_to_bb;
770
771 if (locus == 0 || bb->discriminator != 0)
772 return;
773
774 first_in_to_bb = first_non_label_stmt (bb);
775 last_in_to_bb = last_stmt (bb);
776 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
777 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
778 bb->discriminator = next_discriminator_for_locus (locus);
779 }
780
781 /* Create the edges for a GIMPLE_COND starting at block BB. */
782
783 static void
784 make_cond_expr_edges (basic_block bb)
785 {
786 gimple entry = last_stmt (bb);
787 gimple then_stmt, else_stmt;
788 basic_block then_bb, else_bb;
789 tree then_label, else_label;
790 edge e;
791 location_t entry_locus;
792
793 gcc_assert (entry);
794 gcc_assert (gimple_code (entry) == GIMPLE_COND);
795
796 entry_locus = gimple_location (entry);
797
798 /* Entry basic blocks for each component. */
799 then_label = gimple_cond_true_label (entry);
800 else_label = gimple_cond_false_label (entry);
801 then_bb = label_to_block (then_label);
802 else_bb = label_to_block (else_label);
803 then_stmt = first_stmt (then_bb);
804 else_stmt = first_stmt (else_bb);
805
806 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
807 assign_discriminator (entry_locus, then_bb);
808 e->goto_locus = gimple_location (then_stmt);
809 if (e->goto_locus)
810 e->goto_block = gimple_block (then_stmt);
811 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
812 if (e)
813 {
814 assign_discriminator (entry_locus, else_bb);
815 e->goto_locus = gimple_location (else_stmt);
816 if (e->goto_locus)
817 e->goto_block = gimple_block (else_stmt);
818 }
819
820 /* We do not need the labels anymore. */
821 gimple_cond_set_true_label (entry, NULL_TREE);
822 gimple_cond_set_false_label (entry, NULL_TREE);
823 }
824
825
826 /* Called for each element in the hash table (P) as we delete the
827 edge to cases hash table.
828
829 Clear all the TREE_CHAINs to prevent problems with copying of
830 SWITCH_EXPRs and structure sharing rules, then free the hash table
831 element. */
832
833 static bool
834 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
835 void *data ATTRIBUTE_UNUSED)
836 {
837 tree t, next;
838
839 for (t = (tree) *value; t; t = next)
840 {
841 next = TREE_CHAIN (t);
842 TREE_CHAIN (t) = NULL;
843 }
844
845 *value = NULL;
846 return false;
847 }
848
849 /* Start recording information mapping edges to case labels. */
850
851 void
852 start_recording_case_labels (void)
853 {
854 gcc_assert (edge_to_cases == NULL);
855 edge_to_cases = pointer_map_create ();
856 touched_switch_bbs = BITMAP_ALLOC (NULL);
857 }
858
859 /* Return nonzero if we are recording information for case labels. */
860
861 static bool
862 recording_case_labels_p (void)
863 {
864 return (edge_to_cases != NULL);
865 }
866
867 /* Stop recording information mapping edges to case labels and
868 remove any information we have recorded. */
869 void
870 end_recording_case_labels (void)
871 {
872 bitmap_iterator bi;
873 unsigned i;
874 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
875 pointer_map_destroy (edge_to_cases);
876 edge_to_cases = NULL;
877 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
878 {
879 basic_block bb = BASIC_BLOCK (i);
880 if (bb)
881 {
882 gimple stmt = last_stmt (bb);
883 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
884 group_case_labels_stmt (stmt);
885 }
886 }
887 BITMAP_FREE (touched_switch_bbs);
888 }
889
890 /* If we are inside a {start,end}_recording_cases block, then return
891 a chain of CASE_LABEL_EXPRs from T which reference E.
892
893 Otherwise return NULL. */
894
895 static tree
896 get_cases_for_edge (edge e, gimple t)
897 {
898 void **slot;
899 size_t i, n;
900
901 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
902 chains available. Return NULL so the caller can detect this case. */
903 if (!recording_case_labels_p ())
904 return NULL;
905
906 slot = pointer_map_contains (edge_to_cases, e);
907 if (slot)
908 return (tree) *slot;
909
910 /* If we did not find E in the hash table, then this must be the first
911 time we have been queried for information about E & T. Add all the
912 elements from T to the hash table then perform the query again. */
913
914 n = gimple_switch_num_labels (t);
915 for (i = 0; i < n; i++)
916 {
917 tree elt = gimple_switch_label (t, i);
918 tree lab = CASE_LABEL (elt);
919 basic_block label_bb = label_to_block (lab);
920 edge this_edge = find_edge (e->src, label_bb);
921
922 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
923 a new chain. */
924 slot = pointer_map_insert (edge_to_cases, this_edge);
925 TREE_CHAIN (elt) = (tree) *slot;
926 *slot = elt;
927 }
928
929 return (tree) *pointer_map_contains (edge_to_cases, e);
930 }
931
932 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
933
934 static void
935 make_gimple_switch_edges (basic_block bb)
936 {
937 gimple entry = last_stmt (bb);
938 location_t entry_locus;
939 size_t i, n;
940
941 entry_locus = gimple_location (entry);
942
943 n = gimple_switch_num_labels (entry);
944
945 for (i = 0; i < n; ++i)
946 {
947 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
948 basic_block label_bb = label_to_block (lab);
949 make_edge (bb, label_bb, 0);
950 assign_discriminator (entry_locus, label_bb);
951 }
952 }
953
954
955 /* Return the basic block holding label DEST. */
956
957 basic_block
958 label_to_block_fn (struct function *ifun, tree dest)
959 {
960 int uid = LABEL_DECL_UID (dest);
961
962 /* We would die hard when faced by an undefined label. Emit a label to
963 the very first basic block. This will hopefully make even the dataflow
964 and undefined variable warnings quite right. */
965 if (seen_error () && uid < 0)
966 {
967 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
968 gimple stmt;
969
970 stmt = gimple_build_label (dest);
971 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
972 uid = LABEL_DECL_UID (dest);
973 }
974 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
975 <= (unsigned int) uid)
976 return NULL;
977 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
978 }
979
980 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
981 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
982
983 void
984 make_abnormal_goto_edges (basic_block bb, bool for_call)
985 {
986 basic_block target_bb;
987 gimple_stmt_iterator gsi;
988
989 FOR_EACH_BB (target_bb)
990 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
991 {
992 gimple label_stmt = gsi_stmt (gsi);
993 tree target;
994
995 if (gimple_code (label_stmt) != GIMPLE_LABEL)
996 break;
997
998 target = gimple_label_label (label_stmt);
999
1000 /* Make an edge to every label block that has been marked as a
1001 potential target for a computed goto or a non-local goto. */
1002 if ((FORCED_LABEL (target) && !for_call)
1003 || (DECL_NONLOCAL (target) && for_call))
1004 {
1005 make_edge (bb, target_bb, EDGE_ABNORMAL);
1006 break;
1007 }
1008 }
1009 }
1010
1011 /* Create edges for a goto statement at block BB. */
1012
1013 static void
1014 make_goto_expr_edges (basic_block bb)
1015 {
1016 gimple_stmt_iterator last = gsi_last_bb (bb);
1017 gimple goto_t = gsi_stmt (last);
1018
1019 /* A simple GOTO creates normal edges. */
1020 if (simple_goto_p (goto_t))
1021 {
1022 tree dest = gimple_goto_dest (goto_t);
1023 basic_block label_bb = label_to_block (dest);
1024 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1025 e->goto_locus = gimple_location (goto_t);
1026 assign_discriminator (e->goto_locus, label_bb);
1027 if (e->goto_locus)
1028 e->goto_block = gimple_block (goto_t);
1029 gsi_remove (&last, true);
1030 return;
1031 }
1032
1033 /* A computed GOTO creates abnormal edges. */
1034 make_abnormal_goto_edges (bb, false);
1035 }
1036
1037 /* Create edges for an asm statement with labels at block BB. */
1038
1039 static void
1040 make_gimple_asm_edges (basic_block bb)
1041 {
1042 gimple stmt = last_stmt (bb);
1043 location_t stmt_loc = gimple_location (stmt);
1044 int i, n = gimple_asm_nlabels (stmt);
1045
1046 for (i = 0; i < n; ++i)
1047 {
1048 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1049 basic_block label_bb = label_to_block (label);
1050 make_edge (bb, label_bb, 0);
1051 assign_discriminator (stmt_loc, label_bb);
1052 }
1053 }
1054
1055 /*---------------------------------------------------------------------------
1056 Flowgraph analysis
1057 ---------------------------------------------------------------------------*/
1058
1059 /* Cleanup useless labels in basic blocks. This is something we wish
1060 to do early because it allows us to group case labels before creating
1061 the edges for the CFG, and it speeds up block statement iterators in
1062 all passes later on.
1063 We rerun this pass after CFG is created, to get rid of the labels that
1064 are no longer referenced. After then we do not run it any more, since
1065 (almost) no new labels should be created. */
1066
1067 /* A map from basic block index to the leading label of that block. */
1068 static struct label_record
1069 {
1070 /* The label. */
1071 tree label;
1072
1073 /* True if the label is referenced from somewhere. */
1074 bool used;
1075 } *label_for_bb;
1076
1077 /* Given LABEL return the first label in the same basic block. */
1078
1079 static tree
1080 main_block_label (tree label)
1081 {
1082 basic_block bb = label_to_block (label);
1083 tree main_label = label_for_bb[bb->index].label;
1084
1085 /* label_to_block possibly inserted undefined label into the chain. */
1086 if (!main_label)
1087 {
1088 label_for_bb[bb->index].label = label;
1089 main_label = label;
1090 }
1091
1092 label_for_bb[bb->index].used = true;
1093 return main_label;
1094 }
1095
1096 /* Clean up redundant labels within the exception tree. */
1097
1098 static void
1099 cleanup_dead_labels_eh (void)
1100 {
1101 eh_landing_pad lp;
1102 eh_region r;
1103 tree lab;
1104 int i;
1105
1106 if (cfun->eh == NULL)
1107 return;
1108
1109 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1110 if (lp && lp->post_landing_pad)
1111 {
1112 lab = main_block_label (lp->post_landing_pad);
1113 if (lab != lp->post_landing_pad)
1114 {
1115 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1116 EH_LANDING_PAD_NR (lab) = lp->index;
1117 }
1118 }
1119
1120 FOR_ALL_EH_REGION (r)
1121 switch (r->type)
1122 {
1123 case ERT_CLEANUP:
1124 case ERT_MUST_NOT_THROW:
1125 break;
1126
1127 case ERT_TRY:
1128 {
1129 eh_catch c;
1130 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1131 {
1132 lab = c->label;
1133 if (lab)
1134 c->label = main_block_label (lab);
1135 }
1136 }
1137 break;
1138
1139 case ERT_ALLOWED_EXCEPTIONS:
1140 lab = r->u.allowed.label;
1141 if (lab)
1142 r->u.allowed.label = main_block_label (lab);
1143 break;
1144 }
1145 }
1146
1147
1148 /* Cleanup redundant labels. This is a three-step process:
1149 1) Find the leading label for each block.
1150 2) Redirect all references to labels to the leading labels.
1151 3) Cleanup all useless labels. */
1152
1153 void
1154 cleanup_dead_labels (void)
1155 {
1156 basic_block bb;
1157 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1158
1159 /* Find a suitable label for each block. We use the first user-defined
1160 label if there is one, or otherwise just the first label we see. */
1161 FOR_EACH_BB (bb)
1162 {
1163 gimple_stmt_iterator i;
1164
1165 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1166 {
1167 tree label;
1168 gimple stmt = gsi_stmt (i);
1169
1170 if (gimple_code (stmt) != GIMPLE_LABEL)
1171 break;
1172
1173 label = gimple_label_label (stmt);
1174
1175 /* If we have not yet seen a label for the current block,
1176 remember this one and see if there are more labels. */
1177 if (!label_for_bb[bb->index].label)
1178 {
1179 label_for_bb[bb->index].label = label;
1180 continue;
1181 }
1182
1183 /* If we did see a label for the current block already, but it
1184 is an artificially created label, replace it if the current
1185 label is a user defined label. */
1186 if (!DECL_ARTIFICIAL (label)
1187 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1188 {
1189 label_for_bb[bb->index].label = label;
1190 break;
1191 }
1192 }
1193 }
1194
1195 /* Now redirect all jumps/branches to the selected label.
1196 First do so for each block ending in a control statement. */
1197 FOR_EACH_BB (bb)
1198 {
1199 gimple stmt = last_stmt (bb);
1200 if (!stmt)
1201 continue;
1202
1203 switch (gimple_code (stmt))
1204 {
1205 case GIMPLE_COND:
1206 {
1207 tree true_label = gimple_cond_true_label (stmt);
1208 tree false_label = gimple_cond_false_label (stmt);
1209
1210 if (true_label)
1211 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1212 if (false_label)
1213 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1214 break;
1215 }
1216
1217 case GIMPLE_SWITCH:
1218 {
1219 size_t i, n = gimple_switch_num_labels (stmt);
1220
1221 /* Replace all destination labels. */
1222 for (i = 0; i < n; ++i)
1223 {
1224 tree case_label = gimple_switch_label (stmt, i);
1225 tree label = main_block_label (CASE_LABEL (case_label));
1226 CASE_LABEL (case_label) = label;
1227 }
1228 break;
1229 }
1230
1231 case GIMPLE_ASM:
1232 {
1233 int i, n = gimple_asm_nlabels (stmt);
1234
1235 for (i = 0; i < n; ++i)
1236 {
1237 tree cons = gimple_asm_label_op (stmt, i);
1238 tree label = main_block_label (TREE_VALUE (cons));
1239 TREE_VALUE (cons) = label;
1240 }
1241 break;
1242 }
1243
1244 /* We have to handle gotos until they're removed, and we don't
1245 remove them until after we've created the CFG edges. */
1246 case GIMPLE_GOTO:
1247 if (!computed_goto_p (stmt))
1248 {
1249 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1250 gimple_goto_set_dest (stmt, new_dest);
1251 }
1252 break;
1253
1254 default:
1255 break;
1256 }
1257 }
1258
1259 /* Do the same for the exception region tree labels. */
1260 cleanup_dead_labels_eh ();
1261
1262 /* Finally, purge dead labels. All user-defined labels and labels that
1263 can be the target of non-local gotos and labels which have their
1264 address taken are preserved. */
1265 FOR_EACH_BB (bb)
1266 {
1267 gimple_stmt_iterator i;
1268 tree label_for_this_bb = label_for_bb[bb->index].label;
1269
1270 if (!label_for_this_bb)
1271 continue;
1272
1273 /* If the main label of the block is unused, we may still remove it. */
1274 if (!label_for_bb[bb->index].used)
1275 label_for_this_bb = NULL;
1276
1277 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1278 {
1279 tree label;
1280 gimple stmt = gsi_stmt (i);
1281
1282 if (gimple_code (stmt) != GIMPLE_LABEL)
1283 break;
1284
1285 label = gimple_label_label (stmt);
1286
1287 if (label == label_for_this_bb
1288 || !DECL_ARTIFICIAL (label)
1289 || DECL_NONLOCAL (label)
1290 || FORCED_LABEL (label))
1291 gsi_next (&i);
1292 else
1293 gsi_remove (&i, true);
1294 }
1295 }
1296
1297 free (label_for_bb);
1298 }
1299
1300 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1301 the ones jumping to the same label.
1302 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1303
1304 static void
1305 group_case_labels_stmt (gimple stmt)
1306 {
1307 int old_size = gimple_switch_num_labels (stmt);
1308 int i, j, new_size = old_size;
1309 tree default_case = NULL_TREE;
1310 tree default_label = NULL_TREE;
1311 bool has_default;
1312
1313 /* The default label is always the first case in a switch
1314 statement after gimplification if it was not optimized
1315 away */
1316 if (!CASE_LOW (gimple_switch_default_label (stmt))
1317 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1318 {
1319 default_case = gimple_switch_default_label (stmt);
1320 default_label = CASE_LABEL (default_case);
1321 has_default = true;
1322 }
1323 else
1324 has_default = false;
1325
1326 /* Look for possible opportunities to merge cases. */
1327 if (has_default)
1328 i = 1;
1329 else
1330 i = 0;
1331 while (i < old_size)
1332 {
1333 tree base_case, base_label, base_high;
1334 base_case = gimple_switch_label (stmt, i);
1335
1336 gcc_assert (base_case);
1337 base_label = CASE_LABEL (base_case);
1338
1339 /* Discard cases that have the same destination as the
1340 default case. */
1341 if (base_label == default_label)
1342 {
1343 gimple_switch_set_label (stmt, i, NULL_TREE);
1344 i++;
1345 new_size--;
1346 continue;
1347 }
1348
1349 base_high = CASE_HIGH (base_case)
1350 ? CASE_HIGH (base_case)
1351 : CASE_LOW (base_case);
1352 i++;
1353
1354 /* Try to merge case labels. Break out when we reach the end
1355 of the label vector or when we cannot merge the next case
1356 label with the current one. */
1357 while (i < old_size)
1358 {
1359 tree merge_case = gimple_switch_label (stmt, i);
1360 tree merge_label = CASE_LABEL (merge_case);
1361 tree t = int_const_binop (PLUS_EXPR, base_high,
1362 integer_one_node, 1);
1363
1364 /* Merge the cases if they jump to the same place,
1365 and their ranges are consecutive. */
1366 if (merge_label == base_label
1367 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1368 {
1369 base_high = CASE_HIGH (merge_case) ?
1370 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1371 CASE_HIGH (base_case) = base_high;
1372 gimple_switch_set_label (stmt, i, NULL_TREE);
1373 new_size--;
1374 i++;
1375 }
1376 else
1377 break;
1378 }
1379 }
1380
1381 /* Compress the case labels in the label vector, and adjust the
1382 length of the vector. */
1383 for (i = 0, j = 0; i < new_size; i++)
1384 {
1385 while (! gimple_switch_label (stmt, j))
1386 j++;
1387 gimple_switch_set_label (stmt, i,
1388 gimple_switch_label (stmt, j++));
1389 }
1390
1391 gcc_assert (new_size <= old_size);
1392 gimple_switch_set_num_labels (stmt, new_size);
1393 }
1394
1395 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1396 and scan the sorted vector of cases. Combine the ones jumping to the
1397 same label. */
1398
1399 void
1400 group_case_labels (void)
1401 {
1402 basic_block bb;
1403
1404 FOR_EACH_BB (bb)
1405 {
1406 gimple stmt = last_stmt (bb);
1407 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1408 group_case_labels_stmt (stmt);
1409 }
1410 }
1411
1412 /* Checks whether we can merge block B into block A. */
1413
1414 static bool
1415 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1416 {
1417 gimple stmt;
1418 gimple_stmt_iterator gsi;
1419 gimple_seq phis;
1420
1421 if (!single_succ_p (a))
1422 return false;
1423
1424 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1425 return false;
1426
1427 if (single_succ (a) != b)
1428 return false;
1429
1430 if (!single_pred_p (b))
1431 return false;
1432
1433 if (b == EXIT_BLOCK_PTR)
1434 return false;
1435
1436 /* If A ends by a statement causing exceptions or something similar, we
1437 cannot merge the blocks. */
1438 stmt = last_stmt (a);
1439 if (stmt && stmt_ends_bb_p (stmt))
1440 return false;
1441
1442 /* Do not allow a block with only a non-local label to be merged. */
1443 if (stmt
1444 && gimple_code (stmt) == GIMPLE_LABEL
1445 && DECL_NONLOCAL (gimple_label_label (stmt)))
1446 return false;
1447
1448 /* Examine the labels at the beginning of B. */
1449 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1450 {
1451 tree lab;
1452 stmt = gsi_stmt (gsi);
1453 if (gimple_code (stmt) != GIMPLE_LABEL)
1454 break;
1455 lab = gimple_label_label (stmt);
1456
1457 /* Do not remove user labels. */
1458 if (!DECL_ARTIFICIAL (lab))
1459 return false;
1460 }
1461
1462 /* Protect the loop latches. */
1463 if (current_loops && b->loop_father->latch == b)
1464 return false;
1465
1466 /* It must be possible to eliminate all phi nodes in B. If ssa form
1467 is not up-to-date and a name-mapping is registered, we cannot eliminate
1468 any phis. Symbols marked for renaming are never a problem though. */
1469 phis = phi_nodes (b);
1470 if (!gimple_seq_empty_p (phis)
1471 && name_mappings_registered_p ())
1472 return false;
1473
1474 /* When not optimizing, don't merge if we'd lose goto_locus. */
1475 if (!optimize
1476 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1477 {
1478 location_t goto_locus = single_succ_edge (a)->goto_locus;
1479 gimple_stmt_iterator prev, next;
1480 prev = gsi_last_nondebug_bb (a);
1481 next = gsi_after_labels (b);
1482 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1483 gsi_next_nondebug (&next);
1484 if ((gsi_end_p (prev)
1485 || gimple_location (gsi_stmt (prev)) != goto_locus)
1486 && (gsi_end_p (next)
1487 || gimple_location (gsi_stmt (next)) != goto_locus))
1488 return false;
1489 }
1490
1491 return true;
1492 }
1493
1494 /* Return true if the var whose chain of uses starts at PTR has no
1495 nondebug uses. */
1496 bool
1497 has_zero_uses_1 (const ssa_use_operand_t *head)
1498 {
1499 const ssa_use_operand_t *ptr;
1500
1501 for (ptr = head->next; ptr != head; ptr = ptr->next)
1502 if (!is_gimple_debug (USE_STMT (ptr)))
1503 return false;
1504
1505 return true;
1506 }
1507
1508 /* Return true if the var whose chain of uses starts at PTR has a
1509 single nondebug use. Set USE_P and STMT to that single nondebug
1510 use, if so, or to NULL otherwise. */
1511 bool
1512 single_imm_use_1 (const ssa_use_operand_t *head,
1513 use_operand_p *use_p, gimple *stmt)
1514 {
1515 ssa_use_operand_t *ptr, *single_use = 0;
1516
1517 for (ptr = head->next; ptr != head; ptr = ptr->next)
1518 if (!is_gimple_debug (USE_STMT (ptr)))
1519 {
1520 if (single_use)
1521 {
1522 single_use = NULL;
1523 break;
1524 }
1525 single_use = ptr;
1526 }
1527
1528 if (use_p)
1529 *use_p = single_use;
1530
1531 if (stmt)
1532 *stmt = single_use ? single_use->loc.stmt : NULL;
1533
1534 return !!single_use;
1535 }
1536
1537 /* Replaces all uses of NAME by VAL. */
1538
1539 void
1540 replace_uses_by (tree name, tree val)
1541 {
1542 imm_use_iterator imm_iter;
1543 use_operand_p use;
1544 gimple stmt;
1545 edge e;
1546
1547 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1548 {
1549 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1550 {
1551 replace_exp (use, val);
1552
1553 if (gimple_code (stmt) == GIMPLE_PHI)
1554 {
1555 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1556 if (e->flags & EDGE_ABNORMAL)
1557 {
1558 /* This can only occur for virtual operands, since
1559 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1560 would prevent replacement. */
1561 gcc_assert (!is_gimple_reg (name));
1562 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1563 }
1564 }
1565 }
1566
1567 if (gimple_code (stmt) != GIMPLE_PHI)
1568 {
1569 size_t i;
1570
1571 fold_stmt_inplace (stmt);
1572 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1573 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1574
1575 /* FIXME. This should go in update_stmt. */
1576 for (i = 0; i < gimple_num_ops (stmt); i++)
1577 {
1578 tree op = gimple_op (stmt, i);
1579 /* Operands may be empty here. For example, the labels
1580 of a GIMPLE_COND are nulled out following the creation
1581 of the corresponding CFG edges. */
1582 if (op && TREE_CODE (op) == ADDR_EXPR)
1583 recompute_tree_invariant_for_addr_expr (op);
1584 }
1585
1586 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1587 update_stmt (stmt);
1588 }
1589 }
1590
1591 gcc_assert (has_zero_uses (name));
1592
1593 /* Also update the trees stored in loop structures. */
1594 if (current_loops)
1595 {
1596 struct loop *loop;
1597 loop_iterator li;
1598
1599 FOR_EACH_LOOP (li, loop, 0)
1600 {
1601 substitute_in_loop_info (loop, name, val);
1602 }
1603 }
1604 }
1605
1606 /* Merge block B into block A. */
1607
1608 static void
1609 gimple_merge_blocks (basic_block a, basic_block b)
1610 {
1611 gimple_stmt_iterator last, gsi, psi;
1612 gimple_seq phis = phi_nodes (b);
1613
1614 if (dump_file)
1615 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1616
1617 /* Remove all single-valued PHI nodes from block B of the form
1618 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1619 gsi = gsi_last_bb (a);
1620 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1621 {
1622 gimple phi = gsi_stmt (psi);
1623 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1624 gimple copy;
1625 bool may_replace_uses = !is_gimple_reg (def)
1626 || may_propagate_copy (def, use);
1627
1628 /* In case we maintain loop closed ssa form, do not propagate arguments
1629 of loop exit phi nodes. */
1630 if (current_loops
1631 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1632 && is_gimple_reg (def)
1633 && TREE_CODE (use) == SSA_NAME
1634 && a->loop_father != b->loop_father)
1635 may_replace_uses = false;
1636
1637 if (!may_replace_uses)
1638 {
1639 gcc_assert (is_gimple_reg (def));
1640
1641 /* Note that just emitting the copies is fine -- there is no problem
1642 with ordering of phi nodes. This is because A is the single
1643 predecessor of B, therefore results of the phi nodes cannot
1644 appear as arguments of the phi nodes. */
1645 copy = gimple_build_assign (def, use);
1646 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1647 remove_phi_node (&psi, false);
1648 }
1649 else
1650 {
1651 /* If we deal with a PHI for virtual operands, we can simply
1652 propagate these without fussing with folding or updating
1653 the stmt. */
1654 if (!is_gimple_reg (def))
1655 {
1656 imm_use_iterator iter;
1657 use_operand_p use_p;
1658 gimple stmt;
1659
1660 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1661 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1662 SET_USE (use_p, use);
1663
1664 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1665 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1666 }
1667 else
1668 replace_uses_by (def, use);
1669
1670 remove_phi_node (&psi, true);
1671 }
1672 }
1673
1674 /* Ensure that B follows A. */
1675 move_block_after (b, a);
1676
1677 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1678 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1679
1680 /* Remove labels from B and set gimple_bb to A for other statements. */
1681 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1682 {
1683 gimple stmt = gsi_stmt (gsi);
1684 if (gimple_code (stmt) == GIMPLE_LABEL)
1685 {
1686 tree label = gimple_label_label (stmt);
1687 int lp_nr;
1688
1689 gsi_remove (&gsi, false);
1690
1691 /* Now that we can thread computed gotos, we might have
1692 a situation where we have a forced label in block B
1693 However, the label at the start of block B might still be
1694 used in other ways (think about the runtime checking for
1695 Fortran assigned gotos). So we can not just delete the
1696 label. Instead we move the label to the start of block A. */
1697 if (FORCED_LABEL (label))
1698 {
1699 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1700 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1701 }
1702
1703 lp_nr = EH_LANDING_PAD_NR (label);
1704 if (lp_nr)
1705 {
1706 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1707 lp->post_landing_pad = NULL;
1708 }
1709 }
1710 else
1711 {
1712 gimple_set_bb (stmt, a);
1713 gsi_next (&gsi);
1714 }
1715 }
1716
1717 /* Merge the sequences. */
1718 last = gsi_last_bb (a);
1719 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1720 set_bb_seq (b, NULL);
1721
1722 if (cfgcleanup_altered_bbs)
1723 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1724 }
1725
1726
1727 /* Return the one of two successors of BB that is not reachable by a
1728 complex edge, if there is one. Else, return BB. We use
1729 this in optimizations that use post-dominators for their heuristics,
1730 to catch the cases in C++ where function calls are involved. */
1731
1732 basic_block
1733 single_noncomplex_succ (basic_block bb)
1734 {
1735 edge e0, e1;
1736 if (EDGE_COUNT (bb->succs) != 2)
1737 return bb;
1738
1739 e0 = EDGE_SUCC (bb, 0);
1740 e1 = EDGE_SUCC (bb, 1);
1741 if (e0->flags & EDGE_COMPLEX)
1742 return e1->dest;
1743 if (e1->flags & EDGE_COMPLEX)
1744 return e0->dest;
1745
1746 return bb;
1747 }
1748
1749 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1750
1751 void
1752 notice_special_calls (gimple call)
1753 {
1754 int flags = gimple_call_flags (call);
1755
1756 if (flags & ECF_MAY_BE_ALLOCA)
1757 cfun->calls_alloca = true;
1758 if (flags & ECF_RETURNS_TWICE)
1759 cfun->calls_setjmp = true;
1760 }
1761
1762
1763 /* Clear flags set by notice_special_calls. Used by dead code removal
1764 to update the flags. */
1765
1766 void
1767 clear_special_calls (void)
1768 {
1769 cfun->calls_alloca = false;
1770 cfun->calls_setjmp = false;
1771 }
1772
1773 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1774
1775 static void
1776 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1777 {
1778 /* Since this block is no longer reachable, we can just delete all
1779 of its PHI nodes. */
1780 remove_phi_nodes (bb);
1781
1782 /* Remove edges to BB's successors. */
1783 while (EDGE_COUNT (bb->succs) > 0)
1784 remove_edge (EDGE_SUCC (bb, 0));
1785 }
1786
1787
1788 /* Remove statements of basic block BB. */
1789
1790 static void
1791 remove_bb (basic_block bb)
1792 {
1793 gimple_stmt_iterator i;
1794
1795 if (dump_file)
1796 {
1797 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1798 if (dump_flags & TDF_DETAILS)
1799 {
1800 dump_bb (bb, dump_file, 0);
1801 fprintf (dump_file, "\n");
1802 }
1803 }
1804
1805 if (current_loops)
1806 {
1807 struct loop *loop = bb->loop_father;
1808
1809 /* If a loop gets removed, clean up the information associated
1810 with it. */
1811 if (loop->latch == bb
1812 || loop->header == bb)
1813 free_numbers_of_iterations_estimates_loop (loop);
1814 }
1815
1816 /* Remove all the instructions in the block. */
1817 if (bb_seq (bb) != NULL)
1818 {
1819 /* Walk backwards so as to get a chance to substitute all
1820 released DEFs into debug stmts. See
1821 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1822 details. */
1823 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1824 {
1825 gimple stmt = gsi_stmt (i);
1826 if (gimple_code (stmt) == GIMPLE_LABEL
1827 && (FORCED_LABEL (gimple_label_label (stmt))
1828 || DECL_NONLOCAL (gimple_label_label (stmt))))
1829 {
1830 basic_block new_bb;
1831 gimple_stmt_iterator new_gsi;
1832
1833 /* A non-reachable non-local label may still be referenced.
1834 But it no longer needs to carry the extra semantics of
1835 non-locality. */
1836 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1837 {
1838 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1839 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1840 }
1841
1842 new_bb = bb->prev_bb;
1843 new_gsi = gsi_start_bb (new_bb);
1844 gsi_remove (&i, false);
1845 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1846 }
1847 else
1848 {
1849 /* Release SSA definitions if we are in SSA. Note that we
1850 may be called when not in SSA. For example,
1851 final_cleanup calls this function via
1852 cleanup_tree_cfg. */
1853 if (gimple_in_ssa_p (cfun))
1854 release_defs (stmt);
1855
1856 gsi_remove (&i, true);
1857 }
1858
1859 if (gsi_end_p (i))
1860 i = gsi_last_bb (bb);
1861 else
1862 gsi_prev (&i);
1863 }
1864 }
1865
1866 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1867 bb->il.gimple = NULL;
1868 }
1869
1870
1871 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1872 predicate VAL, return the edge that will be taken out of the block.
1873 If VAL does not match a unique edge, NULL is returned. */
1874
1875 edge
1876 find_taken_edge (basic_block bb, tree val)
1877 {
1878 gimple stmt;
1879
1880 stmt = last_stmt (bb);
1881
1882 gcc_assert (stmt);
1883 gcc_assert (is_ctrl_stmt (stmt));
1884
1885 if (val == NULL)
1886 return NULL;
1887
1888 if (!is_gimple_min_invariant (val))
1889 return NULL;
1890
1891 if (gimple_code (stmt) == GIMPLE_COND)
1892 return find_taken_edge_cond_expr (bb, val);
1893
1894 if (gimple_code (stmt) == GIMPLE_SWITCH)
1895 return find_taken_edge_switch_expr (bb, val);
1896
1897 if (computed_goto_p (stmt))
1898 {
1899 /* Only optimize if the argument is a label, if the argument is
1900 not a label then we can not construct a proper CFG.
1901
1902 It may be the case that we only need to allow the LABEL_REF to
1903 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1904 appear inside a LABEL_EXPR just to be safe. */
1905 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1906 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1907 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1908 return NULL;
1909 }
1910
1911 gcc_unreachable ();
1912 }
1913
1914 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1915 statement, determine which of the outgoing edges will be taken out of the
1916 block. Return NULL if either edge may be taken. */
1917
1918 static edge
1919 find_taken_edge_computed_goto (basic_block bb, tree val)
1920 {
1921 basic_block dest;
1922 edge e = NULL;
1923
1924 dest = label_to_block (val);
1925 if (dest)
1926 {
1927 e = find_edge (bb, dest);
1928 gcc_assert (e != NULL);
1929 }
1930
1931 return e;
1932 }
1933
1934 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1935 statement, determine which of the two edges will be taken out of the
1936 block. Return NULL if either edge may be taken. */
1937
1938 static edge
1939 find_taken_edge_cond_expr (basic_block bb, tree val)
1940 {
1941 edge true_edge, false_edge;
1942
1943 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1944
1945 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1946 return (integer_zerop (val) ? false_edge : true_edge);
1947 }
1948
1949 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1950 statement, determine which edge will be taken out of the block. Return
1951 NULL if any edge may be taken. */
1952
1953 static edge
1954 find_taken_edge_switch_expr (basic_block bb, tree val)
1955 {
1956 basic_block dest_bb;
1957 edge e;
1958 gimple switch_stmt;
1959 tree taken_case;
1960
1961 switch_stmt = last_stmt (bb);
1962 taken_case = find_case_label_for_value (switch_stmt, val);
1963 dest_bb = label_to_block (CASE_LABEL (taken_case));
1964
1965 e = find_edge (bb, dest_bb);
1966 gcc_assert (e);
1967 return e;
1968 }
1969
1970
1971 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1972 We can make optimal use here of the fact that the case labels are
1973 sorted: We can do a binary search for a case matching VAL. */
1974
1975 static tree
1976 find_case_label_for_value (gimple switch_stmt, tree val)
1977 {
1978 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1979 tree default_case = gimple_switch_default_label (switch_stmt);
1980
1981 for (low = 0, high = n; high - low > 1; )
1982 {
1983 size_t i = (high + low) / 2;
1984 tree t = gimple_switch_label (switch_stmt, i);
1985 int cmp;
1986
1987 /* Cache the result of comparing CASE_LOW and val. */
1988 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1989
1990 if (cmp > 0)
1991 high = i;
1992 else
1993 low = i;
1994
1995 if (CASE_HIGH (t) == NULL)
1996 {
1997 /* A singe-valued case label. */
1998 if (cmp == 0)
1999 return t;
2000 }
2001 else
2002 {
2003 /* A case range. We can only handle integer ranges. */
2004 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2005 return t;
2006 }
2007 }
2008
2009 return default_case;
2010 }
2011
2012
2013 /* Dump a basic block on stderr. */
2014
2015 void
2016 gimple_debug_bb (basic_block bb)
2017 {
2018 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2019 }
2020
2021
2022 /* Dump basic block with index N on stderr. */
2023
2024 basic_block
2025 gimple_debug_bb_n (int n)
2026 {
2027 gimple_debug_bb (BASIC_BLOCK (n));
2028 return BASIC_BLOCK (n);
2029 }
2030
2031
2032 /* Dump the CFG on stderr.
2033
2034 FLAGS are the same used by the tree dumping functions
2035 (see TDF_* in tree-pass.h). */
2036
2037 void
2038 gimple_debug_cfg (int flags)
2039 {
2040 gimple_dump_cfg (stderr, flags);
2041 }
2042
2043
2044 /* Dump the program showing basic block boundaries on the given FILE.
2045
2046 FLAGS are the same used by the tree dumping functions (see TDF_* in
2047 tree.h). */
2048
2049 void
2050 gimple_dump_cfg (FILE *file, int flags)
2051 {
2052 if (flags & TDF_DETAILS)
2053 {
2054 const char *funcname
2055 = lang_hooks.decl_printable_name (current_function_decl, 2);
2056
2057 fputc ('\n', file);
2058 fprintf (file, ";; Function %s\n\n", funcname);
2059 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2060 n_basic_blocks, n_edges, last_basic_block);
2061
2062 brief_dump_cfg (file);
2063 fprintf (file, "\n");
2064 }
2065
2066 if (flags & TDF_STATS)
2067 dump_cfg_stats (file);
2068
2069 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2070 }
2071
2072
2073 /* Dump CFG statistics on FILE. */
2074
2075 void
2076 dump_cfg_stats (FILE *file)
2077 {
2078 static long max_num_merged_labels = 0;
2079 unsigned long size, total = 0;
2080 long num_edges;
2081 basic_block bb;
2082 const char * const fmt_str = "%-30s%-13s%12s\n";
2083 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2084 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2085 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2086 const char *funcname
2087 = lang_hooks.decl_printable_name (current_function_decl, 2);
2088
2089
2090 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2091
2092 fprintf (file, "---------------------------------------------------------\n");
2093 fprintf (file, fmt_str, "", " Number of ", "Memory");
2094 fprintf (file, fmt_str, "", " instances ", "used ");
2095 fprintf (file, "---------------------------------------------------------\n");
2096
2097 size = n_basic_blocks * sizeof (struct basic_block_def);
2098 total += size;
2099 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2100 SCALE (size), LABEL (size));
2101
2102 num_edges = 0;
2103 FOR_EACH_BB (bb)
2104 num_edges += EDGE_COUNT (bb->succs);
2105 size = num_edges * sizeof (struct edge_def);
2106 total += size;
2107 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2108
2109 fprintf (file, "---------------------------------------------------------\n");
2110 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2111 LABEL (total));
2112 fprintf (file, "---------------------------------------------------------\n");
2113 fprintf (file, "\n");
2114
2115 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2116 max_num_merged_labels = cfg_stats.num_merged_labels;
2117
2118 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2119 cfg_stats.num_merged_labels, max_num_merged_labels);
2120
2121 fprintf (file, "\n");
2122 }
2123
2124
2125 /* Dump CFG statistics on stderr. Keep extern so that it's always
2126 linked in the final executable. */
2127
2128 DEBUG_FUNCTION void
2129 debug_cfg_stats (void)
2130 {
2131 dump_cfg_stats (stderr);
2132 }
2133
2134
2135 /* Dump the flowgraph to a .vcg FILE. */
2136
2137 static void
2138 gimple_cfg2vcg (FILE *file)
2139 {
2140 edge e;
2141 edge_iterator ei;
2142 basic_block bb;
2143 const char *funcname
2144 = lang_hooks.decl_printable_name (current_function_decl, 2);
2145
2146 /* Write the file header. */
2147 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2148 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2149 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2150
2151 /* Write blocks and edges. */
2152 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2153 {
2154 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2155 e->dest->index);
2156
2157 if (e->flags & EDGE_FAKE)
2158 fprintf (file, " linestyle: dotted priority: 10");
2159 else
2160 fprintf (file, " linestyle: solid priority: 100");
2161
2162 fprintf (file, " }\n");
2163 }
2164 fputc ('\n', file);
2165
2166 FOR_EACH_BB (bb)
2167 {
2168 enum gimple_code head_code, end_code;
2169 const char *head_name, *end_name;
2170 int head_line = 0;
2171 int end_line = 0;
2172 gimple first = first_stmt (bb);
2173 gimple last = last_stmt (bb);
2174
2175 if (first)
2176 {
2177 head_code = gimple_code (first);
2178 head_name = gimple_code_name[head_code];
2179 head_line = get_lineno (first);
2180 }
2181 else
2182 head_name = "no-statement";
2183
2184 if (last)
2185 {
2186 end_code = gimple_code (last);
2187 end_name = gimple_code_name[end_code];
2188 end_line = get_lineno (last);
2189 }
2190 else
2191 end_name = "no-statement";
2192
2193 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2194 bb->index, bb->index, head_name, head_line, end_name,
2195 end_line);
2196
2197 FOR_EACH_EDGE (e, ei, bb->succs)
2198 {
2199 if (e->dest == EXIT_BLOCK_PTR)
2200 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2201 else
2202 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2203
2204 if (e->flags & EDGE_FAKE)
2205 fprintf (file, " priority: 10 linestyle: dotted");
2206 else
2207 fprintf (file, " priority: 100 linestyle: solid");
2208
2209 fprintf (file, " }\n");
2210 }
2211
2212 if (bb->next_bb != EXIT_BLOCK_PTR)
2213 fputc ('\n', file);
2214 }
2215
2216 fputs ("}\n\n", file);
2217 }
2218
2219
2220
2221 /*---------------------------------------------------------------------------
2222 Miscellaneous helpers
2223 ---------------------------------------------------------------------------*/
2224
2225 /* Return true if T represents a stmt that always transfers control. */
2226
2227 bool
2228 is_ctrl_stmt (gimple t)
2229 {
2230 switch (gimple_code (t))
2231 {
2232 case GIMPLE_COND:
2233 case GIMPLE_SWITCH:
2234 case GIMPLE_GOTO:
2235 case GIMPLE_RETURN:
2236 case GIMPLE_RESX:
2237 return true;
2238 default:
2239 return false;
2240 }
2241 }
2242
2243
2244 /* Return true if T is a statement that may alter the flow of control
2245 (e.g., a call to a non-returning function). */
2246
2247 bool
2248 is_ctrl_altering_stmt (gimple t)
2249 {
2250 gcc_assert (t);
2251
2252 switch (gimple_code (t))
2253 {
2254 case GIMPLE_CALL:
2255 {
2256 int flags = gimple_call_flags (t);
2257
2258 /* A non-pure/const call alters flow control if the current
2259 function has nonlocal labels. */
2260 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2261 && cfun->has_nonlocal_label)
2262 return true;
2263
2264 /* A call also alters control flow if it does not return. */
2265 if (flags & ECF_NORETURN)
2266 return true;
2267
2268 /* BUILT_IN_RETURN call is same as return statement. */
2269 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2270 return true;
2271 }
2272 break;
2273
2274 case GIMPLE_EH_DISPATCH:
2275 /* EH_DISPATCH branches to the individual catch handlers at
2276 this level of a try or allowed-exceptions region. It can
2277 fallthru to the next statement as well. */
2278 return true;
2279
2280 case GIMPLE_ASM:
2281 if (gimple_asm_nlabels (t) > 0)
2282 return true;
2283 break;
2284
2285 CASE_GIMPLE_OMP:
2286 /* OpenMP directives alter control flow. */
2287 return true;
2288
2289 default:
2290 break;
2291 }
2292
2293 /* If a statement can throw, it alters control flow. */
2294 return stmt_can_throw_internal (t);
2295 }
2296
2297
2298 /* Return true if T is a simple local goto. */
2299
2300 bool
2301 simple_goto_p (gimple t)
2302 {
2303 return (gimple_code (t) == GIMPLE_GOTO
2304 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2305 }
2306
2307
2308 /* Return true if T can make an abnormal transfer of control flow.
2309 Transfers of control flow associated with EH are excluded. */
2310
2311 bool
2312 stmt_can_make_abnormal_goto (gimple t)
2313 {
2314 if (computed_goto_p (t))
2315 return true;
2316 if (is_gimple_call (t))
2317 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2318 && !(gimple_call_flags (t) & ECF_LEAF));
2319 return false;
2320 }
2321
2322
2323 /* Return true if STMT should start a new basic block. PREV_STMT is
2324 the statement preceding STMT. It is used when STMT is a label or a
2325 case label. Labels should only start a new basic block if their
2326 previous statement wasn't a label. Otherwise, sequence of labels
2327 would generate unnecessary basic blocks that only contain a single
2328 label. */
2329
2330 static inline bool
2331 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2332 {
2333 if (stmt == NULL)
2334 return false;
2335
2336 /* Labels start a new basic block only if the preceding statement
2337 wasn't a label of the same type. This prevents the creation of
2338 consecutive blocks that have nothing but a single label. */
2339 if (gimple_code (stmt) == GIMPLE_LABEL)
2340 {
2341 /* Nonlocal and computed GOTO targets always start a new block. */
2342 if (DECL_NONLOCAL (gimple_label_label (stmt))
2343 || FORCED_LABEL (gimple_label_label (stmt)))
2344 return true;
2345
2346 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2347 {
2348 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2349 return true;
2350
2351 cfg_stats.num_merged_labels++;
2352 return false;
2353 }
2354 else
2355 return true;
2356 }
2357
2358 return false;
2359 }
2360
2361
2362 /* Return true if T should end a basic block. */
2363
2364 bool
2365 stmt_ends_bb_p (gimple t)
2366 {
2367 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2368 }
2369
2370 /* Remove block annotations and other data structures. */
2371
2372 void
2373 delete_tree_cfg_annotations (void)
2374 {
2375 label_to_block_map = NULL;
2376 }
2377
2378
2379 /* Return the first statement in basic block BB. */
2380
2381 gimple
2382 first_stmt (basic_block bb)
2383 {
2384 gimple_stmt_iterator i = gsi_start_bb (bb);
2385 gimple stmt = NULL;
2386
2387 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2388 {
2389 gsi_next (&i);
2390 stmt = NULL;
2391 }
2392 return stmt;
2393 }
2394
2395 /* Return the first non-label statement in basic block BB. */
2396
2397 static gimple
2398 first_non_label_stmt (basic_block bb)
2399 {
2400 gimple_stmt_iterator i = gsi_start_bb (bb);
2401 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2402 gsi_next (&i);
2403 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2404 }
2405
2406 /* Return the last statement in basic block BB. */
2407
2408 gimple
2409 last_stmt (basic_block bb)
2410 {
2411 gimple_stmt_iterator i = gsi_last_bb (bb);
2412 gimple stmt = NULL;
2413
2414 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2415 {
2416 gsi_prev (&i);
2417 stmt = NULL;
2418 }
2419 return stmt;
2420 }
2421
2422 /* Return the last statement of an otherwise empty block. Return NULL
2423 if the block is totally empty, or if it contains more than one
2424 statement. */
2425
2426 gimple
2427 last_and_only_stmt (basic_block bb)
2428 {
2429 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2430 gimple last, prev;
2431
2432 if (gsi_end_p (i))
2433 return NULL;
2434
2435 last = gsi_stmt (i);
2436 gsi_prev_nondebug (&i);
2437 if (gsi_end_p (i))
2438 return last;
2439
2440 /* Empty statements should no longer appear in the instruction stream.
2441 Everything that might have appeared before should be deleted by
2442 remove_useless_stmts, and the optimizers should just gsi_remove
2443 instead of smashing with build_empty_stmt.
2444
2445 Thus the only thing that should appear here in a block containing
2446 one executable statement is a label. */
2447 prev = gsi_stmt (i);
2448 if (gimple_code (prev) == GIMPLE_LABEL)
2449 return last;
2450 else
2451 return NULL;
2452 }
2453
2454 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2455
2456 static void
2457 reinstall_phi_args (edge new_edge, edge old_edge)
2458 {
2459 edge_var_map_vector v;
2460 edge_var_map *vm;
2461 int i;
2462 gimple_stmt_iterator phis;
2463
2464 v = redirect_edge_var_map_vector (old_edge);
2465 if (!v)
2466 return;
2467
2468 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2469 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2470 i++, gsi_next (&phis))
2471 {
2472 gimple phi = gsi_stmt (phis);
2473 tree result = redirect_edge_var_map_result (vm);
2474 tree arg = redirect_edge_var_map_def (vm);
2475
2476 gcc_assert (result == gimple_phi_result (phi));
2477
2478 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2479 }
2480
2481 redirect_edge_var_map_clear (old_edge);
2482 }
2483
2484 /* Returns the basic block after which the new basic block created
2485 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2486 near its "logical" location. This is of most help to humans looking
2487 at debugging dumps. */
2488
2489 static basic_block
2490 split_edge_bb_loc (edge edge_in)
2491 {
2492 basic_block dest = edge_in->dest;
2493 basic_block dest_prev = dest->prev_bb;
2494
2495 if (dest_prev)
2496 {
2497 edge e = find_edge (dest_prev, dest);
2498 if (e && !(e->flags & EDGE_COMPLEX))
2499 return edge_in->src;
2500 }
2501 return dest_prev;
2502 }
2503
2504 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2505 Abort on abnormal edges. */
2506
2507 static basic_block
2508 gimple_split_edge (edge edge_in)
2509 {
2510 basic_block new_bb, after_bb, dest;
2511 edge new_edge, e;
2512
2513 /* Abnormal edges cannot be split. */
2514 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2515
2516 dest = edge_in->dest;
2517
2518 after_bb = split_edge_bb_loc (edge_in);
2519
2520 new_bb = create_empty_bb (after_bb);
2521 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2522 new_bb->count = edge_in->count;
2523 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2524 new_edge->probability = REG_BR_PROB_BASE;
2525 new_edge->count = edge_in->count;
2526
2527 e = redirect_edge_and_branch (edge_in, new_bb);
2528 gcc_assert (e == edge_in);
2529 reinstall_phi_args (new_edge, e);
2530
2531 return new_bb;
2532 }
2533
2534
2535 /* Verify properties of the address expression T with base object BASE. */
2536
2537 static tree
2538 verify_address (tree t, tree base)
2539 {
2540 bool old_constant;
2541 bool old_side_effects;
2542 bool new_constant;
2543 bool new_side_effects;
2544
2545 old_constant = TREE_CONSTANT (t);
2546 old_side_effects = TREE_SIDE_EFFECTS (t);
2547
2548 recompute_tree_invariant_for_addr_expr (t);
2549 new_side_effects = TREE_SIDE_EFFECTS (t);
2550 new_constant = TREE_CONSTANT (t);
2551
2552 if (old_constant != new_constant)
2553 {
2554 error ("constant not recomputed when ADDR_EXPR changed");
2555 return t;
2556 }
2557 if (old_side_effects != new_side_effects)
2558 {
2559 error ("side effects not recomputed when ADDR_EXPR changed");
2560 return t;
2561 }
2562
2563 if (!(TREE_CODE (base) == VAR_DECL
2564 || TREE_CODE (base) == PARM_DECL
2565 || TREE_CODE (base) == RESULT_DECL))
2566 return NULL_TREE;
2567
2568 if (DECL_GIMPLE_REG_P (base))
2569 {
2570 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2571 return base;
2572 }
2573
2574 return NULL_TREE;
2575 }
2576
2577 /* Callback for walk_tree, check that all elements with address taken are
2578 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2579 inside a PHI node. */
2580
2581 static tree
2582 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2583 {
2584 tree t = *tp, x;
2585
2586 if (TYPE_P (t))
2587 *walk_subtrees = 0;
2588
2589 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2590 #define CHECK_OP(N, MSG) \
2591 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2592 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2593
2594 switch (TREE_CODE (t))
2595 {
2596 case SSA_NAME:
2597 if (SSA_NAME_IN_FREE_LIST (t))
2598 {
2599 error ("SSA name in freelist but still referenced");
2600 return *tp;
2601 }
2602 break;
2603
2604 case INDIRECT_REF:
2605 error ("INDIRECT_REF in gimple IL");
2606 return t;
2607
2608 case MEM_REF:
2609 x = TREE_OPERAND (t, 0);
2610 if (!POINTER_TYPE_P (TREE_TYPE (x))
2611 || !is_gimple_mem_ref_addr (x))
2612 {
2613 error ("invalid first operand of MEM_REF");
2614 return x;
2615 }
2616 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2617 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2618 {
2619 error ("invalid offset operand of MEM_REF");
2620 return TREE_OPERAND (t, 1);
2621 }
2622 if (TREE_CODE (x) == ADDR_EXPR
2623 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2624 return x;
2625 *walk_subtrees = 0;
2626 break;
2627
2628 case ASSERT_EXPR:
2629 x = fold (ASSERT_EXPR_COND (t));
2630 if (x == boolean_false_node)
2631 {
2632 error ("ASSERT_EXPR with an always-false condition");
2633 return *tp;
2634 }
2635 break;
2636
2637 case MODIFY_EXPR:
2638 error ("MODIFY_EXPR not expected while having tuples");
2639 return *tp;
2640
2641 case ADDR_EXPR:
2642 {
2643 tree tem;
2644
2645 gcc_assert (is_gimple_address (t));
2646
2647 /* Skip any references (they will be checked when we recurse down the
2648 tree) and ensure that any variable used as a prefix is marked
2649 addressable. */
2650 for (x = TREE_OPERAND (t, 0);
2651 handled_component_p (x);
2652 x = TREE_OPERAND (x, 0))
2653 ;
2654
2655 if ((tem = verify_address (t, x)))
2656 return tem;
2657
2658 if (!(TREE_CODE (x) == VAR_DECL
2659 || TREE_CODE (x) == PARM_DECL
2660 || TREE_CODE (x) == RESULT_DECL))
2661 return NULL;
2662
2663 if (!TREE_ADDRESSABLE (x))
2664 {
2665 error ("address taken, but ADDRESSABLE bit not set");
2666 return x;
2667 }
2668
2669 break;
2670 }
2671
2672 case COND_EXPR:
2673 x = COND_EXPR_COND (t);
2674 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2675 {
2676 error ("non-integral used in condition");
2677 return x;
2678 }
2679 if (!is_gimple_condexpr (x))
2680 {
2681 error ("invalid conditional operand");
2682 return x;
2683 }
2684 break;
2685
2686 case NON_LVALUE_EXPR:
2687 gcc_unreachable ();
2688
2689 CASE_CONVERT:
2690 case FIX_TRUNC_EXPR:
2691 case FLOAT_EXPR:
2692 case NEGATE_EXPR:
2693 case ABS_EXPR:
2694 case BIT_NOT_EXPR:
2695 case TRUTH_NOT_EXPR:
2696 CHECK_OP (0, "invalid operand to unary operator");
2697 break;
2698
2699 case REALPART_EXPR:
2700 case IMAGPART_EXPR:
2701 case COMPONENT_REF:
2702 case ARRAY_REF:
2703 case ARRAY_RANGE_REF:
2704 case BIT_FIELD_REF:
2705 case VIEW_CONVERT_EXPR:
2706 /* We have a nest of references. Verify that each of the operands
2707 that determine where to reference is either a constant or a variable,
2708 verify that the base is valid, and then show we've already checked
2709 the subtrees. */
2710 while (handled_component_p (t))
2711 {
2712 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2713 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2714 else if (TREE_CODE (t) == ARRAY_REF
2715 || TREE_CODE (t) == ARRAY_RANGE_REF)
2716 {
2717 CHECK_OP (1, "invalid array index");
2718 if (TREE_OPERAND (t, 2))
2719 CHECK_OP (2, "invalid array lower bound");
2720 if (TREE_OPERAND (t, 3))
2721 CHECK_OP (3, "invalid array stride");
2722 }
2723 else if (TREE_CODE (t) == BIT_FIELD_REF)
2724 {
2725 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2726 || !host_integerp (TREE_OPERAND (t, 2), 1))
2727 {
2728 error ("invalid position or size operand to BIT_FIELD_REF");
2729 return t;
2730 }
2731 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2732 && (TYPE_PRECISION (TREE_TYPE (t))
2733 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2734 {
2735 error ("integral result type precision does not match "
2736 "field size of BIT_FIELD_REF");
2737 return t;
2738 }
2739 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2740 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2741 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2742 {
2743 error ("mode precision of non-integral result does not "
2744 "match field size of BIT_FIELD_REF");
2745 return t;
2746 }
2747 }
2748
2749 t = TREE_OPERAND (t, 0);
2750 }
2751
2752 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2753 {
2754 error ("invalid reference prefix");
2755 return t;
2756 }
2757 *walk_subtrees = 0;
2758 break;
2759 case PLUS_EXPR:
2760 case MINUS_EXPR:
2761 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2762 POINTER_PLUS_EXPR. */
2763 if (POINTER_TYPE_P (TREE_TYPE (t)))
2764 {
2765 error ("invalid operand to plus/minus, type is a pointer");
2766 return t;
2767 }
2768 CHECK_OP (0, "invalid operand to binary operator");
2769 CHECK_OP (1, "invalid operand to binary operator");
2770 break;
2771
2772 case POINTER_PLUS_EXPR:
2773 /* Check to make sure the first operand is a pointer or reference type. */
2774 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2775 {
2776 error ("invalid operand to pointer plus, first operand is not a pointer");
2777 return t;
2778 }
2779 /* Check to make sure the second operand is an integer with type of
2780 sizetype. */
2781 if (!useless_type_conversion_p (sizetype,
2782 TREE_TYPE (TREE_OPERAND (t, 1))))
2783 {
2784 error ("invalid operand to pointer plus, second operand is not an "
2785 "integer with type of sizetype");
2786 return t;
2787 }
2788 /* FALLTHROUGH */
2789 case LT_EXPR:
2790 case LE_EXPR:
2791 case GT_EXPR:
2792 case GE_EXPR:
2793 case EQ_EXPR:
2794 case NE_EXPR:
2795 case UNORDERED_EXPR:
2796 case ORDERED_EXPR:
2797 case UNLT_EXPR:
2798 case UNLE_EXPR:
2799 case UNGT_EXPR:
2800 case UNGE_EXPR:
2801 case UNEQ_EXPR:
2802 case LTGT_EXPR:
2803 case MULT_EXPR:
2804 case TRUNC_DIV_EXPR:
2805 case CEIL_DIV_EXPR:
2806 case FLOOR_DIV_EXPR:
2807 case ROUND_DIV_EXPR:
2808 case TRUNC_MOD_EXPR:
2809 case CEIL_MOD_EXPR:
2810 case FLOOR_MOD_EXPR:
2811 case ROUND_MOD_EXPR:
2812 case RDIV_EXPR:
2813 case EXACT_DIV_EXPR:
2814 case MIN_EXPR:
2815 case MAX_EXPR:
2816 case LSHIFT_EXPR:
2817 case RSHIFT_EXPR:
2818 case LROTATE_EXPR:
2819 case RROTATE_EXPR:
2820 case BIT_IOR_EXPR:
2821 case BIT_XOR_EXPR:
2822 case BIT_AND_EXPR:
2823 CHECK_OP (0, "invalid operand to binary operator");
2824 CHECK_OP (1, "invalid operand to binary operator");
2825 break;
2826
2827 case CONSTRUCTOR:
2828 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2829 *walk_subtrees = 0;
2830 break;
2831
2832 default:
2833 break;
2834 }
2835 return NULL;
2836
2837 #undef CHECK_OP
2838 }
2839
2840
2841 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2842 Returns true if there is an error, otherwise false. */
2843
2844 static bool
2845 verify_types_in_gimple_min_lval (tree expr)
2846 {
2847 tree op;
2848
2849 if (is_gimple_id (expr))
2850 return false;
2851
2852 if (TREE_CODE (expr) != TARGET_MEM_REF
2853 && TREE_CODE (expr) != MEM_REF)
2854 {
2855 error ("invalid expression for min lvalue");
2856 return true;
2857 }
2858
2859 /* TARGET_MEM_REFs are strange beasts. */
2860 if (TREE_CODE (expr) == TARGET_MEM_REF)
2861 return false;
2862
2863 op = TREE_OPERAND (expr, 0);
2864 if (!is_gimple_val (op))
2865 {
2866 error ("invalid operand in indirect reference");
2867 debug_generic_stmt (op);
2868 return true;
2869 }
2870 /* Memory references now generally can involve a value conversion. */
2871
2872 return false;
2873 }
2874
2875 /* Verify if EXPR is a valid GIMPLE reference expression. If
2876 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2877 if there is an error, otherwise false. */
2878
2879 static bool
2880 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2881 {
2882 while (handled_component_p (expr))
2883 {
2884 tree op = TREE_OPERAND (expr, 0);
2885
2886 if (TREE_CODE (expr) == ARRAY_REF
2887 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2888 {
2889 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2890 || (TREE_OPERAND (expr, 2)
2891 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2892 || (TREE_OPERAND (expr, 3)
2893 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2894 {
2895 error ("invalid operands to array reference");
2896 debug_generic_stmt (expr);
2897 return true;
2898 }
2899 }
2900
2901 /* Verify if the reference array element types are compatible. */
2902 if (TREE_CODE (expr) == ARRAY_REF
2903 && !useless_type_conversion_p (TREE_TYPE (expr),
2904 TREE_TYPE (TREE_TYPE (op))))
2905 {
2906 error ("type mismatch in array reference");
2907 debug_generic_stmt (TREE_TYPE (expr));
2908 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2909 return true;
2910 }
2911 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2912 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2913 TREE_TYPE (TREE_TYPE (op))))
2914 {
2915 error ("type mismatch in array range reference");
2916 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2918 return true;
2919 }
2920
2921 if ((TREE_CODE (expr) == REALPART_EXPR
2922 || TREE_CODE (expr) == IMAGPART_EXPR)
2923 && !useless_type_conversion_p (TREE_TYPE (expr),
2924 TREE_TYPE (TREE_TYPE (op))))
2925 {
2926 error ("type mismatch in real/imagpart reference");
2927 debug_generic_stmt (TREE_TYPE (expr));
2928 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2929 return true;
2930 }
2931
2932 if (TREE_CODE (expr) == COMPONENT_REF
2933 && !useless_type_conversion_p (TREE_TYPE (expr),
2934 TREE_TYPE (TREE_OPERAND (expr, 1))))
2935 {
2936 error ("type mismatch in component reference");
2937 debug_generic_stmt (TREE_TYPE (expr));
2938 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2939 return true;
2940 }
2941
2942 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2943 {
2944 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2945 that their operand is not an SSA name or an invariant when
2946 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2947 bug). Otherwise there is nothing to verify, gross mismatches at
2948 most invoke undefined behavior. */
2949 if (require_lvalue
2950 && (TREE_CODE (op) == SSA_NAME
2951 || is_gimple_min_invariant (op)))
2952 {
2953 error ("conversion of an SSA_NAME on the left hand side");
2954 debug_generic_stmt (expr);
2955 return true;
2956 }
2957 else if (TREE_CODE (op) == SSA_NAME
2958 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2959 {
2960 error ("conversion of register to a different size");
2961 debug_generic_stmt (expr);
2962 return true;
2963 }
2964 else if (!handled_component_p (op))
2965 return false;
2966 }
2967
2968 expr = op;
2969 }
2970
2971 if (TREE_CODE (expr) == MEM_REF)
2972 {
2973 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2974 {
2975 error ("invalid address operand in MEM_REF");
2976 debug_generic_stmt (expr);
2977 return true;
2978 }
2979 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2980 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2981 {
2982 error ("invalid offset operand in MEM_REF");
2983 debug_generic_stmt (expr);
2984 return true;
2985 }
2986 }
2987 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2988 {
2989 if (!TMR_BASE (expr)
2990 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2991 {
2992 error ("invalid address operand in in TARGET_MEM_REF");
2993 return true;
2994 }
2995 if (!TMR_OFFSET (expr)
2996 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2997 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
2998 {
2999 error ("invalid offset operand in TARGET_MEM_REF");
3000 debug_generic_stmt (expr);
3001 return true;
3002 }
3003 }
3004
3005 return ((require_lvalue || !is_gimple_min_invariant (expr))
3006 && verify_types_in_gimple_min_lval (expr));
3007 }
3008
3009 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3010 list of pointer-to types that is trivially convertible to DEST. */
3011
3012 static bool
3013 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3014 {
3015 tree src;
3016
3017 if (!TYPE_POINTER_TO (src_obj))
3018 return true;
3019
3020 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3021 if (useless_type_conversion_p (dest, src))
3022 return true;
3023
3024 return false;
3025 }
3026
3027 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3028 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3029
3030 static bool
3031 valid_fixed_convert_types_p (tree type1, tree type2)
3032 {
3033 return (FIXED_POINT_TYPE_P (type1)
3034 && (INTEGRAL_TYPE_P (type2)
3035 || SCALAR_FLOAT_TYPE_P (type2)
3036 || FIXED_POINT_TYPE_P (type2)));
3037 }
3038
3039 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3040 is a problem, otherwise false. */
3041
3042 static bool
3043 verify_gimple_call (gimple stmt)
3044 {
3045 tree fn = gimple_call_fn (stmt);
3046 tree fntype;
3047 unsigned i;
3048
3049 if (TREE_CODE (fn) != OBJ_TYPE_REF
3050 && !is_gimple_val (fn))
3051 {
3052 error ("invalid function in gimple call");
3053 debug_generic_stmt (fn);
3054 return true;
3055 }
3056
3057 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3058 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3059 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3060 {
3061 error ("non-function in gimple call");
3062 return true;
3063 }
3064
3065 if (gimple_call_lhs (stmt)
3066 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3067 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3068 {
3069 error ("invalid LHS in gimple call");
3070 return true;
3071 }
3072
3073 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3074 {
3075 error ("LHS in noreturn call");
3076 return true;
3077 }
3078
3079 fntype = TREE_TYPE (TREE_TYPE (fn));
3080 if (gimple_call_lhs (stmt)
3081 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3082 TREE_TYPE (fntype))
3083 /* ??? At least C++ misses conversions at assignments from
3084 void * call results.
3085 ??? Java is completely off. Especially with functions
3086 returning java.lang.Object.
3087 For now simply allow arbitrary pointer type conversions. */
3088 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3089 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3090 {
3091 error ("invalid conversion in gimple call");
3092 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3093 debug_generic_stmt (TREE_TYPE (fntype));
3094 return true;
3095 }
3096
3097 if (gimple_call_chain (stmt)
3098 && !is_gimple_val (gimple_call_chain (stmt)))
3099 {
3100 error ("invalid static chain in gimple call");
3101 debug_generic_stmt (gimple_call_chain (stmt));
3102 return true;
3103 }
3104
3105 /* If there is a static chain argument, this should not be an indirect
3106 call, and the decl should have DECL_STATIC_CHAIN set. */
3107 if (gimple_call_chain (stmt))
3108 {
3109 if (!gimple_call_fndecl (stmt))
3110 {
3111 error ("static chain in indirect gimple call");
3112 return true;
3113 }
3114 fn = TREE_OPERAND (fn, 0);
3115
3116 if (!DECL_STATIC_CHAIN (fn))
3117 {
3118 error ("static chain with function that doesn%'t use one");
3119 return true;
3120 }
3121 }
3122
3123 /* ??? The C frontend passes unpromoted arguments in case it
3124 didn't see a function declaration before the call. So for now
3125 leave the call arguments mostly unverified. Once we gimplify
3126 unit-at-a-time we have a chance to fix this. */
3127
3128 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3129 {
3130 tree arg = gimple_call_arg (stmt, i);
3131 if ((is_gimple_reg_type (TREE_TYPE (arg))
3132 && !is_gimple_val (arg))
3133 || (!is_gimple_reg_type (TREE_TYPE (arg))
3134 && !is_gimple_lvalue (arg)))
3135 {
3136 error ("invalid argument to gimple call");
3137 debug_generic_expr (arg);
3138 return true;
3139 }
3140 }
3141
3142 return false;
3143 }
3144
3145 /* Verifies the gimple comparison with the result type TYPE and
3146 the operands OP0 and OP1. */
3147
3148 static bool
3149 verify_gimple_comparison (tree type, tree op0, tree op1)
3150 {
3151 tree op0_type = TREE_TYPE (op0);
3152 tree op1_type = TREE_TYPE (op1);
3153
3154 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3155 {
3156 error ("invalid operands in gimple comparison");
3157 return true;
3158 }
3159
3160 /* For comparisons we do not have the operations type as the
3161 effective type the comparison is carried out in. Instead
3162 we require that either the first operand is trivially
3163 convertible into the second, or the other way around.
3164 The resulting type of a comparison may be any integral type.
3165 Because we special-case pointers to void we allow
3166 comparisons of pointers with the same mode as well. */
3167 if ((!useless_type_conversion_p (op0_type, op1_type)
3168 && !useless_type_conversion_p (op1_type, op0_type)
3169 && (!POINTER_TYPE_P (op0_type)
3170 || !POINTER_TYPE_P (op1_type)
3171 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3172 || !INTEGRAL_TYPE_P (type))
3173 {
3174 error ("type mismatch in comparison expression");
3175 debug_generic_expr (type);
3176 debug_generic_expr (op0_type);
3177 debug_generic_expr (op1_type);
3178 return true;
3179 }
3180
3181 return false;
3182 }
3183
3184 /* Verify a gimple assignment statement STMT with an unary rhs.
3185 Returns true if anything is wrong. */
3186
3187 static bool
3188 verify_gimple_assign_unary (gimple stmt)
3189 {
3190 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3191 tree lhs = gimple_assign_lhs (stmt);
3192 tree lhs_type = TREE_TYPE (lhs);
3193 tree rhs1 = gimple_assign_rhs1 (stmt);
3194 tree rhs1_type = TREE_TYPE (rhs1);
3195
3196 if (!is_gimple_reg (lhs)
3197 && !(optimize == 0
3198 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3199 {
3200 error ("non-register as LHS of unary operation");
3201 return true;
3202 }
3203
3204 if (!is_gimple_val (rhs1))
3205 {
3206 error ("invalid operand in unary operation");
3207 return true;
3208 }
3209
3210 /* First handle conversions. */
3211 switch (rhs_code)
3212 {
3213 CASE_CONVERT:
3214 {
3215 /* Allow conversions between integral types and pointers only if
3216 there is no sign or zero extension involved.
3217 For targets were the precision of sizetype doesn't match that
3218 of pointers we need to allow arbitrary conversions from and
3219 to sizetype. */
3220 if ((POINTER_TYPE_P (lhs_type)
3221 && INTEGRAL_TYPE_P (rhs1_type)
3222 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3223 || rhs1_type == sizetype))
3224 || (POINTER_TYPE_P (rhs1_type)
3225 && INTEGRAL_TYPE_P (lhs_type)
3226 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3227 || lhs_type == sizetype)))
3228 return false;
3229
3230 /* Allow conversion from integer to offset type and vice versa. */
3231 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3232 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3233 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3234 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3235 return false;
3236
3237 /* Otherwise assert we are converting between types of the
3238 same kind. */
3239 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3240 {
3241 error ("invalid types in nop conversion");
3242 debug_generic_expr (lhs_type);
3243 debug_generic_expr (rhs1_type);
3244 return true;
3245 }
3246
3247 return false;
3248 }
3249
3250 case ADDR_SPACE_CONVERT_EXPR:
3251 {
3252 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3253 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3254 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3255 {
3256 error ("invalid types in address space conversion");
3257 debug_generic_expr (lhs_type);
3258 debug_generic_expr (rhs1_type);
3259 return true;
3260 }
3261
3262 return false;
3263 }
3264
3265 case FIXED_CONVERT_EXPR:
3266 {
3267 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3268 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3269 {
3270 error ("invalid types in fixed-point conversion");
3271 debug_generic_expr (lhs_type);
3272 debug_generic_expr (rhs1_type);
3273 return true;
3274 }
3275
3276 return false;
3277 }
3278
3279 case FLOAT_EXPR:
3280 {
3281 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3282 {
3283 error ("invalid types in conversion to floating point");
3284 debug_generic_expr (lhs_type);
3285 debug_generic_expr (rhs1_type);
3286 return true;
3287 }
3288
3289 return false;
3290 }
3291
3292 case FIX_TRUNC_EXPR:
3293 {
3294 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3295 {
3296 error ("invalid types in conversion to integer");
3297 debug_generic_expr (lhs_type);
3298 debug_generic_expr (rhs1_type);
3299 return true;
3300 }
3301
3302 return false;
3303 }
3304
3305 case VEC_UNPACK_HI_EXPR:
3306 case VEC_UNPACK_LO_EXPR:
3307 case REDUC_MAX_EXPR:
3308 case REDUC_MIN_EXPR:
3309 case REDUC_PLUS_EXPR:
3310 case VEC_UNPACK_FLOAT_HI_EXPR:
3311 case VEC_UNPACK_FLOAT_LO_EXPR:
3312 /* FIXME. */
3313 return false;
3314
3315 case TRUTH_NOT_EXPR:
3316 case NEGATE_EXPR:
3317 case ABS_EXPR:
3318 case BIT_NOT_EXPR:
3319 case PAREN_EXPR:
3320 case NON_LVALUE_EXPR:
3321 case CONJ_EXPR:
3322 break;
3323
3324 default:
3325 gcc_unreachable ();
3326 }
3327
3328 /* For the remaining codes assert there is no conversion involved. */
3329 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3330 {
3331 error ("non-trivial conversion in unary operation");
3332 debug_generic_expr (lhs_type);
3333 debug_generic_expr (rhs1_type);
3334 return true;
3335 }
3336
3337 return false;
3338 }
3339
3340 /* Verify a gimple assignment statement STMT with a binary rhs.
3341 Returns true if anything is wrong. */
3342
3343 static bool
3344 verify_gimple_assign_binary (gimple stmt)
3345 {
3346 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3347 tree lhs = gimple_assign_lhs (stmt);
3348 tree lhs_type = TREE_TYPE (lhs);
3349 tree rhs1 = gimple_assign_rhs1 (stmt);
3350 tree rhs1_type = TREE_TYPE (rhs1);
3351 tree rhs2 = gimple_assign_rhs2 (stmt);
3352 tree rhs2_type = TREE_TYPE (rhs2);
3353
3354 if (!is_gimple_reg (lhs)
3355 && !(optimize == 0
3356 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3357 {
3358 error ("non-register as LHS of binary operation");
3359 return true;
3360 }
3361
3362 if (!is_gimple_val (rhs1)
3363 || !is_gimple_val (rhs2))
3364 {
3365 error ("invalid operands in binary operation");
3366 return true;
3367 }
3368
3369 /* First handle operations that involve different types. */
3370 switch (rhs_code)
3371 {
3372 case COMPLEX_EXPR:
3373 {
3374 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3375 || !(INTEGRAL_TYPE_P (rhs1_type)
3376 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3377 || !(INTEGRAL_TYPE_P (rhs2_type)
3378 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3379 {
3380 error ("type mismatch in complex expression");
3381 debug_generic_expr (lhs_type);
3382 debug_generic_expr (rhs1_type);
3383 debug_generic_expr (rhs2_type);
3384 return true;
3385 }
3386
3387 return false;
3388 }
3389
3390 case LSHIFT_EXPR:
3391 case RSHIFT_EXPR:
3392 case LROTATE_EXPR:
3393 case RROTATE_EXPR:
3394 {
3395 /* Shifts and rotates are ok on integral types, fixed point
3396 types and integer vector types. */
3397 if ((!INTEGRAL_TYPE_P (rhs1_type)
3398 && !FIXED_POINT_TYPE_P (rhs1_type)
3399 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3400 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3401 || (!INTEGRAL_TYPE_P (rhs2_type)
3402 /* Vector shifts of vectors are also ok. */
3403 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3404 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3405 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3406 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3407 || !useless_type_conversion_p (lhs_type, rhs1_type))
3408 {
3409 error ("type mismatch in shift expression");
3410 debug_generic_expr (lhs_type);
3411 debug_generic_expr (rhs1_type);
3412 debug_generic_expr (rhs2_type);
3413 return true;
3414 }
3415
3416 return false;
3417 }
3418
3419 case VEC_LSHIFT_EXPR:
3420 case VEC_RSHIFT_EXPR:
3421 {
3422 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3423 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3424 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3425 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3426 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3427 || (!INTEGRAL_TYPE_P (rhs2_type)
3428 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3429 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3430 || !useless_type_conversion_p (lhs_type, rhs1_type))
3431 {
3432 error ("type mismatch in vector shift expression");
3433 debug_generic_expr (lhs_type);
3434 debug_generic_expr (rhs1_type);
3435 debug_generic_expr (rhs2_type);
3436 return true;
3437 }
3438 /* For shifting a vector of non-integral components we
3439 only allow shifting by a constant multiple of the element size. */
3440 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3441 && (TREE_CODE (rhs2) != INTEGER_CST
3442 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3443 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3444 {
3445 error ("non-element sized vector shift of floating point vector");
3446 return true;
3447 }
3448
3449 return false;
3450 }
3451
3452 case PLUS_EXPR:
3453 case MINUS_EXPR:
3454 {
3455 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3456 ??? This just makes the checker happy and may not be what is
3457 intended. */
3458 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3459 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3460 {
3461 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3462 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3463 {
3464 error ("invalid non-vector operands to vector valued plus");
3465 return true;
3466 }
3467 lhs_type = TREE_TYPE (lhs_type);
3468 rhs1_type = TREE_TYPE (rhs1_type);
3469 rhs2_type = TREE_TYPE (rhs2_type);
3470 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3471 the pointer to 2nd place. */
3472 if (POINTER_TYPE_P (rhs2_type))
3473 {
3474 tree tem = rhs1_type;
3475 rhs1_type = rhs2_type;
3476 rhs2_type = tem;
3477 }
3478 goto do_pointer_plus_expr_check;
3479 }
3480 if (POINTER_TYPE_P (lhs_type)
3481 || POINTER_TYPE_P (rhs1_type)
3482 || POINTER_TYPE_P (rhs2_type))
3483 {
3484 error ("invalid (pointer) operands to plus/minus");
3485 return true;
3486 }
3487
3488 /* Continue with generic binary expression handling. */
3489 break;
3490 }
3491
3492 case POINTER_PLUS_EXPR:
3493 {
3494 do_pointer_plus_expr_check:
3495 if (!POINTER_TYPE_P (rhs1_type)
3496 || !useless_type_conversion_p (lhs_type, rhs1_type)
3497 || !useless_type_conversion_p (sizetype, rhs2_type))
3498 {
3499 error ("type mismatch in pointer plus expression");
3500 debug_generic_stmt (lhs_type);
3501 debug_generic_stmt (rhs1_type);
3502 debug_generic_stmt (rhs2_type);
3503 return true;
3504 }
3505
3506 return false;
3507 }
3508
3509 case TRUTH_ANDIF_EXPR:
3510 case TRUTH_ORIF_EXPR:
3511 gcc_unreachable ();
3512
3513 case TRUTH_AND_EXPR:
3514 case TRUTH_OR_EXPR:
3515 case TRUTH_XOR_EXPR:
3516 {
3517 /* We allow any kind of integral typed argument and result. */
3518 if (!INTEGRAL_TYPE_P (rhs1_type)
3519 || !INTEGRAL_TYPE_P (rhs2_type)
3520 || !INTEGRAL_TYPE_P (lhs_type))
3521 {
3522 error ("type mismatch in binary truth expression");
3523 debug_generic_expr (lhs_type);
3524 debug_generic_expr (rhs1_type);
3525 debug_generic_expr (rhs2_type);
3526 return true;
3527 }
3528
3529 return false;
3530 }
3531
3532 case LT_EXPR:
3533 case LE_EXPR:
3534 case GT_EXPR:
3535 case GE_EXPR:
3536 case EQ_EXPR:
3537 case NE_EXPR:
3538 case UNORDERED_EXPR:
3539 case ORDERED_EXPR:
3540 case UNLT_EXPR:
3541 case UNLE_EXPR:
3542 case UNGT_EXPR:
3543 case UNGE_EXPR:
3544 case UNEQ_EXPR:
3545 case LTGT_EXPR:
3546 /* Comparisons are also binary, but the result type is not
3547 connected to the operand types. */
3548 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3549
3550 case WIDEN_MULT_EXPR:
3551 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3552 return true;
3553 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3554 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3555
3556 case WIDEN_SUM_EXPR:
3557 case VEC_WIDEN_MULT_HI_EXPR:
3558 case VEC_WIDEN_MULT_LO_EXPR:
3559 case VEC_PACK_TRUNC_EXPR:
3560 case VEC_PACK_SAT_EXPR:
3561 case VEC_PACK_FIX_TRUNC_EXPR:
3562 case VEC_EXTRACT_EVEN_EXPR:
3563 case VEC_EXTRACT_ODD_EXPR:
3564 case VEC_INTERLEAVE_HIGH_EXPR:
3565 case VEC_INTERLEAVE_LOW_EXPR:
3566 /* FIXME. */
3567 return false;
3568
3569 case MULT_EXPR:
3570 case TRUNC_DIV_EXPR:
3571 case CEIL_DIV_EXPR:
3572 case FLOOR_DIV_EXPR:
3573 case ROUND_DIV_EXPR:
3574 case TRUNC_MOD_EXPR:
3575 case CEIL_MOD_EXPR:
3576 case FLOOR_MOD_EXPR:
3577 case ROUND_MOD_EXPR:
3578 case RDIV_EXPR:
3579 case EXACT_DIV_EXPR:
3580 case MIN_EXPR:
3581 case MAX_EXPR:
3582 case BIT_IOR_EXPR:
3583 case BIT_XOR_EXPR:
3584 case BIT_AND_EXPR:
3585 /* Continue with generic binary expression handling. */
3586 break;
3587
3588 default:
3589 gcc_unreachable ();
3590 }
3591
3592 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3593 || !useless_type_conversion_p (lhs_type, rhs2_type))
3594 {
3595 error ("type mismatch in binary expression");
3596 debug_generic_stmt (lhs_type);
3597 debug_generic_stmt (rhs1_type);
3598 debug_generic_stmt (rhs2_type);
3599 return true;
3600 }
3601
3602 return false;
3603 }
3604
3605 /* Verify a gimple assignment statement STMT with a ternary rhs.
3606 Returns true if anything is wrong. */
3607
3608 static bool
3609 verify_gimple_assign_ternary (gimple stmt)
3610 {
3611 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3612 tree lhs = gimple_assign_lhs (stmt);
3613 tree lhs_type = TREE_TYPE (lhs);
3614 tree rhs1 = gimple_assign_rhs1 (stmt);
3615 tree rhs1_type = TREE_TYPE (rhs1);
3616 tree rhs2 = gimple_assign_rhs2 (stmt);
3617 tree rhs2_type = TREE_TYPE (rhs2);
3618 tree rhs3 = gimple_assign_rhs3 (stmt);
3619 tree rhs3_type = TREE_TYPE (rhs3);
3620
3621 if (!is_gimple_reg (lhs)
3622 && !(optimize == 0
3623 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3624 {
3625 error ("non-register as LHS of ternary operation");
3626 return true;
3627 }
3628
3629 if (!is_gimple_val (rhs1)
3630 || !is_gimple_val (rhs2)
3631 || !is_gimple_val (rhs3))
3632 {
3633 error ("invalid operands in ternary operation");
3634 return true;
3635 }
3636
3637 /* First handle operations that involve different types. */
3638 switch (rhs_code)
3639 {
3640 case WIDEN_MULT_PLUS_EXPR:
3641 case WIDEN_MULT_MINUS_EXPR:
3642 if ((!INTEGRAL_TYPE_P (rhs1_type)
3643 && !FIXED_POINT_TYPE_P (rhs1_type))
3644 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3645 || !useless_type_conversion_p (lhs_type, rhs3_type)
3646 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3647 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3648 {
3649 error ("type mismatch in widening multiply-accumulate expression");
3650 debug_generic_expr (lhs_type);
3651 debug_generic_expr (rhs1_type);
3652 debug_generic_expr (rhs2_type);
3653 debug_generic_expr (rhs3_type);
3654 return true;
3655 }
3656 break;
3657
3658 case FMA_EXPR:
3659 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3660 || !useless_type_conversion_p (lhs_type, rhs2_type)
3661 || !useless_type_conversion_p (lhs_type, rhs3_type))
3662 {
3663 error ("type mismatch in fused multiply-add expression");
3664 debug_generic_expr (lhs_type);
3665 debug_generic_expr (rhs1_type);
3666 debug_generic_expr (rhs2_type);
3667 debug_generic_expr (rhs3_type);
3668 return true;
3669 }
3670 break;
3671
3672 default:
3673 gcc_unreachable ();
3674 }
3675 return false;
3676 }
3677
3678 /* Verify a gimple assignment statement STMT with a single rhs.
3679 Returns true if anything is wrong. */
3680
3681 static bool
3682 verify_gimple_assign_single (gimple stmt)
3683 {
3684 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3685 tree lhs = gimple_assign_lhs (stmt);
3686 tree lhs_type = TREE_TYPE (lhs);
3687 tree rhs1 = gimple_assign_rhs1 (stmt);
3688 tree rhs1_type = TREE_TYPE (rhs1);
3689 bool res = false;
3690
3691 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3692 {
3693 error ("non-trivial conversion at assignment");
3694 debug_generic_expr (lhs_type);
3695 debug_generic_expr (rhs1_type);
3696 return true;
3697 }
3698
3699 if (handled_component_p (lhs))
3700 res |= verify_types_in_gimple_reference (lhs, true);
3701
3702 /* Special codes we cannot handle via their class. */
3703 switch (rhs_code)
3704 {
3705 case ADDR_EXPR:
3706 {
3707 tree op = TREE_OPERAND (rhs1, 0);
3708 if (!is_gimple_addressable (op))
3709 {
3710 error ("invalid operand in unary expression");
3711 return true;
3712 }
3713
3714 /* Technically there is no longer a need for matching types, but
3715 gimple hygiene asks for this check. In LTO we can end up
3716 combining incompatible units and thus end up with addresses
3717 of globals that change their type to a common one. */
3718 if (!in_lto_p
3719 && !types_compatible_p (TREE_TYPE (op),
3720 TREE_TYPE (TREE_TYPE (rhs1)))
3721 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3722 TREE_TYPE (op)))
3723 {
3724 error ("type mismatch in address expression");
3725 debug_generic_stmt (TREE_TYPE (rhs1));
3726 debug_generic_stmt (TREE_TYPE (op));
3727 return true;
3728 }
3729
3730 return verify_types_in_gimple_reference (op, true);
3731 }
3732
3733 /* tcc_reference */
3734 case INDIRECT_REF:
3735 error ("INDIRECT_REF in gimple IL");
3736 return true;
3737
3738 case COMPONENT_REF:
3739 case BIT_FIELD_REF:
3740 case ARRAY_REF:
3741 case ARRAY_RANGE_REF:
3742 case VIEW_CONVERT_EXPR:
3743 case REALPART_EXPR:
3744 case IMAGPART_EXPR:
3745 case TARGET_MEM_REF:
3746 case MEM_REF:
3747 if (!is_gimple_reg (lhs)
3748 && is_gimple_reg_type (TREE_TYPE (lhs)))
3749 {
3750 error ("invalid rhs for gimple memory store");
3751 debug_generic_stmt (lhs);
3752 debug_generic_stmt (rhs1);
3753 return true;
3754 }
3755 return res || verify_types_in_gimple_reference (rhs1, false);
3756
3757 /* tcc_constant */
3758 case SSA_NAME:
3759 case INTEGER_CST:
3760 case REAL_CST:
3761 case FIXED_CST:
3762 case COMPLEX_CST:
3763 case VECTOR_CST:
3764 case STRING_CST:
3765 return res;
3766
3767 /* tcc_declaration */
3768 case CONST_DECL:
3769 return res;
3770 case VAR_DECL:
3771 case PARM_DECL:
3772 if (!is_gimple_reg (lhs)
3773 && !is_gimple_reg (rhs1)
3774 && is_gimple_reg_type (TREE_TYPE (lhs)))
3775 {
3776 error ("invalid rhs for gimple memory store");
3777 debug_generic_stmt (lhs);
3778 debug_generic_stmt (rhs1);
3779 return true;
3780 }
3781 return res;
3782
3783 case COND_EXPR:
3784 if (!is_gimple_reg (lhs)
3785 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3786 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3787 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3788 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3789 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3790 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3791 {
3792 error ("invalid COND_EXPR in gimple assignment");
3793 debug_generic_stmt (rhs1);
3794 return true;
3795 }
3796 return res;
3797
3798 case CONSTRUCTOR:
3799 case OBJ_TYPE_REF:
3800 case ASSERT_EXPR:
3801 case WITH_SIZE_EXPR:
3802 case POLYNOMIAL_CHREC:
3803 case DOT_PROD_EXPR:
3804 case VEC_COND_EXPR:
3805 case REALIGN_LOAD_EXPR:
3806 /* FIXME. */
3807 return res;
3808
3809 default:;
3810 }
3811
3812 return res;
3813 }
3814
3815 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3816 is a problem, otherwise false. */
3817
3818 static bool
3819 verify_gimple_assign (gimple stmt)
3820 {
3821 switch (gimple_assign_rhs_class (stmt))
3822 {
3823 case GIMPLE_SINGLE_RHS:
3824 return verify_gimple_assign_single (stmt);
3825
3826 case GIMPLE_UNARY_RHS:
3827 return verify_gimple_assign_unary (stmt);
3828
3829 case GIMPLE_BINARY_RHS:
3830 return verify_gimple_assign_binary (stmt);
3831
3832 case GIMPLE_TERNARY_RHS:
3833 return verify_gimple_assign_ternary (stmt);
3834
3835 default:
3836 gcc_unreachable ();
3837 }
3838 }
3839
3840 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3841 is a problem, otherwise false. */
3842
3843 static bool
3844 verify_gimple_return (gimple stmt)
3845 {
3846 tree op = gimple_return_retval (stmt);
3847 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3848
3849 /* We cannot test for present return values as we do not fix up missing
3850 return values from the original source. */
3851 if (op == NULL)
3852 return false;
3853
3854 if (!is_gimple_val (op)
3855 && TREE_CODE (op) != RESULT_DECL)
3856 {
3857 error ("invalid operand in return statement");
3858 debug_generic_stmt (op);
3859 return true;
3860 }
3861
3862 if ((TREE_CODE (op) == RESULT_DECL
3863 && DECL_BY_REFERENCE (op))
3864 || (TREE_CODE (op) == SSA_NAME
3865 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3866 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3867 op = TREE_TYPE (op);
3868
3869 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3870 {
3871 error ("invalid conversion in return statement");
3872 debug_generic_stmt (restype);
3873 debug_generic_stmt (TREE_TYPE (op));
3874 return true;
3875 }
3876
3877 return false;
3878 }
3879
3880
3881 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3882 is a problem, otherwise false. */
3883
3884 static bool
3885 verify_gimple_goto (gimple stmt)
3886 {
3887 tree dest = gimple_goto_dest (stmt);
3888
3889 /* ??? We have two canonical forms of direct goto destinations, a
3890 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3891 if (TREE_CODE (dest) != LABEL_DECL
3892 && (!is_gimple_val (dest)
3893 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3894 {
3895 error ("goto destination is neither a label nor a pointer");
3896 return true;
3897 }
3898
3899 return false;
3900 }
3901
3902 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3903 is a problem, otherwise false. */
3904
3905 static bool
3906 verify_gimple_switch (gimple stmt)
3907 {
3908 if (!is_gimple_val (gimple_switch_index (stmt)))
3909 {
3910 error ("invalid operand to switch statement");
3911 debug_generic_stmt (gimple_switch_index (stmt));
3912 return true;
3913 }
3914
3915 return false;
3916 }
3917
3918
3919 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3920 and false otherwise. */
3921
3922 static bool
3923 verify_gimple_phi (gimple stmt)
3924 {
3925 tree type = TREE_TYPE (gimple_phi_result (stmt));
3926 unsigned i;
3927
3928 if (TREE_CODE (gimple_phi_result (stmt)) != SSA_NAME)
3929 {
3930 error ("invalid PHI result");
3931 return true;
3932 }
3933
3934 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3935 {
3936 tree arg = gimple_phi_arg_def (stmt, i);
3937 if ((is_gimple_reg (gimple_phi_result (stmt))
3938 && !is_gimple_val (arg))
3939 || (!is_gimple_reg (gimple_phi_result (stmt))
3940 && !is_gimple_addressable (arg)))
3941 {
3942 error ("invalid PHI argument");
3943 debug_generic_stmt (arg);
3944 return true;
3945 }
3946 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3947 {
3948 error ("incompatible types in PHI argument %u", i);
3949 debug_generic_stmt (type);
3950 debug_generic_stmt (TREE_TYPE (arg));
3951 return true;
3952 }
3953 }
3954
3955 return false;
3956 }
3957
3958
3959 /* Verify a gimple debug statement STMT.
3960 Returns true if anything is wrong. */
3961
3962 static bool
3963 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3964 {
3965 /* There isn't much that could be wrong in a gimple debug stmt. A
3966 gimple debug bind stmt, for example, maps a tree, that's usually
3967 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3968 component or member of an aggregate type, to another tree, that
3969 can be an arbitrary expression. These stmts expand into debug
3970 insns, and are converted to debug notes by var-tracking.c. */
3971 return false;
3972 }
3973
3974
3975 /* Verify the GIMPLE statement STMT. Returns true if there is an
3976 error, otherwise false. */
3977
3978 static bool
3979 verify_types_in_gimple_stmt (gimple stmt)
3980 {
3981 switch (gimple_code (stmt))
3982 {
3983 case GIMPLE_ASSIGN:
3984 return verify_gimple_assign (stmt);
3985
3986 case GIMPLE_LABEL:
3987 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3988
3989 case GIMPLE_CALL:
3990 return verify_gimple_call (stmt);
3991
3992 case GIMPLE_COND:
3993 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
3994 {
3995 error ("invalid comparison code in gimple cond");
3996 return true;
3997 }
3998 if (!(!gimple_cond_true_label (stmt)
3999 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4000 || !(!gimple_cond_false_label (stmt)
4001 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4002 {
4003 error ("invalid labels in gimple cond");
4004 return true;
4005 }
4006
4007 return verify_gimple_comparison (boolean_type_node,
4008 gimple_cond_lhs (stmt),
4009 gimple_cond_rhs (stmt));
4010
4011 case GIMPLE_GOTO:
4012 return verify_gimple_goto (stmt);
4013
4014 case GIMPLE_SWITCH:
4015 return verify_gimple_switch (stmt);
4016
4017 case GIMPLE_RETURN:
4018 return verify_gimple_return (stmt);
4019
4020 case GIMPLE_ASM:
4021 return false;
4022
4023 case GIMPLE_PHI:
4024 return verify_gimple_phi (stmt);
4025
4026 /* Tuples that do not have tree operands. */
4027 case GIMPLE_NOP:
4028 case GIMPLE_PREDICT:
4029 case GIMPLE_RESX:
4030 case GIMPLE_EH_DISPATCH:
4031 case GIMPLE_EH_MUST_NOT_THROW:
4032 return false;
4033
4034 CASE_GIMPLE_OMP:
4035 /* OpenMP directives are validated by the FE and never operated
4036 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4037 non-gimple expressions when the main index variable has had
4038 its address taken. This does not affect the loop itself
4039 because the header of an GIMPLE_OMP_FOR is merely used to determine
4040 how to setup the parallel iteration. */
4041 return false;
4042
4043 case GIMPLE_DEBUG:
4044 return verify_gimple_debug (stmt);
4045
4046 default:
4047 gcc_unreachable ();
4048 }
4049 }
4050
4051 /* Verify the GIMPLE statements inside the sequence STMTS. */
4052
4053 static bool
4054 verify_types_in_gimple_seq_2 (gimple_seq stmts)
4055 {
4056 gimple_stmt_iterator ittr;
4057 bool err = false;
4058
4059 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4060 {
4061 gimple stmt = gsi_stmt (ittr);
4062
4063 switch (gimple_code (stmt))
4064 {
4065 case GIMPLE_BIND:
4066 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
4067 break;
4068
4069 case GIMPLE_TRY:
4070 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
4071 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
4072 break;
4073
4074 case GIMPLE_EH_FILTER:
4075 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
4076 break;
4077
4078 case GIMPLE_CATCH:
4079 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
4080 break;
4081
4082 default:
4083 {
4084 bool err2 = verify_types_in_gimple_stmt (stmt);
4085 if (err2)
4086 debug_gimple_stmt (stmt);
4087 err |= err2;
4088 }
4089 }
4090 }
4091
4092 return err;
4093 }
4094
4095
4096 /* Verify the GIMPLE statements inside the statement list STMTS. */
4097
4098 void
4099 verify_types_in_gimple_seq (gimple_seq stmts)
4100 {
4101 if (verify_types_in_gimple_seq_2 (stmts))
4102 internal_error ("verify_gimple failed");
4103 }
4104
4105
4106 /* Verify STMT, return true if STMT is not in GIMPLE form.
4107 TODO: Implement type checking. */
4108
4109 static bool
4110 verify_stmt (gimple_stmt_iterator *gsi)
4111 {
4112 tree addr;
4113 struct walk_stmt_info wi;
4114 bool last_in_block = gsi_one_before_end_p (*gsi);
4115 gimple stmt = gsi_stmt (*gsi);
4116 int lp_nr;
4117
4118 if (is_gimple_omp (stmt))
4119 {
4120 /* OpenMP directives are validated by the FE and never operated
4121 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4122 non-gimple expressions when the main index variable has had
4123 its address taken. This does not affect the loop itself
4124 because the header of an GIMPLE_OMP_FOR is merely used to determine
4125 how to setup the parallel iteration. */
4126 return false;
4127 }
4128
4129 /* FIXME. The C frontend passes unpromoted arguments in case it
4130 didn't see a function declaration before the call. */
4131 if (is_gimple_call (stmt))
4132 {
4133 tree decl;
4134
4135 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4136 {
4137 error ("invalid function in call statement");
4138 return true;
4139 }
4140
4141 decl = gimple_call_fndecl (stmt);
4142 if (decl
4143 && TREE_CODE (decl) == FUNCTION_DECL
4144 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4145 && (!DECL_PURE_P (decl))
4146 && (!TREE_READONLY (decl)))
4147 {
4148 error ("invalid pure const state for function");
4149 return true;
4150 }
4151 }
4152
4153 if (is_gimple_debug (stmt))
4154 return false;
4155
4156 memset (&wi, 0, sizeof (wi));
4157 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4158 if (addr)
4159 {
4160 debug_generic_expr (addr);
4161 inform (gimple_location (gsi_stmt (*gsi)), "in statement");
4162 debug_gimple_stmt (stmt);
4163 return true;
4164 }
4165
4166 /* If the statement is marked as part of an EH region, then it is
4167 expected that the statement could throw. Verify that when we
4168 have optimizations that simplify statements such that we prove
4169 that they cannot throw, that we update other data structures
4170 to match. */
4171 lp_nr = lookup_stmt_eh_lp (stmt);
4172 if (lp_nr != 0)
4173 {
4174 if (!stmt_could_throw_p (stmt))
4175 {
4176 error ("statement marked for throw, but doesn%'t");
4177 goto fail;
4178 }
4179 else if (lp_nr > 0 && !last_in_block && stmt_can_throw_internal (stmt))
4180 {
4181 error ("statement marked for throw in middle of block");
4182 goto fail;
4183 }
4184 }
4185
4186 return false;
4187
4188 fail:
4189 debug_gimple_stmt (stmt);
4190 return true;
4191 }
4192
4193
4194 /* Return true when the T can be shared. */
4195
4196 bool
4197 tree_node_can_be_shared (tree t)
4198 {
4199 if (IS_TYPE_OR_DECL_P (t)
4200 || is_gimple_min_invariant (t)
4201 || TREE_CODE (t) == SSA_NAME
4202 || t == error_mark_node
4203 || TREE_CODE (t) == IDENTIFIER_NODE)
4204 return true;
4205
4206 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4207 return true;
4208
4209 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4210 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4211 || TREE_CODE (t) == COMPONENT_REF
4212 || TREE_CODE (t) == REALPART_EXPR
4213 || TREE_CODE (t) == IMAGPART_EXPR)
4214 t = TREE_OPERAND (t, 0);
4215
4216 if (DECL_P (t))
4217 return true;
4218
4219 return false;
4220 }
4221
4222
4223 /* Called via walk_gimple_stmt. Verify tree sharing. */
4224
4225 static tree
4226 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4227 {
4228 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4229 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4230
4231 if (tree_node_can_be_shared (*tp))
4232 {
4233 *walk_subtrees = false;
4234 return NULL;
4235 }
4236
4237 if (pointer_set_insert (visited, *tp))
4238 return *tp;
4239
4240 return NULL;
4241 }
4242
4243
4244 static bool eh_error_found;
4245 static int
4246 verify_eh_throw_stmt_node (void **slot, void *data)
4247 {
4248 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4249 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4250
4251 if (!pointer_set_contains (visited, node->stmt))
4252 {
4253 error ("dead STMT in EH table");
4254 debug_gimple_stmt (node->stmt);
4255 eh_error_found = true;
4256 }
4257 return 1;
4258 }
4259
4260
4261 /* Verify the GIMPLE statements in every basic block. */
4262
4263 DEBUG_FUNCTION void
4264 verify_stmts (void)
4265 {
4266 basic_block bb;
4267 gimple_stmt_iterator gsi;
4268 bool err = false;
4269 struct pointer_set_t *visited, *visited_stmts;
4270 tree addr;
4271 struct walk_stmt_info wi;
4272
4273 timevar_push (TV_TREE_STMT_VERIFY);
4274 visited = pointer_set_create ();
4275 visited_stmts = pointer_set_create ();
4276
4277 memset (&wi, 0, sizeof (wi));
4278 wi.info = (void *) visited;
4279
4280 FOR_EACH_BB (bb)
4281 {
4282 gimple phi;
4283 size_t i;
4284
4285 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4286 {
4287 phi = gsi_stmt (gsi);
4288 pointer_set_insert (visited_stmts, phi);
4289 if (gimple_bb (phi) != bb)
4290 {
4291 error ("gimple_bb (phi) is set to a wrong basic block");
4292 err |= true;
4293 }
4294
4295 for (i = 0; i < gimple_phi_num_args (phi); i++)
4296 {
4297 tree t = gimple_phi_arg_def (phi, i);
4298 tree addr;
4299
4300 if (!t)
4301 {
4302 error ("missing PHI def");
4303 debug_gimple_stmt (phi);
4304 err |= true;
4305 continue;
4306 }
4307 /* Addressable variables do have SSA_NAMEs but they
4308 are not considered gimple values. */
4309 else if (TREE_CODE (t) != SSA_NAME
4310 && TREE_CODE (t) != FUNCTION_DECL
4311 && !is_gimple_min_invariant (t))
4312 {
4313 error ("PHI argument is not a GIMPLE value");
4314 debug_gimple_stmt (phi);
4315 debug_generic_expr (t);
4316 err |= true;
4317 }
4318
4319 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4320 if (addr)
4321 {
4322 error ("incorrect sharing of tree nodes");
4323 debug_gimple_stmt (phi);
4324 debug_generic_expr (addr);
4325 err |= true;
4326 }
4327 }
4328
4329 #ifdef ENABLE_TYPES_CHECKING
4330 if (verify_gimple_phi (phi))
4331 {
4332 debug_gimple_stmt (phi);
4333 err |= true;
4334 }
4335 #endif
4336 }
4337
4338 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4339 {
4340 gimple stmt = gsi_stmt (gsi);
4341
4342 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4343 || gimple_code (stmt) == GIMPLE_BIND)
4344 {
4345 error ("invalid GIMPLE statement");
4346 debug_gimple_stmt (stmt);
4347 err |= true;
4348 }
4349
4350 pointer_set_insert (visited_stmts, stmt);
4351
4352 if (gimple_bb (stmt) != bb)
4353 {
4354 error ("gimple_bb (stmt) is set to a wrong basic block");
4355 debug_gimple_stmt (stmt);
4356 err |= true;
4357 }
4358
4359 if (gimple_code (stmt) == GIMPLE_LABEL)
4360 {
4361 tree decl = gimple_label_label (stmt);
4362 int uid = LABEL_DECL_UID (decl);
4363
4364 if (uid == -1
4365 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4366 {
4367 error ("incorrect entry in label_to_block_map");
4368 err |= true;
4369 }
4370
4371 uid = EH_LANDING_PAD_NR (decl);
4372 if (uid)
4373 {
4374 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4375 if (decl != lp->post_landing_pad)
4376 {
4377 error ("incorrect setting of landing pad number");
4378 err |= true;
4379 }
4380 }
4381 }
4382
4383 err |= verify_stmt (&gsi);
4384
4385 #ifdef ENABLE_TYPES_CHECKING
4386 if (verify_types_in_gimple_stmt (gsi_stmt (gsi)))
4387 {
4388 debug_gimple_stmt (stmt);
4389 err |= true;
4390 }
4391 #endif
4392 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4393 if (addr)
4394 {
4395 error ("incorrect sharing of tree nodes");
4396 debug_gimple_stmt (stmt);
4397 debug_generic_expr (addr);
4398 err |= true;
4399 }
4400 gsi_next (&gsi);
4401 }
4402 }
4403
4404 eh_error_found = false;
4405 if (get_eh_throw_stmt_table (cfun))
4406 htab_traverse (get_eh_throw_stmt_table (cfun),
4407 verify_eh_throw_stmt_node,
4408 visited_stmts);
4409
4410 if (err | eh_error_found)
4411 internal_error ("verify_stmts failed");
4412
4413 pointer_set_destroy (visited);
4414 pointer_set_destroy (visited_stmts);
4415 verify_histograms ();
4416 timevar_pop (TV_TREE_STMT_VERIFY);
4417 }
4418
4419
4420 /* Verifies that the flow information is OK. */
4421
4422 static int
4423 gimple_verify_flow_info (void)
4424 {
4425 int err = 0;
4426 basic_block bb;
4427 gimple_stmt_iterator gsi;
4428 gimple stmt;
4429 edge e;
4430 edge_iterator ei;
4431
4432 if (ENTRY_BLOCK_PTR->il.gimple)
4433 {
4434 error ("ENTRY_BLOCK has IL associated with it");
4435 err = 1;
4436 }
4437
4438 if (EXIT_BLOCK_PTR->il.gimple)
4439 {
4440 error ("EXIT_BLOCK has IL associated with it");
4441 err = 1;
4442 }
4443
4444 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4445 if (e->flags & EDGE_FALLTHRU)
4446 {
4447 error ("fallthru to exit from bb %d", e->src->index);
4448 err = 1;
4449 }
4450
4451 FOR_EACH_BB (bb)
4452 {
4453 bool found_ctrl_stmt = false;
4454
4455 stmt = NULL;
4456
4457 /* Skip labels on the start of basic block. */
4458 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4459 {
4460 tree label;
4461 gimple prev_stmt = stmt;
4462
4463 stmt = gsi_stmt (gsi);
4464
4465 if (gimple_code (stmt) != GIMPLE_LABEL)
4466 break;
4467
4468 label = gimple_label_label (stmt);
4469 if (prev_stmt && DECL_NONLOCAL (label))
4470 {
4471 error ("nonlocal label ");
4472 print_generic_expr (stderr, label, 0);
4473 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4474 bb->index);
4475 err = 1;
4476 }
4477
4478 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4479 {
4480 error ("EH landing pad label ");
4481 print_generic_expr (stderr, label, 0);
4482 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4483 bb->index);
4484 err = 1;
4485 }
4486
4487 if (label_to_block (label) != bb)
4488 {
4489 error ("label ");
4490 print_generic_expr (stderr, label, 0);
4491 fprintf (stderr, " to block does not match in bb %d",
4492 bb->index);
4493 err = 1;
4494 }
4495
4496 if (decl_function_context (label) != current_function_decl)
4497 {
4498 error ("label ");
4499 print_generic_expr (stderr, label, 0);
4500 fprintf (stderr, " has incorrect context in bb %d",
4501 bb->index);
4502 err = 1;
4503 }
4504 }
4505
4506 /* Verify that body of basic block BB is free of control flow. */
4507 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4508 {
4509 gimple stmt = gsi_stmt (gsi);
4510
4511 if (found_ctrl_stmt)
4512 {
4513 error ("control flow in the middle of basic block %d",
4514 bb->index);
4515 err = 1;
4516 }
4517
4518 if (stmt_ends_bb_p (stmt))
4519 found_ctrl_stmt = true;
4520
4521 if (gimple_code (stmt) == GIMPLE_LABEL)
4522 {
4523 error ("label ");
4524 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4525 fprintf (stderr, " in the middle of basic block %d", bb->index);
4526 err = 1;
4527 }
4528 }
4529
4530 gsi = gsi_last_bb (bb);
4531 if (gsi_end_p (gsi))
4532 continue;
4533
4534 stmt = gsi_stmt (gsi);
4535
4536 if (gimple_code (stmt) == GIMPLE_LABEL)
4537 continue;
4538
4539 err |= verify_eh_edges (stmt);
4540
4541 if (is_ctrl_stmt (stmt))
4542 {
4543 FOR_EACH_EDGE (e, ei, bb->succs)
4544 if (e->flags & EDGE_FALLTHRU)
4545 {
4546 error ("fallthru edge after a control statement in bb %d",
4547 bb->index);
4548 err = 1;
4549 }
4550 }
4551
4552 if (gimple_code (stmt) != GIMPLE_COND)
4553 {
4554 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4555 after anything else but if statement. */
4556 FOR_EACH_EDGE (e, ei, bb->succs)
4557 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4558 {
4559 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4560 bb->index);
4561 err = 1;
4562 }
4563 }
4564
4565 switch (gimple_code (stmt))
4566 {
4567 case GIMPLE_COND:
4568 {
4569 edge true_edge;
4570 edge false_edge;
4571
4572 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4573
4574 if (!true_edge
4575 || !false_edge
4576 || !(true_edge->flags & EDGE_TRUE_VALUE)
4577 || !(false_edge->flags & EDGE_FALSE_VALUE)
4578 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4579 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4580 || EDGE_COUNT (bb->succs) >= 3)
4581 {
4582 error ("wrong outgoing edge flags at end of bb %d",
4583 bb->index);
4584 err = 1;
4585 }
4586 }
4587 break;
4588
4589 case GIMPLE_GOTO:
4590 if (simple_goto_p (stmt))
4591 {
4592 error ("explicit goto at end of bb %d", bb->index);
4593 err = 1;
4594 }
4595 else
4596 {
4597 /* FIXME. We should double check that the labels in the
4598 destination blocks have their address taken. */
4599 FOR_EACH_EDGE (e, ei, bb->succs)
4600 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4601 | EDGE_FALSE_VALUE))
4602 || !(e->flags & EDGE_ABNORMAL))
4603 {
4604 error ("wrong outgoing edge flags at end of bb %d",
4605 bb->index);
4606 err = 1;
4607 }
4608 }
4609 break;
4610
4611 case GIMPLE_CALL:
4612 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4613 break;
4614 /* ... fallthru ... */
4615 case GIMPLE_RETURN:
4616 if (!single_succ_p (bb)
4617 || (single_succ_edge (bb)->flags
4618 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4619 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4620 {
4621 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4622 err = 1;
4623 }
4624 if (single_succ (bb) != EXIT_BLOCK_PTR)
4625 {
4626 error ("return edge does not point to exit in bb %d",
4627 bb->index);
4628 err = 1;
4629 }
4630 break;
4631
4632 case GIMPLE_SWITCH:
4633 {
4634 tree prev;
4635 edge e;
4636 size_t i, n;
4637
4638 n = gimple_switch_num_labels (stmt);
4639
4640 /* Mark all the destination basic blocks. */
4641 for (i = 0; i < n; ++i)
4642 {
4643 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4644 basic_block label_bb = label_to_block (lab);
4645 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4646 label_bb->aux = (void *)1;
4647 }
4648
4649 /* Verify that the case labels are sorted. */
4650 prev = gimple_switch_label (stmt, 0);
4651 for (i = 1; i < n; ++i)
4652 {
4653 tree c = gimple_switch_label (stmt, i);
4654 if (!CASE_LOW (c))
4655 {
4656 error ("found default case not at the start of "
4657 "case vector");
4658 err = 1;
4659 continue;
4660 }
4661 if (CASE_LOW (prev)
4662 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4663 {
4664 error ("case labels not sorted: ");
4665 print_generic_expr (stderr, prev, 0);
4666 fprintf (stderr," is greater than ");
4667 print_generic_expr (stderr, c, 0);
4668 fprintf (stderr," but comes before it.\n");
4669 err = 1;
4670 }
4671 prev = c;
4672 }
4673 /* VRP will remove the default case if it can prove it will
4674 never be executed. So do not verify there always exists
4675 a default case here. */
4676
4677 FOR_EACH_EDGE (e, ei, bb->succs)
4678 {
4679 if (!e->dest->aux)
4680 {
4681 error ("extra outgoing edge %d->%d",
4682 bb->index, e->dest->index);
4683 err = 1;
4684 }
4685
4686 e->dest->aux = (void *)2;
4687 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4688 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4689 {
4690 error ("wrong outgoing edge flags at end of bb %d",
4691 bb->index);
4692 err = 1;
4693 }
4694 }
4695
4696 /* Check that we have all of them. */
4697 for (i = 0; i < n; ++i)
4698 {
4699 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4700 basic_block label_bb = label_to_block (lab);
4701
4702 if (label_bb->aux != (void *)2)
4703 {
4704 error ("missing edge %i->%i", bb->index, label_bb->index);
4705 err = 1;
4706 }
4707 }
4708
4709 FOR_EACH_EDGE (e, ei, bb->succs)
4710 e->dest->aux = (void *)0;
4711 }
4712 break;
4713
4714 case GIMPLE_EH_DISPATCH:
4715 err |= verify_eh_dispatch_edge (stmt);
4716 break;
4717
4718 default:
4719 break;
4720 }
4721 }
4722
4723 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4724 verify_dominators (CDI_DOMINATORS);
4725
4726 return err;
4727 }
4728
4729
4730 /* Updates phi nodes after creating a forwarder block joined
4731 by edge FALLTHRU. */
4732
4733 static void
4734 gimple_make_forwarder_block (edge fallthru)
4735 {
4736 edge e;
4737 edge_iterator ei;
4738 basic_block dummy, bb;
4739 tree var;
4740 gimple_stmt_iterator gsi;
4741
4742 dummy = fallthru->src;
4743 bb = fallthru->dest;
4744
4745 if (single_pred_p (bb))
4746 return;
4747
4748 /* If we redirected a branch we must create new PHI nodes at the
4749 start of BB. */
4750 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4751 {
4752 gimple phi, new_phi;
4753
4754 phi = gsi_stmt (gsi);
4755 var = gimple_phi_result (phi);
4756 new_phi = create_phi_node (var, bb);
4757 SSA_NAME_DEF_STMT (var) = new_phi;
4758 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4759 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4760 UNKNOWN_LOCATION);
4761 }
4762
4763 /* Add the arguments we have stored on edges. */
4764 FOR_EACH_EDGE (e, ei, bb->preds)
4765 {
4766 if (e == fallthru)
4767 continue;
4768
4769 flush_pending_stmts (e);
4770 }
4771 }
4772
4773
4774 /* Return a non-special label in the head of basic block BLOCK.
4775 Create one if it doesn't exist. */
4776
4777 tree
4778 gimple_block_label (basic_block bb)
4779 {
4780 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4781 bool first = true;
4782 tree label;
4783 gimple stmt;
4784
4785 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4786 {
4787 stmt = gsi_stmt (i);
4788 if (gimple_code (stmt) != GIMPLE_LABEL)
4789 break;
4790 label = gimple_label_label (stmt);
4791 if (!DECL_NONLOCAL (label))
4792 {
4793 if (!first)
4794 gsi_move_before (&i, &s);
4795 return label;
4796 }
4797 }
4798
4799 label = create_artificial_label (UNKNOWN_LOCATION);
4800 stmt = gimple_build_label (label);
4801 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4802 return label;
4803 }
4804
4805
4806 /* Attempt to perform edge redirection by replacing a possibly complex
4807 jump instruction by a goto or by removing the jump completely.
4808 This can apply only if all edges now point to the same block. The
4809 parameters and return values are equivalent to
4810 redirect_edge_and_branch. */
4811
4812 static edge
4813 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4814 {
4815 basic_block src = e->src;
4816 gimple_stmt_iterator i;
4817 gimple stmt;
4818
4819 /* We can replace or remove a complex jump only when we have exactly
4820 two edges. */
4821 if (EDGE_COUNT (src->succs) != 2
4822 /* Verify that all targets will be TARGET. Specifically, the
4823 edge that is not E must also go to TARGET. */
4824 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4825 return NULL;
4826
4827 i = gsi_last_bb (src);
4828 if (gsi_end_p (i))
4829 return NULL;
4830
4831 stmt = gsi_stmt (i);
4832
4833 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4834 {
4835 gsi_remove (&i, true);
4836 e = ssa_redirect_edge (e, target);
4837 e->flags = EDGE_FALLTHRU;
4838 return e;
4839 }
4840
4841 return NULL;
4842 }
4843
4844
4845 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4846 edge representing the redirected branch. */
4847
4848 static edge
4849 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4850 {
4851 basic_block bb = e->src;
4852 gimple_stmt_iterator gsi;
4853 edge ret;
4854 gimple stmt;
4855
4856 if (e->flags & EDGE_ABNORMAL)
4857 return NULL;
4858
4859 if (e->dest == dest)
4860 return NULL;
4861
4862 if (e->flags & EDGE_EH)
4863 return redirect_eh_edge (e, dest);
4864
4865 if (e->src != ENTRY_BLOCK_PTR)
4866 {
4867 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4868 if (ret)
4869 return ret;
4870 }
4871
4872 gsi = gsi_last_bb (bb);
4873 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4874
4875 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4876 {
4877 case GIMPLE_COND:
4878 /* For COND_EXPR, we only need to redirect the edge. */
4879 break;
4880
4881 case GIMPLE_GOTO:
4882 /* No non-abnormal edges should lead from a non-simple goto, and
4883 simple ones should be represented implicitly. */
4884 gcc_unreachable ();
4885
4886 case GIMPLE_SWITCH:
4887 {
4888 tree label = gimple_block_label (dest);
4889 tree cases = get_cases_for_edge (e, stmt);
4890
4891 /* If we have a list of cases associated with E, then use it
4892 as it's a lot faster than walking the entire case vector. */
4893 if (cases)
4894 {
4895 edge e2 = find_edge (e->src, dest);
4896 tree last, first;
4897
4898 first = cases;
4899 while (cases)
4900 {
4901 last = cases;
4902 CASE_LABEL (cases) = label;
4903 cases = TREE_CHAIN (cases);
4904 }
4905
4906 /* If there was already an edge in the CFG, then we need
4907 to move all the cases associated with E to E2. */
4908 if (e2)
4909 {
4910 tree cases2 = get_cases_for_edge (e2, stmt);
4911
4912 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4913 TREE_CHAIN (cases2) = first;
4914 }
4915 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4916 }
4917 else
4918 {
4919 size_t i, n = gimple_switch_num_labels (stmt);
4920
4921 for (i = 0; i < n; i++)
4922 {
4923 tree elt = gimple_switch_label (stmt, i);
4924 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4925 CASE_LABEL (elt) = label;
4926 }
4927 }
4928 }
4929 break;
4930
4931 case GIMPLE_ASM:
4932 {
4933 int i, n = gimple_asm_nlabels (stmt);
4934 tree label = NULL;
4935
4936 for (i = 0; i < n; ++i)
4937 {
4938 tree cons = gimple_asm_label_op (stmt, i);
4939 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4940 {
4941 if (!label)
4942 label = gimple_block_label (dest);
4943 TREE_VALUE (cons) = label;
4944 }
4945 }
4946
4947 /* If we didn't find any label matching the former edge in the
4948 asm labels, we must be redirecting the fallthrough
4949 edge. */
4950 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4951 }
4952 break;
4953
4954 case GIMPLE_RETURN:
4955 gsi_remove (&gsi, true);
4956 e->flags |= EDGE_FALLTHRU;
4957 break;
4958
4959 case GIMPLE_OMP_RETURN:
4960 case GIMPLE_OMP_CONTINUE:
4961 case GIMPLE_OMP_SECTIONS_SWITCH:
4962 case GIMPLE_OMP_FOR:
4963 /* The edges from OMP constructs can be simply redirected. */
4964 break;
4965
4966 case GIMPLE_EH_DISPATCH:
4967 if (!(e->flags & EDGE_FALLTHRU))
4968 redirect_eh_dispatch_edge (stmt, e, dest);
4969 break;
4970
4971 default:
4972 /* Otherwise it must be a fallthru edge, and we don't need to
4973 do anything besides redirecting it. */
4974 gcc_assert (e->flags & EDGE_FALLTHRU);
4975 break;
4976 }
4977
4978 /* Update/insert PHI nodes as necessary. */
4979
4980 /* Now update the edges in the CFG. */
4981 e = ssa_redirect_edge (e, dest);
4982
4983 return e;
4984 }
4985
4986 /* Returns true if it is possible to remove edge E by redirecting
4987 it to the destination of the other edge from E->src. */
4988
4989 static bool
4990 gimple_can_remove_branch_p (const_edge e)
4991 {
4992 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4993 return false;
4994
4995 return true;
4996 }
4997
4998 /* Simple wrapper, as we can always redirect fallthru edges. */
4999
5000 static basic_block
5001 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5002 {
5003 e = gimple_redirect_edge_and_branch (e, dest);
5004 gcc_assert (e);
5005
5006 return NULL;
5007 }
5008
5009
5010 /* Splits basic block BB after statement STMT (but at least after the
5011 labels). If STMT is NULL, BB is split just after the labels. */
5012
5013 static basic_block
5014 gimple_split_block (basic_block bb, void *stmt)
5015 {
5016 gimple_stmt_iterator gsi;
5017 gimple_stmt_iterator gsi_tgt;
5018 gimple act;
5019 gimple_seq list;
5020 basic_block new_bb;
5021 edge e;
5022 edge_iterator ei;
5023
5024 new_bb = create_empty_bb (bb);
5025
5026 /* Redirect the outgoing edges. */
5027 new_bb->succs = bb->succs;
5028 bb->succs = NULL;
5029 FOR_EACH_EDGE (e, ei, new_bb->succs)
5030 e->src = new_bb;
5031
5032 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5033 stmt = NULL;
5034
5035 /* Move everything from GSI to the new basic block. */
5036 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5037 {
5038 act = gsi_stmt (gsi);
5039 if (gimple_code (act) == GIMPLE_LABEL)
5040 continue;
5041
5042 if (!stmt)
5043 break;
5044
5045 if (stmt == act)
5046 {
5047 gsi_next (&gsi);
5048 break;
5049 }
5050 }
5051
5052 if (gsi_end_p (gsi))
5053 return new_bb;
5054
5055 /* Split the statement list - avoid re-creating new containers as this
5056 brings ugly quadratic memory consumption in the inliner.
5057 (We are still quadratic since we need to update stmt BB pointers,
5058 sadly.) */
5059 list = gsi_split_seq_before (&gsi);
5060 set_bb_seq (new_bb, list);
5061 for (gsi_tgt = gsi_start (list);
5062 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5063 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5064
5065 return new_bb;
5066 }
5067
5068
5069 /* Moves basic block BB after block AFTER. */
5070
5071 static bool
5072 gimple_move_block_after (basic_block bb, basic_block after)
5073 {
5074 if (bb->prev_bb == after)
5075 return true;
5076
5077 unlink_block (bb);
5078 link_block (bb, after);
5079
5080 return true;
5081 }
5082
5083
5084 /* Return true if basic_block can be duplicated. */
5085
5086 static bool
5087 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5088 {
5089 return true;
5090 }
5091
5092 /* Create a duplicate of the basic block BB. NOTE: This does not
5093 preserve SSA form. */
5094
5095 static basic_block
5096 gimple_duplicate_bb (basic_block bb)
5097 {
5098 basic_block new_bb;
5099 gimple_stmt_iterator gsi, gsi_tgt;
5100 gimple_seq phis = phi_nodes (bb);
5101 gimple phi, stmt, copy;
5102
5103 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5104
5105 /* Copy the PHI nodes. We ignore PHI node arguments here because
5106 the incoming edges have not been setup yet. */
5107 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5108 {
5109 phi = gsi_stmt (gsi);
5110 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5111 create_new_def_for (gimple_phi_result (copy), copy,
5112 gimple_phi_result_ptr (copy));
5113 }
5114
5115 gsi_tgt = gsi_start_bb (new_bb);
5116 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5117 {
5118 def_operand_p def_p;
5119 ssa_op_iter op_iter;
5120
5121 stmt = gsi_stmt (gsi);
5122 if (gimple_code (stmt) == GIMPLE_LABEL)
5123 continue;
5124
5125 /* Create a new copy of STMT and duplicate STMT's virtual
5126 operands. */
5127 copy = gimple_copy (stmt);
5128 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5129
5130 maybe_duplicate_eh_stmt (copy, stmt);
5131 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5132
5133 /* Create new names for all the definitions created by COPY and
5134 add replacement mappings for each new name. */
5135 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5136 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5137 }
5138
5139 return new_bb;
5140 }
5141
5142 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5143
5144 static void
5145 add_phi_args_after_copy_edge (edge e_copy)
5146 {
5147 basic_block bb, bb_copy = e_copy->src, dest;
5148 edge e;
5149 edge_iterator ei;
5150 gimple phi, phi_copy;
5151 tree def;
5152 gimple_stmt_iterator psi, psi_copy;
5153
5154 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5155 return;
5156
5157 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5158
5159 if (e_copy->dest->flags & BB_DUPLICATED)
5160 dest = get_bb_original (e_copy->dest);
5161 else
5162 dest = e_copy->dest;
5163
5164 e = find_edge (bb, dest);
5165 if (!e)
5166 {
5167 /* During loop unrolling the target of the latch edge is copied.
5168 In this case we are not looking for edge to dest, but to
5169 duplicated block whose original was dest. */
5170 FOR_EACH_EDGE (e, ei, bb->succs)
5171 {
5172 if ((e->dest->flags & BB_DUPLICATED)
5173 && get_bb_original (e->dest) == dest)
5174 break;
5175 }
5176
5177 gcc_assert (e != NULL);
5178 }
5179
5180 for (psi = gsi_start_phis (e->dest),
5181 psi_copy = gsi_start_phis (e_copy->dest);
5182 !gsi_end_p (psi);
5183 gsi_next (&psi), gsi_next (&psi_copy))
5184 {
5185 phi = gsi_stmt (psi);
5186 phi_copy = gsi_stmt (psi_copy);
5187 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5188 add_phi_arg (phi_copy, def, e_copy,
5189 gimple_phi_arg_location_from_edge (phi, e));
5190 }
5191 }
5192
5193
5194 /* Basic block BB_COPY was created by code duplication. Add phi node
5195 arguments for edges going out of BB_COPY. The blocks that were
5196 duplicated have BB_DUPLICATED set. */
5197
5198 void
5199 add_phi_args_after_copy_bb (basic_block bb_copy)
5200 {
5201 edge e_copy;
5202 edge_iterator ei;
5203
5204 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5205 {
5206 add_phi_args_after_copy_edge (e_copy);
5207 }
5208 }
5209
5210 /* Blocks in REGION_COPY array of length N_REGION were created by
5211 duplication of basic blocks. Add phi node arguments for edges
5212 going from these blocks. If E_COPY is not NULL, also add
5213 phi node arguments for its destination.*/
5214
5215 void
5216 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5217 edge e_copy)
5218 {
5219 unsigned i;
5220
5221 for (i = 0; i < n_region; i++)
5222 region_copy[i]->flags |= BB_DUPLICATED;
5223
5224 for (i = 0; i < n_region; i++)
5225 add_phi_args_after_copy_bb (region_copy[i]);
5226 if (e_copy)
5227 add_phi_args_after_copy_edge (e_copy);
5228
5229 for (i = 0; i < n_region; i++)
5230 region_copy[i]->flags &= ~BB_DUPLICATED;
5231 }
5232
5233 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5234 important exit edge EXIT. By important we mean that no SSA name defined
5235 inside region is live over the other exit edges of the region. All entry
5236 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5237 to the duplicate of the region. SSA form, dominance and loop information
5238 is updated. The new basic blocks are stored to REGION_COPY in the same
5239 order as they had in REGION, provided that REGION_COPY is not NULL.
5240 The function returns false if it is unable to copy the region,
5241 true otherwise. */
5242
5243 bool
5244 gimple_duplicate_sese_region (edge entry, edge exit,
5245 basic_block *region, unsigned n_region,
5246 basic_block *region_copy)
5247 {
5248 unsigned i;
5249 bool free_region_copy = false, copying_header = false;
5250 struct loop *loop = entry->dest->loop_father;
5251 edge exit_copy;
5252 VEC (basic_block, heap) *doms;
5253 edge redirected;
5254 int total_freq = 0, entry_freq = 0;
5255 gcov_type total_count = 0, entry_count = 0;
5256
5257 if (!can_copy_bbs_p (region, n_region))
5258 return false;
5259
5260 /* Some sanity checking. Note that we do not check for all possible
5261 missuses of the functions. I.e. if you ask to copy something weird,
5262 it will work, but the state of structures probably will not be
5263 correct. */
5264 for (i = 0; i < n_region; i++)
5265 {
5266 /* We do not handle subloops, i.e. all the blocks must belong to the
5267 same loop. */
5268 if (region[i]->loop_father != loop)
5269 return false;
5270
5271 if (region[i] != entry->dest
5272 && region[i] == loop->header)
5273 return false;
5274 }
5275
5276 set_loop_copy (loop, loop);
5277
5278 /* In case the function is used for loop header copying (which is the primary
5279 use), ensure that EXIT and its copy will be new latch and entry edges. */
5280 if (loop->header == entry->dest)
5281 {
5282 copying_header = true;
5283 set_loop_copy (loop, loop_outer (loop));
5284
5285 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5286 return false;
5287
5288 for (i = 0; i < n_region; i++)
5289 if (region[i] != exit->src
5290 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5291 return false;
5292 }
5293
5294 if (!region_copy)
5295 {
5296 region_copy = XNEWVEC (basic_block, n_region);
5297 free_region_copy = true;
5298 }
5299
5300 gcc_assert (!need_ssa_update_p (cfun));
5301
5302 /* Record blocks outside the region that are dominated by something
5303 inside. */
5304 doms = NULL;
5305 initialize_original_copy_tables ();
5306
5307 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5308
5309 if (entry->dest->count)
5310 {
5311 total_count = entry->dest->count;
5312 entry_count = entry->count;
5313 /* Fix up corner cases, to avoid division by zero or creation of negative
5314 frequencies. */
5315 if (entry_count > total_count)
5316 entry_count = total_count;
5317 }
5318 else
5319 {
5320 total_freq = entry->dest->frequency;
5321 entry_freq = EDGE_FREQUENCY (entry);
5322 /* Fix up corner cases, to avoid division by zero or creation of negative
5323 frequencies. */
5324 if (total_freq == 0)
5325 total_freq = 1;
5326 else if (entry_freq > total_freq)
5327 entry_freq = total_freq;
5328 }
5329
5330 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5331 split_edge_bb_loc (entry));
5332 if (total_count)
5333 {
5334 scale_bbs_frequencies_gcov_type (region, n_region,
5335 total_count - entry_count,
5336 total_count);
5337 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5338 total_count);
5339 }
5340 else
5341 {
5342 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5343 total_freq);
5344 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5345 }
5346
5347 if (copying_header)
5348 {
5349 loop->header = exit->dest;
5350 loop->latch = exit->src;
5351 }
5352
5353 /* Redirect the entry and add the phi node arguments. */
5354 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5355 gcc_assert (redirected != NULL);
5356 flush_pending_stmts (entry);
5357
5358 /* Concerning updating of dominators: We must recount dominators
5359 for entry block and its copy. Anything that is outside of the
5360 region, but was dominated by something inside needs recounting as
5361 well. */
5362 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5363 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5364 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5365 VEC_free (basic_block, heap, doms);
5366
5367 /* Add the other PHI node arguments. */
5368 add_phi_args_after_copy (region_copy, n_region, NULL);
5369
5370 /* Update the SSA web. */
5371 update_ssa (TODO_update_ssa);
5372
5373 if (free_region_copy)
5374 free (region_copy);
5375
5376 free_original_copy_tables ();
5377 return true;
5378 }
5379
5380 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5381 are stored to REGION_COPY in the same order in that they appear
5382 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5383 the region, EXIT an exit from it. The condition guarding EXIT
5384 is moved to ENTRY. Returns true if duplication succeeds, false
5385 otherwise.
5386
5387 For example,
5388
5389 some_code;
5390 if (cond)
5391 A;
5392 else
5393 B;
5394
5395 is transformed to
5396
5397 if (cond)
5398 {
5399 some_code;
5400 A;
5401 }
5402 else
5403 {
5404 some_code;
5405 B;
5406 }
5407 */
5408
5409 bool
5410 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5411 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5412 basic_block *region_copy ATTRIBUTE_UNUSED)
5413 {
5414 unsigned i;
5415 bool free_region_copy = false;
5416 struct loop *loop = exit->dest->loop_father;
5417 struct loop *orig_loop = entry->dest->loop_father;
5418 basic_block switch_bb, entry_bb, nentry_bb;
5419 VEC (basic_block, heap) *doms;
5420 int total_freq = 0, exit_freq = 0;
5421 gcov_type total_count = 0, exit_count = 0;
5422 edge exits[2], nexits[2], e;
5423 gimple_stmt_iterator gsi,gsi1;
5424 gimple cond_stmt;
5425 edge sorig, snew;
5426 basic_block exit_bb;
5427 basic_block iters_bb;
5428 tree new_rhs;
5429 gimple_stmt_iterator psi;
5430 gimple phi;
5431 tree def;
5432
5433 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5434 exits[0] = exit;
5435 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5436
5437 if (!can_copy_bbs_p (region, n_region))
5438 return false;
5439
5440 initialize_original_copy_tables ();
5441 set_loop_copy (orig_loop, loop);
5442 duplicate_subloops (orig_loop, loop);
5443
5444 if (!region_copy)
5445 {
5446 region_copy = XNEWVEC (basic_block, n_region);
5447 free_region_copy = true;
5448 }
5449
5450 gcc_assert (!need_ssa_update_p (cfun));
5451
5452 /* Record blocks outside the region that are dominated by something
5453 inside. */
5454 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5455
5456 if (exit->src->count)
5457 {
5458 total_count = exit->src->count;
5459 exit_count = exit->count;
5460 /* Fix up corner cases, to avoid division by zero or creation of negative
5461 frequencies. */
5462 if (exit_count > total_count)
5463 exit_count = total_count;
5464 }
5465 else
5466 {
5467 total_freq = exit->src->frequency;
5468 exit_freq = EDGE_FREQUENCY (exit);
5469 /* Fix up corner cases, to avoid division by zero or creation of negative
5470 frequencies. */
5471 if (total_freq == 0)
5472 total_freq = 1;
5473 if (exit_freq > total_freq)
5474 exit_freq = total_freq;
5475 }
5476
5477 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5478 split_edge_bb_loc (exit));
5479 if (total_count)
5480 {
5481 scale_bbs_frequencies_gcov_type (region, n_region,
5482 total_count - exit_count,
5483 total_count);
5484 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5485 total_count);
5486 }
5487 else
5488 {
5489 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5490 total_freq);
5491 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5492 }
5493
5494 /* Create the switch block, and put the exit condition to it. */
5495 entry_bb = entry->dest;
5496 nentry_bb = get_bb_copy (entry_bb);
5497 if (!last_stmt (entry->src)
5498 || !stmt_ends_bb_p (last_stmt (entry->src)))
5499 switch_bb = entry->src;
5500 else
5501 switch_bb = split_edge (entry);
5502 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5503
5504 gsi = gsi_last_bb (switch_bb);
5505 cond_stmt = last_stmt (exit->src);
5506 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5507 cond_stmt = gimple_copy (cond_stmt);
5508
5509 /* If the block consisting of the exit condition has the latch as
5510 successor, then the body of the loop is executed before
5511 the exit condition is tested. In such case, moving the
5512 condition to the entry, causes that the loop will iterate
5513 one less iteration (which is the wanted outcome, since we
5514 peel out the last iteration). If the body is executed after
5515 the condition, moving the condition to the entry requires
5516 decrementing one iteration. */
5517 if (exits[1]->dest == orig_loop->latch)
5518 new_rhs = gimple_cond_rhs (cond_stmt);
5519 else
5520 {
5521 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5522 gimple_cond_rhs (cond_stmt),
5523 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5524
5525 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5526 {
5527 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5528 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5529 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5530 break;
5531
5532 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5533 NULL_TREE,false,GSI_CONTINUE_LINKING);
5534 }
5535 }
5536 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5537 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5538 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5539
5540 sorig = single_succ_edge (switch_bb);
5541 sorig->flags = exits[1]->flags;
5542 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5543
5544 /* Register the new edge from SWITCH_BB in loop exit lists. */
5545 rescan_loop_exit (snew, true, false);
5546
5547 /* Add the PHI node arguments. */
5548 add_phi_args_after_copy (region_copy, n_region, snew);
5549
5550 /* Get rid of now superfluous conditions and associated edges (and phi node
5551 arguments). */
5552 exit_bb = exit->dest;
5553
5554 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5555 PENDING_STMT (e) = NULL;
5556
5557 /* The latch of ORIG_LOOP was copied, and so was the backedge
5558 to the original header. We redirect this backedge to EXIT_BB. */
5559 for (i = 0; i < n_region; i++)
5560 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5561 {
5562 gcc_assert (single_succ_edge (region_copy[i]));
5563 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5564 PENDING_STMT (e) = NULL;
5565 for (psi = gsi_start_phis (exit_bb);
5566 !gsi_end_p (psi);
5567 gsi_next (&psi))
5568 {
5569 phi = gsi_stmt (psi);
5570 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5571 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5572 }
5573 }
5574 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5575 PENDING_STMT (e) = NULL;
5576
5577 /* Anything that is outside of the region, but was dominated by something
5578 inside needs to update dominance info. */
5579 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5580 VEC_free (basic_block, heap, doms);
5581 /* Update the SSA web. */
5582 update_ssa (TODO_update_ssa);
5583
5584 if (free_region_copy)
5585 free (region_copy);
5586
5587 free_original_copy_tables ();
5588 return true;
5589 }
5590
5591 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5592 adding blocks when the dominator traversal reaches EXIT. This
5593 function silently assumes that ENTRY strictly dominates EXIT. */
5594
5595 void
5596 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5597 VEC(basic_block,heap) **bbs_p)
5598 {
5599 basic_block son;
5600
5601 for (son = first_dom_son (CDI_DOMINATORS, entry);
5602 son;
5603 son = next_dom_son (CDI_DOMINATORS, son))
5604 {
5605 VEC_safe_push (basic_block, heap, *bbs_p, son);
5606 if (son != exit)
5607 gather_blocks_in_sese_region (son, exit, bbs_p);
5608 }
5609 }
5610
5611 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5612 The duplicates are recorded in VARS_MAP. */
5613
5614 static void
5615 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5616 tree to_context)
5617 {
5618 tree t = *tp, new_t;
5619 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5620 void **loc;
5621
5622 if (DECL_CONTEXT (t) == to_context)
5623 return;
5624
5625 loc = pointer_map_contains (vars_map, t);
5626
5627 if (!loc)
5628 {
5629 loc = pointer_map_insert (vars_map, t);
5630
5631 if (SSA_VAR_P (t))
5632 {
5633 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5634 add_local_decl (f, new_t);
5635 }
5636 else
5637 {
5638 gcc_assert (TREE_CODE (t) == CONST_DECL);
5639 new_t = copy_node (t);
5640 }
5641 DECL_CONTEXT (new_t) = to_context;
5642
5643 *loc = new_t;
5644 }
5645 else
5646 new_t = (tree) *loc;
5647
5648 *tp = new_t;
5649 }
5650
5651
5652 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5653 VARS_MAP maps old ssa names and var_decls to the new ones. */
5654
5655 static tree
5656 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5657 tree to_context)
5658 {
5659 void **loc;
5660 tree new_name, decl = SSA_NAME_VAR (name);
5661
5662 gcc_assert (is_gimple_reg (name));
5663
5664 loc = pointer_map_contains (vars_map, name);
5665
5666 if (!loc)
5667 {
5668 replace_by_duplicate_decl (&decl, vars_map, to_context);
5669
5670 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5671 if (gimple_in_ssa_p (cfun))
5672 add_referenced_var (decl);
5673
5674 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5675 if (SSA_NAME_IS_DEFAULT_DEF (name))
5676 set_default_def (decl, new_name);
5677 pop_cfun ();
5678
5679 loc = pointer_map_insert (vars_map, name);
5680 *loc = new_name;
5681 }
5682 else
5683 new_name = (tree) *loc;
5684
5685 return new_name;
5686 }
5687
5688 struct move_stmt_d
5689 {
5690 tree orig_block;
5691 tree new_block;
5692 tree from_context;
5693 tree to_context;
5694 struct pointer_map_t *vars_map;
5695 htab_t new_label_map;
5696 struct pointer_map_t *eh_map;
5697 bool remap_decls_p;
5698 };
5699
5700 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5701 contained in *TP if it has been ORIG_BLOCK previously and change the
5702 DECL_CONTEXT of every local variable referenced in *TP. */
5703
5704 static tree
5705 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5706 {
5707 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5708 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5709 tree t = *tp;
5710
5711 if (EXPR_P (t))
5712 /* We should never have TREE_BLOCK set on non-statements. */
5713 gcc_assert (!TREE_BLOCK (t));
5714
5715 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5716 {
5717 if (TREE_CODE (t) == SSA_NAME)
5718 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5719 else if (TREE_CODE (t) == LABEL_DECL)
5720 {
5721 if (p->new_label_map)
5722 {
5723 struct tree_map in, *out;
5724 in.base.from = t;
5725 out = (struct tree_map *)
5726 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5727 if (out)
5728 *tp = t = out->to;
5729 }
5730
5731 DECL_CONTEXT (t) = p->to_context;
5732 }
5733 else if (p->remap_decls_p)
5734 {
5735 /* Replace T with its duplicate. T should no longer appear in the
5736 parent function, so this looks wasteful; however, it may appear
5737 in referenced_vars, and more importantly, as virtual operands of
5738 statements, and in alias lists of other variables. It would be
5739 quite difficult to expunge it from all those places. ??? It might
5740 suffice to do this for addressable variables. */
5741 if ((TREE_CODE (t) == VAR_DECL
5742 && !is_global_var (t))
5743 || TREE_CODE (t) == CONST_DECL)
5744 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5745
5746 if (SSA_VAR_P (t)
5747 && gimple_in_ssa_p (cfun))
5748 {
5749 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5750 add_referenced_var (*tp);
5751 pop_cfun ();
5752 }
5753 }
5754 *walk_subtrees = 0;
5755 }
5756 else if (TYPE_P (t))
5757 *walk_subtrees = 0;
5758
5759 return NULL_TREE;
5760 }
5761
5762 /* Helper for move_stmt_r. Given an EH region number for the source
5763 function, map that to the duplicate EH regio number in the dest. */
5764
5765 static int
5766 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5767 {
5768 eh_region old_r, new_r;
5769 void **slot;
5770
5771 old_r = get_eh_region_from_number (old_nr);
5772 slot = pointer_map_contains (p->eh_map, old_r);
5773 new_r = (eh_region) *slot;
5774
5775 return new_r->index;
5776 }
5777
5778 /* Similar, but operate on INTEGER_CSTs. */
5779
5780 static tree
5781 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5782 {
5783 int old_nr, new_nr;
5784
5785 old_nr = tree_low_cst (old_t_nr, 0);
5786 new_nr = move_stmt_eh_region_nr (old_nr, p);
5787
5788 return build_int_cst (NULL, new_nr);
5789 }
5790
5791 /* Like move_stmt_op, but for gimple statements.
5792
5793 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5794 contained in the current statement in *GSI_P and change the
5795 DECL_CONTEXT of every local variable referenced in the current
5796 statement. */
5797
5798 static tree
5799 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5800 struct walk_stmt_info *wi)
5801 {
5802 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5803 gimple stmt = gsi_stmt (*gsi_p);
5804 tree block = gimple_block (stmt);
5805
5806 if (p->orig_block == NULL_TREE
5807 || block == p->orig_block
5808 || block == NULL_TREE)
5809 gimple_set_block (stmt, p->new_block);
5810 #ifdef ENABLE_CHECKING
5811 else if (block != p->new_block)
5812 {
5813 while (block && block != p->orig_block)
5814 block = BLOCK_SUPERCONTEXT (block);
5815 gcc_assert (block);
5816 }
5817 #endif
5818
5819 switch (gimple_code (stmt))
5820 {
5821 case GIMPLE_CALL:
5822 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5823 {
5824 tree r, fndecl = gimple_call_fndecl (stmt);
5825 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5826 switch (DECL_FUNCTION_CODE (fndecl))
5827 {
5828 case BUILT_IN_EH_COPY_VALUES:
5829 r = gimple_call_arg (stmt, 1);
5830 r = move_stmt_eh_region_tree_nr (r, p);
5831 gimple_call_set_arg (stmt, 1, r);
5832 /* FALLTHRU */
5833
5834 case BUILT_IN_EH_POINTER:
5835 case BUILT_IN_EH_FILTER:
5836 r = gimple_call_arg (stmt, 0);
5837 r = move_stmt_eh_region_tree_nr (r, p);
5838 gimple_call_set_arg (stmt, 0, r);
5839 break;
5840
5841 default:
5842 break;
5843 }
5844 }
5845 break;
5846
5847 case GIMPLE_RESX:
5848 {
5849 int r = gimple_resx_region (stmt);
5850 r = move_stmt_eh_region_nr (r, p);
5851 gimple_resx_set_region (stmt, r);
5852 }
5853 break;
5854
5855 case GIMPLE_EH_DISPATCH:
5856 {
5857 int r = gimple_eh_dispatch_region (stmt);
5858 r = move_stmt_eh_region_nr (r, p);
5859 gimple_eh_dispatch_set_region (stmt, r);
5860 }
5861 break;
5862
5863 case GIMPLE_OMP_RETURN:
5864 case GIMPLE_OMP_CONTINUE:
5865 break;
5866 default:
5867 if (is_gimple_omp (stmt))
5868 {
5869 /* Do not remap variables inside OMP directives. Variables
5870 referenced in clauses and directive header belong to the
5871 parent function and should not be moved into the child
5872 function. */
5873 bool save_remap_decls_p = p->remap_decls_p;
5874 p->remap_decls_p = false;
5875 *handled_ops_p = true;
5876
5877 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5878 move_stmt_op, wi);
5879
5880 p->remap_decls_p = save_remap_decls_p;
5881 }
5882 break;
5883 }
5884
5885 return NULL_TREE;
5886 }
5887
5888 /* Move basic block BB from function CFUN to function DEST_FN. The
5889 block is moved out of the original linked list and placed after
5890 block AFTER in the new list. Also, the block is removed from the
5891 original array of blocks and placed in DEST_FN's array of blocks.
5892 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5893 updated to reflect the moved edges.
5894
5895 The local variables are remapped to new instances, VARS_MAP is used
5896 to record the mapping. */
5897
5898 static void
5899 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5900 basic_block after, bool update_edge_count_p,
5901 struct move_stmt_d *d)
5902 {
5903 struct control_flow_graph *cfg;
5904 edge_iterator ei;
5905 edge e;
5906 gimple_stmt_iterator si;
5907 unsigned old_len, new_len;
5908
5909 /* Remove BB from dominance structures. */
5910 delete_from_dominance_info (CDI_DOMINATORS, bb);
5911 if (current_loops)
5912 remove_bb_from_loops (bb);
5913
5914 /* Link BB to the new linked list. */
5915 move_block_after (bb, after);
5916
5917 /* Update the edge count in the corresponding flowgraphs. */
5918 if (update_edge_count_p)
5919 FOR_EACH_EDGE (e, ei, bb->succs)
5920 {
5921 cfun->cfg->x_n_edges--;
5922 dest_cfun->cfg->x_n_edges++;
5923 }
5924
5925 /* Remove BB from the original basic block array. */
5926 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5927 cfun->cfg->x_n_basic_blocks--;
5928
5929 /* Grow DEST_CFUN's basic block array if needed. */
5930 cfg = dest_cfun->cfg;
5931 cfg->x_n_basic_blocks++;
5932 if (bb->index >= cfg->x_last_basic_block)
5933 cfg->x_last_basic_block = bb->index + 1;
5934
5935 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5936 if ((unsigned) cfg->x_last_basic_block >= old_len)
5937 {
5938 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5939 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5940 new_len);
5941 }
5942
5943 VEC_replace (basic_block, cfg->x_basic_block_info,
5944 bb->index, bb);
5945
5946 /* Remap the variables in phi nodes. */
5947 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5948 {
5949 gimple phi = gsi_stmt (si);
5950 use_operand_p use;
5951 tree op = PHI_RESULT (phi);
5952 ssa_op_iter oi;
5953
5954 if (!is_gimple_reg (op))
5955 {
5956 /* Remove the phi nodes for virtual operands (alias analysis will be
5957 run for the new function, anyway). */
5958 remove_phi_node (&si, true);
5959 continue;
5960 }
5961
5962 SET_PHI_RESULT (phi,
5963 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5964 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5965 {
5966 op = USE_FROM_PTR (use);
5967 if (TREE_CODE (op) == SSA_NAME)
5968 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5969 }
5970
5971 gsi_next (&si);
5972 }
5973
5974 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5975 {
5976 gimple stmt = gsi_stmt (si);
5977 struct walk_stmt_info wi;
5978
5979 memset (&wi, 0, sizeof (wi));
5980 wi.info = d;
5981 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5982
5983 if (gimple_code (stmt) == GIMPLE_LABEL)
5984 {
5985 tree label = gimple_label_label (stmt);
5986 int uid = LABEL_DECL_UID (label);
5987
5988 gcc_assert (uid > -1);
5989
5990 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5991 if (old_len <= (unsigned) uid)
5992 {
5993 new_len = 3 * uid / 2 + 1;
5994 VEC_safe_grow_cleared (basic_block, gc,
5995 cfg->x_label_to_block_map, new_len);
5996 }
5997
5998 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5999 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
6000
6001 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6002
6003 if (uid >= dest_cfun->cfg->last_label_uid)
6004 dest_cfun->cfg->last_label_uid = uid + 1;
6005 }
6006
6007 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6008 remove_stmt_from_eh_lp_fn (cfun, stmt);
6009
6010 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6011 gimple_remove_stmt_histograms (cfun, stmt);
6012
6013 /* We cannot leave any operands allocated from the operand caches of
6014 the current function. */
6015 free_stmt_operands (stmt);
6016 push_cfun (dest_cfun);
6017 update_stmt (stmt);
6018 pop_cfun ();
6019 }
6020
6021 FOR_EACH_EDGE (e, ei, bb->succs)
6022 if (e->goto_locus)
6023 {
6024 tree block = e->goto_block;
6025 if (d->orig_block == NULL_TREE
6026 || block == d->orig_block)
6027 e->goto_block = d->new_block;
6028 #ifdef ENABLE_CHECKING
6029 else if (block != d->new_block)
6030 {
6031 while (block && block != d->orig_block)
6032 block = BLOCK_SUPERCONTEXT (block);
6033 gcc_assert (block);
6034 }
6035 #endif
6036 }
6037 }
6038
6039 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6040 the outermost EH region. Use REGION as the incoming base EH region. */
6041
6042 static eh_region
6043 find_outermost_region_in_block (struct function *src_cfun,
6044 basic_block bb, eh_region region)
6045 {
6046 gimple_stmt_iterator si;
6047
6048 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6049 {
6050 gimple stmt = gsi_stmt (si);
6051 eh_region stmt_region;
6052 int lp_nr;
6053
6054 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6055 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6056 if (stmt_region)
6057 {
6058 if (region == NULL)
6059 region = stmt_region;
6060 else if (stmt_region != region)
6061 {
6062 region = eh_region_outermost (src_cfun, stmt_region, region);
6063 gcc_assert (region != NULL);
6064 }
6065 }
6066 }
6067
6068 return region;
6069 }
6070
6071 static tree
6072 new_label_mapper (tree decl, void *data)
6073 {
6074 htab_t hash = (htab_t) data;
6075 struct tree_map *m;
6076 void **slot;
6077
6078 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6079
6080 m = XNEW (struct tree_map);
6081 m->hash = DECL_UID (decl);
6082 m->base.from = decl;
6083 m->to = create_artificial_label (UNKNOWN_LOCATION);
6084 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6085 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6086 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6087
6088 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6089 gcc_assert (*slot == NULL);
6090
6091 *slot = m;
6092
6093 return m->to;
6094 }
6095
6096 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6097 subblocks. */
6098
6099 static void
6100 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6101 tree to_context)
6102 {
6103 tree *tp, t;
6104
6105 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6106 {
6107 t = *tp;
6108 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6109 continue;
6110 replace_by_duplicate_decl (&t, vars_map, to_context);
6111 if (t != *tp)
6112 {
6113 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6114 {
6115 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6116 DECL_HAS_VALUE_EXPR_P (t) = 1;
6117 }
6118 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6119 *tp = t;
6120 }
6121 }
6122
6123 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6124 replace_block_vars_by_duplicates (block, vars_map, to_context);
6125 }
6126
6127 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6128 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6129 single basic block in the original CFG and the new basic block is
6130 returned. DEST_CFUN must not have a CFG yet.
6131
6132 Note that the region need not be a pure SESE region. Blocks inside
6133 the region may contain calls to abort/exit. The only restriction
6134 is that ENTRY_BB should be the only entry point and it must
6135 dominate EXIT_BB.
6136
6137 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6138 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6139 to the new function.
6140
6141 All local variables referenced in the region are assumed to be in
6142 the corresponding BLOCK_VARS and unexpanded variable lists
6143 associated with DEST_CFUN. */
6144
6145 basic_block
6146 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6147 basic_block exit_bb, tree orig_block)
6148 {
6149 VEC(basic_block,heap) *bbs, *dom_bbs;
6150 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6151 basic_block after, bb, *entry_pred, *exit_succ, abb;
6152 struct function *saved_cfun = cfun;
6153 int *entry_flag, *exit_flag;
6154 unsigned *entry_prob, *exit_prob;
6155 unsigned i, num_entry_edges, num_exit_edges;
6156 edge e;
6157 edge_iterator ei;
6158 htab_t new_label_map;
6159 struct pointer_map_t *vars_map, *eh_map;
6160 struct loop *loop = entry_bb->loop_father;
6161 struct move_stmt_d d;
6162
6163 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6164 region. */
6165 gcc_assert (entry_bb != exit_bb
6166 && (!exit_bb
6167 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6168
6169 /* Collect all the blocks in the region. Manually add ENTRY_BB
6170 because it won't be added by dfs_enumerate_from. */
6171 bbs = NULL;
6172 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6173 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6174
6175 /* The blocks that used to be dominated by something in BBS will now be
6176 dominated by the new block. */
6177 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6178 VEC_address (basic_block, bbs),
6179 VEC_length (basic_block, bbs));
6180
6181 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6182 the predecessor edges to ENTRY_BB and the successor edges to
6183 EXIT_BB so that we can re-attach them to the new basic block that
6184 will replace the region. */
6185 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6186 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6187 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6188 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6189 i = 0;
6190 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6191 {
6192 entry_prob[i] = e->probability;
6193 entry_flag[i] = e->flags;
6194 entry_pred[i++] = e->src;
6195 remove_edge (e);
6196 }
6197
6198 if (exit_bb)
6199 {
6200 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6201 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6202 sizeof (basic_block));
6203 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6204 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6205 i = 0;
6206 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6207 {
6208 exit_prob[i] = e->probability;
6209 exit_flag[i] = e->flags;
6210 exit_succ[i++] = e->dest;
6211 remove_edge (e);
6212 }
6213 }
6214 else
6215 {
6216 num_exit_edges = 0;
6217 exit_succ = NULL;
6218 exit_flag = NULL;
6219 exit_prob = NULL;
6220 }
6221
6222 /* Switch context to the child function to initialize DEST_FN's CFG. */
6223 gcc_assert (dest_cfun->cfg == NULL);
6224 push_cfun (dest_cfun);
6225
6226 init_empty_tree_cfg ();
6227
6228 /* Initialize EH information for the new function. */
6229 eh_map = NULL;
6230 new_label_map = NULL;
6231 if (saved_cfun->eh)
6232 {
6233 eh_region region = NULL;
6234
6235 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6236 region = find_outermost_region_in_block (saved_cfun, bb, region);
6237
6238 init_eh_for_function ();
6239 if (region != NULL)
6240 {
6241 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6242 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6243 new_label_mapper, new_label_map);
6244 }
6245 }
6246
6247 pop_cfun ();
6248
6249 /* Move blocks from BBS into DEST_CFUN. */
6250 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6251 after = dest_cfun->cfg->x_entry_block_ptr;
6252 vars_map = pointer_map_create ();
6253
6254 memset (&d, 0, sizeof (d));
6255 d.orig_block = orig_block;
6256 d.new_block = DECL_INITIAL (dest_cfun->decl);
6257 d.from_context = cfun->decl;
6258 d.to_context = dest_cfun->decl;
6259 d.vars_map = vars_map;
6260 d.new_label_map = new_label_map;
6261 d.eh_map = eh_map;
6262 d.remap_decls_p = true;
6263
6264 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6265 {
6266 /* No need to update edge counts on the last block. It has
6267 already been updated earlier when we detached the region from
6268 the original CFG. */
6269 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6270 after = bb;
6271 }
6272
6273 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6274 if (orig_block)
6275 {
6276 tree block;
6277 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6278 == NULL_TREE);
6279 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6280 = BLOCK_SUBBLOCKS (orig_block);
6281 for (block = BLOCK_SUBBLOCKS (orig_block);
6282 block; block = BLOCK_CHAIN (block))
6283 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6284 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6285 }
6286
6287 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6288 vars_map, dest_cfun->decl);
6289
6290 if (new_label_map)
6291 htab_delete (new_label_map);
6292 if (eh_map)
6293 pointer_map_destroy (eh_map);
6294 pointer_map_destroy (vars_map);
6295
6296 /* Rewire the entry and exit blocks. The successor to the entry
6297 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6298 the child function. Similarly, the predecessor of DEST_FN's
6299 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6300 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6301 various CFG manipulation function get to the right CFG.
6302
6303 FIXME, this is silly. The CFG ought to become a parameter to
6304 these helpers. */
6305 push_cfun (dest_cfun);
6306 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6307 if (exit_bb)
6308 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6309 pop_cfun ();
6310
6311 /* Back in the original function, the SESE region has disappeared,
6312 create a new basic block in its place. */
6313 bb = create_empty_bb (entry_pred[0]);
6314 if (current_loops)
6315 add_bb_to_loop (bb, loop);
6316 for (i = 0; i < num_entry_edges; i++)
6317 {
6318 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6319 e->probability = entry_prob[i];
6320 }
6321
6322 for (i = 0; i < num_exit_edges; i++)
6323 {
6324 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6325 e->probability = exit_prob[i];
6326 }
6327
6328 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6329 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6330 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6331 VEC_free (basic_block, heap, dom_bbs);
6332
6333 if (exit_bb)
6334 {
6335 free (exit_prob);
6336 free (exit_flag);
6337 free (exit_succ);
6338 }
6339 free (entry_prob);
6340 free (entry_flag);
6341 free (entry_pred);
6342 VEC_free (basic_block, heap, bbs);
6343
6344 return bb;
6345 }
6346
6347
6348 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6349 */
6350
6351 void
6352 dump_function_to_file (tree fn, FILE *file, int flags)
6353 {
6354 tree arg, var;
6355 struct function *dsf;
6356 bool ignore_topmost_bind = false, any_var = false;
6357 basic_block bb;
6358 tree chain;
6359
6360 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6361
6362 arg = DECL_ARGUMENTS (fn);
6363 while (arg)
6364 {
6365 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6366 fprintf (file, " ");
6367 print_generic_expr (file, arg, dump_flags);
6368 if (flags & TDF_VERBOSE)
6369 print_node (file, "", arg, 4);
6370 if (DECL_CHAIN (arg))
6371 fprintf (file, ", ");
6372 arg = DECL_CHAIN (arg);
6373 }
6374 fprintf (file, ")\n");
6375
6376 if (flags & TDF_VERBOSE)
6377 print_node (file, "", fn, 2);
6378
6379 dsf = DECL_STRUCT_FUNCTION (fn);
6380 if (dsf && (flags & TDF_EH))
6381 dump_eh_tree (file, dsf);
6382
6383 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6384 {
6385 dump_node (fn, TDF_SLIM | flags, file);
6386 return;
6387 }
6388
6389 /* Switch CFUN to point to FN. */
6390 push_cfun (DECL_STRUCT_FUNCTION (fn));
6391
6392 /* When GIMPLE is lowered, the variables are no longer available in
6393 BIND_EXPRs, so display them separately. */
6394 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6395 {
6396 unsigned ix;
6397 ignore_topmost_bind = true;
6398
6399 fprintf (file, "{\n");
6400 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6401 {
6402 print_generic_decl (file, var, flags);
6403 if (flags & TDF_VERBOSE)
6404 print_node (file, "", var, 4);
6405 fprintf (file, "\n");
6406
6407 any_var = true;
6408 }
6409 }
6410
6411 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6412 {
6413 /* If the CFG has been built, emit a CFG-based dump. */
6414 check_bb_profile (ENTRY_BLOCK_PTR, file);
6415 if (!ignore_topmost_bind)
6416 fprintf (file, "{\n");
6417
6418 if (any_var && n_basic_blocks)
6419 fprintf (file, "\n");
6420
6421 FOR_EACH_BB (bb)
6422 gimple_dump_bb (bb, file, 2, flags);
6423
6424 fprintf (file, "}\n");
6425 check_bb_profile (EXIT_BLOCK_PTR, file);
6426 }
6427 else if (DECL_SAVED_TREE (fn) == NULL)
6428 {
6429 /* The function is now in GIMPLE form but the CFG has not been
6430 built yet. Emit the single sequence of GIMPLE statements
6431 that make up its body. */
6432 gimple_seq body = gimple_body (fn);
6433
6434 if (gimple_seq_first_stmt (body)
6435 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6436 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6437 print_gimple_seq (file, body, 0, flags);
6438 else
6439 {
6440 if (!ignore_topmost_bind)
6441 fprintf (file, "{\n");
6442
6443 if (any_var)
6444 fprintf (file, "\n");
6445
6446 print_gimple_seq (file, body, 2, flags);
6447 fprintf (file, "}\n");
6448 }
6449 }
6450 else
6451 {
6452 int indent;
6453
6454 /* Make a tree based dump. */
6455 chain = DECL_SAVED_TREE (fn);
6456
6457 if (chain && TREE_CODE (chain) == BIND_EXPR)
6458 {
6459 if (ignore_topmost_bind)
6460 {
6461 chain = BIND_EXPR_BODY (chain);
6462 indent = 2;
6463 }
6464 else
6465 indent = 0;
6466 }
6467 else
6468 {
6469 if (!ignore_topmost_bind)
6470 fprintf (file, "{\n");
6471 indent = 2;
6472 }
6473
6474 if (any_var)
6475 fprintf (file, "\n");
6476
6477 print_generic_stmt_indented (file, chain, flags, indent);
6478 if (ignore_topmost_bind)
6479 fprintf (file, "}\n");
6480 }
6481
6482 if (flags & TDF_ENUMERATE_LOCALS)
6483 dump_enumerated_decls (file, flags);
6484 fprintf (file, "\n\n");
6485
6486 /* Restore CFUN. */
6487 pop_cfun ();
6488 }
6489
6490
6491 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6492
6493 DEBUG_FUNCTION void
6494 debug_function (tree fn, int flags)
6495 {
6496 dump_function_to_file (fn, stderr, flags);
6497 }
6498
6499
6500 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6501
6502 static void
6503 print_pred_bbs (FILE *file, basic_block bb)
6504 {
6505 edge e;
6506 edge_iterator ei;
6507
6508 FOR_EACH_EDGE (e, ei, bb->preds)
6509 fprintf (file, "bb_%d ", e->src->index);
6510 }
6511
6512
6513 /* Print on FILE the indexes for the successors of basic_block BB. */
6514
6515 static void
6516 print_succ_bbs (FILE *file, basic_block bb)
6517 {
6518 edge e;
6519 edge_iterator ei;
6520
6521 FOR_EACH_EDGE (e, ei, bb->succs)
6522 fprintf (file, "bb_%d ", e->dest->index);
6523 }
6524
6525 /* Print to FILE the basic block BB following the VERBOSITY level. */
6526
6527 void
6528 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6529 {
6530 char *s_indent = (char *) alloca ((size_t) indent + 1);
6531 memset ((void *) s_indent, ' ', (size_t) indent);
6532 s_indent[indent] = '\0';
6533
6534 /* Print basic_block's header. */
6535 if (verbosity >= 2)
6536 {
6537 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6538 print_pred_bbs (file, bb);
6539 fprintf (file, "}, succs = {");
6540 print_succ_bbs (file, bb);
6541 fprintf (file, "})\n");
6542 }
6543
6544 /* Print basic_block's body. */
6545 if (verbosity >= 3)
6546 {
6547 fprintf (file, "%s {\n", s_indent);
6548 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6549 fprintf (file, "%s }\n", s_indent);
6550 }
6551 }
6552
6553 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6554
6555 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6556 VERBOSITY level this outputs the contents of the loop, or just its
6557 structure. */
6558
6559 static void
6560 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6561 {
6562 char *s_indent;
6563 basic_block bb;
6564
6565 if (loop == NULL)
6566 return;
6567
6568 s_indent = (char *) alloca ((size_t) indent + 1);
6569 memset ((void *) s_indent, ' ', (size_t) indent);
6570 s_indent[indent] = '\0';
6571
6572 /* Print loop's header. */
6573 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6574 loop->num, loop->header->index, loop->latch->index);
6575 fprintf (file, ", niter = ");
6576 print_generic_expr (file, loop->nb_iterations, 0);
6577
6578 if (loop->any_upper_bound)
6579 {
6580 fprintf (file, ", upper_bound = ");
6581 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6582 }
6583
6584 if (loop->any_estimate)
6585 {
6586 fprintf (file, ", estimate = ");
6587 dump_double_int (file, loop->nb_iterations_estimate, true);
6588 }
6589 fprintf (file, ")\n");
6590
6591 /* Print loop's body. */
6592 if (verbosity >= 1)
6593 {
6594 fprintf (file, "%s{\n", s_indent);
6595 FOR_EACH_BB (bb)
6596 if (bb->loop_father == loop)
6597 print_loops_bb (file, bb, indent, verbosity);
6598
6599 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6600 fprintf (file, "%s}\n", s_indent);
6601 }
6602 }
6603
6604 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6605 spaces. Following VERBOSITY level this outputs the contents of the
6606 loop, or just its structure. */
6607
6608 static void
6609 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6610 {
6611 if (loop == NULL)
6612 return;
6613
6614 print_loop (file, loop, indent, verbosity);
6615 print_loop_and_siblings (file, loop->next, indent, verbosity);
6616 }
6617
6618 /* Follow a CFG edge from the entry point of the program, and on entry
6619 of a loop, pretty print the loop structure on FILE. */
6620
6621 void
6622 print_loops (FILE *file, int verbosity)
6623 {
6624 basic_block bb;
6625
6626 bb = ENTRY_BLOCK_PTR;
6627 if (bb && bb->loop_father)
6628 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6629 }
6630
6631
6632 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6633
6634 DEBUG_FUNCTION void
6635 debug_loops (int verbosity)
6636 {
6637 print_loops (stderr, verbosity);
6638 }
6639
6640 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6641
6642 DEBUG_FUNCTION void
6643 debug_loop (struct loop *loop, int verbosity)
6644 {
6645 print_loop (stderr, loop, 0, verbosity);
6646 }
6647
6648 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6649 level. */
6650
6651 DEBUG_FUNCTION void
6652 debug_loop_num (unsigned num, int verbosity)
6653 {
6654 debug_loop (get_loop (num), verbosity);
6655 }
6656
6657 /* Return true if BB ends with a call, possibly followed by some
6658 instructions that must stay with the call. Return false,
6659 otherwise. */
6660
6661 static bool
6662 gimple_block_ends_with_call_p (basic_block bb)
6663 {
6664 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6665 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6666 }
6667
6668
6669 /* Return true if BB ends with a conditional branch. Return false,
6670 otherwise. */
6671
6672 static bool
6673 gimple_block_ends_with_condjump_p (const_basic_block bb)
6674 {
6675 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6676 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6677 }
6678
6679
6680 /* Return true if we need to add fake edge to exit at statement T.
6681 Helper function for gimple_flow_call_edges_add. */
6682
6683 static bool
6684 need_fake_edge_p (gimple t)
6685 {
6686 tree fndecl = NULL_TREE;
6687 int call_flags = 0;
6688
6689 /* NORETURN and LONGJMP calls already have an edge to exit.
6690 CONST and PURE calls do not need one.
6691 We don't currently check for CONST and PURE here, although
6692 it would be a good idea, because those attributes are
6693 figured out from the RTL in mark_constant_function, and
6694 the counter incrementation code from -fprofile-arcs
6695 leads to different results from -fbranch-probabilities. */
6696 if (is_gimple_call (t))
6697 {
6698 fndecl = gimple_call_fndecl (t);
6699 call_flags = gimple_call_flags (t);
6700 }
6701
6702 if (is_gimple_call (t)
6703 && fndecl
6704 && DECL_BUILT_IN (fndecl)
6705 && (call_flags & ECF_NOTHROW)
6706 && !(call_flags & ECF_RETURNS_TWICE)
6707 /* fork() doesn't really return twice, but the effect of
6708 wrapping it in __gcov_fork() which calls __gcov_flush()
6709 and clears the counters before forking has the same
6710 effect as returning twice. Force a fake edge. */
6711 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6712 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6713 return false;
6714
6715 if (is_gimple_call (t)
6716 && !(call_flags & ECF_NORETURN))
6717 return true;
6718
6719 if (gimple_code (t) == GIMPLE_ASM
6720 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6721 return true;
6722
6723 return false;
6724 }
6725
6726
6727 /* Add fake edges to the function exit for any non constant and non
6728 noreturn calls, volatile inline assembly in the bitmap of blocks
6729 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6730 the number of blocks that were split.
6731
6732 The goal is to expose cases in which entering a basic block does
6733 not imply that all subsequent instructions must be executed. */
6734
6735 static int
6736 gimple_flow_call_edges_add (sbitmap blocks)
6737 {
6738 int i;
6739 int blocks_split = 0;
6740 int last_bb = last_basic_block;
6741 bool check_last_block = false;
6742
6743 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6744 return 0;
6745
6746 if (! blocks)
6747 check_last_block = true;
6748 else
6749 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6750
6751 /* In the last basic block, before epilogue generation, there will be
6752 a fallthru edge to EXIT. Special care is required if the last insn
6753 of the last basic block is a call because make_edge folds duplicate
6754 edges, which would result in the fallthru edge also being marked
6755 fake, which would result in the fallthru edge being removed by
6756 remove_fake_edges, which would result in an invalid CFG.
6757
6758 Moreover, we can't elide the outgoing fake edge, since the block
6759 profiler needs to take this into account in order to solve the minimal
6760 spanning tree in the case that the call doesn't return.
6761
6762 Handle this by adding a dummy instruction in a new last basic block. */
6763 if (check_last_block)
6764 {
6765 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6766 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6767 gimple t = NULL;
6768
6769 if (!gsi_end_p (gsi))
6770 t = gsi_stmt (gsi);
6771
6772 if (t && need_fake_edge_p (t))
6773 {
6774 edge e;
6775
6776 e = find_edge (bb, EXIT_BLOCK_PTR);
6777 if (e)
6778 {
6779 gsi_insert_on_edge (e, gimple_build_nop ());
6780 gsi_commit_edge_inserts ();
6781 }
6782 }
6783 }
6784
6785 /* Now add fake edges to the function exit for any non constant
6786 calls since there is no way that we can determine if they will
6787 return or not... */
6788 for (i = 0; i < last_bb; i++)
6789 {
6790 basic_block bb = BASIC_BLOCK (i);
6791 gimple_stmt_iterator gsi;
6792 gimple stmt, last_stmt;
6793
6794 if (!bb)
6795 continue;
6796
6797 if (blocks && !TEST_BIT (blocks, i))
6798 continue;
6799
6800 gsi = gsi_last_nondebug_bb (bb);
6801 if (!gsi_end_p (gsi))
6802 {
6803 last_stmt = gsi_stmt (gsi);
6804 do
6805 {
6806 stmt = gsi_stmt (gsi);
6807 if (need_fake_edge_p (stmt))
6808 {
6809 edge e;
6810
6811 /* The handling above of the final block before the
6812 epilogue should be enough to verify that there is
6813 no edge to the exit block in CFG already.
6814 Calling make_edge in such case would cause us to
6815 mark that edge as fake and remove it later. */
6816 #ifdef ENABLE_CHECKING
6817 if (stmt == last_stmt)
6818 {
6819 e = find_edge (bb, EXIT_BLOCK_PTR);
6820 gcc_assert (e == NULL);
6821 }
6822 #endif
6823
6824 /* Note that the following may create a new basic block
6825 and renumber the existing basic blocks. */
6826 if (stmt != last_stmt)
6827 {
6828 e = split_block (bb, stmt);
6829 if (e)
6830 blocks_split++;
6831 }
6832 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6833 }
6834 gsi_prev (&gsi);
6835 }
6836 while (!gsi_end_p (gsi));
6837 }
6838 }
6839
6840 if (blocks_split)
6841 verify_flow_info ();
6842
6843 return blocks_split;
6844 }
6845
6846 /* Removes edge E and all the blocks dominated by it, and updates dominance
6847 information. The IL in E->src needs to be updated separately.
6848 If dominance info is not available, only the edge E is removed.*/
6849
6850 void
6851 remove_edge_and_dominated_blocks (edge e)
6852 {
6853 VEC (basic_block, heap) *bbs_to_remove = NULL;
6854 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6855 bitmap df, df_idom;
6856 edge f;
6857 edge_iterator ei;
6858 bool none_removed = false;
6859 unsigned i;
6860 basic_block bb, dbb;
6861 bitmap_iterator bi;
6862
6863 if (!dom_info_available_p (CDI_DOMINATORS))
6864 {
6865 remove_edge (e);
6866 return;
6867 }
6868
6869 /* No updating is needed for edges to exit. */
6870 if (e->dest == EXIT_BLOCK_PTR)
6871 {
6872 if (cfgcleanup_altered_bbs)
6873 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6874 remove_edge (e);
6875 return;
6876 }
6877
6878 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6879 that is not dominated by E->dest, then this set is empty. Otherwise,
6880 all the basic blocks dominated by E->dest are removed.
6881
6882 Also, to DF_IDOM we store the immediate dominators of the blocks in
6883 the dominance frontier of E (i.e., of the successors of the
6884 removed blocks, if there are any, and of E->dest otherwise). */
6885 FOR_EACH_EDGE (f, ei, e->dest->preds)
6886 {
6887 if (f == e)
6888 continue;
6889
6890 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6891 {
6892 none_removed = true;
6893 break;
6894 }
6895 }
6896
6897 df = BITMAP_ALLOC (NULL);
6898 df_idom = BITMAP_ALLOC (NULL);
6899
6900 if (none_removed)
6901 bitmap_set_bit (df_idom,
6902 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6903 else
6904 {
6905 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6906 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6907 {
6908 FOR_EACH_EDGE (f, ei, bb->succs)
6909 {
6910 if (f->dest != EXIT_BLOCK_PTR)
6911 bitmap_set_bit (df, f->dest->index);
6912 }
6913 }
6914 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6915 bitmap_clear_bit (df, bb->index);
6916
6917 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6918 {
6919 bb = BASIC_BLOCK (i);
6920 bitmap_set_bit (df_idom,
6921 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6922 }
6923 }
6924
6925 if (cfgcleanup_altered_bbs)
6926 {
6927 /* Record the set of the altered basic blocks. */
6928 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6929 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6930 }
6931
6932 /* Remove E and the cancelled blocks. */
6933 if (none_removed)
6934 remove_edge (e);
6935 else
6936 {
6937 /* Walk backwards so as to get a chance to substitute all
6938 released DEFs into debug stmts. See
6939 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6940 details. */
6941 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6942 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6943 }
6944
6945 /* Update the dominance information. The immediate dominator may change only
6946 for blocks whose immediate dominator belongs to DF_IDOM:
6947
6948 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6949 removal. Let Z the arbitrary block such that idom(Z) = Y and
6950 Z dominates X after the removal. Before removal, there exists a path P
6951 from Y to X that avoids Z. Let F be the last edge on P that is
6952 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6953 dominates W, and because of P, Z does not dominate W), and W belongs to
6954 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6955 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6956 {
6957 bb = BASIC_BLOCK (i);
6958 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6959 dbb;
6960 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6961 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6962 }
6963
6964 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6965
6966 BITMAP_FREE (df);
6967 BITMAP_FREE (df_idom);
6968 VEC_free (basic_block, heap, bbs_to_remove);
6969 VEC_free (basic_block, heap, bbs_to_fix_dom);
6970 }
6971
6972 /* Purge dead EH edges from basic block BB. */
6973
6974 bool
6975 gimple_purge_dead_eh_edges (basic_block bb)
6976 {
6977 bool changed = false;
6978 edge e;
6979 edge_iterator ei;
6980 gimple stmt = last_stmt (bb);
6981
6982 if (stmt && stmt_can_throw_internal (stmt))
6983 return false;
6984
6985 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6986 {
6987 if (e->flags & EDGE_EH)
6988 {
6989 remove_edge_and_dominated_blocks (e);
6990 changed = true;
6991 }
6992 else
6993 ei_next (&ei);
6994 }
6995
6996 return changed;
6997 }
6998
6999 /* Purge dead EH edges from basic block listed in BLOCKS. */
7000
7001 bool
7002 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7003 {
7004 bool changed = false;
7005 unsigned i;
7006 bitmap_iterator bi;
7007
7008 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7009 {
7010 basic_block bb = BASIC_BLOCK (i);
7011
7012 /* Earlier gimple_purge_dead_eh_edges could have removed
7013 this basic block already. */
7014 gcc_assert (bb || changed);
7015 if (bb != NULL)
7016 changed |= gimple_purge_dead_eh_edges (bb);
7017 }
7018
7019 return changed;
7020 }
7021
7022 /* Purge dead abnormal call edges from basic block BB. */
7023
7024 bool
7025 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7026 {
7027 bool changed = false;
7028 edge e;
7029 edge_iterator ei;
7030 gimple stmt = last_stmt (bb);
7031
7032 if (!cfun->has_nonlocal_label)
7033 return false;
7034
7035 if (stmt && stmt_can_make_abnormal_goto (stmt))
7036 return false;
7037
7038 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7039 {
7040 if (e->flags & EDGE_ABNORMAL)
7041 {
7042 remove_edge_and_dominated_blocks (e);
7043 changed = true;
7044 }
7045 else
7046 ei_next (&ei);
7047 }
7048
7049 return changed;
7050 }
7051
7052 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7053
7054 bool
7055 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7056 {
7057 bool changed = false;
7058 unsigned i;
7059 bitmap_iterator bi;
7060
7061 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7062 {
7063 basic_block bb = BASIC_BLOCK (i);
7064
7065 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7066 this basic block already. */
7067 gcc_assert (bb || changed);
7068 if (bb != NULL)
7069 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7070 }
7071
7072 return changed;
7073 }
7074
7075 /* This function is called whenever a new edge is created or
7076 redirected. */
7077
7078 static void
7079 gimple_execute_on_growing_pred (edge e)
7080 {
7081 basic_block bb = e->dest;
7082
7083 if (!gimple_seq_empty_p (phi_nodes (bb)))
7084 reserve_phi_args_for_new_edge (bb);
7085 }
7086
7087 /* This function is called immediately before edge E is removed from
7088 the edge vector E->dest->preds. */
7089
7090 static void
7091 gimple_execute_on_shrinking_pred (edge e)
7092 {
7093 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7094 remove_phi_args (e);
7095 }
7096
7097 /*---------------------------------------------------------------------------
7098 Helper functions for Loop versioning
7099 ---------------------------------------------------------------------------*/
7100
7101 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7102 of 'first'. Both of them are dominated by 'new_head' basic block. When
7103 'new_head' was created by 'second's incoming edge it received phi arguments
7104 on the edge by split_edge(). Later, additional edge 'e' was created to
7105 connect 'new_head' and 'first'. Now this routine adds phi args on this
7106 additional edge 'e' that new_head to second edge received as part of edge
7107 splitting. */
7108
7109 static void
7110 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7111 basic_block new_head, edge e)
7112 {
7113 gimple phi1, phi2;
7114 gimple_stmt_iterator psi1, psi2;
7115 tree def;
7116 edge e2 = find_edge (new_head, second);
7117
7118 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7119 edge, we should always have an edge from NEW_HEAD to SECOND. */
7120 gcc_assert (e2 != NULL);
7121
7122 /* Browse all 'second' basic block phi nodes and add phi args to
7123 edge 'e' for 'first' head. PHI args are always in correct order. */
7124
7125 for (psi2 = gsi_start_phis (second),
7126 psi1 = gsi_start_phis (first);
7127 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7128 gsi_next (&psi2), gsi_next (&psi1))
7129 {
7130 phi1 = gsi_stmt (psi1);
7131 phi2 = gsi_stmt (psi2);
7132 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7133 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7134 }
7135 }
7136
7137
7138 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7139 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7140 the destination of the ELSE part. */
7141
7142 static void
7143 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7144 basic_block second_head ATTRIBUTE_UNUSED,
7145 basic_block cond_bb, void *cond_e)
7146 {
7147 gimple_stmt_iterator gsi;
7148 gimple new_cond_expr;
7149 tree cond_expr = (tree) cond_e;
7150 edge e0;
7151
7152 /* Build new conditional expr */
7153 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7154 NULL_TREE, NULL_TREE);
7155
7156 /* Add new cond in cond_bb. */
7157 gsi = gsi_last_bb (cond_bb);
7158 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7159
7160 /* Adjust edges appropriately to connect new head with first head
7161 as well as second head. */
7162 e0 = single_succ_edge (cond_bb);
7163 e0->flags &= ~EDGE_FALLTHRU;
7164 e0->flags |= EDGE_FALSE_VALUE;
7165 }
7166
7167 struct cfg_hooks gimple_cfg_hooks = {
7168 "gimple",
7169 gimple_verify_flow_info,
7170 gimple_dump_bb, /* dump_bb */
7171 create_bb, /* create_basic_block */
7172 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7173 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7174 gimple_can_remove_branch_p, /* can_remove_branch_p */
7175 remove_bb, /* delete_basic_block */
7176 gimple_split_block, /* split_block */
7177 gimple_move_block_after, /* move_block_after */
7178 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7179 gimple_merge_blocks, /* merge_blocks */
7180 gimple_predict_edge, /* predict_edge */
7181 gimple_predicted_by_p, /* predicted_by_p */
7182 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7183 gimple_duplicate_bb, /* duplicate_block */
7184 gimple_split_edge, /* split_edge */
7185 gimple_make_forwarder_block, /* make_forward_block */
7186 NULL, /* tidy_fallthru_edge */
7187 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7188 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7189 gimple_flow_call_edges_add, /* flow_call_edges_add */
7190 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7191 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7192 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7193 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7194 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7195 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7196 flush_pending_stmts /* flush_pending_stmts */
7197 };
7198
7199
7200 /* Split all critical edges. */
7201
7202 static unsigned int
7203 split_critical_edges (void)
7204 {
7205 basic_block bb;
7206 edge e;
7207 edge_iterator ei;
7208
7209 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7210 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7211 mappings around the calls to split_edge. */
7212 start_recording_case_labels ();
7213 FOR_ALL_BB (bb)
7214 {
7215 FOR_EACH_EDGE (e, ei, bb->succs)
7216 {
7217 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7218 split_edge (e);
7219 /* PRE inserts statements to edges and expects that
7220 since split_critical_edges was done beforehand, committing edge
7221 insertions will not split more edges. In addition to critical
7222 edges we must split edges that have multiple successors and
7223 end by control flow statements, such as RESX.
7224 Go ahead and split them too. This matches the logic in
7225 gimple_find_edge_insert_loc. */
7226 else if ((!single_pred_p (e->dest)
7227 || !gimple_seq_empty_p (phi_nodes (e->dest))
7228 || e->dest == EXIT_BLOCK_PTR)
7229 && e->src != ENTRY_BLOCK_PTR
7230 && !(e->flags & EDGE_ABNORMAL))
7231 {
7232 gimple_stmt_iterator gsi;
7233
7234 gsi = gsi_last_bb (e->src);
7235 if (!gsi_end_p (gsi)
7236 && stmt_ends_bb_p (gsi_stmt (gsi))
7237 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7238 && !gimple_call_builtin_p (gsi_stmt (gsi),
7239 BUILT_IN_RETURN)))
7240 split_edge (e);
7241 }
7242 }
7243 }
7244 end_recording_case_labels ();
7245 return 0;
7246 }
7247
7248 struct gimple_opt_pass pass_split_crit_edges =
7249 {
7250 {
7251 GIMPLE_PASS,
7252 "crited", /* name */
7253 NULL, /* gate */
7254 split_critical_edges, /* execute */
7255 NULL, /* sub */
7256 NULL, /* next */
7257 0, /* static_pass_number */
7258 TV_TREE_SPLIT_EDGES, /* tv_id */
7259 PROP_cfg, /* properties required */
7260 PROP_no_crit_edges, /* properties_provided */
7261 0, /* properties_destroyed */
7262 0, /* todo_flags_start */
7263 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7264 }
7265 };
7266
7267
7268 /* Build a ternary operation and gimplify it. Emit code before GSI.
7269 Return the gimple_val holding the result. */
7270
7271 tree
7272 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7273 tree type, tree a, tree b, tree c)
7274 {
7275 tree ret;
7276 location_t loc = gimple_location (gsi_stmt (*gsi));
7277
7278 ret = fold_build3_loc (loc, code, type, a, b, c);
7279 STRIP_NOPS (ret);
7280
7281 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7282 GSI_SAME_STMT);
7283 }
7284
7285 /* Build a binary operation and gimplify it. Emit code before GSI.
7286 Return the gimple_val holding the result. */
7287
7288 tree
7289 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7290 tree type, tree a, tree b)
7291 {
7292 tree ret;
7293
7294 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7295 STRIP_NOPS (ret);
7296
7297 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7298 GSI_SAME_STMT);
7299 }
7300
7301 /* Build a unary operation and gimplify it. Emit code before GSI.
7302 Return the gimple_val holding the result. */
7303
7304 tree
7305 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7306 tree a)
7307 {
7308 tree ret;
7309
7310 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7311 STRIP_NOPS (ret);
7312
7313 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7314 GSI_SAME_STMT);
7315 }
7316
7317
7318 \f
7319 /* Emit return warnings. */
7320
7321 static unsigned int
7322 execute_warn_function_return (void)
7323 {
7324 source_location location;
7325 gimple last;
7326 edge e;
7327 edge_iterator ei;
7328
7329 /* If we have a path to EXIT, then we do return. */
7330 if (TREE_THIS_VOLATILE (cfun->decl)
7331 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7332 {
7333 location = UNKNOWN_LOCATION;
7334 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7335 {
7336 last = last_stmt (e->src);
7337 if ((gimple_code (last) == GIMPLE_RETURN
7338 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7339 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7340 break;
7341 }
7342 if (location == UNKNOWN_LOCATION)
7343 location = cfun->function_end_locus;
7344 warning_at (location, 0, "%<noreturn%> function does return");
7345 }
7346
7347 /* If we see "return;" in some basic block, then we do reach the end
7348 without returning a value. */
7349 else if (warn_return_type
7350 && !TREE_NO_WARNING (cfun->decl)
7351 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7352 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7353 {
7354 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7355 {
7356 gimple last = last_stmt (e->src);
7357 if (gimple_code (last) == GIMPLE_RETURN
7358 && gimple_return_retval (last) == NULL
7359 && !gimple_no_warning_p (last))
7360 {
7361 location = gimple_location (last);
7362 if (location == UNKNOWN_LOCATION)
7363 location = cfun->function_end_locus;
7364 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7365 TREE_NO_WARNING (cfun->decl) = 1;
7366 break;
7367 }
7368 }
7369 }
7370 return 0;
7371 }
7372
7373
7374 /* Given a basic block B which ends with a conditional and has
7375 precisely two successors, determine which of the edges is taken if
7376 the conditional is true and which is taken if the conditional is
7377 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7378
7379 void
7380 extract_true_false_edges_from_block (basic_block b,
7381 edge *true_edge,
7382 edge *false_edge)
7383 {
7384 edge e = EDGE_SUCC (b, 0);
7385
7386 if (e->flags & EDGE_TRUE_VALUE)
7387 {
7388 *true_edge = e;
7389 *false_edge = EDGE_SUCC (b, 1);
7390 }
7391 else
7392 {
7393 *false_edge = e;
7394 *true_edge = EDGE_SUCC (b, 1);
7395 }
7396 }
7397
7398 struct gimple_opt_pass pass_warn_function_return =
7399 {
7400 {
7401 GIMPLE_PASS,
7402 "*warn_function_return", /* name */
7403 NULL, /* gate */
7404 execute_warn_function_return, /* execute */
7405 NULL, /* sub */
7406 NULL, /* next */
7407 0, /* static_pass_number */
7408 TV_NONE, /* tv_id */
7409 PROP_cfg, /* properties_required */
7410 0, /* properties_provided */
7411 0, /* properties_destroyed */
7412 0, /* todo_flags_start */
7413 0 /* todo_flags_finish */
7414 }
7415 };
7416
7417 /* Emit noreturn warnings. */
7418
7419 static unsigned int
7420 execute_warn_function_noreturn (void)
7421 {
7422 if (!TREE_THIS_VOLATILE (current_function_decl)
7423 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7424 warn_function_noreturn (current_function_decl);
7425 return 0;
7426 }
7427
7428 static bool
7429 gate_warn_function_noreturn (void)
7430 {
7431 return warn_suggest_attribute_noreturn;
7432 }
7433
7434 struct gimple_opt_pass pass_warn_function_noreturn =
7435 {
7436 {
7437 GIMPLE_PASS,
7438 "*warn_function_noreturn", /* name */
7439 gate_warn_function_noreturn, /* gate */
7440 execute_warn_function_noreturn, /* execute */
7441 NULL, /* sub */
7442 NULL, /* next */
7443 0, /* static_pass_number */
7444 TV_NONE, /* tv_id */
7445 PROP_cfg, /* properties_required */
7446 0, /* properties_provided */
7447 0, /* properties_destroyed */
7448 0, /* todo_flags_start */
7449 0 /* todo_flags_finish */
7450 }
7451 };
7452
7453
7454 /* Walk a gimplified function and warn for functions whose return value is
7455 ignored and attribute((warn_unused_result)) is set. This is done before
7456 inlining, so we don't have to worry about that. */
7457
7458 static void
7459 do_warn_unused_result (gimple_seq seq)
7460 {
7461 tree fdecl, ftype;
7462 gimple_stmt_iterator i;
7463
7464 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7465 {
7466 gimple g = gsi_stmt (i);
7467
7468 switch (gimple_code (g))
7469 {
7470 case GIMPLE_BIND:
7471 do_warn_unused_result (gimple_bind_body (g));
7472 break;
7473 case GIMPLE_TRY:
7474 do_warn_unused_result (gimple_try_eval (g));
7475 do_warn_unused_result (gimple_try_cleanup (g));
7476 break;
7477 case GIMPLE_CATCH:
7478 do_warn_unused_result (gimple_catch_handler (g));
7479 break;
7480 case GIMPLE_EH_FILTER:
7481 do_warn_unused_result (gimple_eh_filter_failure (g));
7482 break;
7483
7484 case GIMPLE_CALL:
7485 if (gimple_call_lhs (g))
7486 break;
7487
7488 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7489 LHS. All calls whose value is ignored should be
7490 represented like this. Look for the attribute. */
7491 fdecl = gimple_call_fndecl (g);
7492 ftype = TREE_TYPE (TREE_TYPE (gimple_call_fn (g)));
7493
7494 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7495 {
7496 location_t loc = gimple_location (g);
7497
7498 if (fdecl)
7499 warning_at (loc, OPT_Wunused_result,
7500 "ignoring return value of %qD, "
7501 "declared with attribute warn_unused_result",
7502 fdecl);
7503 else
7504 warning_at (loc, OPT_Wunused_result,
7505 "ignoring return value of function "
7506 "declared with attribute warn_unused_result");
7507 }
7508 break;
7509
7510 default:
7511 /* Not a container, not a call, or a call whose value is used. */
7512 break;
7513 }
7514 }
7515 }
7516
7517 static unsigned int
7518 run_warn_unused_result (void)
7519 {
7520 do_warn_unused_result (gimple_body (current_function_decl));
7521 return 0;
7522 }
7523
7524 static bool
7525 gate_warn_unused_result (void)
7526 {
7527 return flag_warn_unused_result;
7528 }
7529
7530 struct gimple_opt_pass pass_warn_unused_result =
7531 {
7532 {
7533 GIMPLE_PASS,
7534 "*warn_unused_result", /* name */
7535 gate_warn_unused_result, /* gate */
7536 run_warn_unused_result, /* execute */
7537 NULL, /* sub */
7538 NULL, /* next */
7539 0, /* static_pass_number */
7540 TV_NONE, /* tv_id */
7541 PROP_gimple_any, /* properties_required */
7542 0, /* properties_provided */
7543 0, /* properties_destroyed */
7544 0, /* todo_flags_start */
7545 0, /* todo_flags_finish */
7546 }
7547 };
7548