re PR tree-optimization/50693 (Loop optimization restricted by GOTOs)
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
130
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
133 {
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
144
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
151
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
156
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
161 }
162
163 void
164 init_empty_tree_cfg (void)
165 {
166 init_empty_tree_cfg_for_function (cfun);
167 }
168
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
172
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
175
176 static void
177 build_gimple_cfg (gimple_seq seq)
178 {
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
181
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
183
184 init_empty_tree_cfg ();
185
186 found_computed_goto = 0;
187 make_blocks (seq);
188
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
196
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
200
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
204
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
207
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
212
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
219
220 /* Debugging dumps. */
221
222 /* Write the flowgraph to a VCG file. */
223 {
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
227 {
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
230 }
231 }
232 }
233
234 static unsigned int
235 execute_build_cfg (void)
236 {
237 gimple_seq body = gimple_body (current_function_decl);
238
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
242 {
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
245 }
246 return 0;
247 }
248
249 struct gimple_opt_pass pass_build_cfg =
250 {
251 {
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
265 }
266 };
267
268
269 /* Return true if T is a computed goto. */
270
271 static bool
272 computed_goto_p (gimple t)
273 {
274 return (gimple_code (t) == GIMPLE_GOTO
275 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
276 }
277
278
279 /* Search the CFG for any computed gotos. If found, factor them to a
280 common computed goto site. Also record the location of that site so
281 that we can un-factor the gotos after we have converted back to
282 normal form. */
283
284 static void
285 factor_computed_gotos (void)
286 {
287 basic_block bb;
288 tree factored_label_decl = NULL;
289 tree var = NULL;
290 gimple factored_computed_goto_label = NULL;
291 gimple factored_computed_goto = NULL;
292
293 /* We know there are one or more computed gotos in this function.
294 Examine the last statement in each basic block to see if the block
295 ends with a computed goto. */
296
297 FOR_EACH_BB (bb)
298 {
299 gimple_stmt_iterator gsi = gsi_last_bb (bb);
300 gimple last;
301
302 if (gsi_end_p (gsi))
303 continue;
304
305 last = gsi_stmt (gsi);
306
307 /* Ignore the computed goto we create when we factor the original
308 computed gotos. */
309 if (last == factored_computed_goto)
310 continue;
311
312 /* If the last statement is a computed goto, factor it. */
313 if (computed_goto_p (last))
314 {
315 gimple assignment;
316
317 /* The first time we find a computed goto we need to create
318 the factored goto block and the variable each original
319 computed goto will use for their goto destination. */
320 if (!factored_computed_goto)
321 {
322 basic_block new_bb = create_empty_bb (bb);
323 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
324
325 /* Create the destination of the factored goto. Each original
326 computed goto will put its desired destination into this
327 variable and jump to the label we create immediately
328 below. */
329 var = create_tmp_var (ptr_type_node, "gotovar");
330
331 /* Build a label for the new block which will contain the
332 factored computed goto. */
333 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
334 factored_computed_goto_label
335 = gimple_build_label (factored_label_decl);
336 gsi_insert_after (&new_gsi, factored_computed_goto_label,
337 GSI_NEW_STMT);
338
339 /* Build our new computed goto. */
340 factored_computed_goto = gimple_build_goto (var);
341 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
342 }
343
344 /* Copy the original computed goto's destination into VAR. */
345 assignment = gimple_build_assign (var, gimple_goto_dest (last));
346 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
347
348 /* And re-vector the computed goto to the new destination. */
349 gimple_goto_set_dest (last, factored_label_decl);
350 }
351 }
352 }
353
354
355 /* Build a flowgraph for the sequence of stmts SEQ. */
356
357 static void
358 make_blocks (gimple_seq seq)
359 {
360 gimple_stmt_iterator i = gsi_start (seq);
361 gimple stmt = NULL;
362 bool start_new_block = true;
363 bool first_stmt_of_seq = true;
364 basic_block bb = ENTRY_BLOCK_PTR;
365
366 while (!gsi_end_p (i))
367 {
368 gimple prev_stmt;
369
370 prev_stmt = stmt;
371 stmt = gsi_stmt (i);
372
373 /* If the statement starts a new basic block or if we have determined
374 in a previous pass that we need to create a new block for STMT, do
375 so now. */
376 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
377 {
378 if (!first_stmt_of_seq)
379 seq = gsi_split_seq_before (&i);
380 bb = create_basic_block (seq, NULL, bb);
381 start_new_block = false;
382 }
383
384 /* Now add STMT to BB and create the subgraphs for special statement
385 codes. */
386 gimple_set_bb (stmt, bb);
387
388 if (computed_goto_p (stmt))
389 found_computed_goto = true;
390
391 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
392 next iteration. */
393 if (stmt_ends_bb_p (stmt))
394 {
395 /* If the stmt can make abnormal goto use a new temporary
396 for the assignment to the LHS. This makes sure the old value
397 of the LHS is available on the abnormal edge. Otherwise
398 we will end up with overlapping life-ranges for abnormal
399 SSA names. */
400 if (gimple_has_lhs (stmt)
401 && stmt_can_make_abnormal_goto (stmt)
402 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
403 {
404 tree lhs = gimple_get_lhs (stmt);
405 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
406 gimple s = gimple_build_assign (lhs, tmp);
407 gimple_set_location (s, gimple_location (stmt));
408 gimple_set_block (s, gimple_block (stmt));
409 gimple_set_lhs (stmt, tmp);
410 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
411 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
412 DECL_GIMPLE_REG_P (tmp) = 1;
413 gsi_insert_after (&i, s, GSI_SAME_STMT);
414 }
415 start_new_block = true;
416 }
417
418 gsi_next (&i);
419 first_stmt_of_seq = false;
420 }
421 }
422
423
424 /* Create and return a new empty basic block after bb AFTER. */
425
426 static basic_block
427 create_bb (void *h, void *e, basic_block after)
428 {
429 basic_block bb;
430
431 gcc_assert (!e);
432
433 /* Create and initialize a new basic block. Since alloc_block uses
434 GC allocation that clears memory to allocate a basic block, we do
435 not have to clear the newly allocated basic block here. */
436 bb = alloc_block ();
437
438 bb->index = last_basic_block;
439 bb->flags = BB_NEW;
440 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
441 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
442
443 /* Add the new block to the linked list of blocks. */
444 link_block (bb, after);
445
446 /* Grow the basic block array if needed. */
447 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
448 {
449 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
450 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
451 }
452
453 /* Add the newly created block to the array. */
454 SET_BASIC_BLOCK (last_basic_block, bb);
455
456 n_basic_blocks++;
457 last_basic_block++;
458
459 return bb;
460 }
461
462
463 /*---------------------------------------------------------------------------
464 Edge creation
465 ---------------------------------------------------------------------------*/
466
467 /* Fold COND_EXPR_COND of each COND_EXPR. */
468
469 void
470 fold_cond_expr_cond (void)
471 {
472 basic_block bb;
473
474 FOR_EACH_BB (bb)
475 {
476 gimple stmt = last_stmt (bb);
477
478 if (stmt && gimple_code (stmt) == GIMPLE_COND)
479 {
480 location_t loc = gimple_location (stmt);
481 tree cond;
482 bool zerop, onep;
483
484 fold_defer_overflow_warnings ();
485 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
486 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
487 if (cond)
488 {
489 zerop = integer_zerop (cond);
490 onep = integer_onep (cond);
491 }
492 else
493 zerop = onep = false;
494
495 fold_undefer_overflow_warnings (zerop || onep,
496 stmt,
497 WARN_STRICT_OVERFLOW_CONDITIONAL);
498 if (zerop)
499 gimple_cond_make_false (stmt);
500 else if (onep)
501 gimple_cond_make_true (stmt);
502 }
503 }
504 }
505
506 /* Join all the blocks in the flowgraph. */
507
508 static void
509 make_edges (void)
510 {
511 basic_block bb;
512 struct omp_region *cur_region = NULL;
513
514 /* Create an edge from entry to the first block with executable
515 statements in it. */
516 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
517
518 /* Traverse the basic block array placing edges. */
519 FOR_EACH_BB (bb)
520 {
521 gimple last = last_stmt (bb);
522 bool fallthru;
523
524 if (last)
525 {
526 enum gimple_code code = gimple_code (last);
527 switch (code)
528 {
529 case GIMPLE_GOTO:
530 make_goto_expr_edges (bb);
531 fallthru = false;
532 break;
533 case GIMPLE_RETURN:
534 make_edge (bb, EXIT_BLOCK_PTR, 0);
535 fallthru = false;
536 break;
537 case GIMPLE_COND:
538 make_cond_expr_edges (bb);
539 fallthru = false;
540 break;
541 case GIMPLE_SWITCH:
542 make_gimple_switch_edges (bb);
543 fallthru = false;
544 break;
545 case GIMPLE_RESX:
546 make_eh_edges (last);
547 fallthru = false;
548 break;
549 case GIMPLE_EH_DISPATCH:
550 fallthru = make_eh_dispatch_edges (last);
551 break;
552
553 case GIMPLE_CALL:
554 /* If this function receives a nonlocal goto, then we need to
555 make edges from this call site to all the nonlocal goto
556 handlers. */
557 if (stmt_can_make_abnormal_goto (last))
558 make_abnormal_goto_edges (bb, true);
559
560 /* If this statement has reachable exception handlers, then
561 create abnormal edges to them. */
562 make_eh_edges (last);
563
564 /* BUILTIN_RETURN is really a return statement. */
565 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
566 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
567 /* Some calls are known not to return. */
568 else
569 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
570 break;
571
572 case GIMPLE_ASSIGN:
573 /* A GIMPLE_ASSIGN may throw internally and thus be considered
574 control-altering. */
575 if (is_ctrl_altering_stmt (last))
576 make_eh_edges (last);
577 fallthru = true;
578 break;
579
580 case GIMPLE_ASM:
581 make_gimple_asm_edges (bb);
582 fallthru = true;
583 break;
584
585 case GIMPLE_OMP_PARALLEL:
586 case GIMPLE_OMP_TASK:
587 case GIMPLE_OMP_FOR:
588 case GIMPLE_OMP_SINGLE:
589 case GIMPLE_OMP_MASTER:
590 case GIMPLE_OMP_ORDERED:
591 case GIMPLE_OMP_CRITICAL:
592 case GIMPLE_OMP_SECTION:
593 cur_region = new_omp_region (bb, code, cur_region);
594 fallthru = true;
595 break;
596
597 case GIMPLE_OMP_SECTIONS:
598 cur_region = new_omp_region (bb, code, cur_region);
599 fallthru = true;
600 break;
601
602 case GIMPLE_OMP_SECTIONS_SWITCH:
603 fallthru = false;
604 break;
605
606 case GIMPLE_OMP_ATOMIC_LOAD:
607 case GIMPLE_OMP_ATOMIC_STORE:
608 fallthru = true;
609 break;
610
611 case GIMPLE_OMP_RETURN:
612 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
613 somewhere other than the next block. This will be
614 created later. */
615 cur_region->exit = bb;
616 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
617 cur_region = cur_region->outer;
618 break;
619
620 case GIMPLE_OMP_CONTINUE:
621 cur_region->cont = bb;
622 switch (cur_region->type)
623 {
624 case GIMPLE_OMP_FOR:
625 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
626 succs edges as abnormal to prevent splitting
627 them. */
628 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
629 /* Make the loopback edge. */
630 make_edge (bb, single_succ (cur_region->entry),
631 EDGE_ABNORMAL);
632
633 /* Create an edge from GIMPLE_OMP_FOR to exit, which
634 corresponds to the case that the body of the loop
635 is not executed at all. */
636 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
637 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
638 fallthru = false;
639 break;
640
641 case GIMPLE_OMP_SECTIONS:
642 /* Wire up the edges into and out of the nested sections. */
643 {
644 basic_block switch_bb = single_succ (cur_region->entry);
645
646 struct omp_region *i;
647 for (i = cur_region->inner; i ; i = i->next)
648 {
649 gcc_assert (i->type == GIMPLE_OMP_SECTION);
650 make_edge (switch_bb, i->entry, 0);
651 make_edge (i->exit, bb, EDGE_FALLTHRU);
652 }
653
654 /* Make the loopback edge to the block with
655 GIMPLE_OMP_SECTIONS_SWITCH. */
656 make_edge (bb, switch_bb, 0);
657
658 /* Make the edge from the switch to exit. */
659 make_edge (switch_bb, bb->next_bb, 0);
660 fallthru = false;
661 }
662 break;
663
664 default:
665 gcc_unreachable ();
666 }
667 break;
668
669 default:
670 gcc_assert (!stmt_ends_bb_p (last));
671 fallthru = true;
672 }
673 }
674 else
675 fallthru = true;
676
677 if (fallthru)
678 {
679 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
680 if (last)
681 assign_discriminator (gimple_location (last), bb->next_bb);
682 }
683 }
684
685 if (root_omp_region)
686 free_omp_regions ();
687
688 /* Fold COND_EXPR_COND of each COND_EXPR. */
689 fold_cond_expr_cond ();
690 }
691
692 /* Trivial hash function for a location_t. ITEM is a pointer to
693 a hash table entry that maps a location_t to a discriminator. */
694
695 static unsigned int
696 locus_map_hash (const void *item)
697 {
698 return ((const struct locus_discrim_map *) item)->locus;
699 }
700
701 /* Equality function for the locus-to-discriminator map. VA and VB
702 point to the two hash table entries to compare. */
703
704 static int
705 locus_map_eq (const void *va, const void *vb)
706 {
707 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
708 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
709 return a->locus == b->locus;
710 }
711
712 /* Find the next available discriminator value for LOCUS. The
713 discriminator distinguishes among several basic blocks that
714 share a common locus, allowing for more accurate sample-based
715 profiling. */
716
717 static int
718 next_discriminator_for_locus (location_t locus)
719 {
720 struct locus_discrim_map item;
721 struct locus_discrim_map **slot;
722
723 item.locus = locus;
724 item.discriminator = 0;
725 slot = (struct locus_discrim_map **)
726 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
727 (hashval_t) locus, INSERT);
728 gcc_assert (slot);
729 if (*slot == HTAB_EMPTY_ENTRY)
730 {
731 *slot = XNEW (struct locus_discrim_map);
732 gcc_assert (*slot);
733 (*slot)->locus = locus;
734 (*slot)->discriminator = 0;
735 }
736 (*slot)->discriminator++;
737 return (*slot)->discriminator;
738 }
739
740 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
741
742 static bool
743 same_line_p (location_t locus1, location_t locus2)
744 {
745 expanded_location from, to;
746
747 if (locus1 == locus2)
748 return true;
749
750 from = expand_location (locus1);
751 to = expand_location (locus2);
752
753 if (from.line != to.line)
754 return false;
755 if (from.file == to.file)
756 return true;
757 return (from.file != NULL
758 && to.file != NULL
759 && filename_cmp (from.file, to.file) == 0);
760 }
761
762 /* Assign a unique discriminator value to block BB if it begins at the same
763 LOCUS as its predecessor block. */
764
765 static void
766 assign_discriminator (location_t locus, basic_block bb)
767 {
768 gimple first_in_to_bb, last_in_to_bb;
769
770 if (locus == 0 || bb->discriminator != 0)
771 return;
772
773 first_in_to_bb = first_non_label_stmt (bb);
774 last_in_to_bb = last_stmt (bb);
775 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
776 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
777 bb->discriminator = next_discriminator_for_locus (locus);
778 }
779
780 /* Create the edges for a GIMPLE_COND starting at block BB. */
781
782 static void
783 make_cond_expr_edges (basic_block bb)
784 {
785 gimple entry = last_stmt (bb);
786 gimple then_stmt, else_stmt;
787 basic_block then_bb, else_bb;
788 tree then_label, else_label;
789 edge e;
790 location_t entry_locus;
791
792 gcc_assert (entry);
793 gcc_assert (gimple_code (entry) == GIMPLE_COND);
794
795 entry_locus = gimple_location (entry);
796
797 /* Entry basic blocks for each component. */
798 then_label = gimple_cond_true_label (entry);
799 else_label = gimple_cond_false_label (entry);
800 then_bb = label_to_block (then_label);
801 else_bb = label_to_block (else_label);
802 then_stmt = first_stmt (then_bb);
803 else_stmt = first_stmt (else_bb);
804
805 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
806 assign_discriminator (entry_locus, then_bb);
807 e->goto_locus = gimple_location (then_stmt);
808 if (e->goto_locus)
809 e->goto_block = gimple_block (then_stmt);
810 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
811 if (e)
812 {
813 assign_discriminator (entry_locus, else_bb);
814 e->goto_locus = gimple_location (else_stmt);
815 if (e->goto_locus)
816 e->goto_block = gimple_block (else_stmt);
817 }
818
819 /* We do not need the labels anymore. */
820 gimple_cond_set_true_label (entry, NULL_TREE);
821 gimple_cond_set_false_label (entry, NULL_TREE);
822 }
823
824
825 /* Called for each element in the hash table (P) as we delete the
826 edge to cases hash table.
827
828 Clear all the TREE_CHAINs to prevent problems with copying of
829 SWITCH_EXPRs and structure sharing rules, then free the hash table
830 element. */
831
832 static bool
833 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
834 void *data ATTRIBUTE_UNUSED)
835 {
836 tree t, next;
837
838 for (t = (tree) *value; t; t = next)
839 {
840 next = CASE_CHAIN (t);
841 CASE_CHAIN (t) = NULL;
842 }
843
844 *value = NULL;
845 return true;
846 }
847
848 /* Start recording information mapping edges to case labels. */
849
850 void
851 start_recording_case_labels (void)
852 {
853 gcc_assert (edge_to_cases == NULL);
854 edge_to_cases = pointer_map_create ();
855 touched_switch_bbs = BITMAP_ALLOC (NULL);
856 }
857
858 /* Return nonzero if we are recording information for case labels. */
859
860 static bool
861 recording_case_labels_p (void)
862 {
863 return (edge_to_cases != NULL);
864 }
865
866 /* Stop recording information mapping edges to case labels and
867 remove any information we have recorded. */
868 void
869 end_recording_case_labels (void)
870 {
871 bitmap_iterator bi;
872 unsigned i;
873 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
874 pointer_map_destroy (edge_to_cases);
875 edge_to_cases = NULL;
876 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
877 {
878 basic_block bb = BASIC_BLOCK (i);
879 if (bb)
880 {
881 gimple stmt = last_stmt (bb);
882 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
883 group_case_labels_stmt (stmt);
884 }
885 }
886 BITMAP_FREE (touched_switch_bbs);
887 }
888
889 /* If we are inside a {start,end}_recording_cases block, then return
890 a chain of CASE_LABEL_EXPRs from T which reference E.
891
892 Otherwise return NULL. */
893
894 static tree
895 get_cases_for_edge (edge e, gimple t)
896 {
897 void **slot;
898 size_t i, n;
899
900 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
901 chains available. Return NULL so the caller can detect this case. */
902 if (!recording_case_labels_p ())
903 return NULL;
904
905 slot = pointer_map_contains (edge_to_cases, e);
906 if (slot)
907 return (tree) *slot;
908
909 /* If we did not find E in the hash table, then this must be the first
910 time we have been queried for information about E & T. Add all the
911 elements from T to the hash table then perform the query again. */
912
913 n = gimple_switch_num_labels (t);
914 for (i = 0; i < n; i++)
915 {
916 tree elt = gimple_switch_label (t, i);
917 tree lab = CASE_LABEL (elt);
918 basic_block label_bb = label_to_block (lab);
919 edge this_edge = find_edge (e->src, label_bb);
920
921 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
922 a new chain. */
923 slot = pointer_map_insert (edge_to_cases, this_edge);
924 CASE_CHAIN (elt) = (tree) *slot;
925 *slot = elt;
926 }
927
928 return (tree) *pointer_map_contains (edge_to_cases, e);
929 }
930
931 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
932
933 static void
934 make_gimple_switch_edges (basic_block bb)
935 {
936 gimple entry = last_stmt (bb);
937 location_t entry_locus;
938 size_t i, n;
939
940 entry_locus = gimple_location (entry);
941
942 n = gimple_switch_num_labels (entry);
943
944 for (i = 0; i < n; ++i)
945 {
946 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
947 basic_block label_bb = label_to_block (lab);
948 make_edge (bb, label_bb, 0);
949 assign_discriminator (entry_locus, label_bb);
950 }
951 }
952
953
954 /* Return the basic block holding label DEST. */
955
956 basic_block
957 label_to_block_fn (struct function *ifun, tree dest)
958 {
959 int uid = LABEL_DECL_UID (dest);
960
961 /* We would die hard when faced by an undefined label. Emit a label to
962 the very first basic block. This will hopefully make even the dataflow
963 and undefined variable warnings quite right. */
964 if (seen_error () && uid < 0)
965 {
966 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
967 gimple stmt;
968
969 stmt = gimple_build_label (dest);
970 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
971 uid = LABEL_DECL_UID (dest);
972 }
973 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
974 <= (unsigned int) uid)
975 return NULL;
976 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
977 }
978
979 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
980 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
981
982 void
983 make_abnormal_goto_edges (basic_block bb, bool for_call)
984 {
985 basic_block target_bb;
986 gimple_stmt_iterator gsi;
987
988 FOR_EACH_BB (target_bb)
989 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
990 {
991 gimple label_stmt = gsi_stmt (gsi);
992 tree target;
993
994 if (gimple_code (label_stmt) != GIMPLE_LABEL)
995 break;
996
997 target = gimple_label_label (label_stmt);
998
999 /* Make an edge to every label block that has been marked as a
1000 potential target for a computed goto or a non-local goto. */
1001 if ((FORCED_LABEL (target) && !for_call)
1002 || (DECL_NONLOCAL (target) && for_call))
1003 {
1004 make_edge (bb, target_bb, EDGE_ABNORMAL);
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Create edges for a goto statement at block BB. */
1011
1012 static void
1013 make_goto_expr_edges (basic_block bb)
1014 {
1015 gimple_stmt_iterator last = gsi_last_bb (bb);
1016 gimple goto_t = gsi_stmt (last);
1017
1018 /* A simple GOTO creates normal edges. */
1019 if (simple_goto_p (goto_t))
1020 {
1021 tree dest = gimple_goto_dest (goto_t);
1022 basic_block label_bb = label_to_block (dest);
1023 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1024 e->goto_locus = gimple_location (goto_t);
1025 assign_discriminator (e->goto_locus, label_bb);
1026 if (e->goto_locus)
1027 e->goto_block = gimple_block (goto_t);
1028 gsi_remove (&last, true);
1029 return;
1030 }
1031
1032 /* A computed GOTO creates abnormal edges. */
1033 make_abnormal_goto_edges (bb, false);
1034 }
1035
1036 /* Create edges for an asm statement with labels at block BB. */
1037
1038 static void
1039 make_gimple_asm_edges (basic_block bb)
1040 {
1041 gimple stmt = last_stmt (bb);
1042 location_t stmt_loc = gimple_location (stmt);
1043 int i, n = gimple_asm_nlabels (stmt);
1044
1045 for (i = 0; i < n; ++i)
1046 {
1047 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1048 basic_block label_bb = label_to_block (label);
1049 make_edge (bb, label_bb, 0);
1050 assign_discriminator (stmt_loc, label_bb);
1051 }
1052 }
1053
1054 /*---------------------------------------------------------------------------
1055 Flowgraph analysis
1056 ---------------------------------------------------------------------------*/
1057
1058 /* Cleanup useless labels in basic blocks. This is something we wish
1059 to do early because it allows us to group case labels before creating
1060 the edges for the CFG, and it speeds up block statement iterators in
1061 all passes later on.
1062 We rerun this pass after CFG is created, to get rid of the labels that
1063 are no longer referenced. After then we do not run it any more, since
1064 (almost) no new labels should be created. */
1065
1066 /* A map from basic block index to the leading label of that block. */
1067 static struct label_record
1068 {
1069 /* The label. */
1070 tree label;
1071
1072 /* True if the label is referenced from somewhere. */
1073 bool used;
1074 } *label_for_bb;
1075
1076 /* Given LABEL return the first label in the same basic block. */
1077
1078 static tree
1079 main_block_label (tree label)
1080 {
1081 basic_block bb = label_to_block (label);
1082 tree main_label = label_for_bb[bb->index].label;
1083
1084 /* label_to_block possibly inserted undefined label into the chain. */
1085 if (!main_label)
1086 {
1087 label_for_bb[bb->index].label = label;
1088 main_label = label;
1089 }
1090
1091 label_for_bb[bb->index].used = true;
1092 return main_label;
1093 }
1094
1095 /* Clean up redundant labels within the exception tree. */
1096
1097 static void
1098 cleanup_dead_labels_eh (void)
1099 {
1100 eh_landing_pad lp;
1101 eh_region r;
1102 tree lab;
1103 int i;
1104
1105 if (cfun->eh == NULL)
1106 return;
1107
1108 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1109 if (lp && lp->post_landing_pad)
1110 {
1111 lab = main_block_label (lp->post_landing_pad);
1112 if (lab != lp->post_landing_pad)
1113 {
1114 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1115 EH_LANDING_PAD_NR (lab) = lp->index;
1116 }
1117 }
1118
1119 FOR_ALL_EH_REGION (r)
1120 switch (r->type)
1121 {
1122 case ERT_CLEANUP:
1123 case ERT_MUST_NOT_THROW:
1124 break;
1125
1126 case ERT_TRY:
1127 {
1128 eh_catch c;
1129 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1130 {
1131 lab = c->label;
1132 if (lab)
1133 c->label = main_block_label (lab);
1134 }
1135 }
1136 break;
1137
1138 case ERT_ALLOWED_EXCEPTIONS:
1139 lab = r->u.allowed.label;
1140 if (lab)
1141 r->u.allowed.label = main_block_label (lab);
1142 break;
1143 }
1144 }
1145
1146
1147 /* Cleanup redundant labels. This is a three-step process:
1148 1) Find the leading label for each block.
1149 2) Redirect all references to labels to the leading labels.
1150 3) Cleanup all useless labels. */
1151
1152 void
1153 cleanup_dead_labels (void)
1154 {
1155 basic_block bb;
1156 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1157
1158 /* Find a suitable label for each block. We use the first user-defined
1159 label if there is one, or otherwise just the first label we see. */
1160 FOR_EACH_BB (bb)
1161 {
1162 gimple_stmt_iterator i;
1163
1164 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1165 {
1166 tree label;
1167 gimple stmt = gsi_stmt (i);
1168
1169 if (gimple_code (stmt) != GIMPLE_LABEL)
1170 break;
1171
1172 label = gimple_label_label (stmt);
1173
1174 /* If we have not yet seen a label for the current block,
1175 remember this one and see if there are more labels. */
1176 if (!label_for_bb[bb->index].label)
1177 {
1178 label_for_bb[bb->index].label = label;
1179 continue;
1180 }
1181
1182 /* If we did see a label for the current block already, but it
1183 is an artificially created label, replace it if the current
1184 label is a user defined label. */
1185 if (!DECL_ARTIFICIAL (label)
1186 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1187 {
1188 label_for_bb[bb->index].label = label;
1189 break;
1190 }
1191 }
1192 }
1193
1194 /* Now redirect all jumps/branches to the selected label.
1195 First do so for each block ending in a control statement. */
1196 FOR_EACH_BB (bb)
1197 {
1198 gimple stmt = last_stmt (bb);
1199 if (!stmt)
1200 continue;
1201
1202 switch (gimple_code (stmt))
1203 {
1204 case GIMPLE_COND:
1205 {
1206 tree true_label = gimple_cond_true_label (stmt);
1207 tree false_label = gimple_cond_false_label (stmt);
1208
1209 if (true_label)
1210 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1211 if (false_label)
1212 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1213 break;
1214 }
1215
1216 case GIMPLE_SWITCH:
1217 {
1218 size_t i, n = gimple_switch_num_labels (stmt);
1219
1220 /* Replace all destination labels. */
1221 for (i = 0; i < n; ++i)
1222 {
1223 tree case_label = gimple_switch_label (stmt, i);
1224 tree label = main_block_label (CASE_LABEL (case_label));
1225 CASE_LABEL (case_label) = label;
1226 }
1227 break;
1228 }
1229
1230 case GIMPLE_ASM:
1231 {
1232 int i, n = gimple_asm_nlabels (stmt);
1233
1234 for (i = 0; i < n; ++i)
1235 {
1236 tree cons = gimple_asm_label_op (stmt, i);
1237 tree label = main_block_label (TREE_VALUE (cons));
1238 TREE_VALUE (cons) = label;
1239 }
1240 break;
1241 }
1242
1243 /* We have to handle gotos until they're removed, and we don't
1244 remove them until after we've created the CFG edges. */
1245 case GIMPLE_GOTO:
1246 if (!computed_goto_p (stmt))
1247 {
1248 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1249 gimple_goto_set_dest (stmt, new_dest);
1250 }
1251 break;
1252
1253 default:
1254 break;
1255 }
1256 }
1257
1258 /* Do the same for the exception region tree labels. */
1259 cleanup_dead_labels_eh ();
1260
1261 /* Finally, purge dead labels. All user-defined labels and labels that
1262 can be the target of non-local gotos and labels which have their
1263 address taken are preserved. */
1264 FOR_EACH_BB (bb)
1265 {
1266 gimple_stmt_iterator i;
1267 tree label_for_this_bb = label_for_bb[bb->index].label;
1268
1269 if (!label_for_this_bb)
1270 continue;
1271
1272 /* If the main label of the block is unused, we may still remove it. */
1273 if (!label_for_bb[bb->index].used)
1274 label_for_this_bb = NULL;
1275
1276 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1277 {
1278 tree label;
1279 gimple stmt = gsi_stmt (i);
1280
1281 if (gimple_code (stmt) != GIMPLE_LABEL)
1282 break;
1283
1284 label = gimple_label_label (stmt);
1285
1286 if (label == label_for_this_bb
1287 || !DECL_ARTIFICIAL (label)
1288 || DECL_NONLOCAL (label)
1289 || FORCED_LABEL (label))
1290 gsi_next (&i);
1291 else
1292 gsi_remove (&i, true);
1293 }
1294 }
1295
1296 free (label_for_bb);
1297 }
1298
1299 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1300 the ones jumping to the same label.
1301 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1302
1303 static void
1304 group_case_labels_stmt (gimple stmt)
1305 {
1306 int old_size = gimple_switch_num_labels (stmt);
1307 int i, j, new_size = old_size;
1308 tree default_case = NULL_TREE;
1309 tree default_label = NULL_TREE;
1310 bool has_default;
1311
1312 /* The default label is always the first case in a switch
1313 statement after gimplification if it was not optimized
1314 away */
1315 if (!CASE_LOW (gimple_switch_default_label (stmt))
1316 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1317 {
1318 default_case = gimple_switch_default_label (stmt);
1319 default_label = CASE_LABEL (default_case);
1320 has_default = true;
1321 }
1322 else
1323 has_default = false;
1324
1325 /* Look for possible opportunities to merge cases. */
1326 if (has_default)
1327 i = 1;
1328 else
1329 i = 0;
1330 while (i < old_size)
1331 {
1332 tree base_case, base_label, base_high;
1333 base_case = gimple_switch_label (stmt, i);
1334
1335 gcc_assert (base_case);
1336 base_label = CASE_LABEL (base_case);
1337
1338 /* Discard cases that have the same destination as the
1339 default case. */
1340 if (base_label == default_label)
1341 {
1342 gimple_switch_set_label (stmt, i, NULL_TREE);
1343 i++;
1344 new_size--;
1345 continue;
1346 }
1347
1348 base_high = CASE_HIGH (base_case)
1349 ? CASE_HIGH (base_case)
1350 : CASE_LOW (base_case);
1351 i++;
1352
1353 /* Try to merge case labels. Break out when we reach the end
1354 of the label vector or when we cannot merge the next case
1355 label with the current one. */
1356 while (i < old_size)
1357 {
1358 tree merge_case = gimple_switch_label (stmt, i);
1359 tree merge_label = CASE_LABEL (merge_case);
1360 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1361 double_int_one);
1362
1363 /* Merge the cases if they jump to the same place,
1364 and their ranges are consecutive. */
1365 if (merge_label == base_label
1366 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1367 bhp1))
1368 {
1369 base_high = CASE_HIGH (merge_case) ?
1370 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1371 CASE_HIGH (base_case) = base_high;
1372 gimple_switch_set_label (stmt, i, NULL_TREE);
1373 new_size--;
1374 i++;
1375 }
1376 else
1377 break;
1378 }
1379 }
1380
1381 /* Compress the case labels in the label vector, and adjust the
1382 length of the vector. */
1383 for (i = 0, j = 0; i < new_size; i++)
1384 {
1385 while (! gimple_switch_label (stmt, j))
1386 j++;
1387 gimple_switch_set_label (stmt, i,
1388 gimple_switch_label (stmt, j++));
1389 }
1390
1391 gcc_assert (new_size <= old_size);
1392 gimple_switch_set_num_labels (stmt, new_size);
1393 }
1394
1395 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1396 and scan the sorted vector of cases. Combine the ones jumping to the
1397 same label. */
1398
1399 void
1400 group_case_labels (void)
1401 {
1402 basic_block bb;
1403
1404 FOR_EACH_BB (bb)
1405 {
1406 gimple stmt = last_stmt (bb);
1407 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1408 group_case_labels_stmt (stmt);
1409 }
1410 }
1411
1412 /* Checks whether we can merge block B into block A. */
1413
1414 static bool
1415 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1416 {
1417 gimple stmt;
1418 gimple_stmt_iterator gsi;
1419 gimple_seq phis;
1420
1421 if (!single_succ_p (a))
1422 return false;
1423
1424 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
1425 return false;
1426
1427 if (single_succ (a) != b)
1428 return false;
1429
1430 if (!single_pred_p (b))
1431 return false;
1432
1433 if (b == EXIT_BLOCK_PTR)
1434 return false;
1435
1436 /* If A ends by a statement causing exceptions or something similar, we
1437 cannot merge the blocks. */
1438 stmt = last_stmt (a);
1439 if (stmt && stmt_ends_bb_p (stmt))
1440 return false;
1441
1442 /* Do not allow a block with only a non-local label to be merged. */
1443 if (stmt
1444 && gimple_code (stmt) == GIMPLE_LABEL
1445 && DECL_NONLOCAL (gimple_label_label (stmt)))
1446 return false;
1447
1448 /* Examine the labels at the beginning of B. */
1449 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1450 {
1451 tree lab;
1452 stmt = gsi_stmt (gsi);
1453 if (gimple_code (stmt) != GIMPLE_LABEL)
1454 break;
1455 lab = gimple_label_label (stmt);
1456
1457 /* Do not remove user forced labels. */
1458 if (!DECL_ARTIFICIAL (lab) && FORCED_LABEL (lab))
1459 return false;
1460 }
1461
1462 /* Protect the loop latches. */
1463 if (current_loops && b->loop_father->latch == b)
1464 return false;
1465
1466 /* It must be possible to eliminate all phi nodes in B. If ssa form
1467 is not up-to-date and a name-mapping is registered, we cannot eliminate
1468 any phis. Symbols marked for renaming are never a problem though. */
1469 phis = phi_nodes (b);
1470 if (!gimple_seq_empty_p (phis)
1471 && name_mappings_registered_p ())
1472 return false;
1473
1474 /* When not optimizing, don't merge if we'd lose goto_locus. */
1475 if (!optimize
1476 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1477 {
1478 location_t goto_locus = single_succ_edge (a)->goto_locus;
1479 gimple_stmt_iterator prev, next;
1480 prev = gsi_last_nondebug_bb (a);
1481 next = gsi_after_labels (b);
1482 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1483 gsi_next_nondebug (&next);
1484 if ((gsi_end_p (prev)
1485 || gimple_location (gsi_stmt (prev)) != goto_locus)
1486 && (gsi_end_p (next)
1487 || gimple_location (gsi_stmt (next)) != goto_locus))
1488 return false;
1489 }
1490
1491 return true;
1492 }
1493
1494 /* Return true if the var whose chain of uses starts at PTR has no
1495 nondebug uses. */
1496 bool
1497 has_zero_uses_1 (const ssa_use_operand_t *head)
1498 {
1499 const ssa_use_operand_t *ptr;
1500
1501 for (ptr = head->next; ptr != head; ptr = ptr->next)
1502 if (!is_gimple_debug (USE_STMT (ptr)))
1503 return false;
1504
1505 return true;
1506 }
1507
1508 /* Return true if the var whose chain of uses starts at PTR has a
1509 single nondebug use. Set USE_P and STMT to that single nondebug
1510 use, if so, or to NULL otherwise. */
1511 bool
1512 single_imm_use_1 (const ssa_use_operand_t *head,
1513 use_operand_p *use_p, gimple *stmt)
1514 {
1515 ssa_use_operand_t *ptr, *single_use = 0;
1516
1517 for (ptr = head->next; ptr != head; ptr = ptr->next)
1518 if (!is_gimple_debug (USE_STMT (ptr)))
1519 {
1520 if (single_use)
1521 {
1522 single_use = NULL;
1523 break;
1524 }
1525 single_use = ptr;
1526 }
1527
1528 if (use_p)
1529 *use_p = single_use;
1530
1531 if (stmt)
1532 *stmt = single_use ? single_use->loc.stmt : NULL;
1533
1534 return !!single_use;
1535 }
1536
1537 /* Replaces all uses of NAME by VAL. */
1538
1539 void
1540 replace_uses_by (tree name, tree val)
1541 {
1542 imm_use_iterator imm_iter;
1543 use_operand_p use;
1544 gimple stmt;
1545 edge e;
1546
1547 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1548 {
1549 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1550 {
1551 replace_exp (use, val);
1552
1553 if (gimple_code (stmt) == GIMPLE_PHI)
1554 {
1555 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1556 if (e->flags & EDGE_ABNORMAL)
1557 {
1558 /* This can only occur for virtual operands, since
1559 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1560 would prevent replacement. */
1561 gcc_assert (!is_gimple_reg (name));
1562 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1563 }
1564 }
1565 }
1566
1567 if (gimple_code (stmt) != GIMPLE_PHI)
1568 {
1569 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1570 size_t i;
1571
1572 fold_stmt (&gsi);
1573 stmt = gsi_stmt (gsi);
1574 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1575 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1576
1577 /* FIXME. This should go in update_stmt. */
1578 for (i = 0; i < gimple_num_ops (stmt); i++)
1579 {
1580 tree op = gimple_op (stmt, i);
1581 /* Operands may be empty here. For example, the labels
1582 of a GIMPLE_COND are nulled out following the creation
1583 of the corresponding CFG edges. */
1584 if (op && TREE_CODE (op) == ADDR_EXPR)
1585 recompute_tree_invariant_for_addr_expr (op);
1586 }
1587
1588 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1589 update_stmt (stmt);
1590 }
1591 }
1592
1593 gcc_assert (has_zero_uses (name));
1594
1595 /* Also update the trees stored in loop structures. */
1596 if (current_loops)
1597 {
1598 struct loop *loop;
1599 loop_iterator li;
1600
1601 FOR_EACH_LOOP (li, loop, 0)
1602 {
1603 substitute_in_loop_info (loop, name, val);
1604 }
1605 }
1606 }
1607
1608 /* Merge block B into block A. */
1609
1610 static void
1611 gimple_merge_blocks (basic_block a, basic_block b)
1612 {
1613 gimple_stmt_iterator last, gsi, psi;
1614 gimple_seq phis = phi_nodes (b);
1615
1616 if (dump_file)
1617 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1618
1619 /* Remove all single-valued PHI nodes from block B of the form
1620 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1621 gsi = gsi_last_bb (a);
1622 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1623 {
1624 gimple phi = gsi_stmt (psi);
1625 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1626 gimple copy;
1627 bool may_replace_uses = !is_gimple_reg (def)
1628 || may_propagate_copy (def, use);
1629
1630 /* In case we maintain loop closed ssa form, do not propagate arguments
1631 of loop exit phi nodes. */
1632 if (current_loops
1633 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1634 && is_gimple_reg (def)
1635 && TREE_CODE (use) == SSA_NAME
1636 && a->loop_father != b->loop_father)
1637 may_replace_uses = false;
1638
1639 if (!may_replace_uses)
1640 {
1641 gcc_assert (is_gimple_reg (def));
1642
1643 /* Note that just emitting the copies is fine -- there is no problem
1644 with ordering of phi nodes. This is because A is the single
1645 predecessor of B, therefore results of the phi nodes cannot
1646 appear as arguments of the phi nodes. */
1647 copy = gimple_build_assign (def, use);
1648 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1649 remove_phi_node (&psi, false);
1650 }
1651 else
1652 {
1653 /* If we deal with a PHI for virtual operands, we can simply
1654 propagate these without fussing with folding or updating
1655 the stmt. */
1656 if (!is_gimple_reg (def))
1657 {
1658 imm_use_iterator iter;
1659 use_operand_p use_p;
1660 gimple stmt;
1661
1662 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1663 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1664 SET_USE (use_p, use);
1665
1666 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1667 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1668 }
1669 else
1670 replace_uses_by (def, use);
1671
1672 remove_phi_node (&psi, true);
1673 }
1674 }
1675
1676 /* Ensure that B follows A. */
1677 move_block_after (b, a);
1678
1679 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1680 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1681
1682 /* Remove labels from B and set gimple_bb to A for other statements. */
1683 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1684 {
1685 gimple stmt = gsi_stmt (gsi);
1686 if (gimple_code (stmt) == GIMPLE_LABEL)
1687 {
1688 tree label = gimple_label_label (stmt);
1689 int lp_nr;
1690
1691 gsi_remove (&gsi, false);
1692
1693 /* Now that we can thread computed gotos, we might have
1694 a situation where we have a forced label in block B
1695 However, the label at the start of block B might still be
1696 used in other ways (think about the runtime checking for
1697 Fortran assigned gotos). So we can not just delete the
1698 label. Instead we move the label to the start of block A. */
1699 if (FORCED_LABEL (label))
1700 {
1701 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1702 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1703 }
1704 /* Other user labels keep around in a form of a debug stmt. */
1705 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1706 {
1707 gimple dbg = gimple_build_debug_bind (label,
1708 integer_zero_node,
1709 stmt);
1710 gimple_debug_bind_reset_value (dbg);
1711 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1712 }
1713
1714 lp_nr = EH_LANDING_PAD_NR (label);
1715 if (lp_nr)
1716 {
1717 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1718 lp->post_landing_pad = NULL;
1719 }
1720 }
1721 else
1722 {
1723 gimple_set_bb (stmt, a);
1724 gsi_next (&gsi);
1725 }
1726 }
1727
1728 /* Merge the sequences. */
1729 last = gsi_last_bb (a);
1730 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1731 set_bb_seq (b, NULL);
1732
1733 if (cfgcleanup_altered_bbs)
1734 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1735 }
1736
1737
1738 /* Return the one of two successors of BB that is not reachable by a
1739 complex edge, if there is one. Else, return BB. We use
1740 this in optimizations that use post-dominators for their heuristics,
1741 to catch the cases in C++ where function calls are involved. */
1742
1743 basic_block
1744 single_noncomplex_succ (basic_block bb)
1745 {
1746 edge e0, e1;
1747 if (EDGE_COUNT (bb->succs) != 2)
1748 return bb;
1749
1750 e0 = EDGE_SUCC (bb, 0);
1751 e1 = EDGE_SUCC (bb, 1);
1752 if (e0->flags & EDGE_COMPLEX)
1753 return e1->dest;
1754 if (e1->flags & EDGE_COMPLEX)
1755 return e0->dest;
1756
1757 return bb;
1758 }
1759
1760 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1761
1762 void
1763 notice_special_calls (gimple call)
1764 {
1765 int flags = gimple_call_flags (call);
1766
1767 if (flags & ECF_MAY_BE_ALLOCA)
1768 cfun->calls_alloca = true;
1769 if (flags & ECF_RETURNS_TWICE)
1770 cfun->calls_setjmp = true;
1771 }
1772
1773
1774 /* Clear flags set by notice_special_calls. Used by dead code removal
1775 to update the flags. */
1776
1777 void
1778 clear_special_calls (void)
1779 {
1780 cfun->calls_alloca = false;
1781 cfun->calls_setjmp = false;
1782 }
1783
1784 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1785
1786 static void
1787 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1788 {
1789 /* Since this block is no longer reachable, we can just delete all
1790 of its PHI nodes. */
1791 remove_phi_nodes (bb);
1792
1793 /* Remove edges to BB's successors. */
1794 while (EDGE_COUNT (bb->succs) > 0)
1795 remove_edge (EDGE_SUCC (bb, 0));
1796 }
1797
1798
1799 /* Remove statements of basic block BB. */
1800
1801 static void
1802 remove_bb (basic_block bb)
1803 {
1804 gimple_stmt_iterator i;
1805
1806 if (dump_file)
1807 {
1808 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1809 if (dump_flags & TDF_DETAILS)
1810 {
1811 dump_bb (bb, dump_file, 0);
1812 fprintf (dump_file, "\n");
1813 }
1814 }
1815
1816 if (current_loops)
1817 {
1818 struct loop *loop = bb->loop_father;
1819
1820 /* If a loop gets removed, clean up the information associated
1821 with it. */
1822 if (loop->latch == bb
1823 || loop->header == bb)
1824 free_numbers_of_iterations_estimates_loop (loop);
1825 }
1826
1827 /* Remove all the instructions in the block. */
1828 if (bb_seq (bb) != NULL)
1829 {
1830 /* Walk backwards so as to get a chance to substitute all
1831 released DEFs into debug stmts. See
1832 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1833 details. */
1834 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1835 {
1836 gimple stmt = gsi_stmt (i);
1837 if (gimple_code (stmt) == GIMPLE_LABEL
1838 && (FORCED_LABEL (gimple_label_label (stmt))
1839 || DECL_NONLOCAL (gimple_label_label (stmt))))
1840 {
1841 basic_block new_bb;
1842 gimple_stmt_iterator new_gsi;
1843
1844 /* A non-reachable non-local label may still be referenced.
1845 But it no longer needs to carry the extra semantics of
1846 non-locality. */
1847 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1848 {
1849 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1850 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1851 }
1852
1853 new_bb = bb->prev_bb;
1854 new_gsi = gsi_start_bb (new_bb);
1855 gsi_remove (&i, false);
1856 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1857 }
1858 else
1859 {
1860 /* Release SSA definitions if we are in SSA. Note that we
1861 may be called when not in SSA. For example,
1862 final_cleanup calls this function via
1863 cleanup_tree_cfg. */
1864 if (gimple_in_ssa_p (cfun))
1865 release_defs (stmt);
1866
1867 gsi_remove (&i, true);
1868 }
1869
1870 if (gsi_end_p (i))
1871 i = gsi_last_bb (bb);
1872 else
1873 gsi_prev (&i);
1874 }
1875 }
1876
1877 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1878 bb->il.gimple = NULL;
1879 }
1880
1881
1882 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1883 predicate VAL, return the edge that will be taken out of the block.
1884 If VAL does not match a unique edge, NULL is returned. */
1885
1886 edge
1887 find_taken_edge (basic_block bb, tree val)
1888 {
1889 gimple stmt;
1890
1891 stmt = last_stmt (bb);
1892
1893 gcc_assert (stmt);
1894 gcc_assert (is_ctrl_stmt (stmt));
1895
1896 if (val == NULL)
1897 return NULL;
1898
1899 if (!is_gimple_min_invariant (val))
1900 return NULL;
1901
1902 if (gimple_code (stmt) == GIMPLE_COND)
1903 return find_taken_edge_cond_expr (bb, val);
1904
1905 if (gimple_code (stmt) == GIMPLE_SWITCH)
1906 return find_taken_edge_switch_expr (bb, val);
1907
1908 if (computed_goto_p (stmt))
1909 {
1910 /* Only optimize if the argument is a label, if the argument is
1911 not a label then we can not construct a proper CFG.
1912
1913 It may be the case that we only need to allow the LABEL_REF to
1914 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1915 appear inside a LABEL_EXPR just to be safe. */
1916 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1917 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1918 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1919 return NULL;
1920 }
1921
1922 gcc_unreachable ();
1923 }
1924
1925 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1926 statement, determine which of the outgoing edges will be taken out of the
1927 block. Return NULL if either edge may be taken. */
1928
1929 static edge
1930 find_taken_edge_computed_goto (basic_block bb, tree val)
1931 {
1932 basic_block dest;
1933 edge e = NULL;
1934
1935 dest = label_to_block (val);
1936 if (dest)
1937 {
1938 e = find_edge (bb, dest);
1939 gcc_assert (e != NULL);
1940 }
1941
1942 return e;
1943 }
1944
1945 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1946 statement, determine which of the two edges will be taken out of the
1947 block. Return NULL if either edge may be taken. */
1948
1949 static edge
1950 find_taken_edge_cond_expr (basic_block bb, tree val)
1951 {
1952 edge true_edge, false_edge;
1953
1954 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1955
1956 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1957 return (integer_zerop (val) ? false_edge : true_edge);
1958 }
1959
1960 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1961 statement, determine which edge will be taken out of the block. Return
1962 NULL if any edge may be taken. */
1963
1964 static edge
1965 find_taken_edge_switch_expr (basic_block bb, tree val)
1966 {
1967 basic_block dest_bb;
1968 edge e;
1969 gimple switch_stmt;
1970 tree taken_case;
1971
1972 switch_stmt = last_stmt (bb);
1973 taken_case = find_case_label_for_value (switch_stmt, val);
1974 dest_bb = label_to_block (CASE_LABEL (taken_case));
1975
1976 e = find_edge (bb, dest_bb);
1977 gcc_assert (e);
1978 return e;
1979 }
1980
1981
1982 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1983 We can make optimal use here of the fact that the case labels are
1984 sorted: We can do a binary search for a case matching VAL. */
1985
1986 static tree
1987 find_case_label_for_value (gimple switch_stmt, tree val)
1988 {
1989 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1990 tree default_case = gimple_switch_default_label (switch_stmt);
1991
1992 for (low = 0, high = n; high - low > 1; )
1993 {
1994 size_t i = (high + low) / 2;
1995 tree t = gimple_switch_label (switch_stmt, i);
1996 int cmp;
1997
1998 /* Cache the result of comparing CASE_LOW and val. */
1999 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2000
2001 if (cmp > 0)
2002 high = i;
2003 else
2004 low = i;
2005
2006 if (CASE_HIGH (t) == NULL)
2007 {
2008 /* A singe-valued case label. */
2009 if (cmp == 0)
2010 return t;
2011 }
2012 else
2013 {
2014 /* A case range. We can only handle integer ranges. */
2015 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2016 return t;
2017 }
2018 }
2019
2020 return default_case;
2021 }
2022
2023
2024 /* Dump a basic block on stderr. */
2025
2026 void
2027 gimple_debug_bb (basic_block bb)
2028 {
2029 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2030 }
2031
2032
2033 /* Dump basic block with index N on stderr. */
2034
2035 basic_block
2036 gimple_debug_bb_n (int n)
2037 {
2038 gimple_debug_bb (BASIC_BLOCK (n));
2039 return BASIC_BLOCK (n);
2040 }
2041
2042
2043 /* Dump the CFG on stderr.
2044
2045 FLAGS are the same used by the tree dumping functions
2046 (see TDF_* in tree-pass.h). */
2047
2048 void
2049 gimple_debug_cfg (int flags)
2050 {
2051 gimple_dump_cfg (stderr, flags);
2052 }
2053
2054
2055 /* Dump the program showing basic block boundaries on the given FILE.
2056
2057 FLAGS are the same used by the tree dumping functions (see TDF_* in
2058 tree.h). */
2059
2060 void
2061 gimple_dump_cfg (FILE *file, int flags)
2062 {
2063 if (flags & TDF_DETAILS)
2064 {
2065 dump_function_header (file, current_function_decl, flags);
2066 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2067 n_basic_blocks, n_edges, last_basic_block);
2068
2069 brief_dump_cfg (file);
2070 fprintf (file, "\n");
2071 }
2072
2073 if (flags & TDF_STATS)
2074 dump_cfg_stats (file);
2075
2076 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2077 }
2078
2079
2080 /* Dump CFG statistics on FILE. */
2081
2082 void
2083 dump_cfg_stats (FILE *file)
2084 {
2085 static long max_num_merged_labels = 0;
2086 unsigned long size, total = 0;
2087 long num_edges;
2088 basic_block bb;
2089 const char * const fmt_str = "%-30s%-13s%12s\n";
2090 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2091 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2092 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2093 const char *funcname
2094 = lang_hooks.decl_printable_name (current_function_decl, 2);
2095
2096
2097 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2098
2099 fprintf (file, "---------------------------------------------------------\n");
2100 fprintf (file, fmt_str, "", " Number of ", "Memory");
2101 fprintf (file, fmt_str, "", " instances ", "used ");
2102 fprintf (file, "---------------------------------------------------------\n");
2103
2104 size = n_basic_blocks * sizeof (struct basic_block_def);
2105 total += size;
2106 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2107 SCALE (size), LABEL (size));
2108
2109 num_edges = 0;
2110 FOR_EACH_BB (bb)
2111 num_edges += EDGE_COUNT (bb->succs);
2112 size = num_edges * sizeof (struct edge_def);
2113 total += size;
2114 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2115
2116 fprintf (file, "---------------------------------------------------------\n");
2117 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2118 LABEL (total));
2119 fprintf (file, "---------------------------------------------------------\n");
2120 fprintf (file, "\n");
2121
2122 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2123 max_num_merged_labels = cfg_stats.num_merged_labels;
2124
2125 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2126 cfg_stats.num_merged_labels, max_num_merged_labels);
2127
2128 fprintf (file, "\n");
2129 }
2130
2131
2132 /* Dump CFG statistics on stderr. Keep extern so that it's always
2133 linked in the final executable. */
2134
2135 DEBUG_FUNCTION void
2136 debug_cfg_stats (void)
2137 {
2138 dump_cfg_stats (stderr);
2139 }
2140
2141
2142 /* Dump the flowgraph to a .vcg FILE. */
2143
2144 static void
2145 gimple_cfg2vcg (FILE *file)
2146 {
2147 edge e;
2148 edge_iterator ei;
2149 basic_block bb;
2150 const char *funcname
2151 = lang_hooks.decl_printable_name (current_function_decl, 2);
2152
2153 /* Write the file header. */
2154 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2155 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2156 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2157
2158 /* Write blocks and edges. */
2159 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2160 {
2161 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2162 e->dest->index);
2163
2164 if (e->flags & EDGE_FAKE)
2165 fprintf (file, " linestyle: dotted priority: 10");
2166 else
2167 fprintf (file, " linestyle: solid priority: 100");
2168
2169 fprintf (file, " }\n");
2170 }
2171 fputc ('\n', file);
2172
2173 FOR_EACH_BB (bb)
2174 {
2175 enum gimple_code head_code, end_code;
2176 const char *head_name, *end_name;
2177 int head_line = 0;
2178 int end_line = 0;
2179 gimple first = first_stmt (bb);
2180 gimple last = last_stmt (bb);
2181
2182 if (first)
2183 {
2184 head_code = gimple_code (first);
2185 head_name = gimple_code_name[head_code];
2186 head_line = get_lineno (first);
2187 }
2188 else
2189 head_name = "no-statement";
2190
2191 if (last)
2192 {
2193 end_code = gimple_code (last);
2194 end_name = gimple_code_name[end_code];
2195 end_line = get_lineno (last);
2196 }
2197 else
2198 end_name = "no-statement";
2199
2200 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2201 bb->index, bb->index, head_name, head_line, end_name,
2202 end_line);
2203
2204 FOR_EACH_EDGE (e, ei, bb->succs)
2205 {
2206 if (e->dest == EXIT_BLOCK_PTR)
2207 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2208 else
2209 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2210
2211 if (e->flags & EDGE_FAKE)
2212 fprintf (file, " priority: 10 linestyle: dotted");
2213 else
2214 fprintf (file, " priority: 100 linestyle: solid");
2215
2216 fprintf (file, " }\n");
2217 }
2218
2219 if (bb->next_bb != EXIT_BLOCK_PTR)
2220 fputc ('\n', file);
2221 }
2222
2223 fputs ("}\n\n", file);
2224 }
2225
2226
2227
2228 /*---------------------------------------------------------------------------
2229 Miscellaneous helpers
2230 ---------------------------------------------------------------------------*/
2231
2232 /* Return true if T represents a stmt that always transfers control. */
2233
2234 bool
2235 is_ctrl_stmt (gimple t)
2236 {
2237 switch (gimple_code (t))
2238 {
2239 case GIMPLE_COND:
2240 case GIMPLE_SWITCH:
2241 case GIMPLE_GOTO:
2242 case GIMPLE_RETURN:
2243 case GIMPLE_RESX:
2244 return true;
2245 default:
2246 return false;
2247 }
2248 }
2249
2250
2251 /* Return true if T is a statement that may alter the flow of control
2252 (e.g., a call to a non-returning function). */
2253
2254 bool
2255 is_ctrl_altering_stmt (gimple t)
2256 {
2257 gcc_assert (t);
2258
2259 switch (gimple_code (t))
2260 {
2261 case GIMPLE_CALL:
2262 {
2263 int flags = gimple_call_flags (t);
2264
2265 /* A non-pure/const call alters flow control if the current
2266 function has nonlocal labels. */
2267 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2268 && cfun->has_nonlocal_label)
2269 return true;
2270
2271 /* A call also alters control flow if it does not return. */
2272 if (flags & ECF_NORETURN)
2273 return true;
2274
2275 /* BUILT_IN_RETURN call is same as return statement. */
2276 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2277 return true;
2278 }
2279 break;
2280
2281 case GIMPLE_EH_DISPATCH:
2282 /* EH_DISPATCH branches to the individual catch handlers at
2283 this level of a try or allowed-exceptions region. It can
2284 fallthru to the next statement as well. */
2285 return true;
2286
2287 case GIMPLE_ASM:
2288 if (gimple_asm_nlabels (t) > 0)
2289 return true;
2290 break;
2291
2292 CASE_GIMPLE_OMP:
2293 /* OpenMP directives alter control flow. */
2294 return true;
2295
2296 default:
2297 break;
2298 }
2299
2300 /* If a statement can throw, it alters control flow. */
2301 return stmt_can_throw_internal (t);
2302 }
2303
2304
2305 /* Return true if T is a simple local goto. */
2306
2307 bool
2308 simple_goto_p (gimple t)
2309 {
2310 return (gimple_code (t) == GIMPLE_GOTO
2311 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2312 }
2313
2314
2315 /* Return true if T can make an abnormal transfer of control flow.
2316 Transfers of control flow associated with EH are excluded. */
2317
2318 bool
2319 stmt_can_make_abnormal_goto (gimple t)
2320 {
2321 if (computed_goto_p (t))
2322 return true;
2323 if (is_gimple_call (t))
2324 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2325 && !(gimple_call_flags (t) & ECF_LEAF));
2326 return false;
2327 }
2328
2329
2330 /* Return true if STMT should start a new basic block. PREV_STMT is
2331 the statement preceding STMT. It is used when STMT is a label or a
2332 case label. Labels should only start a new basic block if their
2333 previous statement wasn't a label. Otherwise, sequence of labels
2334 would generate unnecessary basic blocks that only contain a single
2335 label. */
2336
2337 static inline bool
2338 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2339 {
2340 if (stmt == NULL)
2341 return false;
2342
2343 /* Labels start a new basic block only if the preceding statement
2344 wasn't a label of the same type. This prevents the creation of
2345 consecutive blocks that have nothing but a single label. */
2346 if (gimple_code (stmt) == GIMPLE_LABEL)
2347 {
2348 /* Nonlocal and computed GOTO targets always start a new block. */
2349 if (DECL_NONLOCAL (gimple_label_label (stmt))
2350 || FORCED_LABEL (gimple_label_label (stmt)))
2351 return true;
2352
2353 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2354 {
2355 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2356 return true;
2357
2358 cfg_stats.num_merged_labels++;
2359 return false;
2360 }
2361 else
2362 return true;
2363 }
2364
2365 return false;
2366 }
2367
2368
2369 /* Return true if T should end a basic block. */
2370
2371 bool
2372 stmt_ends_bb_p (gimple t)
2373 {
2374 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2375 }
2376
2377 /* Remove block annotations and other data structures. */
2378
2379 void
2380 delete_tree_cfg_annotations (void)
2381 {
2382 label_to_block_map = NULL;
2383 }
2384
2385
2386 /* Return the first statement in basic block BB. */
2387
2388 gimple
2389 first_stmt (basic_block bb)
2390 {
2391 gimple_stmt_iterator i = gsi_start_bb (bb);
2392 gimple stmt = NULL;
2393
2394 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2395 {
2396 gsi_next (&i);
2397 stmt = NULL;
2398 }
2399 return stmt;
2400 }
2401
2402 /* Return the first non-label statement in basic block BB. */
2403
2404 static gimple
2405 first_non_label_stmt (basic_block bb)
2406 {
2407 gimple_stmt_iterator i = gsi_start_bb (bb);
2408 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2409 gsi_next (&i);
2410 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2411 }
2412
2413 /* Return the last statement in basic block BB. */
2414
2415 gimple
2416 last_stmt (basic_block bb)
2417 {
2418 gimple_stmt_iterator i = gsi_last_bb (bb);
2419 gimple stmt = NULL;
2420
2421 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2422 {
2423 gsi_prev (&i);
2424 stmt = NULL;
2425 }
2426 return stmt;
2427 }
2428
2429 /* Return the last statement of an otherwise empty block. Return NULL
2430 if the block is totally empty, or if it contains more than one
2431 statement. */
2432
2433 gimple
2434 last_and_only_stmt (basic_block bb)
2435 {
2436 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2437 gimple last, prev;
2438
2439 if (gsi_end_p (i))
2440 return NULL;
2441
2442 last = gsi_stmt (i);
2443 gsi_prev_nondebug (&i);
2444 if (gsi_end_p (i))
2445 return last;
2446
2447 /* Empty statements should no longer appear in the instruction stream.
2448 Everything that might have appeared before should be deleted by
2449 remove_useless_stmts, and the optimizers should just gsi_remove
2450 instead of smashing with build_empty_stmt.
2451
2452 Thus the only thing that should appear here in a block containing
2453 one executable statement is a label. */
2454 prev = gsi_stmt (i);
2455 if (gimple_code (prev) == GIMPLE_LABEL)
2456 return last;
2457 else
2458 return NULL;
2459 }
2460
2461 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2462
2463 static void
2464 reinstall_phi_args (edge new_edge, edge old_edge)
2465 {
2466 edge_var_map_vector v;
2467 edge_var_map *vm;
2468 int i;
2469 gimple_stmt_iterator phis;
2470
2471 v = redirect_edge_var_map_vector (old_edge);
2472 if (!v)
2473 return;
2474
2475 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2476 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2477 i++, gsi_next (&phis))
2478 {
2479 gimple phi = gsi_stmt (phis);
2480 tree result = redirect_edge_var_map_result (vm);
2481 tree arg = redirect_edge_var_map_def (vm);
2482
2483 gcc_assert (result == gimple_phi_result (phi));
2484
2485 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2486 }
2487
2488 redirect_edge_var_map_clear (old_edge);
2489 }
2490
2491 /* Returns the basic block after which the new basic block created
2492 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2493 near its "logical" location. This is of most help to humans looking
2494 at debugging dumps. */
2495
2496 static basic_block
2497 split_edge_bb_loc (edge edge_in)
2498 {
2499 basic_block dest = edge_in->dest;
2500 basic_block dest_prev = dest->prev_bb;
2501
2502 if (dest_prev)
2503 {
2504 edge e = find_edge (dest_prev, dest);
2505 if (e && !(e->flags & EDGE_COMPLEX))
2506 return edge_in->src;
2507 }
2508 return dest_prev;
2509 }
2510
2511 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2512 Abort on abnormal edges. */
2513
2514 static basic_block
2515 gimple_split_edge (edge edge_in)
2516 {
2517 basic_block new_bb, after_bb, dest;
2518 edge new_edge, e;
2519
2520 /* Abnormal edges cannot be split. */
2521 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2522
2523 dest = edge_in->dest;
2524
2525 after_bb = split_edge_bb_loc (edge_in);
2526
2527 new_bb = create_empty_bb (after_bb);
2528 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2529 new_bb->count = edge_in->count;
2530 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2531 new_edge->probability = REG_BR_PROB_BASE;
2532 new_edge->count = edge_in->count;
2533
2534 e = redirect_edge_and_branch (edge_in, new_bb);
2535 gcc_assert (e == edge_in);
2536 reinstall_phi_args (new_edge, e);
2537
2538 return new_bb;
2539 }
2540
2541
2542 /* Verify properties of the address expression T with base object BASE. */
2543
2544 static tree
2545 verify_address (tree t, tree base)
2546 {
2547 bool old_constant;
2548 bool old_side_effects;
2549 bool new_constant;
2550 bool new_side_effects;
2551
2552 old_constant = TREE_CONSTANT (t);
2553 old_side_effects = TREE_SIDE_EFFECTS (t);
2554
2555 recompute_tree_invariant_for_addr_expr (t);
2556 new_side_effects = TREE_SIDE_EFFECTS (t);
2557 new_constant = TREE_CONSTANT (t);
2558
2559 if (old_constant != new_constant)
2560 {
2561 error ("constant not recomputed when ADDR_EXPR changed");
2562 return t;
2563 }
2564 if (old_side_effects != new_side_effects)
2565 {
2566 error ("side effects not recomputed when ADDR_EXPR changed");
2567 return t;
2568 }
2569
2570 if (!(TREE_CODE (base) == VAR_DECL
2571 || TREE_CODE (base) == PARM_DECL
2572 || TREE_CODE (base) == RESULT_DECL))
2573 return NULL_TREE;
2574
2575 if (DECL_GIMPLE_REG_P (base))
2576 {
2577 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2578 return base;
2579 }
2580
2581 return NULL_TREE;
2582 }
2583
2584 /* Callback for walk_tree, check that all elements with address taken are
2585 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2586 inside a PHI node. */
2587
2588 static tree
2589 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2590 {
2591 tree t = *tp, x;
2592
2593 if (TYPE_P (t))
2594 *walk_subtrees = 0;
2595
2596 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2597 #define CHECK_OP(N, MSG) \
2598 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2599 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2600
2601 switch (TREE_CODE (t))
2602 {
2603 case SSA_NAME:
2604 if (SSA_NAME_IN_FREE_LIST (t))
2605 {
2606 error ("SSA name in freelist but still referenced");
2607 return *tp;
2608 }
2609 break;
2610
2611 case INDIRECT_REF:
2612 error ("INDIRECT_REF in gimple IL");
2613 return t;
2614
2615 case MEM_REF:
2616 x = TREE_OPERAND (t, 0);
2617 if (!POINTER_TYPE_P (TREE_TYPE (x))
2618 || !is_gimple_mem_ref_addr (x))
2619 {
2620 error ("invalid first operand of MEM_REF");
2621 return x;
2622 }
2623 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2624 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2625 {
2626 error ("invalid offset operand of MEM_REF");
2627 return TREE_OPERAND (t, 1);
2628 }
2629 if (TREE_CODE (x) == ADDR_EXPR
2630 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2631 return x;
2632 *walk_subtrees = 0;
2633 break;
2634
2635 case ASSERT_EXPR:
2636 x = fold (ASSERT_EXPR_COND (t));
2637 if (x == boolean_false_node)
2638 {
2639 error ("ASSERT_EXPR with an always-false condition");
2640 return *tp;
2641 }
2642 break;
2643
2644 case MODIFY_EXPR:
2645 error ("MODIFY_EXPR not expected while having tuples");
2646 return *tp;
2647
2648 case ADDR_EXPR:
2649 {
2650 tree tem;
2651
2652 gcc_assert (is_gimple_address (t));
2653
2654 /* Skip any references (they will be checked when we recurse down the
2655 tree) and ensure that any variable used as a prefix is marked
2656 addressable. */
2657 for (x = TREE_OPERAND (t, 0);
2658 handled_component_p (x);
2659 x = TREE_OPERAND (x, 0))
2660 ;
2661
2662 if ((tem = verify_address (t, x)))
2663 return tem;
2664
2665 if (!(TREE_CODE (x) == VAR_DECL
2666 || TREE_CODE (x) == PARM_DECL
2667 || TREE_CODE (x) == RESULT_DECL))
2668 return NULL;
2669
2670 if (!TREE_ADDRESSABLE (x))
2671 {
2672 error ("address taken, but ADDRESSABLE bit not set");
2673 return x;
2674 }
2675
2676 break;
2677 }
2678
2679 case COND_EXPR:
2680 x = COND_EXPR_COND (t);
2681 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2682 {
2683 error ("non-integral used in condition");
2684 return x;
2685 }
2686 if (!is_gimple_condexpr (x))
2687 {
2688 error ("invalid conditional operand");
2689 return x;
2690 }
2691 break;
2692
2693 case NON_LVALUE_EXPR:
2694 case TRUTH_NOT_EXPR:
2695 gcc_unreachable ();
2696
2697 CASE_CONVERT:
2698 case FIX_TRUNC_EXPR:
2699 case FLOAT_EXPR:
2700 case NEGATE_EXPR:
2701 case ABS_EXPR:
2702 case BIT_NOT_EXPR:
2703 CHECK_OP (0, "invalid operand to unary operator");
2704 break;
2705
2706 case REALPART_EXPR:
2707 case IMAGPART_EXPR:
2708 case COMPONENT_REF:
2709 case ARRAY_REF:
2710 case ARRAY_RANGE_REF:
2711 case BIT_FIELD_REF:
2712 case VIEW_CONVERT_EXPR:
2713 /* We have a nest of references. Verify that each of the operands
2714 that determine where to reference is either a constant or a variable,
2715 verify that the base is valid, and then show we've already checked
2716 the subtrees. */
2717 while (handled_component_p (t))
2718 {
2719 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2720 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2721 else if (TREE_CODE (t) == ARRAY_REF
2722 || TREE_CODE (t) == ARRAY_RANGE_REF)
2723 {
2724 CHECK_OP (1, "invalid array index");
2725 if (TREE_OPERAND (t, 2))
2726 CHECK_OP (2, "invalid array lower bound");
2727 if (TREE_OPERAND (t, 3))
2728 CHECK_OP (3, "invalid array stride");
2729 }
2730 else if (TREE_CODE (t) == BIT_FIELD_REF)
2731 {
2732 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2733 || !host_integerp (TREE_OPERAND (t, 2), 1))
2734 {
2735 error ("invalid position or size operand to BIT_FIELD_REF");
2736 return t;
2737 }
2738 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2739 && (TYPE_PRECISION (TREE_TYPE (t))
2740 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2741 {
2742 error ("integral result type precision does not match "
2743 "field size of BIT_FIELD_REF");
2744 return t;
2745 }
2746 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2747 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2748 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2749 {
2750 error ("mode precision of non-integral result does not "
2751 "match field size of BIT_FIELD_REF");
2752 return t;
2753 }
2754 }
2755
2756 t = TREE_OPERAND (t, 0);
2757 }
2758
2759 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2760 {
2761 error ("invalid reference prefix");
2762 return t;
2763 }
2764 *walk_subtrees = 0;
2765 break;
2766 case PLUS_EXPR:
2767 case MINUS_EXPR:
2768 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2769 POINTER_PLUS_EXPR. */
2770 if (POINTER_TYPE_P (TREE_TYPE (t)))
2771 {
2772 error ("invalid operand to plus/minus, type is a pointer");
2773 return t;
2774 }
2775 CHECK_OP (0, "invalid operand to binary operator");
2776 CHECK_OP (1, "invalid operand to binary operator");
2777 break;
2778
2779 case POINTER_PLUS_EXPR:
2780 /* Check to make sure the first operand is a pointer or reference type. */
2781 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2782 {
2783 error ("invalid operand to pointer plus, first operand is not a pointer");
2784 return t;
2785 }
2786 /* Check to make sure the second operand is a ptrofftype. */
2787 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2788 {
2789 error ("invalid operand to pointer plus, second operand is not an "
2790 "integer type of appropriate width");
2791 return t;
2792 }
2793 /* FALLTHROUGH */
2794 case LT_EXPR:
2795 case LE_EXPR:
2796 case GT_EXPR:
2797 case GE_EXPR:
2798 case EQ_EXPR:
2799 case NE_EXPR:
2800 case UNORDERED_EXPR:
2801 case ORDERED_EXPR:
2802 case UNLT_EXPR:
2803 case UNLE_EXPR:
2804 case UNGT_EXPR:
2805 case UNGE_EXPR:
2806 case UNEQ_EXPR:
2807 case LTGT_EXPR:
2808 case MULT_EXPR:
2809 case TRUNC_DIV_EXPR:
2810 case CEIL_DIV_EXPR:
2811 case FLOOR_DIV_EXPR:
2812 case ROUND_DIV_EXPR:
2813 case TRUNC_MOD_EXPR:
2814 case CEIL_MOD_EXPR:
2815 case FLOOR_MOD_EXPR:
2816 case ROUND_MOD_EXPR:
2817 case RDIV_EXPR:
2818 case EXACT_DIV_EXPR:
2819 case MIN_EXPR:
2820 case MAX_EXPR:
2821 case LSHIFT_EXPR:
2822 case RSHIFT_EXPR:
2823 case LROTATE_EXPR:
2824 case RROTATE_EXPR:
2825 case BIT_IOR_EXPR:
2826 case BIT_XOR_EXPR:
2827 case BIT_AND_EXPR:
2828 CHECK_OP (0, "invalid operand to binary operator");
2829 CHECK_OP (1, "invalid operand to binary operator");
2830 break;
2831
2832 case CONSTRUCTOR:
2833 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2834 *walk_subtrees = 0;
2835 break;
2836
2837 case CASE_LABEL_EXPR:
2838 if (CASE_CHAIN (t))
2839 {
2840 error ("invalid CASE_CHAIN");
2841 return t;
2842 }
2843 break;
2844
2845 default:
2846 break;
2847 }
2848 return NULL;
2849
2850 #undef CHECK_OP
2851 }
2852
2853
2854 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2855 Returns true if there is an error, otherwise false. */
2856
2857 static bool
2858 verify_types_in_gimple_min_lval (tree expr)
2859 {
2860 tree op;
2861
2862 if (is_gimple_id (expr))
2863 return false;
2864
2865 if (TREE_CODE (expr) != TARGET_MEM_REF
2866 && TREE_CODE (expr) != MEM_REF)
2867 {
2868 error ("invalid expression for min lvalue");
2869 return true;
2870 }
2871
2872 /* TARGET_MEM_REFs are strange beasts. */
2873 if (TREE_CODE (expr) == TARGET_MEM_REF)
2874 return false;
2875
2876 op = TREE_OPERAND (expr, 0);
2877 if (!is_gimple_val (op))
2878 {
2879 error ("invalid operand in indirect reference");
2880 debug_generic_stmt (op);
2881 return true;
2882 }
2883 /* Memory references now generally can involve a value conversion. */
2884
2885 return false;
2886 }
2887
2888 /* Verify if EXPR is a valid GIMPLE reference expression. If
2889 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2890 if there is an error, otherwise false. */
2891
2892 static bool
2893 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2894 {
2895 while (handled_component_p (expr))
2896 {
2897 tree op = TREE_OPERAND (expr, 0);
2898
2899 if (TREE_CODE (expr) == ARRAY_REF
2900 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2901 {
2902 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2903 || (TREE_OPERAND (expr, 2)
2904 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2905 || (TREE_OPERAND (expr, 3)
2906 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2907 {
2908 error ("invalid operands to array reference");
2909 debug_generic_stmt (expr);
2910 return true;
2911 }
2912 }
2913
2914 /* Verify if the reference array element types are compatible. */
2915 if (TREE_CODE (expr) == ARRAY_REF
2916 && !useless_type_conversion_p (TREE_TYPE (expr),
2917 TREE_TYPE (TREE_TYPE (op))))
2918 {
2919 error ("type mismatch in array reference");
2920 debug_generic_stmt (TREE_TYPE (expr));
2921 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2922 return true;
2923 }
2924 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2925 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2926 TREE_TYPE (TREE_TYPE (op))))
2927 {
2928 error ("type mismatch in array range reference");
2929 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2930 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2931 return true;
2932 }
2933
2934 if ((TREE_CODE (expr) == REALPART_EXPR
2935 || TREE_CODE (expr) == IMAGPART_EXPR)
2936 && !useless_type_conversion_p (TREE_TYPE (expr),
2937 TREE_TYPE (TREE_TYPE (op))))
2938 {
2939 error ("type mismatch in real/imagpart reference");
2940 debug_generic_stmt (TREE_TYPE (expr));
2941 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2942 return true;
2943 }
2944
2945 if (TREE_CODE (expr) == COMPONENT_REF
2946 && !useless_type_conversion_p (TREE_TYPE (expr),
2947 TREE_TYPE (TREE_OPERAND (expr, 1))))
2948 {
2949 error ("type mismatch in component reference");
2950 debug_generic_stmt (TREE_TYPE (expr));
2951 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2952 return true;
2953 }
2954
2955 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2956 {
2957 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2958 that their operand is not an SSA name or an invariant when
2959 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2960 bug). Otherwise there is nothing to verify, gross mismatches at
2961 most invoke undefined behavior. */
2962 if (require_lvalue
2963 && (TREE_CODE (op) == SSA_NAME
2964 || is_gimple_min_invariant (op)))
2965 {
2966 error ("conversion of an SSA_NAME on the left hand side");
2967 debug_generic_stmt (expr);
2968 return true;
2969 }
2970 else if (TREE_CODE (op) == SSA_NAME
2971 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2972 {
2973 error ("conversion of register to a different size");
2974 debug_generic_stmt (expr);
2975 return true;
2976 }
2977 else if (!handled_component_p (op))
2978 return false;
2979 }
2980
2981 expr = op;
2982 }
2983
2984 if (TREE_CODE (expr) == MEM_REF)
2985 {
2986 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2987 {
2988 error ("invalid address operand in MEM_REF");
2989 debug_generic_stmt (expr);
2990 return true;
2991 }
2992 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2993 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2994 {
2995 error ("invalid offset operand in MEM_REF");
2996 debug_generic_stmt (expr);
2997 return true;
2998 }
2999 }
3000 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3001 {
3002 if (!TMR_BASE (expr)
3003 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3004 {
3005 error ("invalid address operand in TARGET_MEM_REF");
3006 return true;
3007 }
3008 if (!TMR_OFFSET (expr)
3009 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3010 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3011 {
3012 error ("invalid offset operand in TARGET_MEM_REF");
3013 debug_generic_stmt (expr);
3014 return true;
3015 }
3016 }
3017
3018 return ((require_lvalue || !is_gimple_min_invariant (expr))
3019 && verify_types_in_gimple_min_lval (expr));
3020 }
3021
3022 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3023 list of pointer-to types that is trivially convertible to DEST. */
3024
3025 static bool
3026 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3027 {
3028 tree src;
3029
3030 if (!TYPE_POINTER_TO (src_obj))
3031 return true;
3032
3033 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3034 if (useless_type_conversion_p (dest, src))
3035 return true;
3036
3037 return false;
3038 }
3039
3040 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3041 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3042
3043 static bool
3044 valid_fixed_convert_types_p (tree type1, tree type2)
3045 {
3046 return (FIXED_POINT_TYPE_P (type1)
3047 && (INTEGRAL_TYPE_P (type2)
3048 || SCALAR_FLOAT_TYPE_P (type2)
3049 || FIXED_POINT_TYPE_P (type2)));
3050 }
3051
3052 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3053 is a problem, otherwise false. */
3054
3055 static bool
3056 verify_gimple_call (gimple stmt)
3057 {
3058 tree fn = gimple_call_fn (stmt);
3059 tree fntype, fndecl;
3060 unsigned i;
3061
3062 if (gimple_call_internal_p (stmt))
3063 {
3064 if (fn)
3065 {
3066 error ("gimple call has two targets");
3067 debug_generic_stmt (fn);
3068 return true;
3069 }
3070 }
3071 else
3072 {
3073 if (!fn)
3074 {
3075 error ("gimple call has no target");
3076 return true;
3077 }
3078 }
3079
3080 if (fn && !is_gimple_call_addr (fn))
3081 {
3082 error ("invalid function in gimple call");
3083 debug_generic_stmt (fn);
3084 return true;
3085 }
3086
3087 if (fn
3088 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3089 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3090 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3091 {
3092 error ("non-function in gimple call");
3093 return true;
3094 }
3095
3096 fndecl = gimple_call_fndecl (stmt);
3097 if (fndecl
3098 && TREE_CODE (fndecl) == FUNCTION_DECL
3099 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3100 && !DECL_PURE_P (fndecl)
3101 && !TREE_READONLY (fndecl))
3102 {
3103 error ("invalid pure const state for function");
3104 return true;
3105 }
3106
3107 if (gimple_call_lhs (stmt)
3108 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3109 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3110 {
3111 error ("invalid LHS in gimple call");
3112 return true;
3113 }
3114
3115 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3116 {
3117 error ("LHS in noreturn call");
3118 return true;
3119 }
3120
3121 fntype = gimple_call_fntype (stmt);
3122 if (fntype
3123 && gimple_call_lhs (stmt)
3124 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3125 TREE_TYPE (fntype))
3126 /* ??? At least C++ misses conversions at assignments from
3127 void * call results.
3128 ??? Java is completely off. Especially with functions
3129 returning java.lang.Object.
3130 For now simply allow arbitrary pointer type conversions. */
3131 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3132 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3133 {
3134 error ("invalid conversion in gimple call");
3135 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3136 debug_generic_stmt (TREE_TYPE (fntype));
3137 return true;
3138 }
3139
3140 if (gimple_call_chain (stmt)
3141 && !is_gimple_val (gimple_call_chain (stmt)))
3142 {
3143 error ("invalid static chain in gimple call");
3144 debug_generic_stmt (gimple_call_chain (stmt));
3145 return true;
3146 }
3147
3148 /* If there is a static chain argument, this should not be an indirect
3149 call, and the decl should have DECL_STATIC_CHAIN set. */
3150 if (gimple_call_chain (stmt))
3151 {
3152 if (!gimple_call_fndecl (stmt))
3153 {
3154 error ("static chain in indirect gimple call");
3155 return true;
3156 }
3157 fn = TREE_OPERAND (fn, 0);
3158
3159 if (!DECL_STATIC_CHAIN (fn))
3160 {
3161 error ("static chain with function that doesn%'t use one");
3162 return true;
3163 }
3164 }
3165
3166 /* ??? The C frontend passes unpromoted arguments in case it
3167 didn't see a function declaration before the call. So for now
3168 leave the call arguments mostly unverified. Once we gimplify
3169 unit-at-a-time we have a chance to fix this. */
3170
3171 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3172 {
3173 tree arg = gimple_call_arg (stmt, i);
3174 if ((is_gimple_reg_type (TREE_TYPE (arg))
3175 && !is_gimple_val (arg))
3176 || (!is_gimple_reg_type (TREE_TYPE (arg))
3177 && !is_gimple_lvalue (arg)))
3178 {
3179 error ("invalid argument to gimple call");
3180 debug_generic_expr (arg);
3181 return true;
3182 }
3183 }
3184
3185 return false;
3186 }
3187
3188 /* Verifies the gimple comparison with the result type TYPE and
3189 the operands OP0 and OP1. */
3190
3191 static bool
3192 verify_gimple_comparison (tree type, tree op0, tree op1)
3193 {
3194 tree op0_type = TREE_TYPE (op0);
3195 tree op1_type = TREE_TYPE (op1);
3196
3197 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3198 {
3199 error ("invalid operands in gimple comparison");
3200 return true;
3201 }
3202
3203 /* For comparisons we do not have the operations type as the
3204 effective type the comparison is carried out in. Instead
3205 we require that either the first operand is trivially
3206 convertible into the second, or the other way around.
3207 Because we special-case pointers to void we allow
3208 comparisons of pointers with the same mode as well. */
3209 if (!useless_type_conversion_p (op0_type, op1_type)
3210 && !useless_type_conversion_p (op1_type, op0_type)
3211 && (!POINTER_TYPE_P (op0_type)
3212 || !POINTER_TYPE_P (op1_type)
3213 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3214 {
3215 error ("mismatching comparison operand types");
3216 debug_generic_expr (op0_type);
3217 debug_generic_expr (op1_type);
3218 return true;
3219 }
3220
3221 /* The resulting type of a comparison may be an effective boolean type. */
3222 if (INTEGRAL_TYPE_P (type)
3223 && (TREE_CODE (type) == BOOLEAN_TYPE
3224 || TYPE_PRECISION (type) == 1))
3225 ;
3226 /* Or an integer vector type with the same size and element count
3227 as the comparison operand types. */
3228 else if (TREE_CODE (type) == VECTOR_TYPE
3229 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3230 {
3231 if (TREE_CODE (op0_type) != VECTOR_TYPE
3232 || TREE_CODE (op1_type) != VECTOR_TYPE)
3233 {
3234 error ("non-vector operands in vector comparison");
3235 debug_generic_expr (op0_type);
3236 debug_generic_expr (op1_type);
3237 return true;
3238 }
3239
3240 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3241 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3242 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3243 {
3244 error ("invalid vector comparison resulting type");
3245 debug_generic_expr (type);
3246 return true;
3247 }
3248 }
3249 else
3250 {
3251 error ("bogus comparison result type");
3252 debug_generic_expr (type);
3253 return true;
3254 }
3255
3256 return false;
3257 }
3258
3259 /* Verify a gimple assignment statement STMT with an unary rhs.
3260 Returns true if anything is wrong. */
3261
3262 static bool
3263 verify_gimple_assign_unary (gimple stmt)
3264 {
3265 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3266 tree lhs = gimple_assign_lhs (stmt);
3267 tree lhs_type = TREE_TYPE (lhs);
3268 tree rhs1 = gimple_assign_rhs1 (stmt);
3269 tree rhs1_type = TREE_TYPE (rhs1);
3270
3271 if (!is_gimple_reg (lhs))
3272 {
3273 error ("non-register as LHS of unary operation");
3274 return true;
3275 }
3276
3277 if (!is_gimple_val (rhs1))
3278 {
3279 error ("invalid operand in unary operation");
3280 return true;
3281 }
3282
3283 /* First handle conversions. */
3284 switch (rhs_code)
3285 {
3286 CASE_CONVERT:
3287 {
3288 /* Allow conversions between integral types and pointers only if
3289 there is no sign or zero extension involved.
3290 For targets were the precision of ptrofftype doesn't match that
3291 of pointers we need to allow arbitrary conversions from and
3292 to ptrofftype. */
3293 if ((POINTER_TYPE_P (lhs_type)
3294 && INTEGRAL_TYPE_P (rhs1_type)
3295 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3296 || ptrofftype_p (rhs1_type)))
3297 || (POINTER_TYPE_P (rhs1_type)
3298 && INTEGRAL_TYPE_P (lhs_type)
3299 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3300 || ptrofftype_p (sizetype))))
3301 return false;
3302
3303 /* Allow conversion from integer to offset type and vice versa. */
3304 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3305 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3306 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3307 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3308 return false;
3309
3310 /* Otherwise assert we are converting between types of the
3311 same kind. */
3312 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3313 {
3314 error ("invalid types in nop conversion");
3315 debug_generic_expr (lhs_type);
3316 debug_generic_expr (rhs1_type);
3317 return true;
3318 }
3319
3320 return false;
3321 }
3322
3323 case ADDR_SPACE_CONVERT_EXPR:
3324 {
3325 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3326 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3327 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3328 {
3329 error ("invalid types in address space conversion");
3330 debug_generic_expr (lhs_type);
3331 debug_generic_expr (rhs1_type);
3332 return true;
3333 }
3334
3335 return false;
3336 }
3337
3338 case FIXED_CONVERT_EXPR:
3339 {
3340 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3341 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3342 {
3343 error ("invalid types in fixed-point conversion");
3344 debug_generic_expr (lhs_type);
3345 debug_generic_expr (rhs1_type);
3346 return true;
3347 }
3348
3349 return false;
3350 }
3351
3352 case FLOAT_EXPR:
3353 {
3354 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3355 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3356 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3357 {
3358 error ("invalid types in conversion to floating point");
3359 debug_generic_expr (lhs_type);
3360 debug_generic_expr (rhs1_type);
3361 return true;
3362 }
3363
3364 return false;
3365 }
3366
3367 case FIX_TRUNC_EXPR:
3368 {
3369 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3370 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3371 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3372 {
3373 error ("invalid types in conversion to integer");
3374 debug_generic_expr (lhs_type);
3375 debug_generic_expr (rhs1_type);
3376 return true;
3377 }
3378
3379 return false;
3380 }
3381
3382 case VEC_UNPACK_HI_EXPR:
3383 case VEC_UNPACK_LO_EXPR:
3384 case REDUC_MAX_EXPR:
3385 case REDUC_MIN_EXPR:
3386 case REDUC_PLUS_EXPR:
3387 case VEC_UNPACK_FLOAT_HI_EXPR:
3388 case VEC_UNPACK_FLOAT_LO_EXPR:
3389 /* FIXME. */
3390 return false;
3391
3392 case NEGATE_EXPR:
3393 case ABS_EXPR:
3394 case BIT_NOT_EXPR:
3395 case PAREN_EXPR:
3396 case NON_LVALUE_EXPR:
3397 case CONJ_EXPR:
3398 break;
3399
3400 default:
3401 gcc_unreachable ();
3402 }
3403
3404 /* For the remaining codes assert there is no conversion involved. */
3405 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3406 {
3407 error ("non-trivial conversion in unary operation");
3408 debug_generic_expr (lhs_type);
3409 debug_generic_expr (rhs1_type);
3410 return true;
3411 }
3412
3413 return false;
3414 }
3415
3416 /* Verify a gimple assignment statement STMT with a binary rhs.
3417 Returns true if anything is wrong. */
3418
3419 static bool
3420 verify_gimple_assign_binary (gimple stmt)
3421 {
3422 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3423 tree lhs = gimple_assign_lhs (stmt);
3424 tree lhs_type = TREE_TYPE (lhs);
3425 tree rhs1 = gimple_assign_rhs1 (stmt);
3426 tree rhs1_type = TREE_TYPE (rhs1);
3427 tree rhs2 = gimple_assign_rhs2 (stmt);
3428 tree rhs2_type = TREE_TYPE (rhs2);
3429
3430 if (!is_gimple_reg (lhs))
3431 {
3432 error ("non-register as LHS of binary operation");
3433 return true;
3434 }
3435
3436 if (!is_gimple_val (rhs1)
3437 || !is_gimple_val (rhs2))
3438 {
3439 error ("invalid operands in binary operation");
3440 return true;
3441 }
3442
3443 /* First handle operations that involve different types. */
3444 switch (rhs_code)
3445 {
3446 case COMPLEX_EXPR:
3447 {
3448 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3449 || !(INTEGRAL_TYPE_P (rhs1_type)
3450 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3451 || !(INTEGRAL_TYPE_P (rhs2_type)
3452 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3453 {
3454 error ("type mismatch in complex expression");
3455 debug_generic_expr (lhs_type);
3456 debug_generic_expr (rhs1_type);
3457 debug_generic_expr (rhs2_type);
3458 return true;
3459 }
3460
3461 return false;
3462 }
3463
3464 case LSHIFT_EXPR:
3465 case RSHIFT_EXPR:
3466 case LROTATE_EXPR:
3467 case RROTATE_EXPR:
3468 {
3469 /* Shifts and rotates are ok on integral types, fixed point
3470 types and integer vector types. */
3471 if ((!INTEGRAL_TYPE_P (rhs1_type)
3472 && !FIXED_POINT_TYPE_P (rhs1_type)
3473 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3474 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3475 || (!INTEGRAL_TYPE_P (rhs2_type)
3476 /* Vector shifts of vectors are also ok. */
3477 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3478 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3479 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3480 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3481 || !useless_type_conversion_p (lhs_type, rhs1_type))
3482 {
3483 error ("type mismatch in shift expression");
3484 debug_generic_expr (lhs_type);
3485 debug_generic_expr (rhs1_type);
3486 debug_generic_expr (rhs2_type);
3487 return true;
3488 }
3489
3490 return false;
3491 }
3492
3493 case VEC_LSHIFT_EXPR:
3494 case VEC_RSHIFT_EXPR:
3495 {
3496 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3497 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3498 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3499 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3500 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3501 || (!INTEGRAL_TYPE_P (rhs2_type)
3502 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3503 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3504 || !useless_type_conversion_p (lhs_type, rhs1_type))
3505 {
3506 error ("type mismatch in vector shift expression");
3507 debug_generic_expr (lhs_type);
3508 debug_generic_expr (rhs1_type);
3509 debug_generic_expr (rhs2_type);
3510 return true;
3511 }
3512 /* For shifting a vector of non-integral components we
3513 only allow shifting by a constant multiple of the element size. */
3514 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3515 && (TREE_CODE (rhs2) != INTEGER_CST
3516 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3517 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3518 {
3519 error ("non-element sized vector shift of floating point vector");
3520 return true;
3521 }
3522
3523 return false;
3524 }
3525
3526 case WIDEN_LSHIFT_EXPR:
3527 {
3528 if (!INTEGRAL_TYPE_P (lhs_type)
3529 || !INTEGRAL_TYPE_P (rhs1_type)
3530 || TREE_CODE (rhs2) != INTEGER_CST
3531 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3532 {
3533 error ("type mismatch in widening vector shift expression");
3534 debug_generic_expr (lhs_type);
3535 debug_generic_expr (rhs1_type);
3536 debug_generic_expr (rhs2_type);
3537 return true;
3538 }
3539
3540 return false;
3541 }
3542
3543 case VEC_WIDEN_LSHIFT_HI_EXPR:
3544 case VEC_WIDEN_LSHIFT_LO_EXPR:
3545 {
3546 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3547 || TREE_CODE (lhs_type) != VECTOR_TYPE
3548 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3549 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3550 || TREE_CODE (rhs2) != INTEGER_CST
3551 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3552 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3553 {
3554 error ("type mismatch in widening vector shift expression");
3555 debug_generic_expr (lhs_type);
3556 debug_generic_expr (rhs1_type);
3557 debug_generic_expr (rhs2_type);
3558 return true;
3559 }
3560
3561 return false;
3562 }
3563
3564 case PLUS_EXPR:
3565 case MINUS_EXPR:
3566 {
3567 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3568 ??? This just makes the checker happy and may not be what is
3569 intended. */
3570 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3571 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3572 {
3573 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3574 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3575 {
3576 error ("invalid non-vector operands to vector valued plus");
3577 return true;
3578 }
3579 lhs_type = TREE_TYPE (lhs_type);
3580 rhs1_type = TREE_TYPE (rhs1_type);
3581 rhs2_type = TREE_TYPE (rhs2_type);
3582 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3583 the pointer to 2nd place. */
3584 if (POINTER_TYPE_P (rhs2_type))
3585 {
3586 tree tem = rhs1_type;
3587 rhs1_type = rhs2_type;
3588 rhs2_type = tem;
3589 }
3590 goto do_pointer_plus_expr_check;
3591 }
3592 if (POINTER_TYPE_P (lhs_type)
3593 || POINTER_TYPE_P (rhs1_type)
3594 || POINTER_TYPE_P (rhs2_type))
3595 {
3596 error ("invalid (pointer) operands to plus/minus");
3597 return true;
3598 }
3599
3600 /* Continue with generic binary expression handling. */
3601 break;
3602 }
3603
3604 case POINTER_PLUS_EXPR:
3605 {
3606 do_pointer_plus_expr_check:
3607 if (!POINTER_TYPE_P (rhs1_type)
3608 || !useless_type_conversion_p (lhs_type, rhs1_type)
3609 || !ptrofftype_p (rhs2_type))
3610 {
3611 error ("type mismatch in pointer plus expression");
3612 debug_generic_stmt (lhs_type);
3613 debug_generic_stmt (rhs1_type);
3614 debug_generic_stmt (rhs2_type);
3615 return true;
3616 }
3617
3618 return false;
3619 }
3620
3621 case TRUTH_ANDIF_EXPR:
3622 case TRUTH_ORIF_EXPR:
3623 case TRUTH_AND_EXPR:
3624 case TRUTH_OR_EXPR:
3625 case TRUTH_XOR_EXPR:
3626
3627 gcc_unreachable ();
3628
3629 case LT_EXPR:
3630 case LE_EXPR:
3631 case GT_EXPR:
3632 case GE_EXPR:
3633 case EQ_EXPR:
3634 case NE_EXPR:
3635 case UNORDERED_EXPR:
3636 case ORDERED_EXPR:
3637 case UNLT_EXPR:
3638 case UNLE_EXPR:
3639 case UNGT_EXPR:
3640 case UNGE_EXPR:
3641 case UNEQ_EXPR:
3642 case LTGT_EXPR:
3643 /* Comparisons are also binary, but the result type is not
3644 connected to the operand types. */
3645 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3646
3647 case WIDEN_MULT_EXPR:
3648 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3649 return true;
3650 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3651 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3652
3653 case WIDEN_SUM_EXPR:
3654 case VEC_WIDEN_MULT_HI_EXPR:
3655 case VEC_WIDEN_MULT_LO_EXPR:
3656 case VEC_PACK_TRUNC_EXPR:
3657 case VEC_PACK_SAT_EXPR:
3658 case VEC_PACK_FIX_TRUNC_EXPR:
3659 case VEC_EXTRACT_EVEN_EXPR:
3660 case VEC_EXTRACT_ODD_EXPR:
3661 case VEC_INTERLEAVE_HIGH_EXPR:
3662 case VEC_INTERLEAVE_LOW_EXPR:
3663 /* FIXME. */
3664 return false;
3665
3666 case MULT_EXPR:
3667 case TRUNC_DIV_EXPR:
3668 case CEIL_DIV_EXPR:
3669 case FLOOR_DIV_EXPR:
3670 case ROUND_DIV_EXPR:
3671 case TRUNC_MOD_EXPR:
3672 case CEIL_MOD_EXPR:
3673 case FLOOR_MOD_EXPR:
3674 case ROUND_MOD_EXPR:
3675 case RDIV_EXPR:
3676 case EXACT_DIV_EXPR:
3677 case MIN_EXPR:
3678 case MAX_EXPR:
3679 case BIT_IOR_EXPR:
3680 case BIT_XOR_EXPR:
3681 case BIT_AND_EXPR:
3682 /* Continue with generic binary expression handling. */
3683 break;
3684
3685 default:
3686 gcc_unreachable ();
3687 }
3688
3689 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3690 || !useless_type_conversion_p (lhs_type, rhs2_type))
3691 {
3692 error ("type mismatch in binary expression");
3693 debug_generic_stmt (lhs_type);
3694 debug_generic_stmt (rhs1_type);
3695 debug_generic_stmt (rhs2_type);
3696 return true;
3697 }
3698
3699 return false;
3700 }
3701
3702 /* Verify a gimple assignment statement STMT with a ternary rhs.
3703 Returns true if anything is wrong. */
3704
3705 static bool
3706 verify_gimple_assign_ternary (gimple stmt)
3707 {
3708 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3709 tree lhs = gimple_assign_lhs (stmt);
3710 tree lhs_type = TREE_TYPE (lhs);
3711 tree rhs1 = gimple_assign_rhs1 (stmt);
3712 tree rhs1_type = TREE_TYPE (rhs1);
3713 tree rhs2 = gimple_assign_rhs2 (stmt);
3714 tree rhs2_type = TREE_TYPE (rhs2);
3715 tree rhs3 = gimple_assign_rhs3 (stmt);
3716 tree rhs3_type = TREE_TYPE (rhs3);
3717
3718 if (!is_gimple_reg (lhs))
3719 {
3720 error ("non-register as LHS of ternary operation");
3721 return true;
3722 }
3723
3724 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3725 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3726 || !is_gimple_val (rhs2)
3727 || !is_gimple_val (rhs3))
3728 {
3729 error ("invalid operands in ternary operation");
3730 return true;
3731 }
3732
3733 /* First handle operations that involve different types. */
3734 switch (rhs_code)
3735 {
3736 case WIDEN_MULT_PLUS_EXPR:
3737 case WIDEN_MULT_MINUS_EXPR:
3738 if ((!INTEGRAL_TYPE_P (rhs1_type)
3739 && !FIXED_POINT_TYPE_P (rhs1_type))
3740 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3741 || !useless_type_conversion_p (lhs_type, rhs3_type)
3742 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3743 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3744 {
3745 error ("type mismatch in widening multiply-accumulate expression");
3746 debug_generic_expr (lhs_type);
3747 debug_generic_expr (rhs1_type);
3748 debug_generic_expr (rhs2_type);
3749 debug_generic_expr (rhs3_type);
3750 return true;
3751 }
3752 break;
3753
3754 case FMA_EXPR:
3755 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3756 || !useless_type_conversion_p (lhs_type, rhs2_type)
3757 || !useless_type_conversion_p (lhs_type, rhs3_type))
3758 {
3759 error ("type mismatch in fused multiply-add expression");
3760 debug_generic_expr (lhs_type);
3761 debug_generic_expr (rhs1_type);
3762 debug_generic_expr (rhs2_type);
3763 debug_generic_expr (rhs3_type);
3764 return true;
3765 }
3766 break;
3767
3768 case COND_EXPR:
3769 case VEC_COND_EXPR:
3770 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3771 || !useless_type_conversion_p (lhs_type, rhs3_type))
3772 {
3773 error ("type mismatch in conditional expression");
3774 debug_generic_expr (lhs_type);
3775 debug_generic_expr (rhs2_type);
3776 debug_generic_expr (rhs3_type);
3777 return true;
3778 }
3779 break;
3780
3781 case VEC_PERM_EXPR:
3782 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3783 || !useless_type_conversion_p (lhs_type, rhs2_type))
3784 {
3785 error ("type mismatch in vector permute expression");
3786 debug_generic_expr (lhs_type);
3787 debug_generic_expr (rhs1_type);
3788 debug_generic_expr (rhs2_type);
3789 debug_generic_expr (rhs3_type);
3790 return true;
3791 }
3792
3793 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3794 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3795 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3796 {
3797 error ("vector types expected in vector permute expression");
3798 debug_generic_expr (lhs_type);
3799 debug_generic_expr (rhs1_type);
3800 debug_generic_expr (rhs2_type);
3801 debug_generic_expr (rhs3_type);
3802 return true;
3803 }
3804
3805 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3806 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3807 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3808 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3809 != TYPE_VECTOR_SUBPARTS (lhs_type))
3810 {
3811 error ("vectors with different element number found "
3812 "in vector permute expression");
3813 debug_generic_expr (lhs_type);
3814 debug_generic_expr (rhs1_type);
3815 debug_generic_expr (rhs2_type);
3816 debug_generic_expr (rhs3_type);
3817 return true;
3818 }
3819
3820 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3821 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3822 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3823 {
3824 error ("invalid mask type in vector permute expression");
3825 debug_generic_expr (lhs_type);
3826 debug_generic_expr (rhs1_type);
3827 debug_generic_expr (rhs2_type);
3828 debug_generic_expr (rhs3_type);
3829 return true;
3830 }
3831
3832 return false;
3833
3834 case DOT_PROD_EXPR:
3835 case REALIGN_LOAD_EXPR:
3836 /* FIXME. */
3837 return false;
3838
3839 default:
3840 gcc_unreachable ();
3841 }
3842 return false;
3843 }
3844
3845 /* Verify a gimple assignment statement STMT with a single rhs.
3846 Returns true if anything is wrong. */
3847
3848 static bool
3849 verify_gimple_assign_single (gimple stmt)
3850 {
3851 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3852 tree lhs = gimple_assign_lhs (stmt);
3853 tree lhs_type = TREE_TYPE (lhs);
3854 tree rhs1 = gimple_assign_rhs1 (stmt);
3855 tree rhs1_type = TREE_TYPE (rhs1);
3856 bool res = false;
3857
3858 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3859 {
3860 error ("non-trivial conversion at assignment");
3861 debug_generic_expr (lhs_type);
3862 debug_generic_expr (rhs1_type);
3863 return true;
3864 }
3865
3866 if (handled_component_p (lhs))
3867 res |= verify_types_in_gimple_reference (lhs, true);
3868
3869 /* Special codes we cannot handle via their class. */
3870 switch (rhs_code)
3871 {
3872 case ADDR_EXPR:
3873 {
3874 tree op = TREE_OPERAND (rhs1, 0);
3875 if (!is_gimple_addressable (op))
3876 {
3877 error ("invalid operand in unary expression");
3878 return true;
3879 }
3880
3881 /* Technically there is no longer a need for matching types, but
3882 gimple hygiene asks for this check. In LTO we can end up
3883 combining incompatible units and thus end up with addresses
3884 of globals that change their type to a common one. */
3885 if (!in_lto_p
3886 && !types_compatible_p (TREE_TYPE (op),
3887 TREE_TYPE (TREE_TYPE (rhs1)))
3888 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3889 TREE_TYPE (op)))
3890 {
3891 error ("type mismatch in address expression");
3892 debug_generic_stmt (TREE_TYPE (rhs1));
3893 debug_generic_stmt (TREE_TYPE (op));
3894 return true;
3895 }
3896
3897 return verify_types_in_gimple_reference (op, true);
3898 }
3899
3900 /* tcc_reference */
3901 case INDIRECT_REF:
3902 error ("INDIRECT_REF in gimple IL");
3903 return true;
3904
3905 case COMPONENT_REF:
3906 case BIT_FIELD_REF:
3907 case ARRAY_REF:
3908 case ARRAY_RANGE_REF:
3909 case VIEW_CONVERT_EXPR:
3910 case REALPART_EXPR:
3911 case IMAGPART_EXPR:
3912 case TARGET_MEM_REF:
3913 case MEM_REF:
3914 if (!is_gimple_reg (lhs)
3915 && is_gimple_reg_type (TREE_TYPE (lhs)))
3916 {
3917 error ("invalid rhs for gimple memory store");
3918 debug_generic_stmt (lhs);
3919 debug_generic_stmt (rhs1);
3920 return true;
3921 }
3922 return res || verify_types_in_gimple_reference (rhs1, false);
3923
3924 /* tcc_constant */
3925 case SSA_NAME:
3926 case INTEGER_CST:
3927 case REAL_CST:
3928 case FIXED_CST:
3929 case COMPLEX_CST:
3930 case VECTOR_CST:
3931 case STRING_CST:
3932 return res;
3933
3934 /* tcc_declaration */
3935 case CONST_DECL:
3936 return res;
3937 case VAR_DECL:
3938 case PARM_DECL:
3939 if (!is_gimple_reg (lhs)
3940 && !is_gimple_reg (rhs1)
3941 && is_gimple_reg_type (TREE_TYPE (lhs)))
3942 {
3943 error ("invalid rhs for gimple memory store");
3944 debug_generic_stmt (lhs);
3945 debug_generic_stmt (rhs1);
3946 return true;
3947 }
3948 return res;
3949
3950 case CONSTRUCTOR:
3951 case OBJ_TYPE_REF:
3952 case ASSERT_EXPR:
3953 case WITH_SIZE_EXPR:
3954 /* FIXME. */
3955 return res;
3956
3957 default:;
3958 }
3959
3960 return res;
3961 }
3962
3963 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3964 is a problem, otherwise false. */
3965
3966 static bool
3967 verify_gimple_assign (gimple stmt)
3968 {
3969 switch (gimple_assign_rhs_class (stmt))
3970 {
3971 case GIMPLE_SINGLE_RHS:
3972 return verify_gimple_assign_single (stmt);
3973
3974 case GIMPLE_UNARY_RHS:
3975 return verify_gimple_assign_unary (stmt);
3976
3977 case GIMPLE_BINARY_RHS:
3978 return verify_gimple_assign_binary (stmt);
3979
3980 case GIMPLE_TERNARY_RHS:
3981 return verify_gimple_assign_ternary (stmt);
3982
3983 default:
3984 gcc_unreachable ();
3985 }
3986 }
3987
3988 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3989 is a problem, otherwise false. */
3990
3991 static bool
3992 verify_gimple_return (gimple stmt)
3993 {
3994 tree op = gimple_return_retval (stmt);
3995 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3996
3997 /* We cannot test for present return values as we do not fix up missing
3998 return values from the original source. */
3999 if (op == NULL)
4000 return false;
4001
4002 if (!is_gimple_val (op)
4003 && TREE_CODE (op) != RESULT_DECL)
4004 {
4005 error ("invalid operand in return statement");
4006 debug_generic_stmt (op);
4007 return true;
4008 }
4009
4010 if ((TREE_CODE (op) == RESULT_DECL
4011 && DECL_BY_REFERENCE (op))
4012 || (TREE_CODE (op) == SSA_NAME
4013 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4014 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4015 op = TREE_TYPE (op);
4016
4017 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4018 {
4019 error ("invalid conversion in return statement");
4020 debug_generic_stmt (restype);
4021 debug_generic_stmt (TREE_TYPE (op));
4022 return true;
4023 }
4024
4025 return false;
4026 }
4027
4028
4029 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4030 is a problem, otherwise false. */
4031
4032 static bool
4033 verify_gimple_goto (gimple stmt)
4034 {
4035 tree dest = gimple_goto_dest (stmt);
4036
4037 /* ??? We have two canonical forms of direct goto destinations, a
4038 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4039 if (TREE_CODE (dest) != LABEL_DECL
4040 && (!is_gimple_val (dest)
4041 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4042 {
4043 error ("goto destination is neither a label nor a pointer");
4044 return true;
4045 }
4046
4047 return false;
4048 }
4049
4050 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4051 is a problem, otherwise false. */
4052
4053 static bool
4054 verify_gimple_switch (gimple stmt)
4055 {
4056 if (!is_gimple_val (gimple_switch_index (stmt)))
4057 {
4058 error ("invalid operand to switch statement");
4059 debug_generic_stmt (gimple_switch_index (stmt));
4060 return true;
4061 }
4062
4063 return false;
4064 }
4065
4066
4067 /* Verify a gimple debug statement STMT.
4068 Returns true if anything is wrong. */
4069
4070 static bool
4071 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4072 {
4073 /* There isn't much that could be wrong in a gimple debug stmt. A
4074 gimple debug bind stmt, for example, maps a tree, that's usually
4075 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4076 component or member of an aggregate type, to another tree, that
4077 can be an arbitrary expression. These stmts expand into debug
4078 insns, and are converted to debug notes by var-tracking.c. */
4079 return false;
4080 }
4081
4082 /* Verify a gimple label statement STMT.
4083 Returns true if anything is wrong. */
4084
4085 static bool
4086 verify_gimple_label (gimple stmt)
4087 {
4088 tree decl = gimple_label_label (stmt);
4089 int uid;
4090 bool err = false;
4091
4092 if (TREE_CODE (decl) != LABEL_DECL)
4093 return true;
4094
4095 uid = LABEL_DECL_UID (decl);
4096 if (cfun->cfg
4097 && (uid == -1
4098 || VEC_index (basic_block,
4099 label_to_block_map, uid) != gimple_bb (stmt)))
4100 {
4101 error ("incorrect entry in label_to_block_map");
4102 err |= true;
4103 }
4104
4105 uid = EH_LANDING_PAD_NR (decl);
4106 if (uid)
4107 {
4108 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4109 if (decl != lp->post_landing_pad)
4110 {
4111 error ("incorrect setting of landing pad number");
4112 err |= true;
4113 }
4114 }
4115
4116 return err;
4117 }
4118
4119 /* Verify the GIMPLE statement STMT. Returns true if there is an
4120 error, otherwise false. */
4121
4122 static bool
4123 verify_gimple_stmt (gimple stmt)
4124 {
4125 switch (gimple_code (stmt))
4126 {
4127 case GIMPLE_ASSIGN:
4128 return verify_gimple_assign (stmt);
4129
4130 case GIMPLE_LABEL:
4131 return verify_gimple_label (stmt);
4132
4133 case GIMPLE_CALL:
4134 return verify_gimple_call (stmt);
4135
4136 case GIMPLE_COND:
4137 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4138 {
4139 error ("invalid comparison code in gimple cond");
4140 return true;
4141 }
4142 if (!(!gimple_cond_true_label (stmt)
4143 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4144 || !(!gimple_cond_false_label (stmt)
4145 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4146 {
4147 error ("invalid labels in gimple cond");
4148 return true;
4149 }
4150
4151 return verify_gimple_comparison (boolean_type_node,
4152 gimple_cond_lhs (stmt),
4153 gimple_cond_rhs (stmt));
4154
4155 case GIMPLE_GOTO:
4156 return verify_gimple_goto (stmt);
4157
4158 case GIMPLE_SWITCH:
4159 return verify_gimple_switch (stmt);
4160
4161 case GIMPLE_RETURN:
4162 return verify_gimple_return (stmt);
4163
4164 case GIMPLE_ASM:
4165 return false;
4166
4167 /* Tuples that do not have tree operands. */
4168 case GIMPLE_NOP:
4169 case GIMPLE_PREDICT:
4170 case GIMPLE_RESX:
4171 case GIMPLE_EH_DISPATCH:
4172 case GIMPLE_EH_MUST_NOT_THROW:
4173 return false;
4174
4175 CASE_GIMPLE_OMP:
4176 /* OpenMP directives are validated by the FE and never operated
4177 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4178 non-gimple expressions when the main index variable has had
4179 its address taken. This does not affect the loop itself
4180 because the header of an GIMPLE_OMP_FOR is merely used to determine
4181 how to setup the parallel iteration. */
4182 return false;
4183
4184 case GIMPLE_DEBUG:
4185 return verify_gimple_debug (stmt);
4186
4187 default:
4188 gcc_unreachable ();
4189 }
4190 }
4191
4192 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4193 and false otherwise. */
4194
4195 static bool
4196 verify_gimple_phi (gimple phi)
4197 {
4198 bool err = false;
4199 unsigned i;
4200 tree phi_result = gimple_phi_result (phi);
4201 bool virtual_p;
4202
4203 if (!phi_result)
4204 {
4205 error ("invalid PHI result");
4206 return true;
4207 }
4208
4209 virtual_p = !is_gimple_reg (phi_result);
4210 if (TREE_CODE (phi_result) != SSA_NAME
4211 || (virtual_p
4212 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4213 {
4214 error ("invalid PHI result");
4215 err = true;
4216 }
4217
4218 for (i = 0; i < gimple_phi_num_args (phi); i++)
4219 {
4220 tree t = gimple_phi_arg_def (phi, i);
4221
4222 if (!t)
4223 {
4224 error ("missing PHI def");
4225 err |= true;
4226 continue;
4227 }
4228 /* Addressable variables do have SSA_NAMEs but they
4229 are not considered gimple values. */
4230 else if ((TREE_CODE (t) == SSA_NAME
4231 && virtual_p != !is_gimple_reg (t))
4232 || (virtual_p
4233 && (TREE_CODE (t) != SSA_NAME
4234 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4235 || (!virtual_p
4236 && !is_gimple_val (t)))
4237 {
4238 error ("invalid PHI argument");
4239 debug_generic_expr (t);
4240 err |= true;
4241 }
4242 #ifdef ENABLE_TYPES_CHECKING
4243 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4244 {
4245 error ("incompatible types in PHI argument %u", i);
4246 debug_generic_stmt (TREE_TYPE (phi_result));
4247 debug_generic_stmt (TREE_TYPE (t));
4248 err |= true;
4249 }
4250 #endif
4251 }
4252
4253 return err;
4254 }
4255
4256 /* Verify the GIMPLE statements inside the sequence STMTS. */
4257
4258 static bool
4259 verify_gimple_in_seq_2 (gimple_seq stmts)
4260 {
4261 gimple_stmt_iterator ittr;
4262 bool err = false;
4263
4264 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4265 {
4266 gimple stmt = gsi_stmt (ittr);
4267
4268 switch (gimple_code (stmt))
4269 {
4270 case GIMPLE_BIND:
4271 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4272 break;
4273
4274 case GIMPLE_TRY:
4275 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4276 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4277 break;
4278
4279 case GIMPLE_EH_FILTER:
4280 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4281 break;
4282
4283 case GIMPLE_CATCH:
4284 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4285 break;
4286
4287 default:
4288 {
4289 bool err2 = verify_gimple_stmt (stmt);
4290 if (err2)
4291 debug_gimple_stmt (stmt);
4292 err |= err2;
4293 }
4294 }
4295 }
4296
4297 return err;
4298 }
4299
4300
4301 /* Verify the GIMPLE statements inside the statement list STMTS. */
4302
4303 DEBUG_FUNCTION void
4304 verify_gimple_in_seq (gimple_seq stmts)
4305 {
4306 timevar_push (TV_TREE_STMT_VERIFY);
4307 if (verify_gimple_in_seq_2 (stmts))
4308 internal_error ("verify_gimple failed");
4309 timevar_pop (TV_TREE_STMT_VERIFY);
4310 }
4311
4312 /* Return true when the T can be shared. */
4313
4314 bool
4315 tree_node_can_be_shared (tree t)
4316 {
4317 if (IS_TYPE_OR_DECL_P (t)
4318 || is_gimple_min_invariant (t)
4319 || TREE_CODE (t) == SSA_NAME
4320 || t == error_mark_node
4321 || TREE_CODE (t) == IDENTIFIER_NODE)
4322 return true;
4323
4324 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4325 return true;
4326
4327 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4328 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4329 || TREE_CODE (t) == COMPONENT_REF
4330 || TREE_CODE (t) == REALPART_EXPR
4331 || TREE_CODE (t) == IMAGPART_EXPR)
4332 t = TREE_OPERAND (t, 0);
4333
4334 if (DECL_P (t))
4335 return true;
4336
4337 return false;
4338 }
4339
4340 /* Called via walk_gimple_stmt. Verify tree sharing. */
4341
4342 static tree
4343 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4344 {
4345 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4346 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4347
4348 if (tree_node_can_be_shared (*tp))
4349 {
4350 *walk_subtrees = false;
4351 return NULL;
4352 }
4353
4354 if (pointer_set_insert (visited, *tp))
4355 return *tp;
4356
4357 return NULL;
4358 }
4359
4360 static bool eh_error_found;
4361 static int
4362 verify_eh_throw_stmt_node (void **slot, void *data)
4363 {
4364 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4365 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4366
4367 if (!pointer_set_contains (visited, node->stmt))
4368 {
4369 error ("dead STMT in EH table");
4370 debug_gimple_stmt (node->stmt);
4371 eh_error_found = true;
4372 }
4373 return 1;
4374 }
4375
4376 /* Verify the GIMPLE statements in the CFG of FN. */
4377
4378 DEBUG_FUNCTION void
4379 verify_gimple_in_cfg (struct function *fn)
4380 {
4381 basic_block bb;
4382 bool err = false;
4383 struct pointer_set_t *visited, *visited_stmts;
4384
4385 timevar_push (TV_TREE_STMT_VERIFY);
4386 visited = pointer_set_create ();
4387 visited_stmts = pointer_set_create ();
4388
4389 FOR_EACH_BB_FN (bb, fn)
4390 {
4391 gimple_stmt_iterator gsi;
4392
4393 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4394 {
4395 gimple phi = gsi_stmt (gsi);
4396 bool err2 = false;
4397 unsigned i;
4398
4399 pointer_set_insert (visited_stmts, phi);
4400
4401 if (gimple_bb (phi) != bb)
4402 {
4403 error ("gimple_bb (phi) is set to a wrong basic block");
4404 err2 = true;
4405 }
4406
4407 err2 |= verify_gimple_phi (phi);
4408
4409 for (i = 0; i < gimple_phi_num_args (phi); i++)
4410 {
4411 tree arg = gimple_phi_arg_def (phi, i);
4412 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4413 if (addr)
4414 {
4415 error ("incorrect sharing of tree nodes");
4416 debug_generic_expr (addr);
4417 err2 |= true;
4418 }
4419 }
4420
4421 if (err2)
4422 debug_gimple_stmt (phi);
4423 err |= err2;
4424 }
4425
4426 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4427 {
4428 gimple stmt = gsi_stmt (gsi);
4429 bool err2 = false;
4430 struct walk_stmt_info wi;
4431 tree addr;
4432 int lp_nr;
4433
4434 pointer_set_insert (visited_stmts, stmt);
4435
4436 if (gimple_bb (stmt) != bb)
4437 {
4438 error ("gimple_bb (stmt) is set to a wrong basic block");
4439 err2 = true;
4440 }
4441
4442 err2 |= verify_gimple_stmt (stmt);
4443
4444 memset (&wi, 0, sizeof (wi));
4445 wi.info = (void *) visited;
4446 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4447 if (addr)
4448 {
4449 error ("incorrect sharing of tree nodes");
4450 debug_generic_expr (addr);
4451 err2 |= true;
4452 }
4453
4454 /* ??? Instead of not checking these stmts at all the walker
4455 should know its context via wi. */
4456 if (!is_gimple_debug (stmt)
4457 && !is_gimple_omp (stmt))
4458 {
4459 memset (&wi, 0, sizeof (wi));
4460 addr = walk_gimple_op (stmt, verify_expr, &wi);
4461 if (addr)
4462 {
4463 debug_generic_expr (addr);
4464 inform (gimple_location (stmt), "in statement");
4465 err2 |= true;
4466 }
4467 }
4468
4469 /* If the statement is marked as part of an EH region, then it is
4470 expected that the statement could throw. Verify that when we
4471 have optimizations that simplify statements such that we prove
4472 that they cannot throw, that we update other data structures
4473 to match. */
4474 lp_nr = lookup_stmt_eh_lp (stmt);
4475 if (lp_nr != 0)
4476 {
4477 if (!stmt_could_throw_p (stmt))
4478 {
4479 error ("statement marked for throw, but doesn%'t");
4480 err2 |= true;
4481 }
4482 else if (lp_nr > 0
4483 && !gsi_one_before_end_p (gsi)
4484 && stmt_can_throw_internal (stmt))
4485 {
4486 error ("statement marked for throw in middle of block");
4487 err2 |= true;
4488 }
4489 }
4490
4491 if (err2)
4492 debug_gimple_stmt (stmt);
4493 err |= err2;
4494 }
4495 }
4496
4497 eh_error_found = false;
4498 if (get_eh_throw_stmt_table (cfun))
4499 htab_traverse (get_eh_throw_stmt_table (cfun),
4500 verify_eh_throw_stmt_node,
4501 visited_stmts);
4502
4503 if (err || eh_error_found)
4504 internal_error ("verify_gimple failed");
4505
4506 pointer_set_destroy (visited);
4507 pointer_set_destroy (visited_stmts);
4508 verify_histograms ();
4509 timevar_pop (TV_TREE_STMT_VERIFY);
4510 }
4511
4512
4513 /* Verifies that the flow information is OK. */
4514
4515 static int
4516 gimple_verify_flow_info (void)
4517 {
4518 int err = 0;
4519 basic_block bb;
4520 gimple_stmt_iterator gsi;
4521 gimple stmt;
4522 edge e;
4523 edge_iterator ei;
4524
4525 if (ENTRY_BLOCK_PTR->il.gimple)
4526 {
4527 error ("ENTRY_BLOCK has IL associated with it");
4528 err = 1;
4529 }
4530
4531 if (EXIT_BLOCK_PTR->il.gimple)
4532 {
4533 error ("EXIT_BLOCK has IL associated with it");
4534 err = 1;
4535 }
4536
4537 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4538 if (e->flags & EDGE_FALLTHRU)
4539 {
4540 error ("fallthru to exit from bb %d", e->src->index);
4541 err = 1;
4542 }
4543
4544 FOR_EACH_BB (bb)
4545 {
4546 bool found_ctrl_stmt = false;
4547
4548 stmt = NULL;
4549
4550 /* Skip labels on the start of basic block. */
4551 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4552 {
4553 tree label;
4554 gimple prev_stmt = stmt;
4555
4556 stmt = gsi_stmt (gsi);
4557
4558 if (gimple_code (stmt) != GIMPLE_LABEL)
4559 break;
4560
4561 label = gimple_label_label (stmt);
4562 if (prev_stmt && DECL_NONLOCAL (label))
4563 {
4564 error ("nonlocal label ");
4565 print_generic_expr (stderr, label, 0);
4566 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4567 bb->index);
4568 err = 1;
4569 }
4570
4571 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4572 {
4573 error ("EH landing pad label ");
4574 print_generic_expr (stderr, label, 0);
4575 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4576 bb->index);
4577 err = 1;
4578 }
4579
4580 if (label_to_block (label) != bb)
4581 {
4582 error ("label ");
4583 print_generic_expr (stderr, label, 0);
4584 fprintf (stderr, " to block does not match in bb %d",
4585 bb->index);
4586 err = 1;
4587 }
4588
4589 if (decl_function_context (label) != current_function_decl)
4590 {
4591 error ("label ");
4592 print_generic_expr (stderr, label, 0);
4593 fprintf (stderr, " has incorrect context in bb %d",
4594 bb->index);
4595 err = 1;
4596 }
4597 }
4598
4599 /* Verify that body of basic block BB is free of control flow. */
4600 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4601 {
4602 gimple stmt = gsi_stmt (gsi);
4603
4604 if (found_ctrl_stmt)
4605 {
4606 error ("control flow in the middle of basic block %d",
4607 bb->index);
4608 err = 1;
4609 }
4610
4611 if (stmt_ends_bb_p (stmt))
4612 found_ctrl_stmt = true;
4613
4614 if (gimple_code (stmt) == GIMPLE_LABEL)
4615 {
4616 error ("label ");
4617 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4618 fprintf (stderr, " in the middle of basic block %d", bb->index);
4619 err = 1;
4620 }
4621 }
4622
4623 gsi = gsi_last_bb (bb);
4624 if (gsi_end_p (gsi))
4625 continue;
4626
4627 stmt = gsi_stmt (gsi);
4628
4629 if (gimple_code (stmt) == GIMPLE_LABEL)
4630 continue;
4631
4632 err |= verify_eh_edges (stmt);
4633
4634 if (is_ctrl_stmt (stmt))
4635 {
4636 FOR_EACH_EDGE (e, ei, bb->succs)
4637 if (e->flags & EDGE_FALLTHRU)
4638 {
4639 error ("fallthru edge after a control statement in bb %d",
4640 bb->index);
4641 err = 1;
4642 }
4643 }
4644
4645 if (gimple_code (stmt) != GIMPLE_COND)
4646 {
4647 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4648 after anything else but if statement. */
4649 FOR_EACH_EDGE (e, ei, bb->succs)
4650 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4651 {
4652 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4653 bb->index);
4654 err = 1;
4655 }
4656 }
4657
4658 switch (gimple_code (stmt))
4659 {
4660 case GIMPLE_COND:
4661 {
4662 edge true_edge;
4663 edge false_edge;
4664
4665 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4666
4667 if (!true_edge
4668 || !false_edge
4669 || !(true_edge->flags & EDGE_TRUE_VALUE)
4670 || !(false_edge->flags & EDGE_FALSE_VALUE)
4671 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4672 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4673 || EDGE_COUNT (bb->succs) >= 3)
4674 {
4675 error ("wrong outgoing edge flags at end of bb %d",
4676 bb->index);
4677 err = 1;
4678 }
4679 }
4680 break;
4681
4682 case GIMPLE_GOTO:
4683 if (simple_goto_p (stmt))
4684 {
4685 error ("explicit goto at end of bb %d", bb->index);
4686 err = 1;
4687 }
4688 else
4689 {
4690 /* FIXME. We should double check that the labels in the
4691 destination blocks have their address taken. */
4692 FOR_EACH_EDGE (e, ei, bb->succs)
4693 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4694 | EDGE_FALSE_VALUE))
4695 || !(e->flags & EDGE_ABNORMAL))
4696 {
4697 error ("wrong outgoing edge flags at end of bb %d",
4698 bb->index);
4699 err = 1;
4700 }
4701 }
4702 break;
4703
4704 case GIMPLE_CALL:
4705 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4706 break;
4707 /* ... fallthru ... */
4708 case GIMPLE_RETURN:
4709 if (!single_succ_p (bb)
4710 || (single_succ_edge (bb)->flags
4711 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4712 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4713 {
4714 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4715 err = 1;
4716 }
4717 if (single_succ (bb) != EXIT_BLOCK_PTR)
4718 {
4719 error ("return edge does not point to exit in bb %d",
4720 bb->index);
4721 err = 1;
4722 }
4723 break;
4724
4725 case GIMPLE_SWITCH:
4726 {
4727 tree prev;
4728 edge e;
4729 size_t i, n;
4730
4731 n = gimple_switch_num_labels (stmt);
4732
4733 /* Mark all the destination basic blocks. */
4734 for (i = 0; i < n; ++i)
4735 {
4736 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4737 basic_block label_bb = label_to_block (lab);
4738 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4739 label_bb->aux = (void *)1;
4740 }
4741
4742 /* Verify that the case labels are sorted. */
4743 prev = gimple_switch_label (stmt, 0);
4744 for (i = 1; i < n; ++i)
4745 {
4746 tree c = gimple_switch_label (stmt, i);
4747 if (!CASE_LOW (c))
4748 {
4749 error ("found default case not at the start of "
4750 "case vector");
4751 err = 1;
4752 continue;
4753 }
4754 if (CASE_LOW (prev)
4755 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4756 {
4757 error ("case labels not sorted: ");
4758 print_generic_expr (stderr, prev, 0);
4759 fprintf (stderr," is greater than ");
4760 print_generic_expr (stderr, c, 0);
4761 fprintf (stderr," but comes before it.\n");
4762 err = 1;
4763 }
4764 prev = c;
4765 }
4766 /* VRP will remove the default case if it can prove it will
4767 never be executed. So do not verify there always exists
4768 a default case here. */
4769
4770 FOR_EACH_EDGE (e, ei, bb->succs)
4771 {
4772 if (!e->dest->aux)
4773 {
4774 error ("extra outgoing edge %d->%d",
4775 bb->index, e->dest->index);
4776 err = 1;
4777 }
4778
4779 e->dest->aux = (void *)2;
4780 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4781 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4782 {
4783 error ("wrong outgoing edge flags at end of bb %d",
4784 bb->index);
4785 err = 1;
4786 }
4787 }
4788
4789 /* Check that we have all of them. */
4790 for (i = 0; i < n; ++i)
4791 {
4792 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4793 basic_block label_bb = label_to_block (lab);
4794
4795 if (label_bb->aux != (void *)2)
4796 {
4797 error ("missing edge %i->%i", bb->index, label_bb->index);
4798 err = 1;
4799 }
4800 }
4801
4802 FOR_EACH_EDGE (e, ei, bb->succs)
4803 e->dest->aux = (void *)0;
4804 }
4805 break;
4806
4807 case GIMPLE_EH_DISPATCH:
4808 err |= verify_eh_dispatch_edge (stmt);
4809 break;
4810
4811 default:
4812 break;
4813 }
4814 }
4815
4816 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4817 verify_dominators (CDI_DOMINATORS);
4818
4819 return err;
4820 }
4821
4822
4823 /* Updates phi nodes after creating a forwarder block joined
4824 by edge FALLTHRU. */
4825
4826 static void
4827 gimple_make_forwarder_block (edge fallthru)
4828 {
4829 edge e;
4830 edge_iterator ei;
4831 basic_block dummy, bb;
4832 tree var;
4833 gimple_stmt_iterator gsi;
4834
4835 dummy = fallthru->src;
4836 bb = fallthru->dest;
4837
4838 if (single_pred_p (bb))
4839 return;
4840
4841 /* If we redirected a branch we must create new PHI nodes at the
4842 start of BB. */
4843 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4844 {
4845 gimple phi, new_phi;
4846
4847 phi = gsi_stmt (gsi);
4848 var = gimple_phi_result (phi);
4849 new_phi = create_phi_node (var, bb);
4850 SSA_NAME_DEF_STMT (var) = new_phi;
4851 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4852 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4853 UNKNOWN_LOCATION);
4854 }
4855
4856 /* Add the arguments we have stored on edges. */
4857 FOR_EACH_EDGE (e, ei, bb->preds)
4858 {
4859 if (e == fallthru)
4860 continue;
4861
4862 flush_pending_stmts (e);
4863 }
4864 }
4865
4866
4867 /* Return a non-special label in the head of basic block BLOCK.
4868 Create one if it doesn't exist. */
4869
4870 tree
4871 gimple_block_label (basic_block bb)
4872 {
4873 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4874 bool first = true;
4875 tree label;
4876 gimple stmt;
4877
4878 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4879 {
4880 stmt = gsi_stmt (i);
4881 if (gimple_code (stmt) != GIMPLE_LABEL)
4882 break;
4883 label = gimple_label_label (stmt);
4884 if (!DECL_NONLOCAL (label))
4885 {
4886 if (!first)
4887 gsi_move_before (&i, &s);
4888 return label;
4889 }
4890 }
4891
4892 label = create_artificial_label (UNKNOWN_LOCATION);
4893 stmt = gimple_build_label (label);
4894 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4895 return label;
4896 }
4897
4898
4899 /* Attempt to perform edge redirection by replacing a possibly complex
4900 jump instruction by a goto or by removing the jump completely.
4901 This can apply only if all edges now point to the same block. The
4902 parameters and return values are equivalent to
4903 redirect_edge_and_branch. */
4904
4905 static edge
4906 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4907 {
4908 basic_block src = e->src;
4909 gimple_stmt_iterator i;
4910 gimple stmt;
4911
4912 /* We can replace or remove a complex jump only when we have exactly
4913 two edges. */
4914 if (EDGE_COUNT (src->succs) != 2
4915 /* Verify that all targets will be TARGET. Specifically, the
4916 edge that is not E must also go to TARGET. */
4917 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4918 return NULL;
4919
4920 i = gsi_last_bb (src);
4921 if (gsi_end_p (i))
4922 return NULL;
4923
4924 stmt = gsi_stmt (i);
4925
4926 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4927 {
4928 gsi_remove (&i, true);
4929 e = ssa_redirect_edge (e, target);
4930 e->flags = EDGE_FALLTHRU;
4931 return e;
4932 }
4933
4934 return NULL;
4935 }
4936
4937
4938 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4939 edge representing the redirected branch. */
4940
4941 static edge
4942 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4943 {
4944 basic_block bb = e->src;
4945 gimple_stmt_iterator gsi;
4946 edge ret;
4947 gimple stmt;
4948
4949 if (e->flags & EDGE_ABNORMAL)
4950 return NULL;
4951
4952 if (e->dest == dest)
4953 return NULL;
4954
4955 if (e->flags & EDGE_EH)
4956 return redirect_eh_edge (e, dest);
4957
4958 if (e->src != ENTRY_BLOCK_PTR)
4959 {
4960 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4961 if (ret)
4962 return ret;
4963 }
4964
4965 gsi = gsi_last_bb (bb);
4966 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4967
4968 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4969 {
4970 case GIMPLE_COND:
4971 /* For COND_EXPR, we only need to redirect the edge. */
4972 break;
4973
4974 case GIMPLE_GOTO:
4975 /* No non-abnormal edges should lead from a non-simple goto, and
4976 simple ones should be represented implicitly. */
4977 gcc_unreachable ();
4978
4979 case GIMPLE_SWITCH:
4980 {
4981 tree label = gimple_block_label (dest);
4982 tree cases = get_cases_for_edge (e, stmt);
4983
4984 /* If we have a list of cases associated with E, then use it
4985 as it's a lot faster than walking the entire case vector. */
4986 if (cases)
4987 {
4988 edge e2 = find_edge (e->src, dest);
4989 tree last, first;
4990
4991 first = cases;
4992 while (cases)
4993 {
4994 last = cases;
4995 CASE_LABEL (cases) = label;
4996 cases = CASE_CHAIN (cases);
4997 }
4998
4999 /* If there was already an edge in the CFG, then we need
5000 to move all the cases associated with E to E2. */
5001 if (e2)
5002 {
5003 tree cases2 = get_cases_for_edge (e2, stmt);
5004
5005 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5006 CASE_CHAIN (cases2) = first;
5007 }
5008 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5009 }
5010 else
5011 {
5012 size_t i, n = gimple_switch_num_labels (stmt);
5013
5014 for (i = 0; i < n; i++)
5015 {
5016 tree elt = gimple_switch_label (stmt, i);
5017 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5018 CASE_LABEL (elt) = label;
5019 }
5020 }
5021 }
5022 break;
5023
5024 case GIMPLE_ASM:
5025 {
5026 int i, n = gimple_asm_nlabels (stmt);
5027 tree label = NULL;
5028
5029 for (i = 0; i < n; ++i)
5030 {
5031 tree cons = gimple_asm_label_op (stmt, i);
5032 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5033 {
5034 if (!label)
5035 label = gimple_block_label (dest);
5036 TREE_VALUE (cons) = label;
5037 }
5038 }
5039
5040 /* If we didn't find any label matching the former edge in the
5041 asm labels, we must be redirecting the fallthrough
5042 edge. */
5043 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5044 }
5045 break;
5046
5047 case GIMPLE_RETURN:
5048 gsi_remove (&gsi, true);
5049 e->flags |= EDGE_FALLTHRU;
5050 break;
5051
5052 case GIMPLE_OMP_RETURN:
5053 case GIMPLE_OMP_CONTINUE:
5054 case GIMPLE_OMP_SECTIONS_SWITCH:
5055 case GIMPLE_OMP_FOR:
5056 /* The edges from OMP constructs can be simply redirected. */
5057 break;
5058
5059 case GIMPLE_EH_DISPATCH:
5060 if (!(e->flags & EDGE_FALLTHRU))
5061 redirect_eh_dispatch_edge (stmt, e, dest);
5062 break;
5063
5064 default:
5065 /* Otherwise it must be a fallthru edge, and we don't need to
5066 do anything besides redirecting it. */
5067 gcc_assert (e->flags & EDGE_FALLTHRU);
5068 break;
5069 }
5070
5071 /* Update/insert PHI nodes as necessary. */
5072
5073 /* Now update the edges in the CFG. */
5074 e = ssa_redirect_edge (e, dest);
5075
5076 return e;
5077 }
5078
5079 /* Returns true if it is possible to remove edge E by redirecting
5080 it to the destination of the other edge from E->src. */
5081
5082 static bool
5083 gimple_can_remove_branch_p (const_edge e)
5084 {
5085 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5086 return false;
5087
5088 return true;
5089 }
5090
5091 /* Simple wrapper, as we can always redirect fallthru edges. */
5092
5093 static basic_block
5094 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5095 {
5096 e = gimple_redirect_edge_and_branch (e, dest);
5097 gcc_assert (e);
5098
5099 return NULL;
5100 }
5101
5102
5103 /* Splits basic block BB after statement STMT (but at least after the
5104 labels). If STMT is NULL, BB is split just after the labels. */
5105
5106 static basic_block
5107 gimple_split_block (basic_block bb, void *stmt)
5108 {
5109 gimple_stmt_iterator gsi;
5110 gimple_stmt_iterator gsi_tgt;
5111 gimple act;
5112 gimple_seq list;
5113 basic_block new_bb;
5114 edge e;
5115 edge_iterator ei;
5116
5117 new_bb = create_empty_bb (bb);
5118
5119 /* Redirect the outgoing edges. */
5120 new_bb->succs = bb->succs;
5121 bb->succs = NULL;
5122 FOR_EACH_EDGE (e, ei, new_bb->succs)
5123 e->src = new_bb;
5124
5125 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5126 stmt = NULL;
5127
5128 /* Move everything from GSI to the new basic block. */
5129 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5130 {
5131 act = gsi_stmt (gsi);
5132 if (gimple_code (act) == GIMPLE_LABEL)
5133 continue;
5134
5135 if (!stmt)
5136 break;
5137
5138 if (stmt == act)
5139 {
5140 gsi_next (&gsi);
5141 break;
5142 }
5143 }
5144
5145 if (gsi_end_p (gsi))
5146 return new_bb;
5147
5148 /* Split the statement list - avoid re-creating new containers as this
5149 brings ugly quadratic memory consumption in the inliner.
5150 (We are still quadratic since we need to update stmt BB pointers,
5151 sadly.) */
5152 list = gsi_split_seq_before (&gsi);
5153 set_bb_seq (new_bb, list);
5154 for (gsi_tgt = gsi_start (list);
5155 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5156 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5157
5158 return new_bb;
5159 }
5160
5161
5162 /* Moves basic block BB after block AFTER. */
5163
5164 static bool
5165 gimple_move_block_after (basic_block bb, basic_block after)
5166 {
5167 if (bb->prev_bb == after)
5168 return true;
5169
5170 unlink_block (bb);
5171 link_block (bb, after);
5172
5173 return true;
5174 }
5175
5176
5177 /* Return true if basic_block can be duplicated. */
5178
5179 static bool
5180 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5181 {
5182 return true;
5183 }
5184
5185 /* Create a duplicate of the basic block BB. NOTE: This does not
5186 preserve SSA form. */
5187
5188 static basic_block
5189 gimple_duplicate_bb (basic_block bb)
5190 {
5191 basic_block new_bb;
5192 gimple_stmt_iterator gsi, gsi_tgt;
5193 gimple_seq phis = phi_nodes (bb);
5194 gimple phi, stmt, copy;
5195
5196 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5197
5198 /* Copy the PHI nodes. We ignore PHI node arguments here because
5199 the incoming edges have not been setup yet. */
5200 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5201 {
5202 phi = gsi_stmt (gsi);
5203 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5204 create_new_def_for (gimple_phi_result (copy), copy,
5205 gimple_phi_result_ptr (copy));
5206 }
5207
5208 gsi_tgt = gsi_start_bb (new_bb);
5209 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5210 {
5211 def_operand_p def_p;
5212 ssa_op_iter op_iter;
5213 tree lhs;
5214
5215 stmt = gsi_stmt (gsi);
5216 if (gimple_code (stmt) == GIMPLE_LABEL)
5217 continue;
5218
5219 /* Don't duplicate label debug stmts. */
5220 if (gimple_debug_bind_p (stmt)
5221 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5222 == LABEL_DECL)
5223 continue;
5224
5225 /* Create a new copy of STMT and duplicate STMT's virtual
5226 operands. */
5227 copy = gimple_copy (stmt);
5228 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5229
5230 maybe_duplicate_eh_stmt (copy, stmt);
5231 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5232
5233 /* When copying around a stmt writing into a local non-user
5234 aggregate, make sure it won't share stack slot with other
5235 vars. */
5236 lhs = gimple_get_lhs (stmt);
5237 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5238 {
5239 tree base = get_base_address (lhs);
5240 if (base
5241 && (TREE_CODE (base) == VAR_DECL
5242 || TREE_CODE (base) == RESULT_DECL)
5243 && DECL_IGNORED_P (base)
5244 && !TREE_STATIC (base)
5245 && !DECL_EXTERNAL (base)
5246 && (TREE_CODE (base) != VAR_DECL
5247 || !DECL_HAS_VALUE_EXPR_P (base)))
5248 DECL_NONSHAREABLE (base) = 1;
5249 }
5250
5251 /* Create new names for all the definitions created by COPY and
5252 add replacement mappings for each new name. */
5253 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5254 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5255 }
5256
5257 return new_bb;
5258 }
5259
5260 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5261
5262 static void
5263 add_phi_args_after_copy_edge (edge e_copy)
5264 {
5265 basic_block bb, bb_copy = e_copy->src, dest;
5266 edge e;
5267 edge_iterator ei;
5268 gimple phi, phi_copy;
5269 tree def;
5270 gimple_stmt_iterator psi, psi_copy;
5271
5272 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5273 return;
5274
5275 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5276
5277 if (e_copy->dest->flags & BB_DUPLICATED)
5278 dest = get_bb_original (e_copy->dest);
5279 else
5280 dest = e_copy->dest;
5281
5282 e = find_edge (bb, dest);
5283 if (!e)
5284 {
5285 /* During loop unrolling the target of the latch edge is copied.
5286 In this case we are not looking for edge to dest, but to
5287 duplicated block whose original was dest. */
5288 FOR_EACH_EDGE (e, ei, bb->succs)
5289 {
5290 if ((e->dest->flags & BB_DUPLICATED)
5291 && get_bb_original (e->dest) == dest)
5292 break;
5293 }
5294
5295 gcc_assert (e != NULL);
5296 }
5297
5298 for (psi = gsi_start_phis (e->dest),
5299 psi_copy = gsi_start_phis (e_copy->dest);
5300 !gsi_end_p (psi);
5301 gsi_next (&psi), gsi_next (&psi_copy))
5302 {
5303 phi = gsi_stmt (psi);
5304 phi_copy = gsi_stmt (psi_copy);
5305 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5306 add_phi_arg (phi_copy, def, e_copy,
5307 gimple_phi_arg_location_from_edge (phi, e));
5308 }
5309 }
5310
5311
5312 /* Basic block BB_COPY was created by code duplication. Add phi node
5313 arguments for edges going out of BB_COPY. The blocks that were
5314 duplicated have BB_DUPLICATED set. */
5315
5316 void
5317 add_phi_args_after_copy_bb (basic_block bb_copy)
5318 {
5319 edge e_copy;
5320 edge_iterator ei;
5321
5322 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5323 {
5324 add_phi_args_after_copy_edge (e_copy);
5325 }
5326 }
5327
5328 /* Blocks in REGION_COPY array of length N_REGION were created by
5329 duplication of basic blocks. Add phi node arguments for edges
5330 going from these blocks. If E_COPY is not NULL, also add
5331 phi node arguments for its destination.*/
5332
5333 void
5334 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5335 edge e_copy)
5336 {
5337 unsigned i;
5338
5339 for (i = 0; i < n_region; i++)
5340 region_copy[i]->flags |= BB_DUPLICATED;
5341
5342 for (i = 0; i < n_region; i++)
5343 add_phi_args_after_copy_bb (region_copy[i]);
5344 if (e_copy)
5345 add_phi_args_after_copy_edge (e_copy);
5346
5347 for (i = 0; i < n_region; i++)
5348 region_copy[i]->flags &= ~BB_DUPLICATED;
5349 }
5350
5351 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5352 important exit edge EXIT. By important we mean that no SSA name defined
5353 inside region is live over the other exit edges of the region. All entry
5354 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5355 to the duplicate of the region. SSA form, dominance and loop information
5356 is updated. The new basic blocks are stored to REGION_COPY in the same
5357 order as they had in REGION, provided that REGION_COPY is not NULL.
5358 The function returns false if it is unable to copy the region,
5359 true otherwise. */
5360
5361 bool
5362 gimple_duplicate_sese_region (edge entry, edge exit,
5363 basic_block *region, unsigned n_region,
5364 basic_block *region_copy)
5365 {
5366 unsigned i;
5367 bool free_region_copy = false, copying_header = false;
5368 struct loop *loop = entry->dest->loop_father;
5369 edge exit_copy;
5370 VEC (basic_block, heap) *doms;
5371 edge redirected;
5372 int total_freq = 0, entry_freq = 0;
5373 gcov_type total_count = 0, entry_count = 0;
5374
5375 if (!can_copy_bbs_p (region, n_region))
5376 return false;
5377
5378 /* Some sanity checking. Note that we do not check for all possible
5379 missuses of the functions. I.e. if you ask to copy something weird,
5380 it will work, but the state of structures probably will not be
5381 correct. */
5382 for (i = 0; i < n_region; i++)
5383 {
5384 /* We do not handle subloops, i.e. all the blocks must belong to the
5385 same loop. */
5386 if (region[i]->loop_father != loop)
5387 return false;
5388
5389 if (region[i] != entry->dest
5390 && region[i] == loop->header)
5391 return false;
5392 }
5393
5394 set_loop_copy (loop, loop);
5395
5396 /* In case the function is used for loop header copying (which is the primary
5397 use), ensure that EXIT and its copy will be new latch and entry edges. */
5398 if (loop->header == entry->dest)
5399 {
5400 copying_header = true;
5401 set_loop_copy (loop, loop_outer (loop));
5402
5403 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5404 return false;
5405
5406 for (i = 0; i < n_region; i++)
5407 if (region[i] != exit->src
5408 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5409 return false;
5410 }
5411
5412 if (!region_copy)
5413 {
5414 region_copy = XNEWVEC (basic_block, n_region);
5415 free_region_copy = true;
5416 }
5417
5418 gcc_assert (!need_ssa_update_p (cfun));
5419
5420 /* Record blocks outside the region that are dominated by something
5421 inside. */
5422 doms = NULL;
5423 initialize_original_copy_tables ();
5424
5425 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5426
5427 if (entry->dest->count)
5428 {
5429 total_count = entry->dest->count;
5430 entry_count = entry->count;
5431 /* Fix up corner cases, to avoid division by zero or creation of negative
5432 frequencies. */
5433 if (entry_count > total_count)
5434 entry_count = total_count;
5435 }
5436 else
5437 {
5438 total_freq = entry->dest->frequency;
5439 entry_freq = EDGE_FREQUENCY (entry);
5440 /* Fix up corner cases, to avoid division by zero or creation of negative
5441 frequencies. */
5442 if (total_freq == 0)
5443 total_freq = 1;
5444 else if (entry_freq > total_freq)
5445 entry_freq = total_freq;
5446 }
5447
5448 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5449 split_edge_bb_loc (entry));
5450 if (total_count)
5451 {
5452 scale_bbs_frequencies_gcov_type (region, n_region,
5453 total_count - entry_count,
5454 total_count);
5455 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5456 total_count);
5457 }
5458 else
5459 {
5460 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5461 total_freq);
5462 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5463 }
5464
5465 if (copying_header)
5466 {
5467 loop->header = exit->dest;
5468 loop->latch = exit->src;
5469 }
5470
5471 /* Redirect the entry and add the phi node arguments. */
5472 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5473 gcc_assert (redirected != NULL);
5474 flush_pending_stmts (entry);
5475
5476 /* Concerning updating of dominators: We must recount dominators
5477 for entry block and its copy. Anything that is outside of the
5478 region, but was dominated by something inside needs recounting as
5479 well. */
5480 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5481 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5482 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5483 VEC_free (basic_block, heap, doms);
5484
5485 /* Add the other PHI node arguments. */
5486 add_phi_args_after_copy (region_copy, n_region, NULL);
5487
5488 /* Update the SSA web. */
5489 update_ssa (TODO_update_ssa);
5490
5491 if (free_region_copy)
5492 free (region_copy);
5493
5494 free_original_copy_tables ();
5495 return true;
5496 }
5497
5498 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5499 are stored to REGION_COPY in the same order in that they appear
5500 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5501 the region, EXIT an exit from it. The condition guarding EXIT
5502 is moved to ENTRY. Returns true if duplication succeeds, false
5503 otherwise.
5504
5505 For example,
5506
5507 some_code;
5508 if (cond)
5509 A;
5510 else
5511 B;
5512
5513 is transformed to
5514
5515 if (cond)
5516 {
5517 some_code;
5518 A;
5519 }
5520 else
5521 {
5522 some_code;
5523 B;
5524 }
5525 */
5526
5527 bool
5528 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5529 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5530 basic_block *region_copy ATTRIBUTE_UNUSED)
5531 {
5532 unsigned i;
5533 bool free_region_copy = false;
5534 struct loop *loop = exit->dest->loop_father;
5535 struct loop *orig_loop = entry->dest->loop_father;
5536 basic_block switch_bb, entry_bb, nentry_bb;
5537 VEC (basic_block, heap) *doms;
5538 int total_freq = 0, exit_freq = 0;
5539 gcov_type total_count = 0, exit_count = 0;
5540 edge exits[2], nexits[2], e;
5541 gimple_stmt_iterator gsi;
5542 gimple cond_stmt;
5543 edge sorig, snew;
5544 basic_block exit_bb;
5545 gimple_stmt_iterator psi;
5546 gimple phi;
5547 tree def;
5548
5549 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5550 exits[0] = exit;
5551 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5552
5553 if (!can_copy_bbs_p (region, n_region))
5554 return false;
5555
5556 initialize_original_copy_tables ();
5557 set_loop_copy (orig_loop, loop);
5558 duplicate_subloops (orig_loop, loop);
5559
5560 if (!region_copy)
5561 {
5562 region_copy = XNEWVEC (basic_block, n_region);
5563 free_region_copy = true;
5564 }
5565
5566 gcc_assert (!need_ssa_update_p (cfun));
5567
5568 /* Record blocks outside the region that are dominated by something
5569 inside. */
5570 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5571
5572 if (exit->src->count)
5573 {
5574 total_count = exit->src->count;
5575 exit_count = exit->count;
5576 /* Fix up corner cases, to avoid division by zero or creation of negative
5577 frequencies. */
5578 if (exit_count > total_count)
5579 exit_count = total_count;
5580 }
5581 else
5582 {
5583 total_freq = exit->src->frequency;
5584 exit_freq = EDGE_FREQUENCY (exit);
5585 /* Fix up corner cases, to avoid division by zero or creation of negative
5586 frequencies. */
5587 if (total_freq == 0)
5588 total_freq = 1;
5589 if (exit_freq > total_freq)
5590 exit_freq = total_freq;
5591 }
5592
5593 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5594 split_edge_bb_loc (exit));
5595 if (total_count)
5596 {
5597 scale_bbs_frequencies_gcov_type (region, n_region,
5598 total_count - exit_count,
5599 total_count);
5600 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5601 total_count);
5602 }
5603 else
5604 {
5605 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5606 total_freq);
5607 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5608 }
5609
5610 /* Create the switch block, and put the exit condition to it. */
5611 entry_bb = entry->dest;
5612 nentry_bb = get_bb_copy (entry_bb);
5613 if (!last_stmt (entry->src)
5614 || !stmt_ends_bb_p (last_stmt (entry->src)))
5615 switch_bb = entry->src;
5616 else
5617 switch_bb = split_edge (entry);
5618 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5619
5620 gsi = gsi_last_bb (switch_bb);
5621 cond_stmt = last_stmt (exit->src);
5622 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5623 cond_stmt = gimple_copy (cond_stmt);
5624
5625 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5626
5627 sorig = single_succ_edge (switch_bb);
5628 sorig->flags = exits[1]->flags;
5629 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5630
5631 /* Register the new edge from SWITCH_BB in loop exit lists. */
5632 rescan_loop_exit (snew, true, false);
5633
5634 /* Add the PHI node arguments. */
5635 add_phi_args_after_copy (region_copy, n_region, snew);
5636
5637 /* Get rid of now superfluous conditions and associated edges (and phi node
5638 arguments). */
5639 exit_bb = exit->dest;
5640
5641 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5642 PENDING_STMT (e) = NULL;
5643
5644 /* The latch of ORIG_LOOP was copied, and so was the backedge
5645 to the original header. We redirect this backedge to EXIT_BB. */
5646 for (i = 0; i < n_region; i++)
5647 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5648 {
5649 gcc_assert (single_succ_edge (region_copy[i]));
5650 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5651 PENDING_STMT (e) = NULL;
5652 for (psi = gsi_start_phis (exit_bb);
5653 !gsi_end_p (psi);
5654 gsi_next (&psi))
5655 {
5656 phi = gsi_stmt (psi);
5657 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5658 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5659 }
5660 }
5661 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5662 PENDING_STMT (e) = NULL;
5663
5664 /* Anything that is outside of the region, but was dominated by something
5665 inside needs to update dominance info. */
5666 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5667 VEC_free (basic_block, heap, doms);
5668 /* Update the SSA web. */
5669 update_ssa (TODO_update_ssa);
5670
5671 if (free_region_copy)
5672 free (region_copy);
5673
5674 free_original_copy_tables ();
5675 return true;
5676 }
5677
5678 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5679 adding blocks when the dominator traversal reaches EXIT. This
5680 function silently assumes that ENTRY strictly dominates EXIT. */
5681
5682 void
5683 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5684 VEC(basic_block,heap) **bbs_p)
5685 {
5686 basic_block son;
5687
5688 for (son = first_dom_son (CDI_DOMINATORS, entry);
5689 son;
5690 son = next_dom_son (CDI_DOMINATORS, son))
5691 {
5692 VEC_safe_push (basic_block, heap, *bbs_p, son);
5693 if (son != exit)
5694 gather_blocks_in_sese_region (son, exit, bbs_p);
5695 }
5696 }
5697
5698 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5699 The duplicates are recorded in VARS_MAP. */
5700
5701 static void
5702 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5703 tree to_context)
5704 {
5705 tree t = *tp, new_t;
5706 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5707 void **loc;
5708
5709 if (DECL_CONTEXT (t) == to_context)
5710 return;
5711
5712 loc = pointer_map_contains (vars_map, t);
5713
5714 if (!loc)
5715 {
5716 loc = pointer_map_insert (vars_map, t);
5717
5718 if (SSA_VAR_P (t))
5719 {
5720 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5721 add_local_decl (f, new_t);
5722 }
5723 else
5724 {
5725 gcc_assert (TREE_CODE (t) == CONST_DECL);
5726 new_t = copy_node (t);
5727 }
5728 DECL_CONTEXT (new_t) = to_context;
5729
5730 *loc = new_t;
5731 }
5732 else
5733 new_t = (tree) *loc;
5734
5735 *tp = new_t;
5736 }
5737
5738
5739 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5740 VARS_MAP maps old ssa names and var_decls to the new ones. */
5741
5742 static tree
5743 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5744 tree to_context)
5745 {
5746 void **loc;
5747 tree new_name, decl = SSA_NAME_VAR (name);
5748
5749 gcc_assert (is_gimple_reg (name));
5750
5751 loc = pointer_map_contains (vars_map, name);
5752
5753 if (!loc)
5754 {
5755 replace_by_duplicate_decl (&decl, vars_map, to_context);
5756
5757 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5758 if (gimple_in_ssa_p (cfun))
5759 add_referenced_var (decl);
5760
5761 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5762 if (SSA_NAME_IS_DEFAULT_DEF (name))
5763 set_default_def (decl, new_name);
5764 pop_cfun ();
5765
5766 loc = pointer_map_insert (vars_map, name);
5767 *loc = new_name;
5768 }
5769 else
5770 new_name = (tree) *loc;
5771
5772 return new_name;
5773 }
5774
5775 struct move_stmt_d
5776 {
5777 tree orig_block;
5778 tree new_block;
5779 tree from_context;
5780 tree to_context;
5781 struct pointer_map_t *vars_map;
5782 htab_t new_label_map;
5783 struct pointer_map_t *eh_map;
5784 bool remap_decls_p;
5785 };
5786
5787 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5788 contained in *TP if it has been ORIG_BLOCK previously and change the
5789 DECL_CONTEXT of every local variable referenced in *TP. */
5790
5791 static tree
5792 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5793 {
5794 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5795 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5796 tree t = *tp;
5797
5798 if (EXPR_P (t))
5799 /* We should never have TREE_BLOCK set on non-statements. */
5800 gcc_assert (!TREE_BLOCK (t));
5801
5802 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5803 {
5804 if (TREE_CODE (t) == SSA_NAME)
5805 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5806 else if (TREE_CODE (t) == LABEL_DECL)
5807 {
5808 if (p->new_label_map)
5809 {
5810 struct tree_map in, *out;
5811 in.base.from = t;
5812 out = (struct tree_map *)
5813 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5814 if (out)
5815 *tp = t = out->to;
5816 }
5817
5818 DECL_CONTEXT (t) = p->to_context;
5819 }
5820 else if (p->remap_decls_p)
5821 {
5822 /* Replace T with its duplicate. T should no longer appear in the
5823 parent function, so this looks wasteful; however, it may appear
5824 in referenced_vars, and more importantly, as virtual operands of
5825 statements, and in alias lists of other variables. It would be
5826 quite difficult to expunge it from all those places. ??? It might
5827 suffice to do this for addressable variables. */
5828 if ((TREE_CODE (t) == VAR_DECL
5829 && !is_global_var (t))
5830 || TREE_CODE (t) == CONST_DECL)
5831 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5832
5833 if (SSA_VAR_P (t)
5834 && gimple_in_ssa_p (cfun))
5835 {
5836 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5837 add_referenced_var (*tp);
5838 pop_cfun ();
5839 }
5840 }
5841 *walk_subtrees = 0;
5842 }
5843 else if (TYPE_P (t))
5844 *walk_subtrees = 0;
5845
5846 return NULL_TREE;
5847 }
5848
5849 /* Helper for move_stmt_r. Given an EH region number for the source
5850 function, map that to the duplicate EH regio number in the dest. */
5851
5852 static int
5853 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5854 {
5855 eh_region old_r, new_r;
5856 void **slot;
5857
5858 old_r = get_eh_region_from_number (old_nr);
5859 slot = pointer_map_contains (p->eh_map, old_r);
5860 new_r = (eh_region) *slot;
5861
5862 return new_r->index;
5863 }
5864
5865 /* Similar, but operate on INTEGER_CSTs. */
5866
5867 static tree
5868 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5869 {
5870 int old_nr, new_nr;
5871
5872 old_nr = tree_low_cst (old_t_nr, 0);
5873 new_nr = move_stmt_eh_region_nr (old_nr, p);
5874
5875 return build_int_cst (integer_type_node, new_nr);
5876 }
5877
5878 /* Like move_stmt_op, but for gimple statements.
5879
5880 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5881 contained in the current statement in *GSI_P and change the
5882 DECL_CONTEXT of every local variable referenced in the current
5883 statement. */
5884
5885 static tree
5886 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5887 struct walk_stmt_info *wi)
5888 {
5889 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5890 gimple stmt = gsi_stmt (*gsi_p);
5891 tree block = gimple_block (stmt);
5892
5893 if (p->orig_block == NULL_TREE
5894 || block == p->orig_block
5895 || block == NULL_TREE)
5896 gimple_set_block (stmt, p->new_block);
5897 #ifdef ENABLE_CHECKING
5898 else if (block != p->new_block)
5899 {
5900 while (block && block != p->orig_block)
5901 block = BLOCK_SUPERCONTEXT (block);
5902 gcc_assert (block);
5903 }
5904 #endif
5905
5906 switch (gimple_code (stmt))
5907 {
5908 case GIMPLE_CALL:
5909 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5910 {
5911 tree r, fndecl = gimple_call_fndecl (stmt);
5912 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5913 switch (DECL_FUNCTION_CODE (fndecl))
5914 {
5915 case BUILT_IN_EH_COPY_VALUES:
5916 r = gimple_call_arg (stmt, 1);
5917 r = move_stmt_eh_region_tree_nr (r, p);
5918 gimple_call_set_arg (stmt, 1, r);
5919 /* FALLTHRU */
5920
5921 case BUILT_IN_EH_POINTER:
5922 case BUILT_IN_EH_FILTER:
5923 r = gimple_call_arg (stmt, 0);
5924 r = move_stmt_eh_region_tree_nr (r, p);
5925 gimple_call_set_arg (stmt, 0, r);
5926 break;
5927
5928 default:
5929 break;
5930 }
5931 }
5932 break;
5933
5934 case GIMPLE_RESX:
5935 {
5936 int r = gimple_resx_region (stmt);
5937 r = move_stmt_eh_region_nr (r, p);
5938 gimple_resx_set_region (stmt, r);
5939 }
5940 break;
5941
5942 case GIMPLE_EH_DISPATCH:
5943 {
5944 int r = gimple_eh_dispatch_region (stmt);
5945 r = move_stmt_eh_region_nr (r, p);
5946 gimple_eh_dispatch_set_region (stmt, r);
5947 }
5948 break;
5949
5950 case GIMPLE_OMP_RETURN:
5951 case GIMPLE_OMP_CONTINUE:
5952 break;
5953 default:
5954 if (is_gimple_omp (stmt))
5955 {
5956 /* Do not remap variables inside OMP directives. Variables
5957 referenced in clauses and directive header belong to the
5958 parent function and should not be moved into the child
5959 function. */
5960 bool save_remap_decls_p = p->remap_decls_p;
5961 p->remap_decls_p = false;
5962 *handled_ops_p = true;
5963
5964 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5965 move_stmt_op, wi);
5966
5967 p->remap_decls_p = save_remap_decls_p;
5968 }
5969 break;
5970 }
5971
5972 return NULL_TREE;
5973 }
5974
5975 /* Move basic block BB from function CFUN to function DEST_FN. The
5976 block is moved out of the original linked list and placed after
5977 block AFTER in the new list. Also, the block is removed from the
5978 original array of blocks and placed in DEST_FN's array of blocks.
5979 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5980 updated to reflect the moved edges.
5981
5982 The local variables are remapped to new instances, VARS_MAP is used
5983 to record the mapping. */
5984
5985 static void
5986 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5987 basic_block after, bool update_edge_count_p,
5988 struct move_stmt_d *d)
5989 {
5990 struct control_flow_graph *cfg;
5991 edge_iterator ei;
5992 edge e;
5993 gimple_stmt_iterator si;
5994 unsigned old_len, new_len;
5995
5996 /* Remove BB from dominance structures. */
5997 delete_from_dominance_info (CDI_DOMINATORS, bb);
5998 if (current_loops)
5999 remove_bb_from_loops (bb);
6000
6001 /* Link BB to the new linked list. */
6002 move_block_after (bb, after);
6003
6004 /* Update the edge count in the corresponding flowgraphs. */
6005 if (update_edge_count_p)
6006 FOR_EACH_EDGE (e, ei, bb->succs)
6007 {
6008 cfun->cfg->x_n_edges--;
6009 dest_cfun->cfg->x_n_edges++;
6010 }
6011
6012 /* Remove BB from the original basic block array. */
6013 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
6014 cfun->cfg->x_n_basic_blocks--;
6015
6016 /* Grow DEST_CFUN's basic block array if needed. */
6017 cfg = dest_cfun->cfg;
6018 cfg->x_n_basic_blocks++;
6019 if (bb->index >= cfg->x_last_basic_block)
6020 cfg->x_last_basic_block = bb->index + 1;
6021
6022 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
6023 if ((unsigned) cfg->x_last_basic_block >= old_len)
6024 {
6025 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6026 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
6027 new_len);
6028 }
6029
6030 VEC_replace (basic_block, cfg->x_basic_block_info,
6031 bb->index, bb);
6032
6033 /* Remap the variables in phi nodes. */
6034 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6035 {
6036 gimple phi = gsi_stmt (si);
6037 use_operand_p use;
6038 tree op = PHI_RESULT (phi);
6039 ssa_op_iter oi;
6040
6041 if (!is_gimple_reg (op))
6042 {
6043 /* Remove the phi nodes for virtual operands (alias analysis will be
6044 run for the new function, anyway). */
6045 remove_phi_node (&si, true);
6046 continue;
6047 }
6048
6049 SET_PHI_RESULT (phi,
6050 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6051 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6052 {
6053 op = USE_FROM_PTR (use);
6054 if (TREE_CODE (op) == SSA_NAME)
6055 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6056 }
6057
6058 gsi_next (&si);
6059 }
6060
6061 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6062 {
6063 gimple stmt = gsi_stmt (si);
6064 struct walk_stmt_info wi;
6065
6066 memset (&wi, 0, sizeof (wi));
6067 wi.info = d;
6068 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6069
6070 if (gimple_code (stmt) == GIMPLE_LABEL)
6071 {
6072 tree label = gimple_label_label (stmt);
6073 int uid = LABEL_DECL_UID (label);
6074
6075 gcc_assert (uid > -1);
6076
6077 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
6078 if (old_len <= (unsigned) uid)
6079 {
6080 new_len = 3 * uid / 2 + 1;
6081 VEC_safe_grow_cleared (basic_block, gc,
6082 cfg->x_label_to_block_map, new_len);
6083 }
6084
6085 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
6086 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
6087
6088 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6089
6090 if (uid >= dest_cfun->cfg->last_label_uid)
6091 dest_cfun->cfg->last_label_uid = uid + 1;
6092 }
6093
6094 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6095 remove_stmt_from_eh_lp_fn (cfun, stmt);
6096
6097 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6098 gimple_remove_stmt_histograms (cfun, stmt);
6099
6100 /* We cannot leave any operands allocated from the operand caches of
6101 the current function. */
6102 free_stmt_operands (stmt);
6103 push_cfun (dest_cfun);
6104 update_stmt (stmt);
6105 pop_cfun ();
6106 }
6107
6108 FOR_EACH_EDGE (e, ei, bb->succs)
6109 if (e->goto_locus)
6110 {
6111 tree block = e->goto_block;
6112 if (d->orig_block == NULL_TREE
6113 || block == d->orig_block)
6114 e->goto_block = d->new_block;
6115 #ifdef ENABLE_CHECKING
6116 else if (block != d->new_block)
6117 {
6118 while (block && block != d->orig_block)
6119 block = BLOCK_SUPERCONTEXT (block);
6120 gcc_assert (block);
6121 }
6122 #endif
6123 }
6124 }
6125
6126 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6127 the outermost EH region. Use REGION as the incoming base EH region. */
6128
6129 static eh_region
6130 find_outermost_region_in_block (struct function *src_cfun,
6131 basic_block bb, eh_region region)
6132 {
6133 gimple_stmt_iterator si;
6134
6135 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6136 {
6137 gimple stmt = gsi_stmt (si);
6138 eh_region stmt_region;
6139 int lp_nr;
6140
6141 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6142 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6143 if (stmt_region)
6144 {
6145 if (region == NULL)
6146 region = stmt_region;
6147 else if (stmt_region != region)
6148 {
6149 region = eh_region_outermost (src_cfun, stmt_region, region);
6150 gcc_assert (region != NULL);
6151 }
6152 }
6153 }
6154
6155 return region;
6156 }
6157
6158 static tree
6159 new_label_mapper (tree decl, void *data)
6160 {
6161 htab_t hash = (htab_t) data;
6162 struct tree_map *m;
6163 void **slot;
6164
6165 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6166
6167 m = XNEW (struct tree_map);
6168 m->hash = DECL_UID (decl);
6169 m->base.from = decl;
6170 m->to = create_artificial_label (UNKNOWN_LOCATION);
6171 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6172 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6173 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6174
6175 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6176 gcc_assert (*slot == NULL);
6177
6178 *slot = m;
6179
6180 return m->to;
6181 }
6182
6183 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6184 subblocks. */
6185
6186 static void
6187 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6188 tree to_context)
6189 {
6190 tree *tp, t;
6191
6192 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6193 {
6194 t = *tp;
6195 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6196 continue;
6197 replace_by_duplicate_decl (&t, vars_map, to_context);
6198 if (t != *tp)
6199 {
6200 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6201 {
6202 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6203 DECL_HAS_VALUE_EXPR_P (t) = 1;
6204 }
6205 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6206 *tp = t;
6207 }
6208 }
6209
6210 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6211 replace_block_vars_by_duplicates (block, vars_map, to_context);
6212 }
6213
6214 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6215 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6216 single basic block in the original CFG and the new basic block is
6217 returned. DEST_CFUN must not have a CFG yet.
6218
6219 Note that the region need not be a pure SESE region. Blocks inside
6220 the region may contain calls to abort/exit. The only restriction
6221 is that ENTRY_BB should be the only entry point and it must
6222 dominate EXIT_BB.
6223
6224 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6225 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6226 to the new function.
6227
6228 All local variables referenced in the region are assumed to be in
6229 the corresponding BLOCK_VARS and unexpanded variable lists
6230 associated with DEST_CFUN. */
6231
6232 basic_block
6233 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6234 basic_block exit_bb, tree orig_block)
6235 {
6236 VEC(basic_block,heap) *bbs, *dom_bbs;
6237 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6238 basic_block after, bb, *entry_pred, *exit_succ, abb;
6239 struct function *saved_cfun = cfun;
6240 int *entry_flag, *exit_flag;
6241 unsigned *entry_prob, *exit_prob;
6242 unsigned i, num_entry_edges, num_exit_edges;
6243 edge e;
6244 edge_iterator ei;
6245 htab_t new_label_map;
6246 struct pointer_map_t *vars_map, *eh_map;
6247 struct loop *loop = entry_bb->loop_father;
6248 struct move_stmt_d d;
6249
6250 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6251 region. */
6252 gcc_assert (entry_bb != exit_bb
6253 && (!exit_bb
6254 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6255
6256 /* Collect all the blocks in the region. Manually add ENTRY_BB
6257 because it won't be added by dfs_enumerate_from. */
6258 bbs = NULL;
6259 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6260 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6261
6262 /* The blocks that used to be dominated by something in BBS will now be
6263 dominated by the new block. */
6264 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6265 VEC_address (basic_block, bbs),
6266 VEC_length (basic_block, bbs));
6267
6268 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6269 the predecessor edges to ENTRY_BB and the successor edges to
6270 EXIT_BB so that we can re-attach them to the new basic block that
6271 will replace the region. */
6272 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6273 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6274 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6275 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6276 i = 0;
6277 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6278 {
6279 entry_prob[i] = e->probability;
6280 entry_flag[i] = e->flags;
6281 entry_pred[i++] = e->src;
6282 remove_edge (e);
6283 }
6284
6285 if (exit_bb)
6286 {
6287 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6288 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6289 sizeof (basic_block));
6290 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6291 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6292 i = 0;
6293 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6294 {
6295 exit_prob[i] = e->probability;
6296 exit_flag[i] = e->flags;
6297 exit_succ[i++] = e->dest;
6298 remove_edge (e);
6299 }
6300 }
6301 else
6302 {
6303 num_exit_edges = 0;
6304 exit_succ = NULL;
6305 exit_flag = NULL;
6306 exit_prob = NULL;
6307 }
6308
6309 /* Switch context to the child function to initialize DEST_FN's CFG. */
6310 gcc_assert (dest_cfun->cfg == NULL);
6311 push_cfun (dest_cfun);
6312
6313 init_empty_tree_cfg ();
6314
6315 /* Initialize EH information for the new function. */
6316 eh_map = NULL;
6317 new_label_map = NULL;
6318 if (saved_cfun->eh)
6319 {
6320 eh_region region = NULL;
6321
6322 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6323 region = find_outermost_region_in_block (saved_cfun, bb, region);
6324
6325 init_eh_for_function ();
6326 if (region != NULL)
6327 {
6328 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6329 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6330 new_label_mapper, new_label_map);
6331 }
6332 }
6333
6334 pop_cfun ();
6335
6336 /* Move blocks from BBS into DEST_CFUN. */
6337 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6338 after = dest_cfun->cfg->x_entry_block_ptr;
6339 vars_map = pointer_map_create ();
6340
6341 memset (&d, 0, sizeof (d));
6342 d.orig_block = orig_block;
6343 d.new_block = DECL_INITIAL (dest_cfun->decl);
6344 d.from_context = cfun->decl;
6345 d.to_context = dest_cfun->decl;
6346 d.vars_map = vars_map;
6347 d.new_label_map = new_label_map;
6348 d.eh_map = eh_map;
6349 d.remap_decls_p = true;
6350
6351 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6352 {
6353 /* No need to update edge counts on the last block. It has
6354 already been updated earlier when we detached the region from
6355 the original CFG. */
6356 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6357 after = bb;
6358 }
6359
6360 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6361 if (orig_block)
6362 {
6363 tree block;
6364 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6365 == NULL_TREE);
6366 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6367 = BLOCK_SUBBLOCKS (orig_block);
6368 for (block = BLOCK_SUBBLOCKS (orig_block);
6369 block; block = BLOCK_CHAIN (block))
6370 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6371 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6372 }
6373
6374 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6375 vars_map, dest_cfun->decl);
6376
6377 if (new_label_map)
6378 htab_delete (new_label_map);
6379 if (eh_map)
6380 pointer_map_destroy (eh_map);
6381 pointer_map_destroy (vars_map);
6382
6383 /* Rewire the entry and exit blocks. The successor to the entry
6384 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6385 the child function. Similarly, the predecessor of DEST_FN's
6386 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6387 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6388 various CFG manipulation function get to the right CFG.
6389
6390 FIXME, this is silly. The CFG ought to become a parameter to
6391 these helpers. */
6392 push_cfun (dest_cfun);
6393 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6394 if (exit_bb)
6395 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6396 pop_cfun ();
6397
6398 /* Back in the original function, the SESE region has disappeared,
6399 create a new basic block in its place. */
6400 bb = create_empty_bb (entry_pred[0]);
6401 if (current_loops)
6402 add_bb_to_loop (bb, loop);
6403 for (i = 0; i < num_entry_edges; i++)
6404 {
6405 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6406 e->probability = entry_prob[i];
6407 }
6408
6409 for (i = 0; i < num_exit_edges; i++)
6410 {
6411 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6412 e->probability = exit_prob[i];
6413 }
6414
6415 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6416 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6417 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6418 VEC_free (basic_block, heap, dom_bbs);
6419
6420 if (exit_bb)
6421 {
6422 free (exit_prob);
6423 free (exit_flag);
6424 free (exit_succ);
6425 }
6426 free (entry_prob);
6427 free (entry_flag);
6428 free (entry_pred);
6429 VEC_free (basic_block, heap, bbs);
6430
6431 return bb;
6432 }
6433
6434
6435 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6436 */
6437
6438 void
6439 dump_function_to_file (tree fn, FILE *file, int flags)
6440 {
6441 tree arg, var;
6442 struct function *dsf;
6443 bool ignore_topmost_bind = false, any_var = false;
6444 basic_block bb;
6445 tree chain;
6446
6447 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6448
6449 arg = DECL_ARGUMENTS (fn);
6450 while (arg)
6451 {
6452 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6453 fprintf (file, " ");
6454 print_generic_expr (file, arg, dump_flags);
6455 if (flags & TDF_VERBOSE)
6456 print_node (file, "", arg, 4);
6457 if (DECL_CHAIN (arg))
6458 fprintf (file, ", ");
6459 arg = DECL_CHAIN (arg);
6460 }
6461 fprintf (file, ")\n");
6462
6463 if (flags & TDF_VERBOSE)
6464 print_node (file, "", fn, 2);
6465
6466 dsf = DECL_STRUCT_FUNCTION (fn);
6467 if (dsf && (flags & TDF_EH))
6468 dump_eh_tree (file, dsf);
6469
6470 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6471 {
6472 dump_node (fn, TDF_SLIM | flags, file);
6473 return;
6474 }
6475
6476 /* Switch CFUN to point to FN. */
6477 push_cfun (DECL_STRUCT_FUNCTION (fn));
6478
6479 /* When GIMPLE is lowered, the variables are no longer available in
6480 BIND_EXPRs, so display them separately. */
6481 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6482 {
6483 unsigned ix;
6484 ignore_topmost_bind = true;
6485
6486 fprintf (file, "{\n");
6487 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6488 {
6489 print_generic_decl (file, var, flags);
6490 if (flags & TDF_VERBOSE)
6491 print_node (file, "", var, 4);
6492 fprintf (file, "\n");
6493
6494 any_var = true;
6495 }
6496 }
6497
6498 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6499 {
6500 /* If the CFG has been built, emit a CFG-based dump. */
6501 check_bb_profile (ENTRY_BLOCK_PTR, file);
6502 if (!ignore_topmost_bind)
6503 fprintf (file, "{\n");
6504
6505 if (any_var && n_basic_blocks)
6506 fprintf (file, "\n");
6507
6508 FOR_EACH_BB (bb)
6509 gimple_dump_bb (bb, file, 2, flags);
6510
6511 fprintf (file, "}\n");
6512 check_bb_profile (EXIT_BLOCK_PTR, file);
6513 }
6514 else if (DECL_SAVED_TREE (fn) == NULL)
6515 {
6516 /* The function is now in GIMPLE form but the CFG has not been
6517 built yet. Emit the single sequence of GIMPLE statements
6518 that make up its body. */
6519 gimple_seq body = gimple_body (fn);
6520
6521 if (gimple_seq_first_stmt (body)
6522 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6523 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6524 print_gimple_seq (file, body, 0, flags);
6525 else
6526 {
6527 if (!ignore_topmost_bind)
6528 fprintf (file, "{\n");
6529
6530 if (any_var)
6531 fprintf (file, "\n");
6532
6533 print_gimple_seq (file, body, 2, flags);
6534 fprintf (file, "}\n");
6535 }
6536 }
6537 else
6538 {
6539 int indent;
6540
6541 /* Make a tree based dump. */
6542 chain = DECL_SAVED_TREE (fn);
6543
6544 if (chain && TREE_CODE (chain) == BIND_EXPR)
6545 {
6546 if (ignore_topmost_bind)
6547 {
6548 chain = BIND_EXPR_BODY (chain);
6549 indent = 2;
6550 }
6551 else
6552 indent = 0;
6553 }
6554 else
6555 {
6556 if (!ignore_topmost_bind)
6557 fprintf (file, "{\n");
6558 indent = 2;
6559 }
6560
6561 if (any_var)
6562 fprintf (file, "\n");
6563
6564 print_generic_stmt_indented (file, chain, flags, indent);
6565 if (ignore_topmost_bind)
6566 fprintf (file, "}\n");
6567 }
6568
6569 if (flags & TDF_ENUMERATE_LOCALS)
6570 dump_enumerated_decls (file, flags);
6571 fprintf (file, "\n\n");
6572
6573 /* Restore CFUN. */
6574 pop_cfun ();
6575 }
6576
6577
6578 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6579
6580 DEBUG_FUNCTION void
6581 debug_function (tree fn, int flags)
6582 {
6583 dump_function_to_file (fn, stderr, flags);
6584 }
6585
6586
6587 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6588
6589 static void
6590 print_pred_bbs (FILE *file, basic_block bb)
6591 {
6592 edge e;
6593 edge_iterator ei;
6594
6595 FOR_EACH_EDGE (e, ei, bb->preds)
6596 fprintf (file, "bb_%d ", e->src->index);
6597 }
6598
6599
6600 /* Print on FILE the indexes for the successors of basic_block BB. */
6601
6602 static void
6603 print_succ_bbs (FILE *file, basic_block bb)
6604 {
6605 edge e;
6606 edge_iterator ei;
6607
6608 FOR_EACH_EDGE (e, ei, bb->succs)
6609 fprintf (file, "bb_%d ", e->dest->index);
6610 }
6611
6612 /* Print to FILE the basic block BB following the VERBOSITY level. */
6613
6614 void
6615 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6616 {
6617 char *s_indent = (char *) alloca ((size_t) indent + 1);
6618 memset ((void *) s_indent, ' ', (size_t) indent);
6619 s_indent[indent] = '\0';
6620
6621 /* Print basic_block's header. */
6622 if (verbosity >= 2)
6623 {
6624 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6625 print_pred_bbs (file, bb);
6626 fprintf (file, "}, succs = {");
6627 print_succ_bbs (file, bb);
6628 fprintf (file, "})\n");
6629 }
6630
6631 /* Print basic_block's body. */
6632 if (verbosity >= 3)
6633 {
6634 fprintf (file, "%s {\n", s_indent);
6635 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6636 fprintf (file, "%s }\n", s_indent);
6637 }
6638 }
6639
6640 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6641
6642 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6643 VERBOSITY level this outputs the contents of the loop, or just its
6644 structure. */
6645
6646 static void
6647 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6648 {
6649 char *s_indent;
6650 basic_block bb;
6651
6652 if (loop == NULL)
6653 return;
6654
6655 s_indent = (char *) alloca ((size_t) indent + 1);
6656 memset ((void *) s_indent, ' ', (size_t) indent);
6657 s_indent[indent] = '\0';
6658
6659 /* Print loop's header. */
6660 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6661 loop->num, loop->header->index, loop->latch->index);
6662 fprintf (file, ", niter = ");
6663 print_generic_expr (file, loop->nb_iterations, 0);
6664
6665 if (loop->any_upper_bound)
6666 {
6667 fprintf (file, ", upper_bound = ");
6668 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6669 }
6670
6671 if (loop->any_estimate)
6672 {
6673 fprintf (file, ", estimate = ");
6674 dump_double_int (file, loop->nb_iterations_estimate, true);
6675 }
6676 fprintf (file, ")\n");
6677
6678 /* Print loop's body. */
6679 if (verbosity >= 1)
6680 {
6681 fprintf (file, "%s{\n", s_indent);
6682 FOR_EACH_BB (bb)
6683 if (bb->loop_father == loop)
6684 print_loops_bb (file, bb, indent, verbosity);
6685
6686 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6687 fprintf (file, "%s}\n", s_indent);
6688 }
6689 }
6690
6691 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6692 spaces. Following VERBOSITY level this outputs the contents of the
6693 loop, or just its structure. */
6694
6695 static void
6696 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6697 {
6698 if (loop == NULL)
6699 return;
6700
6701 print_loop (file, loop, indent, verbosity);
6702 print_loop_and_siblings (file, loop->next, indent, verbosity);
6703 }
6704
6705 /* Follow a CFG edge from the entry point of the program, and on entry
6706 of a loop, pretty print the loop structure on FILE. */
6707
6708 void
6709 print_loops (FILE *file, int verbosity)
6710 {
6711 basic_block bb;
6712
6713 bb = ENTRY_BLOCK_PTR;
6714 if (bb && bb->loop_father)
6715 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6716 }
6717
6718
6719 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6720
6721 DEBUG_FUNCTION void
6722 debug_loops (int verbosity)
6723 {
6724 print_loops (stderr, verbosity);
6725 }
6726
6727 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6728
6729 DEBUG_FUNCTION void
6730 debug_loop (struct loop *loop, int verbosity)
6731 {
6732 print_loop (stderr, loop, 0, verbosity);
6733 }
6734
6735 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6736 level. */
6737
6738 DEBUG_FUNCTION void
6739 debug_loop_num (unsigned num, int verbosity)
6740 {
6741 debug_loop (get_loop (num), verbosity);
6742 }
6743
6744 /* Return true if BB ends with a call, possibly followed by some
6745 instructions that must stay with the call. Return false,
6746 otherwise. */
6747
6748 static bool
6749 gimple_block_ends_with_call_p (basic_block bb)
6750 {
6751 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6752 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6753 }
6754
6755
6756 /* Return true if BB ends with a conditional branch. Return false,
6757 otherwise. */
6758
6759 static bool
6760 gimple_block_ends_with_condjump_p (const_basic_block bb)
6761 {
6762 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6763 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6764 }
6765
6766
6767 /* Return true if we need to add fake edge to exit at statement T.
6768 Helper function for gimple_flow_call_edges_add. */
6769
6770 static bool
6771 need_fake_edge_p (gimple t)
6772 {
6773 tree fndecl = NULL_TREE;
6774 int call_flags = 0;
6775
6776 /* NORETURN and LONGJMP calls already have an edge to exit.
6777 CONST and PURE calls do not need one.
6778 We don't currently check for CONST and PURE here, although
6779 it would be a good idea, because those attributes are
6780 figured out from the RTL in mark_constant_function, and
6781 the counter incrementation code from -fprofile-arcs
6782 leads to different results from -fbranch-probabilities. */
6783 if (is_gimple_call (t))
6784 {
6785 fndecl = gimple_call_fndecl (t);
6786 call_flags = gimple_call_flags (t);
6787 }
6788
6789 if (is_gimple_call (t)
6790 && fndecl
6791 && DECL_BUILT_IN (fndecl)
6792 && (call_flags & ECF_NOTHROW)
6793 && !(call_flags & ECF_RETURNS_TWICE)
6794 /* fork() doesn't really return twice, but the effect of
6795 wrapping it in __gcov_fork() which calls __gcov_flush()
6796 and clears the counters before forking has the same
6797 effect as returning twice. Force a fake edge. */
6798 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6799 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6800 return false;
6801
6802 if (is_gimple_call (t)
6803 && !(call_flags & ECF_NORETURN))
6804 return true;
6805
6806 if (gimple_code (t) == GIMPLE_ASM
6807 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6808 return true;
6809
6810 return false;
6811 }
6812
6813
6814 /* Add fake edges to the function exit for any non constant and non
6815 noreturn calls, volatile inline assembly in the bitmap of blocks
6816 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6817 the number of blocks that were split.
6818
6819 The goal is to expose cases in which entering a basic block does
6820 not imply that all subsequent instructions must be executed. */
6821
6822 static int
6823 gimple_flow_call_edges_add (sbitmap blocks)
6824 {
6825 int i;
6826 int blocks_split = 0;
6827 int last_bb = last_basic_block;
6828 bool check_last_block = false;
6829
6830 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6831 return 0;
6832
6833 if (! blocks)
6834 check_last_block = true;
6835 else
6836 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6837
6838 /* In the last basic block, before epilogue generation, there will be
6839 a fallthru edge to EXIT. Special care is required if the last insn
6840 of the last basic block is a call because make_edge folds duplicate
6841 edges, which would result in the fallthru edge also being marked
6842 fake, which would result in the fallthru edge being removed by
6843 remove_fake_edges, which would result in an invalid CFG.
6844
6845 Moreover, we can't elide the outgoing fake edge, since the block
6846 profiler needs to take this into account in order to solve the minimal
6847 spanning tree in the case that the call doesn't return.
6848
6849 Handle this by adding a dummy instruction in a new last basic block. */
6850 if (check_last_block)
6851 {
6852 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6853 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6854 gimple t = NULL;
6855
6856 if (!gsi_end_p (gsi))
6857 t = gsi_stmt (gsi);
6858
6859 if (t && need_fake_edge_p (t))
6860 {
6861 edge e;
6862
6863 e = find_edge (bb, EXIT_BLOCK_PTR);
6864 if (e)
6865 {
6866 gsi_insert_on_edge (e, gimple_build_nop ());
6867 gsi_commit_edge_inserts ();
6868 }
6869 }
6870 }
6871
6872 /* Now add fake edges to the function exit for any non constant
6873 calls since there is no way that we can determine if they will
6874 return or not... */
6875 for (i = 0; i < last_bb; i++)
6876 {
6877 basic_block bb = BASIC_BLOCK (i);
6878 gimple_stmt_iterator gsi;
6879 gimple stmt, last_stmt;
6880
6881 if (!bb)
6882 continue;
6883
6884 if (blocks && !TEST_BIT (blocks, i))
6885 continue;
6886
6887 gsi = gsi_last_nondebug_bb (bb);
6888 if (!gsi_end_p (gsi))
6889 {
6890 last_stmt = gsi_stmt (gsi);
6891 do
6892 {
6893 stmt = gsi_stmt (gsi);
6894 if (need_fake_edge_p (stmt))
6895 {
6896 edge e;
6897
6898 /* The handling above of the final block before the
6899 epilogue should be enough to verify that there is
6900 no edge to the exit block in CFG already.
6901 Calling make_edge in such case would cause us to
6902 mark that edge as fake and remove it later. */
6903 #ifdef ENABLE_CHECKING
6904 if (stmt == last_stmt)
6905 {
6906 e = find_edge (bb, EXIT_BLOCK_PTR);
6907 gcc_assert (e == NULL);
6908 }
6909 #endif
6910
6911 /* Note that the following may create a new basic block
6912 and renumber the existing basic blocks. */
6913 if (stmt != last_stmt)
6914 {
6915 e = split_block (bb, stmt);
6916 if (e)
6917 blocks_split++;
6918 }
6919 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6920 }
6921 gsi_prev (&gsi);
6922 }
6923 while (!gsi_end_p (gsi));
6924 }
6925 }
6926
6927 if (blocks_split)
6928 verify_flow_info ();
6929
6930 return blocks_split;
6931 }
6932
6933 /* Removes edge E and all the blocks dominated by it, and updates dominance
6934 information. The IL in E->src needs to be updated separately.
6935 If dominance info is not available, only the edge E is removed.*/
6936
6937 void
6938 remove_edge_and_dominated_blocks (edge e)
6939 {
6940 VEC (basic_block, heap) *bbs_to_remove = NULL;
6941 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6942 bitmap df, df_idom;
6943 edge f;
6944 edge_iterator ei;
6945 bool none_removed = false;
6946 unsigned i;
6947 basic_block bb, dbb;
6948 bitmap_iterator bi;
6949
6950 if (!dom_info_available_p (CDI_DOMINATORS))
6951 {
6952 remove_edge (e);
6953 return;
6954 }
6955
6956 /* No updating is needed for edges to exit. */
6957 if (e->dest == EXIT_BLOCK_PTR)
6958 {
6959 if (cfgcleanup_altered_bbs)
6960 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6961 remove_edge (e);
6962 return;
6963 }
6964
6965 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6966 that is not dominated by E->dest, then this set is empty. Otherwise,
6967 all the basic blocks dominated by E->dest are removed.
6968
6969 Also, to DF_IDOM we store the immediate dominators of the blocks in
6970 the dominance frontier of E (i.e., of the successors of the
6971 removed blocks, if there are any, and of E->dest otherwise). */
6972 FOR_EACH_EDGE (f, ei, e->dest->preds)
6973 {
6974 if (f == e)
6975 continue;
6976
6977 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6978 {
6979 none_removed = true;
6980 break;
6981 }
6982 }
6983
6984 df = BITMAP_ALLOC (NULL);
6985 df_idom = BITMAP_ALLOC (NULL);
6986
6987 if (none_removed)
6988 bitmap_set_bit (df_idom,
6989 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6990 else
6991 {
6992 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6993 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6994 {
6995 FOR_EACH_EDGE (f, ei, bb->succs)
6996 {
6997 if (f->dest != EXIT_BLOCK_PTR)
6998 bitmap_set_bit (df, f->dest->index);
6999 }
7000 }
7001 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7002 bitmap_clear_bit (df, bb->index);
7003
7004 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7005 {
7006 bb = BASIC_BLOCK (i);
7007 bitmap_set_bit (df_idom,
7008 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7009 }
7010 }
7011
7012 if (cfgcleanup_altered_bbs)
7013 {
7014 /* Record the set of the altered basic blocks. */
7015 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7016 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7017 }
7018
7019 /* Remove E and the cancelled blocks. */
7020 if (none_removed)
7021 remove_edge (e);
7022 else
7023 {
7024 /* Walk backwards so as to get a chance to substitute all
7025 released DEFs into debug stmts. See
7026 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7027 details. */
7028 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
7029 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
7030 }
7031
7032 /* Update the dominance information. The immediate dominator may change only
7033 for blocks whose immediate dominator belongs to DF_IDOM:
7034
7035 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7036 removal. Let Z the arbitrary block such that idom(Z) = Y and
7037 Z dominates X after the removal. Before removal, there exists a path P
7038 from Y to X that avoids Z. Let F be the last edge on P that is
7039 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7040 dominates W, and because of P, Z does not dominate W), and W belongs to
7041 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7042 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7043 {
7044 bb = BASIC_BLOCK (i);
7045 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7046 dbb;
7047 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7048 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
7049 }
7050
7051 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7052
7053 BITMAP_FREE (df);
7054 BITMAP_FREE (df_idom);
7055 VEC_free (basic_block, heap, bbs_to_remove);
7056 VEC_free (basic_block, heap, bbs_to_fix_dom);
7057 }
7058
7059 /* Purge dead EH edges from basic block BB. */
7060
7061 bool
7062 gimple_purge_dead_eh_edges (basic_block bb)
7063 {
7064 bool changed = false;
7065 edge e;
7066 edge_iterator ei;
7067 gimple stmt = last_stmt (bb);
7068
7069 if (stmt && stmt_can_throw_internal (stmt))
7070 return false;
7071
7072 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7073 {
7074 if (e->flags & EDGE_EH)
7075 {
7076 remove_edge_and_dominated_blocks (e);
7077 changed = true;
7078 }
7079 else
7080 ei_next (&ei);
7081 }
7082
7083 return changed;
7084 }
7085
7086 /* Purge dead EH edges from basic block listed in BLOCKS. */
7087
7088 bool
7089 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7090 {
7091 bool changed = false;
7092 unsigned i;
7093 bitmap_iterator bi;
7094
7095 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7096 {
7097 basic_block bb = BASIC_BLOCK (i);
7098
7099 /* Earlier gimple_purge_dead_eh_edges could have removed
7100 this basic block already. */
7101 gcc_assert (bb || changed);
7102 if (bb != NULL)
7103 changed |= gimple_purge_dead_eh_edges (bb);
7104 }
7105
7106 return changed;
7107 }
7108
7109 /* Purge dead abnormal call edges from basic block BB. */
7110
7111 bool
7112 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7113 {
7114 bool changed = false;
7115 edge e;
7116 edge_iterator ei;
7117 gimple stmt = last_stmt (bb);
7118
7119 if (!cfun->has_nonlocal_label)
7120 return false;
7121
7122 if (stmt && stmt_can_make_abnormal_goto (stmt))
7123 return false;
7124
7125 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7126 {
7127 if (e->flags & EDGE_ABNORMAL)
7128 {
7129 remove_edge_and_dominated_blocks (e);
7130 changed = true;
7131 }
7132 else
7133 ei_next (&ei);
7134 }
7135
7136 return changed;
7137 }
7138
7139 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7140
7141 bool
7142 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7143 {
7144 bool changed = false;
7145 unsigned i;
7146 bitmap_iterator bi;
7147
7148 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7149 {
7150 basic_block bb = BASIC_BLOCK (i);
7151
7152 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7153 this basic block already. */
7154 gcc_assert (bb || changed);
7155 if (bb != NULL)
7156 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7157 }
7158
7159 return changed;
7160 }
7161
7162 /* This function is called whenever a new edge is created or
7163 redirected. */
7164
7165 static void
7166 gimple_execute_on_growing_pred (edge e)
7167 {
7168 basic_block bb = e->dest;
7169
7170 if (!gimple_seq_empty_p (phi_nodes (bb)))
7171 reserve_phi_args_for_new_edge (bb);
7172 }
7173
7174 /* This function is called immediately before edge E is removed from
7175 the edge vector E->dest->preds. */
7176
7177 static void
7178 gimple_execute_on_shrinking_pred (edge e)
7179 {
7180 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7181 remove_phi_args (e);
7182 }
7183
7184 /*---------------------------------------------------------------------------
7185 Helper functions for Loop versioning
7186 ---------------------------------------------------------------------------*/
7187
7188 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7189 of 'first'. Both of them are dominated by 'new_head' basic block. When
7190 'new_head' was created by 'second's incoming edge it received phi arguments
7191 on the edge by split_edge(). Later, additional edge 'e' was created to
7192 connect 'new_head' and 'first'. Now this routine adds phi args on this
7193 additional edge 'e' that new_head to second edge received as part of edge
7194 splitting. */
7195
7196 static void
7197 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7198 basic_block new_head, edge e)
7199 {
7200 gimple phi1, phi2;
7201 gimple_stmt_iterator psi1, psi2;
7202 tree def;
7203 edge e2 = find_edge (new_head, second);
7204
7205 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7206 edge, we should always have an edge from NEW_HEAD to SECOND. */
7207 gcc_assert (e2 != NULL);
7208
7209 /* Browse all 'second' basic block phi nodes and add phi args to
7210 edge 'e' for 'first' head. PHI args are always in correct order. */
7211
7212 for (psi2 = gsi_start_phis (second),
7213 psi1 = gsi_start_phis (first);
7214 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7215 gsi_next (&psi2), gsi_next (&psi1))
7216 {
7217 phi1 = gsi_stmt (psi1);
7218 phi2 = gsi_stmt (psi2);
7219 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7220 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7221 }
7222 }
7223
7224
7225 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7226 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7227 the destination of the ELSE part. */
7228
7229 static void
7230 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7231 basic_block second_head ATTRIBUTE_UNUSED,
7232 basic_block cond_bb, void *cond_e)
7233 {
7234 gimple_stmt_iterator gsi;
7235 gimple new_cond_expr;
7236 tree cond_expr = (tree) cond_e;
7237 edge e0;
7238
7239 /* Build new conditional expr */
7240 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7241 NULL_TREE, NULL_TREE);
7242
7243 /* Add new cond in cond_bb. */
7244 gsi = gsi_last_bb (cond_bb);
7245 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7246
7247 /* Adjust edges appropriately to connect new head with first head
7248 as well as second head. */
7249 e0 = single_succ_edge (cond_bb);
7250 e0->flags &= ~EDGE_FALLTHRU;
7251 e0->flags |= EDGE_FALSE_VALUE;
7252 }
7253
7254 struct cfg_hooks gimple_cfg_hooks = {
7255 "gimple",
7256 gimple_verify_flow_info,
7257 gimple_dump_bb, /* dump_bb */
7258 create_bb, /* create_basic_block */
7259 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7260 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7261 gimple_can_remove_branch_p, /* can_remove_branch_p */
7262 remove_bb, /* delete_basic_block */
7263 gimple_split_block, /* split_block */
7264 gimple_move_block_after, /* move_block_after */
7265 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7266 gimple_merge_blocks, /* merge_blocks */
7267 gimple_predict_edge, /* predict_edge */
7268 gimple_predicted_by_p, /* predicted_by_p */
7269 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7270 gimple_duplicate_bb, /* duplicate_block */
7271 gimple_split_edge, /* split_edge */
7272 gimple_make_forwarder_block, /* make_forward_block */
7273 NULL, /* tidy_fallthru_edge */
7274 NULL, /* force_nonfallthru */
7275 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7276 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7277 gimple_flow_call_edges_add, /* flow_call_edges_add */
7278 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7279 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7280 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7281 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7282 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7283 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7284 flush_pending_stmts /* flush_pending_stmts */
7285 };
7286
7287
7288 /* Split all critical edges. */
7289
7290 static unsigned int
7291 split_critical_edges (void)
7292 {
7293 basic_block bb;
7294 edge e;
7295 edge_iterator ei;
7296
7297 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7298 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7299 mappings around the calls to split_edge. */
7300 start_recording_case_labels ();
7301 FOR_ALL_BB (bb)
7302 {
7303 FOR_EACH_EDGE (e, ei, bb->succs)
7304 {
7305 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7306 split_edge (e);
7307 /* PRE inserts statements to edges and expects that
7308 since split_critical_edges was done beforehand, committing edge
7309 insertions will not split more edges. In addition to critical
7310 edges we must split edges that have multiple successors and
7311 end by control flow statements, such as RESX.
7312 Go ahead and split them too. This matches the logic in
7313 gimple_find_edge_insert_loc. */
7314 else if ((!single_pred_p (e->dest)
7315 || !gimple_seq_empty_p (phi_nodes (e->dest))
7316 || e->dest == EXIT_BLOCK_PTR)
7317 && e->src != ENTRY_BLOCK_PTR
7318 && !(e->flags & EDGE_ABNORMAL))
7319 {
7320 gimple_stmt_iterator gsi;
7321
7322 gsi = gsi_last_bb (e->src);
7323 if (!gsi_end_p (gsi)
7324 && stmt_ends_bb_p (gsi_stmt (gsi))
7325 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7326 && !gimple_call_builtin_p (gsi_stmt (gsi),
7327 BUILT_IN_RETURN)))
7328 split_edge (e);
7329 }
7330 }
7331 }
7332 end_recording_case_labels ();
7333 return 0;
7334 }
7335
7336 struct gimple_opt_pass pass_split_crit_edges =
7337 {
7338 {
7339 GIMPLE_PASS,
7340 "crited", /* name */
7341 NULL, /* gate */
7342 split_critical_edges, /* execute */
7343 NULL, /* sub */
7344 NULL, /* next */
7345 0, /* static_pass_number */
7346 TV_TREE_SPLIT_EDGES, /* tv_id */
7347 PROP_cfg, /* properties required */
7348 PROP_no_crit_edges, /* properties_provided */
7349 0, /* properties_destroyed */
7350 0, /* todo_flags_start */
7351 TODO_verify_flow /* todo_flags_finish */
7352 }
7353 };
7354
7355
7356 /* Build a ternary operation and gimplify it. Emit code before GSI.
7357 Return the gimple_val holding the result. */
7358
7359 tree
7360 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7361 tree type, tree a, tree b, tree c)
7362 {
7363 tree ret;
7364 location_t loc = gimple_location (gsi_stmt (*gsi));
7365
7366 ret = fold_build3_loc (loc, code, type, a, b, c);
7367 STRIP_NOPS (ret);
7368
7369 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7370 GSI_SAME_STMT);
7371 }
7372
7373 /* Build a binary operation and gimplify it. Emit code before GSI.
7374 Return the gimple_val holding the result. */
7375
7376 tree
7377 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7378 tree type, tree a, tree b)
7379 {
7380 tree ret;
7381
7382 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7383 STRIP_NOPS (ret);
7384
7385 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7386 GSI_SAME_STMT);
7387 }
7388
7389 /* Build a unary operation and gimplify it. Emit code before GSI.
7390 Return the gimple_val holding the result. */
7391
7392 tree
7393 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7394 tree a)
7395 {
7396 tree ret;
7397
7398 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7399 STRIP_NOPS (ret);
7400
7401 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7402 GSI_SAME_STMT);
7403 }
7404
7405
7406 \f
7407 /* Emit return warnings. */
7408
7409 static unsigned int
7410 execute_warn_function_return (void)
7411 {
7412 source_location location;
7413 gimple last;
7414 edge e;
7415 edge_iterator ei;
7416
7417 /* If we have a path to EXIT, then we do return. */
7418 if (TREE_THIS_VOLATILE (cfun->decl)
7419 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7420 {
7421 location = UNKNOWN_LOCATION;
7422 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7423 {
7424 last = last_stmt (e->src);
7425 if ((gimple_code (last) == GIMPLE_RETURN
7426 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7427 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7428 break;
7429 }
7430 if (location == UNKNOWN_LOCATION)
7431 location = cfun->function_end_locus;
7432 warning_at (location, 0, "%<noreturn%> function does return");
7433 }
7434
7435 /* If we see "return;" in some basic block, then we do reach the end
7436 without returning a value. */
7437 else if (warn_return_type
7438 && !TREE_NO_WARNING (cfun->decl)
7439 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7440 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7441 {
7442 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7443 {
7444 gimple last = last_stmt (e->src);
7445 if (gimple_code (last) == GIMPLE_RETURN
7446 && gimple_return_retval (last) == NULL
7447 && !gimple_no_warning_p (last))
7448 {
7449 location = gimple_location (last);
7450 if (location == UNKNOWN_LOCATION)
7451 location = cfun->function_end_locus;
7452 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7453 TREE_NO_WARNING (cfun->decl) = 1;
7454 break;
7455 }
7456 }
7457 }
7458 return 0;
7459 }
7460
7461
7462 /* Given a basic block B which ends with a conditional and has
7463 precisely two successors, determine which of the edges is taken if
7464 the conditional is true and which is taken if the conditional is
7465 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7466
7467 void
7468 extract_true_false_edges_from_block (basic_block b,
7469 edge *true_edge,
7470 edge *false_edge)
7471 {
7472 edge e = EDGE_SUCC (b, 0);
7473
7474 if (e->flags & EDGE_TRUE_VALUE)
7475 {
7476 *true_edge = e;
7477 *false_edge = EDGE_SUCC (b, 1);
7478 }
7479 else
7480 {
7481 *false_edge = e;
7482 *true_edge = EDGE_SUCC (b, 1);
7483 }
7484 }
7485
7486 struct gimple_opt_pass pass_warn_function_return =
7487 {
7488 {
7489 GIMPLE_PASS,
7490 "*warn_function_return", /* name */
7491 NULL, /* gate */
7492 execute_warn_function_return, /* execute */
7493 NULL, /* sub */
7494 NULL, /* next */
7495 0, /* static_pass_number */
7496 TV_NONE, /* tv_id */
7497 PROP_cfg, /* properties_required */
7498 0, /* properties_provided */
7499 0, /* properties_destroyed */
7500 0, /* todo_flags_start */
7501 0 /* todo_flags_finish */
7502 }
7503 };
7504
7505 /* Emit noreturn warnings. */
7506
7507 static unsigned int
7508 execute_warn_function_noreturn (void)
7509 {
7510 if (!TREE_THIS_VOLATILE (current_function_decl)
7511 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7512 warn_function_noreturn (current_function_decl);
7513 return 0;
7514 }
7515
7516 static bool
7517 gate_warn_function_noreturn (void)
7518 {
7519 return warn_suggest_attribute_noreturn;
7520 }
7521
7522 struct gimple_opt_pass pass_warn_function_noreturn =
7523 {
7524 {
7525 GIMPLE_PASS,
7526 "*warn_function_noreturn", /* name */
7527 gate_warn_function_noreturn, /* gate */
7528 execute_warn_function_noreturn, /* execute */
7529 NULL, /* sub */
7530 NULL, /* next */
7531 0, /* static_pass_number */
7532 TV_NONE, /* tv_id */
7533 PROP_cfg, /* properties_required */
7534 0, /* properties_provided */
7535 0, /* properties_destroyed */
7536 0, /* todo_flags_start */
7537 0 /* todo_flags_finish */
7538 }
7539 };
7540
7541
7542 /* Walk a gimplified function and warn for functions whose return value is
7543 ignored and attribute((warn_unused_result)) is set. This is done before
7544 inlining, so we don't have to worry about that. */
7545
7546 static void
7547 do_warn_unused_result (gimple_seq seq)
7548 {
7549 tree fdecl, ftype;
7550 gimple_stmt_iterator i;
7551
7552 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7553 {
7554 gimple g = gsi_stmt (i);
7555
7556 switch (gimple_code (g))
7557 {
7558 case GIMPLE_BIND:
7559 do_warn_unused_result (gimple_bind_body (g));
7560 break;
7561 case GIMPLE_TRY:
7562 do_warn_unused_result (gimple_try_eval (g));
7563 do_warn_unused_result (gimple_try_cleanup (g));
7564 break;
7565 case GIMPLE_CATCH:
7566 do_warn_unused_result (gimple_catch_handler (g));
7567 break;
7568 case GIMPLE_EH_FILTER:
7569 do_warn_unused_result (gimple_eh_filter_failure (g));
7570 break;
7571
7572 case GIMPLE_CALL:
7573 if (gimple_call_lhs (g))
7574 break;
7575 if (gimple_call_internal_p (g))
7576 break;
7577
7578 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7579 LHS. All calls whose value is ignored should be
7580 represented like this. Look for the attribute. */
7581 fdecl = gimple_call_fndecl (g);
7582 ftype = gimple_call_fntype (g);
7583
7584 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7585 {
7586 location_t loc = gimple_location (g);
7587
7588 if (fdecl)
7589 warning_at (loc, OPT_Wunused_result,
7590 "ignoring return value of %qD, "
7591 "declared with attribute warn_unused_result",
7592 fdecl);
7593 else
7594 warning_at (loc, OPT_Wunused_result,
7595 "ignoring return value of function "
7596 "declared with attribute warn_unused_result");
7597 }
7598 break;
7599
7600 default:
7601 /* Not a container, not a call, or a call whose value is used. */
7602 break;
7603 }
7604 }
7605 }
7606
7607 static unsigned int
7608 run_warn_unused_result (void)
7609 {
7610 do_warn_unused_result (gimple_body (current_function_decl));
7611 return 0;
7612 }
7613
7614 static bool
7615 gate_warn_unused_result (void)
7616 {
7617 return flag_warn_unused_result;
7618 }
7619
7620 struct gimple_opt_pass pass_warn_unused_result =
7621 {
7622 {
7623 GIMPLE_PASS,
7624 "*warn_unused_result", /* name */
7625 gate_warn_unused_result, /* gate */
7626 run_warn_unused_result, /* execute */
7627 NULL, /* sub */
7628 NULL, /* next */
7629 0, /* static_pass_number */
7630 TV_NONE, /* tv_id */
7631 PROP_gimple_any, /* properties_required */
7632 0, /* properties_provided */
7633 0, /* properties_destroyed */
7634 0, /* todo_flags_start */
7635 0, /* todo_flags_finish */
7636 }
7637 };