2f4583600f799c3a3ab773e42db6fbb0f665de95
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "ggc.h"
36 #include "langhooks.h"
37 #include "diagnostic.h"
38 #include "tree-flow.h"
39 #include "timevar.h"
40 #include "tree-dump.h"
41 #include "tree-pass.h"
42 #include "toplev.h"
43 #include "except.h"
44 #include "cfgloop.h"
45 #include "cfglayout.h"
46 #include "hashtab.h"
47 #include "tree-ssa-propagate.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of SWITCH_EXPRs.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 struct edge_to_cases_elt
71 {
72 /* The edge itself. Necessary for hashing and equality tests. */
73 edge e;
74
75 /* The case labels associated with this edge. We link these up via
76 their TREE_CHAIN field, then we wipe out the TREE_CHAIN fields
77 when we destroy the hash table. This prevents problems when copying
78 SWITCH_EXPRs. */
79 tree case_labels;
80 };
81
82 static htab_t edge_to_cases;
83
84 /* CFG statistics. */
85 struct cfg_stats_d
86 {
87 long num_merged_labels;
88 };
89
90 static struct cfg_stats_d cfg_stats;
91
92 /* Nonzero if we found a computed goto while building basic blocks. */
93 static bool found_computed_goto;
94
95 /* Basic blocks and flowgraphs. */
96 static basic_block create_bb (void *, void *, basic_block);
97 static void make_blocks (tree);
98 static void factor_computed_gotos (void);
99
100 /* Edges. */
101 static void make_edges (void);
102 static void make_ctrl_stmt_edges (basic_block);
103 static void make_exit_edges (basic_block);
104 static void make_cond_expr_edges (basic_block);
105 static void make_switch_expr_edges (basic_block);
106 static void make_goto_expr_edges (basic_block);
107 static edge tree_redirect_edge_and_branch (edge, basic_block);
108 static edge tree_try_redirect_by_replacing_jump (edge, basic_block);
109 static void split_critical_edges (void);
110
111 /* Various helpers. */
112 static inline bool stmt_starts_bb_p (tree, tree);
113 static int tree_verify_flow_info (void);
114 static void tree_make_forwarder_block (edge);
115 static void tree_cfg2vcg (FILE *);
116
117 /* Flowgraph optimization and cleanup. */
118 static void tree_merge_blocks (basic_block, basic_block);
119 static bool tree_can_merge_blocks_p (basic_block, basic_block);
120 static void remove_bb (basic_block);
121 static edge find_taken_edge_computed_goto (basic_block, tree);
122 static edge find_taken_edge_cond_expr (basic_block, tree);
123 static edge find_taken_edge_switch_expr (basic_block, tree);
124 static tree find_case_label_for_value (tree, tree);
125
126 void
127 init_empty_tree_cfg (void)
128 {
129 /* Initialize the basic block array. */
130 init_flow ();
131 profile_status = PROFILE_ABSENT;
132 n_basic_blocks = NUM_FIXED_BLOCKS;
133 last_basic_block = NUM_FIXED_BLOCKS;
134 VARRAY_BB_INIT (basic_block_info, initial_cfg_capacity, "basic_block_info");
135
136 /* Build a mapping of labels to their associated blocks. */
137 label_to_block_map = VEC_alloc (basic_block, gc, initial_cfg_capacity);
138 VEC_safe_grow (basic_block, gc, label_to_block_map, initial_cfg_capacity);
139 memset (VEC_address (basic_block, label_to_block_map),
140 0, sizeof (basic_block) * initial_cfg_capacity);
141
142 BASIC_BLOCK (ENTRY_BLOCK) = ENTRY_BLOCK_PTR;
143 BASIC_BLOCK (EXIT_BLOCK) = EXIT_BLOCK_PTR;
144 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
145 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
146 }
147
148 /*---------------------------------------------------------------------------
149 Create basic blocks
150 ---------------------------------------------------------------------------*/
151
152 /* Entry point to the CFG builder for trees. TP points to the list of
153 statements to be added to the flowgraph. */
154
155 static void
156 build_tree_cfg (tree *tp)
157 {
158 /* Register specific tree functions. */
159 tree_register_cfg_hooks ();
160
161 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
162
163 init_empty_tree_cfg ();
164
165 found_computed_goto = 0;
166 make_blocks (*tp);
167
168 /* Computed gotos are hell to deal with, especially if there are
169 lots of them with a large number of destinations. So we factor
170 them to a common computed goto location before we build the
171 edge list. After we convert back to normal form, we will un-factor
172 the computed gotos since factoring introduces an unwanted jump. */
173 if (found_computed_goto)
174 factor_computed_gotos ();
175
176 /* Make sure there is always at least one block, even if it's empty. */
177 if (n_basic_blocks == NUM_FIXED_BLOCKS)
178 create_empty_bb (ENTRY_BLOCK_PTR);
179
180 /* Adjust the size of the array. */
181 VARRAY_GROW (basic_block_info, n_basic_blocks);
182
183 /* To speed up statement iterator walks, we first purge dead labels. */
184 cleanup_dead_labels ();
185
186 /* Group case nodes to reduce the number of edges.
187 We do this after cleaning up dead labels because otherwise we miss
188 a lot of obvious case merging opportunities. */
189 group_case_labels ();
190
191 /* Create the edges of the flowgraph. */
192 make_edges ();
193
194 /* Debugging dumps. */
195
196 /* Write the flowgraph to a VCG file. */
197 {
198 int local_dump_flags;
199 FILE *dump_file = dump_begin (TDI_vcg, &local_dump_flags);
200 if (dump_file)
201 {
202 tree_cfg2vcg (dump_file);
203 dump_end (TDI_vcg, dump_file);
204 }
205 }
206
207 #ifdef ENABLE_CHECKING
208 verify_stmts ();
209 #endif
210
211 /* Dump a textual representation of the flowgraph. */
212 if (dump_file)
213 dump_tree_cfg (dump_file, dump_flags);
214 }
215
216 static void
217 execute_build_cfg (void)
218 {
219 build_tree_cfg (&DECL_SAVED_TREE (current_function_decl));
220 }
221
222 struct tree_opt_pass pass_build_cfg =
223 {
224 "cfg", /* name */
225 NULL, /* gate */
226 execute_build_cfg, /* execute */
227 NULL, /* sub */
228 NULL, /* next */
229 0, /* static_pass_number */
230 TV_TREE_CFG, /* tv_id */
231 PROP_gimple_leh, /* properties_required */
232 PROP_cfg, /* properties_provided */
233 0, /* properties_destroyed */
234 0, /* todo_flags_start */
235 TODO_verify_stmts, /* todo_flags_finish */
236 0 /* letter */
237 };
238
239 /* Search the CFG for any computed gotos. If found, factor them to a
240 common computed goto site. Also record the location of that site so
241 that we can un-factor the gotos after we have converted back to
242 normal form. */
243
244 static void
245 factor_computed_gotos (void)
246 {
247 basic_block bb;
248 tree factored_label_decl = NULL;
249 tree var = NULL;
250 tree factored_computed_goto_label = NULL;
251 tree factored_computed_goto = NULL;
252
253 /* We know there are one or more computed gotos in this function.
254 Examine the last statement in each basic block to see if the block
255 ends with a computed goto. */
256
257 FOR_EACH_BB (bb)
258 {
259 block_stmt_iterator bsi = bsi_last (bb);
260 tree last;
261
262 if (bsi_end_p (bsi))
263 continue;
264 last = bsi_stmt (bsi);
265
266 /* Ignore the computed goto we create when we factor the original
267 computed gotos. */
268 if (last == factored_computed_goto)
269 continue;
270
271 /* If the last statement is a computed goto, factor it. */
272 if (computed_goto_p (last))
273 {
274 tree assignment;
275
276 /* The first time we find a computed goto we need to create
277 the factored goto block and the variable each original
278 computed goto will use for their goto destination. */
279 if (! factored_computed_goto)
280 {
281 basic_block new_bb = create_empty_bb (bb);
282 block_stmt_iterator new_bsi = bsi_start (new_bb);
283
284 /* Create the destination of the factored goto. Each original
285 computed goto will put its desired destination into this
286 variable and jump to the label we create immediately
287 below. */
288 var = create_tmp_var (ptr_type_node, "gotovar");
289
290 /* Build a label for the new block which will contain the
291 factored computed goto. */
292 factored_label_decl = create_artificial_label ();
293 factored_computed_goto_label
294 = build1 (LABEL_EXPR, void_type_node, factored_label_decl);
295 bsi_insert_after (&new_bsi, factored_computed_goto_label,
296 BSI_NEW_STMT);
297
298 /* Build our new computed goto. */
299 factored_computed_goto = build1 (GOTO_EXPR, void_type_node, var);
300 bsi_insert_after (&new_bsi, factored_computed_goto,
301 BSI_NEW_STMT);
302 }
303
304 /* Copy the original computed goto's destination into VAR. */
305 assignment = build2 (MODIFY_EXPR, ptr_type_node,
306 var, GOTO_DESTINATION (last));
307 bsi_insert_before (&bsi, assignment, BSI_SAME_STMT);
308
309 /* And re-vector the computed goto to the new destination. */
310 GOTO_DESTINATION (last) = factored_label_decl;
311 }
312 }
313 }
314
315
316 /* Build a flowgraph for the statement_list STMT_LIST. */
317
318 static void
319 make_blocks (tree stmt_list)
320 {
321 tree_stmt_iterator i = tsi_start (stmt_list);
322 tree stmt = NULL;
323 bool start_new_block = true;
324 bool first_stmt_of_list = true;
325 basic_block bb = ENTRY_BLOCK_PTR;
326
327 while (!tsi_end_p (i))
328 {
329 tree prev_stmt;
330
331 prev_stmt = stmt;
332 stmt = tsi_stmt (i);
333
334 /* If the statement starts a new basic block or if we have determined
335 in a previous pass that we need to create a new block for STMT, do
336 so now. */
337 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
338 {
339 if (!first_stmt_of_list)
340 stmt_list = tsi_split_statement_list_before (&i);
341 bb = create_basic_block (stmt_list, NULL, bb);
342 start_new_block = false;
343 }
344
345 /* Now add STMT to BB and create the subgraphs for special statement
346 codes. */
347 set_bb_for_stmt (stmt, bb);
348
349 if (computed_goto_p (stmt))
350 found_computed_goto = true;
351
352 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
353 next iteration. */
354 if (stmt_ends_bb_p (stmt))
355 start_new_block = true;
356
357 tsi_next (&i);
358 first_stmt_of_list = false;
359 }
360 }
361
362
363 /* Create and return a new empty basic block after bb AFTER. */
364
365 static basic_block
366 create_bb (void *h, void *e, basic_block after)
367 {
368 basic_block bb;
369
370 gcc_assert (!e);
371
372 /* Create and initialize a new basic block. Since alloc_block uses
373 ggc_alloc_cleared to allocate a basic block, we do not have to
374 clear the newly allocated basic block here. */
375 bb = alloc_block ();
376
377 bb->index = last_basic_block;
378 bb->flags = BB_NEW;
379 bb->stmt_list = h ? (tree) h : alloc_stmt_list ();
380
381 /* Add the new block to the linked list of blocks. */
382 link_block (bb, after);
383
384 /* Grow the basic block array if needed. */
385 if ((size_t) last_basic_block == VARRAY_SIZE (basic_block_info))
386 {
387 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
388 VARRAY_GROW (basic_block_info, new_size);
389 }
390
391 /* Add the newly created block to the array. */
392 BASIC_BLOCK (last_basic_block) = bb;
393
394 n_basic_blocks++;
395 last_basic_block++;
396
397 return bb;
398 }
399
400
401 /*---------------------------------------------------------------------------
402 Edge creation
403 ---------------------------------------------------------------------------*/
404
405 /* Fold COND_EXPR_COND of each COND_EXPR. */
406
407 void
408 fold_cond_expr_cond (void)
409 {
410 basic_block bb;
411
412 FOR_EACH_BB (bb)
413 {
414 tree stmt = last_stmt (bb);
415
416 if (stmt
417 && TREE_CODE (stmt) == COND_EXPR)
418 {
419 tree cond = fold (COND_EXPR_COND (stmt));
420 if (integer_zerop (cond))
421 COND_EXPR_COND (stmt) = boolean_false_node;
422 else if (integer_onep (cond))
423 COND_EXPR_COND (stmt) = boolean_true_node;
424 }
425 }
426 }
427
428 /* Join all the blocks in the flowgraph. */
429
430 static void
431 make_edges (void)
432 {
433 basic_block bb;
434
435 /* Create an edge from entry to the first block with executable
436 statements in it. */
437 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
438
439 /* Traverse the basic block array placing edges. */
440 FOR_EACH_BB (bb)
441 {
442 tree first = first_stmt (bb);
443 tree last = last_stmt (bb);
444
445 if (first)
446 {
447 /* Edges for statements that always alter flow control. */
448 if (is_ctrl_stmt (last))
449 make_ctrl_stmt_edges (bb);
450
451 /* Edges for statements that sometimes alter flow control. */
452 if (is_ctrl_altering_stmt (last))
453 make_exit_edges (bb);
454 }
455
456 /* Finally, if no edges were created above, this is a regular
457 basic block that only needs a fallthru edge. */
458 if (EDGE_COUNT (bb->succs) == 0)
459 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
460 }
461
462 /* We do not care about fake edges, so remove any that the CFG
463 builder inserted for completeness. */
464 remove_fake_exit_edges ();
465
466 /* Fold COND_EXPR_COND of each COND_EXPR. */
467 fold_cond_expr_cond ();
468
469 /* Clean up the graph and warn for unreachable code. */
470 cleanup_tree_cfg ();
471 }
472
473
474 /* Create edges for control statement at basic block BB. */
475
476 static void
477 make_ctrl_stmt_edges (basic_block bb)
478 {
479 tree last = last_stmt (bb);
480
481 gcc_assert (last);
482 switch (TREE_CODE (last))
483 {
484 case GOTO_EXPR:
485 make_goto_expr_edges (bb);
486 break;
487
488 case RETURN_EXPR:
489 make_edge (bb, EXIT_BLOCK_PTR, 0);
490 break;
491
492 case COND_EXPR:
493 make_cond_expr_edges (bb);
494 break;
495
496 case SWITCH_EXPR:
497 make_switch_expr_edges (bb);
498 break;
499
500 case RESX_EXPR:
501 make_eh_edges (last);
502 /* Yet another NORETURN hack. */
503 if (EDGE_COUNT (bb->succs) == 0)
504 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
505 break;
506
507 default:
508 gcc_unreachable ();
509 }
510 }
511
512
513 /* Create exit edges for statements in block BB that alter the flow of
514 control. Statements that alter the control flow are 'goto', 'return'
515 and calls to non-returning functions. */
516
517 static void
518 make_exit_edges (basic_block bb)
519 {
520 tree last = last_stmt (bb), op;
521
522 gcc_assert (last);
523 switch (TREE_CODE (last))
524 {
525 case RESX_EXPR:
526 break;
527 case CALL_EXPR:
528 /* If this function receives a nonlocal goto, then we need to
529 make edges from this call site to all the nonlocal goto
530 handlers. */
531 if (TREE_SIDE_EFFECTS (last)
532 && current_function_has_nonlocal_label)
533 make_goto_expr_edges (bb);
534
535 /* If this statement has reachable exception handlers, then
536 create abnormal edges to them. */
537 make_eh_edges (last);
538
539 /* Some calls are known not to return. For such calls we create
540 a fake edge.
541
542 We really need to revamp how we build edges so that it's not
543 such a bloody pain to avoid creating edges for this case since
544 all we do is remove these edges when we're done building the
545 CFG. */
546 if (call_expr_flags (last) & ECF_NORETURN)
547 {
548 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
549 return;
550 }
551
552 /* Don't forget the fall-thru edge. */
553 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
554 break;
555
556 case MODIFY_EXPR:
557 /* A MODIFY_EXPR may have a CALL_EXPR on its RHS and the CALL_EXPR
558 may have an abnormal edge. Search the RHS for this case and
559 create any required edges. */
560 op = get_call_expr_in (last);
561 if (op && TREE_SIDE_EFFECTS (op)
562 && current_function_has_nonlocal_label)
563 make_goto_expr_edges (bb);
564
565 make_eh_edges (last);
566 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
567 break;
568
569 default:
570 gcc_unreachable ();
571 }
572 }
573
574
575 /* Create the edges for a COND_EXPR starting at block BB.
576 At this point, both clauses must contain only simple gotos. */
577
578 static void
579 make_cond_expr_edges (basic_block bb)
580 {
581 tree entry = last_stmt (bb);
582 basic_block then_bb, else_bb;
583 tree then_label, else_label;
584 edge e;
585
586 gcc_assert (entry);
587 gcc_assert (TREE_CODE (entry) == COND_EXPR);
588
589 /* Entry basic blocks for each component. */
590 then_label = GOTO_DESTINATION (COND_EXPR_THEN (entry));
591 else_label = GOTO_DESTINATION (COND_EXPR_ELSE (entry));
592 then_bb = label_to_block (then_label);
593 else_bb = label_to_block (else_label);
594
595 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
596 #ifdef USE_MAPPED_LOCATION
597 e->goto_locus = EXPR_LOCATION (COND_EXPR_THEN (entry));
598 #else
599 e->goto_locus = EXPR_LOCUS (COND_EXPR_THEN (entry));
600 #endif
601 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
602 if (e)
603 {
604 #ifdef USE_MAPPED_LOCATION
605 e->goto_locus = EXPR_LOCATION (COND_EXPR_ELSE (entry));
606 #else
607 e->goto_locus = EXPR_LOCUS (COND_EXPR_ELSE (entry));
608 #endif
609 }
610 }
611
612 /* Hashing routine for EDGE_TO_CASES. */
613
614 static hashval_t
615 edge_to_cases_hash (const void *p)
616 {
617 edge e = ((struct edge_to_cases_elt *)p)->e;
618
619 /* Hash on the edge itself (which is a pointer). */
620 return htab_hash_pointer (e);
621 }
622
623 /* Equality routine for EDGE_TO_CASES, edges are unique, so testing
624 for equality is just a pointer comparison. */
625
626 static int
627 edge_to_cases_eq (const void *p1, const void *p2)
628 {
629 edge e1 = ((struct edge_to_cases_elt *)p1)->e;
630 edge e2 = ((struct edge_to_cases_elt *)p2)->e;
631
632 return e1 == e2;
633 }
634
635 /* Called for each element in the hash table (P) as we delete the
636 edge to cases hash table.
637
638 Clear all the TREE_CHAINs to prevent problems with copying of
639 SWITCH_EXPRs and structure sharing rules, then free the hash table
640 element. */
641
642 static void
643 edge_to_cases_cleanup (void *p)
644 {
645 struct edge_to_cases_elt *elt = (struct edge_to_cases_elt *) p;
646 tree t, next;
647
648 for (t = elt->case_labels; t; t = next)
649 {
650 next = TREE_CHAIN (t);
651 TREE_CHAIN (t) = NULL;
652 }
653 free (p);
654 }
655
656 /* Start recording information mapping edges to case labels. */
657
658 void
659 start_recording_case_labels (void)
660 {
661 gcc_assert (edge_to_cases == NULL);
662
663 edge_to_cases = htab_create (37,
664 edge_to_cases_hash,
665 edge_to_cases_eq,
666 edge_to_cases_cleanup);
667 }
668
669 /* Return nonzero if we are recording information for case labels. */
670
671 static bool
672 recording_case_labels_p (void)
673 {
674 return (edge_to_cases != NULL);
675 }
676
677 /* Stop recording information mapping edges to case labels and
678 remove any information we have recorded. */
679 void
680 end_recording_case_labels (void)
681 {
682 htab_delete (edge_to_cases);
683 edge_to_cases = NULL;
684 }
685
686 /* Record that CASE_LABEL (a CASE_LABEL_EXPR) references edge E. */
687
688 static void
689 record_switch_edge (edge e, tree case_label)
690 {
691 struct edge_to_cases_elt *elt;
692 void **slot;
693
694 /* Build a hash table element so we can see if E is already
695 in the table. */
696 elt = XNEW (struct edge_to_cases_elt);
697 elt->e = e;
698 elt->case_labels = case_label;
699
700 slot = htab_find_slot (edge_to_cases, elt, INSERT);
701
702 if (*slot == NULL)
703 {
704 /* E was not in the hash table. Install E into the hash table. */
705 *slot = (void *)elt;
706 }
707 else
708 {
709 /* E was already in the hash table. Free ELT as we do not need it
710 anymore. */
711 free (elt);
712
713 /* Get the entry stored in the hash table. */
714 elt = (struct edge_to_cases_elt *) *slot;
715
716 /* Add it to the chain of CASE_LABEL_EXPRs referencing E. */
717 TREE_CHAIN (case_label) = elt->case_labels;
718 elt->case_labels = case_label;
719 }
720 }
721
722 /* If we are inside a {start,end}_recording_cases block, then return
723 a chain of CASE_LABEL_EXPRs from T which reference E.
724
725 Otherwise return NULL. */
726
727 static tree
728 get_cases_for_edge (edge e, tree t)
729 {
730 struct edge_to_cases_elt elt, *elt_p;
731 void **slot;
732 size_t i, n;
733 tree vec;
734
735 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
736 chains available. Return NULL so the caller can detect this case. */
737 if (!recording_case_labels_p ())
738 return NULL;
739
740 restart:
741 elt.e = e;
742 elt.case_labels = NULL;
743 slot = htab_find_slot (edge_to_cases, &elt, NO_INSERT);
744
745 if (slot)
746 {
747 elt_p = (struct edge_to_cases_elt *)*slot;
748 return elt_p->case_labels;
749 }
750
751 /* If we did not find E in the hash table, then this must be the first
752 time we have been queried for information about E & T. Add all the
753 elements from T to the hash table then perform the query again. */
754
755 vec = SWITCH_LABELS (t);
756 n = TREE_VEC_LENGTH (vec);
757 for (i = 0; i < n; i++)
758 {
759 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
760 basic_block label_bb = label_to_block (lab);
761 record_switch_edge (find_edge (e->src, label_bb), TREE_VEC_ELT (vec, i));
762 }
763 goto restart;
764 }
765
766 /* Create the edges for a SWITCH_EXPR starting at block BB.
767 At this point, the switch body has been lowered and the
768 SWITCH_LABELS filled in, so this is in effect a multi-way branch. */
769
770 static void
771 make_switch_expr_edges (basic_block bb)
772 {
773 tree entry = last_stmt (bb);
774 size_t i, n;
775 tree vec;
776
777 vec = SWITCH_LABELS (entry);
778 n = TREE_VEC_LENGTH (vec);
779
780 for (i = 0; i < n; ++i)
781 {
782 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
783 basic_block label_bb = label_to_block (lab);
784 make_edge (bb, label_bb, 0);
785 }
786 }
787
788
789 /* Return the basic block holding label DEST. */
790
791 basic_block
792 label_to_block_fn (struct function *ifun, tree dest)
793 {
794 int uid = LABEL_DECL_UID (dest);
795
796 /* We would die hard when faced by an undefined label. Emit a label to
797 the very first basic block. This will hopefully make even the dataflow
798 and undefined variable warnings quite right. */
799 if ((errorcount || sorrycount) && uid < 0)
800 {
801 block_stmt_iterator bsi =
802 bsi_start (BASIC_BLOCK (NUM_FIXED_BLOCKS));
803 tree stmt;
804
805 stmt = build1 (LABEL_EXPR, void_type_node, dest);
806 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
807 uid = LABEL_DECL_UID (dest);
808 }
809 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
810 <= (unsigned int) uid)
811 return NULL;
812 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
813 }
814
815 /* Create edges for a goto statement at block BB. */
816
817 static void
818 make_goto_expr_edges (basic_block bb)
819 {
820 tree goto_t;
821 basic_block target_bb;
822 int for_call;
823 block_stmt_iterator last = bsi_last (bb);
824
825 goto_t = bsi_stmt (last);
826
827 /* If the last statement is not a GOTO (i.e., it is a RETURN_EXPR,
828 CALL_EXPR or MODIFY_EXPR), then the edge is an abnormal edge resulting
829 from a nonlocal goto. */
830 if (TREE_CODE (goto_t) != GOTO_EXPR)
831 for_call = 1;
832 else
833 {
834 tree dest = GOTO_DESTINATION (goto_t);
835 for_call = 0;
836
837 /* A GOTO to a local label creates normal edges. */
838 if (simple_goto_p (goto_t))
839 {
840 edge e = make_edge (bb, label_to_block (dest), EDGE_FALLTHRU);
841 #ifdef USE_MAPPED_LOCATION
842 e->goto_locus = EXPR_LOCATION (goto_t);
843 #else
844 e->goto_locus = EXPR_LOCUS (goto_t);
845 #endif
846 bsi_remove (&last);
847 return;
848 }
849
850 /* Nothing more to do for nonlocal gotos. */
851 if (TREE_CODE (dest) == LABEL_DECL)
852 return;
853
854 /* Computed gotos remain. */
855 }
856
857 /* Look for the block starting with the destination label. In the
858 case of a computed goto, make an edge to any label block we find
859 in the CFG. */
860 FOR_EACH_BB (target_bb)
861 {
862 block_stmt_iterator bsi;
863
864 for (bsi = bsi_start (target_bb); !bsi_end_p (bsi); bsi_next (&bsi))
865 {
866 tree target = bsi_stmt (bsi);
867
868 if (TREE_CODE (target) != LABEL_EXPR)
869 break;
870
871 if (
872 /* Computed GOTOs. Make an edge to every label block that has
873 been marked as a potential target for a computed goto. */
874 (FORCED_LABEL (LABEL_EXPR_LABEL (target)) && for_call == 0)
875 /* Nonlocal GOTO target. Make an edge to every label block
876 that has been marked as a potential target for a nonlocal
877 goto. */
878 || (DECL_NONLOCAL (LABEL_EXPR_LABEL (target)) && for_call == 1))
879 {
880 make_edge (bb, target_bb, EDGE_ABNORMAL);
881 break;
882 }
883 }
884 }
885
886 /* Degenerate case of computed goto with no labels. */
887 if (!for_call && EDGE_COUNT (bb->succs) == 0)
888 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
889 }
890
891
892 /*---------------------------------------------------------------------------
893 Flowgraph analysis
894 ---------------------------------------------------------------------------*/
895
896 /* Cleanup useless labels in basic blocks. This is something we wish
897 to do early because it allows us to group case labels before creating
898 the edges for the CFG, and it speeds up block statement iterators in
899 all passes later on.
900 We only run this pass once, running it more than once is probably not
901 profitable. */
902
903 /* A map from basic block index to the leading label of that block. */
904 static tree *label_for_bb;
905
906 /* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
907 static void
908 update_eh_label (struct eh_region *region)
909 {
910 tree old_label = get_eh_region_tree_label (region);
911 if (old_label)
912 {
913 tree new_label;
914 basic_block bb = label_to_block (old_label);
915
916 /* ??? After optimizing, there may be EH regions with labels
917 that have already been removed from the function body, so
918 there is no basic block for them. */
919 if (! bb)
920 return;
921
922 new_label = label_for_bb[bb->index];
923 set_eh_region_tree_label (region, new_label);
924 }
925 }
926
927 /* Given LABEL return the first label in the same basic block. */
928 static tree
929 main_block_label (tree label)
930 {
931 basic_block bb = label_to_block (label);
932
933 /* label_to_block possibly inserted undefined label into the chain. */
934 if (!label_for_bb[bb->index])
935 label_for_bb[bb->index] = label;
936 return label_for_bb[bb->index];
937 }
938
939 /* Cleanup redundant labels. This is a three-step process:
940 1) Find the leading label for each block.
941 2) Redirect all references to labels to the leading labels.
942 3) Cleanup all useless labels. */
943
944 void
945 cleanup_dead_labels (void)
946 {
947 basic_block bb;
948 label_for_bb = XCNEWVEC (tree, last_basic_block);
949
950 /* Find a suitable label for each block. We use the first user-defined
951 label if there is one, or otherwise just the first label we see. */
952 FOR_EACH_BB (bb)
953 {
954 block_stmt_iterator i;
955
956 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
957 {
958 tree label, stmt = bsi_stmt (i);
959
960 if (TREE_CODE (stmt) != LABEL_EXPR)
961 break;
962
963 label = LABEL_EXPR_LABEL (stmt);
964
965 /* If we have not yet seen a label for the current block,
966 remember this one and see if there are more labels. */
967 if (! label_for_bb[bb->index])
968 {
969 label_for_bb[bb->index] = label;
970 continue;
971 }
972
973 /* If we did see a label for the current block already, but it
974 is an artificially created label, replace it if the current
975 label is a user defined label. */
976 if (! DECL_ARTIFICIAL (label)
977 && DECL_ARTIFICIAL (label_for_bb[bb->index]))
978 {
979 label_for_bb[bb->index] = label;
980 break;
981 }
982 }
983 }
984
985 /* Now redirect all jumps/branches to the selected label.
986 First do so for each block ending in a control statement. */
987 FOR_EACH_BB (bb)
988 {
989 tree stmt = last_stmt (bb);
990 if (!stmt)
991 continue;
992
993 switch (TREE_CODE (stmt))
994 {
995 case COND_EXPR:
996 {
997 tree true_branch, false_branch;
998
999 true_branch = COND_EXPR_THEN (stmt);
1000 false_branch = COND_EXPR_ELSE (stmt);
1001
1002 GOTO_DESTINATION (true_branch)
1003 = main_block_label (GOTO_DESTINATION (true_branch));
1004 GOTO_DESTINATION (false_branch)
1005 = main_block_label (GOTO_DESTINATION (false_branch));
1006
1007 break;
1008 }
1009
1010 case SWITCH_EXPR:
1011 {
1012 size_t i;
1013 tree vec = SWITCH_LABELS (stmt);
1014 size_t n = TREE_VEC_LENGTH (vec);
1015
1016 /* Replace all destination labels. */
1017 for (i = 0; i < n; ++i)
1018 {
1019 tree elt = TREE_VEC_ELT (vec, i);
1020 tree label = main_block_label (CASE_LABEL (elt));
1021 CASE_LABEL (elt) = label;
1022 }
1023 break;
1024 }
1025
1026 /* We have to handle GOTO_EXPRs until they're removed, and we don't
1027 remove them until after we've created the CFG edges. */
1028 case GOTO_EXPR:
1029 if (! computed_goto_p (stmt))
1030 {
1031 GOTO_DESTINATION (stmt)
1032 = main_block_label (GOTO_DESTINATION (stmt));
1033 break;
1034 }
1035
1036 default:
1037 break;
1038 }
1039 }
1040
1041 for_each_eh_region (update_eh_label);
1042
1043 /* Finally, purge dead labels. All user-defined labels and labels that
1044 can be the target of non-local gotos are preserved. */
1045 FOR_EACH_BB (bb)
1046 {
1047 block_stmt_iterator i;
1048 tree label_for_this_bb = label_for_bb[bb->index];
1049
1050 if (! label_for_this_bb)
1051 continue;
1052
1053 for (i = bsi_start (bb); !bsi_end_p (i); )
1054 {
1055 tree label, stmt = bsi_stmt (i);
1056
1057 if (TREE_CODE (stmt) != LABEL_EXPR)
1058 break;
1059
1060 label = LABEL_EXPR_LABEL (stmt);
1061
1062 if (label == label_for_this_bb
1063 || ! DECL_ARTIFICIAL (label)
1064 || DECL_NONLOCAL (label))
1065 bsi_next (&i);
1066 else
1067 bsi_remove (&i);
1068 }
1069 }
1070
1071 free (label_for_bb);
1072 }
1073
1074 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1075 and scan the sorted vector of cases. Combine the ones jumping to the
1076 same label.
1077 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1078
1079 void
1080 group_case_labels (void)
1081 {
1082 basic_block bb;
1083
1084 FOR_EACH_BB (bb)
1085 {
1086 tree stmt = last_stmt (bb);
1087 if (stmt && TREE_CODE (stmt) == SWITCH_EXPR)
1088 {
1089 tree labels = SWITCH_LABELS (stmt);
1090 int old_size = TREE_VEC_LENGTH (labels);
1091 int i, j, new_size = old_size;
1092 tree default_case = TREE_VEC_ELT (labels, old_size - 1);
1093 tree default_label;
1094
1095 /* The default label is always the last case in a switch
1096 statement after gimplification. */
1097 default_label = CASE_LABEL (default_case);
1098
1099 /* Look for possible opportunities to merge cases.
1100 Ignore the last element of the label vector because it
1101 must be the default case. */
1102 i = 0;
1103 while (i < old_size - 1)
1104 {
1105 tree base_case, base_label, base_high;
1106 base_case = TREE_VEC_ELT (labels, i);
1107
1108 gcc_assert (base_case);
1109 base_label = CASE_LABEL (base_case);
1110
1111 /* Discard cases that have the same destination as the
1112 default case. */
1113 if (base_label == default_label)
1114 {
1115 TREE_VEC_ELT (labels, i) = NULL_TREE;
1116 i++;
1117 new_size--;
1118 continue;
1119 }
1120
1121 base_high = CASE_HIGH (base_case) ?
1122 CASE_HIGH (base_case) : CASE_LOW (base_case);
1123 i++;
1124 /* Try to merge case labels. Break out when we reach the end
1125 of the label vector or when we cannot merge the next case
1126 label with the current one. */
1127 while (i < old_size - 1)
1128 {
1129 tree merge_case = TREE_VEC_ELT (labels, i);
1130 tree merge_label = CASE_LABEL (merge_case);
1131 tree t = int_const_binop (PLUS_EXPR, base_high,
1132 integer_one_node, 1);
1133
1134 /* Merge the cases if they jump to the same place,
1135 and their ranges are consecutive. */
1136 if (merge_label == base_label
1137 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1138 {
1139 base_high = CASE_HIGH (merge_case) ?
1140 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1141 CASE_HIGH (base_case) = base_high;
1142 TREE_VEC_ELT (labels, i) = NULL_TREE;
1143 new_size--;
1144 i++;
1145 }
1146 else
1147 break;
1148 }
1149 }
1150
1151 /* Compress the case labels in the label vector, and adjust the
1152 length of the vector. */
1153 for (i = 0, j = 0; i < new_size; i++)
1154 {
1155 while (! TREE_VEC_ELT (labels, j))
1156 j++;
1157 TREE_VEC_ELT (labels, i) = TREE_VEC_ELT (labels, j++);
1158 }
1159 TREE_VEC_LENGTH (labels) = new_size;
1160 }
1161 }
1162 }
1163
1164 /* Checks whether we can merge block B into block A. */
1165
1166 static bool
1167 tree_can_merge_blocks_p (basic_block a, basic_block b)
1168 {
1169 tree stmt;
1170 block_stmt_iterator bsi;
1171 tree phi;
1172
1173 if (!single_succ_p (a))
1174 return false;
1175
1176 if (single_succ_edge (a)->flags & EDGE_ABNORMAL)
1177 return false;
1178
1179 if (single_succ (a) != b)
1180 return false;
1181
1182 if (!single_pred_p (b))
1183 return false;
1184
1185 if (b == EXIT_BLOCK_PTR)
1186 return false;
1187
1188 /* If A ends by a statement causing exceptions or something similar, we
1189 cannot merge the blocks. */
1190 stmt = last_stmt (a);
1191 if (stmt && stmt_ends_bb_p (stmt))
1192 return false;
1193
1194 /* Do not allow a block with only a non-local label to be merged. */
1195 if (stmt && TREE_CODE (stmt) == LABEL_EXPR
1196 && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
1197 return false;
1198
1199 /* It must be possible to eliminate all phi nodes in B. If ssa form
1200 is not up-to-date, we cannot eliminate any phis. */
1201 phi = phi_nodes (b);
1202 if (phi)
1203 {
1204 if (need_ssa_update_p ())
1205 return false;
1206
1207 for (; phi; phi = PHI_CHAIN (phi))
1208 if (!is_gimple_reg (PHI_RESULT (phi))
1209 && !may_propagate_copy (PHI_RESULT (phi), PHI_ARG_DEF (phi, 0)))
1210 return false;
1211 }
1212
1213 /* Do not remove user labels. */
1214 for (bsi = bsi_start (b); !bsi_end_p (bsi); bsi_next (&bsi))
1215 {
1216 stmt = bsi_stmt (bsi);
1217 if (TREE_CODE (stmt) != LABEL_EXPR)
1218 break;
1219 if (!DECL_ARTIFICIAL (LABEL_EXPR_LABEL (stmt)))
1220 return false;
1221 }
1222
1223 /* Protect the loop latches. */
1224 if (current_loops
1225 && b->loop_father->latch == b)
1226 return false;
1227
1228 return true;
1229 }
1230
1231 /* Replaces all uses of NAME by VAL. */
1232
1233 void
1234 replace_uses_by (tree name, tree val)
1235 {
1236 imm_use_iterator imm_iter;
1237 use_operand_p use;
1238 tree stmt;
1239 edge e;
1240 unsigned i;
1241 VEC(tree,heap) *stmts = VEC_alloc (tree, heap, 20);
1242
1243 FOR_EACH_IMM_USE_SAFE (use, imm_iter, name)
1244 {
1245 stmt = USE_STMT (use);
1246 replace_exp (use, val);
1247
1248 if (TREE_CODE (stmt) == PHI_NODE)
1249 {
1250 e = PHI_ARG_EDGE (stmt, PHI_ARG_INDEX_FROM_USE (use));
1251 if (e->flags & EDGE_ABNORMAL)
1252 {
1253 /* This can only occur for virtual operands, since
1254 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1255 would prevent replacement. */
1256 gcc_assert (!is_gimple_reg (name));
1257 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1258 }
1259 }
1260 else
1261 VEC_safe_push (tree, heap, stmts, stmt);
1262 }
1263
1264 /* We do not update the statements in the loop above. Consider
1265 x = w * w;
1266
1267 If we performed the update in the first loop, the statement
1268 would be rescanned after first occurrence of w is replaced,
1269 the new uses would be placed to the beginning of the list,
1270 and we would never process them. */
1271 for (i = 0; VEC_iterate (tree, stmts, i, stmt); i++)
1272 {
1273 tree rhs;
1274
1275 fold_stmt_inplace (stmt);
1276
1277 rhs = get_rhs (stmt);
1278 if (TREE_CODE (rhs) == ADDR_EXPR)
1279 recompute_tree_invariant_for_addr_expr (rhs);
1280
1281 /* If the statement could throw and now cannot, we need to prune cfg. */
1282 if (maybe_clean_or_replace_eh_stmt (stmt, stmt))
1283 tree_purge_dead_eh_edges (bb_for_stmt (stmt));
1284
1285 mark_new_vars_to_rename (stmt);
1286 }
1287
1288 VEC_free (tree, heap, stmts);
1289
1290 /* Also update the trees stored in loop structures. */
1291 if (current_loops)
1292 {
1293 struct loop *loop;
1294
1295 for (i = 0; i < current_loops->num; i++)
1296 {
1297 loop = current_loops->parray[i];
1298 if (loop)
1299 substitute_in_loop_info (loop, name, val);
1300 }
1301 }
1302 }
1303
1304 /* Merge block B into block A. */
1305
1306 static void
1307 tree_merge_blocks (basic_block a, basic_block b)
1308 {
1309 block_stmt_iterator bsi;
1310 tree_stmt_iterator last;
1311 tree phi;
1312
1313 if (dump_file)
1314 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1315
1316 /* Remove all single-valued PHI nodes from block B of the form
1317 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1318 bsi = bsi_last (a);
1319 for (phi = phi_nodes (b); phi; phi = phi_nodes (b))
1320 {
1321 tree def = PHI_RESULT (phi), use = PHI_ARG_DEF (phi, 0);
1322 tree copy;
1323 bool may_replace_uses = may_propagate_copy (def, use);
1324
1325 /* In case we have loops to care about, do not propagate arguments of
1326 loop closed ssa phi nodes. */
1327 if (current_loops
1328 && is_gimple_reg (def)
1329 && TREE_CODE (use) == SSA_NAME
1330 && a->loop_father != b->loop_father)
1331 may_replace_uses = false;
1332
1333 if (!may_replace_uses)
1334 {
1335 gcc_assert (is_gimple_reg (def));
1336
1337 /* Note that just emitting the copies is fine -- there is no problem
1338 with ordering of phi nodes. This is because A is the single
1339 predecessor of B, therefore results of the phi nodes cannot
1340 appear as arguments of the phi nodes. */
1341 copy = build2 (MODIFY_EXPR, void_type_node, def, use);
1342 bsi_insert_after (&bsi, copy, BSI_NEW_STMT);
1343 SET_PHI_RESULT (phi, NULL_TREE);
1344 SSA_NAME_DEF_STMT (def) = copy;
1345 }
1346 else
1347 replace_uses_by (def, use);
1348
1349 remove_phi_node (phi, NULL);
1350 }
1351
1352 /* Ensure that B follows A. */
1353 move_block_after (b, a);
1354
1355 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1356 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1357
1358 /* Remove labels from B and set bb_for_stmt to A for other statements. */
1359 for (bsi = bsi_start (b); !bsi_end_p (bsi);)
1360 {
1361 if (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
1362 {
1363 tree label = bsi_stmt (bsi);
1364
1365 bsi_remove (&bsi);
1366 /* Now that we can thread computed gotos, we might have
1367 a situation where we have a forced label in block B
1368 However, the label at the start of block B might still be
1369 used in other ways (think about the runtime checking for
1370 Fortran assigned gotos). So we can not just delete the
1371 label. Instead we move the label to the start of block A. */
1372 if (FORCED_LABEL (LABEL_EXPR_LABEL (label)))
1373 {
1374 block_stmt_iterator dest_bsi = bsi_start (a);
1375 bsi_insert_before (&dest_bsi, label, BSI_NEW_STMT);
1376 }
1377 }
1378 else
1379 {
1380 set_bb_for_stmt (bsi_stmt (bsi), a);
1381 bsi_next (&bsi);
1382 }
1383 }
1384
1385 /* Merge the chains. */
1386 last = tsi_last (a->stmt_list);
1387 tsi_link_after (&last, b->stmt_list, TSI_NEW_STMT);
1388 b->stmt_list = NULL;
1389 }
1390
1391
1392 /* Walk the function tree removing unnecessary statements.
1393
1394 * Empty statement nodes are removed
1395
1396 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1397
1398 * Unnecessary COND_EXPRs are removed
1399
1400 * Some unnecessary BIND_EXPRs are removed
1401
1402 Clearly more work could be done. The trick is doing the analysis
1403 and removal fast enough to be a net improvement in compile times.
1404
1405 Note that when we remove a control structure such as a COND_EXPR
1406 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1407 to ensure we eliminate all the useless code. */
1408
1409 struct rus_data
1410 {
1411 tree *last_goto;
1412 bool repeat;
1413 bool may_throw;
1414 bool may_branch;
1415 bool has_label;
1416 };
1417
1418 static void remove_useless_stmts_1 (tree *, struct rus_data *);
1419
1420 static bool
1421 remove_useless_stmts_warn_notreached (tree stmt)
1422 {
1423 if (EXPR_HAS_LOCATION (stmt))
1424 {
1425 location_t loc = EXPR_LOCATION (stmt);
1426 if (LOCATION_LINE (loc) > 0)
1427 {
1428 warning (0, "%Hwill never be executed", &loc);
1429 return true;
1430 }
1431 }
1432
1433 switch (TREE_CODE (stmt))
1434 {
1435 case STATEMENT_LIST:
1436 {
1437 tree_stmt_iterator i;
1438 for (i = tsi_start (stmt); !tsi_end_p (i); tsi_next (&i))
1439 if (remove_useless_stmts_warn_notreached (tsi_stmt (i)))
1440 return true;
1441 }
1442 break;
1443
1444 case COND_EXPR:
1445 if (remove_useless_stmts_warn_notreached (COND_EXPR_COND (stmt)))
1446 return true;
1447 if (remove_useless_stmts_warn_notreached (COND_EXPR_THEN (stmt)))
1448 return true;
1449 if (remove_useless_stmts_warn_notreached (COND_EXPR_ELSE (stmt)))
1450 return true;
1451 break;
1452
1453 case TRY_FINALLY_EXPR:
1454 case TRY_CATCH_EXPR:
1455 if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 0)))
1456 return true;
1457 if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 1)))
1458 return true;
1459 break;
1460
1461 case CATCH_EXPR:
1462 return remove_useless_stmts_warn_notreached (CATCH_BODY (stmt));
1463 case EH_FILTER_EXPR:
1464 return remove_useless_stmts_warn_notreached (EH_FILTER_FAILURE (stmt));
1465 case BIND_EXPR:
1466 return remove_useless_stmts_warn_notreached (BIND_EXPR_BLOCK (stmt));
1467
1468 default:
1469 /* Not a live container. */
1470 break;
1471 }
1472
1473 return false;
1474 }
1475
1476 static void
1477 remove_useless_stmts_cond (tree *stmt_p, struct rus_data *data)
1478 {
1479 tree then_clause, else_clause, cond;
1480 bool save_has_label, then_has_label, else_has_label;
1481
1482 save_has_label = data->has_label;
1483 data->has_label = false;
1484 data->last_goto = NULL;
1485
1486 remove_useless_stmts_1 (&COND_EXPR_THEN (*stmt_p), data);
1487
1488 then_has_label = data->has_label;
1489 data->has_label = false;
1490 data->last_goto = NULL;
1491
1492 remove_useless_stmts_1 (&COND_EXPR_ELSE (*stmt_p), data);
1493
1494 else_has_label = data->has_label;
1495 data->has_label = save_has_label | then_has_label | else_has_label;
1496
1497 then_clause = COND_EXPR_THEN (*stmt_p);
1498 else_clause = COND_EXPR_ELSE (*stmt_p);
1499 cond = fold (COND_EXPR_COND (*stmt_p));
1500
1501 /* If neither arm does anything at all, we can remove the whole IF. */
1502 if (!TREE_SIDE_EFFECTS (then_clause) && !TREE_SIDE_EFFECTS (else_clause))
1503 {
1504 *stmt_p = build_empty_stmt ();
1505 data->repeat = true;
1506 }
1507
1508 /* If there are no reachable statements in an arm, then we can
1509 zap the entire conditional. */
1510 else if (integer_nonzerop (cond) && !else_has_label)
1511 {
1512 if (warn_notreached)
1513 remove_useless_stmts_warn_notreached (else_clause);
1514 *stmt_p = then_clause;
1515 data->repeat = true;
1516 }
1517 else if (integer_zerop (cond) && !then_has_label)
1518 {
1519 if (warn_notreached)
1520 remove_useless_stmts_warn_notreached (then_clause);
1521 *stmt_p = else_clause;
1522 data->repeat = true;
1523 }
1524
1525 /* Check a couple of simple things on then/else with single stmts. */
1526 else
1527 {
1528 tree then_stmt = expr_only (then_clause);
1529 tree else_stmt = expr_only (else_clause);
1530
1531 /* Notice branches to a common destination. */
1532 if (then_stmt && else_stmt
1533 && TREE_CODE (then_stmt) == GOTO_EXPR
1534 && TREE_CODE (else_stmt) == GOTO_EXPR
1535 && (GOTO_DESTINATION (then_stmt) == GOTO_DESTINATION (else_stmt)))
1536 {
1537 *stmt_p = then_stmt;
1538 data->repeat = true;
1539 }
1540
1541 /* If the THEN/ELSE clause merely assigns a value to a variable or
1542 parameter which is already known to contain that value, then
1543 remove the useless THEN/ELSE clause. */
1544 else if (TREE_CODE (cond) == VAR_DECL || TREE_CODE (cond) == PARM_DECL)
1545 {
1546 if (else_stmt
1547 && TREE_CODE (else_stmt) == MODIFY_EXPR
1548 && TREE_OPERAND (else_stmt, 0) == cond
1549 && integer_zerop (TREE_OPERAND (else_stmt, 1)))
1550 COND_EXPR_ELSE (*stmt_p) = alloc_stmt_list ();
1551 }
1552 else if ((TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
1553 && (TREE_CODE (TREE_OPERAND (cond, 0)) == VAR_DECL
1554 || TREE_CODE (TREE_OPERAND (cond, 0)) == PARM_DECL)
1555 && TREE_CONSTANT (TREE_OPERAND (cond, 1)))
1556 {
1557 tree stmt = (TREE_CODE (cond) == EQ_EXPR
1558 ? then_stmt : else_stmt);
1559 tree *location = (TREE_CODE (cond) == EQ_EXPR
1560 ? &COND_EXPR_THEN (*stmt_p)
1561 : &COND_EXPR_ELSE (*stmt_p));
1562
1563 if (stmt
1564 && TREE_CODE (stmt) == MODIFY_EXPR
1565 && TREE_OPERAND (stmt, 0) == TREE_OPERAND (cond, 0)
1566 && TREE_OPERAND (stmt, 1) == TREE_OPERAND (cond, 1))
1567 *location = alloc_stmt_list ();
1568 }
1569 }
1570
1571 /* Protect GOTOs in the arm of COND_EXPRs from being removed. They
1572 would be re-introduced during lowering. */
1573 data->last_goto = NULL;
1574 }
1575
1576
1577 static void
1578 remove_useless_stmts_tf (tree *stmt_p, struct rus_data *data)
1579 {
1580 bool save_may_branch, save_may_throw;
1581 bool this_may_branch, this_may_throw;
1582
1583 /* Collect may_branch and may_throw information for the body only. */
1584 save_may_branch = data->may_branch;
1585 save_may_throw = data->may_throw;
1586 data->may_branch = false;
1587 data->may_throw = false;
1588 data->last_goto = NULL;
1589
1590 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
1591
1592 this_may_branch = data->may_branch;
1593 this_may_throw = data->may_throw;
1594 data->may_branch |= save_may_branch;
1595 data->may_throw |= save_may_throw;
1596 data->last_goto = NULL;
1597
1598 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
1599
1600 /* If the body is empty, then we can emit the FINALLY block without
1601 the enclosing TRY_FINALLY_EXPR. */
1602 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 0)))
1603 {
1604 *stmt_p = TREE_OPERAND (*stmt_p, 1);
1605 data->repeat = true;
1606 }
1607
1608 /* If the handler is empty, then we can emit the TRY block without
1609 the enclosing TRY_FINALLY_EXPR. */
1610 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
1611 {
1612 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1613 data->repeat = true;
1614 }
1615
1616 /* If the body neither throws, nor branches, then we can safely
1617 string the TRY and FINALLY blocks together. */
1618 else if (!this_may_branch && !this_may_throw)
1619 {
1620 tree stmt = *stmt_p;
1621 *stmt_p = TREE_OPERAND (stmt, 0);
1622 append_to_statement_list (TREE_OPERAND (stmt, 1), stmt_p);
1623 data->repeat = true;
1624 }
1625 }
1626
1627
1628 static void
1629 remove_useless_stmts_tc (tree *stmt_p, struct rus_data *data)
1630 {
1631 bool save_may_throw, this_may_throw;
1632 tree_stmt_iterator i;
1633 tree stmt;
1634
1635 /* Collect may_throw information for the body only. */
1636 save_may_throw = data->may_throw;
1637 data->may_throw = false;
1638 data->last_goto = NULL;
1639
1640 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
1641
1642 this_may_throw = data->may_throw;
1643 data->may_throw = save_may_throw;
1644
1645 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1646 if (!this_may_throw)
1647 {
1648 if (warn_notreached)
1649 remove_useless_stmts_warn_notreached (TREE_OPERAND (*stmt_p, 1));
1650 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1651 data->repeat = true;
1652 return;
1653 }
1654
1655 /* Process the catch clause specially. We may be able to tell that
1656 no exceptions propagate past this point. */
1657
1658 this_may_throw = true;
1659 i = tsi_start (TREE_OPERAND (*stmt_p, 1));
1660 stmt = tsi_stmt (i);
1661 data->last_goto = NULL;
1662
1663 switch (TREE_CODE (stmt))
1664 {
1665 case CATCH_EXPR:
1666 for (; !tsi_end_p (i); tsi_next (&i))
1667 {
1668 stmt = tsi_stmt (i);
1669 /* If we catch all exceptions, then the body does not
1670 propagate exceptions past this point. */
1671 if (CATCH_TYPES (stmt) == NULL)
1672 this_may_throw = false;
1673 data->last_goto = NULL;
1674 remove_useless_stmts_1 (&CATCH_BODY (stmt), data);
1675 }
1676 break;
1677
1678 case EH_FILTER_EXPR:
1679 if (EH_FILTER_MUST_NOT_THROW (stmt))
1680 this_may_throw = false;
1681 else if (EH_FILTER_TYPES (stmt) == NULL)
1682 this_may_throw = false;
1683 remove_useless_stmts_1 (&EH_FILTER_FAILURE (stmt), data);
1684 break;
1685
1686 default:
1687 /* Otherwise this is a cleanup. */
1688 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
1689
1690 /* If the cleanup is empty, then we can emit the TRY block without
1691 the enclosing TRY_CATCH_EXPR. */
1692 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
1693 {
1694 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1695 data->repeat = true;
1696 }
1697 break;
1698 }
1699 data->may_throw |= this_may_throw;
1700 }
1701
1702
1703 static void
1704 remove_useless_stmts_bind (tree *stmt_p, struct rus_data *data)
1705 {
1706 tree block;
1707
1708 /* First remove anything underneath the BIND_EXPR. */
1709 remove_useless_stmts_1 (&BIND_EXPR_BODY (*stmt_p), data);
1710
1711 /* If the BIND_EXPR has no variables, then we can pull everything
1712 up one level and remove the BIND_EXPR, unless this is the toplevel
1713 BIND_EXPR for the current function or an inlined function.
1714
1715 When this situation occurs we will want to apply this
1716 optimization again. */
1717 block = BIND_EXPR_BLOCK (*stmt_p);
1718 if (BIND_EXPR_VARS (*stmt_p) == NULL_TREE
1719 && *stmt_p != DECL_SAVED_TREE (current_function_decl)
1720 && (! block
1721 || ! BLOCK_ABSTRACT_ORIGIN (block)
1722 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
1723 != FUNCTION_DECL)))
1724 {
1725 *stmt_p = BIND_EXPR_BODY (*stmt_p);
1726 data->repeat = true;
1727 }
1728 }
1729
1730
1731 static void
1732 remove_useless_stmts_goto (tree *stmt_p, struct rus_data *data)
1733 {
1734 tree dest = GOTO_DESTINATION (*stmt_p);
1735
1736 data->may_branch = true;
1737 data->last_goto = NULL;
1738
1739 /* Record the last goto expr, so that we can delete it if unnecessary. */
1740 if (TREE_CODE (dest) == LABEL_DECL)
1741 data->last_goto = stmt_p;
1742 }
1743
1744
1745 static void
1746 remove_useless_stmts_label (tree *stmt_p, struct rus_data *data)
1747 {
1748 tree label = LABEL_EXPR_LABEL (*stmt_p);
1749
1750 data->has_label = true;
1751
1752 /* We do want to jump across non-local label receiver code. */
1753 if (DECL_NONLOCAL (label))
1754 data->last_goto = NULL;
1755
1756 else if (data->last_goto && GOTO_DESTINATION (*data->last_goto) == label)
1757 {
1758 *data->last_goto = build_empty_stmt ();
1759 data->repeat = true;
1760 }
1761
1762 /* ??? Add something here to delete unused labels. */
1763 }
1764
1765
1766 /* If the function is "const" or "pure", then clear TREE_SIDE_EFFECTS on its
1767 decl. This allows us to eliminate redundant or useless
1768 calls to "const" functions.
1769
1770 Gimplifier already does the same operation, but we may notice functions
1771 being const and pure once their calls has been gimplified, so we need
1772 to update the flag. */
1773
1774 static void
1775 update_call_expr_flags (tree call)
1776 {
1777 tree decl = get_callee_fndecl (call);
1778 if (!decl)
1779 return;
1780 if (call_expr_flags (call) & (ECF_CONST | ECF_PURE))
1781 TREE_SIDE_EFFECTS (call) = 0;
1782 if (TREE_NOTHROW (decl))
1783 TREE_NOTHROW (call) = 1;
1784 }
1785
1786
1787 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1788
1789 void
1790 notice_special_calls (tree t)
1791 {
1792 int flags = call_expr_flags (t);
1793
1794 if (flags & ECF_MAY_BE_ALLOCA)
1795 current_function_calls_alloca = true;
1796 if (flags & ECF_RETURNS_TWICE)
1797 current_function_calls_setjmp = true;
1798 }
1799
1800
1801 /* Clear flags set by notice_special_calls. Used by dead code removal
1802 to update the flags. */
1803
1804 void
1805 clear_special_calls (void)
1806 {
1807 current_function_calls_alloca = false;
1808 current_function_calls_setjmp = false;
1809 }
1810
1811
1812 static void
1813 remove_useless_stmts_1 (tree *tp, struct rus_data *data)
1814 {
1815 tree t = *tp, op;
1816
1817 switch (TREE_CODE (t))
1818 {
1819 case COND_EXPR:
1820 remove_useless_stmts_cond (tp, data);
1821 break;
1822
1823 case TRY_FINALLY_EXPR:
1824 remove_useless_stmts_tf (tp, data);
1825 break;
1826
1827 case TRY_CATCH_EXPR:
1828 remove_useless_stmts_tc (tp, data);
1829 break;
1830
1831 case BIND_EXPR:
1832 remove_useless_stmts_bind (tp, data);
1833 break;
1834
1835 case GOTO_EXPR:
1836 remove_useless_stmts_goto (tp, data);
1837 break;
1838
1839 case LABEL_EXPR:
1840 remove_useless_stmts_label (tp, data);
1841 break;
1842
1843 case RETURN_EXPR:
1844 fold_stmt (tp);
1845 data->last_goto = NULL;
1846 data->may_branch = true;
1847 break;
1848
1849 case CALL_EXPR:
1850 fold_stmt (tp);
1851 data->last_goto = NULL;
1852 notice_special_calls (t);
1853 update_call_expr_flags (t);
1854 if (tree_could_throw_p (t))
1855 data->may_throw = true;
1856 break;
1857
1858 case MODIFY_EXPR:
1859 data->last_goto = NULL;
1860 fold_stmt (tp);
1861 op = get_call_expr_in (t);
1862 if (op)
1863 {
1864 update_call_expr_flags (op);
1865 notice_special_calls (op);
1866 }
1867 if (tree_could_throw_p (t))
1868 data->may_throw = true;
1869 break;
1870
1871 case STATEMENT_LIST:
1872 {
1873 tree_stmt_iterator i = tsi_start (t);
1874 while (!tsi_end_p (i))
1875 {
1876 t = tsi_stmt (i);
1877 if (IS_EMPTY_STMT (t))
1878 {
1879 tsi_delink (&i);
1880 continue;
1881 }
1882
1883 remove_useless_stmts_1 (tsi_stmt_ptr (i), data);
1884
1885 t = tsi_stmt (i);
1886 if (TREE_CODE (t) == STATEMENT_LIST)
1887 {
1888 tsi_link_before (&i, t, TSI_SAME_STMT);
1889 tsi_delink (&i);
1890 }
1891 else
1892 tsi_next (&i);
1893 }
1894 }
1895 break;
1896 case ASM_EXPR:
1897 fold_stmt (tp);
1898 data->last_goto = NULL;
1899 break;
1900
1901 default:
1902 data->last_goto = NULL;
1903 break;
1904 }
1905 }
1906
1907 static void
1908 remove_useless_stmts (void)
1909 {
1910 struct rus_data data;
1911
1912 clear_special_calls ();
1913
1914 do
1915 {
1916 memset (&data, 0, sizeof (data));
1917 remove_useless_stmts_1 (&DECL_SAVED_TREE (current_function_decl), &data);
1918 }
1919 while (data.repeat);
1920 }
1921
1922
1923 struct tree_opt_pass pass_remove_useless_stmts =
1924 {
1925 "useless", /* name */
1926 NULL, /* gate */
1927 remove_useless_stmts, /* execute */
1928 NULL, /* sub */
1929 NULL, /* next */
1930 0, /* static_pass_number */
1931 0, /* tv_id */
1932 PROP_gimple_any, /* properties_required */
1933 0, /* properties_provided */
1934 0, /* properties_destroyed */
1935 0, /* todo_flags_start */
1936 TODO_dump_func, /* todo_flags_finish */
1937 0 /* letter */
1938 };
1939
1940 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1941
1942 static void
1943 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1944 {
1945 tree phi;
1946
1947 /* Since this block is no longer reachable, we can just delete all
1948 of its PHI nodes. */
1949 phi = phi_nodes (bb);
1950 while (phi)
1951 {
1952 tree next = PHI_CHAIN (phi);
1953 remove_phi_node (phi, NULL_TREE);
1954 phi = next;
1955 }
1956
1957 /* Remove edges to BB's successors. */
1958 while (EDGE_COUNT (bb->succs) > 0)
1959 remove_edge (EDGE_SUCC (bb, 0));
1960 }
1961
1962
1963 /* Remove statements of basic block BB. */
1964
1965 static void
1966 remove_bb (basic_block bb)
1967 {
1968 block_stmt_iterator i;
1969 #ifdef USE_MAPPED_LOCATION
1970 source_location loc = UNKNOWN_LOCATION;
1971 #else
1972 source_locus loc = 0;
1973 #endif
1974
1975 if (dump_file)
1976 {
1977 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1978 if (dump_flags & TDF_DETAILS)
1979 {
1980 dump_bb (bb, dump_file, 0);
1981 fprintf (dump_file, "\n");
1982 }
1983 }
1984
1985 /* If we remove the header or the latch of a loop, mark the loop for
1986 removal by setting its header and latch to NULL. */
1987 if (current_loops)
1988 {
1989 struct loop *loop = bb->loop_father;
1990
1991 if (loop->latch == bb
1992 || loop->header == bb)
1993 {
1994 loop->latch = NULL;
1995 loop->header = NULL;
1996
1997 /* Also clean up the information associated with the loop. Updating
1998 it would waste time. More importantly, it may refer to ssa
1999 names that were defined in other removed basic block -- these
2000 ssa names are now removed and invalid. */
2001 free_numbers_of_iterations_estimates_loop (loop);
2002 }
2003 }
2004
2005 /* Remove all the instructions in the block. */
2006 for (i = bsi_start (bb); !bsi_end_p (i);)
2007 {
2008 tree stmt = bsi_stmt (i);
2009 if (TREE_CODE (stmt) == LABEL_EXPR
2010 && (FORCED_LABEL (LABEL_EXPR_LABEL (stmt))
2011 || DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt))))
2012 {
2013 basic_block new_bb;
2014 block_stmt_iterator new_bsi;
2015
2016 /* A non-reachable non-local label may still be referenced.
2017 But it no longer needs to carry the extra semantics of
2018 non-locality. */
2019 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
2020 {
2021 DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)) = 0;
2022 FORCED_LABEL (LABEL_EXPR_LABEL (stmt)) = 1;
2023 }
2024
2025 new_bb = bb->prev_bb;
2026 new_bsi = bsi_start (new_bb);
2027 bsi_remove (&i);
2028 bsi_insert_before (&new_bsi, stmt, BSI_NEW_STMT);
2029 }
2030 else
2031 {
2032 /* Release SSA definitions if we are in SSA. Note that we
2033 may be called when not in SSA. For example,
2034 final_cleanup calls this function via
2035 cleanup_tree_cfg. */
2036 if (in_ssa_p)
2037 release_defs (stmt);
2038
2039 bsi_remove (&i);
2040 }
2041
2042 /* Don't warn for removed gotos. Gotos are often removed due to
2043 jump threading, thus resulting in bogus warnings. Not great,
2044 since this way we lose warnings for gotos in the original
2045 program that are indeed unreachable. */
2046 if (TREE_CODE (stmt) != GOTO_EXPR && EXPR_HAS_LOCATION (stmt) && !loc)
2047 {
2048 #ifdef USE_MAPPED_LOCATION
2049 if (EXPR_HAS_LOCATION (stmt))
2050 loc = EXPR_LOCATION (stmt);
2051 #else
2052 source_locus t;
2053 t = EXPR_LOCUS (stmt);
2054 if (t && LOCATION_LINE (*t) > 0)
2055 loc = t;
2056 #endif
2057 }
2058 }
2059
2060 /* If requested, give a warning that the first statement in the
2061 block is unreachable. We walk statements backwards in the
2062 loop above, so the last statement we process is the first statement
2063 in the block. */
2064 #ifdef USE_MAPPED_LOCATION
2065 if (loc > BUILTINS_LOCATION)
2066 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
2067 #else
2068 if (loc)
2069 warning (OPT_Wunreachable_code, "%Hwill never be executed", loc);
2070 #endif
2071
2072 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2073 }
2074
2075
2076 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2077 predicate VAL, return the edge that will be taken out of the block.
2078 If VAL does not match a unique edge, NULL is returned. */
2079
2080 edge
2081 find_taken_edge (basic_block bb, tree val)
2082 {
2083 tree stmt;
2084
2085 stmt = last_stmt (bb);
2086
2087 gcc_assert (stmt);
2088 gcc_assert (is_ctrl_stmt (stmt));
2089 gcc_assert (val);
2090
2091 if (! is_gimple_min_invariant (val))
2092 return NULL;
2093
2094 if (TREE_CODE (stmt) == COND_EXPR)
2095 return find_taken_edge_cond_expr (bb, val);
2096
2097 if (TREE_CODE (stmt) == SWITCH_EXPR)
2098 return find_taken_edge_switch_expr (bb, val);
2099
2100 if (computed_goto_p (stmt))
2101 return find_taken_edge_computed_goto (bb, TREE_OPERAND( val, 0));
2102
2103 gcc_unreachable ();
2104 }
2105
2106 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2107 statement, determine which of the outgoing edges will be taken out of the
2108 block. Return NULL if either edge may be taken. */
2109
2110 static edge
2111 find_taken_edge_computed_goto (basic_block bb, tree val)
2112 {
2113 basic_block dest;
2114 edge e = NULL;
2115
2116 dest = label_to_block (val);
2117 if (dest)
2118 {
2119 e = find_edge (bb, dest);
2120 gcc_assert (e != NULL);
2121 }
2122
2123 return e;
2124 }
2125
2126 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2127 statement, determine which of the two edges will be taken out of the
2128 block. Return NULL if either edge may be taken. */
2129
2130 static edge
2131 find_taken_edge_cond_expr (basic_block bb, tree val)
2132 {
2133 edge true_edge, false_edge;
2134
2135 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2136
2137 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2138 return (zero_p (val) ? false_edge : true_edge);
2139 }
2140
2141 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2142 statement, determine which edge will be taken out of the block. Return
2143 NULL if any edge may be taken. */
2144
2145 static edge
2146 find_taken_edge_switch_expr (basic_block bb, tree val)
2147 {
2148 tree switch_expr, taken_case;
2149 basic_block dest_bb;
2150 edge e;
2151
2152 switch_expr = last_stmt (bb);
2153 taken_case = find_case_label_for_value (switch_expr, val);
2154 dest_bb = label_to_block (CASE_LABEL (taken_case));
2155
2156 e = find_edge (bb, dest_bb);
2157 gcc_assert (e);
2158 return e;
2159 }
2160
2161
2162 /* Return the CASE_LABEL_EXPR that SWITCH_EXPR will take for VAL.
2163 We can make optimal use here of the fact that the case labels are
2164 sorted: We can do a binary search for a case matching VAL. */
2165
2166 static tree
2167 find_case_label_for_value (tree switch_expr, tree val)
2168 {
2169 tree vec = SWITCH_LABELS (switch_expr);
2170 size_t low, high, n = TREE_VEC_LENGTH (vec);
2171 tree default_case = TREE_VEC_ELT (vec, n - 1);
2172
2173 for (low = -1, high = n - 1; high - low > 1; )
2174 {
2175 size_t i = (high + low) / 2;
2176 tree t = TREE_VEC_ELT (vec, i);
2177 int cmp;
2178
2179 /* Cache the result of comparing CASE_LOW and val. */
2180 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2181
2182 if (cmp > 0)
2183 high = i;
2184 else
2185 low = i;
2186
2187 if (CASE_HIGH (t) == NULL)
2188 {
2189 /* A singe-valued case label. */
2190 if (cmp == 0)
2191 return t;
2192 }
2193 else
2194 {
2195 /* A case range. We can only handle integer ranges. */
2196 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2197 return t;
2198 }
2199 }
2200
2201 return default_case;
2202 }
2203
2204
2205
2206
2207 /*---------------------------------------------------------------------------
2208 Debugging functions
2209 ---------------------------------------------------------------------------*/
2210
2211 /* Dump tree-specific information of block BB to file OUTF. */
2212
2213 void
2214 tree_dump_bb (basic_block bb, FILE *outf, int indent)
2215 {
2216 dump_generic_bb (outf, bb, indent, TDF_VOPS);
2217 }
2218
2219
2220 /* Dump a basic block on stderr. */
2221
2222 void
2223 debug_tree_bb (basic_block bb)
2224 {
2225 dump_bb (bb, stderr, 0);
2226 }
2227
2228
2229 /* Dump basic block with index N on stderr. */
2230
2231 basic_block
2232 debug_tree_bb_n (int n)
2233 {
2234 debug_tree_bb (BASIC_BLOCK (n));
2235 return BASIC_BLOCK (n);
2236 }
2237
2238
2239 /* Dump the CFG on stderr.
2240
2241 FLAGS are the same used by the tree dumping functions
2242 (see TDF_* in tree.h). */
2243
2244 void
2245 debug_tree_cfg (int flags)
2246 {
2247 dump_tree_cfg (stderr, flags);
2248 }
2249
2250
2251 /* Dump the program showing basic block boundaries on the given FILE.
2252
2253 FLAGS are the same used by the tree dumping functions (see TDF_* in
2254 tree.h). */
2255
2256 void
2257 dump_tree_cfg (FILE *file, int flags)
2258 {
2259 if (flags & TDF_DETAILS)
2260 {
2261 const char *funcname
2262 = lang_hooks.decl_printable_name (current_function_decl, 2);
2263
2264 fputc ('\n', file);
2265 fprintf (file, ";; Function %s\n\n", funcname);
2266 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2267 n_basic_blocks, n_edges, last_basic_block);
2268
2269 brief_dump_cfg (file);
2270 fprintf (file, "\n");
2271 }
2272
2273 if (flags & TDF_STATS)
2274 dump_cfg_stats (file);
2275
2276 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2277 }
2278
2279
2280 /* Dump CFG statistics on FILE. */
2281
2282 void
2283 dump_cfg_stats (FILE *file)
2284 {
2285 static long max_num_merged_labels = 0;
2286 unsigned long size, total = 0;
2287 long num_edges;
2288 basic_block bb;
2289 const char * const fmt_str = "%-30s%-13s%12s\n";
2290 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2291 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2292 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2293 const char *funcname
2294 = lang_hooks.decl_printable_name (current_function_decl, 2);
2295
2296
2297 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2298
2299 fprintf (file, "---------------------------------------------------------\n");
2300 fprintf (file, fmt_str, "", " Number of ", "Memory");
2301 fprintf (file, fmt_str, "", " instances ", "used ");
2302 fprintf (file, "---------------------------------------------------------\n");
2303
2304 size = n_basic_blocks * sizeof (struct basic_block_def);
2305 total += size;
2306 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2307 SCALE (size), LABEL (size));
2308
2309 num_edges = 0;
2310 FOR_EACH_BB (bb)
2311 num_edges += EDGE_COUNT (bb->succs);
2312 size = num_edges * sizeof (struct edge_def);
2313 total += size;
2314 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2315
2316 fprintf (file, "---------------------------------------------------------\n");
2317 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2318 LABEL (total));
2319 fprintf (file, "---------------------------------------------------------\n");
2320 fprintf (file, "\n");
2321
2322 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2323 max_num_merged_labels = cfg_stats.num_merged_labels;
2324
2325 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2326 cfg_stats.num_merged_labels, max_num_merged_labels);
2327
2328 fprintf (file, "\n");
2329 }
2330
2331
2332 /* Dump CFG statistics on stderr. Keep extern so that it's always
2333 linked in the final executable. */
2334
2335 void
2336 debug_cfg_stats (void)
2337 {
2338 dump_cfg_stats (stderr);
2339 }
2340
2341
2342 /* Dump the flowgraph to a .vcg FILE. */
2343
2344 static void
2345 tree_cfg2vcg (FILE *file)
2346 {
2347 edge e;
2348 edge_iterator ei;
2349 basic_block bb;
2350 const char *funcname
2351 = lang_hooks.decl_printable_name (current_function_decl, 2);
2352
2353 /* Write the file header. */
2354 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2355 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2356 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2357
2358 /* Write blocks and edges. */
2359 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2360 {
2361 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2362 e->dest->index);
2363
2364 if (e->flags & EDGE_FAKE)
2365 fprintf (file, " linestyle: dotted priority: 10");
2366 else
2367 fprintf (file, " linestyle: solid priority: 100");
2368
2369 fprintf (file, " }\n");
2370 }
2371 fputc ('\n', file);
2372
2373 FOR_EACH_BB (bb)
2374 {
2375 enum tree_code head_code, end_code;
2376 const char *head_name, *end_name;
2377 int head_line = 0;
2378 int end_line = 0;
2379 tree first = first_stmt (bb);
2380 tree last = last_stmt (bb);
2381
2382 if (first)
2383 {
2384 head_code = TREE_CODE (first);
2385 head_name = tree_code_name[head_code];
2386 head_line = get_lineno (first);
2387 }
2388 else
2389 head_name = "no-statement";
2390
2391 if (last)
2392 {
2393 end_code = TREE_CODE (last);
2394 end_name = tree_code_name[end_code];
2395 end_line = get_lineno (last);
2396 }
2397 else
2398 end_name = "no-statement";
2399
2400 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2401 bb->index, bb->index, head_name, head_line, end_name,
2402 end_line);
2403
2404 FOR_EACH_EDGE (e, ei, bb->succs)
2405 {
2406 if (e->dest == EXIT_BLOCK_PTR)
2407 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2408 else
2409 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2410
2411 if (e->flags & EDGE_FAKE)
2412 fprintf (file, " priority: 10 linestyle: dotted");
2413 else
2414 fprintf (file, " priority: 100 linestyle: solid");
2415
2416 fprintf (file, " }\n");
2417 }
2418
2419 if (bb->next_bb != EXIT_BLOCK_PTR)
2420 fputc ('\n', file);
2421 }
2422
2423 fputs ("}\n\n", file);
2424 }
2425
2426
2427
2428 /*---------------------------------------------------------------------------
2429 Miscellaneous helpers
2430 ---------------------------------------------------------------------------*/
2431
2432 /* Return true if T represents a stmt that always transfers control. */
2433
2434 bool
2435 is_ctrl_stmt (tree t)
2436 {
2437 return (TREE_CODE (t) == COND_EXPR
2438 || TREE_CODE (t) == SWITCH_EXPR
2439 || TREE_CODE (t) == GOTO_EXPR
2440 || TREE_CODE (t) == RETURN_EXPR
2441 || TREE_CODE (t) == RESX_EXPR);
2442 }
2443
2444
2445 /* Return true if T is a statement that may alter the flow of control
2446 (e.g., a call to a non-returning function). */
2447
2448 bool
2449 is_ctrl_altering_stmt (tree t)
2450 {
2451 tree call;
2452
2453 gcc_assert (t);
2454 call = get_call_expr_in (t);
2455 if (call)
2456 {
2457 /* A non-pure/const CALL_EXPR alters flow control if the current
2458 function has nonlocal labels. */
2459 if (TREE_SIDE_EFFECTS (call) && current_function_has_nonlocal_label)
2460 return true;
2461
2462 /* A CALL_EXPR also alters control flow if it does not return. */
2463 if (call_expr_flags (call) & ECF_NORETURN)
2464 return true;
2465 }
2466
2467 /* If a statement can throw, it alters control flow. */
2468 return tree_can_throw_internal (t);
2469 }
2470
2471
2472 /* Return true if T is a computed goto. */
2473
2474 bool
2475 computed_goto_p (tree t)
2476 {
2477 return (TREE_CODE (t) == GOTO_EXPR
2478 && TREE_CODE (GOTO_DESTINATION (t)) != LABEL_DECL);
2479 }
2480
2481
2482 /* Checks whether EXPR is a simple local goto. */
2483
2484 bool
2485 simple_goto_p (tree expr)
2486 {
2487 return (TREE_CODE (expr) == GOTO_EXPR
2488 && TREE_CODE (GOTO_DESTINATION (expr)) == LABEL_DECL);
2489 }
2490
2491
2492 /* Return true if T should start a new basic block. PREV_T is the
2493 statement preceding T. It is used when T is a label or a case label.
2494 Labels should only start a new basic block if their previous statement
2495 wasn't a label. Otherwise, sequence of labels would generate
2496 unnecessary basic blocks that only contain a single label. */
2497
2498 static inline bool
2499 stmt_starts_bb_p (tree t, tree prev_t)
2500 {
2501 if (t == NULL_TREE)
2502 return false;
2503
2504 /* LABEL_EXPRs start a new basic block only if the preceding
2505 statement wasn't a label of the same type. This prevents the
2506 creation of consecutive blocks that have nothing but a single
2507 label. */
2508 if (TREE_CODE (t) == LABEL_EXPR)
2509 {
2510 /* Nonlocal and computed GOTO targets always start a new block. */
2511 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (t))
2512 || FORCED_LABEL (LABEL_EXPR_LABEL (t)))
2513 return true;
2514
2515 if (prev_t && TREE_CODE (prev_t) == LABEL_EXPR)
2516 {
2517 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (prev_t)))
2518 return true;
2519
2520 cfg_stats.num_merged_labels++;
2521 return false;
2522 }
2523 else
2524 return true;
2525 }
2526
2527 return false;
2528 }
2529
2530
2531 /* Return true if T should end a basic block. */
2532
2533 bool
2534 stmt_ends_bb_p (tree t)
2535 {
2536 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2537 }
2538
2539
2540 /* Add gotos that used to be represented implicitly in the CFG. */
2541
2542 void
2543 disband_implicit_edges (void)
2544 {
2545 basic_block bb;
2546 block_stmt_iterator last;
2547 edge e;
2548 edge_iterator ei;
2549 tree stmt, label;
2550
2551 FOR_EACH_BB (bb)
2552 {
2553 last = bsi_last (bb);
2554 stmt = last_stmt (bb);
2555
2556 if (stmt && TREE_CODE (stmt) == COND_EXPR)
2557 {
2558 /* Remove superfluous gotos from COND_EXPR branches. Moved
2559 from cfg_remove_useless_stmts here since it violates the
2560 invariants for tree--cfg correspondence and thus fits better
2561 here where we do it anyway. */
2562 e = find_edge (bb, bb->next_bb);
2563 if (e)
2564 {
2565 if (e->flags & EDGE_TRUE_VALUE)
2566 COND_EXPR_THEN (stmt) = build_empty_stmt ();
2567 else if (e->flags & EDGE_FALSE_VALUE)
2568 COND_EXPR_ELSE (stmt) = build_empty_stmt ();
2569 else
2570 gcc_unreachable ();
2571 e->flags |= EDGE_FALLTHRU;
2572 }
2573
2574 continue;
2575 }
2576
2577 if (stmt && TREE_CODE (stmt) == RETURN_EXPR)
2578 {
2579 /* Remove the RETURN_EXPR if we may fall though to the exit
2580 instead. */
2581 gcc_assert (single_succ_p (bb));
2582 gcc_assert (single_succ (bb) == EXIT_BLOCK_PTR);
2583
2584 if (bb->next_bb == EXIT_BLOCK_PTR
2585 && !TREE_OPERAND (stmt, 0))
2586 {
2587 bsi_remove (&last);
2588 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2589 }
2590 continue;
2591 }
2592
2593 /* There can be no fallthru edge if the last statement is a control
2594 one. */
2595 if (stmt && is_ctrl_stmt (stmt))
2596 continue;
2597
2598 /* Find a fallthru edge and emit the goto if necessary. */
2599 FOR_EACH_EDGE (e, ei, bb->succs)
2600 if (e->flags & EDGE_FALLTHRU)
2601 break;
2602
2603 if (!e || e->dest == bb->next_bb)
2604 continue;
2605
2606 gcc_assert (e->dest != EXIT_BLOCK_PTR);
2607 label = tree_block_label (e->dest);
2608
2609 stmt = build1 (GOTO_EXPR, void_type_node, label);
2610 #ifdef USE_MAPPED_LOCATION
2611 SET_EXPR_LOCATION (stmt, e->goto_locus);
2612 #else
2613 SET_EXPR_LOCUS (stmt, e->goto_locus);
2614 #endif
2615 bsi_insert_after (&last, stmt, BSI_NEW_STMT);
2616 e->flags &= ~EDGE_FALLTHRU;
2617 }
2618 }
2619
2620 /* Remove block annotations and other datastructures. */
2621
2622 void
2623 delete_tree_cfg_annotations (void)
2624 {
2625 label_to_block_map = NULL;
2626 }
2627
2628
2629 /* Return the first statement in basic block BB. */
2630
2631 tree
2632 first_stmt (basic_block bb)
2633 {
2634 block_stmt_iterator i = bsi_start (bb);
2635 return !bsi_end_p (i) ? bsi_stmt (i) : NULL_TREE;
2636 }
2637
2638
2639 /* Return the last statement in basic block BB. */
2640
2641 tree
2642 last_stmt (basic_block bb)
2643 {
2644 block_stmt_iterator b = bsi_last (bb);
2645 return !bsi_end_p (b) ? bsi_stmt (b) : NULL_TREE;
2646 }
2647
2648
2649 /* Return a pointer to the last statement in block BB. */
2650
2651 tree *
2652 last_stmt_ptr (basic_block bb)
2653 {
2654 block_stmt_iterator last = bsi_last (bb);
2655 return !bsi_end_p (last) ? bsi_stmt_ptr (last) : NULL;
2656 }
2657
2658
2659 /* Return the last statement of an otherwise empty block. Return NULL
2660 if the block is totally empty, or if it contains more than one
2661 statement. */
2662
2663 tree
2664 last_and_only_stmt (basic_block bb)
2665 {
2666 block_stmt_iterator i = bsi_last (bb);
2667 tree last, prev;
2668
2669 if (bsi_end_p (i))
2670 return NULL_TREE;
2671
2672 last = bsi_stmt (i);
2673 bsi_prev (&i);
2674 if (bsi_end_p (i))
2675 return last;
2676
2677 /* Empty statements should no longer appear in the instruction stream.
2678 Everything that might have appeared before should be deleted by
2679 remove_useless_stmts, and the optimizers should just bsi_remove
2680 instead of smashing with build_empty_stmt.
2681
2682 Thus the only thing that should appear here in a block containing
2683 one executable statement is a label. */
2684 prev = bsi_stmt (i);
2685 if (TREE_CODE (prev) == LABEL_EXPR)
2686 return last;
2687 else
2688 return NULL_TREE;
2689 }
2690
2691
2692 /* Mark BB as the basic block holding statement T. */
2693
2694 void
2695 set_bb_for_stmt (tree t, basic_block bb)
2696 {
2697 if (TREE_CODE (t) == PHI_NODE)
2698 PHI_BB (t) = bb;
2699 else if (TREE_CODE (t) == STATEMENT_LIST)
2700 {
2701 tree_stmt_iterator i;
2702 for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
2703 set_bb_for_stmt (tsi_stmt (i), bb);
2704 }
2705 else
2706 {
2707 stmt_ann_t ann = get_stmt_ann (t);
2708 ann->bb = bb;
2709
2710 /* If the statement is a label, add the label to block-to-labels map
2711 so that we can speed up edge creation for GOTO_EXPRs. */
2712 if (TREE_CODE (t) == LABEL_EXPR)
2713 {
2714 int uid;
2715
2716 t = LABEL_EXPR_LABEL (t);
2717 uid = LABEL_DECL_UID (t);
2718 if (uid == -1)
2719 {
2720 unsigned old_len = VEC_length (basic_block, label_to_block_map);
2721 LABEL_DECL_UID (t) = uid = cfun->last_label_uid++;
2722 if (old_len <= (unsigned) uid)
2723 {
2724 basic_block *addr;
2725 unsigned new_len = 3 * uid / 2;
2726
2727 VEC_safe_grow (basic_block, gc, label_to_block_map,
2728 new_len);
2729 addr = VEC_address (basic_block, label_to_block_map);
2730 memset (&addr[old_len],
2731 0, sizeof (basic_block) * (new_len - old_len));
2732 }
2733 }
2734 else
2735 /* We're moving an existing label. Make sure that we've
2736 removed it from the old block. */
2737 gcc_assert (!bb
2738 || !VEC_index (basic_block, label_to_block_map, uid));
2739 VEC_replace (basic_block, label_to_block_map, uid, bb);
2740 }
2741 }
2742 }
2743
2744 /* Finds iterator for STMT. */
2745
2746 extern block_stmt_iterator
2747 bsi_for_stmt (tree stmt)
2748 {
2749 block_stmt_iterator bsi;
2750
2751 for (bsi = bsi_start (bb_for_stmt (stmt)); !bsi_end_p (bsi); bsi_next (&bsi))
2752 if (bsi_stmt (bsi) == stmt)
2753 return bsi;
2754
2755 gcc_unreachable ();
2756 }
2757
2758 /* Mark statement T as modified, and update it. */
2759 static inline void
2760 update_modified_stmts (tree t)
2761 {
2762 if (TREE_CODE (t) == STATEMENT_LIST)
2763 {
2764 tree_stmt_iterator i;
2765 tree stmt;
2766 for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
2767 {
2768 stmt = tsi_stmt (i);
2769 update_stmt_if_modified (stmt);
2770 }
2771 }
2772 else
2773 update_stmt_if_modified (t);
2774 }
2775
2776 /* Insert statement (or statement list) T before the statement
2777 pointed-to by iterator I. M specifies how to update iterator I
2778 after insertion (see enum bsi_iterator_update). */
2779
2780 void
2781 bsi_insert_before (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
2782 {
2783 set_bb_for_stmt (t, i->bb);
2784 update_modified_stmts (t);
2785 tsi_link_before (&i->tsi, t, m);
2786 }
2787
2788
2789 /* Insert statement (or statement list) T after the statement
2790 pointed-to by iterator I. M specifies how to update iterator I
2791 after insertion (see enum bsi_iterator_update). */
2792
2793 void
2794 bsi_insert_after (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
2795 {
2796 set_bb_for_stmt (t, i->bb);
2797 update_modified_stmts (t);
2798 tsi_link_after (&i->tsi, t, m);
2799 }
2800
2801
2802 /* Remove the statement pointed to by iterator I. The iterator is updated
2803 to the next statement. */
2804
2805 void
2806 bsi_remove (block_stmt_iterator *i)
2807 {
2808 tree t = bsi_stmt (*i);
2809 set_bb_for_stmt (t, NULL);
2810 delink_stmt_imm_use (t);
2811 tsi_delink (&i->tsi);
2812 mark_stmt_modified (t);
2813 }
2814
2815
2816 /* Move the statement at FROM so it comes right after the statement at TO. */
2817
2818 void
2819 bsi_move_after (block_stmt_iterator *from, block_stmt_iterator *to)
2820 {
2821 tree stmt = bsi_stmt (*from);
2822 bsi_remove (from);
2823 bsi_insert_after (to, stmt, BSI_SAME_STMT);
2824 }
2825
2826
2827 /* Move the statement at FROM so it comes right before the statement at TO. */
2828
2829 void
2830 bsi_move_before (block_stmt_iterator *from, block_stmt_iterator *to)
2831 {
2832 tree stmt = bsi_stmt (*from);
2833 bsi_remove (from);
2834 bsi_insert_before (to, stmt, BSI_SAME_STMT);
2835 }
2836
2837
2838 /* Move the statement at FROM to the end of basic block BB. */
2839
2840 void
2841 bsi_move_to_bb_end (block_stmt_iterator *from, basic_block bb)
2842 {
2843 block_stmt_iterator last = bsi_last (bb);
2844
2845 /* Have to check bsi_end_p because it could be an empty block. */
2846 if (!bsi_end_p (last) && is_ctrl_stmt (bsi_stmt (last)))
2847 bsi_move_before (from, &last);
2848 else
2849 bsi_move_after (from, &last);
2850 }
2851
2852
2853 /* Replace the contents of the statement pointed to by iterator BSI
2854 with STMT. If PRESERVE_EH_INFO is true, the exception handling
2855 information of the original statement is preserved. */
2856
2857 void
2858 bsi_replace (const block_stmt_iterator *bsi, tree stmt, bool preserve_eh_info)
2859 {
2860 int eh_region;
2861 tree orig_stmt = bsi_stmt (*bsi);
2862
2863 SET_EXPR_LOCUS (stmt, EXPR_LOCUS (orig_stmt));
2864 set_bb_for_stmt (stmt, bsi->bb);
2865
2866 /* Preserve EH region information from the original statement, if
2867 requested by the caller. */
2868 if (preserve_eh_info)
2869 {
2870 eh_region = lookup_stmt_eh_region (orig_stmt);
2871 if (eh_region >= 0)
2872 {
2873 remove_stmt_from_eh_region (stmt);
2874 add_stmt_to_eh_region (stmt, eh_region);
2875 }
2876 }
2877
2878 delink_stmt_imm_use (orig_stmt);
2879 *bsi_stmt_ptr (*bsi) = stmt;
2880 mark_stmt_modified (stmt);
2881 update_modified_stmts (stmt);
2882 }
2883
2884
2885 /* Insert the statement pointed-to by BSI into edge E. Every attempt
2886 is made to place the statement in an existing basic block, but
2887 sometimes that isn't possible. When it isn't possible, the edge is
2888 split and the statement is added to the new block.
2889
2890 In all cases, the returned *BSI points to the correct location. The
2891 return value is true if insertion should be done after the location,
2892 or false if it should be done before the location. If new basic block
2893 has to be created, it is stored in *NEW_BB. */
2894
2895 static bool
2896 tree_find_edge_insert_loc (edge e, block_stmt_iterator *bsi,
2897 basic_block *new_bb)
2898 {
2899 basic_block dest, src;
2900 tree tmp;
2901
2902 dest = e->dest;
2903 restart:
2904
2905 /* If the destination has one predecessor which has no PHI nodes,
2906 insert there. Except for the exit block.
2907
2908 The requirement for no PHI nodes could be relaxed. Basically we
2909 would have to examine the PHIs to prove that none of them used
2910 the value set by the statement we want to insert on E. That
2911 hardly seems worth the effort. */
2912 if (single_pred_p (dest)
2913 && ! phi_nodes (dest)
2914 && dest != EXIT_BLOCK_PTR)
2915 {
2916 *bsi = bsi_start (dest);
2917 if (bsi_end_p (*bsi))
2918 return true;
2919
2920 /* Make sure we insert after any leading labels. */
2921 tmp = bsi_stmt (*bsi);
2922 while (TREE_CODE (tmp) == LABEL_EXPR)
2923 {
2924 bsi_next (bsi);
2925 if (bsi_end_p (*bsi))
2926 break;
2927 tmp = bsi_stmt (*bsi);
2928 }
2929
2930 if (bsi_end_p (*bsi))
2931 {
2932 *bsi = bsi_last (dest);
2933 return true;
2934 }
2935 else
2936 return false;
2937 }
2938
2939 /* If the source has one successor, the edge is not abnormal and
2940 the last statement does not end a basic block, insert there.
2941 Except for the entry block. */
2942 src = e->src;
2943 if ((e->flags & EDGE_ABNORMAL) == 0
2944 && single_succ_p (src)
2945 && src != ENTRY_BLOCK_PTR)
2946 {
2947 *bsi = bsi_last (src);
2948 if (bsi_end_p (*bsi))
2949 return true;
2950
2951 tmp = bsi_stmt (*bsi);
2952 if (!stmt_ends_bb_p (tmp))
2953 return true;
2954
2955 /* Insert code just before returning the value. We may need to decompose
2956 the return in the case it contains non-trivial operand. */
2957 if (TREE_CODE (tmp) == RETURN_EXPR)
2958 {
2959 tree op = TREE_OPERAND (tmp, 0);
2960 if (op && !is_gimple_val (op))
2961 {
2962 gcc_assert (TREE_CODE (op) == MODIFY_EXPR);
2963 bsi_insert_before (bsi, op, BSI_NEW_STMT);
2964 TREE_OPERAND (tmp, 0) = TREE_OPERAND (op, 0);
2965 }
2966 bsi_prev (bsi);
2967 return true;
2968 }
2969 }
2970
2971 /* Otherwise, create a new basic block, and split this edge. */
2972 dest = split_edge (e);
2973 if (new_bb)
2974 *new_bb = dest;
2975 e = single_pred_edge (dest);
2976 goto restart;
2977 }
2978
2979
2980 /* This routine will commit all pending edge insertions, creating any new
2981 basic blocks which are necessary. */
2982
2983 void
2984 bsi_commit_edge_inserts (void)
2985 {
2986 basic_block bb;
2987 edge e;
2988 edge_iterator ei;
2989
2990 bsi_commit_one_edge_insert (single_succ_edge (ENTRY_BLOCK_PTR), NULL);
2991
2992 FOR_EACH_BB (bb)
2993 FOR_EACH_EDGE (e, ei, bb->succs)
2994 bsi_commit_one_edge_insert (e, NULL);
2995 }
2996
2997
2998 /* Commit insertions pending at edge E. If a new block is created, set NEW_BB
2999 to this block, otherwise set it to NULL. */
3000
3001 void
3002 bsi_commit_one_edge_insert (edge e, basic_block *new_bb)
3003 {
3004 if (new_bb)
3005 *new_bb = NULL;
3006 if (PENDING_STMT (e))
3007 {
3008 block_stmt_iterator bsi;
3009 tree stmt = PENDING_STMT (e);
3010
3011 PENDING_STMT (e) = NULL_TREE;
3012
3013 if (tree_find_edge_insert_loc (e, &bsi, new_bb))
3014 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
3015 else
3016 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
3017 }
3018 }
3019
3020
3021 /* Add STMT to the pending list of edge E. No actual insertion is
3022 made until a call to bsi_commit_edge_inserts () is made. */
3023
3024 void
3025 bsi_insert_on_edge (edge e, tree stmt)
3026 {
3027 append_to_statement_list (stmt, &PENDING_STMT (e));
3028 }
3029
3030 /* Similar to bsi_insert_on_edge+bsi_commit_edge_inserts. If a new
3031 block has to be created, it is returned. */
3032
3033 basic_block
3034 bsi_insert_on_edge_immediate (edge e, tree stmt)
3035 {
3036 block_stmt_iterator bsi;
3037 basic_block new_bb = NULL;
3038
3039 gcc_assert (!PENDING_STMT (e));
3040
3041 if (tree_find_edge_insert_loc (e, &bsi, &new_bb))
3042 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
3043 else
3044 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
3045
3046 return new_bb;
3047 }
3048
3049 /*---------------------------------------------------------------------------
3050 Tree specific functions for CFG manipulation
3051 ---------------------------------------------------------------------------*/
3052
3053 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
3054
3055 static void
3056 reinstall_phi_args (edge new_edge, edge old_edge)
3057 {
3058 tree var, phi;
3059
3060 if (!PENDING_STMT (old_edge))
3061 return;
3062
3063 for (var = PENDING_STMT (old_edge), phi = phi_nodes (new_edge->dest);
3064 var && phi;
3065 var = TREE_CHAIN (var), phi = PHI_CHAIN (phi))
3066 {
3067 tree result = TREE_PURPOSE (var);
3068 tree arg = TREE_VALUE (var);
3069
3070 gcc_assert (result == PHI_RESULT (phi));
3071
3072 add_phi_arg (phi, arg, new_edge);
3073 }
3074
3075 PENDING_STMT (old_edge) = NULL;
3076 }
3077
3078 /* Returns the basic block after that the new basic block created
3079 by splitting edge EDGE_IN should be placed. Tries to keep the new block
3080 near its "logical" location. This is of most help to humans looking
3081 at debugging dumps. */
3082
3083 static basic_block
3084 split_edge_bb_loc (edge edge_in)
3085 {
3086 basic_block dest = edge_in->dest;
3087
3088 if (dest->prev_bb && find_edge (dest->prev_bb, dest))
3089 return edge_in->src;
3090 else
3091 return dest->prev_bb;
3092 }
3093
3094 /* Split a (typically critical) edge EDGE_IN. Return the new block.
3095 Abort on abnormal edges. */
3096
3097 static basic_block
3098 tree_split_edge (edge edge_in)
3099 {
3100 basic_block new_bb, after_bb, dest, src;
3101 edge new_edge, e;
3102
3103 /* Abnormal edges cannot be split. */
3104 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
3105
3106 src = edge_in->src;
3107 dest = edge_in->dest;
3108
3109 after_bb = split_edge_bb_loc (edge_in);
3110
3111 new_bb = create_empty_bb (after_bb);
3112 new_bb->frequency = EDGE_FREQUENCY (edge_in);
3113 new_bb->count = edge_in->count;
3114 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
3115 new_edge->probability = REG_BR_PROB_BASE;
3116 new_edge->count = edge_in->count;
3117
3118 e = redirect_edge_and_branch (edge_in, new_bb);
3119 gcc_assert (e);
3120 reinstall_phi_args (new_edge, e);
3121
3122 return new_bb;
3123 }
3124
3125
3126 /* Return true when BB has label LABEL in it. */
3127
3128 static bool
3129 has_label_p (basic_block bb, tree label)
3130 {
3131 block_stmt_iterator bsi;
3132
3133 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3134 {
3135 tree stmt = bsi_stmt (bsi);
3136
3137 if (TREE_CODE (stmt) != LABEL_EXPR)
3138 return false;
3139 if (LABEL_EXPR_LABEL (stmt) == label)
3140 return true;
3141 }
3142 return false;
3143 }
3144
3145
3146 /* Callback for walk_tree, check that all elements with address taken are
3147 properly noticed as such. The DATA is an int* that is 1 if TP was seen
3148 inside a PHI node. */
3149
3150 static tree
3151 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3152 {
3153 tree t = *tp, x;
3154 bool in_phi = (data != NULL);
3155
3156 if (TYPE_P (t))
3157 *walk_subtrees = 0;
3158
3159 /* Check operand N for being valid GIMPLE and give error MSG if not. */
3160 #define CHECK_OP(N, MSG) \
3161 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
3162 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
3163
3164 switch (TREE_CODE (t))
3165 {
3166 case SSA_NAME:
3167 if (SSA_NAME_IN_FREE_LIST (t))
3168 {
3169 error ("SSA name in freelist but still referenced");
3170 return *tp;
3171 }
3172 break;
3173
3174 case ASSERT_EXPR:
3175 x = fold (ASSERT_EXPR_COND (t));
3176 if (x == boolean_false_node)
3177 {
3178 error ("ASSERT_EXPR with an always-false condition");
3179 return *tp;
3180 }
3181 break;
3182
3183 case MODIFY_EXPR:
3184 x = TREE_OPERAND (t, 0);
3185 if (TREE_CODE (x) == BIT_FIELD_REF
3186 && is_gimple_reg (TREE_OPERAND (x, 0)))
3187 {
3188 error ("GIMPLE register modified with BIT_FIELD_REF");
3189 return t;
3190 }
3191 break;
3192
3193 case ADDR_EXPR:
3194 {
3195 bool old_invariant;
3196 bool old_constant;
3197 bool old_side_effects;
3198 bool new_invariant;
3199 bool new_constant;
3200 bool new_side_effects;
3201
3202 /* ??? tree-ssa-alias.c may have overlooked dead PHI nodes, missing
3203 dead PHIs that take the address of something. But if the PHI
3204 result is dead, the fact that it takes the address of anything
3205 is irrelevant. Because we can not tell from here if a PHI result
3206 is dead, we just skip this check for PHIs altogether. This means
3207 we may be missing "valid" checks, but what can you do?
3208 This was PR19217. */
3209 if (in_phi)
3210 break;
3211
3212 old_invariant = TREE_INVARIANT (t);
3213 old_constant = TREE_CONSTANT (t);
3214 old_side_effects = TREE_SIDE_EFFECTS (t);
3215
3216 recompute_tree_invariant_for_addr_expr (t);
3217 new_invariant = TREE_INVARIANT (t);
3218 new_side_effects = TREE_SIDE_EFFECTS (t);
3219 new_constant = TREE_CONSTANT (t);
3220
3221 if (old_invariant != new_invariant)
3222 {
3223 error ("invariant not recomputed when ADDR_EXPR changed");
3224 return t;
3225 }
3226
3227 if (old_constant != new_constant)
3228 {
3229 error ("constant not recomputed when ADDR_EXPR changed");
3230 return t;
3231 }
3232 if (old_side_effects != new_side_effects)
3233 {
3234 error ("side effects not recomputed when ADDR_EXPR changed");
3235 return t;
3236 }
3237
3238 /* Skip any references (they will be checked when we recurse down the
3239 tree) and ensure that any variable used as a prefix is marked
3240 addressable. */
3241 for (x = TREE_OPERAND (t, 0);
3242 handled_component_p (x);
3243 x = TREE_OPERAND (x, 0))
3244 ;
3245
3246 if (TREE_CODE (x) != VAR_DECL && TREE_CODE (x) != PARM_DECL)
3247 return NULL;
3248 if (!TREE_ADDRESSABLE (x))
3249 {
3250 error ("address taken, but ADDRESSABLE bit not set");
3251 return x;
3252 }
3253 break;
3254 }
3255
3256 case COND_EXPR:
3257 x = COND_EXPR_COND (t);
3258 if (TREE_CODE (TREE_TYPE (x)) != BOOLEAN_TYPE)
3259 {
3260 error ("non-boolean used in condition");
3261 return x;
3262 }
3263 if (!is_gimple_condexpr (x))
3264 {
3265 error ("invalid conditional operand");
3266 return x;
3267 }
3268 break;
3269
3270 case NOP_EXPR:
3271 case CONVERT_EXPR:
3272 case FIX_TRUNC_EXPR:
3273 case FIX_CEIL_EXPR:
3274 case FIX_FLOOR_EXPR:
3275 case FIX_ROUND_EXPR:
3276 case FLOAT_EXPR:
3277 case NEGATE_EXPR:
3278 case ABS_EXPR:
3279 case BIT_NOT_EXPR:
3280 case NON_LVALUE_EXPR:
3281 case TRUTH_NOT_EXPR:
3282 CHECK_OP (0, "invalid operand to unary operator");
3283 break;
3284
3285 case REALPART_EXPR:
3286 case IMAGPART_EXPR:
3287 case COMPONENT_REF:
3288 case ARRAY_REF:
3289 case ARRAY_RANGE_REF:
3290 case BIT_FIELD_REF:
3291 case VIEW_CONVERT_EXPR:
3292 /* We have a nest of references. Verify that each of the operands
3293 that determine where to reference is either a constant or a variable,
3294 verify that the base is valid, and then show we've already checked
3295 the subtrees. */
3296 while (handled_component_p (t))
3297 {
3298 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3299 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3300 else if (TREE_CODE (t) == ARRAY_REF
3301 || TREE_CODE (t) == ARRAY_RANGE_REF)
3302 {
3303 CHECK_OP (1, "invalid array index");
3304 if (TREE_OPERAND (t, 2))
3305 CHECK_OP (2, "invalid array lower bound");
3306 if (TREE_OPERAND (t, 3))
3307 CHECK_OP (3, "invalid array stride");
3308 }
3309 else if (TREE_CODE (t) == BIT_FIELD_REF)
3310 {
3311 CHECK_OP (1, "invalid operand to BIT_FIELD_REF");
3312 CHECK_OP (2, "invalid operand to BIT_FIELD_REF");
3313 }
3314
3315 t = TREE_OPERAND (t, 0);
3316 }
3317
3318 if (!CONSTANT_CLASS_P (t) && !is_gimple_lvalue (t))
3319 {
3320 error ("invalid reference prefix");
3321 return t;
3322 }
3323 *walk_subtrees = 0;
3324 break;
3325
3326 case LT_EXPR:
3327 case LE_EXPR:
3328 case GT_EXPR:
3329 case GE_EXPR:
3330 case EQ_EXPR:
3331 case NE_EXPR:
3332 case UNORDERED_EXPR:
3333 case ORDERED_EXPR:
3334 case UNLT_EXPR:
3335 case UNLE_EXPR:
3336 case UNGT_EXPR:
3337 case UNGE_EXPR:
3338 case UNEQ_EXPR:
3339 case LTGT_EXPR:
3340 case PLUS_EXPR:
3341 case MINUS_EXPR:
3342 case MULT_EXPR:
3343 case TRUNC_DIV_EXPR:
3344 case CEIL_DIV_EXPR:
3345 case FLOOR_DIV_EXPR:
3346 case ROUND_DIV_EXPR:
3347 case TRUNC_MOD_EXPR:
3348 case CEIL_MOD_EXPR:
3349 case FLOOR_MOD_EXPR:
3350 case ROUND_MOD_EXPR:
3351 case RDIV_EXPR:
3352 case EXACT_DIV_EXPR:
3353 case MIN_EXPR:
3354 case MAX_EXPR:
3355 case LSHIFT_EXPR:
3356 case RSHIFT_EXPR:
3357 case LROTATE_EXPR:
3358 case RROTATE_EXPR:
3359 case BIT_IOR_EXPR:
3360 case BIT_XOR_EXPR:
3361 case BIT_AND_EXPR:
3362 CHECK_OP (0, "invalid operand to binary operator");
3363 CHECK_OP (1, "invalid operand to binary operator");
3364 break;
3365
3366 default:
3367 break;
3368 }
3369 return NULL;
3370
3371 #undef CHECK_OP
3372 }
3373
3374
3375 /* Verify STMT, return true if STMT is not in GIMPLE form.
3376 TODO: Implement type checking. */
3377
3378 static bool
3379 verify_stmt (tree stmt, bool last_in_block)
3380 {
3381 tree addr;
3382
3383 if (!is_gimple_stmt (stmt))
3384 {
3385 error ("is not a valid GIMPLE statement");
3386 goto fail;
3387 }
3388
3389 addr = walk_tree (&stmt, verify_expr, NULL, NULL);
3390 if (addr)
3391 {
3392 debug_generic_stmt (addr);
3393 return true;
3394 }
3395
3396 /* If the statement is marked as part of an EH region, then it is
3397 expected that the statement could throw. Verify that when we
3398 have optimizations that simplify statements such that we prove
3399 that they cannot throw, that we update other data structures
3400 to match. */
3401 if (lookup_stmt_eh_region (stmt) >= 0)
3402 {
3403 if (!tree_could_throw_p (stmt))
3404 {
3405 error ("statement marked for throw, but doesn%'t");
3406 goto fail;
3407 }
3408 if (!last_in_block && tree_can_throw_internal (stmt))
3409 {
3410 error ("statement marked for throw in middle of block");
3411 goto fail;
3412 }
3413 }
3414
3415 return false;
3416
3417 fail:
3418 debug_generic_stmt (stmt);
3419 return true;
3420 }
3421
3422
3423 /* Return true when the T can be shared. */
3424
3425 static bool
3426 tree_node_can_be_shared (tree t)
3427 {
3428 if (IS_TYPE_OR_DECL_P (t)
3429 /* We check for constants explicitly since they are not considered
3430 gimple invariants if they overflowed. */
3431 || CONSTANT_CLASS_P (t)
3432 || is_gimple_min_invariant (t)
3433 || TREE_CODE (t) == SSA_NAME
3434 || t == error_mark_node)
3435 return true;
3436
3437 if (TREE_CODE (t) == CASE_LABEL_EXPR)
3438 return true;
3439
3440 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3441 /* We check for constants explicitly since they are not considered
3442 gimple invariants if they overflowed. */
3443 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 1))
3444 || is_gimple_min_invariant (TREE_OPERAND (t, 1))))
3445 || (TREE_CODE (t) == COMPONENT_REF
3446 || TREE_CODE (t) == REALPART_EXPR
3447 || TREE_CODE (t) == IMAGPART_EXPR))
3448 t = TREE_OPERAND (t, 0);
3449
3450 if (DECL_P (t))
3451 return true;
3452
3453 return false;
3454 }
3455
3456
3457 /* Called via walk_trees. Verify tree sharing. */
3458
3459 static tree
3460 verify_node_sharing (tree * tp, int *walk_subtrees, void *data)
3461 {
3462 htab_t htab = (htab_t) data;
3463 void **slot;
3464
3465 if (tree_node_can_be_shared (*tp))
3466 {
3467 *walk_subtrees = false;
3468 return NULL;
3469 }
3470
3471 slot = htab_find_slot (htab, *tp, INSERT);
3472 if (*slot)
3473 return (tree) *slot;
3474 *slot = *tp;
3475
3476 return NULL;
3477 }
3478
3479
3480 /* Verify the GIMPLE statement chain. */
3481
3482 void
3483 verify_stmts (void)
3484 {
3485 basic_block bb;
3486 block_stmt_iterator bsi;
3487 bool err = false;
3488 htab_t htab;
3489 tree addr;
3490
3491 timevar_push (TV_TREE_STMT_VERIFY);
3492 htab = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
3493
3494 FOR_EACH_BB (bb)
3495 {
3496 tree phi;
3497 int i;
3498
3499 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3500 {
3501 int phi_num_args = PHI_NUM_ARGS (phi);
3502
3503 if (bb_for_stmt (phi) != bb)
3504 {
3505 error ("bb_for_stmt (phi) is set to a wrong basic block");
3506 err |= true;
3507 }
3508
3509 for (i = 0; i < phi_num_args; i++)
3510 {
3511 tree t = PHI_ARG_DEF (phi, i);
3512 tree addr;
3513
3514 /* Addressable variables do have SSA_NAMEs but they
3515 are not considered gimple values. */
3516 if (TREE_CODE (t) != SSA_NAME
3517 && TREE_CODE (t) != FUNCTION_DECL
3518 && !is_gimple_val (t))
3519 {
3520 error ("PHI def is not a GIMPLE value");
3521 debug_generic_stmt (phi);
3522 debug_generic_stmt (t);
3523 err |= true;
3524 }
3525
3526 addr = walk_tree (&t, verify_expr, (void *) 1, NULL);
3527 if (addr)
3528 {
3529 debug_generic_stmt (addr);
3530 err |= true;
3531 }
3532
3533 addr = walk_tree (&t, verify_node_sharing, htab, NULL);
3534 if (addr)
3535 {
3536 error ("incorrect sharing of tree nodes");
3537 debug_generic_stmt (phi);
3538 debug_generic_stmt (addr);
3539 err |= true;
3540 }
3541 }
3542 }
3543
3544 for (bsi = bsi_start (bb); !bsi_end_p (bsi); )
3545 {
3546 tree stmt = bsi_stmt (bsi);
3547
3548 if (bb_for_stmt (stmt) != bb)
3549 {
3550 error ("bb_for_stmt (stmt) is set to a wrong basic block");
3551 err |= true;
3552 }
3553
3554 bsi_next (&bsi);
3555 err |= verify_stmt (stmt, bsi_end_p (bsi));
3556 addr = walk_tree (&stmt, verify_node_sharing, htab, NULL);
3557 if (addr)
3558 {
3559 error ("incorrect sharing of tree nodes");
3560 debug_generic_stmt (stmt);
3561 debug_generic_stmt (addr);
3562 err |= true;
3563 }
3564 }
3565 }
3566
3567 if (err)
3568 internal_error ("verify_stmts failed");
3569
3570 htab_delete (htab);
3571 timevar_pop (TV_TREE_STMT_VERIFY);
3572 }
3573
3574
3575 /* Verifies that the flow information is OK. */
3576
3577 static int
3578 tree_verify_flow_info (void)
3579 {
3580 int err = 0;
3581 basic_block bb;
3582 block_stmt_iterator bsi;
3583 tree stmt;
3584 edge e;
3585 edge_iterator ei;
3586
3587 if (ENTRY_BLOCK_PTR->stmt_list)
3588 {
3589 error ("ENTRY_BLOCK has a statement list associated with it");
3590 err = 1;
3591 }
3592
3593 if (EXIT_BLOCK_PTR->stmt_list)
3594 {
3595 error ("EXIT_BLOCK has a statement list associated with it");
3596 err = 1;
3597 }
3598
3599 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
3600 if (e->flags & EDGE_FALLTHRU)
3601 {
3602 error ("fallthru to exit from bb %d", e->src->index);
3603 err = 1;
3604 }
3605
3606 FOR_EACH_BB (bb)
3607 {
3608 bool found_ctrl_stmt = false;
3609
3610 stmt = NULL_TREE;
3611
3612 /* Skip labels on the start of basic block. */
3613 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3614 {
3615 tree prev_stmt = stmt;
3616
3617 stmt = bsi_stmt (bsi);
3618
3619 if (TREE_CODE (stmt) != LABEL_EXPR)
3620 break;
3621
3622 if (prev_stmt && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
3623 {
3624 error ("nonlocal label %s is not first "
3625 "in a sequence of labels in bb %d",
3626 IDENTIFIER_POINTER (DECL_NAME (LABEL_EXPR_LABEL (stmt))),
3627 bb->index);
3628 err = 1;
3629 }
3630
3631 if (label_to_block (LABEL_EXPR_LABEL (stmt)) != bb)
3632 {
3633 error ("label %s to block does not match in bb %d",
3634 IDENTIFIER_POINTER (DECL_NAME (LABEL_EXPR_LABEL (stmt))),
3635 bb->index);
3636 err = 1;
3637 }
3638
3639 if (decl_function_context (LABEL_EXPR_LABEL (stmt))
3640 != current_function_decl)
3641 {
3642 error ("label %s has incorrect context in bb %d",
3643 IDENTIFIER_POINTER (DECL_NAME (LABEL_EXPR_LABEL (stmt))),
3644 bb->index);
3645 err = 1;
3646 }
3647 }
3648
3649 /* Verify that body of basic block BB is free of control flow. */
3650 for (; !bsi_end_p (bsi); bsi_next (&bsi))
3651 {
3652 tree stmt = bsi_stmt (bsi);
3653
3654 if (found_ctrl_stmt)
3655 {
3656 error ("control flow in the middle of basic block %d",
3657 bb->index);
3658 err = 1;
3659 }
3660
3661 if (stmt_ends_bb_p (stmt))
3662 found_ctrl_stmt = true;
3663
3664 if (TREE_CODE (stmt) == LABEL_EXPR)
3665 {
3666 error ("label %s in the middle of basic block %d",
3667 IDENTIFIER_POINTER (DECL_NAME (LABEL_EXPR_LABEL (stmt))),
3668 bb->index);
3669 err = 1;
3670 }
3671 }
3672 bsi = bsi_last (bb);
3673 if (bsi_end_p (bsi))
3674 continue;
3675
3676 stmt = bsi_stmt (bsi);
3677
3678 err |= verify_eh_edges (stmt);
3679
3680 if (is_ctrl_stmt (stmt))
3681 {
3682 FOR_EACH_EDGE (e, ei, bb->succs)
3683 if (e->flags & EDGE_FALLTHRU)
3684 {
3685 error ("fallthru edge after a control statement in bb %d",
3686 bb->index);
3687 err = 1;
3688 }
3689 }
3690
3691 switch (TREE_CODE (stmt))
3692 {
3693 case COND_EXPR:
3694 {
3695 edge true_edge;
3696 edge false_edge;
3697 if (TREE_CODE (COND_EXPR_THEN (stmt)) != GOTO_EXPR
3698 || TREE_CODE (COND_EXPR_ELSE (stmt)) != GOTO_EXPR)
3699 {
3700 error ("structured COND_EXPR at the end of bb %d", bb->index);
3701 err = 1;
3702 }
3703
3704 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
3705
3706 if (!true_edge || !false_edge
3707 || !(true_edge->flags & EDGE_TRUE_VALUE)
3708 || !(false_edge->flags & EDGE_FALSE_VALUE)
3709 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
3710 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
3711 || EDGE_COUNT (bb->succs) >= 3)
3712 {
3713 error ("wrong outgoing edge flags at end of bb %d",
3714 bb->index);
3715 err = 1;
3716 }
3717
3718 if (!has_label_p (true_edge->dest,
3719 GOTO_DESTINATION (COND_EXPR_THEN (stmt))))
3720 {
3721 error ("%<then%> label does not match edge at end of bb %d",
3722 bb->index);
3723 err = 1;
3724 }
3725
3726 if (!has_label_p (false_edge->dest,
3727 GOTO_DESTINATION (COND_EXPR_ELSE (stmt))))
3728 {
3729 error ("%<else%> label does not match edge at end of bb %d",
3730 bb->index);
3731 err = 1;
3732 }
3733 }
3734 break;
3735
3736 case GOTO_EXPR:
3737 if (simple_goto_p (stmt))
3738 {
3739 error ("explicit goto at end of bb %d", bb->index);
3740 err = 1;
3741 }
3742 else
3743 {
3744 /* FIXME. We should double check that the labels in the
3745 destination blocks have their address taken. */
3746 FOR_EACH_EDGE (e, ei, bb->succs)
3747 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
3748 | EDGE_FALSE_VALUE))
3749 || !(e->flags & EDGE_ABNORMAL))
3750 {
3751 error ("wrong outgoing edge flags at end of bb %d",
3752 bb->index);
3753 err = 1;
3754 }
3755 }
3756 break;
3757
3758 case RETURN_EXPR:
3759 if (!single_succ_p (bb)
3760 || (single_succ_edge (bb)->flags
3761 & (EDGE_FALLTHRU | EDGE_ABNORMAL
3762 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3763 {
3764 error ("wrong outgoing edge flags at end of bb %d", bb->index);
3765 err = 1;
3766 }
3767 if (single_succ (bb) != EXIT_BLOCK_PTR)
3768 {
3769 error ("return edge does not point to exit in bb %d",
3770 bb->index);
3771 err = 1;
3772 }
3773 break;
3774
3775 case SWITCH_EXPR:
3776 {
3777 tree prev;
3778 edge e;
3779 size_t i, n;
3780 tree vec;
3781
3782 vec = SWITCH_LABELS (stmt);
3783 n = TREE_VEC_LENGTH (vec);
3784
3785 /* Mark all the destination basic blocks. */
3786 for (i = 0; i < n; ++i)
3787 {
3788 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
3789 basic_block label_bb = label_to_block (lab);
3790
3791 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
3792 label_bb->aux = (void *)1;
3793 }
3794
3795 /* Verify that the case labels are sorted. */
3796 prev = TREE_VEC_ELT (vec, 0);
3797 for (i = 1; i < n - 1; ++i)
3798 {
3799 tree c = TREE_VEC_ELT (vec, i);
3800 if (! CASE_LOW (c))
3801 {
3802 error ("found default case not at end of case vector");
3803 err = 1;
3804 continue;
3805 }
3806 if (! tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
3807 {
3808 error ("case labels not sorted:");
3809 print_generic_expr (stderr, prev, 0);
3810 fprintf (stderr," is greater than ");
3811 print_generic_expr (stderr, c, 0);
3812 fprintf (stderr," but comes before it.\n");
3813 err = 1;
3814 }
3815 prev = c;
3816 }
3817 if (CASE_LOW (TREE_VEC_ELT (vec, n - 1)))
3818 {
3819 error ("no default case found at end of case vector");
3820 err = 1;
3821 }
3822
3823 FOR_EACH_EDGE (e, ei, bb->succs)
3824 {
3825 if (!e->dest->aux)
3826 {
3827 error ("extra outgoing edge %d->%d",
3828 bb->index, e->dest->index);
3829 err = 1;
3830 }
3831 e->dest->aux = (void *)2;
3832 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
3833 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3834 {
3835 error ("wrong outgoing edge flags at end of bb %d",
3836 bb->index);
3837 err = 1;
3838 }
3839 }
3840
3841 /* Check that we have all of them. */
3842 for (i = 0; i < n; ++i)
3843 {
3844 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
3845 basic_block label_bb = label_to_block (lab);
3846
3847 if (label_bb->aux != (void *)2)
3848 {
3849 error ("missing edge %i->%i",
3850 bb->index, label_bb->index);
3851 err = 1;
3852 }
3853 }
3854
3855 FOR_EACH_EDGE (e, ei, bb->succs)
3856 e->dest->aux = (void *)0;
3857 }
3858
3859 default: ;
3860 }
3861 }
3862
3863 if (dom_computed[CDI_DOMINATORS] >= DOM_NO_FAST_QUERY)
3864 verify_dominators (CDI_DOMINATORS);
3865
3866 return err;
3867 }
3868
3869
3870 /* Updates phi nodes after creating a forwarder block joined
3871 by edge FALLTHRU. */
3872
3873 static void
3874 tree_make_forwarder_block (edge fallthru)
3875 {
3876 edge e;
3877 edge_iterator ei;
3878 basic_block dummy, bb;
3879 tree phi, new_phi, var;
3880
3881 dummy = fallthru->src;
3882 bb = fallthru->dest;
3883
3884 if (single_pred_p (bb))
3885 return;
3886
3887 /* If we redirected a branch we must create new phi nodes at the
3888 start of BB. */
3889 for (phi = phi_nodes (dummy); phi; phi = PHI_CHAIN (phi))
3890 {
3891 var = PHI_RESULT (phi);
3892 new_phi = create_phi_node (var, bb);
3893 SSA_NAME_DEF_STMT (var) = new_phi;
3894 SET_PHI_RESULT (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
3895 add_phi_arg (new_phi, PHI_RESULT (phi), fallthru);
3896 }
3897
3898 /* Ensure that the PHI node chain is in the same order. */
3899 set_phi_nodes (bb, phi_reverse (phi_nodes (bb)));
3900
3901 /* Add the arguments we have stored on edges. */
3902 FOR_EACH_EDGE (e, ei, bb->preds)
3903 {
3904 if (e == fallthru)
3905 continue;
3906
3907 flush_pending_stmts (e);
3908 }
3909 }
3910
3911
3912 /* Return a non-special label in the head of basic block BLOCK.
3913 Create one if it doesn't exist. */
3914
3915 tree
3916 tree_block_label (basic_block bb)
3917 {
3918 block_stmt_iterator i, s = bsi_start (bb);
3919 bool first = true;
3920 tree label, stmt;
3921
3922 for (i = s; !bsi_end_p (i); first = false, bsi_next (&i))
3923 {
3924 stmt = bsi_stmt (i);
3925 if (TREE_CODE (stmt) != LABEL_EXPR)
3926 break;
3927 label = LABEL_EXPR_LABEL (stmt);
3928 if (!DECL_NONLOCAL (label))
3929 {
3930 if (!first)
3931 bsi_move_before (&i, &s);
3932 return label;
3933 }
3934 }
3935
3936 label = create_artificial_label ();
3937 stmt = build1 (LABEL_EXPR, void_type_node, label);
3938 bsi_insert_before (&s, stmt, BSI_NEW_STMT);
3939 return label;
3940 }
3941
3942
3943 /* Attempt to perform edge redirection by replacing a possibly complex
3944 jump instruction by a goto or by removing the jump completely.
3945 This can apply only if all edges now point to the same block. The
3946 parameters and return values are equivalent to
3947 redirect_edge_and_branch. */
3948
3949 static edge
3950 tree_try_redirect_by_replacing_jump (edge e, basic_block target)
3951 {
3952 basic_block src = e->src;
3953 block_stmt_iterator b;
3954 tree stmt;
3955
3956 /* We can replace or remove a complex jump only when we have exactly
3957 two edges. */
3958 if (EDGE_COUNT (src->succs) != 2
3959 /* Verify that all targets will be TARGET. Specifically, the
3960 edge that is not E must also go to TARGET. */
3961 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
3962 return NULL;
3963
3964 b = bsi_last (src);
3965 if (bsi_end_p (b))
3966 return NULL;
3967 stmt = bsi_stmt (b);
3968
3969 if (TREE_CODE (stmt) == COND_EXPR
3970 || TREE_CODE (stmt) == SWITCH_EXPR)
3971 {
3972 bsi_remove (&b);
3973 e = ssa_redirect_edge (e, target);
3974 e->flags = EDGE_FALLTHRU;
3975 return e;
3976 }
3977
3978 return NULL;
3979 }
3980
3981
3982 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
3983 edge representing the redirected branch. */
3984
3985 static edge
3986 tree_redirect_edge_and_branch (edge e, basic_block dest)
3987 {
3988 basic_block bb = e->src;
3989 block_stmt_iterator bsi;
3990 edge ret;
3991 tree label, stmt;
3992
3993 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
3994 return NULL;
3995
3996 if (e->src != ENTRY_BLOCK_PTR
3997 && (ret = tree_try_redirect_by_replacing_jump (e, dest)))
3998 return ret;
3999
4000 if (e->dest == dest)
4001 return NULL;
4002
4003 label = tree_block_label (dest);
4004
4005 bsi = bsi_last (bb);
4006 stmt = bsi_end_p (bsi) ? NULL : bsi_stmt (bsi);
4007
4008 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
4009 {
4010 case COND_EXPR:
4011 stmt = (e->flags & EDGE_TRUE_VALUE
4012 ? COND_EXPR_THEN (stmt)
4013 : COND_EXPR_ELSE (stmt));
4014 GOTO_DESTINATION (stmt) = label;
4015 break;
4016
4017 case GOTO_EXPR:
4018 /* No non-abnormal edges should lead from a non-simple goto, and
4019 simple ones should be represented implicitly. */
4020 gcc_unreachable ();
4021
4022 case SWITCH_EXPR:
4023 {
4024 tree cases = get_cases_for_edge (e, stmt);
4025
4026 /* If we have a list of cases associated with E, then use it
4027 as it's a lot faster than walking the entire case vector. */
4028 if (cases)
4029 {
4030 edge e2 = find_edge (e->src, dest);
4031 tree last, first;
4032
4033 first = cases;
4034 while (cases)
4035 {
4036 last = cases;
4037 CASE_LABEL (cases) = label;
4038 cases = TREE_CHAIN (cases);
4039 }
4040
4041 /* If there was already an edge in the CFG, then we need
4042 to move all the cases associated with E to E2. */
4043 if (e2)
4044 {
4045 tree cases2 = get_cases_for_edge (e2, stmt);
4046
4047 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4048 TREE_CHAIN (cases2) = first;
4049 }
4050 }
4051 else
4052 {
4053 tree vec = SWITCH_LABELS (stmt);
4054 size_t i, n = TREE_VEC_LENGTH (vec);
4055
4056 for (i = 0; i < n; i++)
4057 {
4058 tree elt = TREE_VEC_ELT (vec, i);
4059
4060 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4061 CASE_LABEL (elt) = label;
4062 }
4063 }
4064
4065 break;
4066 }
4067
4068 case RETURN_EXPR:
4069 bsi_remove (&bsi);
4070 e->flags |= EDGE_FALLTHRU;
4071 break;
4072
4073 default:
4074 /* Otherwise it must be a fallthru edge, and we don't need to
4075 do anything besides redirecting it. */
4076 gcc_assert (e->flags & EDGE_FALLTHRU);
4077 break;
4078 }
4079
4080 /* Update/insert PHI nodes as necessary. */
4081
4082 /* Now update the edges in the CFG. */
4083 e = ssa_redirect_edge (e, dest);
4084
4085 return e;
4086 }
4087
4088
4089 /* Simple wrapper, as we can always redirect fallthru edges. */
4090
4091 static basic_block
4092 tree_redirect_edge_and_branch_force (edge e, basic_block dest)
4093 {
4094 e = tree_redirect_edge_and_branch (e, dest);
4095 gcc_assert (e);
4096
4097 return NULL;
4098 }
4099
4100
4101 /* Splits basic block BB after statement STMT (but at least after the
4102 labels). If STMT is NULL, BB is split just after the labels. */
4103
4104 static basic_block
4105 tree_split_block (basic_block bb, void *stmt)
4106 {
4107 block_stmt_iterator bsi, bsi_tgt;
4108 tree act;
4109 basic_block new_bb;
4110 edge e;
4111 edge_iterator ei;
4112
4113 new_bb = create_empty_bb (bb);
4114
4115 /* Redirect the outgoing edges. */
4116 new_bb->succs = bb->succs;
4117 bb->succs = NULL;
4118 FOR_EACH_EDGE (e, ei, new_bb->succs)
4119 e->src = new_bb;
4120
4121 if (stmt && TREE_CODE ((tree) stmt) == LABEL_EXPR)
4122 stmt = NULL;
4123
4124 /* Move everything from BSI to the new basic block. */
4125 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4126 {
4127 act = bsi_stmt (bsi);
4128 if (TREE_CODE (act) == LABEL_EXPR)
4129 continue;
4130
4131 if (!stmt)
4132 break;
4133
4134 if (stmt == act)
4135 {
4136 bsi_next (&bsi);
4137 break;
4138 }
4139 }
4140
4141 bsi_tgt = bsi_start (new_bb);
4142 while (!bsi_end_p (bsi))
4143 {
4144 act = bsi_stmt (bsi);
4145 bsi_remove (&bsi);
4146 bsi_insert_after (&bsi_tgt, act, BSI_NEW_STMT);
4147 }
4148
4149 return new_bb;
4150 }
4151
4152
4153 /* Moves basic block BB after block AFTER. */
4154
4155 static bool
4156 tree_move_block_after (basic_block bb, basic_block after)
4157 {
4158 if (bb->prev_bb == after)
4159 return true;
4160
4161 unlink_block (bb);
4162 link_block (bb, after);
4163
4164 return true;
4165 }
4166
4167
4168 /* Return true if basic_block can be duplicated. */
4169
4170 static bool
4171 tree_can_duplicate_bb_p (basic_block bb ATTRIBUTE_UNUSED)
4172 {
4173 return true;
4174 }
4175
4176
4177 /* Create a duplicate of the basic block BB. NOTE: This does not
4178 preserve SSA form. */
4179
4180 static basic_block
4181 tree_duplicate_bb (basic_block bb)
4182 {
4183 basic_block new_bb;
4184 block_stmt_iterator bsi, bsi_tgt;
4185 tree phi;
4186
4187 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
4188
4189 /* Copy the PHI nodes. We ignore PHI node arguments here because
4190 the incoming edges have not been setup yet. */
4191 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4192 {
4193 tree copy = create_phi_node (PHI_RESULT (phi), new_bb);
4194 create_new_def_for (PHI_RESULT (copy), copy, PHI_RESULT_PTR (copy));
4195 }
4196
4197 /* Keep the chain of PHI nodes in the same order so that they can be
4198 updated by ssa_redirect_edge. */
4199 set_phi_nodes (new_bb, phi_reverse (phi_nodes (new_bb)));
4200
4201 bsi_tgt = bsi_start (new_bb);
4202 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4203 {
4204 def_operand_p def_p;
4205 ssa_op_iter op_iter;
4206 tree stmt, copy;
4207 int region;
4208
4209 stmt = bsi_stmt (bsi);
4210 if (TREE_CODE (stmt) == LABEL_EXPR)
4211 continue;
4212
4213 /* Create a new copy of STMT and duplicate STMT's virtual
4214 operands. */
4215 copy = unshare_expr (stmt);
4216 bsi_insert_after (&bsi_tgt, copy, BSI_NEW_STMT);
4217 copy_virtual_operands (copy, stmt);
4218 region = lookup_stmt_eh_region (stmt);
4219 if (region >= 0)
4220 add_stmt_to_eh_region (copy, region);
4221
4222 /* Create new names for all the definitions created by COPY and
4223 add replacement mappings for each new name. */
4224 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
4225 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
4226 }
4227
4228 return new_bb;
4229 }
4230
4231
4232 /* Basic block BB_COPY was created by code duplication. Add phi node
4233 arguments for edges going out of BB_COPY. The blocks that were
4234 duplicated have BB_DUPLICATED set. */
4235
4236 void
4237 add_phi_args_after_copy_bb (basic_block bb_copy)
4238 {
4239 basic_block bb, dest;
4240 edge e, e_copy;
4241 edge_iterator ei;
4242 tree phi, phi_copy, phi_next, def;
4243
4244 bb = get_bb_original (bb_copy);
4245
4246 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
4247 {
4248 if (!phi_nodes (e_copy->dest))
4249 continue;
4250
4251 if (e_copy->dest->flags & BB_DUPLICATED)
4252 dest = get_bb_original (e_copy->dest);
4253 else
4254 dest = e_copy->dest;
4255
4256 e = find_edge (bb, dest);
4257 if (!e)
4258 {
4259 /* During loop unrolling the target of the latch edge is copied.
4260 In this case we are not looking for edge to dest, but to
4261 duplicated block whose original was dest. */
4262 FOR_EACH_EDGE (e, ei, bb->succs)
4263 if ((e->dest->flags & BB_DUPLICATED)
4264 && get_bb_original (e->dest) == dest)
4265 break;
4266
4267 gcc_assert (e != NULL);
4268 }
4269
4270 for (phi = phi_nodes (e->dest), phi_copy = phi_nodes (e_copy->dest);
4271 phi;
4272 phi = phi_next, phi_copy = PHI_CHAIN (phi_copy))
4273 {
4274 phi_next = PHI_CHAIN (phi);
4275 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
4276 add_phi_arg (phi_copy, def, e_copy);
4277 }
4278 }
4279 }
4280
4281 /* Blocks in REGION_COPY array of length N_REGION were created by
4282 duplication of basic blocks. Add phi node arguments for edges
4283 going from these blocks. */
4284
4285 void
4286 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region)
4287 {
4288 unsigned i;
4289
4290 for (i = 0; i < n_region; i++)
4291 region_copy[i]->flags |= BB_DUPLICATED;
4292
4293 for (i = 0; i < n_region; i++)
4294 add_phi_args_after_copy_bb (region_copy[i]);
4295
4296 for (i = 0; i < n_region; i++)
4297 region_copy[i]->flags &= ~BB_DUPLICATED;
4298 }
4299
4300 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
4301 important exit edge EXIT. By important we mean that no SSA name defined
4302 inside region is live over the other exit edges of the region. All entry
4303 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
4304 to the duplicate of the region. SSA form, dominance and loop information
4305 is updated. The new basic blocks are stored to REGION_COPY in the same
4306 order as they had in REGION, provided that REGION_COPY is not NULL.
4307 The function returns false if it is unable to copy the region,
4308 true otherwise. */
4309
4310 bool
4311 tree_duplicate_sese_region (edge entry, edge exit,
4312 basic_block *region, unsigned n_region,
4313 basic_block *region_copy)
4314 {
4315 unsigned i, n_doms;
4316 bool free_region_copy = false, copying_header = false;
4317 struct loop *loop = entry->dest->loop_father;
4318 edge exit_copy;
4319 basic_block *doms;
4320 edge redirected;
4321 int total_freq = 0, entry_freq = 0;
4322 gcov_type total_count = 0, entry_count = 0;
4323
4324 if (!can_copy_bbs_p (region, n_region))
4325 return false;
4326
4327 /* Some sanity checking. Note that we do not check for all possible
4328 missuses of the functions. I.e. if you ask to copy something weird,
4329 it will work, but the state of structures probably will not be
4330 correct. */
4331 for (i = 0; i < n_region; i++)
4332 {
4333 /* We do not handle subloops, i.e. all the blocks must belong to the
4334 same loop. */
4335 if (region[i]->loop_father != loop)
4336 return false;
4337
4338 if (region[i] != entry->dest
4339 && region[i] == loop->header)
4340 return false;
4341 }
4342
4343 loop->copy = loop;
4344
4345 /* In case the function is used for loop header copying (which is the primary
4346 use), ensure that EXIT and its copy will be new latch and entry edges. */
4347 if (loop->header == entry->dest)
4348 {
4349 copying_header = true;
4350 loop->copy = loop->outer;
4351
4352 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
4353 return false;
4354
4355 for (i = 0; i < n_region; i++)
4356 if (region[i] != exit->src
4357 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
4358 return false;
4359 }
4360
4361 if (!region_copy)
4362 {
4363 region_copy = XNEWVEC (basic_block, n_region);
4364 free_region_copy = true;
4365 }
4366
4367 gcc_assert (!need_ssa_update_p ());
4368
4369 /* Record blocks outside the region that are dominated by something
4370 inside. */
4371 doms = XNEWVEC (basic_block, n_basic_blocks);
4372 initialize_original_copy_tables ();
4373
4374 n_doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region, doms);
4375
4376 if (entry->dest->count)
4377 {
4378 total_count = entry->dest->count;
4379 entry_count = entry->count;
4380 /* Fix up corner cases, to avoid division by zero or creation of negative
4381 frequencies. */
4382 if (entry_count > total_count)
4383 entry_count = total_count;
4384 }
4385 else
4386 {
4387 total_freq = entry->dest->frequency;
4388 entry_freq = EDGE_FREQUENCY (entry);
4389 /* Fix up corner cases, to avoid division by zero or creation of negative
4390 frequencies. */
4391 if (total_freq == 0)
4392 total_freq = 1;
4393 else if (entry_freq > total_freq)
4394 entry_freq = total_freq;
4395 }
4396
4397 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
4398 split_edge_bb_loc (entry));
4399 if (total_count)
4400 {
4401 scale_bbs_frequencies_gcov_type (region, n_region,
4402 total_count - entry_count,
4403 total_count);
4404 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
4405 total_count);
4406 }
4407 else
4408 {
4409 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
4410 total_freq);
4411 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
4412 }
4413
4414 if (copying_header)
4415 {
4416 loop->header = exit->dest;
4417 loop->latch = exit->src;
4418 }
4419
4420 /* Redirect the entry and add the phi node arguments. */
4421 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
4422 gcc_assert (redirected != NULL);
4423 flush_pending_stmts (entry);
4424
4425 /* Concerning updating of dominators: We must recount dominators
4426 for entry block and its copy. Anything that is outside of the
4427 region, but was dominated by something inside needs recounting as
4428 well. */
4429 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
4430 doms[n_doms++] = get_bb_original (entry->dest);
4431 iterate_fix_dominators (CDI_DOMINATORS, doms, n_doms);
4432 free (doms);
4433
4434 /* Add the other PHI node arguments. */
4435 add_phi_args_after_copy (region_copy, n_region);
4436
4437 /* Update the SSA web. */
4438 update_ssa (TODO_update_ssa);
4439
4440 if (free_region_copy)
4441 free (region_copy);
4442
4443 free_original_copy_tables ();
4444 return true;
4445 }
4446
4447
4448 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree.h) */
4449
4450 void
4451 dump_function_to_file (tree fn, FILE *file, int flags)
4452 {
4453 tree arg, vars, var;
4454 bool ignore_topmost_bind = false, any_var = false;
4455 basic_block bb;
4456 tree chain;
4457
4458 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
4459
4460 arg = DECL_ARGUMENTS (fn);
4461 while (arg)
4462 {
4463 print_generic_expr (file, arg, dump_flags);
4464 if (TREE_CHAIN (arg))
4465 fprintf (file, ", ");
4466 arg = TREE_CHAIN (arg);
4467 }
4468 fprintf (file, ")\n");
4469
4470 if (flags & TDF_DETAILS)
4471 dump_eh_tree (file, DECL_STRUCT_FUNCTION (fn));
4472 if (flags & TDF_RAW)
4473 {
4474 dump_node (fn, TDF_SLIM | flags, file);
4475 return;
4476 }
4477
4478 /* When GIMPLE is lowered, the variables are no longer available in
4479 BIND_EXPRs, so display them separately. */
4480 if (cfun && cfun->decl == fn && cfun->unexpanded_var_list)
4481 {
4482 ignore_topmost_bind = true;
4483
4484 fprintf (file, "{\n");
4485 for (vars = cfun->unexpanded_var_list; vars; vars = TREE_CHAIN (vars))
4486 {
4487 var = TREE_VALUE (vars);
4488
4489 print_generic_decl (file, var, flags);
4490 fprintf (file, "\n");
4491
4492 any_var = true;
4493 }
4494 }
4495
4496 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
4497 {
4498 /* Make a CFG based dump. */
4499 check_bb_profile (ENTRY_BLOCK_PTR, file);
4500 if (!ignore_topmost_bind)
4501 fprintf (file, "{\n");
4502
4503 if (any_var && n_basic_blocks)
4504 fprintf (file, "\n");
4505
4506 FOR_EACH_BB (bb)
4507 dump_generic_bb (file, bb, 2, flags);
4508
4509 fprintf (file, "}\n");
4510 check_bb_profile (EXIT_BLOCK_PTR, file);
4511 }
4512 else
4513 {
4514 int indent;
4515
4516 /* Make a tree based dump. */
4517 chain = DECL_SAVED_TREE (fn);
4518
4519 if (TREE_CODE (chain) == BIND_EXPR)
4520 {
4521 if (ignore_topmost_bind)
4522 {
4523 chain = BIND_EXPR_BODY (chain);
4524 indent = 2;
4525 }
4526 else
4527 indent = 0;
4528 }
4529 else
4530 {
4531 if (!ignore_topmost_bind)
4532 fprintf (file, "{\n");
4533 indent = 2;
4534 }
4535
4536 if (any_var)
4537 fprintf (file, "\n");
4538
4539 print_generic_stmt_indented (file, chain, flags, indent);
4540 if (ignore_topmost_bind)
4541 fprintf (file, "}\n");
4542 }
4543
4544 fprintf (file, "\n\n");
4545 }
4546
4547
4548 /* Pretty print of the loops intermediate representation. */
4549 static void print_loop (FILE *, struct loop *, int);
4550 static void print_pred_bbs (FILE *, basic_block bb);
4551 static void print_succ_bbs (FILE *, basic_block bb);
4552
4553
4554 /* Print on FILE the indexes for the predecessors of basic_block BB. */
4555
4556 static void
4557 print_pred_bbs (FILE *file, basic_block bb)
4558 {
4559 edge e;
4560 edge_iterator ei;
4561
4562 FOR_EACH_EDGE (e, ei, bb->preds)
4563 fprintf (file, "bb_%d ", e->src->index);
4564 }
4565
4566
4567 /* Print on FILE the indexes for the successors of basic_block BB. */
4568
4569 static void
4570 print_succ_bbs (FILE *file, basic_block bb)
4571 {
4572 edge e;
4573 edge_iterator ei;
4574
4575 FOR_EACH_EDGE (e, ei, bb->succs)
4576 fprintf (file, "bb_%d ", e->dest->index);
4577 }
4578
4579
4580 /* Pretty print LOOP on FILE, indented INDENT spaces. */
4581
4582 static void
4583 print_loop (FILE *file, struct loop *loop, int indent)
4584 {
4585 char *s_indent;
4586 basic_block bb;
4587
4588 if (loop == NULL)
4589 return;
4590
4591 s_indent = (char *) alloca ((size_t) indent + 1);
4592 memset ((void *) s_indent, ' ', (size_t) indent);
4593 s_indent[indent] = '\0';
4594
4595 /* Print the loop's header. */
4596 fprintf (file, "%sloop_%d\n", s_indent, loop->num);
4597
4598 /* Print the loop's body. */
4599 fprintf (file, "%s{\n", s_indent);
4600 FOR_EACH_BB (bb)
4601 if (bb->loop_father == loop)
4602 {
4603 /* Print the basic_block's header. */
4604 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
4605 print_pred_bbs (file, bb);
4606 fprintf (file, "}, succs = {");
4607 print_succ_bbs (file, bb);
4608 fprintf (file, "})\n");
4609
4610 /* Print the basic_block's body. */
4611 fprintf (file, "%s {\n", s_indent);
4612 tree_dump_bb (bb, file, indent + 4);
4613 fprintf (file, "%s }\n", s_indent);
4614 }
4615
4616 print_loop (file, loop->inner, indent + 2);
4617 fprintf (file, "%s}\n", s_indent);
4618 print_loop (file, loop->next, indent);
4619 }
4620
4621
4622 /* Follow a CFG edge from the entry point of the program, and on entry
4623 of a loop, pretty print the loop structure on FILE. */
4624
4625 void
4626 print_loop_ir (FILE *file)
4627 {
4628 basic_block bb;
4629
4630 bb = BASIC_BLOCK (NUM_FIXED_BLOCKS);
4631 if (bb && bb->loop_father)
4632 print_loop (file, bb->loop_father, 0);
4633 }
4634
4635
4636 /* Debugging loops structure at tree level. */
4637
4638 void
4639 debug_loop_ir (void)
4640 {
4641 print_loop_ir (stderr);
4642 }
4643
4644
4645 /* Return true if BB ends with a call, possibly followed by some
4646 instructions that must stay with the call. Return false,
4647 otherwise. */
4648
4649 static bool
4650 tree_block_ends_with_call_p (basic_block bb)
4651 {
4652 block_stmt_iterator bsi = bsi_last (bb);
4653 return get_call_expr_in (bsi_stmt (bsi)) != NULL;
4654 }
4655
4656
4657 /* Return true if BB ends with a conditional branch. Return false,
4658 otherwise. */
4659
4660 static bool
4661 tree_block_ends_with_condjump_p (basic_block bb)
4662 {
4663 tree stmt = last_stmt (bb);
4664 return (stmt && TREE_CODE (stmt) == COND_EXPR);
4665 }
4666
4667
4668 /* Return true if we need to add fake edge to exit at statement T.
4669 Helper function for tree_flow_call_edges_add. */
4670
4671 static bool
4672 need_fake_edge_p (tree t)
4673 {
4674 tree call;
4675
4676 /* NORETURN and LONGJMP calls already have an edge to exit.
4677 CONST and PURE calls do not need one.
4678 We don't currently check for CONST and PURE here, although
4679 it would be a good idea, because those attributes are
4680 figured out from the RTL in mark_constant_function, and
4681 the counter incrementation code from -fprofile-arcs
4682 leads to different results from -fbranch-probabilities. */
4683 call = get_call_expr_in (t);
4684 if (call
4685 && !(call_expr_flags (call) & ECF_NORETURN))
4686 return true;
4687
4688 if (TREE_CODE (t) == ASM_EXPR
4689 && (ASM_VOLATILE_P (t) || ASM_INPUT_P (t)))
4690 return true;
4691
4692 return false;
4693 }
4694
4695
4696 /* Add fake edges to the function exit for any non constant and non
4697 noreturn calls, volatile inline assembly in the bitmap of blocks
4698 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
4699 the number of blocks that were split.
4700
4701 The goal is to expose cases in which entering a basic block does
4702 not imply that all subsequent instructions must be executed. */
4703
4704 static int
4705 tree_flow_call_edges_add (sbitmap blocks)
4706 {
4707 int i;
4708 int blocks_split = 0;
4709 int last_bb = last_basic_block;
4710 bool check_last_block = false;
4711
4712 if (n_basic_blocks == NUM_FIXED_BLOCKS)
4713 return 0;
4714
4715 if (! blocks)
4716 check_last_block = true;
4717 else
4718 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
4719
4720 /* In the last basic block, before epilogue generation, there will be
4721 a fallthru edge to EXIT. Special care is required if the last insn
4722 of the last basic block is a call because make_edge folds duplicate
4723 edges, which would result in the fallthru edge also being marked
4724 fake, which would result in the fallthru edge being removed by
4725 remove_fake_edges, which would result in an invalid CFG.
4726
4727 Moreover, we can't elide the outgoing fake edge, since the block
4728 profiler needs to take this into account in order to solve the minimal
4729 spanning tree in the case that the call doesn't return.
4730
4731 Handle this by adding a dummy instruction in a new last basic block. */
4732 if (check_last_block)
4733 {
4734 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
4735 block_stmt_iterator bsi = bsi_last (bb);
4736 tree t = NULL_TREE;
4737 if (!bsi_end_p (bsi))
4738 t = bsi_stmt (bsi);
4739
4740 if (t && need_fake_edge_p (t))
4741 {
4742 edge e;
4743
4744 e = find_edge (bb, EXIT_BLOCK_PTR);
4745 if (e)
4746 {
4747 bsi_insert_on_edge (e, build_empty_stmt ());
4748 bsi_commit_edge_inserts ();
4749 }
4750 }
4751 }
4752
4753 /* Now add fake edges to the function exit for any non constant
4754 calls since there is no way that we can determine if they will
4755 return or not... */
4756 for (i = 0; i < last_bb; i++)
4757 {
4758 basic_block bb = BASIC_BLOCK (i);
4759 block_stmt_iterator bsi;
4760 tree stmt, last_stmt;
4761
4762 if (!bb)
4763 continue;
4764
4765 if (blocks && !TEST_BIT (blocks, i))
4766 continue;
4767
4768 bsi = bsi_last (bb);
4769 if (!bsi_end_p (bsi))
4770 {
4771 last_stmt = bsi_stmt (bsi);
4772 do
4773 {
4774 stmt = bsi_stmt (bsi);
4775 if (need_fake_edge_p (stmt))
4776 {
4777 edge e;
4778 /* The handling above of the final block before the
4779 epilogue should be enough to verify that there is
4780 no edge to the exit block in CFG already.
4781 Calling make_edge in such case would cause us to
4782 mark that edge as fake and remove it later. */
4783 #ifdef ENABLE_CHECKING
4784 if (stmt == last_stmt)
4785 {
4786 e = find_edge (bb, EXIT_BLOCK_PTR);
4787 gcc_assert (e == NULL);
4788 }
4789 #endif
4790
4791 /* Note that the following may create a new basic block
4792 and renumber the existing basic blocks. */
4793 if (stmt != last_stmt)
4794 {
4795 e = split_block (bb, stmt);
4796 if (e)
4797 blocks_split++;
4798 }
4799 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
4800 }
4801 bsi_prev (&bsi);
4802 }
4803 while (!bsi_end_p (bsi));
4804 }
4805 }
4806
4807 if (blocks_split)
4808 verify_flow_info ();
4809
4810 return blocks_split;
4811 }
4812
4813 bool
4814 tree_purge_dead_eh_edges (basic_block bb)
4815 {
4816 bool changed = false;
4817 edge e;
4818 edge_iterator ei;
4819 tree stmt = last_stmt (bb);
4820
4821 if (stmt && tree_can_throw_internal (stmt))
4822 return false;
4823
4824 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
4825 {
4826 if (e->flags & EDGE_EH)
4827 {
4828 remove_edge (e);
4829 changed = true;
4830 }
4831 else
4832 ei_next (&ei);
4833 }
4834
4835 /* Removal of dead EH edges might change dominators of not
4836 just immediate successors. E.g. when bb1 is changed so that
4837 it no longer can throw and bb1->bb3 and bb1->bb4 are dead
4838 eh edges purged by this function in:
4839 0
4840 / \
4841 v v
4842 1-->2
4843 / \ |
4844 v v |
4845 3-->4 |
4846 \ v
4847 --->5
4848 |
4849 -
4850 idom(bb5) must be recomputed. For now just free the dominance
4851 info. */
4852 if (changed)
4853 free_dominance_info (CDI_DOMINATORS);
4854
4855 return changed;
4856 }
4857
4858 bool
4859 tree_purge_all_dead_eh_edges (bitmap blocks)
4860 {
4861 bool changed = false;
4862 unsigned i;
4863 bitmap_iterator bi;
4864
4865 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
4866 {
4867 changed |= tree_purge_dead_eh_edges (BASIC_BLOCK (i));
4868 }
4869
4870 return changed;
4871 }
4872
4873 /* This function is called whenever a new edge is created or
4874 redirected. */
4875
4876 static void
4877 tree_execute_on_growing_pred (edge e)
4878 {
4879 basic_block bb = e->dest;
4880
4881 if (phi_nodes (bb))
4882 reserve_phi_args_for_new_edge (bb);
4883 }
4884
4885 /* This function is called immediately before edge E is removed from
4886 the edge vector E->dest->preds. */
4887
4888 static void
4889 tree_execute_on_shrinking_pred (edge e)
4890 {
4891 if (phi_nodes (e->dest))
4892 remove_phi_args (e);
4893 }
4894
4895 /*---------------------------------------------------------------------------
4896 Helper functions for Loop versioning
4897 ---------------------------------------------------------------------------*/
4898
4899 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
4900 of 'first'. Both of them are dominated by 'new_head' basic block. When
4901 'new_head' was created by 'second's incoming edge it received phi arguments
4902 on the edge by split_edge(). Later, additional edge 'e' was created to
4903 connect 'new_head' and 'first'. Now this routine adds phi args on this
4904 additional edge 'e' that new_head to second edge received as part of edge
4905 splitting.
4906 */
4907
4908 static void
4909 tree_lv_adjust_loop_header_phi (basic_block first, basic_block second,
4910 basic_block new_head, edge e)
4911 {
4912 tree phi1, phi2;
4913 edge e2 = find_edge (new_head, second);
4914
4915 /* Because NEW_HEAD has been created by splitting SECOND's incoming
4916 edge, we should always have an edge from NEW_HEAD to SECOND. */
4917 gcc_assert (e2 != NULL);
4918
4919 /* Browse all 'second' basic block phi nodes and add phi args to
4920 edge 'e' for 'first' head. PHI args are always in correct order. */
4921
4922 for (phi2 = phi_nodes (second), phi1 = phi_nodes (first);
4923 phi2 && phi1;
4924 phi2 = PHI_CHAIN (phi2), phi1 = PHI_CHAIN (phi1))
4925 {
4926 tree def = PHI_ARG_DEF (phi2, e2->dest_idx);
4927 add_phi_arg (phi1, def, e);
4928 }
4929 }
4930
4931 /* Adds a if else statement to COND_BB with condition COND_EXPR.
4932 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
4933 the destination of the ELSE part. */
4934 static void
4935 tree_lv_add_condition_to_bb (basic_block first_head, basic_block second_head,
4936 basic_block cond_bb, void *cond_e)
4937 {
4938 block_stmt_iterator bsi;
4939 tree goto1 = NULL_TREE;
4940 tree goto2 = NULL_TREE;
4941 tree new_cond_expr = NULL_TREE;
4942 tree cond_expr = (tree) cond_e;
4943 edge e0;
4944
4945 /* Build new conditional expr */
4946 goto1 = build1 (GOTO_EXPR, void_type_node, tree_block_label (first_head));
4947 goto2 = build1 (GOTO_EXPR, void_type_node, tree_block_label (second_head));
4948 new_cond_expr = build3 (COND_EXPR, void_type_node, cond_expr, goto1, goto2);
4949
4950 /* Add new cond in cond_bb. */
4951 bsi = bsi_start (cond_bb);
4952 bsi_insert_after (&bsi, new_cond_expr, BSI_NEW_STMT);
4953 /* Adjust edges appropriately to connect new head with first head
4954 as well as second head. */
4955 e0 = single_succ_edge (cond_bb);
4956 e0->flags &= ~EDGE_FALLTHRU;
4957 e0->flags |= EDGE_FALSE_VALUE;
4958 }
4959
4960 struct cfg_hooks tree_cfg_hooks = {
4961 "tree",
4962 tree_verify_flow_info,
4963 tree_dump_bb, /* dump_bb */
4964 create_bb, /* create_basic_block */
4965 tree_redirect_edge_and_branch,/* redirect_edge_and_branch */
4966 tree_redirect_edge_and_branch_force,/* redirect_edge_and_branch_force */
4967 remove_bb, /* delete_basic_block */
4968 tree_split_block, /* split_block */
4969 tree_move_block_after, /* move_block_after */
4970 tree_can_merge_blocks_p, /* can_merge_blocks_p */
4971 tree_merge_blocks, /* merge_blocks */
4972 tree_predict_edge, /* predict_edge */
4973 tree_predicted_by_p, /* predicted_by_p */
4974 tree_can_duplicate_bb_p, /* can_duplicate_block_p */
4975 tree_duplicate_bb, /* duplicate_block */
4976 tree_split_edge, /* split_edge */
4977 tree_make_forwarder_block, /* make_forward_block */
4978 NULL, /* tidy_fallthru_edge */
4979 tree_block_ends_with_call_p, /* block_ends_with_call_p */
4980 tree_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
4981 tree_flow_call_edges_add, /* flow_call_edges_add */
4982 tree_execute_on_growing_pred, /* execute_on_growing_pred */
4983 tree_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
4984 tree_duplicate_loop_to_header_edge, /* duplicate loop for trees */
4985 tree_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
4986 tree_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
4987 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
4988 flush_pending_stmts /* flush_pending_stmts */
4989 };
4990
4991
4992 /* Split all critical edges. */
4993
4994 static void
4995 split_critical_edges (void)
4996 {
4997 basic_block bb;
4998 edge e;
4999 edge_iterator ei;
5000
5001 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
5002 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
5003 mappings around the calls to split_edge. */
5004 start_recording_case_labels ();
5005 FOR_ALL_BB (bb)
5006 {
5007 FOR_EACH_EDGE (e, ei, bb->succs)
5008 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
5009 {
5010 split_edge (e);
5011 }
5012 }
5013 end_recording_case_labels ();
5014 }
5015
5016 struct tree_opt_pass pass_split_crit_edges =
5017 {
5018 "crited", /* name */
5019 NULL, /* gate */
5020 split_critical_edges, /* execute */
5021 NULL, /* sub */
5022 NULL, /* next */
5023 0, /* static_pass_number */
5024 TV_TREE_SPLIT_EDGES, /* tv_id */
5025 PROP_cfg, /* properties required */
5026 PROP_no_crit_edges, /* properties_provided */
5027 0, /* properties_destroyed */
5028 0, /* todo_flags_start */
5029 TODO_dump_func, /* todo_flags_finish */
5030 0 /* letter */
5031 };
5032
5033 \f
5034 /* Return EXP if it is a valid GIMPLE rvalue, else gimplify it into
5035 a temporary, make sure and register it to be renamed if necessary,
5036 and finally return the temporary. Put the statements to compute
5037 EXP before the current statement in BSI. */
5038
5039 tree
5040 gimplify_val (block_stmt_iterator *bsi, tree type, tree exp)
5041 {
5042 tree t, new_stmt, orig_stmt;
5043
5044 if (is_gimple_val (exp))
5045 return exp;
5046
5047 t = make_rename_temp (type, NULL);
5048 new_stmt = build2 (MODIFY_EXPR, type, t, exp);
5049
5050 orig_stmt = bsi_stmt (*bsi);
5051 SET_EXPR_LOCUS (new_stmt, EXPR_LOCUS (orig_stmt));
5052 TREE_BLOCK (new_stmt) = TREE_BLOCK (orig_stmt);
5053
5054 bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT);
5055
5056 return t;
5057 }
5058
5059 /* Build a ternary operation and gimplify it. Emit code before BSI.
5060 Return the gimple_val holding the result. */
5061
5062 tree
5063 gimplify_build3 (block_stmt_iterator *bsi, enum tree_code code,
5064 tree type, tree a, tree b, tree c)
5065 {
5066 tree ret;
5067
5068 ret = fold_build3 (code, type, a, b, c);
5069 STRIP_NOPS (ret);
5070
5071 return gimplify_val (bsi, type, ret);
5072 }
5073
5074 /* Build a binary operation and gimplify it. Emit code before BSI.
5075 Return the gimple_val holding the result. */
5076
5077 tree
5078 gimplify_build2 (block_stmt_iterator *bsi, enum tree_code code,
5079 tree type, tree a, tree b)
5080 {
5081 tree ret;
5082
5083 ret = fold_build2 (code, type, a, b);
5084 STRIP_NOPS (ret);
5085
5086 return gimplify_val (bsi, type, ret);
5087 }
5088
5089 /* Build a unary operation and gimplify it. Emit code before BSI.
5090 Return the gimple_val holding the result. */
5091
5092 tree
5093 gimplify_build1 (block_stmt_iterator *bsi, enum tree_code code, tree type,
5094 tree a)
5095 {
5096 tree ret;
5097
5098 ret = fold_build1 (code, type, a);
5099 STRIP_NOPS (ret);
5100
5101 return gimplify_val (bsi, type, ret);
5102 }
5103
5104
5105 \f
5106 /* Emit return warnings. */
5107
5108 static void
5109 execute_warn_function_return (void)
5110 {
5111 #ifdef USE_MAPPED_LOCATION
5112 source_location location;
5113 #else
5114 location_t *locus;
5115 #endif
5116 tree last;
5117 edge e;
5118 edge_iterator ei;
5119
5120 /* If we have a path to EXIT, then we do return. */
5121 if (TREE_THIS_VOLATILE (cfun->decl)
5122 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
5123 {
5124 #ifdef USE_MAPPED_LOCATION
5125 location = UNKNOWN_LOCATION;
5126 #else
5127 locus = NULL;
5128 #endif
5129 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5130 {
5131 last = last_stmt (e->src);
5132 if (TREE_CODE (last) == RETURN_EXPR
5133 #ifdef USE_MAPPED_LOCATION
5134 && (location = EXPR_LOCATION (last)) != UNKNOWN_LOCATION)
5135 #else
5136 && (locus = EXPR_LOCUS (last)) != NULL)
5137 #endif
5138 break;
5139 }
5140 #ifdef USE_MAPPED_LOCATION
5141 if (location == UNKNOWN_LOCATION)
5142 location = cfun->function_end_locus;
5143 warning (0, "%H%<noreturn%> function does return", &location);
5144 #else
5145 if (!locus)
5146 locus = &cfun->function_end_locus;
5147 warning (0, "%H%<noreturn%> function does return", locus);
5148 #endif
5149 }
5150
5151 /* If we see "return;" in some basic block, then we do reach the end
5152 without returning a value. */
5153 else if (warn_return_type
5154 && !TREE_NO_WARNING (cfun->decl)
5155 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
5156 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
5157 {
5158 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5159 {
5160 tree last = last_stmt (e->src);
5161 if (TREE_CODE (last) == RETURN_EXPR
5162 && TREE_OPERAND (last, 0) == NULL
5163 && !TREE_NO_WARNING (last))
5164 {
5165 #ifdef USE_MAPPED_LOCATION
5166 location = EXPR_LOCATION (last);
5167 if (location == UNKNOWN_LOCATION)
5168 location = cfun->function_end_locus;
5169 warning (0, "%Hcontrol reaches end of non-void function", &location);
5170 #else
5171 locus = EXPR_LOCUS (last);
5172 if (!locus)
5173 locus = &cfun->function_end_locus;
5174 warning (0, "%Hcontrol reaches end of non-void function", locus);
5175 #endif
5176 TREE_NO_WARNING (cfun->decl) = 1;
5177 break;
5178 }
5179 }
5180 }
5181 }
5182
5183
5184 /* Given a basic block B which ends with a conditional and has
5185 precisely two successors, determine which of the edges is taken if
5186 the conditional is true and which is taken if the conditional is
5187 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
5188
5189 void
5190 extract_true_false_edges_from_block (basic_block b,
5191 edge *true_edge,
5192 edge *false_edge)
5193 {
5194 edge e = EDGE_SUCC (b, 0);
5195
5196 if (e->flags & EDGE_TRUE_VALUE)
5197 {
5198 *true_edge = e;
5199 *false_edge = EDGE_SUCC (b, 1);
5200 }
5201 else
5202 {
5203 *false_edge = e;
5204 *true_edge = EDGE_SUCC (b, 1);
5205 }
5206 }
5207
5208 struct tree_opt_pass pass_warn_function_return =
5209 {
5210 NULL, /* name */
5211 NULL, /* gate */
5212 execute_warn_function_return, /* execute */
5213 NULL, /* sub */
5214 NULL, /* next */
5215 0, /* static_pass_number */
5216 0, /* tv_id */
5217 PROP_cfg, /* properties_required */
5218 0, /* properties_provided */
5219 0, /* properties_destroyed */
5220 0, /* todo_flags_start */
5221 0, /* todo_flags_finish */
5222 0 /* letter */
5223 };
5224
5225 /* Emit noreturn warnings. */
5226
5227 static void
5228 execute_warn_function_noreturn (void)
5229 {
5230 if (warn_missing_noreturn
5231 && !TREE_THIS_VOLATILE (cfun->decl)
5232 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
5233 && !lang_hooks.function.missing_noreturn_ok_p (cfun->decl))
5234 warning (OPT_Wmissing_noreturn, "%Jfunction might be possible candidate "
5235 "for attribute %<noreturn%>",
5236 cfun->decl);
5237 }
5238
5239 struct tree_opt_pass pass_warn_function_noreturn =
5240 {
5241 NULL, /* name */
5242 NULL, /* gate */
5243 execute_warn_function_noreturn, /* execute */
5244 NULL, /* sub */
5245 NULL, /* next */
5246 0, /* static_pass_number */
5247 0, /* tv_id */
5248 PROP_cfg, /* properties_required */
5249 0, /* properties_provided */
5250 0, /* properties_destroyed */
5251 0, /* todo_flags_start */
5252 0, /* todo_flags_finish */
5253 0 /* letter */
5254 };