re PR ipa/60026 (ICE at -O3 on valid code (with the optimize pragma) on x86_64-linux...
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "trans-mem.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
30 #include "tm_p.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "gimple-pretty-print.h"
35 #include "pointer-set.h"
36 #include "tree-ssa-alias.h"
37 #include "internal-fn.h"
38 #include "gimple-fold.h"
39 #include "tree-eh.h"
40 #include "gimple-expr.h"
41 #include "is-a.h"
42 #include "gimple.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
45 #include "gimple-walk.h"
46 #include "gimple-ssa.h"
47 #include "cgraph.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-manip.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-into-ssa.h"
56 #include "expr.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa.h"
59 #include "tree-dump.h"
60 #include "tree-pass.h"
61 #include "diagnostic-core.h"
62 #include "except.h"
63 #include "cfgloop.h"
64 #include "tree-ssa-propagate.h"
65 #include "value-prof.h"
66 #include "tree-inline.h"
67 #include "target.h"
68 #include "tree-ssa-live.h"
69 #include "omp-low.h"
70 #include "tree-cfgcleanup.h"
71
72 /* This file contains functions for building the Control Flow Graph (CFG)
73 for a function tree. */
74
75 /* Local declarations. */
76
77 /* Initial capacity for the basic block array. */
78 static const int initial_cfg_capacity = 20;
79
80 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
81 which use a particular edge. The CASE_LABEL_EXPRs are chained together
82 via their CASE_CHAIN field, which we clear after we're done with the
83 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
84
85 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
86 update the case vector in response to edge redirections.
87
88 Right now this table is set up and torn down at key points in the
89 compilation process. It would be nice if we could make the table
90 more persistent. The key is getting notification of changes to
91 the CFG (particularly edge removal, creation and redirection). */
92
93 static struct pointer_map_t *edge_to_cases;
94
95 /* If we record edge_to_cases, this bitmap will hold indexes
96 of basic blocks that end in a GIMPLE_SWITCH which we touched
97 due to edge manipulations. */
98
99 static bitmap touched_switch_bbs;
100
101 /* CFG statistics. */
102 struct cfg_stats_d
103 {
104 long num_merged_labels;
105 };
106
107 static struct cfg_stats_d cfg_stats;
108
109 /* Hash table to store last discriminator assigned for each locus. */
110 struct locus_discrim_map
111 {
112 location_t locus;
113 int discriminator;
114 };
115
116 /* Hashtable helpers. */
117
118 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
119 {
120 typedef locus_discrim_map value_type;
121 typedef locus_discrim_map compare_type;
122 static inline hashval_t hash (const value_type *);
123 static inline bool equal (const value_type *, const compare_type *);
124 };
125
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
128
129 inline hashval_t
130 locus_discrim_hasher::hash (const value_type *item)
131 {
132 return LOCATION_LINE (item->locus);
133 }
134
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
137
138 inline bool
139 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
140 {
141 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
142 }
143
144 static hash_table <locus_discrim_hasher> discriminator_per_locus;
145
146 /* Basic blocks and flowgraphs. */
147 static void make_blocks (gimple_seq);
148
149 /* Edges. */
150 static void make_edges (void);
151 static void assign_discriminators (void);
152 static void make_cond_expr_edges (basic_block);
153 static void make_gimple_switch_edges (basic_block);
154 static bool make_goto_expr_edges (basic_block);
155 static void make_gimple_asm_edges (basic_block);
156 static edge gimple_redirect_edge_and_branch (edge, basic_block);
157 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
158
159 /* Various helpers. */
160 static inline bool stmt_starts_bb_p (gimple, gimple);
161 static int gimple_verify_flow_info (void);
162 static void gimple_make_forwarder_block (edge);
163 static gimple first_non_label_stmt (basic_block);
164 static bool verify_gimple_transaction (gimple);
165
166 /* Flowgraph optimization and cleanup. */
167 static void gimple_merge_blocks (basic_block, basic_block);
168 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
169 static void remove_bb (basic_block);
170 static edge find_taken_edge_computed_goto (basic_block, tree);
171 static edge find_taken_edge_cond_expr (basic_block, tree);
172 static edge find_taken_edge_switch_expr (basic_block, tree);
173 static tree find_case_label_for_value (gimple, tree);
174
175 void
176 init_empty_tree_cfg_for_function (struct function *fn)
177 {
178 /* Initialize the basic block array. */
179 init_flow (fn);
180 profile_status_for_fn (fn) = PROFILE_ABSENT;
181 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
182 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
183 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
184 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
185 initial_cfg_capacity);
186
187 /* Build a mapping of labels to their associated blocks. */
188 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
189 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
190 initial_cfg_capacity);
191
192 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
193 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
194
195 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
196 = EXIT_BLOCK_PTR_FOR_FN (fn);
197 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
198 = ENTRY_BLOCK_PTR_FOR_FN (fn);
199 }
200
201 void
202 init_empty_tree_cfg (void)
203 {
204 init_empty_tree_cfg_for_function (cfun);
205 }
206
207 /*---------------------------------------------------------------------------
208 Create basic blocks
209 ---------------------------------------------------------------------------*/
210
211 /* Entry point to the CFG builder for trees. SEQ is the sequence of
212 statements to be added to the flowgraph. */
213
214 static void
215 build_gimple_cfg (gimple_seq seq)
216 {
217 /* Register specific gimple functions. */
218 gimple_register_cfg_hooks ();
219
220 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
221
222 init_empty_tree_cfg ();
223
224 make_blocks (seq);
225
226 /* Make sure there is always at least one block, even if it's empty. */
227 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
228 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
229
230 /* Adjust the size of the array. */
231 if (basic_block_info_for_fn (cfun)->length ()
232 < (size_t) n_basic_blocks_for_fn (cfun))
233 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
234 n_basic_blocks_for_fn (cfun));
235
236 /* To speed up statement iterator walks, we first purge dead labels. */
237 cleanup_dead_labels ();
238
239 /* Group case nodes to reduce the number of edges.
240 We do this after cleaning up dead labels because otherwise we miss
241 a lot of obvious case merging opportunities. */
242 group_case_labels ();
243
244 /* Create the edges of the flowgraph. */
245 discriminator_per_locus.create (13);
246 make_edges ();
247 assign_discriminators ();
248 cleanup_dead_labels ();
249 discriminator_per_locus.dispose ();
250 }
251
252
253 /* Search for ANNOTATE call with annot_expr_ivdep_kind; if found, remove
254 it and set loop->safelen to INT_MAX. We assume that the annotation
255 comes immediately before the condition. */
256
257 static void
258 replace_loop_annotate ()
259 {
260 struct loop *loop;
261 basic_block bb;
262 gimple_stmt_iterator gsi;
263 gimple stmt;
264
265 FOR_EACH_LOOP (loop, 0)
266 {
267 gsi = gsi_last_bb (loop->header);
268 stmt = gsi_stmt (gsi);
269 if (stmt && gimple_code (stmt) == GIMPLE_COND)
270 {
271 gsi_prev_nondebug (&gsi);
272 if (gsi_end_p (gsi))
273 continue;
274 stmt = gsi_stmt (gsi);
275 if (gimple_code (stmt) != GIMPLE_CALL)
276 continue;
277 if (!gimple_call_internal_p (stmt)
278 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
279 continue;
280 if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
281 != annot_expr_ivdep_kind)
282 continue;
283 stmt = gimple_build_assign (gimple_call_lhs (stmt),
284 gimple_call_arg (stmt, 0));
285 gsi_replace (&gsi, stmt, true);
286 loop->safelen = INT_MAX;
287 }
288 }
289
290 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
291 FOR_EACH_BB_FN (bb, cfun)
292 {
293 gsi = gsi_last_bb (bb);
294 stmt = gsi_stmt (gsi);
295 if (stmt && gimple_code (stmt) == GIMPLE_COND)
296 gsi_prev_nondebug (&gsi);
297 if (gsi_end_p (gsi))
298 continue;
299 stmt = gsi_stmt (gsi);
300 if (gimple_code (stmt) != GIMPLE_CALL)
301 continue;
302 if (!gimple_call_internal_p (stmt)
303 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
304 continue;
305 if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
306 != annot_expr_ivdep_kind)
307 continue;
308 warning_at (gimple_location (stmt), 0, "ignoring %<GCC ivdep%> "
309 "annotation");
310 stmt = gimple_build_assign (gimple_call_lhs (stmt),
311 gimple_call_arg (stmt, 0));
312 gsi_replace (&gsi, stmt, true);
313 }
314 }
315
316
317 static unsigned int
318 execute_build_cfg (void)
319 {
320 gimple_seq body = gimple_body (current_function_decl);
321
322 build_gimple_cfg (body);
323 gimple_set_body (current_function_decl, NULL);
324 if (dump_file && (dump_flags & TDF_DETAILS))
325 {
326 fprintf (dump_file, "Scope blocks:\n");
327 dump_scope_blocks (dump_file, dump_flags);
328 }
329 cleanup_tree_cfg ();
330 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
331 replace_loop_annotate ();
332 return 0;
333 }
334
335 namespace {
336
337 const pass_data pass_data_build_cfg =
338 {
339 GIMPLE_PASS, /* type */
340 "cfg", /* name */
341 OPTGROUP_NONE, /* optinfo_flags */
342 false, /* has_gate */
343 true, /* has_execute */
344 TV_TREE_CFG, /* tv_id */
345 PROP_gimple_leh, /* properties_required */
346 ( PROP_cfg | PROP_loops ), /* properties_provided */
347 0, /* properties_destroyed */
348 0, /* todo_flags_start */
349 TODO_verify_stmts, /* todo_flags_finish */
350 };
351
352 class pass_build_cfg : public gimple_opt_pass
353 {
354 public:
355 pass_build_cfg (gcc::context *ctxt)
356 : gimple_opt_pass (pass_data_build_cfg, ctxt)
357 {}
358
359 /* opt_pass methods: */
360 unsigned int execute () { return execute_build_cfg (); }
361
362 }; // class pass_build_cfg
363
364 } // anon namespace
365
366 gimple_opt_pass *
367 make_pass_build_cfg (gcc::context *ctxt)
368 {
369 return new pass_build_cfg (ctxt);
370 }
371
372
373 /* Return true if T is a computed goto. */
374
375 bool
376 computed_goto_p (gimple t)
377 {
378 return (gimple_code (t) == GIMPLE_GOTO
379 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
380 }
381
382 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
383 the other edge points to a bb with just __builtin_unreachable ().
384 I.e. return true for C->M edge in:
385 <bb C>:
386 ...
387 if (something)
388 goto <bb N>;
389 else
390 goto <bb M>;
391 <bb N>:
392 __builtin_unreachable ();
393 <bb M>: */
394
395 bool
396 assert_unreachable_fallthru_edge_p (edge e)
397 {
398 basic_block pred_bb = e->src;
399 gimple last = last_stmt (pred_bb);
400 if (last && gimple_code (last) == GIMPLE_COND)
401 {
402 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
403 if (other_bb == e->dest)
404 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
405 if (EDGE_COUNT (other_bb->succs) == 0)
406 {
407 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
408 gimple stmt;
409
410 if (gsi_end_p (gsi))
411 return false;
412 stmt = gsi_stmt (gsi);
413 if (is_gimple_debug (stmt))
414 {
415 gsi_next_nondebug (&gsi);
416 if (gsi_end_p (gsi))
417 return false;
418 stmt = gsi_stmt (gsi);
419 }
420 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
421 }
422 }
423 return false;
424 }
425
426
427 /* Build a flowgraph for the sequence of stmts SEQ. */
428
429 static void
430 make_blocks (gimple_seq seq)
431 {
432 gimple_stmt_iterator i = gsi_start (seq);
433 gimple stmt = NULL;
434 bool start_new_block = true;
435 bool first_stmt_of_seq = true;
436 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
437
438 while (!gsi_end_p (i))
439 {
440 gimple prev_stmt;
441
442 prev_stmt = stmt;
443 stmt = gsi_stmt (i);
444
445 /* If the statement starts a new basic block or if we have determined
446 in a previous pass that we need to create a new block for STMT, do
447 so now. */
448 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
449 {
450 if (!first_stmt_of_seq)
451 gsi_split_seq_before (&i, &seq);
452 bb = create_basic_block (seq, NULL, bb);
453 start_new_block = false;
454 }
455
456 /* Now add STMT to BB and create the subgraphs for special statement
457 codes. */
458 gimple_set_bb (stmt, bb);
459
460 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
461 next iteration. */
462 if (stmt_ends_bb_p (stmt))
463 {
464 /* If the stmt can make abnormal goto use a new temporary
465 for the assignment to the LHS. This makes sure the old value
466 of the LHS is available on the abnormal edge. Otherwise
467 we will end up with overlapping life-ranges for abnormal
468 SSA names. */
469 if (gimple_has_lhs (stmt)
470 && stmt_can_make_abnormal_goto (stmt)
471 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
472 {
473 tree lhs = gimple_get_lhs (stmt);
474 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
475 gimple s = gimple_build_assign (lhs, tmp);
476 gimple_set_location (s, gimple_location (stmt));
477 gimple_set_block (s, gimple_block (stmt));
478 gimple_set_lhs (stmt, tmp);
479 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
480 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
481 DECL_GIMPLE_REG_P (tmp) = 1;
482 gsi_insert_after (&i, s, GSI_SAME_STMT);
483 }
484 start_new_block = true;
485 }
486
487 gsi_next (&i);
488 first_stmt_of_seq = false;
489 }
490 }
491
492
493 /* Create and return a new empty basic block after bb AFTER. */
494
495 static basic_block
496 create_bb (void *h, void *e, basic_block after)
497 {
498 basic_block bb;
499
500 gcc_assert (!e);
501
502 /* Create and initialize a new basic block. Since alloc_block uses
503 GC allocation that clears memory to allocate a basic block, we do
504 not have to clear the newly allocated basic block here. */
505 bb = alloc_block ();
506
507 bb->index = last_basic_block_for_fn (cfun);
508 bb->flags = BB_NEW;
509 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
510
511 /* Add the new block to the linked list of blocks. */
512 link_block (bb, after);
513
514 /* Grow the basic block array if needed. */
515 if ((size_t) last_basic_block_for_fn (cfun)
516 == basic_block_info_for_fn (cfun)->length ())
517 {
518 size_t new_size =
519 (last_basic_block_for_fn (cfun)
520 + (last_basic_block_for_fn (cfun) + 3) / 4);
521 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
522 }
523
524 /* Add the newly created block to the array. */
525 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
526
527 n_basic_blocks_for_fn (cfun)++;
528 last_basic_block_for_fn (cfun)++;
529
530 return bb;
531 }
532
533
534 /*---------------------------------------------------------------------------
535 Edge creation
536 ---------------------------------------------------------------------------*/
537
538 /* Fold COND_EXPR_COND of each COND_EXPR. */
539
540 void
541 fold_cond_expr_cond (void)
542 {
543 basic_block bb;
544
545 FOR_EACH_BB_FN (bb, cfun)
546 {
547 gimple stmt = last_stmt (bb);
548
549 if (stmt && gimple_code (stmt) == GIMPLE_COND)
550 {
551 location_t loc = gimple_location (stmt);
552 tree cond;
553 bool zerop, onep;
554
555 fold_defer_overflow_warnings ();
556 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
557 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
558 if (cond)
559 {
560 zerop = integer_zerop (cond);
561 onep = integer_onep (cond);
562 }
563 else
564 zerop = onep = false;
565
566 fold_undefer_overflow_warnings (zerop || onep,
567 stmt,
568 WARN_STRICT_OVERFLOW_CONDITIONAL);
569 if (zerop)
570 gimple_cond_make_false (stmt);
571 else if (onep)
572 gimple_cond_make_true (stmt);
573 }
574 }
575 }
576
577 /* If basic block BB has an abnormal edge to a basic block
578 containing IFN_ABNORMAL_DISPATCHER internal call, return
579 that the dispatcher's basic block, otherwise return NULL. */
580
581 basic_block
582 get_abnormal_succ_dispatcher (basic_block bb)
583 {
584 edge e;
585 edge_iterator ei;
586
587 FOR_EACH_EDGE (e, ei, bb->succs)
588 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
589 {
590 gimple_stmt_iterator gsi
591 = gsi_start_nondebug_after_labels_bb (e->dest);
592 gimple g = gsi_stmt (gsi);
593 if (g
594 && is_gimple_call (g)
595 && gimple_call_internal_p (g)
596 && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
597 return e->dest;
598 }
599 return NULL;
600 }
601
602 /* Helper function for make_edges. Create a basic block with
603 with ABNORMAL_DISPATCHER internal call in it if needed, and
604 create abnormal edges from BBS to it and from it to FOR_BB
605 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
606
607 static void
608 handle_abnormal_edges (basic_block *dispatcher_bbs,
609 basic_block for_bb, int *bb_to_omp_idx,
610 auto_vec<basic_block> *bbs, bool computed_goto)
611 {
612 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
613 unsigned int idx = 0;
614 basic_block bb;
615 bool inner = false;
616
617 if (bb_to_omp_idx)
618 {
619 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
620 if (bb_to_omp_idx[for_bb->index] != 0)
621 inner = true;
622 }
623
624 /* If the dispatcher has been created already, then there are basic
625 blocks with abnormal edges to it, so just make a new edge to
626 for_bb. */
627 if (*dispatcher == NULL)
628 {
629 /* Check if there are any basic blocks that need to have
630 abnormal edges to this dispatcher. If there are none, return
631 early. */
632 if (bb_to_omp_idx == NULL)
633 {
634 if (bbs->is_empty ())
635 return;
636 }
637 else
638 {
639 FOR_EACH_VEC_ELT (*bbs, idx, bb)
640 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
641 break;
642 if (bb == NULL)
643 return;
644 }
645
646 /* Create the dispatcher bb. */
647 *dispatcher = create_basic_block (NULL, NULL, for_bb);
648 if (computed_goto)
649 {
650 /* Factor computed gotos into a common computed goto site. Also
651 record the location of that site so that we can un-factor the
652 gotos after we have converted back to normal form. */
653 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
654
655 /* Create the destination of the factored goto. Each original
656 computed goto will put its desired destination into this
657 variable and jump to the label we create immediately below. */
658 tree var = create_tmp_var (ptr_type_node, "gotovar");
659
660 /* Build a label for the new block which will contain the
661 factored computed goto. */
662 tree factored_label_decl
663 = create_artificial_label (UNKNOWN_LOCATION);
664 gimple factored_computed_goto_label
665 = gimple_build_label (factored_label_decl);
666 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
667
668 /* Build our new computed goto. */
669 gimple factored_computed_goto = gimple_build_goto (var);
670 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
671
672 FOR_EACH_VEC_ELT (*bbs, idx, bb)
673 {
674 if (bb_to_omp_idx
675 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
676 continue;
677
678 gsi = gsi_last_bb (bb);
679 gimple last = gsi_stmt (gsi);
680
681 gcc_assert (computed_goto_p (last));
682
683 /* Copy the original computed goto's destination into VAR. */
684 gimple assignment
685 = gimple_build_assign (var, gimple_goto_dest (last));
686 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
687
688 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
689 e->goto_locus = gimple_location (last);
690 gsi_remove (&gsi, true);
691 }
692 }
693 else
694 {
695 tree arg = inner ? boolean_true_node : boolean_false_node;
696 gimple g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
697 1, arg);
698 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
699 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
700
701 /* Create predecessor edges of the dispatcher. */
702 FOR_EACH_VEC_ELT (*bbs, idx, bb)
703 {
704 if (bb_to_omp_idx
705 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
706 continue;
707 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
708 }
709 }
710 }
711
712 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
713 }
714
715 /* Join all the blocks in the flowgraph. */
716
717 static void
718 make_edges (void)
719 {
720 basic_block bb;
721 struct omp_region *cur_region = NULL;
722 auto_vec<basic_block> ab_edge_goto;
723 auto_vec<basic_block> ab_edge_call;
724 int *bb_to_omp_idx = NULL;
725 int cur_omp_region_idx = 0;
726
727 /* Create an edge from entry to the first block with executable
728 statements in it. */
729 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
730 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
731 EDGE_FALLTHRU);
732
733 /* Traverse the basic block array placing edges. */
734 FOR_EACH_BB_FN (bb, cfun)
735 {
736 gimple last = last_stmt (bb);
737 bool fallthru;
738
739 if (bb_to_omp_idx)
740 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
741
742 if (last)
743 {
744 enum gimple_code code = gimple_code (last);
745 switch (code)
746 {
747 case GIMPLE_GOTO:
748 if (make_goto_expr_edges (bb))
749 ab_edge_goto.safe_push (bb);
750 fallthru = false;
751 break;
752 case GIMPLE_RETURN:
753 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
754 fallthru = false;
755 break;
756 case GIMPLE_COND:
757 make_cond_expr_edges (bb);
758 fallthru = false;
759 break;
760 case GIMPLE_SWITCH:
761 make_gimple_switch_edges (bb);
762 fallthru = false;
763 break;
764 case GIMPLE_RESX:
765 make_eh_edges (last);
766 fallthru = false;
767 break;
768 case GIMPLE_EH_DISPATCH:
769 fallthru = make_eh_dispatch_edges (last);
770 break;
771
772 case GIMPLE_CALL:
773 /* If this function receives a nonlocal goto, then we need to
774 make edges from this call site to all the nonlocal goto
775 handlers. */
776 if (stmt_can_make_abnormal_goto (last))
777 ab_edge_call.safe_push (bb);
778
779 /* If this statement has reachable exception handlers, then
780 create abnormal edges to them. */
781 make_eh_edges (last);
782
783 /* BUILTIN_RETURN is really a return statement. */
784 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
785 {
786 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
787 fallthru = false;
788 }
789 /* Some calls are known not to return. */
790 else
791 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
792 break;
793
794 case GIMPLE_ASSIGN:
795 /* A GIMPLE_ASSIGN may throw internally and thus be considered
796 control-altering. */
797 if (is_ctrl_altering_stmt (last))
798 make_eh_edges (last);
799 fallthru = true;
800 break;
801
802 case GIMPLE_ASM:
803 make_gimple_asm_edges (bb);
804 fallthru = true;
805 break;
806
807 CASE_GIMPLE_OMP:
808 fallthru = make_gimple_omp_edges (bb, &cur_region,
809 &cur_omp_region_idx);
810 if (cur_region && bb_to_omp_idx == NULL)
811 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
812 break;
813
814 case GIMPLE_TRANSACTION:
815 {
816 tree abort_label = gimple_transaction_label (last);
817 if (abort_label)
818 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
819 fallthru = true;
820 }
821 break;
822
823 default:
824 gcc_assert (!stmt_ends_bb_p (last));
825 fallthru = true;
826 }
827 }
828 else
829 fallthru = true;
830
831 if (fallthru)
832 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
833 }
834
835 /* Computed gotos are hell to deal with, especially if there are
836 lots of them with a large number of destinations. So we factor
837 them to a common computed goto location before we build the
838 edge list. After we convert back to normal form, we will un-factor
839 the computed gotos since factoring introduces an unwanted jump.
840 For non-local gotos and abnormal edges from calls to calls that return
841 twice or forced labels, factor the abnormal edges too, by having all
842 abnormal edges from the calls go to a common artificial basic block
843 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
844 basic block to all forced labels and calls returning twice.
845 We do this per-OpenMP structured block, because those regions
846 are guaranteed to be single entry single exit by the standard,
847 so it is not allowed to enter or exit such regions abnormally this way,
848 thus all computed gotos, non-local gotos and setjmp/longjmp calls
849 must not transfer control across SESE region boundaries. */
850 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
851 {
852 gimple_stmt_iterator gsi;
853 basic_block dispatcher_bb_array[2] = { NULL, NULL };
854 basic_block *dispatcher_bbs = dispatcher_bb_array;
855 int count = n_basic_blocks_for_fn (cfun);
856
857 if (bb_to_omp_idx)
858 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
859
860 FOR_EACH_BB_FN (bb, cfun)
861 {
862 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
863 {
864 gimple label_stmt = gsi_stmt (gsi);
865 tree target;
866
867 if (gimple_code (label_stmt) != GIMPLE_LABEL)
868 break;
869
870 target = gimple_label_label (label_stmt);
871
872 /* Make an edge to every label block that has been marked as a
873 potential target for a computed goto or a non-local goto. */
874 if (FORCED_LABEL (target))
875 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
876 &ab_edge_goto, true);
877 if (DECL_NONLOCAL (target))
878 {
879 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
880 &ab_edge_call, false);
881 break;
882 }
883 }
884
885 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
886 gsi_next_nondebug (&gsi);
887 if (!gsi_end_p (gsi))
888 {
889 /* Make an edge to every setjmp-like call. */
890 gimple call_stmt = gsi_stmt (gsi);
891 if (is_gimple_call (call_stmt)
892 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
893 || gimple_call_builtin_p (call_stmt,
894 BUILT_IN_SETJMP_RECEIVER)))
895 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
896 &ab_edge_call, false);
897 }
898 }
899
900 if (bb_to_omp_idx)
901 XDELETE (dispatcher_bbs);
902 }
903
904 XDELETE (bb_to_omp_idx);
905
906 free_omp_regions ();
907
908 /* Fold COND_EXPR_COND of each COND_EXPR. */
909 fold_cond_expr_cond ();
910 }
911
912 /* Find the next available discriminator value for LOCUS. The
913 discriminator distinguishes among several basic blocks that
914 share a common locus, allowing for more accurate sample-based
915 profiling. */
916
917 static int
918 next_discriminator_for_locus (location_t locus)
919 {
920 struct locus_discrim_map item;
921 struct locus_discrim_map **slot;
922
923 item.locus = locus;
924 item.discriminator = 0;
925 slot = discriminator_per_locus.find_slot_with_hash (
926 &item, LOCATION_LINE (locus), INSERT);
927 gcc_assert (slot);
928 if (*slot == HTAB_EMPTY_ENTRY)
929 {
930 *slot = XNEW (struct locus_discrim_map);
931 gcc_assert (*slot);
932 (*slot)->locus = locus;
933 (*slot)->discriminator = 0;
934 }
935 (*slot)->discriminator++;
936 return (*slot)->discriminator;
937 }
938
939 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
940
941 static bool
942 same_line_p (location_t locus1, location_t locus2)
943 {
944 expanded_location from, to;
945
946 if (locus1 == locus2)
947 return true;
948
949 from = expand_location (locus1);
950 to = expand_location (locus2);
951
952 if (from.line != to.line)
953 return false;
954 if (from.file == to.file)
955 return true;
956 return (from.file != NULL
957 && to.file != NULL
958 && filename_cmp (from.file, to.file) == 0);
959 }
960
961 /* Assign discriminators to each basic block. */
962
963 static void
964 assign_discriminators (void)
965 {
966 basic_block bb;
967
968 FOR_EACH_BB_FN (bb, cfun)
969 {
970 edge e;
971 edge_iterator ei;
972 gimple last = last_stmt (bb);
973 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
974
975 if (locus == UNKNOWN_LOCATION)
976 continue;
977
978 FOR_EACH_EDGE (e, ei, bb->succs)
979 {
980 gimple first = first_non_label_stmt (e->dest);
981 gimple last = last_stmt (e->dest);
982 if ((first && same_line_p (locus, gimple_location (first)))
983 || (last && same_line_p (locus, gimple_location (last))))
984 {
985 if (e->dest->discriminator != 0 && bb->discriminator == 0)
986 bb->discriminator = next_discriminator_for_locus (locus);
987 else
988 e->dest->discriminator = next_discriminator_for_locus (locus);
989 }
990 }
991 }
992 }
993
994 /* Create the edges for a GIMPLE_COND starting at block BB. */
995
996 static void
997 make_cond_expr_edges (basic_block bb)
998 {
999 gimple entry = last_stmt (bb);
1000 gimple then_stmt, else_stmt;
1001 basic_block then_bb, else_bb;
1002 tree then_label, else_label;
1003 edge e;
1004
1005 gcc_assert (entry);
1006 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1007
1008 /* Entry basic blocks for each component. */
1009 then_label = gimple_cond_true_label (entry);
1010 else_label = gimple_cond_false_label (entry);
1011 then_bb = label_to_block (then_label);
1012 else_bb = label_to_block (else_label);
1013 then_stmt = first_stmt (then_bb);
1014 else_stmt = first_stmt (else_bb);
1015
1016 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1017 e->goto_locus = gimple_location (then_stmt);
1018 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1019 if (e)
1020 e->goto_locus = gimple_location (else_stmt);
1021
1022 /* We do not need the labels anymore. */
1023 gimple_cond_set_true_label (entry, NULL_TREE);
1024 gimple_cond_set_false_label (entry, NULL_TREE);
1025 }
1026
1027
1028 /* Called for each element in the hash table (P) as we delete the
1029 edge to cases hash table.
1030
1031 Clear all the TREE_CHAINs to prevent problems with copying of
1032 SWITCH_EXPRs and structure sharing rules, then free the hash table
1033 element. */
1034
1035 static bool
1036 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
1037 void *data ATTRIBUTE_UNUSED)
1038 {
1039 tree t, next;
1040
1041 for (t = (tree) *value; t; t = next)
1042 {
1043 next = CASE_CHAIN (t);
1044 CASE_CHAIN (t) = NULL;
1045 }
1046
1047 *value = NULL;
1048 return true;
1049 }
1050
1051 /* Start recording information mapping edges to case labels. */
1052
1053 void
1054 start_recording_case_labels (void)
1055 {
1056 gcc_assert (edge_to_cases == NULL);
1057 edge_to_cases = pointer_map_create ();
1058 touched_switch_bbs = BITMAP_ALLOC (NULL);
1059 }
1060
1061 /* Return nonzero if we are recording information for case labels. */
1062
1063 static bool
1064 recording_case_labels_p (void)
1065 {
1066 return (edge_to_cases != NULL);
1067 }
1068
1069 /* Stop recording information mapping edges to case labels and
1070 remove any information we have recorded. */
1071 void
1072 end_recording_case_labels (void)
1073 {
1074 bitmap_iterator bi;
1075 unsigned i;
1076 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
1077 pointer_map_destroy (edge_to_cases);
1078 edge_to_cases = NULL;
1079 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1080 {
1081 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1082 if (bb)
1083 {
1084 gimple stmt = last_stmt (bb);
1085 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1086 group_case_labels_stmt (stmt);
1087 }
1088 }
1089 BITMAP_FREE (touched_switch_bbs);
1090 }
1091
1092 /* If we are inside a {start,end}_recording_cases block, then return
1093 a chain of CASE_LABEL_EXPRs from T which reference E.
1094
1095 Otherwise return NULL. */
1096
1097 static tree
1098 get_cases_for_edge (edge e, gimple t)
1099 {
1100 void **slot;
1101 size_t i, n;
1102
1103 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1104 chains available. Return NULL so the caller can detect this case. */
1105 if (!recording_case_labels_p ())
1106 return NULL;
1107
1108 slot = pointer_map_contains (edge_to_cases, e);
1109 if (slot)
1110 return (tree) *slot;
1111
1112 /* If we did not find E in the hash table, then this must be the first
1113 time we have been queried for information about E & T. Add all the
1114 elements from T to the hash table then perform the query again. */
1115
1116 n = gimple_switch_num_labels (t);
1117 for (i = 0; i < n; i++)
1118 {
1119 tree elt = gimple_switch_label (t, i);
1120 tree lab = CASE_LABEL (elt);
1121 basic_block label_bb = label_to_block (lab);
1122 edge this_edge = find_edge (e->src, label_bb);
1123
1124 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1125 a new chain. */
1126 slot = pointer_map_insert (edge_to_cases, this_edge);
1127 CASE_CHAIN (elt) = (tree) *slot;
1128 *slot = elt;
1129 }
1130
1131 return (tree) *pointer_map_contains (edge_to_cases, e);
1132 }
1133
1134 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1135
1136 static void
1137 make_gimple_switch_edges (basic_block bb)
1138 {
1139 gimple entry = last_stmt (bb);
1140 size_t i, n;
1141
1142 n = gimple_switch_num_labels (entry);
1143
1144 for (i = 0; i < n; ++i)
1145 {
1146 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1147 basic_block label_bb = label_to_block (lab);
1148 make_edge (bb, label_bb, 0);
1149 }
1150 }
1151
1152
1153 /* Return the basic block holding label DEST. */
1154
1155 basic_block
1156 label_to_block_fn (struct function *ifun, tree dest)
1157 {
1158 int uid = LABEL_DECL_UID (dest);
1159
1160 /* We would die hard when faced by an undefined label. Emit a label to
1161 the very first basic block. This will hopefully make even the dataflow
1162 and undefined variable warnings quite right. */
1163 if (seen_error () && uid < 0)
1164 {
1165 gimple_stmt_iterator gsi =
1166 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1167 gimple stmt;
1168
1169 stmt = gimple_build_label (dest);
1170 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1171 uid = LABEL_DECL_UID (dest);
1172 }
1173 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1174 return NULL;
1175 return (*ifun->cfg->x_label_to_block_map)[uid];
1176 }
1177
1178 /* Create edges for a goto statement at block BB. Returns true
1179 if abnormal edges should be created. */
1180
1181 static bool
1182 make_goto_expr_edges (basic_block bb)
1183 {
1184 gimple_stmt_iterator last = gsi_last_bb (bb);
1185 gimple goto_t = gsi_stmt (last);
1186
1187 /* A simple GOTO creates normal edges. */
1188 if (simple_goto_p (goto_t))
1189 {
1190 tree dest = gimple_goto_dest (goto_t);
1191 basic_block label_bb = label_to_block (dest);
1192 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1193 e->goto_locus = gimple_location (goto_t);
1194 gsi_remove (&last, true);
1195 return false;
1196 }
1197
1198 /* A computed GOTO creates abnormal edges. */
1199 return true;
1200 }
1201
1202 /* Create edges for an asm statement with labels at block BB. */
1203
1204 static void
1205 make_gimple_asm_edges (basic_block bb)
1206 {
1207 gimple stmt = last_stmt (bb);
1208 int i, n = gimple_asm_nlabels (stmt);
1209
1210 for (i = 0; i < n; ++i)
1211 {
1212 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1213 basic_block label_bb = label_to_block (label);
1214 make_edge (bb, label_bb, 0);
1215 }
1216 }
1217
1218 /*---------------------------------------------------------------------------
1219 Flowgraph analysis
1220 ---------------------------------------------------------------------------*/
1221
1222 /* Cleanup useless labels in basic blocks. This is something we wish
1223 to do early because it allows us to group case labels before creating
1224 the edges for the CFG, and it speeds up block statement iterators in
1225 all passes later on.
1226 We rerun this pass after CFG is created, to get rid of the labels that
1227 are no longer referenced. After then we do not run it any more, since
1228 (almost) no new labels should be created. */
1229
1230 /* A map from basic block index to the leading label of that block. */
1231 static struct label_record
1232 {
1233 /* The label. */
1234 tree label;
1235
1236 /* True if the label is referenced from somewhere. */
1237 bool used;
1238 } *label_for_bb;
1239
1240 /* Given LABEL return the first label in the same basic block. */
1241
1242 static tree
1243 main_block_label (tree label)
1244 {
1245 basic_block bb = label_to_block (label);
1246 tree main_label = label_for_bb[bb->index].label;
1247
1248 /* label_to_block possibly inserted undefined label into the chain. */
1249 if (!main_label)
1250 {
1251 label_for_bb[bb->index].label = label;
1252 main_label = label;
1253 }
1254
1255 label_for_bb[bb->index].used = true;
1256 return main_label;
1257 }
1258
1259 /* Clean up redundant labels within the exception tree. */
1260
1261 static void
1262 cleanup_dead_labels_eh (void)
1263 {
1264 eh_landing_pad lp;
1265 eh_region r;
1266 tree lab;
1267 int i;
1268
1269 if (cfun->eh == NULL)
1270 return;
1271
1272 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1273 if (lp && lp->post_landing_pad)
1274 {
1275 lab = main_block_label (lp->post_landing_pad);
1276 if (lab != lp->post_landing_pad)
1277 {
1278 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1279 EH_LANDING_PAD_NR (lab) = lp->index;
1280 }
1281 }
1282
1283 FOR_ALL_EH_REGION (r)
1284 switch (r->type)
1285 {
1286 case ERT_CLEANUP:
1287 case ERT_MUST_NOT_THROW:
1288 break;
1289
1290 case ERT_TRY:
1291 {
1292 eh_catch c;
1293 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1294 {
1295 lab = c->label;
1296 if (lab)
1297 c->label = main_block_label (lab);
1298 }
1299 }
1300 break;
1301
1302 case ERT_ALLOWED_EXCEPTIONS:
1303 lab = r->u.allowed.label;
1304 if (lab)
1305 r->u.allowed.label = main_block_label (lab);
1306 break;
1307 }
1308 }
1309
1310
1311 /* Cleanup redundant labels. This is a three-step process:
1312 1) Find the leading label for each block.
1313 2) Redirect all references to labels to the leading labels.
1314 3) Cleanup all useless labels. */
1315
1316 void
1317 cleanup_dead_labels (void)
1318 {
1319 basic_block bb;
1320 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1321
1322 /* Find a suitable label for each block. We use the first user-defined
1323 label if there is one, or otherwise just the first label we see. */
1324 FOR_EACH_BB_FN (bb, cfun)
1325 {
1326 gimple_stmt_iterator i;
1327
1328 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1329 {
1330 tree label;
1331 gimple stmt = gsi_stmt (i);
1332
1333 if (gimple_code (stmt) != GIMPLE_LABEL)
1334 break;
1335
1336 label = gimple_label_label (stmt);
1337
1338 /* If we have not yet seen a label for the current block,
1339 remember this one and see if there are more labels. */
1340 if (!label_for_bb[bb->index].label)
1341 {
1342 label_for_bb[bb->index].label = label;
1343 continue;
1344 }
1345
1346 /* If we did see a label for the current block already, but it
1347 is an artificially created label, replace it if the current
1348 label is a user defined label. */
1349 if (!DECL_ARTIFICIAL (label)
1350 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1351 {
1352 label_for_bb[bb->index].label = label;
1353 break;
1354 }
1355 }
1356 }
1357
1358 /* Now redirect all jumps/branches to the selected label.
1359 First do so for each block ending in a control statement. */
1360 FOR_EACH_BB_FN (bb, cfun)
1361 {
1362 gimple stmt = last_stmt (bb);
1363 tree label, new_label;
1364
1365 if (!stmt)
1366 continue;
1367
1368 switch (gimple_code (stmt))
1369 {
1370 case GIMPLE_COND:
1371 label = gimple_cond_true_label (stmt);
1372 if (label)
1373 {
1374 new_label = main_block_label (label);
1375 if (new_label != label)
1376 gimple_cond_set_true_label (stmt, new_label);
1377 }
1378
1379 label = gimple_cond_false_label (stmt);
1380 if (label)
1381 {
1382 new_label = main_block_label (label);
1383 if (new_label != label)
1384 gimple_cond_set_false_label (stmt, new_label);
1385 }
1386 break;
1387
1388 case GIMPLE_SWITCH:
1389 {
1390 size_t i, n = gimple_switch_num_labels (stmt);
1391
1392 /* Replace all destination labels. */
1393 for (i = 0; i < n; ++i)
1394 {
1395 tree case_label = gimple_switch_label (stmt, i);
1396 label = CASE_LABEL (case_label);
1397 new_label = main_block_label (label);
1398 if (new_label != label)
1399 CASE_LABEL (case_label) = new_label;
1400 }
1401 break;
1402 }
1403
1404 case GIMPLE_ASM:
1405 {
1406 int i, n = gimple_asm_nlabels (stmt);
1407
1408 for (i = 0; i < n; ++i)
1409 {
1410 tree cons = gimple_asm_label_op (stmt, i);
1411 tree label = main_block_label (TREE_VALUE (cons));
1412 TREE_VALUE (cons) = label;
1413 }
1414 break;
1415 }
1416
1417 /* We have to handle gotos until they're removed, and we don't
1418 remove them until after we've created the CFG edges. */
1419 case GIMPLE_GOTO:
1420 if (!computed_goto_p (stmt))
1421 {
1422 label = gimple_goto_dest (stmt);
1423 new_label = main_block_label (label);
1424 if (new_label != label)
1425 gimple_goto_set_dest (stmt, new_label);
1426 }
1427 break;
1428
1429 case GIMPLE_TRANSACTION:
1430 {
1431 tree label = gimple_transaction_label (stmt);
1432 if (label)
1433 {
1434 tree new_label = main_block_label (label);
1435 if (new_label != label)
1436 gimple_transaction_set_label (stmt, new_label);
1437 }
1438 }
1439 break;
1440
1441 default:
1442 break;
1443 }
1444 }
1445
1446 /* Do the same for the exception region tree labels. */
1447 cleanup_dead_labels_eh ();
1448
1449 /* Finally, purge dead labels. All user-defined labels and labels that
1450 can be the target of non-local gotos and labels which have their
1451 address taken are preserved. */
1452 FOR_EACH_BB_FN (bb, cfun)
1453 {
1454 gimple_stmt_iterator i;
1455 tree label_for_this_bb = label_for_bb[bb->index].label;
1456
1457 if (!label_for_this_bb)
1458 continue;
1459
1460 /* If the main label of the block is unused, we may still remove it. */
1461 if (!label_for_bb[bb->index].used)
1462 label_for_this_bb = NULL;
1463
1464 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1465 {
1466 tree label;
1467 gimple stmt = gsi_stmt (i);
1468
1469 if (gimple_code (stmt) != GIMPLE_LABEL)
1470 break;
1471
1472 label = gimple_label_label (stmt);
1473
1474 if (label == label_for_this_bb
1475 || !DECL_ARTIFICIAL (label)
1476 || DECL_NONLOCAL (label)
1477 || FORCED_LABEL (label))
1478 gsi_next (&i);
1479 else
1480 gsi_remove (&i, true);
1481 }
1482 }
1483
1484 free (label_for_bb);
1485 }
1486
1487 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1488 the ones jumping to the same label.
1489 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1490
1491 void
1492 group_case_labels_stmt (gimple stmt)
1493 {
1494 int old_size = gimple_switch_num_labels (stmt);
1495 int i, j, new_size = old_size;
1496 basic_block default_bb = NULL;
1497
1498 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1499
1500 /* Look for possible opportunities to merge cases. */
1501 i = 1;
1502 while (i < old_size)
1503 {
1504 tree base_case, base_high;
1505 basic_block base_bb;
1506
1507 base_case = gimple_switch_label (stmt, i);
1508
1509 gcc_assert (base_case);
1510 base_bb = label_to_block (CASE_LABEL (base_case));
1511
1512 /* Discard cases that have the same destination as the
1513 default case. */
1514 if (base_bb == default_bb)
1515 {
1516 gimple_switch_set_label (stmt, i, NULL_TREE);
1517 i++;
1518 new_size--;
1519 continue;
1520 }
1521
1522 base_high = CASE_HIGH (base_case)
1523 ? CASE_HIGH (base_case)
1524 : CASE_LOW (base_case);
1525 i++;
1526
1527 /* Try to merge case labels. Break out when we reach the end
1528 of the label vector or when we cannot merge the next case
1529 label with the current one. */
1530 while (i < old_size)
1531 {
1532 tree merge_case = gimple_switch_label (stmt, i);
1533 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1534 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1535
1536 /* Merge the cases if they jump to the same place,
1537 and their ranges are consecutive. */
1538 if (merge_bb == base_bb
1539 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1540 {
1541 base_high = CASE_HIGH (merge_case) ?
1542 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1543 CASE_HIGH (base_case) = base_high;
1544 gimple_switch_set_label (stmt, i, NULL_TREE);
1545 new_size--;
1546 i++;
1547 }
1548 else
1549 break;
1550 }
1551 }
1552
1553 /* Compress the case labels in the label vector, and adjust the
1554 length of the vector. */
1555 for (i = 0, j = 0; i < new_size; i++)
1556 {
1557 while (! gimple_switch_label (stmt, j))
1558 j++;
1559 gimple_switch_set_label (stmt, i,
1560 gimple_switch_label (stmt, j++));
1561 }
1562
1563 gcc_assert (new_size <= old_size);
1564 gimple_switch_set_num_labels (stmt, new_size);
1565 }
1566
1567 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1568 and scan the sorted vector of cases. Combine the ones jumping to the
1569 same label. */
1570
1571 void
1572 group_case_labels (void)
1573 {
1574 basic_block bb;
1575
1576 FOR_EACH_BB_FN (bb, cfun)
1577 {
1578 gimple stmt = last_stmt (bb);
1579 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1580 group_case_labels_stmt (stmt);
1581 }
1582 }
1583
1584 /* Checks whether we can merge block B into block A. */
1585
1586 static bool
1587 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1588 {
1589 gimple stmt;
1590 gimple_stmt_iterator gsi;
1591
1592 if (!single_succ_p (a))
1593 return false;
1594
1595 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1596 return false;
1597
1598 if (single_succ (a) != b)
1599 return false;
1600
1601 if (!single_pred_p (b))
1602 return false;
1603
1604 if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1605 return false;
1606
1607 /* If A ends by a statement causing exceptions or something similar, we
1608 cannot merge the blocks. */
1609 stmt = last_stmt (a);
1610 if (stmt && stmt_ends_bb_p (stmt))
1611 return false;
1612
1613 /* Do not allow a block with only a non-local label to be merged. */
1614 if (stmt
1615 && gimple_code (stmt) == GIMPLE_LABEL
1616 && DECL_NONLOCAL (gimple_label_label (stmt)))
1617 return false;
1618
1619 /* Examine the labels at the beginning of B. */
1620 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1621 {
1622 tree lab;
1623 stmt = gsi_stmt (gsi);
1624 if (gimple_code (stmt) != GIMPLE_LABEL)
1625 break;
1626 lab = gimple_label_label (stmt);
1627
1628 /* Do not remove user forced labels or for -O0 any user labels. */
1629 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1630 return false;
1631 }
1632
1633 /* Protect the loop latches. */
1634 if (current_loops && b->loop_father->latch == b)
1635 return false;
1636
1637 /* It must be possible to eliminate all phi nodes in B. If ssa form
1638 is not up-to-date and a name-mapping is registered, we cannot eliminate
1639 any phis. Symbols marked for renaming are never a problem though. */
1640 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1641 {
1642 gimple phi = gsi_stmt (gsi);
1643 /* Technically only new names matter. */
1644 if (name_registered_for_update_p (PHI_RESULT (phi)))
1645 return false;
1646 }
1647
1648 /* When not optimizing, don't merge if we'd lose goto_locus. */
1649 if (!optimize
1650 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1651 {
1652 location_t goto_locus = single_succ_edge (a)->goto_locus;
1653 gimple_stmt_iterator prev, next;
1654 prev = gsi_last_nondebug_bb (a);
1655 next = gsi_after_labels (b);
1656 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1657 gsi_next_nondebug (&next);
1658 if ((gsi_end_p (prev)
1659 || gimple_location (gsi_stmt (prev)) != goto_locus)
1660 && (gsi_end_p (next)
1661 || gimple_location (gsi_stmt (next)) != goto_locus))
1662 return false;
1663 }
1664
1665 return true;
1666 }
1667
1668 /* Replaces all uses of NAME by VAL. */
1669
1670 void
1671 replace_uses_by (tree name, tree val)
1672 {
1673 imm_use_iterator imm_iter;
1674 use_operand_p use;
1675 gimple stmt;
1676 edge e;
1677
1678 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1679 {
1680 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1681 {
1682 replace_exp (use, val);
1683
1684 if (gimple_code (stmt) == GIMPLE_PHI)
1685 {
1686 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1687 if (e->flags & EDGE_ABNORMAL)
1688 {
1689 /* This can only occur for virtual operands, since
1690 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1691 would prevent replacement. */
1692 gcc_checking_assert (virtual_operand_p (name));
1693 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1694 }
1695 }
1696 }
1697
1698 if (gimple_code (stmt) != GIMPLE_PHI)
1699 {
1700 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1701 gimple orig_stmt = stmt;
1702 size_t i;
1703
1704 /* Mark the block if we changed the last stmt in it. */
1705 if (cfgcleanup_altered_bbs
1706 && stmt_ends_bb_p (stmt))
1707 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1708
1709 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1710 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1711 only change sth from non-invariant to invariant, and only
1712 when propagating constants. */
1713 if (is_gimple_min_invariant (val))
1714 for (i = 0; i < gimple_num_ops (stmt); i++)
1715 {
1716 tree op = gimple_op (stmt, i);
1717 /* Operands may be empty here. For example, the labels
1718 of a GIMPLE_COND are nulled out following the creation
1719 of the corresponding CFG edges. */
1720 if (op && TREE_CODE (op) == ADDR_EXPR)
1721 recompute_tree_invariant_for_addr_expr (op);
1722 }
1723
1724 if (fold_stmt (&gsi))
1725 stmt = gsi_stmt (gsi);
1726
1727 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1728 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1729
1730 update_stmt (stmt);
1731 }
1732 }
1733
1734 gcc_checking_assert (has_zero_uses (name));
1735
1736 /* Also update the trees stored in loop structures. */
1737 if (current_loops)
1738 {
1739 struct loop *loop;
1740
1741 FOR_EACH_LOOP (loop, 0)
1742 {
1743 substitute_in_loop_info (loop, name, val);
1744 }
1745 }
1746 }
1747
1748 /* Merge block B into block A. */
1749
1750 static void
1751 gimple_merge_blocks (basic_block a, basic_block b)
1752 {
1753 gimple_stmt_iterator last, gsi, psi;
1754
1755 if (dump_file)
1756 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1757
1758 /* Remove all single-valued PHI nodes from block B of the form
1759 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1760 gsi = gsi_last_bb (a);
1761 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1762 {
1763 gimple phi = gsi_stmt (psi);
1764 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1765 gimple copy;
1766 bool may_replace_uses = (virtual_operand_p (def)
1767 || may_propagate_copy (def, use));
1768
1769 /* In case we maintain loop closed ssa form, do not propagate arguments
1770 of loop exit phi nodes. */
1771 if (current_loops
1772 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1773 && !virtual_operand_p (def)
1774 && TREE_CODE (use) == SSA_NAME
1775 && a->loop_father != b->loop_father)
1776 may_replace_uses = false;
1777
1778 if (!may_replace_uses)
1779 {
1780 gcc_assert (!virtual_operand_p (def));
1781
1782 /* Note that just emitting the copies is fine -- there is no problem
1783 with ordering of phi nodes. This is because A is the single
1784 predecessor of B, therefore results of the phi nodes cannot
1785 appear as arguments of the phi nodes. */
1786 copy = gimple_build_assign (def, use);
1787 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1788 remove_phi_node (&psi, false);
1789 }
1790 else
1791 {
1792 /* If we deal with a PHI for virtual operands, we can simply
1793 propagate these without fussing with folding or updating
1794 the stmt. */
1795 if (virtual_operand_p (def))
1796 {
1797 imm_use_iterator iter;
1798 use_operand_p use_p;
1799 gimple stmt;
1800
1801 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1802 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1803 SET_USE (use_p, use);
1804
1805 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1806 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1807 }
1808 else
1809 replace_uses_by (def, use);
1810
1811 remove_phi_node (&psi, true);
1812 }
1813 }
1814
1815 /* Ensure that B follows A. */
1816 move_block_after (b, a);
1817
1818 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1819 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1820
1821 /* Remove labels from B and set gimple_bb to A for other statements. */
1822 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1823 {
1824 gimple stmt = gsi_stmt (gsi);
1825 if (gimple_code (stmt) == GIMPLE_LABEL)
1826 {
1827 tree label = gimple_label_label (stmt);
1828 int lp_nr;
1829
1830 gsi_remove (&gsi, false);
1831
1832 /* Now that we can thread computed gotos, we might have
1833 a situation where we have a forced label in block B
1834 However, the label at the start of block B might still be
1835 used in other ways (think about the runtime checking for
1836 Fortran assigned gotos). So we can not just delete the
1837 label. Instead we move the label to the start of block A. */
1838 if (FORCED_LABEL (label))
1839 {
1840 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1841 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1842 }
1843 /* Other user labels keep around in a form of a debug stmt. */
1844 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1845 {
1846 gimple dbg = gimple_build_debug_bind (label,
1847 integer_zero_node,
1848 stmt);
1849 gimple_debug_bind_reset_value (dbg);
1850 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1851 }
1852
1853 lp_nr = EH_LANDING_PAD_NR (label);
1854 if (lp_nr)
1855 {
1856 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1857 lp->post_landing_pad = NULL;
1858 }
1859 }
1860 else
1861 {
1862 gimple_set_bb (stmt, a);
1863 gsi_next (&gsi);
1864 }
1865 }
1866
1867 /* Merge the sequences. */
1868 last = gsi_last_bb (a);
1869 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1870 set_bb_seq (b, NULL);
1871
1872 if (cfgcleanup_altered_bbs)
1873 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1874 }
1875
1876
1877 /* Return the one of two successors of BB that is not reachable by a
1878 complex edge, if there is one. Else, return BB. We use
1879 this in optimizations that use post-dominators for their heuristics,
1880 to catch the cases in C++ where function calls are involved. */
1881
1882 basic_block
1883 single_noncomplex_succ (basic_block bb)
1884 {
1885 edge e0, e1;
1886 if (EDGE_COUNT (bb->succs) != 2)
1887 return bb;
1888
1889 e0 = EDGE_SUCC (bb, 0);
1890 e1 = EDGE_SUCC (bb, 1);
1891 if (e0->flags & EDGE_COMPLEX)
1892 return e1->dest;
1893 if (e1->flags & EDGE_COMPLEX)
1894 return e0->dest;
1895
1896 return bb;
1897 }
1898
1899 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1900
1901 void
1902 notice_special_calls (gimple call)
1903 {
1904 int flags = gimple_call_flags (call);
1905
1906 if (flags & ECF_MAY_BE_ALLOCA)
1907 cfun->calls_alloca = true;
1908 if (flags & ECF_RETURNS_TWICE)
1909 cfun->calls_setjmp = true;
1910 }
1911
1912
1913 /* Clear flags set by notice_special_calls. Used by dead code removal
1914 to update the flags. */
1915
1916 void
1917 clear_special_calls (void)
1918 {
1919 cfun->calls_alloca = false;
1920 cfun->calls_setjmp = false;
1921 }
1922
1923 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1924
1925 static void
1926 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1927 {
1928 /* Since this block is no longer reachable, we can just delete all
1929 of its PHI nodes. */
1930 remove_phi_nodes (bb);
1931
1932 /* Remove edges to BB's successors. */
1933 while (EDGE_COUNT (bb->succs) > 0)
1934 remove_edge (EDGE_SUCC (bb, 0));
1935 }
1936
1937
1938 /* Remove statements of basic block BB. */
1939
1940 static void
1941 remove_bb (basic_block bb)
1942 {
1943 gimple_stmt_iterator i;
1944
1945 if (dump_file)
1946 {
1947 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1948 if (dump_flags & TDF_DETAILS)
1949 {
1950 dump_bb (dump_file, bb, 0, dump_flags);
1951 fprintf (dump_file, "\n");
1952 }
1953 }
1954
1955 if (current_loops)
1956 {
1957 struct loop *loop = bb->loop_father;
1958
1959 /* If a loop gets removed, clean up the information associated
1960 with it. */
1961 if (loop->latch == bb
1962 || loop->header == bb)
1963 free_numbers_of_iterations_estimates_loop (loop);
1964 }
1965
1966 /* Remove all the instructions in the block. */
1967 if (bb_seq (bb) != NULL)
1968 {
1969 /* Walk backwards so as to get a chance to substitute all
1970 released DEFs into debug stmts. See
1971 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1972 details. */
1973 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1974 {
1975 gimple stmt = gsi_stmt (i);
1976 if (gimple_code (stmt) == GIMPLE_LABEL
1977 && (FORCED_LABEL (gimple_label_label (stmt))
1978 || DECL_NONLOCAL (gimple_label_label (stmt))))
1979 {
1980 basic_block new_bb;
1981 gimple_stmt_iterator new_gsi;
1982
1983 /* A non-reachable non-local label may still be referenced.
1984 But it no longer needs to carry the extra semantics of
1985 non-locality. */
1986 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1987 {
1988 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1989 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1990 }
1991
1992 new_bb = bb->prev_bb;
1993 new_gsi = gsi_start_bb (new_bb);
1994 gsi_remove (&i, false);
1995 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1996 }
1997 else
1998 {
1999 /* Release SSA definitions if we are in SSA. Note that we
2000 may be called when not in SSA. For example,
2001 final_cleanup calls this function via
2002 cleanup_tree_cfg. */
2003 if (gimple_in_ssa_p (cfun))
2004 release_defs (stmt);
2005
2006 gsi_remove (&i, true);
2007 }
2008
2009 if (gsi_end_p (i))
2010 i = gsi_last_bb (bb);
2011 else
2012 gsi_prev (&i);
2013 }
2014 }
2015
2016 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2017 bb->il.gimple.seq = NULL;
2018 bb->il.gimple.phi_nodes = NULL;
2019 }
2020
2021
2022 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2023 predicate VAL, return the edge that will be taken out of the block.
2024 If VAL does not match a unique edge, NULL is returned. */
2025
2026 edge
2027 find_taken_edge (basic_block bb, tree val)
2028 {
2029 gimple stmt;
2030
2031 stmt = last_stmt (bb);
2032
2033 gcc_assert (stmt);
2034 gcc_assert (is_ctrl_stmt (stmt));
2035
2036 if (val == NULL)
2037 return NULL;
2038
2039 if (!is_gimple_min_invariant (val))
2040 return NULL;
2041
2042 if (gimple_code (stmt) == GIMPLE_COND)
2043 return find_taken_edge_cond_expr (bb, val);
2044
2045 if (gimple_code (stmt) == GIMPLE_SWITCH)
2046 return find_taken_edge_switch_expr (bb, val);
2047
2048 if (computed_goto_p (stmt))
2049 {
2050 /* Only optimize if the argument is a label, if the argument is
2051 not a label then we can not construct a proper CFG.
2052
2053 It may be the case that we only need to allow the LABEL_REF to
2054 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2055 appear inside a LABEL_EXPR just to be safe. */
2056 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2057 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2058 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2059 return NULL;
2060 }
2061
2062 gcc_unreachable ();
2063 }
2064
2065 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2066 statement, determine which of the outgoing edges will be taken out of the
2067 block. Return NULL if either edge may be taken. */
2068
2069 static edge
2070 find_taken_edge_computed_goto (basic_block bb, tree val)
2071 {
2072 basic_block dest;
2073 edge e = NULL;
2074
2075 dest = label_to_block (val);
2076 if (dest)
2077 {
2078 e = find_edge (bb, dest);
2079 gcc_assert (e != NULL);
2080 }
2081
2082 return e;
2083 }
2084
2085 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2086 statement, determine which of the two edges will be taken out of the
2087 block. Return NULL if either edge may be taken. */
2088
2089 static edge
2090 find_taken_edge_cond_expr (basic_block bb, tree val)
2091 {
2092 edge true_edge, false_edge;
2093
2094 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2095
2096 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2097 return (integer_zerop (val) ? false_edge : true_edge);
2098 }
2099
2100 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2101 statement, determine which edge will be taken out of the block. Return
2102 NULL if any edge may be taken. */
2103
2104 static edge
2105 find_taken_edge_switch_expr (basic_block bb, tree val)
2106 {
2107 basic_block dest_bb;
2108 edge e;
2109 gimple switch_stmt;
2110 tree taken_case;
2111
2112 switch_stmt = last_stmt (bb);
2113 taken_case = find_case_label_for_value (switch_stmt, val);
2114 dest_bb = label_to_block (CASE_LABEL (taken_case));
2115
2116 e = find_edge (bb, dest_bb);
2117 gcc_assert (e);
2118 return e;
2119 }
2120
2121
2122 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2123 We can make optimal use here of the fact that the case labels are
2124 sorted: We can do a binary search for a case matching VAL. */
2125
2126 static tree
2127 find_case_label_for_value (gimple switch_stmt, tree val)
2128 {
2129 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2130 tree default_case = gimple_switch_default_label (switch_stmt);
2131
2132 for (low = 0, high = n; high - low > 1; )
2133 {
2134 size_t i = (high + low) / 2;
2135 tree t = gimple_switch_label (switch_stmt, i);
2136 int cmp;
2137
2138 /* Cache the result of comparing CASE_LOW and val. */
2139 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2140
2141 if (cmp > 0)
2142 high = i;
2143 else
2144 low = i;
2145
2146 if (CASE_HIGH (t) == NULL)
2147 {
2148 /* A singe-valued case label. */
2149 if (cmp == 0)
2150 return t;
2151 }
2152 else
2153 {
2154 /* A case range. We can only handle integer ranges. */
2155 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2156 return t;
2157 }
2158 }
2159
2160 return default_case;
2161 }
2162
2163
2164 /* Dump a basic block on stderr. */
2165
2166 void
2167 gimple_debug_bb (basic_block bb)
2168 {
2169 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2170 }
2171
2172
2173 /* Dump basic block with index N on stderr. */
2174
2175 basic_block
2176 gimple_debug_bb_n (int n)
2177 {
2178 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2179 return BASIC_BLOCK_FOR_FN (cfun, n);
2180 }
2181
2182
2183 /* Dump the CFG on stderr.
2184
2185 FLAGS are the same used by the tree dumping functions
2186 (see TDF_* in dumpfile.h). */
2187
2188 void
2189 gimple_debug_cfg (int flags)
2190 {
2191 gimple_dump_cfg (stderr, flags);
2192 }
2193
2194
2195 /* Dump the program showing basic block boundaries on the given FILE.
2196
2197 FLAGS are the same used by the tree dumping functions (see TDF_* in
2198 tree.h). */
2199
2200 void
2201 gimple_dump_cfg (FILE *file, int flags)
2202 {
2203 if (flags & TDF_DETAILS)
2204 {
2205 dump_function_header (file, current_function_decl, flags);
2206 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2207 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2208 last_basic_block_for_fn (cfun));
2209
2210 brief_dump_cfg (file, flags | TDF_COMMENT);
2211 fprintf (file, "\n");
2212 }
2213
2214 if (flags & TDF_STATS)
2215 dump_cfg_stats (file);
2216
2217 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2218 }
2219
2220
2221 /* Dump CFG statistics on FILE. */
2222
2223 void
2224 dump_cfg_stats (FILE *file)
2225 {
2226 static long max_num_merged_labels = 0;
2227 unsigned long size, total = 0;
2228 long num_edges;
2229 basic_block bb;
2230 const char * const fmt_str = "%-30s%-13s%12s\n";
2231 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2232 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2233 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2234 const char *funcname = current_function_name ();
2235
2236 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2237
2238 fprintf (file, "---------------------------------------------------------\n");
2239 fprintf (file, fmt_str, "", " Number of ", "Memory");
2240 fprintf (file, fmt_str, "", " instances ", "used ");
2241 fprintf (file, "---------------------------------------------------------\n");
2242
2243 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2244 total += size;
2245 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2246 SCALE (size), LABEL (size));
2247
2248 num_edges = 0;
2249 FOR_EACH_BB_FN (bb, cfun)
2250 num_edges += EDGE_COUNT (bb->succs);
2251 size = num_edges * sizeof (struct edge_def);
2252 total += size;
2253 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2254
2255 fprintf (file, "---------------------------------------------------------\n");
2256 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2257 LABEL (total));
2258 fprintf (file, "---------------------------------------------------------\n");
2259 fprintf (file, "\n");
2260
2261 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2262 max_num_merged_labels = cfg_stats.num_merged_labels;
2263
2264 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2265 cfg_stats.num_merged_labels, max_num_merged_labels);
2266
2267 fprintf (file, "\n");
2268 }
2269
2270
2271 /* Dump CFG statistics on stderr. Keep extern so that it's always
2272 linked in the final executable. */
2273
2274 DEBUG_FUNCTION void
2275 debug_cfg_stats (void)
2276 {
2277 dump_cfg_stats (stderr);
2278 }
2279
2280 /*---------------------------------------------------------------------------
2281 Miscellaneous helpers
2282 ---------------------------------------------------------------------------*/
2283
2284 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2285 flow. Transfers of control flow associated with EH are excluded. */
2286
2287 static bool
2288 call_can_make_abnormal_goto (gimple t)
2289 {
2290 /* If the function has no non-local labels, then a call cannot make an
2291 abnormal transfer of control. */
2292 if (!cfun->has_nonlocal_label
2293 && !cfun->calls_setjmp)
2294 return false;
2295
2296 /* Likewise if the call has no side effects. */
2297 if (!gimple_has_side_effects (t))
2298 return false;
2299
2300 /* Likewise if the called function is leaf. */
2301 if (gimple_call_flags (t) & ECF_LEAF)
2302 return false;
2303
2304 return true;
2305 }
2306
2307
2308 /* Return true if T can make an abnormal transfer of control flow.
2309 Transfers of control flow associated with EH are excluded. */
2310
2311 bool
2312 stmt_can_make_abnormal_goto (gimple t)
2313 {
2314 if (computed_goto_p (t))
2315 return true;
2316 if (is_gimple_call (t))
2317 return call_can_make_abnormal_goto (t);
2318 return false;
2319 }
2320
2321
2322 /* Return true if T represents a stmt that always transfers control. */
2323
2324 bool
2325 is_ctrl_stmt (gimple t)
2326 {
2327 switch (gimple_code (t))
2328 {
2329 case GIMPLE_COND:
2330 case GIMPLE_SWITCH:
2331 case GIMPLE_GOTO:
2332 case GIMPLE_RETURN:
2333 case GIMPLE_RESX:
2334 return true;
2335 default:
2336 return false;
2337 }
2338 }
2339
2340
2341 /* Return true if T is a statement that may alter the flow of control
2342 (e.g., a call to a non-returning function). */
2343
2344 bool
2345 is_ctrl_altering_stmt (gimple t)
2346 {
2347 gcc_assert (t);
2348
2349 switch (gimple_code (t))
2350 {
2351 case GIMPLE_CALL:
2352 {
2353 int flags = gimple_call_flags (t);
2354
2355 /* A call alters control flow if it can make an abnormal goto. */
2356 if (call_can_make_abnormal_goto (t))
2357 return true;
2358
2359 /* A call also alters control flow if it does not return. */
2360 if (flags & ECF_NORETURN)
2361 return true;
2362
2363 /* TM ending statements have backedges out of the transaction.
2364 Return true so we split the basic block containing them.
2365 Note that the TM_BUILTIN test is merely an optimization. */
2366 if ((flags & ECF_TM_BUILTIN)
2367 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2368 return true;
2369
2370 /* BUILT_IN_RETURN call is same as return statement. */
2371 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2372 return true;
2373 }
2374 break;
2375
2376 case GIMPLE_EH_DISPATCH:
2377 /* EH_DISPATCH branches to the individual catch handlers at
2378 this level of a try or allowed-exceptions region. It can
2379 fallthru to the next statement as well. */
2380 return true;
2381
2382 case GIMPLE_ASM:
2383 if (gimple_asm_nlabels (t) > 0)
2384 return true;
2385 break;
2386
2387 CASE_GIMPLE_OMP:
2388 /* OpenMP directives alter control flow. */
2389 return true;
2390
2391 case GIMPLE_TRANSACTION:
2392 /* A transaction start alters control flow. */
2393 return true;
2394
2395 default:
2396 break;
2397 }
2398
2399 /* If a statement can throw, it alters control flow. */
2400 return stmt_can_throw_internal (t);
2401 }
2402
2403
2404 /* Return true if T is a simple local goto. */
2405
2406 bool
2407 simple_goto_p (gimple t)
2408 {
2409 return (gimple_code (t) == GIMPLE_GOTO
2410 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2411 }
2412
2413
2414 /* Return true if STMT should start a new basic block. PREV_STMT is
2415 the statement preceding STMT. It is used when STMT is a label or a
2416 case label. Labels should only start a new basic block if their
2417 previous statement wasn't a label. Otherwise, sequence of labels
2418 would generate unnecessary basic blocks that only contain a single
2419 label. */
2420
2421 static inline bool
2422 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2423 {
2424 if (stmt == NULL)
2425 return false;
2426
2427 /* Labels start a new basic block only if the preceding statement
2428 wasn't a label of the same type. This prevents the creation of
2429 consecutive blocks that have nothing but a single label. */
2430 if (gimple_code (stmt) == GIMPLE_LABEL)
2431 {
2432 /* Nonlocal and computed GOTO targets always start a new block. */
2433 if (DECL_NONLOCAL (gimple_label_label (stmt))
2434 || FORCED_LABEL (gimple_label_label (stmt)))
2435 return true;
2436
2437 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2438 {
2439 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2440 return true;
2441
2442 cfg_stats.num_merged_labels++;
2443 return false;
2444 }
2445 else
2446 return true;
2447 }
2448 else if (gimple_code (stmt) == GIMPLE_CALL
2449 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2450 /* setjmp acts similar to a nonlocal GOTO target and thus should
2451 start a new block. */
2452 return true;
2453
2454 return false;
2455 }
2456
2457
2458 /* Return true if T should end a basic block. */
2459
2460 bool
2461 stmt_ends_bb_p (gimple t)
2462 {
2463 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2464 }
2465
2466 /* Remove block annotations and other data structures. */
2467
2468 void
2469 delete_tree_cfg_annotations (void)
2470 {
2471 vec_free (label_to_block_map_for_fn (cfun));
2472 }
2473
2474
2475 /* Return the first statement in basic block BB. */
2476
2477 gimple
2478 first_stmt (basic_block bb)
2479 {
2480 gimple_stmt_iterator i = gsi_start_bb (bb);
2481 gimple stmt = NULL;
2482
2483 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2484 {
2485 gsi_next (&i);
2486 stmt = NULL;
2487 }
2488 return stmt;
2489 }
2490
2491 /* Return the first non-label statement in basic block BB. */
2492
2493 static gimple
2494 first_non_label_stmt (basic_block bb)
2495 {
2496 gimple_stmt_iterator i = gsi_start_bb (bb);
2497 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2498 gsi_next (&i);
2499 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2500 }
2501
2502 /* Return the last statement in basic block BB. */
2503
2504 gimple
2505 last_stmt (basic_block bb)
2506 {
2507 gimple_stmt_iterator i = gsi_last_bb (bb);
2508 gimple stmt = NULL;
2509
2510 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2511 {
2512 gsi_prev (&i);
2513 stmt = NULL;
2514 }
2515 return stmt;
2516 }
2517
2518 /* Return the last statement of an otherwise empty block. Return NULL
2519 if the block is totally empty, or if it contains more than one
2520 statement. */
2521
2522 gimple
2523 last_and_only_stmt (basic_block bb)
2524 {
2525 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2526 gimple last, prev;
2527
2528 if (gsi_end_p (i))
2529 return NULL;
2530
2531 last = gsi_stmt (i);
2532 gsi_prev_nondebug (&i);
2533 if (gsi_end_p (i))
2534 return last;
2535
2536 /* Empty statements should no longer appear in the instruction stream.
2537 Everything that might have appeared before should be deleted by
2538 remove_useless_stmts, and the optimizers should just gsi_remove
2539 instead of smashing with build_empty_stmt.
2540
2541 Thus the only thing that should appear here in a block containing
2542 one executable statement is a label. */
2543 prev = gsi_stmt (i);
2544 if (gimple_code (prev) == GIMPLE_LABEL)
2545 return last;
2546 else
2547 return NULL;
2548 }
2549
2550 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2551
2552 static void
2553 reinstall_phi_args (edge new_edge, edge old_edge)
2554 {
2555 edge_var_map_vector *v;
2556 edge_var_map *vm;
2557 int i;
2558 gimple_stmt_iterator phis;
2559
2560 v = redirect_edge_var_map_vector (old_edge);
2561 if (!v)
2562 return;
2563
2564 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2565 v->iterate (i, &vm) && !gsi_end_p (phis);
2566 i++, gsi_next (&phis))
2567 {
2568 gimple phi = gsi_stmt (phis);
2569 tree result = redirect_edge_var_map_result (vm);
2570 tree arg = redirect_edge_var_map_def (vm);
2571
2572 gcc_assert (result == gimple_phi_result (phi));
2573
2574 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2575 }
2576
2577 redirect_edge_var_map_clear (old_edge);
2578 }
2579
2580 /* Returns the basic block after which the new basic block created
2581 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2582 near its "logical" location. This is of most help to humans looking
2583 at debugging dumps. */
2584
2585 static basic_block
2586 split_edge_bb_loc (edge edge_in)
2587 {
2588 basic_block dest = edge_in->dest;
2589 basic_block dest_prev = dest->prev_bb;
2590
2591 if (dest_prev)
2592 {
2593 edge e = find_edge (dest_prev, dest);
2594 if (e && !(e->flags & EDGE_COMPLEX))
2595 return edge_in->src;
2596 }
2597 return dest_prev;
2598 }
2599
2600 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2601 Abort on abnormal edges. */
2602
2603 static basic_block
2604 gimple_split_edge (edge edge_in)
2605 {
2606 basic_block new_bb, after_bb, dest;
2607 edge new_edge, e;
2608
2609 /* Abnormal edges cannot be split. */
2610 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2611
2612 dest = edge_in->dest;
2613
2614 after_bb = split_edge_bb_loc (edge_in);
2615
2616 new_bb = create_empty_bb (after_bb);
2617 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2618 new_bb->count = edge_in->count;
2619 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2620 new_edge->probability = REG_BR_PROB_BASE;
2621 new_edge->count = edge_in->count;
2622
2623 e = redirect_edge_and_branch (edge_in, new_bb);
2624 gcc_assert (e == edge_in);
2625 reinstall_phi_args (new_edge, e);
2626
2627 return new_bb;
2628 }
2629
2630
2631 /* Verify properties of the address expression T with base object BASE. */
2632
2633 static tree
2634 verify_address (tree t, tree base)
2635 {
2636 bool old_constant;
2637 bool old_side_effects;
2638 bool new_constant;
2639 bool new_side_effects;
2640
2641 old_constant = TREE_CONSTANT (t);
2642 old_side_effects = TREE_SIDE_EFFECTS (t);
2643
2644 recompute_tree_invariant_for_addr_expr (t);
2645 new_side_effects = TREE_SIDE_EFFECTS (t);
2646 new_constant = TREE_CONSTANT (t);
2647
2648 if (old_constant != new_constant)
2649 {
2650 error ("constant not recomputed when ADDR_EXPR changed");
2651 return t;
2652 }
2653 if (old_side_effects != new_side_effects)
2654 {
2655 error ("side effects not recomputed when ADDR_EXPR changed");
2656 return t;
2657 }
2658
2659 if (!(TREE_CODE (base) == VAR_DECL
2660 || TREE_CODE (base) == PARM_DECL
2661 || TREE_CODE (base) == RESULT_DECL))
2662 return NULL_TREE;
2663
2664 if (DECL_GIMPLE_REG_P (base))
2665 {
2666 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2667 return base;
2668 }
2669
2670 return NULL_TREE;
2671 }
2672
2673 /* Callback for walk_tree, check that all elements with address taken are
2674 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2675 inside a PHI node. */
2676
2677 static tree
2678 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2679 {
2680 tree t = *tp, x;
2681
2682 if (TYPE_P (t))
2683 *walk_subtrees = 0;
2684
2685 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2686 #define CHECK_OP(N, MSG) \
2687 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2688 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2689
2690 switch (TREE_CODE (t))
2691 {
2692 case SSA_NAME:
2693 if (SSA_NAME_IN_FREE_LIST (t))
2694 {
2695 error ("SSA name in freelist but still referenced");
2696 return *tp;
2697 }
2698 break;
2699
2700 case INDIRECT_REF:
2701 error ("INDIRECT_REF in gimple IL");
2702 return t;
2703
2704 case MEM_REF:
2705 x = TREE_OPERAND (t, 0);
2706 if (!POINTER_TYPE_P (TREE_TYPE (x))
2707 || !is_gimple_mem_ref_addr (x))
2708 {
2709 error ("invalid first operand of MEM_REF");
2710 return x;
2711 }
2712 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2713 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2714 {
2715 error ("invalid offset operand of MEM_REF");
2716 return TREE_OPERAND (t, 1);
2717 }
2718 if (TREE_CODE (x) == ADDR_EXPR
2719 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2720 return x;
2721 *walk_subtrees = 0;
2722 break;
2723
2724 case ASSERT_EXPR:
2725 x = fold (ASSERT_EXPR_COND (t));
2726 if (x == boolean_false_node)
2727 {
2728 error ("ASSERT_EXPR with an always-false condition");
2729 return *tp;
2730 }
2731 break;
2732
2733 case MODIFY_EXPR:
2734 error ("MODIFY_EXPR not expected while having tuples");
2735 return *tp;
2736
2737 case ADDR_EXPR:
2738 {
2739 tree tem;
2740
2741 gcc_assert (is_gimple_address (t));
2742
2743 /* Skip any references (they will be checked when we recurse down the
2744 tree) and ensure that any variable used as a prefix is marked
2745 addressable. */
2746 for (x = TREE_OPERAND (t, 0);
2747 handled_component_p (x);
2748 x = TREE_OPERAND (x, 0))
2749 ;
2750
2751 if ((tem = verify_address (t, x)))
2752 return tem;
2753
2754 if (!(TREE_CODE (x) == VAR_DECL
2755 || TREE_CODE (x) == PARM_DECL
2756 || TREE_CODE (x) == RESULT_DECL))
2757 return NULL;
2758
2759 if (!TREE_ADDRESSABLE (x))
2760 {
2761 error ("address taken, but ADDRESSABLE bit not set");
2762 return x;
2763 }
2764
2765 break;
2766 }
2767
2768 case COND_EXPR:
2769 x = COND_EXPR_COND (t);
2770 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2771 {
2772 error ("non-integral used in condition");
2773 return x;
2774 }
2775 if (!is_gimple_condexpr (x))
2776 {
2777 error ("invalid conditional operand");
2778 return x;
2779 }
2780 break;
2781
2782 case NON_LVALUE_EXPR:
2783 case TRUTH_NOT_EXPR:
2784 gcc_unreachable ();
2785
2786 CASE_CONVERT:
2787 case FIX_TRUNC_EXPR:
2788 case FLOAT_EXPR:
2789 case NEGATE_EXPR:
2790 case ABS_EXPR:
2791 case BIT_NOT_EXPR:
2792 CHECK_OP (0, "invalid operand to unary operator");
2793 break;
2794
2795 case REALPART_EXPR:
2796 case IMAGPART_EXPR:
2797 case BIT_FIELD_REF:
2798 if (!is_gimple_reg_type (TREE_TYPE (t)))
2799 {
2800 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2801 return t;
2802 }
2803
2804 if (TREE_CODE (t) == BIT_FIELD_REF)
2805 {
2806 tree t0 = TREE_OPERAND (t, 0);
2807 tree t1 = TREE_OPERAND (t, 1);
2808 tree t2 = TREE_OPERAND (t, 2);
2809 if (!tree_fits_uhwi_p (t1)
2810 || !tree_fits_uhwi_p (t2))
2811 {
2812 error ("invalid position or size operand to BIT_FIELD_REF");
2813 return t;
2814 }
2815 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2816 && (TYPE_PRECISION (TREE_TYPE (t))
2817 != tree_to_uhwi (t1)))
2818 {
2819 error ("integral result type precision does not match "
2820 "field size of BIT_FIELD_REF");
2821 return t;
2822 }
2823 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2824 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2825 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2826 != tree_to_uhwi (t1)))
2827 {
2828 error ("mode precision of non-integral result does not "
2829 "match field size of BIT_FIELD_REF");
2830 return t;
2831 }
2832 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2833 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2834 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2835 {
2836 error ("position plus size exceeds size of referenced object in "
2837 "BIT_FIELD_REF");
2838 return t;
2839 }
2840 }
2841 t = TREE_OPERAND (t, 0);
2842
2843 /* Fall-through. */
2844 case COMPONENT_REF:
2845 case ARRAY_REF:
2846 case ARRAY_RANGE_REF:
2847 case VIEW_CONVERT_EXPR:
2848 /* We have a nest of references. Verify that each of the operands
2849 that determine where to reference is either a constant or a variable,
2850 verify that the base is valid, and then show we've already checked
2851 the subtrees. */
2852 while (handled_component_p (t))
2853 {
2854 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2855 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2856 else if (TREE_CODE (t) == ARRAY_REF
2857 || TREE_CODE (t) == ARRAY_RANGE_REF)
2858 {
2859 CHECK_OP (1, "invalid array index");
2860 if (TREE_OPERAND (t, 2))
2861 CHECK_OP (2, "invalid array lower bound");
2862 if (TREE_OPERAND (t, 3))
2863 CHECK_OP (3, "invalid array stride");
2864 }
2865 else if (TREE_CODE (t) == BIT_FIELD_REF
2866 || TREE_CODE (t) == REALPART_EXPR
2867 || TREE_CODE (t) == IMAGPART_EXPR)
2868 {
2869 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2870 "REALPART_EXPR");
2871 return t;
2872 }
2873
2874 t = TREE_OPERAND (t, 0);
2875 }
2876
2877 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2878 {
2879 error ("invalid reference prefix");
2880 return t;
2881 }
2882 *walk_subtrees = 0;
2883 break;
2884 case PLUS_EXPR:
2885 case MINUS_EXPR:
2886 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2887 POINTER_PLUS_EXPR. */
2888 if (POINTER_TYPE_P (TREE_TYPE (t)))
2889 {
2890 error ("invalid operand to plus/minus, type is a pointer");
2891 return t;
2892 }
2893 CHECK_OP (0, "invalid operand to binary operator");
2894 CHECK_OP (1, "invalid operand to binary operator");
2895 break;
2896
2897 case POINTER_PLUS_EXPR:
2898 /* Check to make sure the first operand is a pointer or reference type. */
2899 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2900 {
2901 error ("invalid operand to pointer plus, first operand is not a pointer");
2902 return t;
2903 }
2904 /* Check to make sure the second operand is a ptrofftype. */
2905 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2906 {
2907 error ("invalid operand to pointer plus, second operand is not an "
2908 "integer type of appropriate width");
2909 return t;
2910 }
2911 /* FALLTHROUGH */
2912 case LT_EXPR:
2913 case LE_EXPR:
2914 case GT_EXPR:
2915 case GE_EXPR:
2916 case EQ_EXPR:
2917 case NE_EXPR:
2918 case UNORDERED_EXPR:
2919 case ORDERED_EXPR:
2920 case UNLT_EXPR:
2921 case UNLE_EXPR:
2922 case UNGT_EXPR:
2923 case UNGE_EXPR:
2924 case UNEQ_EXPR:
2925 case LTGT_EXPR:
2926 case MULT_EXPR:
2927 case TRUNC_DIV_EXPR:
2928 case CEIL_DIV_EXPR:
2929 case FLOOR_DIV_EXPR:
2930 case ROUND_DIV_EXPR:
2931 case TRUNC_MOD_EXPR:
2932 case CEIL_MOD_EXPR:
2933 case FLOOR_MOD_EXPR:
2934 case ROUND_MOD_EXPR:
2935 case RDIV_EXPR:
2936 case EXACT_DIV_EXPR:
2937 case MIN_EXPR:
2938 case MAX_EXPR:
2939 case LSHIFT_EXPR:
2940 case RSHIFT_EXPR:
2941 case LROTATE_EXPR:
2942 case RROTATE_EXPR:
2943 case BIT_IOR_EXPR:
2944 case BIT_XOR_EXPR:
2945 case BIT_AND_EXPR:
2946 CHECK_OP (0, "invalid operand to binary operator");
2947 CHECK_OP (1, "invalid operand to binary operator");
2948 break;
2949
2950 case CONSTRUCTOR:
2951 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2952 *walk_subtrees = 0;
2953 break;
2954
2955 case CASE_LABEL_EXPR:
2956 if (CASE_CHAIN (t))
2957 {
2958 error ("invalid CASE_CHAIN");
2959 return t;
2960 }
2961 break;
2962
2963 default:
2964 break;
2965 }
2966 return NULL;
2967
2968 #undef CHECK_OP
2969 }
2970
2971
2972 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2973 Returns true if there is an error, otherwise false. */
2974
2975 static bool
2976 verify_types_in_gimple_min_lval (tree expr)
2977 {
2978 tree op;
2979
2980 if (is_gimple_id (expr))
2981 return false;
2982
2983 if (TREE_CODE (expr) != TARGET_MEM_REF
2984 && TREE_CODE (expr) != MEM_REF)
2985 {
2986 error ("invalid expression for min lvalue");
2987 return true;
2988 }
2989
2990 /* TARGET_MEM_REFs are strange beasts. */
2991 if (TREE_CODE (expr) == TARGET_MEM_REF)
2992 return false;
2993
2994 op = TREE_OPERAND (expr, 0);
2995 if (!is_gimple_val (op))
2996 {
2997 error ("invalid operand in indirect reference");
2998 debug_generic_stmt (op);
2999 return true;
3000 }
3001 /* Memory references now generally can involve a value conversion. */
3002
3003 return false;
3004 }
3005
3006 /* Verify if EXPR is a valid GIMPLE reference expression. If
3007 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3008 if there is an error, otherwise false. */
3009
3010 static bool
3011 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3012 {
3013 while (handled_component_p (expr))
3014 {
3015 tree op = TREE_OPERAND (expr, 0);
3016
3017 if (TREE_CODE (expr) == ARRAY_REF
3018 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3019 {
3020 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3021 || (TREE_OPERAND (expr, 2)
3022 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3023 || (TREE_OPERAND (expr, 3)
3024 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3025 {
3026 error ("invalid operands to array reference");
3027 debug_generic_stmt (expr);
3028 return true;
3029 }
3030 }
3031
3032 /* Verify if the reference array element types are compatible. */
3033 if (TREE_CODE (expr) == ARRAY_REF
3034 && !useless_type_conversion_p (TREE_TYPE (expr),
3035 TREE_TYPE (TREE_TYPE (op))))
3036 {
3037 error ("type mismatch in array reference");
3038 debug_generic_stmt (TREE_TYPE (expr));
3039 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3040 return true;
3041 }
3042 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3043 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3044 TREE_TYPE (TREE_TYPE (op))))
3045 {
3046 error ("type mismatch in array range reference");
3047 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3048 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3049 return true;
3050 }
3051
3052 if ((TREE_CODE (expr) == REALPART_EXPR
3053 || TREE_CODE (expr) == IMAGPART_EXPR)
3054 && !useless_type_conversion_p (TREE_TYPE (expr),
3055 TREE_TYPE (TREE_TYPE (op))))
3056 {
3057 error ("type mismatch in real/imagpart reference");
3058 debug_generic_stmt (TREE_TYPE (expr));
3059 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3060 return true;
3061 }
3062
3063 if (TREE_CODE (expr) == COMPONENT_REF
3064 && !useless_type_conversion_p (TREE_TYPE (expr),
3065 TREE_TYPE (TREE_OPERAND (expr, 1))))
3066 {
3067 error ("type mismatch in component reference");
3068 debug_generic_stmt (TREE_TYPE (expr));
3069 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3070 return true;
3071 }
3072
3073 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3074 {
3075 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3076 that their operand is not an SSA name or an invariant when
3077 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3078 bug). Otherwise there is nothing to verify, gross mismatches at
3079 most invoke undefined behavior. */
3080 if (require_lvalue
3081 && (TREE_CODE (op) == SSA_NAME
3082 || is_gimple_min_invariant (op)))
3083 {
3084 error ("conversion of an SSA_NAME on the left hand side");
3085 debug_generic_stmt (expr);
3086 return true;
3087 }
3088 else if (TREE_CODE (op) == SSA_NAME
3089 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3090 {
3091 error ("conversion of register to a different size");
3092 debug_generic_stmt (expr);
3093 return true;
3094 }
3095 else if (!handled_component_p (op))
3096 return false;
3097 }
3098
3099 expr = op;
3100 }
3101
3102 if (TREE_CODE (expr) == MEM_REF)
3103 {
3104 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3105 {
3106 error ("invalid address operand in MEM_REF");
3107 debug_generic_stmt (expr);
3108 return true;
3109 }
3110 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3111 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3112 {
3113 error ("invalid offset operand in MEM_REF");
3114 debug_generic_stmt (expr);
3115 return true;
3116 }
3117 }
3118 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3119 {
3120 if (!TMR_BASE (expr)
3121 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3122 {
3123 error ("invalid address operand in TARGET_MEM_REF");
3124 return true;
3125 }
3126 if (!TMR_OFFSET (expr)
3127 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3128 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3129 {
3130 error ("invalid offset operand in TARGET_MEM_REF");
3131 debug_generic_stmt (expr);
3132 return true;
3133 }
3134 }
3135
3136 return ((require_lvalue || !is_gimple_min_invariant (expr))
3137 && verify_types_in_gimple_min_lval (expr));
3138 }
3139
3140 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3141 list of pointer-to types that is trivially convertible to DEST. */
3142
3143 static bool
3144 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3145 {
3146 tree src;
3147
3148 if (!TYPE_POINTER_TO (src_obj))
3149 return true;
3150
3151 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3152 if (useless_type_conversion_p (dest, src))
3153 return true;
3154
3155 return false;
3156 }
3157
3158 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3159 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3160
3161 static bool
3162 valid_fixed_convert_types_p (tree type1, tree type2)
3163 {
3164 return (FIXED_POINT_TYPE_P (type1)
3165 && (INTEGRAL_TYPE_P (type2)
3166 || SCALAR_FLOAT_TYPE_P (type2)
3167 || FIXED_POINT_TYPE_P (type2)));
3168 }
3169
3170 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3171 is a problem, otherwise false. */
3172
3173 static bool
3174 verify_gimple_call (gimple stmt)
3175 {
3176 tree fn = gimple_call_fn (stmt);
3177 tree fntype, fndecl;
3178 unsigned i;
3179
3180 if (gimple_call_internal_p (stmt))
3181 {
3182 if (fn)
3183 {
3184 error ("gimple call has two targets");
3185 debug_generic_stmt (fn);
3186 return true;
3187 }
3188 }
3189 else
3190 {
3191 if (!fn)
3192 {
3193 error ("gimple call has no target");
3194 return true;
3195 }
3196 }
3197
3198 if (fn && !is_gimple_call_addr (fn))
3199 {
3200 error ("invalid function in gimple call");
3201 debug_generic_stmt (fn);
3202 return true;
3203 }
3204
3205 if (fn
3206 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3207 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3208 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3209 {
3210 error ("non-function in gimple call");
3211 return true;
3212 }
3213
3214 fndecl = gimple_call_fndecl (stmt);
3215 if (fndecl
3216 && TREE_CODE (fndecl) == FUNCTION_DECL
3217 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3218 && !DECL_PURE_P (fndecl)
3219 && !TREE_READONLY (fndecl))
3220 {
3221 error ("invalid pure const state for function");
3222 return true;
3223 }
3224
3225 if (gimple_call_lhs (stmt)
3226 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3227 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3228 {
3229 error ("invalid LHS in gimple call");
3230 return true;
3231 }
3232
3233 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3234 {
3235 error ("LHS in noreturn call");
3236 return true;
3237 }
3238
3239 fntype = gimple_call_fntype (stmt);
3240 if (fntype
3241 && gimple_call_lhs (stmt)
3242 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3243 TREE_TYPE (fntype))
3244 /* ??? At least C++ misses conversions at assignments from
3245 void * call results.
3246 ??? Java is completely off. Especially with functions
3247 returning java.lang.Object.
3248 For now simply allow arbitrary pointer type conversions. */
3249 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3250 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3251 {
3252 error ("invalid conversion in gimple call");
3253 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3254 debug_generic_stmt (TREE_TYPE (fntype));
3255 return true;
3256 }
3257
3258 if (gimple_call_chain (stmt)
3259 && !is_gimple_val (gimple_call_chain (stmt)))
3260 {
3261 error ("invalid static chain in gimple call");
3262 debug_generic_stmt (gimple_call_chain (stmt));
3263 return true;
3264 }
3265
3266 /* If there is a static chain argument, this should not be an indirect
3267 call, and the decl should have DECL_STATIC_CHAIN set. */
3268 if (gimple_call_chain (stmt))
3269 {
3270 if (!gimple_call_fndecl (stmt))
3271 {
3272 error ("static chain in indirect gimple call");
3273 return true;
3274 }
3275 fn = TREE_OPERAND (fn, 0);
3276
3277 if (!DECL_STATIC_CHAIN (fn))
3278 {
3279 error ("static chain with function that doesn%'t use one");
3280 return true;
3281 }
3282 }
3283
3284 /* ??? The C frontend passes unpromoted arguments in case it
3285 didn't see a function declaration before the call. So for now
3286 leave the call arguments mostly unverified. Once we gimplify
3287 unit-at-a-time we have a chance to fix this. */
3288
3289 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3290 {
3291 tree arg = gimple_call_arg (stmt, i);
3292 if ((is_gimple_reg_type (TREE_TYPE (arg))
3293 && !is_gimple_val (arg))
3294 || (!is_gimple_reg_type (TREE_TYPE (arg))
3295 && !is_gimple_lvalue (arg)))
3296 {
3297 error ("invalid argument to gimple call");
3298 debug_generic_expr (arg);
3299 return true;
3300 }
3301 }
3302
3303 return false;
3304 }
3305
3306 /* Verifies the gimple comparison with the result type TYPE and
3307 the operands OP0 and OP1. */
3308
3309 static bool
3310 verify_gimple_comparison (tree type, tree op0, tree op1)
3311 {
3312 tree op0_type = TREE_TYPE (op0);
3313 tree op1_type = TREE_TYPE (op1);
3314
3315 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3316 {
3317 error ("invalid operands in gimple comparison");
3318 return true;
3319 }
3320
3321 /* For comparisons we do not have the operations type as the
3322 effective type the comparison is carried out in. Instead
3323 we require that either the first operand is trivially
3324 convertible into the second, or the other way around.
3325 Because we special-case pointers to void we allow
3326 comparisons of pointers with the same mode as well. */
3327 if (!useless_type_conversion_p (op0_type, op1_type)
3328 && !useless_type_conversion_p (op1_type, op0_type)
3329 && (!POINTER_TYPE_P (op0_type)
3330 || !POINTER_TYPE_P (op1_type)
3331 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3332 {
3333 error ("mismatching comparison operand types");
3334 debug_generic_expr (op0_type);
3335 debug_generic_expr (op1_type);
3336 return true;
3337 }
3338
3339 /* The resulting type of a comparison may be an effective boolean type. */
3340 if (INTEGRAL_TYPE_P (type)
3341 && (TREE_CODE (type) == BOOLEAN_TYPE
3342 || TYPE_PRECISION (type) == 1))
3343 {
3344 if (TREE_CODE (op0_type) == VECTOR_TYPE
3345 || TREE_CODE (op1_type) == VECTOR_TYPE)
3346 {
3347 error ("vector comparison returning a boolean");
3348 debug_generic_expr (op0_type);
3349 debug_generic_expr (op1_type);
3350 return true;
3351 }
3352 }
3353 /* Or an integer vector type with the same size and element count
3354 as the comparison operand types. */
3355 else if (TREE_CODE (type) == VECTOR_TYPE
3356 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3357 {
3358 if (TREE_CODE (op0_type) != VECTOR_TYPE
3359 || TREE_CODE (op1_type) != VECTOR_TYPE)
3360 {
3361 error ("non-vector operands in vector comparison");
3362 debug_generic_expr (op0_type);
3363 debug_generic_expr (op1_type);
3364 return true;
3365 }
3366
3367 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3368 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3369 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3370 /* The result of a vector comparison is of signed
3371 integral type. */
3372 || TYPE_UNSIGNED (TREE_TYPE (type)))
3373 {
3374 error ("invalid vector comparison resulting type");
3375 debug_generic_expr (type);
3376 return true;
3377 }
3378 }
3379 else
3380 {
3381 error ("bogus comparison result type");
3382 debug_generic_expr (type);
3383 return true;
3384 }
3385
3386 return false;
3387 }
3388
3389 /* Verify a gimple assignment statement STMT with an unary rhs.
3390 Returns true if anything is wrong. */
3391
3392 static bool
3393 verify_gimple_assign_unary (gimple stmt)
3394 {
3395 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3396 tree lhs = gimple_assign_lhs (stmt);
3397 tree lhs_type = TREE_TYPE (lhs);
3398 tree rhs1 = gimple_assign_rhs1 (stmt);
3399 tree rhs1_type = TREE_TYPE (rhs1);
3400
3401 if (!is_gimple_reg (lhs))
3402 {
3403 error ("non-register as LHS of unary operation");
3404 return true;
3405 }
3406
3407 if (!is_gimple_val (rhs1))
3408 {
3409 error ("invalid operand in unary operation");
3410 return true;
3411 }
3412
3413 /* First handle conversions. */
3414 switch (rhs_code)
3415 {
3416 CASE_CONVERT:
3417 {
3418 /* Allow conversions from pointer type to integral type only if
3419 there is no sign or zero extension involved.
3420 For targets were the precision of ptrofftype doesn't match that
3421 of pointers we need to allow arbitrary conversions to ptrofftype. */
3422 if ((POINTER_TYPE_P (lhs_type)
3423 && INTEGRAL_TYPE_P (rhs1_type))
3424 || (POINTER_TYPE_P (rhs1_type)
3425 && INTEGRAL_TYPE_P (lhs_type)
3426 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3427 || ptrofftype_p (sizetype))))
3428 return false;
3429
3430 /* Allow conversion from integral to offset type and vice versa. */
3431 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3432 && INTEGRAL_TYPE_P (rhs1_type))
3433 || (INTEGRAL_TYPE_P (lhs_type)
3434 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3435 return false;
3436
3437 /* Otherwise assert we are converting between types of the
3438 same kind. */
3439 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3440 {
3441 error ("invalid types in nop conversion");
3442 debug_generic_expr (lhs_type);
3443 debug_generic_expr (rhs1_type);
3444 return true;
3445 }
3446
3447 return false;
3448 }
3449
3450 case ADDR_SPACE_CONVERT_EXPR:
3451 {
3452 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3453 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3454 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3455 {
3456 error ("invalid types in address space conversion");
3457 debug_generic_expr (lhs_type);
3458 debug_generic_expr (rhs1_type);
3459 return true;
3460 }
3461
3462 return false;
3463 }
3464
3465 case FIXED_CONVERT_EXPR:
3466 {
3467 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3468 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3469 {
3470 error ("invalid types in fixed-point conversion");
3471 debug_generic_expr (lhs_type);
3472 debug_generic_expr (rhs1_type);
3473 return true;
3474 }
3475
3476 return false;
3477 }
3478
3479 case FLOAT_EXPR:
3480 {
3481 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3482 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3483 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3484 {
3485 error ("invalid types in conversion to floating point");
3486 debug_generic_expr (lhs_type);
3487 debug_generic_expr (rhs1_type);
3488 return true;
3489 }
3490
3491 return false;
3492 }
3493
3494 case FIX_TRUNC_EXPR:
3495 {
3496 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3497 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3498 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3499 {
3500 error ("invalid types in conversion to integer");
3501 debug_generic_expr (lhs_type);
3502 debug_generic_expr (rhs1_type);
3503 return true;
3504 }
3505
3506 return false;
3507 }
3508
3509 case VEC_UNPACK_HI_EXPR:
3510 case VEC_UNPACK_LO_EXPR:
3511 case REDUC_MAX_EXPR:
3512 case REDUC_MIN_EXPR:
3513 case REDUC_PLUS_EXPR:
3514 case VEC_UNPACK_FLOAT_HI_EXPR:
3515 case VEC_UNPACK_FLOAT_LO_EXPR:
3516 /* FIXME. */
3517 return false;
3518
3519 case NEGATE_EXPR:
3520 case ABS_EXPR:
3521 case BIT_NOT_EXPR:
3522 case PAREN_EXPR:
3523 case NON_LVALUE_EXPR:
3524 case CONJ_EXPR:
3525 break;
3526
3527 default:
3528 gcc_unreachable ();
3529 }
3530
3531 /* For the remaining codes assert there is no conversion involved. */
3532 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3533 {
3534 error ("non-trivial conversion in unary operation");
3535 debug_generic_expr (lhs_type);
3536 debug_generic_expr (rhs1_type);
3537 return true;
3538 }
3539
3540 return false;
3541 }
3542
3543 /* Verify a gimple assignment statement STMT with a binary rhs.
3544 Returns true if anything is wrong. */
3545
3546 static bool
3547 verify_gimple_assign_binary (gimple stmt)
3548 {
3549 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3550 tree lhs = gimple_assign_lhs (stmt);
3551 tree lhs_type = TREE_TYPE (lhs);
3552 tree rhs1 = gimple_assign_rhs1 (stmt);
3553 tree rhs1_type = TREE_TYPE (rhs1);
3554 tree rhs2 = gimple_assign_rhs2 (stmt);
3555 tree rhs2_type = TREE_TYPE (rhs2);
3556
3557 if (!is_gimple_reg (lhs))
3558 {
3559 error ("non-register as LHS of binary operation");
3560 return true;
3561 }
3562
3563 if (!is_gimple_val (rhs1)
3564 || !is_gimple_val (rhs2))
3565 {
3566 error ("invalid operands in binary operation");
3567 return true;
3568 }
3569
3570 /* First handle operations that involve different types. */
3571 switch (rhs_code)
3572 {
3573 case COMPLEX_EXPR:
3574 {
3575 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3576 || !(INTEGRAL_TYPE_P (rhs1_type)
3577 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3578 || !(INTEGRAL_TYPE_P (rhs2_type)
3579 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3580 {
3581 error ("type mismatch in complex expression");
3582 debug_generic_expr (lhs_type);
3583 debug_generic_expr (rhs1_type);
3584 debug_generic_expr (rhs2_type);
3585 return true;
3586 }
3587
3588 return false;
3589 }
3590
3591 case LSHIFT_EXPR:
3592 case RSHIFT_EXPR:
3593 case LROTATE_EXPR:
3594 case RROTATE_EXPR:
3595 {
3596 /* Shifts and rotates are ok on integral types, fixed point
3597 types and integer vector types. */
3598 if ((!INTEGRAL_TYPE_P (rhs1_type)
3599 && !FIXED_POINT_TYPE_P (rhs1_type)
3600 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3601 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3602 || (!INTEGRAL_TYPE_P (rhs2_type)
3603 /* Vector shifts of vectors are also ok. */
3604 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3605 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3606 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3607 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3608 || !useless_type_conversion_p (lhs_type, rhs1_type))
3609 {
3610 error ("type mismatch in shift expression");
3611 debug_generic_expr (lhs_type);
3612 debug_generic_expr (rhs1_type);
3613 debug_generic_expr (rhs2_type);
3614 return true;
3615 }
3616
3617 return false;
3618 }
3619
3620 case VEC_LSHIFT_EXPR:
3621 case VEC_RSHIFT_EXPR:
3622 {
3623 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3624 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3625 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3626 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3627 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3628 || (!INTEGRAL_TYPE_P (rhs2_type)
3629 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3630 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3631 || !useless_type_conversion_p (lhs_type, rhs1_type))
3632 {
3633 error ("type mismatch in vector shift expression");
3634 debug_generic_expr (lhs_type);
3635 debug_generic_expr (rhs1_type);
3636 debug_generic_expr (rhs2_type);
3637 return true;
3638 }
3639 /* For shifting a vector of non-integral components we
3640 only allow shifting by a constant multiple of the element size. */
3641 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3642 && (TREE_CODE (rhs2) != INTEGER_CST
3643 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3644 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3645 {
3646 error ("non-element sized vector shift of floating point vector");
3647 return true;
3648 }
3649
3650 return false;
3651 }
3652
3653 case WIDEN_LSHIFT_EXPR:
3654 {
3655 if (!INTEGRAL_TYPE_P (lhs_type)
3656 || !INTEGRAL_TYPE_P (rhs1_type)
3657 || TREE_CODE (rhs2) != INTEGER_CST
3658 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3659 {
3660 error ("type mismatch in widening vector shift expression");
3661 debug_generic_expr (lhs_type);
3662 debug_generic_expr (rhs1_type);
3663 debug_generic_expr (rhs2_type);
3664 return true;
3665 }
3666
3667 return false;
3668 }
3669
3670 case VEC_WIDEN_LSHIFT_HI_EXPR:
3671 case VEC_WIDEN_LSHIFT_LO_EXPR:
3672 {
3673 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3674 || TREE_CODE (lhs_type) != VECTOR_TYPE
3675 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3676 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3677 || TREE_CODE (rhs2) != INTEGER_CST
3678 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3679 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3680 {
3681 error ("type mismatch in widening vector shift expression");
3682 debug_generic_expr (lhs_type);
3683 debug_generic_expr (rhs1_type);
3684 debug_generic_expr (rhs2_type);
3685 return true;
3686 }
3687
3688 return false;
3689 }
3690
3691 case PLUS_EXPR:
3692 case MINUS_EXPR:
3693 {
3694 tree lhs_etype = lhs_type;
3695 tree rhs1_etype = rhs1_type;
3696 tree rhs2_etype = rhs2_type;
3697 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3698 {
3699 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3700 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3701 {
3702 error ("invalid non-vector operands to vector valued plus");
3703 return true;
3704 }
3705 lhs_etype = TREE_TYPE (lhs_type);
3706 rhs1_etype = TREE_TYPE (rhs1_type);
3707 rhs2_etype = TREE_TYPE (rhs2_type);
3708 }
3709 if (POINTER_TYPE_P (lhs_etype)
3710 || POINTER_TYPE_P (rhs1_etype)
3711 || POINTER_TYPE_P (rhs2_etype))
3712 {
3713 error ("invalid (pointer) operands to plus/minus");
3714 return true;
3715 }
3716
3717 /* Continue with generic binary expression handling. */
3718 break;
3719 }
3720
3721 case POINTER_PLUS_EXPR:
3722 {
3723 if (!POINTER_TYPE_P (rhs1_type)
3724 || !useless_type_conversion_p (lhs_type, rhs1_type)
3725 || !ptrofftype_p (rhs2_type))
3726 {
3727 error ("type mismatch in pointer plus expression");
3728 debug_generic_stmt (lhs_type);
3729 debug_generic_stmt (rhs1_type);
3730 debug_generic_stmt (rhs2_type);
3731 return true;
3732 }
3733
3734 return false;
3735 }
3736
3737 case TRUTH_ANDIF_EXPR:
3738 case TRUTH_ORIF_EXPR:
3739 case TRUTH_AND_EXPR:
3740 case TRUTH_OR_EXPR:
3741 case TRUTH_XOR_EXPR:
3742
3743 gcc_unreachable ();
3744
3745 case LT_EXPR:
3746 case LE_EXPR:
3747 case GT_EXPR:
3748 case GE_EXPR:
3749 case EQ_EXPR:
3750 case NE_EXPR:
3751 case UNORDERED_EXPR:
3752 case ORDERED_EXPR:
3753 case UNLT_EXPR:
3754 case UNLE_EXPR:
3755 case UNGT_EXPR:
3756 case UNGE_EXPR:
3757 case UNEQ_EXPR:
3758 case LTGT_EXPR:
3759 /* Comparisons are also binary, but the result type is not
3760 connected to the operand types. */
3761 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3762
3763 case WIDEN_MULT_EXPR:
3764 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3765 return true;
3766 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3767 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3768
3769 case WIDEN_SUM_EXPR:
3770 case VEC_WIDEN_MULT_HI_EXPR:
3771 case VEC_WIDEN_MULT_LO_EXPR:
3772 case VEC_WIDEN_MULT_EVEN_EXPR:
3773 case VEC_WIDEN_MULT_ODD_EXPR:
3774 case VEC_PACK_TRUNC_EXPR:
3775 case VEC_PACK_SAT_EXPR:
3776 case VEC_PACK_FIX_TRUNC_EXPR:
3777 /* FIXME. */
3778 return false;
3779
3780 case MULT_EXPR:
3781 case MULT_HIGHPART_EXPR:
3782 case TRUNC_DIV_EXPR:
3783 case CEIL_DIV_EXPR:
3784 case FLOOR_DIV_EXPR:
3785 case ROUND_DIV_EXPR:
3786 case TRUNC_MOD_EXPR:
3787 case CEIL_MOD_EXPR:
3788 case FLOOR_MOD_EXPR:
3789 case ROUND_MOD_EXPR:
3790 case RDIV_EXPR:
3791 case EXACT_DIV_EXPR:
3792 case MIN_EXPR:
3793 case MAX_EXPR:
3794 case BIT_IOR_EXPR:
3795 case BIT_XOR_EXPR:
3796 case BIT_AND_EXPR:
3797 /* Continue with generic binary expression handling. */
3798 break;
3799
3800 default:
3801 gcc_unreachable ();
3802 }
3803
3804 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3805 || !useless_type_conversion_p (lhs_type, rhs2_type))
3806 {
3807 error ("type mismatch in binary expression");
3808 debug_generic_stmt (lhs_type);
3809 debug_generic_stmt (rhs1_type);
3810 debug_generic_stmt (rhs2_type);
3811 return true;
3812 }
3813
3814 return false;
3815 }
3816
3817 /* Verify a gimple assignment statement STMT with a ternary rhs.
3818 Returns true if anything is wrong. */
3819
3820 static bool
3821 verify_gimple_assign_ternary (gimple stmt)
3822 {
3823 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3824 tree lhs = gimple_assign_lhs (stmt);
3825 tree lhs_type = TREE_TYPE (lhs);
3826 tree rhs1 = gimple_assign_rhs1 (stmt);
3827 tree rhs1_type = TREE_TYPE (rhs1);
3828 tree rhs2 = gimple_assign_rhs2 (stmt);
3829 tree rhs2_type = TREE_TYPE (rhs2);
3830 tree rhs3 = gimple_assign_rhs3 (stmt);
3831 tree rhs3_type = TREE_TYPE (rhs3);
3832
3833 if (!is_gimple_reg (lhs))
3834 {
3835 error ("non-register as LHS of ternary operation");
3836 return true;
3837 }
3838
3839 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3840 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3841 || !is_gimple_val (rhs2)
3842 || !is_gimple_val (rhs3))
3843 {
3844 error ("invalid operands in ternary operation");
3845 return true;
3846 }
3847
3848 /* First handle operations that involve different types. */
3849 switch (rhs_code)
3850 {
3851 case WIDEN_MULT_PLUS_EXPR:
3852 case WIDEN_MULT_MINUS_EXPR:
3853 if ((!INTEGRAL_TYPE_P (rhs1_type)
3854 && !FIXED_POINT_TYPE_P (rhs1_type))
3855 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3856 || !useless_type_conversion_p (lhs_type, rhs3_type)
3857 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3858 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3859 {
3860 error ("type mismatch in widening multiply-accumulate expression");
3861 debug_generic_expr (lhs_type);
3862 debug_generic_expr (rhs1_type);
3863 debug_generic_expr (rhs2_type);
3864 debug_generic_expr (rhs3_type);
3865 return true;
3866 }
3867 break;
3868
3869 case FMA_EXPR:
3870 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3871 || !useless_type_conversion_p (lhs_type, rhs2_type)
3872 || !useless_type_conversion_p (lhs_type, rhs3_type))
3873 {
3874 error ("type mismatch in fused multiply-add expression");
3875 debug_generic_expr (lhs_type);
3876 debug_generic_expr (rhs1_type);
3877 debug_generic_expr (rhs2_type);
3878 debug_generic_expr (rhs3_type);
3879 return true;
3880 }
3881 break;
3882
3883 case COND_EXPR:
3884 case VEC_COND_EXPR:
3885 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3886 || !useless_type_conversion_p (lhs_type, rhs3_type))
3887 {
3888 error ("type mismatch in conditional expression");
3889 debug_generic_expr (lhs_type);
3890 debug_generic_expr (rhs2_type);
3891 debug_generic_expr (rhs3_type);
3892 return true;
3893 }
3894 break;
3895
3896 case VEC_PERM_EXPR:
3897 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3898 || !useless_type_conversion_p (lhs_type, rhs2_type))
3899 {
3900 error ("type mismatch in vector permute expression");
3901 debug_generic_expr (lhs_type);
3902 debug_generic_expr (rhs1_type);
3903 debug_generic_expr (rhs2_type);
3904 debug_generic_expr (rhs3_type);
3905 return true;
3906 }
3907
3908 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3909 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3910 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3911 {
3912 error ("vector types expected in vector permute expression");
3913 debug_generic_expr (lhs_type);
3914 debug_generic_expr (rhs1_type);
3915 debug_generic_expr (rhs2_type);
3916 debug_generic_expr (rhs3_type);
3917 return true;
3918 }
3919
3920 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3921 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3922 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3923 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3924 != TYPE_VECTOR_SUBPARTS (lhs_type))
3925 {
3926 error ("vectors with different element number found "
3927 "in vector permute expression");
3928 debug_generic_expr (lhs_type);
3929 debug_generic_expr (rhs1_type);
3930 debug_generic_expr (rhs2_type);
3931 debug_generic_expr (rhs3_type);
3932 return true;
3933 }
3934
3935 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3936 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3937 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3938 {
3939 error ("invalid mask type in vector permute expression");
3940 debug_generic_expr (lhs_type);
3941 debug_generic_expr (rhs1_type);
3942 debug_generic_expr (rhs2_type);
3943 debug_generic_expr (rhs3_type);
3944 return true;
3945 }
3946
3947 return false;
3948
3949 case DOT_PROD_EXPR:
3950 case REALIGN_LOAD_EXPR:
3951 /* FIXME. */
3952 return false;
3953
3954 default:
3955 gcc_unreachable ();
3956 }
3957 return false;
3958 }
3959
3960 /* Verify a gimple assignment statement STMT with a single rhs.
3961 Returns true if anything is wrong. */
3962
3963 static bool
3964 verify_gimple_assign_single (gimple stmt)
3965 {
3966 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3967 tree lhs = gimple_assign_lhs (stmt);
3968 tree lhs_type = TREE_TYPE (lhs);
3969 tree rhs1 = gimple_assign_rhs1 (stmt);
3970 tree rhs1_type = TREE_TYPE (rhs1);
3971 bool res = false;
3972
3973 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3974 {
3975 error ("non-trivial conversion at assignment");
3976 debug_generic_expr (lhs_type);
3977 debug_generic_expr (rhs1_type);
3978 return true;
3979 }
3980
3981 if (gimple_clobber_p (stmt)
3982 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
3983 {
3984 error ("non-decl/MEM_REF LHS in clobber statement");
3985 debug_generic_expr (lhs);
3986 return true;
3987 }
3988
3989 if (handled_component_p (lhs))
3990 res |= verify_types_in_gimple_reference (lhs, true);
3991
3992 /* Special codes we cannot handle via their class. */
3993 switch (rhs_code)
3994 {
3995 case ADDR_EXPR:
3996 {
3997 tree op = TREE_OPERAND (rhs1, 0);
3998 if (!is_gimple_addressable (op))
3999 {
4000 error ("invalid operand in unary expression");
4001 return true;
4002 }
4003
4004 /* Technically there is no longer a need for matching types, but
4005 gimple hygiene asks for this check. In LTO we can end up
4006 combining incompatible units and thus end up with addresses
4007 of globals that change their type to a common one. */
4008 if (!in_lto_p
4009 && !types_compatible_p (TREE_TYPE (op),
4010 TREE_TYPE (TREE_TYPE (rhs1)))
4011 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4012 TREE_TYPE (op)))
4013 {
4014 error ("type mismatch in address expression");
4015 debug_generic_stmt (TREE_TYPE (rhs1));
4016 debug_generic_stmt (TREE_TYPE (op));
4017 return true;
4018 }
4019
4020 return verify_types_in_gimple_reference (op, true);
4021 }
4022
4023 /* tcc_reference */
4024 case INDIRECT_REF:
4025 error ("INDIRECT_REF in gimple IL");
4026 return true;
4027
4028 case COMPONENT_REF:
4029 case BIT_FIELD_REF:
4030 case ARRAY_REF:
4031 case ARRAY_RANGE_REF:
4032 case VIEW_CONVERT_EXPR:
4033 case REALPART_EXPR:
4034 case IMAGPART_EXPR:
4035 case TARGET_MEM_REF:
4036 case MEM_REF:
4037 if (!is_gimple_reg (lhs)
4038 && is_gimple_reg_type (TREE_TYPE (lhs)))
4039 {
4040 error ("invalid rhs for gimple memory store");
4041 debug_generic_stmt (lhs);
4042 debug_generic_stmt (rhs1);
4043 return true;
4044 }
4045 return res || verify_types_in_gimple_reference (rhs1, false);
4046
4047 /* tcc_constant */
4048 case SSA_NAME:
4049 case INTEGER_CST:
4050 case REAL_CST:
4051 case FIXED_CST:
4052 case COMPLEX_CST:
4053 case VECTOR_CST:
4054 case STRING_CST:
4055 return res;
4056
4057 /* tcc_declaration */
4058 case CONST_DECL:
4059 return res;
4060 case VAR_DECL:
4061 case PARM_DECL:
4062 if (!is_gimple_reg (lhs)
4063 && !is_gimple_reg (rhs1)
4064 && is_gimple_reg_type (TREE_TYPE (lhs)))
4065 {
4066 error ("invalid rhs for gimple memory store");
4067 debug_generic_stmt (lhs);
4068 debug_generic_stmt (rhs1);
4069 return true;
4070 }
4071 return res;
4072
4073 case CONSTRUCTOR:
4074 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4075 {
4076 unsigned int i;
4077 tree elt_i, elt_v, elt_t = NULL_TREE;
4078
4079 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4080 return res;
4081 /* For vector CONSTRUCTORs we require that either it is empty
4082 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4083 (then the element count must be correct to cover the whole
4084 outer vector and index must be NULL on all elements, or it is
4085 a CONSTRUCTOR of scalar elements, where we as an exception allow
4086 smaller number of elements (assuming zero filling) and
4087 consecutive indexes as compared to NULL indexes (such
4088 CONSTRUCTORs can appear in the IL from FEs). */
4089 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4090 {
4091 if (elt_t == NULL_TREE)
4092 {
4093 elt_t = TREE_TYPE (elt_v);
4094 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4095 {
4096 tree elt_t = TREE_TYPE (elt_v);
4097 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4098 TREE_TYPE (elt_t)))
4099 {
4100 error ("incorrect type of vector CONSTRUCTOR"
4101 " elements");
4102 debug_generic_stmt (rhs1);
4103 return true;
4104 }
4105 else if (CONSTRUCTOR_NELTS (rhs1)
4106 * TYPE_VECTOR_SUBPARTS (elt_t)
4107 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4108 {
4109 error ("incorrect number of vector CONSTRUCTOR"
4110 " elements");
4111 debug_generic_stmt (rhs1);
4112 return true;
4113 }
4114 }
4115 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4116 elt_t))
4117 {
4118 error ("incorrect type of vector CONSTRUCTOR elements");
4119 debug_generic_stmt (rhs1);
4120 return true;
4121 }
4122 else if (CONSTRUCTOR_NELTS (rhs1)
4123 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4124 {
4125 error ("incorrect number of vector CONSTRUCTOR elements");
4126 debug_generic_stmt (rhs1);
4127 return true;
4128 }
4129 }
4130 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4131 {
4132 error ("incorrect type of vector CONSTRUCTOR elements");
4133 debug_generic_stmt (rhs1);
4134 return true;
4135 }
4136 if (elt_i != NULL_TREE
4137 && (TREE_CODE (elt_t) == VECTOR_TYPE
4138 || TREE_CODE (elt_i) != INTEGER_CST
4139 || compare_tree_int (elt_i, i) != 0))
4140 {
4141 error ("vector CONSTRUCTOR with non-NULL element index");
4142 debug_generic_stmt (rhs1);
4143 return true;
4144 }
4145 }
4146 }
4147 return res;
4148 case OBJ_TYPE_REF:
4149 case ASSERT_EXPR:
4150 case WITH_SIZE_EXPR:
4151 /* FIXME. */
4152 return res;
4153
4154 default:;
4155 }
4156
4157 return res;
4158 }
4159
4160 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4161 is a problem, otherwise false. */
4162
4163 static bool
4164 verify_gimple_assign (gimple stmt)
4165 {
4166 switch (gimple_assign_rhs_class (stmt))
4167 {
4168 case GIMPLE_SINGLE_RHS:
4169 return verify_gimple_assign_single (stmt);
4170
4171 case GIMPLE_UNARY_RHS:
4172 return verify_gimple_assign_unary (stmt);
4173
4174 case GIMPLE_BINARY_RHS:
4175 return verify_gimple_assign_binary (stmt);
4176
4177 case GIMPLE_TERNARY_RHS:
4178 return verify_gimple_assign_ternary (stmt);
4179
4180 default:
4181 gcc_unreachable ();
4182 }
4183 }
4184
4185 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4186 is a problem, otherwise false. */
4187
4188 static bool
4189 verify_gimple_return (gimple stmt)
4190 {
4191 tree op = gimple_return_retval (stmt);
4192 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4193
4194 /* We cannot test for present return values as we do not fix up missing
4195 return values from the original source. */
4196 if (op == NULL)
4197 return false;
4198
4199 if (!is_gimple_val (op)
4200 && TREE_CODE (op) != RESULT_DECL)
4201 {
4202 error ("invalid operand in return statement");
4203 debug_generic_stmt (op);
4204 return true;
4205 }
4206
4207 if ((TREE_CODE (op) == RESULT_DECL
4208 && DECL_BY_REFERENCE (op))
4209 || (TREE_CODE (op) == SSA_NAME
4210 && SSA_NAME_VAR (op)
4211 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4212 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4213 op = TREE_TYPE (op);
4214
4215 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4216 {
4217 error ("invalid conversion in return statement");
4218 debug_generic_stmt (restype);
4219 debug_generic_stmt (TREE_TYPE (op));
4220 return true;
4221 }
4222
4223 return false;
4224 }
4225
4226
4227 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4228 is a problem, otherwise false. */
4229
4230 static bool
4231 verify_gimple_goto (gimple stmt)
4232 {
4233 tree dest = gimple_goto_dest (stmt);
4234
4235 /* ??? We have two canonical forms of direct goto destinations, a
4236 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4237 if (TREE_CODE (dest) != LABEL_DECL
4238 && (!is_gimple_val (dest)
4239 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4240 {
4241 error ("goto destination is neither a label nor a pointer");
4242 return true;
4243 }
4244
4245 return false;
4246 }
4247
4248 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4249 is a problem, otherwise false. */
4250
4251 static bool
4252 verify_gimple_switch (gimple stmt)
4253 {
4254 unsigned int i, n;
4255 tree elt, prev_upper_bound = NULL_TREE;
4256 tree index_type, elt_type = NULL_TREE;
4257
4258 if (!is_gimple_val (gimple_switch_index (stmt)))
4259 {
4260 error ("invalid operand to switch statement");
4261 debug_generic_stmt (gimple_switch_index (stmt));
4262 return true;
4263 }
4264
4265 index_type = TREE_TYPE (gimple_switch_index (stmt));
4266 if (! INTEGRAL_TYPE_P (index_type))
4267 {
4268 error ("non-integral type switch statement");
4269 debug_generic_expr (index_type);
4270 return true;
4271 }
4272
4273 elt = gimple_switch_label (stmt, 0);
4274 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4275 {
4276 error ("invalid default case label in switch statement");
4277 debug_generic_expr (elt);
4278 return true;
4279 }
4280
4281 n = gimple_switch_num_labels (stmt);
4282 for (i = 1; i < n; i++)
4283 {
4284 elt = gimple_switch_label (stmt, i);
4285
4286 if (! CASE_LOW (elt))
4287 {
4288 error ("invalid case label in switch statement");
4289 debug_generic_expr (elt);
4290 return true;
4291 }
4292 if (CASE_HIGH (elt)
4293 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4294 {
4295 error ("invalid case range in switch statement");
4296 debug_generic_expr (elt);
4297 return true;
4298 }
4299
4300 if (elt_type)
4301 {
4302 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4303 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4304 {
4305 error ("type mismatch for case label in switch statement");
4306 debug_generic_expr (elt);
4307 return true;
4308 }
4309 }
4310 else
4311 {
4312 elt_type = TREE_TYPE (CASE_LOW (elt));
4313 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4314 {
4315 error ("type precision mismatch in switch statement");
4316 return true;
4317 }
4318 }
4319
4320 if (prev_upper_bound)
4321 {
4322 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4323 {
4324 error ("case labels not sorted in switch statement");
4325 return true;
4326 }
4327 }
4328
4329 prev_upper_bound = CASE_HIGH (elt);
4330 if (! prev_upper_bound)
4331 prev_upper_bound = CASE_LOW (elt);
4332 }
4333
4334 return false;
4335 }
4336
4337 /* Verify a gimple debug statement STMT.
4338 Returns true if anything is wrong. */
4339
4340 static bool
4341 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4342 {
4343 /* There isn't much that could be wrong in a gimple debug stmt. A
4344 gimple debug bind stmt, for example, maps a tree, that's usually
4345 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4346 component or member of an aggregate type, to another tree, that
4347 can be an arbitrary expression. These stmts expand into debug
4348 insns, and are converted to debug notes by var-tracking.c. */
4349 return false;
4350 }
4351
4352 /* Verify a gimple label statement STMT.
4353 Returns true if anything is wrong. */
4354
4355 static bool
4356 verify_gimple_label (gimple stmt)
4357 {
4358 tree decl = gimple_label_label (stmt);
4359 int uid;
4360 bool err = false;
4361
4362 if (TREE_CODE (decl) != LABEL_DECL)
4363 return true;
4364 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4365 && DECL_CONTEXT (decl) != current_function_decl)
4366 {
4367 error ("label's context is not the current function decl");
4368 err |= true;
4369 }
4370
4371 uid = LABEL_DECL_UID (decl);
4372 if (cfun->cfg
4373 && (uid == -1
4374 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4375 {
4376 error ("incorrect entry in label_to_block_map");
4377 err |= true;
4378 }
4379
4380 uid = EH_LANDING_PAD_NR (decl);
4381 if (uid)
4382 {
4383 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4384 if (decl != lp->post_landing_pad)
4385 {
4386 error ("incorrect setting of landing pad number");
4387 err |= true;
4388 }
4389 }
4390
4391 return err;
4392 }
4393
4394 /* Verify the GIMPLE statement STMT. Returns true if there is an
4395 error, otherwise false. */
4396
4397 static bool
4398 verify_gimple_stmt (gimple stmt)
4399 {
4400 switch (gimple_code (stmt))
4401 {
4402 case GIMPLE_ASSIGN:
4403 return verify_gimple_assign (stmt);
4404
4405 case GIMPLE_LABEL:
4406 return verify_gimple_label (stmt);
4407
4408 case GIMPLE_CALL:
4409 return verify_gimple_call (stmt);
4410
4411 case GIMPLE_COND:
4412 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4413 {
4414 error ("invalid comparison code in gimple cond");
4415 return true;
4416 }
4417 if (!(!gimple_cond_true_label (stmt)
4418 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4419 || !(!gimple_cond_false_label (stmt)
4420 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4421 {
4422 error ("invalid labels in gimple cond");
4423 return true;
4424 }
4425
4426 return verify_gimple_comparison (boolean_type_node,
4427 gimple_cond_lhs (stmt),
4428 gimple_cond_rhs (stmt));
4429
4430 case GIMPLE_GOTO:
4431 return verify_gimple_goto (stmt);
4432
4433 case GIMPLE_SWITCH:
4434 return verify_gimple_switch (stmt);
4435
4436 case GIMPLE_RETURN:
4437 return verify_gimple_return (stmt);
4438
4439 case GIMPLE_ASM:
4440 return false;
4441
4442 case GIMPLE_TRANSACTION:
4443 return verify_gimple_transaction (stmt);
4444
4445 /* Tuples that do not have tree operands. */
4446 case GIMPLE_NOP:
4447 case GIMPLE_PREDICT:
4448 case GIMPLE_RESX:
4449 case GIMPLE_EH_DISPATCH:
4450 case GIMPLE_EH_MUST_NOT_THROW:
4451 return false;
4452
4453 CASE_GIMPLE_OMP:
4454 /* OpenMP directives are validated by the FE and never operated
4455 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4456 non-gimple expressions when the main index variable has had
4457 its address taken. This does not affect the loop itself
4458 because the header of an GIMPLE_OMP_FOR is merely used to determine
4459 how to setup the parallel iteration. */
4460 return false;
4461
4462 case GIMPLE_DEBUG:
4463 return verify_gimple_debug (stmt);
4464
4465 default:
4466 gcc_unreachable ();
4467 }
4468 }
4469
4470 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4471 and false otherwise. */
4472
4473 static bool
4474 verify_gimple_phi (gimple phi)
4475 {
4476 bool err = false;
4477 unsigned i;
4478 tree phi_result = gimple_phi_result (phi);
4479 bool virtual_p;
4480
4481 if (!phi_result)
4482 {
4483 error ("invalid PHI result");
4484 return true;
4485 }
4486
4487 virtual_p = virtual_operand_p (phi_result);
4488 if (TREE_CODE (phi_result) != SSA_NAME
4489 || (virtual_p
4490 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4491 {
4492 error ("invalid PHI result");
4493 err = true;
4494 }
4495
4496 for (i = 0; i < gimple_phi_num_args (phi); i++)
4497 {
4498 tree t = gimple_phi_arg_def (phi, i);
4499
4500 if (!t)
4501 {
4502 error ("missing PHI def");
4503 err |= true;
4504 continue;
4505 }
4506 /* Addressable variables do have SSA_NAMEs but they
4507 are not considered gimple values. */
4508 else if ((TREE_CODE (t) == SSA_NAME
4509 && virtual_p != virtual_operand_p (t))
4510 || (virtual_p
4511 && (TREE_CODE (t) != SSA_NAME
4512 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4513 || (!virtual_p
4514 && !is_gimple_val (t)))
4515 {
4516 error ("invalid PHI argument");
4517 debug_generic_expr (t);
4518 err |= true;
4519 }
4520 #ifdef ENABLE_TYPES_CHECKING
4521 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4522 {
4523 error ("incompatible types in PHI argument %u", i);
4524 debug_generic_stmt (TREE_TYPE (phi_result));
4525 debug_generic_stmt (TREE_TYPE (t));
4526 err |= true;
4527 }
4528 #endif
4529 }
4530
4531 return err;
4532 }
4533
4534 /* Verify the GIMPLE statements inside the sequence STMTS. */
4535
4536 static bool
4537 verify_gimple_in_seq_2 (gimple_seq stmts)
4538 {
4539 gimple_stmt_iterator ittr;
4540 bool err = false;
4541
4542 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4543 {
4544 gimple stmt = gsi_stmt (ittr);
4545
4546 switch (gimple_code (stmt))
4547 {
4548 case GIMPLE_BIND:
4549 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4550 break;
4551
4552 case GIMPLE_TRY:
4553 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4554 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4555 break;
4556
4557 case GIMPLE_EH_FILTER:
4558 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4559 break;
4560
4561 case GIMPLE_EH_ELSE:
4562 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4563 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4564 break;
4565
4566 case GIMPLE_CATCH:
4567 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4568 break;
4569
4570 case GIMPLE_TRANSACTION:
4571 err |= verify_gimple_transaction (stmt);
4572 break;
4573
4574 default:
4575 {
4576 bool err2 = verify_gimple_stmt (stmt);
4577 if (err2)
4578 debug_gimple_stmt (stmt);
4579 err |= err2;
4580 }
4581 }
4582 }
4583
4584 return err;
4585 }
4586
4587 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4588 is a problem, otherwise false. */
4589
4590 static bool
4591 verify_gimple_transaction (gimple stmt)
4592 {
4593 tree lab = gimple_transaction_label (stmt);
4594 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4595 return true;
4596 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4597 }
4598
4599
4600 /* Verify the GIMPLE statements inside the statement list STMTS. */
4601
4602 DEBUG_FUNCTION void
4603 verify_gimple_in_seq (gimple_seq stmts)
4604 {
4605 timevar_push (TV_TREE_STMT_VERIFY);
4606 if (verify_gimple_in_seq_2 (stmts))
4607 internal_error ("verify_gimple failed");
4608 timevar_pop (TV_TREE_STMT_VERIFY);
4609 }
4610
4611 /* Return true when the T can be shared. */
4612
4613 static bool
4614 tree_node_can_be_shared (tree t)
4615 {
4616 if (IS_TYPE_OR_DECL_P (t)
4617 || is_gimple_min_invariant (t)
4618 || TREE_CODE (t) == SSA_NAME
4619 || t == error_mark_node
4620 || TREE_CODE (t) == IDENTIFIER_NODE)
4621 return true;
4622
4623 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4624 return true;
4625
4626 if (DECL_P (t))
4627 return true;
4628
4629 return false;
4630 }
4631
4632 /* Called via walk_tree. Verify tree sharing. */
4633
4634 static tree
4635 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4636 {
4637 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4638
4639 if (tree_node_can_be_shared (*tp))
4640 {
4641 *walk_subtrees = false;
4642 return NULL;
4643 }
4644
4645 if (pointer_set_insert (visited, *tp))
4646 return *tp;
4647
4648 return NULL;
4649 }
4650
4651 /* Called via walk_gimple_stmt. Verify tree sharing. */
4652
4653 static tree
4654 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4655 {
4656 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4657 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4658 }
4659
4660 static bool eh_error_found;
4661 static int
4662 verify_eh_throw_stmt_node (void **slot, void *data)
4663 {
4664 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4665 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4666
4667 if (!pointer_set_contains (visited, node->stmt))
4668 {
4669 error ("dead STMT in EH table");
4670 debug_gimple_stmt (node->stmt);
4671 eh_error_found = true;
4672 }
4673 return 1;
4674 }
4675
4676 /* Verify if the location LOCs block is in BLOCKS. */
4677
4678 static bool
4679 verify_location (pointer_set_t *blocks, location_t loc)
4680 {
4681 tree block = LOCATION_BLOCK (loc);
4682 if (block != NULL_TREE
4683 && !pointer_set_contains (blocks, block))
4684 {
4685 error ("location references block not in block tree");
4686 return true;
4687 }
4688 if (block != NULL_TREE)
4689 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4690 return false;
4691 }
4692
4693 /* Called via walk_tree. Verify that expressions have no blocks. */
4694
4695 static tree
4696 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4697 {
4698 if (!EXPR_P (*tp))
4699 {
4700 *walk_subtrees = false;
4701 return NULL;
4702 }
4703
4704 location_t loc = EXPR_LOCATION (*tp);
4705 if (LOCATION_BLOCK (loc) != NULL)
4706 return *tp;
4707
4708 return NULL;
4709 }
4710
4711 /* Called via walk_tree. Verify locations of expressions. */
4712
4713 static tree
4714 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4715 {
4716 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4717
4718 if (TREE_CODE (*tp) == VAR_DECL
4719 && DECL_HAS_DEBUG_EXPR_P (*tp))
4720 {
4721 tree t = DECL_DEBUG_EXPR (*tp);
4722 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4723 if (addr)
4724 return addr;
4725 }
4726 if ((TREE_CODE (*tp) == VAR_DECL
4727 || TREE_CODE (*tp) == PARM_DECL
4728 || TREE_CODE (*tp) == RESULT_DECL)
4729 && DECL_HAS_VALUE_EXPR_P (*tp))
4730 {
4731 tree t = DECL_VALUE_EXPR (*tp);
4732 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4733 if (addr)
4734 return addr;
4735 }
4736
4737 if (!EXPR_P (*tp))
4738 {
4739 *walk_subtrees = false;
4740 return NULL;
4741 }
4742
4743 location_t loc = EXPR_LOCATION (*tp);
4744 if (verify_location (blocks, loc))
4745 return *tp;
4746
4747 return NULL;
4748 }
4749
4750 /* Called via walk_gimple_op. Verify locations of expressions. */
4751
4752 static tree
4753 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4754 {
4755 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4756 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4757 }
4758
4759 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4760
4761 static void
4762 collect_subblocks (pointer_set_t *blocks, tree block)
4763 {
4764 tree t;
4765 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4766 {
4767 pointer_set_insert (blocks, t);
4768 collect_subblocks (blocks, t);
4769 }
4770 }
4771
4772 /* Verify the GIMPLE statements in the CFG of FN. */
4773
4774 DEBUG_FUNCTION void
4775 verify_gimple_in_cfg (struct function *fn)
4776 {
4777 basic_block bb;
4778 bool err = false;
4779 struct pointer_set_t *visited, *visited_stmts, *blocks;
4780
4781 timevar_push (TV_TREE_STMT_VERIFY);
4782 visited = pointer_set_create ();
4783 visited_stmts = pointer_set_create ();
4784
4785 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4786 blocks = pointer_set_create ();
4787 if (DECL_INITIAL (fn->decl))
4788 {
4789 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4790 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4791 }
4792
4793 FOR_EACH_BB_FN (bb, fn)
4794 {
4795 gimple_stmt_iterator gsi;
4796
4797 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4798 {
4799 gimple phi = gsi_stmt (gsi);
4800 bool err2 = false;
4801 unsigned i;
4802
4803 pointer_set_insert (visited_stmts, phi);
4804
4805 if (gimple_bb (phi) != bb)
4806 {
4807 error ("gimple_bb (phi) is set to a wrong basic block");
4808 err2 = true;
4809 }
4810
4811 err2 |= verify_gimple_phi (phi);
4812
4813 /* Only PHI arguments have locations. */
4814 if (gimple_location (phi) != UNKNOWN_LOCATION)
4815 {
4816 error ("PHI node with location");
4817 err2 = true;
4818 }
4819
4820 for (i = 0; i < gimple_phi_num_args (phi); i++)
4821 {
4822 tree arg = gimple_phi_arg_def (phi, i);
4823 tree addr = walk_tree (&arg, verify_node_sharing_1,
4824 visited, NULL);
4825 if (addr)
4826 {
4827 error ("incorrect sharing of tree nodes");
4828 debug_generic_expr (addr);
4829 err2 |= true;
4830 }
4831 location_t loc = gimple_phi_arg_location (phi, i);
4832 if (virtual_operand_p (gimple_phi_result (phi))
4833 && loc != UNKNOWN_LOCATION)
4834 {
4835 error ("virtual PHI with argument locations");
4836 err2 = true;
4837 }
4838 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4839 if (addr)
4840 {
4841 debug_generic_expr (addr);
4842 err2 = true;
4843 }
4844 err2 |= verify_location (blocks, loc);
4845 }
4846
4847 if (err2)
4848 debug_gimple_stmt (phi);
4849 err |= err2;
4850 }
4851
4852 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4853 {
4854 gimple stmt = gsi_stmt (gsi);
4855 bool err2 = false;
4856 struct walk_stmt_info wi;
4857 tree addr;
4858 int lp_nr;
4859
4860 pointer_set_insert (visited_stmts, stmt);
4861
4862 if (gimple_bb (stmt) != bb)
4863 {
4864 error ("gimple_bb (stmt) is set to a wrong basic block");
4865 err2 = true;
4866 }
4867
4868 err2 |= verify_gimple_stmt (stmt);
4869 err2 |= verify_location (blocks, gimple_location (stmt));
4870
4871 memset (&wi, 0, sizeof (wi));
4872 wi.info = (void *) visited;
4873 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4874 if (addr)
4875 {
4876 error ("incorrect sharing of tree nodes");
4877 debug_generic_expr (addr);
4878 err2 |= true;
4879 }
4880
4881 memset (&wi, 0, sizeof (wi));
4882 wi.info = (void *) blocks;
4883 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4884 if (addr)
4885 {
4886 debug_generic_expr (addr);
4887 err2 |= true;
4888 }
4889
4890 /* ??? Instead of not checking these stmts at all the walker
4891 should know its context via wi. */
4892 if (!is_gimple_debug (stmt)
4893 && !is_gimple_omp (stmt))
4894 {
4895 memset (&wi, 0, sizeof (wi));
4896 addr = walk_gimple_op (stmt, verify_expr, &wi);
4897 if (addr)
4898 {
4899 debug_generic_expr (addr);
4900 inform (gimple_location (stmt), "in statement");
4901 err2 |= true;
4902 }
4903 }
4904
4905 /* If the statement is marked as part of an EH region, then it is
4906 expected that the statement could throw. Verify that when we
4907 have optimizations that simplify statements such that we prove
4908 that they cannot throw, that we update other data structures
4909 to match. */
4910 lp_nr = lookup_stmt_eh_lp (stmt);
4911 if (lp_nr != 0)
4912 {
4913 if (!stmt_could_throw_p (stmt))
4914 {
4915 error ("statement marked for throw, but doesn%'t");
4916 err2 |= true;
4917 }
4918 else if (lp_nr > 0
4919 && !gsi_one_before_end_p (gsi)
4920 && stmt_can_throw_internal (stmt))
4921 {
4922 error ("statement marked for throw in middle of block");
4923 err2 |= true;
4924 }
4925 }
4926
4927 if (err2)
4928 debug_gimple_stmt (stmt);
4929 err |= err2;
4930 }
4931 }
4932
4933 eh_error_found = false;
4934 if (get_eh_throw_stmt_table (cfun))
4935 htab_traverse (get_eh_throw_stmt_table (cfun),
4936 verify_eh_throw_stmt_node,
4937 visited_stmts);
4938
4939 if (err || eh_error_found)
4940 internal_error ("verify_gimple failed");
4941
4942 pointer_set_destroy (visited);
4943 pointer_set_destroy (visited_stmts);
4944 pointer_set_destroy (blocks);
4945 verify_histograms ();
4946 timevar_pop (TV_TREE_STMT_VERIFY);
4947 }
4948
4949
4950 /* Verifies that the flow information is OK. */
4951
4952 static int
4953 gimple_verify_flow_info (void)
4954 {
4955 int err = 0;
4956 basic_block bb;
4957 gimple_stmt_iterator gsi;
4958 gimple stmt;
4959 edge e;
4960 edge_iterator ei;
4961
4962 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4963 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4964 {
4965 error ("ENTRY_BLOCK has IL associated with it");
4966 err = 1;
4967 }
4968
4969 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4970 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4971 {
4972 error ("EXIT_BLOCK has IL associated with it");
4973 err = 1;
4974 }
4975
4976 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4977 if (e->flags & EDGE_FALLTHRU)
4978 {
4979 error ("fallthru to exit from bb %d", e->src->index);
4980 err = 1;
4981 }
4982
4983 FOR_EACH_BB_FN (bb, cfun)
4984 {
4985 bool found_ctrl_stmt = false;
4986
4987 stmt = NULL;
4988
4989 /* Skip labels on the start of basic block. */
4990 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4991 {
4992 tree label;
4993 gimple prev_stmt = stmt;
4994
4995 stmt = gsi_stmt (gsi);
4996
4997 if (gimple_code (stmt) != GIMPLE_LABEL)
4998 break;
4999
5000 label = gimple_label_label (stmt);
5001 if (prev_stmt && DECL_NONLOCAL (label))
5002 {
5003 error ("nonlocal label ");
5004 print_generic_expr (stderr, label, 0);
5005 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5006 bb->index);
5007 err = 1;
5008 }
5009
5010 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5011 {
5012 error ("EH landing pad label ");
5013 print_generic_expr (stderr, label, 0);
5014 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5015 bb->index);
5016 err = 1;
5017 }
5018
5019 if (label_to_block (label) != bb)
5020 {
5021 error ("label ");
5022 print_generic_expr (stderr, label, 0);
5023 fprintf (stderr, " to block does not match in bb %d",
5024 bb->index);
5025 err = 1;
5026 }
5027
5028 if (decl_function_context (label) != current_function_decl)
5029 {
5030 error ("label ");
5031 print_generic_expr (stderr, label, 0);
5032 fprintf (stderr, " has incorrect context in bb %d",
5033 bb->index);
5034 err = 1;
5035 }
5036 }
5037
5038 /* Verify that body of basic block BB is free of control flow. */
5039 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5040 {
5041 gimple stmt = gsi_stmt (gsi);
5042
5043 if (found_ctrl_stmt)
5044 {
5045 error ("control flow in the middle of basic block %d",
5046 bb->index);
5047 err = 1;
5048 }
5049
5050 if (stmt_ends_bb_p (stmt))
5051 found_ctrl_stmt = true;
5052
5053 if (gimple_code (stmt) == GIMPLE_LABEL)
5054 {
5055 error ("label ");
5056 print_generic_expr (stderr, gimple_label_label (stmt), 0);
5057 fprintf (stderr, " in the middle of basic block %d", bb->index);
5058 err = 1;
5059 }
5060 }
5061
5062 gsi = gsi_last_bb (bb);
5063 if (gsi_end_p (gsi))
5064 continue;
5065
5066 stmt = gsi_stmt (gsi);
5067
5068 if (gimple_code (stmt) == GIMPLE_LABEL)
5069 continue;
5070
5071 err |= verify_eh_edges (stmt);
5072
5073 if (is_ctrl_stmt (stmt))
5074 {
5075 FOR_EACH_EDGE (e, ei, bb->succs)
5076 if (e->flags & EDGE_FALLTHRU)
5077 {
5078 error ("fallthru edge after a control statement in bb %d",
5079 bb->index);
5080 err = 1;
5081 }
5082 }
5083
5084 if (gimple_code (stmt) != GIMPLE_COND)
5085 {
5086 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5087 after anything else but if statement. */
5088 FOR_EACH_EDGE (e, ei, bb->succs)
5089 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5090 {
5091 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5092 bb->index);
5093 err = 1;
5094 }
5095 }
5096
5097 switch (gimple_code (stmt))
5098 {
5099 case GIMPLE_COND:
5100 {
5101 edge true_edge;
5102 edge false_edge;
5103
5104 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5105
5106 if (!true_edge
5107 || !false_edge
5108 || !(true_edge->flags & EDGE_TRUE_VALUE)
5109 || !(false_edge->flags & EDGE_FALSE_VALUE)
5110 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5111 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5112 || EDGE_COUNT (bb->succs) >= 3)
5113 {
5114 error ("wrong outgoing edge flags at end of bb %d",
5115 bb->index);
5116 err = 1;
5117 }
5118 }
5119 break;
5120
5121 case GIMPLE_GOTO:
5122 if (simple_goto_p (stmt))
5123 {
5124 error ("explicit goto at end of bb %d", bb->index);
5125 err = 1;
5126 }
5127 else
5128 {
5129 /* FIXME. We should double check that the labels in the
5130 destination blocks have their address taken. */
5131 FOR_EACH_EDGE (e, ei, bb->succs)
5132 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5133 | EDGE_FALSE_VALUE))
5134 || !(e->flags & EDGE_ABNORMAL))
5135 {
5136 error ("wrong outgoing edge flags at end of bb %d",
5137 bb->index);
5138 err = 1;
5139 }
5140 }
5141 break;
5142
5143 case GIMPLE_CALL:
5144 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5145 break;
5146 /* ... fallthru ... */
5147 case GIMPLE_RETURN:
5148 if (!single_succ_p (bb)
5149 || (single_succ_edge (bb)->flags
5150 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5151 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5152 {
5153 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5154 err = 1;
5155 }
5156 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5157 {
5158 error ("return edge does not point to exit in bb %d",
5159 bb->index);
5160 err = 1;
5161 }
5162 break;
5163
5164 case GIMPLE_SWITCH:
5165 {
5166 tree prev;
5167 edge e;
5168 size_t i, n;
5169
5170 n = gimple_switch_num_labels (stmt);
5171
5172 /* Mark all the destination basic blocks. */
5173 for (i = 0; i < n; ++i)
5174 {
5175 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5176 basic_block label_bb = label_to_block (lab);
5177 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5178 label_bb->aux = (void *)1;
5179 }
5180
5181 /* Verify that the case labels are sorted. */
5182 prev = gimple_switch_label (stmt, 0);
5183 for (i = 1; i < n; ++i)
5184 {
5185 tree c = gimple_switch_label (stmt, i);
5186 if (!CASE_LOW (c))
5187 {
5188 error ("found default case not at the start of "
5189 "case vector");
5190 err = 1;
5191 continue;
5192 }
5193 if (CASE_LOW (prev)
5194 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5195 {
5196 error ("case labels not sorted: ");
5197 print_generic_expr (stderr, prev, 0);
5198 fprintf (stderr," is greater than ");
5199 print_generic_expr (stderr, c, 0);
5200 fprintf (stderr," but comes before it.\n");
5201 err = 1;
5202 }
5203 prev = c;
5204 }
5205 /* VRP will remove the default case if it can prove it will
5206 never be executed. So do not verify there always exists
5207 a default case here. */
5208
5209 FOR_EACH_EDGE (e, ei, bb->succs)
5210 {
5211 if (!e->dest->aux)
5212 {
5213 error ("extra outgoing edge %d->%d",
5214 bb->index, e->dest->index);
5215 err = 1;
5216 }
5217
5218 e->dest->aux = (void *)2;
5219 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5220 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5221 {
5222 error ("wrong outgoing edge flags at end of bb %d",
5223 bb->index);
5224 err = 1;
5225 }
5226 }
5227
5228 /* Check that we have all of them. */
5229 for (i = 0; i < n; ++i)
5230 {
5231 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5232 basic_block label_bb = label_to_block (lab);
5233
5234 if (label_bb->aux != (void *)2)
5235 {
5236 error ("missing edge %i->%i", bb->index, label_bb->index);
5237 err = 1;
5238 }
5239 }
5240
5241 FOR_EACH_EDGE (e, ei, bb->succs)
5242 e->dest->aux = (void *)0;
5243 }
5244 break;
5245
5246 case GIMPLE_EH_DISPATCH:
5247 err |= verify_eh_dispatch_edge (stmt);
5248 break;
5249
5250 default:
5251 break;
5252 }
5253 }
5254
5255 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5256 verify_dominators (CDI_DOMINATORS);
5257
5258 return err;
5259 }
5260
5261
5262 /* Updates phi nodes after creating a forwarder block joined
5263 by edge FALLTHRU. */
5264
5265 static void
5266 gimple_make_forwarder_block (edge fallthru)
5267 {
5268 edge e;
5269 edge_iterator ei;
5270 basic_block dummy, bb;
5271 tree var;
5272 gimple_stmt_iterator gsi;
5273
5274 dummy = fallthru->src;
5275 bb = fallthru->dest;
5276
5277 if (single_pred_p (bb))
5278 return;
5279
5280 /* If we redirected a branch we must create new PHI nodes at the
5281 start of BB. */
5282 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5283 {
5284 gimple phi, new_phi;
5285
5286 phi = gsi_stmt (gsi);
5287 var = gimple_phi_result (phi);
5288 new_phi = create_phi_node (var, bb);
5289 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5290 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5291 UNKNOWN_LOCATION);
5292 }
5293
5294 /* Add the arguments we have stored on edges. */
5295 FOR_EACH_EDGE (e, ei, bb->preds)
5296 {
5297 if (e == fallthru)
5298 continue;
5299
5300 flush_pending_stmts (e);
5301 }
5302 }
5303
5304
5305 /* Return a non-special label in the head of basic block BLOCK.
5306 Create one if it doesn't exist. */
5307
5308 tree
5309 gimple_block_label (basic_block bb)
5310 {
5311 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5312 bool first = true;
5313 tree label;
5314 gimple stmt;
5315
5316 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5317 {
5318 stmt = gsi_stmt (i);
5319 if (gimple_code (stmt) != GIMPLE_LABEL)
5320 break;
5321 label = gimple_label_label (stmt);
5322 if (!DECL_NONLOCAL (label))
5323 {
5324 if (!first)
5325 gsi_move_before (&i, &s);
5326 return label;
5327 }
5328 }
5329
5330 label = create_artificial_label (UNKNOWN_LOCATION);
5331 stmt = gimple_build_label (label);
5332 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5333 return label;
5334 }
5335
5336
5337 /* Attempt to perform edge redirection by replacing a possibly complex
5338 jump instruction by a goto or by removing the jump completely.
5339 This can apply only if all edges now point to the same block. The
5340 parameters and return values are equivalent to
5341 redirect_edge_and_branch. */
5342
5343 static edge
5344 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5345 {
5346 basic_block src = e->src;
5347 gimple_stmt_iterator i;
5348 gimple stmt;
5349
5350 /* We can replace or remove a complex jump only when we have exactly
5351 two edges. */
5352 if (EDGE_COUNT (src->succs) != 2
5353 /* Verify that all targets will be TARGET. Specifically, the
5354 edge that is not E must also go to TARGET. */
5355 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5356 return NULL;
5357
5358 i = gsi_last_bb (src);
5359 if (gsi_end_p (i))
5360 return NULL;
5361
5362 stmt = gsi_stmt (i);
5363
5364 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5365 {
5366 gsi_remove (&i, true);
5367 e = ssa_redirect_edge (e, target);
5368 e->flags = EDGE_FALLTHRU;
5369 return e;
5370 }
5371
5372 return NULL;
5373 }
5374
5375
5376 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5377 edge representing the redirected branch. */
5378
5379 static edge
5380 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5381 {
5382 basic_block bb = e->src;
5383 gimple_stmt_iterator gsi;
5384 edge ret;
5385 gimple stmt;
5386
5387 if (e->flags & EDGE_ABNORMAL)
5388 return NULL;
5389
5390 if (e->dest == dest)
5391 return NULL;
5392
5393 if (e->flags & EDGE_EH)
5394 return redirect_eh_edge (e, dest);
5395
5396 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5397 {
5398 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5399 if (ret)
5400 return ret;
5401 }
5402
5403 gsi = gsi_last_bb (bb);
5404 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5405
5406 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5407 {
5408 case GIMPLE_COND:
5409 /* For COND_EXPR, we only need to redirect the edge. */
5410 break;
5411
5412 case GIMPLE_GOTO:
5413 /* No non-abnormal edges should lead from a non-simple goto, and
5414 simple ones should be represented implicitly. */
5415 gcc_unreachable ();
5416
5417 case GIMPLE_SWITCH:
5418 {
5419 tree label = gimple_block_label (dest);
5420 tree cases = get_cases_for_edge (e, stmt);
5421
5422 /* If we have a list of cases associated with E, then use it
5423 as it's a lot faster than walking the entire case vector. */
5424 if (cases)
5425 {
5426 edge e2 = find_edge (e->src, dest);
5427 tree last, first;
5428
5429 first = cases;
5430 while (cases)
5431 {
5432 last = cases;
5433 CASE_LABEL (cases) = label;
5434 cases = CASE_CHAIN (cases);
5435 }
5436
5437 /* If there was already an edge in the CFG, then we need
5438 to move all the cases associated with E to E2. */
5439 if (e2)
5440 {
5441 tree cases2 = get_cases_for_edge (e2, stmt);
5442
5443 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5444 CASE_CHAIN (cases2) = first;
5445 }
5446 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5447 }
5448 else
5449 {
5450 size_t i, n = gimple_switch_num_labels (stmt);
5451
5452 for (i = 0; i < n; i++)
5453 {
5454 tree elt = gimple_switch_label (stmt, i);
5455 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5456 CASE_LABEL (elt) = label;
5457 }
5458 }
5459 }
5460 break;
5461
5462 case GIMPLE_ASM:
5463 {
5464 int i, n = gimple_asm_nlabels (stmt);
5465 tree label = NULL;
5466
5467 for (i = 0; i < n; ++i)
5468 {
5469 tree cons = gimple_asm_label_op (stmt, i);
5470 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5471 {
5472 if (!label)
5473 label = gimple_block_label (dest);
5474 TREE_VALUE (cons) = label;
5475 }
5476 }
5477
5478 /* If we didn't find any label matching the former edge in the
5479 asm labels, we must be redirecting the fallthrough
5480 edge. */
5481 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5482 }
5483 break;
5484
5485 case GIMPLE_RETURN:
5486 gsi_remove (&gsi, true);
5487 e->flags |= EDGE_FALLTHRU;
5488 break;
5489
5490 case GIMPLE_OMP_RETURN:
5491 case GIMPLE_OMP_CONTINUE:
5492 case GIMPLE_OMP_SECTIONS_SWITCH:
5493 case GIMPLE_OMP_FOR:
5494 /* The edges from OMP constructs can be simply redirected. */
5495 break;
5496
5497 case GIMPLE_EH_DISPATCH:
5498 if (!(e->flags & EDGE_FALLTHRU))
5499 redirect_eh_dispatch_edge (stmt, e, dest);
5500 break;
5501
5502 case GIMPLE_TRANSACTION:
5503 /* The ABORT edge has a stored label associated with it, otherwise
5504 the edges are simply redirectable. */
5505 if (e->flags == 0)
5506 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5507 break;
5508
5509 default:
5510 /* Otherwise it must be a fallthru edge, and we don't need to
5511 do anything besides redirecting it. */
5512 gcc_assert (e->flags & EDGE_FALLTHRU);
5513 break;
5514 }
5515
5516 /* Update/insert PHI nodes as necessary. */
5517
5518 /* Now update the edges in the CFG. */
5519 e = ssa_redirect_edge (e, dest);
5520
5521 return e;
5522 }
5523
5524 /* Returns true if it is possible to remove edge E by redirecting
5525 it to the destination of the other edge from E->src. */
5526
5527 static bool
5528 gimple_can_remove_branch_p (const_edge e)
5529 {
5530 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5531 return false;
5532
5533 return true;
5534 }
5535
5536 /* Simple wrapper, as we can always redirect fallthru edges. */
5537
5538 static basic_block
5539 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5540 {
5541 e = gimple_redirect_edge_and_branch (e, dest);
5542 gcc_assert (e);
5543
5544 return NULL;
5545 }
5546
5547
5548 /* Splits basic block BB after statement STMT (but at least after the
5549 labels). If STMT is NULL, BB is split just after the labels. */
5550
5551 static basic_block
5552 gimple_split_block (basic_block bb, void *stmt)
5553 {
5554 gimple_stmt_iterator gsi;
5555 gimple_stmt_iterator gsi_tgt;
5556 gimple act;
5557 gimple_seq list;
5558 basic_block new_bb;
5559 edge e;
5560 edge_iterator ei;
5561
5562 new_bb = create_empty_bb (bb);
5563
5564 /* Redirect the outgoing edges. */
5565 new_bb->succs = bb->succs;
5566 bb->succs = NULL;
5567 FOR_EACH_EDGE (e, ei, new_bb->succs)
5568 e->src = new_bb;
5569
5570 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5571 stmt = NULL;
5572
5573 /* Move everything from GSI to the new basic block. */
5574 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5575 {
5576 act = gsi_stmt (gsi);
5577 if (gimple_code (act) == GIMPLE_LABEL)
5578 continue;
5579
5580 if (!stmt)
5581 break;
5582
5583 if (stmt == act)
5584 {
5585 gsi_next (&gsi);
5586 break;
5587 }
5588 }
5589
5590 if (gsi_end_p (gsi))
5591 return new_bb;
5592
5593 /* Split the statement list - avoid re-creating new containers as this
5594 brings ugly quadratic memory consumption in the inliner.
5595 (We are still quadratic since we need to update stmt BB pointers,
5596 sadly.) */
5597 gsi_split_seq_before (&gsi, &list);
5598 set_bb_seq (new_bb, list);
5599 for (gsi_tgt = gsi_start (list);
5600 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5601 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5602
5603 return new_bb;
5604 }
5605
5606
5607 /* Moves basic block BB after block AFTER. */
5608
5609 static bool
5610 gimple_move_block_after (basic_block bb, basic_block after)
5611 {
5612 if (bb->prev_bb == after)
5613 return true;
5614
5615 unlink_block (bb);
5616 link_block (bb, after);
5617
5618 return true;
5619 }
5620
5621
5622 /* Return TRUE if block BB has no executable statements, otherwise return
5623 FALSE. */
5624
5625 static bool
5626 gimple_empty_block_p (basic_block bb)
5627 {
5628 /* BB must have no executable statements. */
5629 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5630 if (phi_nodes (bb))
5631 return false;
5632 if (gsi_end_p (gsi))
5633 return true;
5634 if (is_gimple_debug (gsi_stmt (gsi)))
5635 gsi_next_nondebug (&gsi);
5636 return gsi_end_p (gsi);
5637 }
5638
5639
5640 /* Split a basic block if it ends with a conditional branch and if the
5641 other part of the block is not empty. */
5642
5643 static basic_block
5644 gimple_split_block_before_cond_jump (basic_block bb)
5645 {
5646 gimple last, split_point;
5647 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5648 if (gsi_end_p (gsi))
5649 return NULL;
5650 last = gsi_stmt (gsi);
5651 if (gimple_code (last) != GIMPLE_COND
5652 && gimple_code (last) != GIMPLE_SWITCH)
5653 return NULL;
5654 gsi_prev_nondebug (&gsi);
5655 split_point = gsi_stmt (gsi);
5656 return split_block (bb, split_point)->dest;
5657 }
5658
5659
5660 /* Return true if basic_block can be duplicated. */
5661
5662 static bool
5663 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5664 {
5665 return true;
5666 }
5667
5668 /* Create a duplicate of the basic block BB. NOTE: This does not
5669 preserve SSA form. */
5670
5671 static basic_block
5672 gimple_duplicate_bb (basic_block bb)
5673 {
5674 basic_block new_bb;
5675 gimple_stmt_iterator gsi, gsi_tgt;
5676 gimple_seq phis = phi_nodes (bb);
5677 gimple phi, stmt, copy;
5678
5679 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5680
5681 /* Copy the PHI nodes. We ignore PHI node arguments here because
5682 the incoming edges have not been setup yet. */
5683 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5684 {
5685 phi = gsi_stmt (gsi);
5686 copy = create_phi_node (NULL_TREE, new_bb);
5687 create_new_def_for (gimple_phi_result (phi), copy,
5688 gimple_phi_result_ptr (copy));
5689 gimple_set_uid (copy, gimple_uid (phi));
5690 }
5691
5692 gsi_tgt = gsi_start_bb (new_bb);
5693 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5694 {
5695 def_operand_p def_p;
5696 ssa_op_iter op_iter;
5697 tree lhs;
5698
5699 stmt = gsi_stmt (gsi);
5700 if (gimple_code (stmt) == GIMPLE_LABEL)
5701 continue;
5702
5703 /* Don't duplicate label debug stmts. */
5704 if (gimple_debug_bind_p (stmt)
5705 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5706 == LABEL_DECL)
5707 continue;
5708
5709 /* Create a new copy of STMT and duplicate STMT's virtual
5710 operands. */
5711 copy = gimple_copy (stmt);
5712 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5713
5714 maybe_duplicate_eh_stmt (copy, stmt);
5715 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5716
5717 /* When copying around a stmt writing into a local non-user
5718 aggregate, make sure it won't share stack slot with other
5719 vars. */
5720 lhs = gimple_get_lhs (stmt);
5721 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5722 {
5723 tree base = get_base_address (lhs);
5724 if (base
5725 && (TREE_CODE (base) == VAR_DECL
5726 || TREE_CODE (base) == RESULT_DECL)
5727 && DECL_IGNORED_P (base)
5728 && !TREE_STATIC (base)
5729 && !DECL_EXTERNAL (base)
5730 && (TREE_CODE (base) != VAR_DECL
5731 || !DECL_HAS_VALUE_EXPR_P (base)))
5732 DECL_NONSHAREABLE (base) = 1;
5733 }
5734
5735 /* Create new names for all the definitions created by COPY and
5736 add replacement mappings for each new name. */
5737 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5738 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5739 }
5740
5741 return new_bb;
5742 }
5743
5744 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5745
5746 static void
5747 add_phi_args_after_copy_edge (edge e_copy)
5748 {
5749 basic_block bb, bb_copy = e_copy->src, dest;
5750 edge e;
5751 edge_iterator ei;
5752 gimple phi, phi_copy;
5753 tree def;
5754 gimple_stmt_iterator psi, psi_copy;
5755
5756 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5757 return;
5758
5759 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5760
5761 if (e_copy->dest->flags & BB_DUPLICATED)
5762 dest = get_bb_original (e_copy->dest);
5763 else
5764 dest = e_copy->dest;
5765
5766 e = find_edge (bb, dest);
5767 if (!e)
5768 {
5769 /* During loop unrolling the target of the latch edge is copied.
5770 In this case we are not looking for edge to dest, but to
5771 duplicated block whose original was dest. */
5772 FOR_EACH_EDGE (e, ei, bb->succs)
5773 {
5774 if ((e->dest->flags & BB_DUPLICATED)
5775 && get_bb_original (e->dest) == dest)
5776 break;
5777 }
5778
5779 gcc_assert (e != NULL);
5780 }
5781
5782 for (psi = gsi_start_phis (e->dest),
5783 psi_copy = gsi_start_phis (e_copy->dest);
5784 !gsi_end_p (psi);
5785 gsi_next (&psi), gsi_next (&psi_copy))
5786 {
5787 phi = gsi_stmt (psi);
5788 phi_copy = gsi_stmt (psi_copy);
5789 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5790 add_phi_arg (phi_copy, def, e_copy,
5791 gimple_phi_arg_location_from_edge (phi, e));
5792 }
5793 }
5794
5795
5796 /* Basic block BB_COPY was created by code duplication. Add phi node
5797 arguments for edges going out of BB_COPY. The blocks that were
5798 duplicated have BB_DUPLICATED set. */
5799
5800 void
5801 add_phi_args_after_copy_bb (basic_block bb_copy)
5802 {
5803 edge e_copy;
5804 edge_iterator ei;
5805
5806 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5807 {
5808 add_phi_args_after_copy_edge (e_copy);
5809 }
5810 }
5811
5812 /* Blocks in REGION_COPY array of length N_REGION were created by
5813 duplication of basic blocks. Add phi node arguments for edges
5814 going from these blocks. If E_COPY is not NULL, also add
5815 phi node arguments for its destination.*/
5816
5817 void
5818 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5819 edge e_copy)
5820 {
5821 unsigned i;
5822
5823 for (i = 0; i < n_region; i++)
5824 region_copy[i]->flags |= BB_DUPLICATED;
5825
5826 for (i = 0; i < n_region; i++)
5827 add_phi_args_after_copy_bb (region_copy[i]);
5828 if (e_copy)
5829 add_phi_args_after_copy_edge (e_copy);
5830
5831 for (i = 0; i < n_region; i++)
5832 region_copy[i]->flags &= ~BB_DUPLICATED;
5833 }
5834
5835 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5836 important exit edge EXIT. By important we mean that no SSA name defined
5837 inside region is live over the other exit edges of the region. All entry
5838 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5839 to the duplicate of the region. Dominance and loop information is
5840 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5841 UPDATE_DOMINANCE is false then we assume that the caller will update the
5842 dominance information after calling this function. The new basic
5843 blocks are stored to REGION_COPY in the same order as they had in REGION,
5844 provided that REGION_COPY is not NULL.
5845 The function returns false if it is unable to copy the region,
5846 true otherwise. */
5847
5848 bool
5849 gimple_duplicate_sese_region (edge entry, edge exit,
5850 basic_block *region, unsigned n_region,
5851 basic_block *region_copy,
5852 bool update_dominance)
5853 {
5854 unsigned i;
5855 bool free_region_copy = false, copying_header = false;
5856 struct loop *loop = entry->dest->loop_father;
5857 edge exit_copy;
5858 vec<basic_block> doms;
5859 edge redirected;
5860 int total_freq = 0, entry_freq = 0;
5861 gcov_type total_count = 0, entry_count = 0;
5862
5863 if (!can_copy_bbs_p (region, n_region))
5864 return false;
5865
5866 /* Some sanity checking. Note that we do not check for all possible
5867 missuses of the functions. I.e. if you ask to copy something weird,
5868 it will work, but the state of structures probably will not be
5869 correct. */
5870 for (i = 0; i < n_region; i++)
5871 {
5872 /* We do not handle subloops, i.e. all the blocks must belong to the
5873 same loop. */
5874 if (region[i]->loop_father != loop)
5875 return false;
5876
5877 if (region[i] != entry->dest
5878 && region[i] == loop->header)
5879 return false;
5880 }
5881
5882 /* In case the function is used for loop header copying (which is the primary
5883 use), ensure that EXIT and its copy will be new latch and entry edges. */
5884 if (loop->header == entry->dest)
5885 {
5886 copying_header = true;
5887
5888 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5889 return false;
5890
5891 for (i = 0; i < n_region; i++)
5892 if (region[i] != exit->src
5893 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5894 return false;
5895 }
5896
5897 initialize_original_copy_tables ();
5898
5899 if (copying_header)
5900 set_loop_copy (loop, loop_outer (loop));
5901 else
5902 set_loop_copy (loop, loop);
5903
5904 if (!region_copy)
5905 {
5906 region_copy = XNEWVEC (basic_block, n_region);
5907 free_region_copy = true;
5908 }
5909
5910 /* Record blocks outside the region that are dominated by something
5911 inside. */
5912 if (update_dominance)
5913 {
5914 doms.create (0);
5915 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5916 }
5917
5918 if (entry->dest->count)
5919 {
5920 total_count = entry->dest->count;
5921 entry_count = entry->count;
5922 /* Fix up corner cases, to avoid division by zero or creation of negative
5923 frequencies. */
5924 if (entry_count > total_count)
5925 entry_count = total_count;
5926 }
5927 else
5928 {
5929 total_freq = entry->dest->frequency;
5930 entry_freq = EDGE_FREQUENCY (entry);
5931 /* Fix up corner cases, to avoid division by zero or creation of negative
5932 frequencies. */
5933 if (total_freq == 0)
5934 total_freq = 1;
5935 else if (entry_freq > total_freq)
5936 entry_freq = total_freq;
5937 }
5938
5939 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5940 split_edge_bb_loc (entry), update_dominance);
5941 if (total_count)
5942 {
5943 scale_bbs_frequencies_gcov_type (region, n_region,
5944 total_count - entry_count,
5945 total_count);
5946 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5947 total_count);
5948 }
5949 else
5950 {
5951 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5952 total_freq);
5953 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5954 }
5955
5956 if (copying_header)
5957 {
5958 loop->header = exit->dest;
5959 loop->latch = exit->src;
5960 }
5961
5962 /* Redirect the entry and add the phi node arguments. */
5963 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5964 gcc_assert (redirected != NULL);
5965 flush_pending_stmts (entry);
5966
5967 /* Concerning updating of dominators: We must recount dominators
5968 for entry block and its copy. Anything that is outside of the
5969 region, but was dominated by something inside needs recounting as
5970 well. */
5971 if (update_dominance)
5972 {
5973 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5974 doms.safe_push (get_bb_original (entry->dest));
5975 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5976 doms.release ();
5977 }
5978
5979 /* Add the other PHI node arguments. */
5980 add_phi_args_after_copy (region_copy, n_region, NULL);
5981
5982 if (free_region_copy)
5983 free (region_copy);
5984
5985 free_original_copy_tables ();
5986 return true;
5987 }
5988
5989 /* Checks if BB is part of the region defined by N_REGION BBS. */
5990 static bool
5991 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5992 {
5993 unsigned int n;
5994
5995 for (n = 0; n < n_region; n++)
5996 {
5997 if (bb == bbs[n])
5998 return true;
5999 }
6000 return false;
6001 }
6002
6003 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6004 are stored to REGION_COPY in the same order in that they appear
6005 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6006 the region, EXIT an exit from it. The condition guarding EXIT
6007 is moved to ENTRY. Returns true if duplication succeeds, false
6008 otherwise.
6009
6010 For example,
6011
6012 some_code;
6013 if (cond)
6014 A;
6015 else
6016 B;
6017
6018 is transformed to
6019
6020 if (cond)
6021 {
6022 some_code;
6023 A;
6024 }
6025 else
6026 {
6027 some_code;
6028 B;
6029 }
6030 */
6031
6032 bool
6033 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
6034 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
6035 basic_block *region_copy ATTRIBUTE_UNUSED)
6036 {
6037 unsigned i;
6038 bool free_region_copy = false;
6039 struct loop *loop = exit->dest->loop_father;
6040 struct loop *orig_loop = entry->dest->loop_father;
6041 basic_block switch_bb, entry_bb, nentry_bb;
6042 vec<basic_block> doms;
6043 int total_freq = 0, exit_freq = 0;
6044 gcov_type total_count = 0, exit_count = 0;
6045 edge exits[2], nexits[2], e;
6046 gimple_stmt_iterator gsi;
6047 gimple cond_stmt;
6048 edge sorig, snew;
6049 basic_block exit_bb;
6050 gimple_stmt_iterator psi;
6051 gimple phi;
6052 tree def;
6053 struct loop *target, *aloop, *cloop;
6054
6055 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6056 exits[0] = exit;
6057 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6058
6059 if (!can_copy_bbs_p (region, n_region))
6060 return false;
6061
6062 initialize_original_copy_tables ();
6063 set_loop_copy (orig_loop, loop);
6064
6065 target= loop;
6066 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6067 {
6068 if (bb_part_of_region_p (aloop->header, region, n_region))
6069 {
6070 cloop = duplicate_loop (aloop, target);
6071 duplicate_subloops (aloop, cloop);
6072 }
6073 }
6074
6075 if (!region_copy)
6076 {
6077 region_copy = XNEWVEC (basic_block, n_region);
6078 free_region_copy = true;
6079 }
6080
6081 gcc_assert (!need_ssa_update_p (cfun));
6082
6083 /* Record blocks outside the region that are dominated by something
6084 inside. */
6085 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6086
6087 if (exit->src->count)
6088 {
6089 total_count = exit->src->count;
6090 exit_count = exit->count;
6091 /* Fix up corner cases, to avoid division by zero or creation of negative
6092 frequencies. */
6093 if (exit_count > total_count)
6094 exit_count = total_count;
6095 }
6096 else
6097 {
6098 total_freq = exit->src->frequency;
6099 exit_freq = EDGE_FREQUENCY (exit);
6100 /* Fix up corner cases, to avoid division by zero or creation of negative
6101 frequencies. */
6102 if (total_freq == 0)
6103 total_freq = 1;
6104 if (exit_freq > total_freq)
6105 exit_freq = total_freq;
6106 }
6107
6108 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6109 split_edge_bb_loc (exit), true);
6110 if (total_count)
6111 {
6112 scale_bbs_frequencies_gcov_type (region, n_region,
6113 total_count - exit_count,
6114 total_count);
6115 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6116 total_count);
6117 }
6118 else
6119 {
6120 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6121 total_freq);
6122 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6123 }
6124
6125 /* Create the switch block, and put the exit condition to it. */
6126 entry_bb = entry->dest;
6127 nentry_bb = get_bb_copy (entry_bb);
6128 if (!last_stmt (entry->src)
6129 || !stmt_ends_bb_p (last_stmt (entry->src)))
6130 switch_bb = entry->src;
6131 else
6132 switch_bb = split_edge (entry);
6133 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6134
6135 gsi = gsi_last_bb (switch_bb);
6136 cond_stmt = last_stmt (exit->src);
6137 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6138 cond_stmt = gimple_copy (cond_stmt);
6139
6140 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6141
6142 sorig = single_succ_edge (switch_bb);
6143 sorig->flags = exits[1]->flags;
6144 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6145
6146 /* Register the new edge from SWITCH_BB in loop exit lists. */
6147 rescan_loop_exit (snew, true, false);
6148
6149 /* Add the PHI node arguments. */
6150 add_phi_args_after_copy (region_copy, n_region, snew);
6151
6152 /* Get rid of now superfluous conditions and associated edges (and phi node
6153 arguments). */
6154 exit_bb = exit->dest;
6155
6156 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6157 PENDING_STMT (e) = NULL;
6158
6159 /* The latch of ORIG_LOOP was copied, and so was the backedge
6160 to the original header. We redirect this backedge to EXIT_BB. */
6161 for (i = 0; i < n_region; i++)
6162 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6163 {
6164 gcc_assert (single_succ_edge (region_copy[i]));
6165 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6166 PENDING_STMT (e) = NULL;
6167 for (psi = gsi_start_phis (exit_bb);
6168 !gsi_end_p (psi);
6169 gsi_next (&psi))
6170 {
6171 phi = gsi_stmt (psi);
6172 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6173 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6174 }
6175 }
6176 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6177 PENDING_STMT (e) = NULL;
6178
6179 /* Anything that is outside of the region, but was dominated by something
6180 inside needs to update dominance info. */
6181 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6182 doms.release ();
6183 /* Update the SSA web. */
6184 update_ssa (TODO_update_ssa);
6185
6186 if (free_region_copy)
6187 free (region_copy);
6188
6189 free_original_copy_tables ();
6190 return true;
6191 }
6192
6193 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6194 adding blocks when the dominator traversal reaches EXIT. This
6195 function silently assumes that ENTRY strictly dominates EXIT. */
6196
6197 void
6198 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6199 vec<basic_block> *bbs_p)
6200 {
6201 basic_block son;
6202
6203 for (son = first_dom_son (CDI_DOMINATORS, entry);
6204 son;
6205 son = next_dom_son (CDI_DOMINATORS, son))
6206 {
6207 bbs_p->safe_push (son);
6208 if (son != exit)
6209 gather_blocks_in_sese_region (son, exit, bbs_p);
6210 }
6211 }
6212
6213 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6214 The duplicates are recorded in VARS_MAP. */
6215
6216 static void
6217 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6218 tree to_context)
6219 {
6220 tree t = *tp, new_t;
6221 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6222 void **loc;
6223
6224 if (DECL_CONTEXT (t) == to_context)
6225 return;
6226
6227 loc = pointer_map_contains (vars_map, t);
6228
6229 if (!loc)
6230 {
6231 loc = pointer_map_insert (vars_map, t);
6232
6233 if (SSA_VAR_P (t))
6234 {
6235 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6236 add_local_decl (f, new_t);
6237 }
6238 else
6239 {
6240 gcc_assert (TREE_CODE (t) == CONST_DECL);
6241 new_t = copy_node (t);
6242 }
6243 DECL_CONTEXT (new_t) = to_context;
6244
6245 *loc = new_t;
6246 }
6247 else
6248 new_t = (tree) *loc;
6249
6250 *tp = new_t;
6251 }
6252
6253
6254 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6255 VARS_MAP maps old ssa names and var_decls to the new ones. */
6256
6257 static tree
6258 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6259 tree to_context)
6260 {
6261 void **loc;
6262 tree new_name;
6263
6264 gcc_assert (!virtual_operand_p (name));
6265
6266 loc = pointer_map_contains (vars_map, name);
6267
6268 if (!loc)
6269 {
6270 tree decl = SSA_NAME_VAR (name);
6271 if (decl)
6272 {
6273 replace_by_duplicate_decl (&decl, vars_map, to_context);
6274 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6275 decl, SSA_NAME_DEF_STMT (name));
6276 if (SSA_NAME_IS_DEFAULT_DEF (name))
6277 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6278 decl, new_name);
6279 }
6280 else
6281 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6282 name, SSA_NAME_DEF_STMT (name));
6283
6284 loc = pointer_map_insert (vars_map, name);
6285 *loc = new_name;
6286 }
6287 else
6288 new_name = (tree) *loc;
6289
6290 return new_name;
6291 }
6292
6293 struct move_stmt_d
6294 {
6295 tree orig_block;
6296 tree new_block;
6297 tree from_context;
6298 tree to_context;
6299 struct pointer_map_t *vars_map;
6300 htab_t new_label_map;
6301 struct pointer_map_t *eh_map;
6302 bool remap_decls_p;
6303 };
6304
6305 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6306 contained in *TP if it has been ORIG_BLOCK previously and change the
6307 DECL_CONTEXT of every local variable referenced in *TP. */
6308
6309 static tree
6310 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6311 {
6312 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6313 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6314 tree t = *tp;
6315
6316 if (EXPR_P (t))
6317 {
6318 tree block = TREE_BLOCK (t);
6319 if (block == p->orig_block
6320 || (p->orig_block == NULL_TREE
6321 && block != NULL_TREE))
6322 TREE_SET_BLOCK (t, p->new_block);
6323 #ifdef ENABLE_CHECKING
6324 else if (block != NULL_TREE)
6325 {
6326 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6327 block = BLOCK_SUPERCONTEXT (block);
6328 gcc_assert (block == p->orig_block);
6329 }
6330 #endif
6331 }
6332 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6333 {
6334 if (TREE_CODE (t) == SSA_NAME)
6335 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6336 else if (TREE_CODE (t) == LABEL_DECL)
6337 {
6338 if (p->new_label_map)
6339 {
6340 struct tree_map in, *out;
6341 in.base.from = t;
6342 out = (struct tree_map *)
6343 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6344 if (out)
6345 *tp = t = out->to;
6346 }
6347
6348 DECL_CONTEXT (t) = p->to_context;
6349 }
6350 else if (p->remap_decls_p)
6351 {
6352 /* Replace T with its duplicate. T should no longer appear in the
6353 parent function, so this looks wasteful; however, it may appear
6354 in referenced_vars, and more importantly, as virtual operands of
6355 statements, and in alias lists of other variables. It would be
6356 quite difficult to expunge it from all those places. ??? It might
6357 suffice to do this for addressable variables. */
6358 if ((TREE_CODE (t) == VAR_DECL
6359 && !is_global_var (t))
6360 || TREE_CODE (t) == CONST_DECL)
6361 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6362 }
6363 *walk_subtrees = 0;
6364 }
6365 else if (TYPE_P (t))
6366 *walk_subtrees = 0;
6367
6368 return NULL_TREE;
6369 }
6370
6371 /* Helper for move_stmt_r. Given an EH region number for the source
6372 function, map that to the duplicate EH regio number in the dest. */
6373
6374 static int
6375 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6376 {
6377 eh_region old_r, new_r;
6378 void **slot;
6379
6380 old_r = get_eh_region_from_number (old_nr);
6381 slot = pointer_map_contains (p->eh_map, old_r);
6382 new_r = (eh_region) *slot;
6383
6384 return new_r->index;
6385 }
6386
6387 /* Similar, but operate on INTEGER_CSTs. */
6388
6389 static tree
6390 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6391 {
6392 int old_nr, new_nr;
6393
6394 old_nr = tree_to_shwi (old_t_nr);
6395 new_nr = move_stmt_eh_region_nr (old_nr, p);
6396
6397 return build_int_cst (integer_type_node, new_nr);
6398 }
6399
6400 /* Like move_stmt_op, but for gimple statements.
6401
6402 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6403 contained in the current statement in *GSI_P and change the
6404 DECL_CONTEXT of every local variable referenced in the current
6405 statement. */
6406
6407 static tree
6408 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6409 struct walk_stmt_info *wi)
6410 {
6411 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6412 gimple stmt = gsi_stmt (*gsi_p);
6413 tree block = gimple_block (stmt);
6414
6415 if (block == p->orig_block
6416 || (p->orig_block == NULL_TREE
6417 && block != NULL_TREE))
6418 gimple_set_block (stmt, p->new_block);
6419
6420 switch (gimple_code (stmt))
6421 {
6422 case GIMPLE_CALL:
6423 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6424 {
6425 tree r, fndecl = gimple_call_fndecl (stmt);
6426 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6427 switch (DECL_FUNCTION_CODE (fndecl))
6428 {
6429 case BUILT_IN_EH_COPY_VALUES:
6430 r = gimple_call_arg (stmt, 1);
6431 r = move_stmt_eh_region_tree_nr (r, p);
6432 gimple_call_set_arg (stmt, 1, r);
6433 /* FALLTHRU */
6434
6435 case BUILT_IN_EH_POINTER:
6436 case BUILT_IN_EH_FILTER:
6437 r = gimple_call_arg (stmt, 0);
6438 r = move_stmt_eh_region_tree_nr (r, p);
6439 gimple_call_set_arg (stmt, 0, r);
6440 break;
6441
6442 default:
6443 break;
6444 }
6445 }
6446 break;
6447
6448 case GIMPLE_RESX:
6449 {
6450 int r = gimple_resx_region (stmt);
6451 r = move_stmt_eh_region_nr (r, p);
6452 gimple_resx_set_region (stmt, r);
6453 }
6454 break;
6455
6456 case GIMPLE_EH_DISPATCH:
6457 {
6458 int r = gimple_eh_dispatch_region (stmt);
6459 r = move_stmt_eh_region_nr (r, p);
6460 gimple_eh_dispatch_set_region (stmt, r);
6461 }
6462 break;
6463
6464 case GIMPLE_OMP_RETURN:
6465 case GIMPLE_OMP_CONTINUE:
6466 break;
6467 default:
6468 if (is_gimple_omp (stmt))
6469 {
6470 /* Do not remap variables inside OMP directives. Variables
6471 referenced in clauses and directive header belong to the
6472 parent function and should not be moved into the child
6473 function. */
6474 bool save_remap_decls_p = p->remap_decls_p;
6475 p->remap_decls_p = false;
6476 *handled_ops_p = true;
6477
6478 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6479 move_stmt_op, wi);
6480
6481 p->remap_decls_p = save_remap_decls_p;
6482 }
6483 break;
6484 }
6485
6486 return NULL_TREE;
6487 }
6488
6489 /* Move basic block BB from function CFUN to function DEST_FN. The
6490 block is moved out of the original linked list and placed after
6491 block AFTER in the new list. Also, the block is removed from the
6492 original array of blocks and placed in DEST_FN's array of blocks.
6493 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6494 updated to reflect the moved edges.
6495
6496 The local variables are remapped to new instances, VARS_MAP is used
6497 to record the mapping. */
6498
6499 static void
6500 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6501 basic_block after, bool update_edge_count_p,
6502 struct move_stmt_d *d)
6503 {
6504 struct control_flow_graph *cfg;
6505 edge_iterator ei;
6506 edge e;
6507 gimple_stmt_iterator si;
6508 unsigned old_len, new_len;
6509
6510 /* Remove BB from dominance structures. */
6511 delete_from_dominance_info (CDI_DOMINATORS, bb);
6512
6513 /* Move BB from its current loop to the copy in the new function. */
6514 if (current_loops)
6515 {
6516 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6517 if (new_loop)
6518 bb->loop_father = new_loop;
6519 }
6520
6521 /* Link BB to the new linked list. */
6522 move_block_after (bb, after);
6523
6524 /* Update the edge count in the corresponding flowgraphs. */
6525 if (update_edge_count_p)
6526 FOR_EACH_EDGE (e, ei, bb->succs)
6527 {
6528 cfun->cfg->x_n_edges--;
6529 dest_cfun->cfg->x_n_edges++;
6530 }
6531
6532 /* Remove BB from the original basic block array. */
6533 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6534 cfun->cfg->x_n_basic_blocks--;
6535
6536 /* Grow DEST_CFUN's basic block array if needed. */
6537 cfg = dest_cfun->cfg;
6538 cfg->x_n_basic_blocks++;
6539 if (bb->index >= cfg->x_last_basic_block)
6540 cfg->x_last_basic_block = bb->index + 1;
6541
6542 old_len = vec_safe_length (cfg->x_basic_block_info);
6543 if ((unsigned) cfg->x_last_basic_block >= old_len)
6544 {
6545 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6546 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6547 }
6548
6549 (*cfg->x_basic_block_info)[bb->index] = bb;
6550
6551 /* Remap the variables in phi nodes. */
6552 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6553 {
6554 gimple phi = gsi_stmt (si);
6555 use_operand_p use;
6556 tree op = PHI_RESULT (phi);
6557 ssa_op_iter oi;
6558 unsigned i;
6559
6560 if (virtual_operand_p (op))
6561 {
6562 /* Remove the phi nodes for virtual operands (alias analysis will be
6563 run for the new function, anyway). */
6564 remove_phi_node (&si, true);
6565 continue;
6566 }
6567
6568 SET_PHI_RESULT (phi,
6569 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6570 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6571 {
6572 op = USE_FROM_PTR (use);
6573 if (TREE_CODE (op) == SSA_NAME)
6574 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6575 }
6576
6577 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6578 {
6579 location_t locus = gimple_phi_arg_location (phi, i);
6580 tree block = LOCATION_BLOCK (locus);
6581
6582 if (locus == UNKNOWN_LOCATION)
6583 continue;
6584 if (d->orig_block == NULL_TREE || block == d->orig_block)
6585 {
6586 if (d->new_block == NULL_TREE)
6587 locus = LOCATION_LOCUS (locus);
6588 else
6589 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6590 gimple_phi_arg_set_location (phi, i, locus);
6591 }
6592 }
6593
6594 gsi_next (&si);
6595 }
6596
6597 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6598 {
6599 gimple stmt = gsi_stmt (si);
6600 struct walk_stmt_info wi;
6601
6602 memset (&wi, 0, sizeof (wi));
6603 wi.info = d;
6604 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6605
6606 if (gimple_code (stmt) == GIMPLE_LABEL)
6607 {
6608 tree label = gimple_label_label (stmt);
6609 int uid = LABEL_DECL_UID (label);
6610
6611 gcc_assert (uid > -1);
6612
6613 old_len = vec_safe_length (cfg->x_label_to_block_map);
6614 if (old_len <= (unsigned) uid)
6615 {
6616 new_len = 3 * uid / 2 + 1;
6617 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6618 }
6619
6620 (*cfg->x_label_to_block_map)[uid] = bb;
6621 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6622
6623 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6624
6625 if (uid >= dest_cfun->cfg->last_label_uid)
6626 dest_cfun->cfg->last_label_uid = uid + 1;
6627 }
6628
6629 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6630 remove_stmt_from_eh_lp_fn (cfun, stmt);
6631
6632 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6633 gimple_remove_stmt_histograms (cfun, stmt);
6634
6635 /* We cannot leave any operands allocated from the operand caches of
6636 the current function. */
6637 free_stmt_operands (cfun, stmt);
6638 push_cfun (dest_cfun);
6639 update_stmt (stmt);
6640 pop_cfun ();
6641 }
6642
6643 FOR_EACH_EDGE (e, ei, bb->succs)
6644 if (e->goto_locus != UNKNOWN_LOCATION)
6645 {
6646 tree block = LOCATION_BLOCK (e->goto_locus);
6647 if (d->orig_block == NULL_TREE
6648 || block == d->orig_block)
6649 e->goto_locus = d->new_block ?
6650 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6651 LOCATION_LOCUS (e->goto_locus);
6652 }
6653 }
6654
6655 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6656 the outermost EH region. Use REGION as the incoming base EH region. */
6657
6658 static eh_region
6659 find_outermost_region_in_block (struct function *src_cfun,
6660 basic_block bb, eh_region region)
6661 {
6662 gimple_stmt_iterator si;
6663
6664 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6665 {
6666 gimple stmt = gsi_stmt (si);
6667 eh_region stmt_region;
6668 int lp_nr;
6669
6670 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6671 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6672 if (stmt_region)
6673 {
6674 if (region == NULL)
6675 region = stmt_region;
6676 else if (stmt_region != region)
6677 {
6678 region = eh_region_outermost (src_cfun, stmt_region, region);
6679 gcc_assert (region != NULL);
6680 }
6681 }
6682 }
6683
6684 return region;
6685 }
6686
6687 static tree
6688 new_label_mapper (tree decl, void *data)
6689 {
6690 htab_t hash = (htab_t) data;
6691 struct tree_map *m;
6692 void **slot;
6693
6694 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6695
6696 m = XNEW (struct tree_map);
6697 m->hash = DECL_UID (decl);
6698 m->base.from = decl;
6699 m->to = create_artificial_label (UNKNOWN_LOCATION);
6700 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6701 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6702 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6703
6704 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6705 gcc_assert (*slot == NULL);
6706
6707 *slot = m;
6708
6709 return m->to;
6710 }
6711
6712 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6713 subblocks. */
6714
6715 static void
6716 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6717 tree to_context)
6718 {
6719 tree *tp, t;
6720
6721 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6722 {
6723 t = *tp;
6724 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6725 continue;
6726 replace_by_duplicate_decl (&t, vars_map, to_context);
6727 if (t != *tp)
6728 {
6729 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6730 {
6731 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6732 DECL_HAS_VALUE_EXPR_P (t) = 1;
6733 }
6734 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6735 *tp = t;
6736 }
6737 }
6738
6739 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6740 replace_block_vars_by_duplicates (block, vars_map, to_context);
6741 }
6742
6743 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6744 from FN1 to FN2. */
6745
6746 static void
6747 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6748 struct loop *loop)
6749 {
6750 /* Discard it from the old loop array. */
6751 (*get_loops (fn1))[loop->num] = NULL;
6752
6753 /* Place it in the new loop array, assigning it a new number. */
6754 loop->num = number_of_loops (fn2);
6755 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6756
6757 /* Recurse to children. */
6758 for (loop = loop->inner; loop; loop = loop->next)
6759 fixup_loop_arrays_after_move (fn1, fn2, loop);
6760 }
6761
6762 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6763 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6764 single basic block in the original CFG and the new basic block is
6765 returned. DEST_CFUN must not have a CFG yet.
6766
6767 Note that the region need not be a pure SESE region. Blocks inside
6768 the region may contain calls to abort/exit. The only restriction
6769 is that ENTRY_BB should be the only entry point and it must
6770 dominate EXIT_BB.
6771
6772 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6773 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6774 to the new function.
6775
6776 All local variables referenced in the region are assumed to be in
6777 the corresponding BLOCK_VARS and unexpanded variable lists
6778 associated with DEST_CFUN. */
6779
6780 basic_block
6781 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6782 basic_block exit_bb, tree orig_block)
6783 {
6784 vec<basic_block> bbs, dom_bbs;
6785 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6786 basic_block after, bb, *entry_pred, *exit_succ, abb;
6787 struct function *saved_cfun = cfun;
6788 int *entry_flag, *exit_flag;
6789 unsigned *entry_prob, *exit_prob;
6790 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
6791 edge e;
6792 edge_iterator ei;
6793 htab_t new_label_map;
6794 struct pointer_map_t *vars_map, *eh_map;
6795 struct loop *loop = entry_bb->loop_father;
6796 struct loop *loop0 = get_loop (saved_cfun, 0);
6797 struct move_stmt_d d;
6798
6799 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6800 region. */
6801 gcc_assert (entry_bb != exit_bb
6802 && (!exit_bb
6803 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6804
6805 /* Collect all the blocks in the region. Manually add ENTRY_BB
6806 because it won't be added by dfs_enumerate_from. */
6807 bbs.create (0);
6808 bbs.safe_push (entry_bb);
6809 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6810
6811 /* The blocks that used to be dominated by something in BBS will now be
6812 dominated by the new block. */
6813 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6814 bbs.address (),
6815 bbs.length ());
6816
6817 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6818 the predecessor edges to ENTRY_BB and the successor edges to
6819 EXIT_BB so that we can re-attach them to the new basic block that
6820 will replace the region. */
6821 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6822 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6823 entry_flag = XNEWVEC (int, num_entry_edges);
6824 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6825 i = 0;
6826 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6827 {
6828 entry_prob[i] = e->probability;
6829 entry_flag[i] = e->flags;
6830 entry_pred[i++] = e->src;
6831 remove_edge (e);
6832 }
6833
6834 if (exit_bb)
6835 {
6836 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6837 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6838 exit_flag = XNEWVEC (int, num_exit_edges);
6839 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6840 i = 0;
6841 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6842 {
6843 exit_prob[i] = e->probability;
6844 exit_flag[i] = e->flags;
6845 exit_succ[i++] = e->dest;
6846 remove_edge (e);
6847 }
6848 }
6849 else
6850 {
6851 num_exit_edges = 0;
6852 exit_succ = NULL;
6853 exit_flag = NULL;
6854 exit_prob = NULL;
6855 }
6856
6857 /* Switch context to the child function to initialize DEST_FN's CFG. */
6858 gcc_assert (dest_cfun->cfg == NULL);
6859 push_cfun (dest_cfun);
6860
6861 init_empty_tree_cfg ();
6862
6863 /* Initialize EH information for the new function. */
6864 eh_map = NULL;
6865 new_label_map = NULL;
6866 if (saved_cfun->eh)
6867 {
6868 eh_region region = NULL;
6869
6870 FOR_EACH_VEC_ELT (bbs, i, bb)
6871 region = find_outermost_region_in_block (saved_cfun, bb, region);
6872
6873 init_eh_for_function ();
6874 if (region != NULL)
6875 {
6876 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6877 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6878 new_label_mapper, new_label_map);
6879 }
6880 }
6881
6882 /* Initialize an empty loop tree. */
6883 struct loops *loops = ggc_alloc_cleared_loops ();
6884 init_loops_structure (dest_cfun, loops, 1);
6885 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6886 set_loops_for_fn (dest_cfun, loops);
6887
6888 /* Move the outlined loop tree part. */
6889 num_nodes = bbs.length ();
6890 FOR_EACH_VEC_ELT (bbs, i, bb)
6891 {
6892 if (bb->loop_father->header == bb)
6893 {
6894 struct loop *this_loop = bb->loop_father;
6895 struct loop *outer = loop_outer (this_loop);
6896 if (outer == loop
6897 /* If the SESE region contains some bbs ending with
6898 a noreturn call, those are considered to belong
6899 to the outermost loop in saved_cfun, rather than
6900 the entry_bb's loop_father. */
6901 || outer == loop0)
6902 {
6903 if (outer != loop)
6904 num_nodes -= this_loop->num_nodes;
6905 flow_loop_tree_node_remove (bb->loop_father);
6906 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
6907 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
6908 }
6909 }
6910 else if (bb->loop_father == loop0 && loop0 != loop)
6911 num_nodes--;
6912
6913 /* Remove loop exits from the outlined region. */
6914 if (loops_for_fn (saved_cfun)->exits)
6915 FOR_EACH_EDGE (e, ei, bb->succs)
6916 {
6917 void **slot = htab_find_slot_with_hash
6918 (loops_for_fn (saved_cfun)->exits, e,
6919 htab_hash_pointer (e), NO_INSERT);
6920 if (slot)
6921 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6922 }
6923 }
6924
6925
6926 /* Adjust the number of blocks in the tree root of the outlined part. */
6927 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6928
6929 /* Setup a mapping to be used by move_block_to_fn. */
6930 loop->aux = current_loops->tree_root;
6931 loop0->aux = current_loops->tree_root;
6932
6933 pop_cfun ();
6934
6935 /* Move blocks from BBS into DEST_CFUN. */
6936 gcc_assert (bbs.length () >= 2);
6937 after = dest_cfun->cfg->x_entry_block_ptr;
6938 vars_map = pointer_map_create ();
6939
6940 memset (&d, 0, sizeof (d));
6941 d.orig_block = orig_block;
6942 d.new_block = DECL_INITIAL (dest_cfun->decl);
6943 d.from_context = cfun->decl;
6944 d.to_context = dest_cfun->decl;
6945 d.vars_map = vars_map;
6946 d.new_label_map = new_label_map;
6947 d.eh_map = eh_map;
6948 d.remap_decls_p = true;
6949
6950 FOR_EACH_VEC_ELT (bbs, i, bb)
6951 {
6952 /* No need to update edge counts on the last block. It has
6953 already been updated earlier when we detached the region from
6954 the original CFG. */
6955 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6956 after = bb;
6957 }
6958
6959 loop->aux = NULL;
6960 loop0->aux = NULL;
6961 /* Loop sizes are no longer correct, fix them up. */
6962 loop->num_nodes -= num_nodes;
6963 for (struct loop *outer = loop_outer (loop);
6964 outer; outer = loop_outer (outer))
6965 outer->num_nodes -= num_nodes;
6966 loop0->num_nodes -= bbs.length () - num_nodes;
6967
6968 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vect_loops)
6969 {
6970 struct loop *aloop;
6971 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
6972 if (aloop != NULL)
6973 {
6974 if (aloop->simduid)
6975 {
6976 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
6977 d.to_context);
6978 dest_cfun->has_simduid_loops = true;
6979 }
6980 if (aloop->force_vect)
6981 dest_cfun->has_force_vect_loops = true;
6982 }
6983 }
6984
6985 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6986 if (orig_block)
6987 {
6988 tree block;
6989 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6990 == NULL_TREE);
6991 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6992 = BLOCK_SUBBLOCKS (orig_block);
6993 for (block = BLOCK_SUBBLOCKS (orig_block);
6994 block; block = BLOCK_CHAIN (block))
6995 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6996 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6997 }
6998
6999 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7000 vars_map, dest_cfun->decl);
7001
7002 if (new_label_map)
7003 htab_delete (new_label_map);
7004 if (eh_map)
7005 pointer_map_destroy (eh_map);
7006 pointer_map_destroy (vars_map);
7007
7008 /* Rewire the entry and exit blocks. The successor to the entry
7009 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7010 the child function. Similarly, the predecessor of DEST_FN's
7011 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7012 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7013 various CFG manipulation function get to the right CFG.
7014
7015 FIXME, this is silly. The CFG ought to become a parameter to
7016 these helpers. */
7017 push_cfun (dest_cfun);
7018 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7019 if (exit_bb)
7020 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7021 pop_cfun ();
7022
7023 /* Back in the original function, the SESE region has disappeared,
7024 create a new basic block in its place. */
7025 bb = create_empty_bb (entry_pred[0]);
7026 if (current_loops)
7027 add_bb_to_loop (bb, loop);
7028 for (i = 0; i < num_entry_edges; i++)
7029 {
7030 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7031 e->probability = entry_prob[i];
7032 }
7033
7034 for (i = 0; i < num_exit_edges; i++)
7035 {
7036 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7037 e->probability = exit_prob[i];
7038 }
7039
7040 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7041 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7042 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7043 dom_bbs.release ();
7044
7045 if (exit_bb)
7046 {
7047 free (exit_prob);
7048 free (exit_flag);
7049 free (exit_succ);
7050 }
7051 free (entry_prob);
7052 free (entry_flag);
7053 free (entry_pred);
7054 bbs.release ();
7055
7056 return bb;
7057 }
7058
7059
7060 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7061 */
7062
7063 void
7064 dump_function_to_file (tree fndecl, FILE *file, int flags)
7065 {
7066 tree arg, var, old_current_fndecl = current_function_decl;
7067 struct function *dsf;
7068 bool ignore_topmost_bind = false, any_var = false;
7069 basic_block bb;
7070 tree chain;
7071 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7072 && decl_is_tm_clone (fndecl));
7073 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7074
7075 current_function_decl = fndecl;
7076 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7077
7078 arg = DECL_ARGUMENTS (fndecl);
7079 while (arg)
7080 {
7081 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7082 fprintf (file, " ");
7083 print_generic_expr (file, arg, dump_flags);
7084 if (flags & TDF_VERBOSE)
7085 print_node (file, "", arg, 4);
7086 if (DECL_CHAIN (arg))
7087 fprintf (file, ", ");
7088 arg = DECL_CHAIN (arg);
7089 }
7090 fprintf (file, ")\n");
7091
7092 if (flags & TDF_VERBOSE)
7093 print_node (file, "", fndecl, 2);
7094
7095 dsf = DECL_STRUCT_FUNCTION (fndecl);
7096 if (dsf && (flags & TDF_EH))
7097 dump_eh_tree (file, dsf);
7098
7099 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7100 {
7101 dump_node (fndecl, TDF_SLIM | flags, file);
7102 current_function_decl = old_current_fndecl;
7103 return;
7104 }
7105
7106 /* When GIMPLE is lowered, the variables are no longer available in
7107 BIND_EXPRs, so display them separately. */
7108 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7109 {
7110 unsigned ix;
7111 ignore_topmost_bind = true;
7112
7113 fprintf (file, "{\n");
7114 if (!vec_safe_is_empty (fun->local_decls))
7115 FOR_EACH_LOCAL_DECL (fun, ix, var)
7116 {
7117 print_generic_decl (file, var, flags);
7118 if (flags & TDF_VERBOSE)
7119 print_node (file, "", var, 4);
7120 fprintf (file, "\n");
7121
7122 any_var = true;
7123 }
7124 if (gimple_in_ssa_p (cfun))
7125 for (ix = 1; ix < num_ssa_names; ++ix)
7126 {
7127 tree name = ssa_name (ix);
7128 if (name && !SSA_NAME_VAR (name))
7129 {
7130 fprintf (file, " ");
7131 print_generic_expr (file, TREE_TYPE (name), flags);
7132 fprintf (file, " ");
7133 print_generic_expr (file, name, flags);
7134 fprintf (file, ";\n");
7135
7136 any_var = true;
7137 }
7138 }
7139 }
7140
7141 if (fun && fun->decl == fndecl
7142 && fun->cfg
7143 && basic_block_info_for_fn (fun))
7144 {
7145 /* If the CFG has been built, emit a CFG-based dump. */
7146 if (!ignore_topmost_bind)
7147 fprintf (file, "{\n");
7148
7149 if (any_var && n_basic_blocks_for_fn (fun))
7150 fprintf (file, "\n");
7151
7152 FOR_EACH_BB_FN (bb, fun)
7153 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7154
7155 fprintf (file, "}\n");
7156 }
7157 else if (DECL_SAVED_TREE (fndecl) == NULL)
7158 {
7159 /* The function is now in GIMPLE form but the CFG has not been
7160 built yet. Emit the single sequence of GIMPLE statements
7161 that make up its body. */
7162 gimple_seq body = gimple_body (fndecl);
7163
7164 if (gimple_seq_first_stmt (body)
7165 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7166 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7167 print_gimple_seq (file, body, 0, flags);
7168 else
7169 {
7170 if (!ignore_topmost_bind)
7171 fprintf (file, "{\n");
7172
7173 if (any_var)
7174 fprintf (file, "\n");
7175
7176 print_gimple_seq (file, body, 2, flags);
7177 fprintf (file, "}\n");
7178 }
7179 }
7180 else
7181 {
7182 int indent;
7183
7184 /* Make a tree based dump. */
7185 chain = DECL_SAVED_TREE (fndecl);
7186 if (chain && TREE_CODE (chain) == BIND_EXPR)
7187 {
7188 if (ignore_topmost_bind)
7189 {
7190 chain = BIND_EXPR_BODY (chain);
7191 indent = 2;
7192 }
7193 else
7194 indent = 0;
7195 }
7196 else
7197 {
7198 if (!ignore_topmost_bind)
7199 fprintf (file, "{\n");
7200 indent = 2;
7201 }
7202
7203 if (any_var)
7204 fprintf (file, "\n");
7205
7206 print_generic_stmt_indented (file, chain, flags, indent);
7207 if (ignore_topmost_bind)
7208 fprintf (file, "}\n");
7209 }
7210
7211 if (flags & TDF_ENUMERATE_LOCALS)
7212 dump_enumerated_decls (file, flags);
7213 fprintf (file, "\n\n");
7214
7215 current_function_decl = old_current_fndecl;
7216 }
7217
7218 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7219
7220 DEBUG_FUNCTION void
7221 debug_function (tree fn, int flags)
7222 {
7223 dump_function_to_file (fn, stderr, flags);
7224 }
7225
7226
7227 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7228
7229 static void
7230 print_pred_bbs (FILE *file, basic_block bb)
7231 {
7232 edge e;
7233 edge_iterator ei;
7234
7235 FOR_EACH_EDGE (e, ei, bb->preds)
7236 fprintf (file, "bb_%d ", e->src->index);
7237 }
7238
7239
7240 /* Print on FILE the indexes for the successors of basic_block BB. */
7241
7242 static void
7243 print_succ_bbs (FILE *file, basic_block bb)
7244 {
7245 edge e;
7246 edge_iterator ei;
7247
7248 FOR_EACH_EDGE (e, ei, bb->succs)
7249 fprintf (file, "bb_%d ", e->dest->index);
7250 }
7251
7252 /* Print to FILE the basic block BB following the VERBOSITY level. */
7253
7254 void
7255 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7256 {
7257 char *s_indent = (char *) alloca ((size_t) indent + 1);
7258 memset ((void *) s_indent, ' ', (size_t) indent);
7259 s_indent[indent] = '\0';
7260
7261 /* Print basic_block's header. */
7262 if (verbosity >= 2)
7263 {
7264 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7265 print_pred_bbs (file, bb);
7266 fprintf (file, "}, succs = {");
7267 print_succ_bbs (file, bb);
7268 fprintf (file, "})\n");
7269 }
7270
7271 /* Print basic_block's body. */
7272 if (verbosity >= 3)
7273 {
7274 fprintf (file, "%s {\n", s_indent);
7275 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7276 fprintf (file, "%s }\n", s_indent);
7277 }
7278 }
7279
7280 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7281
7282 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7283 VERBOSITY level this outputs the contents of the loop, or just its
7284 structure. */
7285
7286 static void
7287 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7288 {
7289 char *s_indent;
7290 basic_block bb;
7291
7292 if (loop == NULL)
7293 return;
7294
7295 s_indent = (char *) alloca ((size_t) indent + 1);
7296 memset ((void *) s_indent, ' ', (size_t) indent);
7297 s_indent[indent] = '\0';
7298
7299 /* Print loop's header. */
7300 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7301 if (loop->header)
7302 fprintf (file, "header = %d", loop->header->index);
7303 else
7304 {
7305 fprintf (file, "deleted)\n");
7306 return;
7307 }
7308 if (loop->latch)
7309 fprintf (file, ", latch = %d", loop->latch->index);
7310 else
7311 fprintf (file, ", multiple latches");
7312 fprintf (file, ", niter = ");
7313 print_generic_expr (file, loop->nb_iterations, 0);
7314
7315 if (loop->any_upper_bound)
7316 {
7317 fprintf (file, ", upper_bound = ");
7318 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7319 }
7320
7321 if (loop->any_estimate)
7322 {
7323 fprintf (file, ", estimate = ");
7324 dump_double_int (file, loop->nb_iterations_estimate, true);
7325 }
7326 fprintf (file, ")\n");
7327
7328 /* Print loop's body. */
7329 if (verbosity >= 1)
7330 {
7331 fprintf (file, "%s{\n", s_indent);
7332 FOR_EACH_BB_FN (bb, cfun)
7333 if (bb->loop_father == loop)
7334 print_loops_bb (file, bb, indent, verbosity);
7335
7336 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7337 fprintf (file, "%s}\n", s_indent);
7338 }
7339 }
7340
7341 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7342 spaces. Following VERBOSITY level this outputs the contents of the
7343 loop, or just its structure. */
7344
7345 static void
7346 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7347 int verbosity)
7348 {
7349 if (loop == NULL)
7350 return;
7351
7352 print_loop (file, loop, indent, verbosity);
7353 print_loop_and_siblings (file, loop->next, indent, verbosity);
7354 }
7355
7356 /* Follow a CFG edge from the entry point of the program, and on entry
7357 of a loop, pretty print the loop structure on FILE. */
7358
7359 void
7360 print_loops (FILE *file, int verbosity)
7361 {
7362 basic_block bb;
7363
7364 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7365 if (bb && bb->loop_father)
7366 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7367 }
7368
7369 /* Dump a loop. */
7370
7371 DEBUG_FUNCTION void
7372 debug (struct loop &ref)
7373 {
7374 print_loop (stderr, &ref, 0, /*verbosity*/0);
7375 }
7376
7377 DEBUG_FUNCTION void
7378 debug (struct loop *ptr)
7379 {
7380 if (ptr)
7381 debug (*ptr);
7382 else
7383 fprintf (stderr, "<nil>\n");
7384 }
7385
7386 /* Dump a loop verbosely. */
7387
7388 DEBUG_FUNCTION void
7389 debug_verbose (struct loop &ref)
7390 {
7391 print_loop (stderr, &ref, 0, /*verbosity*/3);
7392 }
7393
7394 DEBUG_FUNCTION void
7395 debug_verbose (struct loop *ptr)
7396 {
7397 if (ptr)
7398 debug (*ptr);
7399 else
7400 fprintf (stderr, "<nil>\n");
7401 }
7402
7403
7404 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7405
7406 DEBUG_FUNCTION void
7407 debug_loops (int verbosity)
7408 {
7409 print_loops (stderr, verbosity);
7410 }
7411
7412 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7413
7414 DEBUG_FUNCTION void
7415 debug_loop (struct loop *loop, int verbosity)
7416 {
7417 print_loop (stderr, loop, 0, verbosity);
7418 }
7419
7420 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7421 level. */
7422
7423 DEBUG_FUNCTION void
7424 debug_loop_num (unsigned num, int verbosity)
7425 {
7426 debug_loop (get_loop (cfun, num), verbosity);
7427 }
7428
7429 /* Return true if BB ends with a call, possibly followed by some
7430 instructions that must stay with the call. Return false,
7431 otherwise. */
7432
7433 static bool
7434 gimple_block_ends_with_call_p (basic_block bb)
7435 {
7436 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7437 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7438 }
7439
7440
7441 /* Return true if BB ends with a conditional branch. Return false,
7442 otherwise. */
7443
7444 static bool
7445 gimple_block_ends_with_condjump_p (const_basic_block bb)
7446 {
7447 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7448 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7449 }
7450
7451
7452 /* Return true if we need to add fake edge to exit at statement T.
7453 Helper function for gimple_flow_call_edges_add. */
7454
7455 static bool
7456 need_fake_edge_p (gimple t)
7457 {
7458 tree fndecl = NULL_TREE;
7459 int call_flags = 0;
7460
7461 /* NORETURN and LONGJMP calls already have an edge to exit.
7462 CONST and PURE calls do not need one.
7463 We don't currently check for CONST and PURE here, although
7464 it would be a good idea, because those attributes are
7465 figured out from the RTL in mark_constant_function, and
7466 the counter incrementation code from -fprofile-arcs
7467 leads to different results from -fbranch-probabilities. */
7468 if (is_gimple_call (t))
7469 {
7470 fndecl = gimple_call_fndecl (t);
7471 call_flags = gimple_call_flags (t);
7472 }
7473
7474 if (is_gimple_call (t)
7475 && fndecl
7476 && DECL_BUILT_IN (fndecl)
7477 && (call_flags & ECF_NOTHROW)
7478 && !(call_flags & ECF_RETURNS_TWICE)
7479 /* fork() doesn't really return twice, but the effect of
7480 wrapping it in __gcov_fork() which calls __gcov_flush()
7481 and clears the counters before forking has the same
7482 effect as returning twice. Force a fake edge. */
7483 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7484 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7485 return false;
7486
7487 if (is_gimple_call (t))
7488 {
7489 edge_iterator ei;
7490 edge e;
7491 basic_block bb;
7492
7493 if (!(call_flags & ECF_NORETURN))
7494 return true;
7495
7496 bb = gimple_bb (t);
7497 FOR_EACH_EDGE (e, ei, bb->succs)
7498 if ((e->flags & EDGE_FAKE) == 0)
7499 return true;
7500 }
7501
7502 if (gimple_code (t) == GIMPLE_ASM
7503 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7504 return true;
7505
7506 return false;
7507 }
7508
7509
7510 /* Add fake edges to the function exit for any non constant and non
7511 noreturn calls (or noreturn calls with EH/abnormal edges),
7512 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7513 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7514 that were split.
7515
7516 The goal is to expose cases in which entering a basic block does
7517 not imply that all subsequent instructions must be executed. */
7518
7519 static int
7520 gimple_flow_call_edges_add (sbitmap blocks)
7521 {
7522 int i;
7523 int blocks_split = 0;
7524 int last_bb = last_basic_block_for_fn (cfun);
7525 bool check_last_block = false;
7526
7527 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7528 return 0;
7529
7530 if (! blocks)
7531 check_last_block = true;
7532 else
7533 check_last_block = bitmap_bit_p (blocks,
7534 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
7535
7536 /* In the last basic block, before epilogue generation, there will be
7537 a fallthru edge to EXIT. Special care is required if the last insn
7538 of the last basic block is a call because make_edge folds duplicate
7539 edges, which would result in the fallthru edge also being marked
7540 fake, which would result in the fallthru edge being removed by
7541 remove_fake_edges, which would result in an invalid CFG.
7542
7543 Moreover, we can't elide the outgoing fake edge, since the block
7544 profiler needs to take this into account in order to solve the minimal
7545 spanning tree in the case that the call doesn't return.
7546
7547 Handle this by adding a dummy instruction in a new last basic block. */
7548 if (check_last_block)
7549 {
7550 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7551 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7552 gimple t = NULL;
7553
7554 if (!gsi_end_p (gsi))
7555 t = gsi_stmt (gsi);
7556
7557 if (t && need_fake_edge_p (t))
7558 {
7559 edge e;
7560
7561 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7562 if (e)
7563 {
7564 gsi_insert_on_edge (e, gimple_build_nop ());
7565 gsi_commit_edge_inserts ();
7566 }
7567 }
7568 }
7569
7570 /* Now add fake edges to the function exit for any non constant
7571 calls since there is no way that we can determine if they will
7572 return or not... */
7573 for (i = 0; i < last_bb; i++)
7574 {
7575 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7576 gimple_stmt_iterator gsi;
7577 gimple stmt, last_stmt;
7578
7579 if (!bb)
7580 continue;
7581
7582 if (blocks && !bitmap_bit_p (blocks, i))
7583 continue;
7584
7585 gsi = gsi_last_nondebug_bb (bb);
7586 if (!gsi_end_p (gsi))
7587 {
7588 last_stmt = gsi_stmt (gsi);
7589 do
7590 {
7591 stmt = gsi_stmt (gsi);
7592 if (need_fake_edge_p (stmt))
7593 {
7594 edge e;
7595
7596 /* The handling above of the final block before the
7597 epilogue should be enough to verify that there is
7598 no edge to the exit block in CFG already.
7599 Calling make_edge in such case would cause us to
7600 mark that edge as fake and remove it later. */
7601 #ifdef ENABLE_CHECKING
7602 if (stmt == last_stmt)
7603 {
7604 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7605 gcc_assert (e == NULL);
7606 }
7607 #endif
7608
7609 /* Note that the following may create a new basic block
7610 and renumber the existing basic blocks. */
7611 if (stmt != last_stmt)
7612 {
7613 e = split_block (bb, stmt);
7614 if (e)
7615 blocks_split++;
7616 }
7617 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
7618 }
7619 gsi_prev (&gsi);
7620 }
7621 while (!gsi_end_p (gsi));
7622 }
7623 }
7624
7625 if (blocks_split)
7626 verify_flow_info ();
7627
7628 return blocks_split;
7629 }
7630
7631 /* Removes edge E and all the blocks dominated by it, and updates dominance
7632 information. The IL in E->src needs to be updated separately.
7633 If dominance info is not available, only the edge E is removed.*/
7634
7635 void
7636 remove_edge_and_dominated_blocks (edge e)
7637 {
7638 vec<basic_block> bbs_to_remove = vNULL;
7639 vec<basic_block> bbs_to_fix_dom = vNULL;
7640 bitmap df, df_idom;
7641 edge f;
7642 edge_iterator ei;
7643 bool none_removed = false;
7644 unsigned i;
7645 basic_block bb, dbb;
7646 bitmap_iterator bi;
7647
7648 if (!dom_info_available_p (CDI_DOMINATORS))
7649 {
7650 remove_edge (e);
7651 return;
7652 }
7653
7654 /* No updating is needed for edges to exit. */
7655 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7656 {
7657 if (cfgcleanup_altered_bbs)
7658 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7659 remove_edge (e);
7660 return;
7661 }
7662
7663 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7664 that is not dominated by E->dest, then this set is empty. Otherwise,
7665 all the basic blocks dominated by E->dest are removed.
7666
7667 Also, to DF_IDOM we store the immediate dominators of the blocks in
7668 the dominance frontier of E (i.e., of the successors of the
7669 removed blocks, if there are any, and of E->dest otherwise). */
7670 FOR_EACH_EDGE (f, ei, e->dest->preds)
7671 {
7672 if (f == e)
7673 continue;
7674
7675 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7676 {
7677 none_removed = true;
7678 break;
7679 }
7680 }
7681
7682 df = BITMAP_ALLOC (NULL);
7683 df_idom = BITMAP_ALLOC (NULL);
7684
7685 if (none_removed)
7686 bitmap_set_bit (df_idom,
7687 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7688 else
7689 {
7690 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7691 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7692 {
7693 FOR_EACH_EDGE (f, ei, bb->succs)
7694 {
7695 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
7696 bitmap_set_bit (df, f->dest->index);
7697 }
7698 }
7699 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7700 bitmap_clear_bit (df, bb->index);
7701
7702 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7703 {
7704 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7705 bitmap_set_bit (df_idom,
7706 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7707 }
7708 }
7709
7710 if (cfgcleanup_altered_bbs)
7711 {
7712 /* Record the set of the altered basic blocks. */
7713 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7714 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7715 }
7716
7717 /* Remove E and the cancelled blocks. */
7718 if (none_removed)
7719 remove_edge (e);
7720 else
7721 {
7722 /* Walk backwards so as to get a chance to substitute all
7723 released DEFs into debug stmts. See
7724 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7725 details. */
7726 for (i = bbs_to_remove.length (); i-- > 0; )
7727 delete_basic_block (bbs_to_remove[i]);
7728 }
7729
7730 /* Update the dominance information. The immediate dominator may change only
7731 for blocks whose immediate dominator belongs to DF_IDOM:
7732
7733 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7734 removal. Let Z the arbitrary block such that idom(Z) = Y and
7735 Z dominates X after the removal. Before removal, there exists a path P
7736 from Y to X that avoids Z. Let F be the last edge on P that is
7737 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7738 dominates W, and because of P, Z does not dominate W), and W belongs to
7739 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7740 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7741 {
7742 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7743 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7744 dbb;
7745 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7746 bbs_to_fix_dom.safe_push (dbb);
7747 }
7748
7749 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7750
7751 BITMAP_FREE (df);
7752 BITMAP_FREE (df_idom);
7753 bbs_to_remove.release ();
7754 bbs_to_fix_dom.release ();
7755 }
7756
7757 /* Purge dead EH edges from basic block BB. */
7758
7759 bool
7760 gimple_purge_dead_eh_edges (basic_block bb)
7761 {
7762 bool changed = false;
7763 edge e;
7764 edge_iterator ei;
7765 gimple stmt = last_stmt (bb);
7766
7767 if (stmt && stmt_can_throw_internal (stmt))
7768 return false;
7769
7770 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7771 {
7772 if (e->flags & EDGE_EH)
7773 {
7774 remove_edge_and_dominated_blocks (e);
7775 changed = true;
7776 }
7777 else
7778 ei_next (&ei);
7779 }
7780
7781 return changed;
7782 }
7783
7784 /* Purge dead EH edges from basic block listed in BLOCKS. */
7785
7786 bool
7787 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7788 {
7789 bool changed = false;
7790 unsigned i;
7791 bitmap_iterator bi;
7792
7793 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7794 {
7795 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7796
7797 /* Earlier gimple_purge_dead_eh_edges could have removed
7798 this basic block already. */
7799 gcc_assert (bb || changed);
7800 if (bb != NULL)
7801 changed |= gimple_purge_dead_eh_edges (bb);
7802 }
7803
7804 return changed;
7805 }
7806
7807 /* Purge dead abnormal call edges from basic block BB. */
7808
7809 bool
7810 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7811 {
7812 bool changed = false;
7813 edge e;
7814 edge_iterator ei;
7815 gimple stmt = last_stmt (bb);
7816
7817 if (!cfun->has_nonlocal_label
7818 && !cfun->calls_setjmp)
7819 return false;
7820
7821 if (stmt && stmt_can_make_abnormal_goto (stmt))
7822 return false;
7823
7824 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7825 {
7826 if (e->flags & EDGE_ABNORMAL)
7827 {
7828 if (e->flags & EDGE_FALLTHRU)
7829 e->flags &= ~EDGE_ABNORMAL;
7830 else
7831 remove_edge_and_dominated_blocks (e);
7832 changed = true;
7833 }
7834 else
7835 ei_next (&ei);
7836 }
7837
7838 return changed;
7839 }
7840
7841 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7842
7843 bool
7844 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7845 {
7846 bool changed = false;
7847 unsigned i;
7848 bitmap_iterator bi;
7849
7850 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7851 {
7852 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7853
7854 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7855 this basic block already. */
7856 gcc_assert (bb || changed);
7857 if (bb != NULL)
7858 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7859 }
7860
7861 return changed;
7862 }
7863
7864 /* This function is called whenever a new edge is created or
7865 redirected. */
7866
7867 static void
7868 gimple_execute_on_growing_pred (edge e)
7869 {
7870 basic_block bb = e->dest;
7871
7872 if (!gimple_seq_empty_p (phi_nodes (bb)))
7873 reserve_phi_args_for_new_edge (bb);
7874 }
7875
7876 /* This function is called immediately before edge E is removed from
7877 the edge vector E->dest->preds. */
7878
7879 static void
7880 gimple_execute_on_shrinking_pred (edge e)
7881 {
7882 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7883 remove_phi_args (e);
7884 }
7885
7886 /*---------------------------------------------------------------------------
7887 Helper functions for Loop versioning
7888 ---------------------------------------------------------------------------*/
7889
7890 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7891 of 'first'. Both of them are dominated by 'new_head' basic block. When
7892 'new_head' was created by 'second's incoming edge it received phi arguments
7893 on the edge by split_edge(). Later, additional edge 'e' was created to
7894 connect 'new_head' and 'first'. Now this routine adds phi args on this
7895 additional edge 'e' that new_head to second edge received as part of edge
7896 splitting. */
7897
7898 static void
7899 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7900 basic_block new_head, edge e)
7901 {
7902 gimple phi1, phi2;
7903 gimple_stmt_iterator psi1, psi2;
7904 tree def;
7905 edge e2 = find_edge (new_head, second);
7906
7907 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7908 edge, we should always have an edge from NEW_HEAD to SECOND. */
7909 gcc_assert (e2 != NULL);
7910
7911 /* Browse all 'second' basic block phi nodes and add phi args to
7912 edge 'e' for 'first' head. PHI args are always in correct order. */
7913
7914 for (psi2 = gsi_start_phis (second),
7915 psi1 = gsi_start_phis (first);
7916 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7917 gsi_next (&psi2), gsi_next (&psi1))
7918 {
7919 phi1 = gsi_stmt (psi1);
7920 phi2 = gsi_stmt (psi2);
7921 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7922 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7923 }
7924 }
7925
7926
7927 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7928 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7929 the destination of the ELSE part. */
7930
7931 static void
7932 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7933 basic_block second_head ATTRIBUTE_UNUSED,
7934 basic_block cond_bb, void *cond_e)
7935 {
7936 gimple_stmt_iterator gsi;
7937 gimple new_cond_expr;
7938 tree cond_expr = (tree) cond_e;
7939 edge e0;
7940
7941 /* Build new conditional expr */
7942 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7943 NULL_TREE, NULL_TREE);
7944
7945 /* Add new cond in cond_bb. */
7946 gsi = gsi_last_bb (cond_bb);
7947 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7948
7949 /* Adjust edges appropriately to connect new head with first head
7950 as well as second head. */
7951 e0 = single_succ_edge (cond_bb);
7952 e0->flags &= ~EDGE_FALLTHRU;
7953 e0->flags |= EDGE_FALSE_VALUE;
7954 }
7955
7956
7957 /* Do book-keeping of basic block BB for the profile consistency checker.
7958 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7959 then do post-pass accounting. Store the counting in RECORD. */
7960 static void
7961 gimple_account_profile_record (basic_block bb, int after_pass,
7962 struct profile_record *record)
7963 {
7964 gimple_stmt_iterator i;
7965 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7966 {
7967 record->size[after_pass]
7968 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7969 if (profile_status_for_fn (cfun) == PROFILE_READ)
7970 record->time[after_pass]
7971 += estimate_num_insns (gsi_stmt (i),
7972 &eni_time_weights) * bb->count;
7973 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
7974 record->time[after_pass]
7975 += estimate_num_insns (gsi_stmt (i),
7976 &eni_time_weights) * bb->frequency;
7977 }
7978 }
7979
7980 struct cfg_hooks gimple_cfg_hooks = {
7981 "gimple",
7982 gimple_verify_flow_info,
7983 gimple_dump_bb, /* dump_bb */
7984 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7985 create_bb, /* create_basic_block */
7986 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7987 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7988 gimple_can_remove_branch_p, /* can_remove_branch_p */
7989 remove_bb, /* delete_basic_block */
7990 gimple_split_block, /* split_block */
7991 gimple_move_block_after, /* move_block_after */
7992 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7993 gimple_merge_blocks, /* merge_blocks */
7994 gimple_predict_edge, /* predict_edge */
7995 gimple_predicted_by_p, /* predicted_by_p */
7996 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7997 gimple_duplicate_bb, /* duplicate_block */
7998 gimple_split_edge, /* split_edge */
7999 gimple_make_forwarder_block, /* make_forward_block */
8000 NULL, /* tidy_fallthru_edge */
8001 NULL, /* force_nonfallthru */
8002 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8003 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8004 gimple_flow_call_edges_add, /* flow_call_edges_add */
8005 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8006 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8007 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8008 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8009 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8010 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8011 flush_pending_stmts, /* flush_pending_stmts */
8012 gimple_empty_block_p, /* block_empty_p */
8013 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8014 gimple_account_profile_record,
8015 };
8016
8017
8018 /* Split all critical edges. */
8019
8020 unsigned int
8021 split_critical_edges (void)
8022 {
8023 basic_block bb;
8024 edge e;
8025 edge_iterator ei;
8026
8027 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8028 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8029 mappings around the calls to split_edge. */
8030 start_recording_case_labels ();
8031 FOR_ALL_BB_FN (bb, cfun)
8032 {
8033 FOR_EACH_EDGE (e, ei, bb->succs)
8034 {
8035 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8036 split_edge (e);
8037 /* PRE inserts statements to edges and expects that
8038 since split_critical_edges was done beforehand, committing edge
8039 insertions will not split more edges. In addition to critical
8040 edges we must split edges that have multiple successors and
8041 end by control flow statements, such as RESX.
8042 Go ahead and split them too. This matches the logic in
8043 gimple_find_edge_insert_loc. */
8044 else if ((!single_pred_p (e->dest)
8045 || !gimple_seq_empty_p (phi_nodes (e->dest))
8046 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8047 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8048 && !(e->flags & EDGE_ABNORMAL))
8049 {
8050 gimple_stmt_iterator gsi;
8051
8052 gsi = gsi_last_bb (e->src);
8053 if (!gsi_end_p (gsi)
8054 && stmt_ends_bb_p (gsi_stmt (gsi))
8055 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8056 && !gimple_call_builtin_p (gsi_stmt (gsi),
8057 BUILT_IN_RETURN)))
8058 split_edge (e);
8059 }
8060 }
8061 }
8062 end_recording_case_labels ();
8063 return 0;
8064 }
8065
8066 namespace {
8067
8068 const pass_data pass_data_split_crit_edges =
8069 {
8070 GIMPLE_PASS, /* type */
8071 "crited", /* name */
8072 OPTGROUP_NONE, /* optinfo_flags */
8073 false, /* has_gate */
8074 true, /* has_execute */
8075 TV_TREE_SPLIT_EDGES, /* tv_id */
8076 PROP_cfg, /* properties_required */
8077 PROP_no_crit_edges, /* properties_provided */
8078 0, /* properties_destroyed */
8079 0, /* todo_flags_start */
8080 TODO_verify_flow, /* todo_flags_finish */
8081 };
8082
8083 class pass_split_crit_edges : public gimple_opt_pass
8084 {
8085 public:
8086 pass_split_crit_edges (gcc::context *ctxt)
8087 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8088 {}
8089
8090 /* opt_pass methods: */
8091 unsigned int execute () { return split_critical_edges (); }
8092
8093 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8094 }; // class pass_split_crit_edges
8095
8096 } // anon namespace
8097
8098 gimple_opt_pass *
8099 make_pass_split_crit_edges (gcc::context *ctxt)
8100 {
8101 return new pass_split_crit_edges (ctxt);
8102 }
8103
8104
8105 /* Build a ternary operation and gimplify it. Emit code before GSI.
8106 Return the gimple_val holding the result. */
8107
8108 tree
8109 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8110 tree type, tree a, tree b, tree c)
8111 {
8112 tree ret;
8113 location_t loc = gimple_location (gsi_stmt (*gsi));
8114
8115 ret = fold_build3_loc (loc, code, type, a, b, c);
8116 STRIP_NOPS (ret);
8117
8118 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8119 GSI_SAME_STMT);
8120 }
8121
8122 /* Build a binary operation and gimplify it. Emit code before GSI.
8123 Return the gimple_val holding the result. */
8124
8125 tree
8126 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8127 tree type, tree a, tree b)
8128 {
8129 tree ret;
8130
8131 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8132 STRIP_NOPS (ret);
8133
8134 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8135 GSI_SAME_STMT);
8136 }
8137
8138 /* Build a unary operation and gimplify it. Emit code before GSI.
8139 Return the gimple_val holding the result. */
8140
8141 tree
8142 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8143 tree a)
8144 {
8145 tree ret;
8146
8147 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8148 STRIP_NOPS (ret);
8149
8150 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8151 GSI_SAME_STMT);
8152 }
8153
8154
8155 \f
8156 /* Emit return warnings. */
8157
8158 static unsigned int
8159 execute_warn_function_return (void)
8160 {
8161 source_location location;
8162 gimple last;
8163 edge e;
8164 edge_iterator ei;
8165
8166 if (!targetm.warn_func_return (cfun->decl))
8167 return 0;
8168
8169 /* If we have a path to EXIT, then we do return. */
8170 if (TREE_THIS_VOLATILE (cfun->decl)
8171 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0)
8172 {
8173 location = UNKNOWN_LOCATION;
8174 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8175 {
8176 last = last_stmt (e->src);
8177 if ((gimple_code (last) == GIMPLE_RETURN
8178 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8179 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8180 break;
8181 }
8182 if (location == UNKNOWN_LOCATION)
8183 location = cfun->function_end_locus;
8184 warning_at (location, 0, "%<noreturn%> function does return");
8185 }
8186
8187 /* If we see "return;" in some basic block, then we do reach the end
8188 without returning a value. */
8189 else if (warn_return_type
8190 && !TREE_NO_WARNING (cfun->decl)
8191 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0
8192 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
8193 {
8194 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8195 {
8196 gimple last = last_stmt (e->src);
8197 if (gimple_code (last) == GIMPLE_RETURN
8198 && gimple_return_retval (last) == NULL
8199 && !gimple_no_warning_p (last))
8200 {
8201 location = gimple_location (last);
8202 if (location == UNKNOWN_LOCATION)
8203 location = cfun->function_end_locus;
8204 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8205 TREE_NO_WARNING (cfun->decl) = 1;
8206 break;
8207 }
8208 }
8209 }
8210 return 0;
8211 }
8212
8213
8214 /* Given a basic block B which ends with a conditional and has
8215 precisely two successors, determine which of the edges is taken if
8216 the conditional is true and which is taken if the conditional is
8217 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8218
8219 void
8220 extract_true_false_edges_from_block (basic_block b,
8221 edge *true_edge,
8222 edge *false_edge)
8223 {
8224 edge e = EDGE_SUCC (b, 0);
8225
8226 if (e->flags & EDGE_TRUE_VALUE)
8227 {
8228 *true_edge = e;
8229 *false_edge = EDGE_SUCC (b, 1);
8230 }
8231 else
8232 {
8233 *false_edge = e;
8234 *true_edge = EDGE_SUCC (b, 1);
8235 }
8236 }
8237
8238 namespace {
8239
8240 const pass_data pass_data_warn_function_return =
8241 {
8242 GIMPLE_PASS, /* type */
8243 "*warn_function_return", /* name */
8244 OPTGROUP_NONE, /* optinfo_flags */
8245 false, /* has_gate */
8246 true, /* has_execute */
8247 TV_NONE, /* tv_id */
8248 PROP_cfg, /* properties_required */
8249 0, /* properties_provided */
8250 0, /* properties_destroyed */
8251 0, /* todo_flags_start */
8252 0, /* todo_flags_finish */
8253 };
8254
8255 class pass_warn_function_return : public gimple_opt_pass
8256 {
8257 public:
8258 pass_warn_function_return (gcc::context *ctxt)
8259 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8260 {}
8261
8262 /* opt_pass methods: */
8263 unsigned int execute () { return execute_warn_function_return (); }
8264
8265 }; // class pass_warn_function_return
8266
8267 } // anon namespace
8268
8269 gimple_opt_pass *
8270 make_pass_warn_function_return (gcc::context *ctxt)
8271 {
8272 return new pass_warn_function_return (ctxt);
8273 }
8274
8275 /* Walk a gimplified function and warn for functions whose return value is
8276 ignored and attribute((warn_unused_result)) is set. This is done before
8277 inlining, so we don't have to worry about that. */
8278
8279 static void
8280 do_warn_unused_result (gimple_seq seq)
8281 {
8282 tree fdecl, ftype;
8283 gimple_stmt_iterator i;
8284
8285 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8286 {
8287 gimple g = gsi_stmt (i);
8288
8289 switch (gimple_code (g))
8290 {
8291 case GIMPLE_BIND:
8292 do_warn_unused_result (gimple_bind_body (g));
8293 break;
8294 case GIMPLE_TRY:
8295 do_warn_unused_result (gimple_try_eval (g));
8296 do_warn_unused_result (gimple_try_cleanup (g));
8297 break;
8298 case GIMPLE_CATCH:
8299 do_warn_unused_result (gimple_catch_handler (g));
8300 break;
8301 case GIMPLE_EH_FILTER:
8302 do_warn_unused_result (gimple_eh_filter_failure (g));
8303 break;
8304
8305 case GIMPLE_CALL:
8306 if (gimple_call_lhs (g))
8307 break;
8308 if (gimple_call_internal_p (g))
8309 break;
8310
8311 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8312 LHS. All calls whose value is ignored should be
8313 represented like this. Look for the attribute. */
8314 fdecl = gimple_call_fndecl (g);
8315 ftype = gimple_call_fntype (g);
8316
8317 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8318 {
8319 location_t loc = gimple_location (g);
8320
8321 if (fdecl)
8322 warning_at (loc, OPT_Wunused_result,
8323 "ignoring return value of %qD, "
8324 "declared with attribute warn_unused_result",
8325 fdecl);
8326 else
8327 warning_at (loc, OPT_Wunused_result,
8328 "ignoring return value of function "
8329 "declared with attribute warn_unused_result");
8330 }
8331 break;
8332
8333 default:
8334 /* Not a container, not a call, or a call whose value is used. */
8335 break;
8336 }
8337 }
8338 }
8339
8340 static unsigned int
8341 run_warn_unused_result (void)
8342 {
8343 do_warn_unused_result (gimple_body (current_function_decl));
8344 return 0;
8345 }
8346
8347 static bool
8348 gate_warn_unused_result (void)
8349 {
8350 return flag_warn_unused_result;
8351 }
8352
8353 namespace {
8354
8355 const pass_data pass_data_warn_unused_result =
8356 {
8357 GIMPLE_PASS, /* type */
8358 "*warn_unused_result", /* name */
8359 OPTGROUP_NONE, /* optinfo_flags */
8360 true, /* has_gate */
8361 true, /* has_execute */
8362 TV_NONE, /* tv_id */
8363 PROP_gimple_any, /* properties_required */
8364 0, /* properties_provided */
8365 0, /* properties_destroyed */
8366 0, /* todo_flags_start */
8367 0, /* todo_flags_finish */
8368 };
8369
8370 class pass_warn_unused_result : public gimple_opt_pass
8371 {
8372 public:
8373 pass_warn_unused_result (gcc::context *ctxt)
8374 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8375 {}
8376
8377 /* opt_pass methods: */
8378 bool gate () { return gate_warn_unused_result (); }
8379 unsigned int execute () { return run_warn_unused_result (); }
8380
8381 }; // class pass_warn_unused_result
8382
8383 } // anon namespace
8384
8385 gimple_opt_pass *
8386 make_pass_warn_unused_result (gcc::context *ctxt)
8387 {
8388 return new pass_warn_unused_result (ctxt);
8389 }
8390
8391 /* IPA passes, compilation of earlier functions or inlining
8392 might have changed some properties, such as marked functions nothrow,
8393 pure, const or noreturn.
8394 Remove redundant edges and basic blocks, and create new ones if necessary.
8395
8396 This pass can't be executed as stand alone pass from pass manager, because
8397 in between inlining and this fixup the verify_flow_info would fail. */
8398
8399 unsigned int
8400 execute_fixup_cfg (void)
8401 {
8402 basic_block bb;
8403 gimple_stmt_iterator gsi;
8404 int todo = gimple_in_ssa_p (cfun) ? TODO_verify_ssa : 0;
8405 gcov_type count_scale;
8406 edge e;
8407 edge_iterator ei;
8408
8409 count_scale
8410 = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl)->count,
8411 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8412
8413 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8414 cgraph_get_node (current_function_decl)->count;
8415 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8416 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8417 count_scale);
8418
8419 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8420 e->count = apply_scale (e->count, count_scale);
8421
8422 FOR_EACH_BB_FN (bb, cfun)
8423 {
8424 bb->count = apply_scale (bb->count, count_scale);
8425 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
8426 {
8427 gimple stmt = gsi_stmt (gsi);
8428 tree decl = is_gimple_call (stmt)
8429 ? gimple_call_fndecl (stmt)
8430 : NULL;
8431 if (decl)
8432 {
8433 int flags = gimple_call_flags (stmt);
8434 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8435 {
8436 if (gimple_purge_dead_abnormal_call_edges (bb))
8437 todo |= TODO_cleanup_cfg;
8438
8439 if (gimple_in_ssa_p (cfun))
8440 {
8441 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8442 update_stmt (stmt);
8443 }
8444 }
8445
8446 if (flags & ECF_NORETURN
8447 && fixup_noreturn_call (stmt))
8448 todo |= TODO_cleanup_cfg;
8449 }
8450
8451 if (maybe_clean_eh_stmt (stmt)
8452 && gimple_purge_dead_eh_edges (bb))
8453 todo |= TODO_cleanup_cfg;
8454 }
8455
8456 FOR_EACH_EDGE (e, ei, bb->succs)
8457 e->count = apply_scale (e->count, count_scale);
8458
8459 /* If we have a basic block with no successors that does not
8460 end with a control statement or a noreturn call end it with
8461 a call to __builtin_unreachable. This situation can occur
8462 when inlining a noreturn call that does in fact return. */
8463 if (EDGE_COUNT (bb->succs) == 0)
8464 {
8465 gimple stmt = last_stmt (bb);
8466 if (!stmt
8467 || (!is_ctrl_stmt (stmt)
8468 && (!is_gimple_call (stmt)
8469 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
8470 {
8471 stmt = gimple_build_call
8472 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
8473 gimple_stmt_iterator gsi = gsi_last_bb (bb);
8474 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
8475 }
8476 }
8477 }
8478 if (count_scale != REG_BR_PROB_BASE)
8479 compute_function_frequency ();
8480
8481 /* We just processed all calls. */
8482 if (cfun->gimple_df)
8483 vec_free (MODIFIED_NORETURN_CALLS (cfun));
8484
8485 /* Dump a textual representation of the flowgraph. */
8486 if (dump_file)
8487 gimple_dump_cfg (dump_file, dump_flags);
8488
8489 if (current_loops
8490 && (todo & TODO_cleanup_cfg))
8491 loops_state_set (LOOPS_NEED_FIXUP);
8492
8493 return todo;
8494 }
8495
8496 namespace {
8497
8498 const pass_data pass_data_fixup_cfg =
8499 {
8500 GIMPLE_PASS, /* type */
8501 "*free_cfg_annotations", /* name */
8502 OPTGROUP_NONE, /* optinfo_flags */
8503 false, /* has_gate */
8504 true, /* has_execute */
8505 TV_NONE, /* tv_id */
8506 PROP_cfg, /* properties_required */
8507 0, /* properties_provided */
8508 0, /* properties_destroyed */
8509 0, /* todo_flags_start */
8510 0, /* todo_flags_finish */
8511 };
8512
8513 class pass_fixup_cfg : public gimple_opt_pass
8514 {
8515 public:
8516 pass_fixup_cfg (gcc::context *ctxt)
8517 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
8518 {}
8519
8520 /* opt_pass methods: */
8521 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
8522 unsigned int execute () { return execute_fixup_cfg (); }
8523
8524 }; // class pass_fixup_cfg
8525
8526 } // anon namespace
8527
8528 gimple_opt_pass *
8529 make_pass_fixup_cfg (gcc::context *ctxt)
8530 {
8531 return new pass_fixup_cfg (ctxt);
8532 }
8533
8534 /* Garbage collection support for edge_def. */
8535
8536 extern void gt_ggc_mx (tree&);
8537 extern void gt_ggc_mx (gimple&);
8538 extern void gt_ggc_mx (rtx&);
8539 extern void gt_ggc_mx (basic_block&);
8540
8541 void
8542 gt_ggc_mx (edge_def *e)
8543 {
8544 tree block = LOCATION_BLOCK (e->goto_locus);
8545 gt_ggc_mx (e->src);
8546 gt_ggc_mx (e->dest);
8547 if (current_ir_type () == IR_GIMPLE)
8548 gt_ggc_mx (e->insns.g);
8549 else
8550 gt_ggc_mx (e->insns.r);
8551 gt_ggc_mx (block);
8552 }
8553
8554 /* PCH support for edge_def. */
8555
8556 extern void gt_pch_nx (tree&);
8557 extern void gt_pch_nx (gimple&);
8558 extern void gt_pch_nx (rtx&);
8559 extern void gt_pch_nx (basic_block&);
8560
8561 void
8562 gt_pch_nx (edge_def *e)
8563 {
8564 tree block = LOCATION_BLOCK (e->goto_locus);
8565 gt_pch_nx (e->src);
8566 gt_pch_nx (e->dest);
8567 if (current_ir_type () == IR_GIMPLE)
8568 gt_pch_nx (e->insns.g);
8569 else
8570 gt_pch_nx (e->insns.r);
8571 gt_pch_nx (block);
8572 }
8573
8574 void
8575 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8576 {
8577 tree block = LOCATION_BLOCK (e->goto_locus);
8578 op (&(e->src), cookie);
8579 op (&(e->dest), cookie);
8580 if (current_ir_type () == IR_GIMPLE)
8581 op (&(e->insns.g), cookie);
8582 else
8583 op (&(e->insns.r), cookie);
8584 op (&(block), cookie);
8585 }