inclhack.def (hpux_imaginary_i): Remove spaces.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "ggc.h"
36 #include "langhooks.h"
37 #include "diagnostic.h"
38 #include "tree-flow.h"
39 #include "timevar.h"
40 #include "tree-dump.h"
41 #include "tree-pass.h"
42 #include "toplev.h"
43 #include "except.h"
44 #include "cfgloop.h"
45 #include "cfglayout.h"
46 #include "tree-ssa-propagate.h"
47 #include "value-prof.h"
48 #include "pointer-set.h"
49 #include "tree-inline.h"
50
51 /* This file contains functions for building the Control Flow Graph (CFG)
52 for a function tree. */
53
54 /* Local declarations. */
55
56 /* Initial capacity for the basic block array. */
57 static const int initial_cfg_capacity = 20;
58
59 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
60 which use a particular edge. The CASE_LABEL_EXPRs are chained together
61 via their TREE_CHAIN field, which we clear after we're done with the
62 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
63
64 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
65 update the case vector in response to edge redirections.
66
67 Right now this table is set up and torn down at key points in the
68 compilation process. It would be nice if we could make the table
69 more persistent. The key is getting notification of changes to
70 the CFG (particularly edge removal, creation and redirection). */
71
72 static struct pointer_map_t *edge_to_cases;
73
74 /* CFG statistics. */
75 struct cfg_stats_d
76 {
77 long num_merged_labels;
78 };
79
80 static struct cfg_stats_d cfg_stats;
81
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
84
85 /* Hash table to store last discriminator assigned for each locus. */
86 struct locus_discrim_map
87 {
88 location_t locus;
89 int discriminator;
90 };
91 static htab_t discriminator_per_locus;
92
93 /* Basic blocks and flowgraphs. */
94 static void make_blocks (gimple_seq);
95 static void factor_computed_gotos (void);
96
97 /* Edges. */
98 static void make_edges (void);
99 static void make_cond_expr_edges (basic_block);
100 static void make_gimple_switch_edges (basic_block);
101 static void make_goto_expr_edges (basic_block);
102 static unsigned int locus_map_hash (const void *);
103 static int locus_map_eq (const void *, const void *);
104 static void assign_discriminator (location_t, basic_block);
105 static edge gimple_redirect_edge_and_branch (edge, basic_block);
106 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
107 static unsigned int split_critical_edges (void);
108
109 /* Various helpers. */
110 static inline bool stmt_starts_bb_p (gimple, gimple);
111 static int gimple_verify_flow_info (void);
112 static void gimple_make_forwarder_block (edge);
113 static void gimple_cfg2vcg (FILE *);
114 static gimple first_non_label_stmt (basic_block);
115
116 /* Flowgraph optimization and cleanup. */
117 static void gimple_merge_blocks (basic_block, basic_block);
118 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
119 static void remove_bb (basic_block);
120 static edge find_taken_edge_computed_goto (basic_block, tree);
121 static edge find_taken_edge_cond_expr (basic_block, tree);
122 static edge find_taken_edge_switch_expr (basic_block, tree);
123 static tree find_case_label_for_value (gimple, tree);
124
125 void
126 init_empty_tree_cfg_for_function (struct function *fn)
127 {
128 /* Initialize the basic block array. */
129 init_flow (fn);
130 profile_status_for_function (fn) = PROFILE_ABSENT;
131 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
132 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
133 basic_block_info_for_function (fn)
134 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
135 VEC_safe_grow_cleared (basic_block, gc,
136 basic_block_info_for_function (fn),
137 initial_cfg_capacity);
138
139 /* Build a mapping of labels to their associated blocks. */
140 label_to_block_map_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 label_to_block_map_for_function (fn),
144 initial_cfg_capacity);
145
146 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
147 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
148 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
149 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
150
151 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
152 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
153 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
154 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
155 }
156
157 void
158 init_empty_tree_cfg (void)
159 {
160 init_empty_tree_cfg_for_function (cfun);
161 }
162
163 /*---------------------------------------------------------------------------
164 Create basic blocks
165 ---------------------------------------------------------------------------*/
166
167 /* Entry point to the CFG builder for trees. SEQ is the sequence of
168 statements to be added to the flowgraph. */
169
170 static void
171 build_gimple_cfg (gimple_seq seq)
172 {
173 /* Register specific gimple functions. */
174 gimple_register_cfg_hooks ();
175
176 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
177
178 init_empty_tree_cfg ();
179
180 found_computed_goto = 0;
181 make_blocks (seq);
182
183 /* Computed gotos are hell to deal with, especially if there are
184 lots of them with a large number of destinations. So we factor
185 them to a common computed goto location before we build the
186 edge list. After we convert back to normal form, we will un-factor
187 the computed gotos since factoring introduces an unwanted jump. */
188 if (found_computed_goto)
189 factor_computed_gotos ();
190
191 /* Make sure there is always at least one block, even if it's empty. */
192 if (n_basic_blocks == NUM_FIXED_BLOCKS)
193 create_empty_bb (ENTRY_BLOCK_PTR);
194
195 /* Adjust the size of the array. */
196 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
197 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
198
199 /* To speed up statement iterator walks, we first purge dead labels. */
200 cleanup_dead_labels ();
201
202 /* Group case nodes to reduce the number of edges.
203 We do this after cleaning up dead labels because otherwise we miss
204 a lot of obvious case merging opportunities. */
205 group_case_labels ();
206
207 /* Create the edges of the flowgraph. */
208 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
209 free);
210 make_edges ();
211 cleanup_dead_labels ();
212 htab_delete (discriminator_per_locus);
213
214 /* Debugging dumps. */
215
216 /* Write the flowgraph to a VCG file. */
217 {
218 int local_dump_flags;
219 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
220 if (vcg_file)
221 {
222 gimple_cfg2vcg (vcg_file);
223 dump_end (TDI_vcg, vcg_file);
224 }
225 }
226
227 #ifdef ENABLE_CHECKING
228 verify_stmts ();
229 #endif
230 }
231
232 static unsigned int
233 execute_build_cfg (void)
234 {
235 gimple_seq body = gimple_body (current_function_decl);
236
237 build_gimple_cfg (body);
238 gimple_set_body (current_function_decl, NULL);
239 if (dump_file && (dump_flags & TDF_DETAILS))
240 {
241 fprintf (dump_file, "Scope blocks:\n");
242 dump_scope_blocks (dump_file, dump_flags);
243 }
244 return 0;
245 }
246
247 struct gimple_opt_pass pass_build_cfg =
248 {
249 {
250 GIMPLE_PASS,
251 "cfg", /* name */
252 NULL, /* gate */
253 execute_build_cfg, /* execute */
254 NULL, /* sub */
255 NULL, /* next */
256 0, /* static_pass_number */
257 TV_TREE_CFG, /* tv_id */
258 PROP_gimple_leh, /* properties_required */
259 PROP_cfg, /* properties_provided */
260 0, /* properties_destroyed */
261 0, /* todo_flags_start */
262 TODO_verify_stmts | TODO_cleanup_cfg
263 | TODO_dump_func /* todo_flags_finish */
264 }
265 };
266
267
268 /* Return true if T is a computed goto. */
269
270 static bool
271 computed_goto_p (gimple t)
272 {
273 return (gimple_code (t) == GIMPLE_GOTO
274 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
275 }
276
277
278 /* Search the CFG for any computed gotos. If found, factor them to a
279 common computed goto site. Also record the location of that site so
280 that we can un-factor the gotos after we have converted back to
281 normal form. */
282
283 static void
284 factor_computed_gotos (void)
285 {
286 basic_block bb;
287 tree factored_label_decl = NULL;
288 tree var = NULL;
289 gimple factored_computed_goto_label = NULL;
290 gimple factored_computed_goto = NULL;
291
292 /* We know there are one or more computed gotos in this function.
293 Examine the last statement in each basic block to see if the block
294 ends with a computed goto. */
295
296 FOR_EACH_BB (bb)
297 {
298 gimple_stmt_iterator gsi = gsi_last_bb (bb);
299 gimple last;
300
301 if (gsi_end_p (gsi))
302 continue;
303
304 last = gsi_stmt (gsi);
305
306 /* Ignore the computed goto we create when we factor the original
307 computed gotos. */
308 if (last == factored_computed_goto)
309 continue;
310
311 /* If the last statement is a computed goto, factor it. */
312 if (computed_goto_p (last))
313 {
314 gimple assignment;
315
316 /* The first time we find a computed goto we need to create
317 the factored goto block and the variable each original
318 computed goto will use for their goto destination. */
319 if (!factored_computed_goto)
320 {
321 basic_block new_bb = create_empty_bb (bb);
322 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
323
324 /* Create the destination of the factored goto. Each original
325 computed goto will put its desired destination into this
326 variable and jump to the label we create immediately
327 below. */
328 var = create_tmp_var (ptr_type_node, "gotovar");
329
330 /* Build a label for the new block which will contain the
331 factored computed goto. */
332 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
333 factored_computed_goto_label
334 = gimple_build_label (factored_label_decl);
335 gsi_insert_after (&new_gsi, factored_computed_goto_label,
336 GSI_NEW_STMT);
337
338 /* Build our new computed goto. */
339 factored_computed_goto = gimple_build_goto (var);
340 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
341 }
342
343 /* Copy the original computed goto's destination into VAR. */
344 assignment = gimple_build_assign (var, gimple_goto_dest (last));
345 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
346
347 /* And re-vector the computed goto to the new destination. */
348 gimple_goto_set_dest (last, factored_label_decl);
349 }
350 }
351 }
352
353
354 /* Build a flowgraph for the sequence of stmts SEQ. */
355
356 static void
357 make_blocks (gimple_seq seq)
358 {
359 gimple_stmt_iterator i = gsi_start (seq);
360 gimple stmt = NULL;
361 bool start_new_block = true;
362 bool first_stmt_of_seq = true;
363 basic_block bb = ENTRY_BLOCK_PTR;
364
365 while (!gsi_end_p (i))
366 {
367 gimple prev_stmt;
368
369 prev_stmt = stmt;
370 stmt = gsi_stmt (i);
371
372 /* If the statement starts a new basic block or if we have determined
373 in a previous pass that we need to create a new block for STMT, do
374 so now. */
375 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
376 {
377 if (!first_stmt_of_seq)
378 seq = gsi_split_seq_before (&i);
379 bb = create_basic_block (seq, NULL, bb);
380 start_new_block = false;
381 }
382
383 /* Now add STMT to BB and create the subgraphs for special statement
384 codes. */
385 gimple_set_bb (stmt, bb);
386
387 if (computed_goto_p (stmt))
388 found_computed_goto = true;
389
390 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
391 next iteration. */
392 if (stmt_ends_bb_p (stmt))
393 {
394 /* If the stmt can make abnormal goto use a new temporary
395 for the assignment to the LHS. This makes sure the old value
396 of the LHS is available on the abnormal edge. Otherwise
397 we will end up with overlapping life-ranges for abnormal
398 SSA names. */
399 if (gimple_has_lhs (stmt)
400 && stmt_can_make_abnormal_goto (stmt)
401 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
402 {
403 tree lhs = gimple_get_lhs (stmt);
404 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
405 gimple s = gimple_build_assign (lhs, tmp);
406 gimple_set_location (s, gimple_location (stmt));
407 gimple_set_block (s, gimple_block (stmt));
408 gimple_set_lhs (stmt, tmp);
409 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
410 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
411 DECL_GIMPLE_REG_P (tmp) = 1;
412 gsi_insert_after (&i, s, GSI_SAME_STMT);
413 }
414 start_new_block = true;
415 }
416
417 gsi_next (&i);
418 first_stmt_of_seq = false;
419 }
420 }
421
422
423 /* Create and return a new empty basic block after bb AFTER. */
424
425 static basic_block
426 create_bb (void *h, void *e, basic_block after)
427 {
428 basic_block bb;
429
430 gcc_assert (!e);
431
432 /* Create and initialize a new basic block. Since alloc_block uses
433 ggc_alloc_cleared to allocate a basic block, we do not have to
434 clear the newly allocated basic block here. */
435 bb = alloc_block ();
436
437 bb->index = last_basic_block;
438 bb->flags = BB_NEW;
439 bb->il.gimple = GGC_CNEW (struct gimple_bb_info);
440 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
441
442 /* Add the new block to the linked list of blocks. */
443 link_block (bb, after);
444
445 /* Grow the basic block array if needed. */
446 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
447 {
448 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
449 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
450 }
451
452 /* Add the newly created block to the array. */
453 SET_BASIC_BLOCK (last_basic_block, bb);
454
455 n_basic_blocks++;
456 last_basic_block++;
457
458 return bb;
459 }
460
461
462 /*---------------------------------------------------------------------------
463 Edge creation
464 ---------------------------------------------------------------------------*/
465
466 /* Fold COND_EXPR_COND of each COND_EXPR. */
467
468 void
469 fold_cond_expr_cond (void)
470 {
471 basic_block bb;
472
473 FOR_EACH_BB (bb)
474 {
475 gimple stmt = last_stmt (bb);
476
477 if (stmt && gimple_code (stmt) == GIMPLE_COND)
478 {
479 location_t loc = gimple_location (stmt);
480 tree cond;
481 bool zerop, onep;
482
483 fold_defer_overflow_warnings ();
484 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
485 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
486 if (cond)
487 {
488 zerop = integer_zerop (cond);
489 onep = integer_onep (cond);
490 }
491 else
492 zerop = onep = false;
493
494 fold_undefer_overflow_warnings (zerop || onep,
495 stmt,
496 WARN_STRICT_OVERFLOW_CONDITIONAL);
497 if (zerop)
498 gimple_cond_make_false (stmt);
499 else if (onep)
500 gimple_cond_make_true (stmt);
501 }
502 }
503 }
504
505 /* Join all the blocks in the flowgraph. */
506
507 static void
508 make_edges (void)
509 {
510 basic_block bb;
511 struct omp_region *cur_region = NULL;
512
513 /* Create an edge from entry to the first block with executable
514 statements in it. */
515 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
516
517 /* Traverse the basic block array placing edges. */
518 FOR_EACH_BB (bb)
519 {
520 gimple last = last_stmt (bb);
521 bool fallthru;
522
523 if (last)
524 {
525 enum gimple_code code = gimple_code (last);
526 switch (code)
527 {
528 case GIMPLE_GOTO:
529 make_goto_expr_edges (bb);
530 fallthru = false;
531 break;
532 case GIMPLE_RETURN:
533 make_edge (bb, EXIT_BLOCK_PTR, 0);
534 fallthru = false;
535 break;
536 case GIMPLE_COND:
537 make_cond_expr_edges (bb);
538 fallthru = false;
539 break;
540 case GIMPLE_SWITCH:
541 make_gimple_switch_edges (bb);
542 fallthru = false;
543 break;
544 case GIMPLE_RESX:
545 make_eh_edges (last);
546 fallthru = false;
547 break;
548
549 case GIMPLE_CALL:
550 /* If this function receives a nonlocal goto, then we need to
551 make edges from this call site to all the nonlocal goto
552 handlers. */
553 if (stmt_can_make_abnormal_goto (last))
554 make_abnormal_goto_edges (bb, true);
555
556 /* If this statement has reachable exception handlers, then
557 create abnormal edges to them. */
558 make_eh_edges (last);
559
560 /* Some calls are known not to return. */
561 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
562 break;
563
564 case GIMPLE_ASSIGN:
565 /* A GIMPLE_ASSIGN may throw internally and thus be considered
566 control-altering. */
567 if (is_ctrl_altering_stmt (last))
568 {
569 make_eh_edges (last);
570 }
571 fallthru = true;
572 break;
573
574 case GIMPLE_OMP_PARALLEL:
575 case GIMPLE_OMP_TASK:
576 case GIMPLE_OMP_FOR:
577 case GIMPLE_OMP_SINGLE:
578 case GIMPLE_OMP_MASTER:
579 case GIMPLE_OMP_ORDERED:
580 case GIMPLE_OMP_CRITICAL:
581 case GIMPLE_OMP_SECTION:
582 cur_region = new_omp_region (bb, code, cur_region);
583 fallthru = true;
584 break;
585
586 case GIMPLE_OMP_SECTIONS:
587 cur_region = new_omp_region (bb, code, cur_region);
588 fallthru = true;
589 break;
590
591 case GIMPLE_OMP_SECTIONS_SWITCH:
592 fallthru = false;
593 break;
594
595
596 case GIMPLE_OMP_ATOMIC_LOAD:
597 case GIMPLE_OMP_ATOMIC_STORE:
598 fallthru = true;
599 break;
600
601
602 case GIMPLE_OMP_RETURN:
603 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
604 somewhere other than the next block. This will be
605 created later. */
606 cur_region->exit = bb;
607 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
608 cur_region = cur_region->outer;
609 break;
610
611 case GIMPLE_OMP_CONTINUE:
612 cur_region->cont = bb;
613 switch (cur_region->type)
614 {
615 case GIMPLE_OMP_FOR:
616 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
617 succs edges as abnormal to prevent splitting
618 them. */
619 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
620 /* Make the loopback edge. */
621 make_edge (bb, single_succ (cur_region->entry),
622 EDGE_ABNORMAL);
623
624 /* Create an edge from GIMPLE_OMP_FOR to exit, which
625 corresponds to the case that the body of the loop
626 is not executed at all. */
627 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
628 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
629 fallthru = false;
630 break;
631
632 case GIMPLE_OMP_SECTIONS:
633 /* Wire up the edges into and out of the nested sections. */
634 {
635 basic_block switch_bb = single_succ (cur_region->entry);
636
637 struct omp_region *i;
638 for (i = cur_region->inner; i ; i = i->next)
639 {
640 gcc_assert (i->type == GIMPLE_OMP_SECTION);
641 make_edge (switch_bb, i->entry, 0);
642 make_edge (i->exit, bb, EDGE_FALLTHRU);
643 }
644
645 /* Make the loopback edge to the block with
646 GIMPLE_OMP_SECTIONS_SWITCH. */
647 make_edge (bb, switch_bb, 0);
648
649 /* Make the edge from the switch to exit. */
650 make_edge (switch_bb, bb->next_bb, 0);
651 fallthru = false;
652 }
653 break;
654
655 default:
656 gcc_unreachable ();
657 }
658 break;
659
660 default:
661 gcc_assert (!stmt_ends_bb_p (last));
662 fallthru = true;
663 }
664 }
665 else
666 fallthru = true;
667
668 if (fallthru)
669 {
670 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
671 if (last)
672 assign_discriminator (gimple_location (last), bb->next_bb);
673 }
674 }
675
676 if (root_omp_region)
677 free_omp_regions ();
678
679 /* Fold COND_EXPR_COND of each COND_EXPR. */
680 fold_cond_expr_cond ();
681 }
682
683 /* Trivial hash function for a location_t. ITEM is a pointer to
684 a hash table entry that maps a location_t to a discriminator. */
685
686 static unsigned int
687 locus_map_hash (const void *item)
688 {
689 return ((const struct locus_discrim_map *) item)->locus;
690 }
691
692 /* Equality function for the locus-to-discriminator map. VA and VB
693 point to the two hash table entries to compare. */
694
695 static int
696 locus_map_eq (const void *va, const void *vb)
697 {
698 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
699 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
700 return a->locus == b->locus;
701 }
702
703 /* Find the next available discriminator value for LOCUS. The
704 discriminator distinguishes among several basic blocks that
705 share a common locus, allowing for more accurate sample-based
706 profiling. */
707
708 static int
709 next_discriminator_for_locus (location_t locus)
710 {
711 struct locus_discrim_map item;
712 struct locus_discrim_map **slot;
713
714 item.locus = locus;
715 item.discriminator = 0;
716 slot = (struct locus_discrim_map **)
717 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
718 (hashval_t) locus, INSERT);
719 gcc_assert (slot);
720 if (*slot == HTAB_EMPTY_ENTRY)
721 {
722 *slot = XNEW (struct locus_discrim_map);
723 gcc_assert (*slot);
724 (*slot)->locus = locus;
725 (*slot)->discriminator = 0;
726 }
727 (*slot)->discriminator++;
728 return (*slot)->discriminator;
729 }
730
731 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
732
733 static bool
734 same_line_p (location_t locus1, location_t locus2)
735 {
736 expanded_location from, to;
737
738 if (locus1 == locus2)
739 return true;
740
741 from = expand_location (locus1);
742 to = expand_location (locus2);
743
744 if (from.line != to.line)
745 return false;
746 if (from.file == to.file)
747 return true;
748 return (from.file != NULL
749 && to.file != NULL
750 && strcmp (from.file, to.file) == 0);
751 }
752
753 /* Assign a unique discriminator value to block BB if it begins at the same
754 LOCUS as its predecessor block. */
755
756 static void
757 assign_discriminator (location_t locus, basic_block bb)
758 {
759 gimple first_in_to_bb, last_in_to_bb;
760
761 if (locus == 0 || bb->discriminator != 0)
762 return;
763
764 first_in_to_bb = first_non_label_stmt (bb);
765 last_in_to_bb = last_stmt (bb);
766 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
767 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
768 bb->discriminator = next_discriminator_for_locus (locus);
769 }
770
771 /* Create the edges for a GIMPLE_COND starting at block BB. */
772
773 static void
774 make_cond_expr_edges (basic_block bb)
775 {
776 gimple entry = last_stmt (bb);
777 gimple then_stmt, else_stmt;
778 basic_block then_bb, else_bb;
779 tree then_label, else_label;
780 edge e;
781 location_t entry_locus;
782
783 gcc_assert (entry);
784 gcc_assert (gimple_code (entry) == GIMPLE_COND);
785
786 entry_locus = gimple_location (entry);
787
788 /* Entry basic blocks for each component. */
789 then_label = gimple_cond_true_label (entry);
790 else_label = gimple_cond_false_label (entry);
791 then_bb = label_to_block (then_label);
792 else_bb = label_to_block (else_label);
793 then_stmt = first_stmt (then_bb);
794 else_stmt = first_stmt (else_bb);
795
796 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
797 assign_discriminator (entry_locus, then_bb);
798 e->goto_locus = gimple_location (then_stmt);
799 if (e->goto_locus)
800 e->goto_block = gimple_block (then_stmt);
801 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
802 if (e)
803 {
804 assign_discriminator (entry_locus, else_bb);
805 e->goto_locus = gimple_location (else_stmt);
806 if (e->goto_locus)
807 e->goto_block = gimple_block (else_stmt);
808 }
809
810 /* We do not need the labels anymore. */
811 gimple_cond_set_true_label (entry, NULL_TREE);
812 gimple_cond_set_false_label (entry, NULL_TREE);
813 }
814
815
816 /* Called for each element in the hash table (P) as we delete the
817 edge to cases hash table.
818
819 Clear all the TREE_CHAINs to prevent problems with copying of
820 SWITCH_EXPRs and structure sharing rules, then free the hash table
821 element. */
822
823 static bool
824 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
825 void *data ATTRIBUTE_UNUSED)
826 {
827 tree t, next;
828
829 for (t = (tree) *value; t; t = next)
830 {
831 next = TREE_CHAIN (t);
832 TREE_CHAIN (t) = NULL;
833 }
834
835 *value = NULL;
836 return false;
837 }
838
839 /* Start recording information mapping edges to case labels. */
840
841 void
842 start_recording_case_labels (void)
843 {
844 gcc_assert (edge_to_cases == NULL);
845 edge_to_cases = pointer_map_create ();
846 }
847
848 /* Return nonzero if we are recording information for case labels. */
849
850 static bool
851 recording_case_labels_p (void)
852 {
853 return (edge_to_cases != NULL);
854 }
855
856 /* Stop recording information mapping edges to case labels and
857 remove any information we have recorded. */
858 void
859 end_recording_case_labels (void)
860 {
861 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
862 pointer_map_destroy (edge_to_cases);
863 edge_to_cases = NULL;
864 }
865
866 /* If we are inside a {start,end}_recording_cases block, then return
867 a chain of CASE_LABEL_EXPRs from T which reference E.
868
869 Otherwise return NULL. */
870
871 static tree
872 get_cases_for_edge (edge e, gimple t)
873 {
874 void **slot;
875 size_t i, n;
876
877 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
878 chains available. Return NULL so the caller can detect this case. */
879 if (!recording_case_labels_p ())
880 return NULL;
881
882 slot = pointer_map_contains (edge_to_cases, e);
883 if (slot)
884 return (tree) *slot;
885
886 /* If we did not find E in the hash table, then this must be the first
887 time we have been queried for information about E & T. Add all the
888 elements from T to the hash table then perform the query again. */
889
890 n = gimple_switch_num_labels (t);
891 for (i = 0; i < n; i++)
892 {
893 tree elt = gimple_switch_label (t, i);
894 tree lab = CASE_LABEL (elt);
895 basic_block label_bb = label_to_block (lab);
896 edge this_edge = find_edge (e->src, label_bb);
897
898 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
899 a new chain. */
900 slot = pointer_map_insert (edge_to_cases, this_edge);
901 TREE_CHAIN (elt) = (tree) *slot;
902 *slot = elt;
903 }
904
905 return (tree) *pointer_map_contains (edge_to_cases, e);
906 }
907
908 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
909
910 static void
911 make_gimple_switch_edges (basic_block bb)
912 {
913 gimple entry = last_stmt (bb);
914 location_t entry_locus;
915 size_t i, n;
916
917 entry_locus = gimple_location (entry);
918
919 n = gimple_switch_num_labels (entry);
920
921 for (i = 0; i < n; ++i)
922 {
923 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
924 basic_block label_bb = label_to_block (lab);
925 make_edge (bb, label_bb, 0);
926 assign_discriminator (entry_locus, label_bb);
927 }
928 }
929
930
931 /* Return the basic block holding label DEST. */
932
933 basic_block
934 label_to_block_fn (struct function *ifun, tree dest)
935 {
936 int uid = LABEL_DECL_UID (dest);
937
938 /* We would die hard when faced by an undefined label. Emit a label to
939 the very first basic block. This will hopefully make even the dataflow
940 and undefined variable warnings quite right. */
941 if ((errorcount || sorrycount) && uid < 0)
942 {
943 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
944 gimple stmt;
945
946 stmt = gimple_build_label (dest);
947 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
948 uid = LABEL_DECL_UID (dest);
949 }
950 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
951 <= (unsigned int) uid)
952 return NULL;
953 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
954 }
955
956 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
957 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
958
959 void
960 make_abnormal_goto_edges (basic_block bb, bool for_call)
961 {
962 basic_block target_bb;
963 gimple_stmt_iterator gsi;
964
965 FOR_EACH_BB (target_bb)
966 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
967 {
968 gimple label_stmt = gsi_stmt (gsi);
969 tree target;
970
971 if (gimple_code (label_stmt) != GIMPLE_LABEL)
972 break;
973
974 target = gimple_label_label (label_stmt);
975
976 /* Make an edge to every label block that has been marked as a
977 potential target for a computed goto or a non-local goto. */
978 if ((FORCED_LABEL (target) && !for_call)
979 || (DECL_NONLOCAL (target) && for_call))
980 {
981 make_edge (bb, target_bb, EDGE_ABNORMAL);
982 break;
983 }
984 }
985 }
986
987 /* Create edges for a goto statement at block BB. */
988
989 static void
990 make_goto_expr_edges (basic_block bb)
991 {
992 gimple_stmt_iterator last = gsi_last_bb (bb);
993 gimple goto_t = gsi_stmt (last);
994
995 /* A simple GOTO creates normal edges. */
996 if (simple_goto_p (goto_t))
997 {
998 tree dest = gimple_goto_dest (goto_t);
999 basic_block label_bb = label_to_block (dest);
1000 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1001 e->goto_locus = gimple_location (goto_t);
1002 assign_discriminator (e->goto_locus, label_bb);
1003 if (e->goto_locus)
1004 e->goto_block = gimple_block (goto_t);
1005 gsi_remove (&last, true);
1006 return;
1007 }
1008
1009 /* A computed GOTO creates abnormal edges. */
1010 make_abnormal_goto_edges (bb, false);
1011 }
1012
1013
1014 /*---------------------------------------------------------------------------
1015 Flowgraph analysis
1016 ---------------------------------------------------------------------------*/
1017
1018 /* Cleanup useless labels in basic blocks. This is something we wish
1019 to do early because it allows us to group case labels before creating
1020 the edges for the CFG, and it speeds up block statement iterators in
1021 all passes later on.
1022 We rerun this pass after CFG is created, to get rid of the labels that
1023 are no longer referenced. After then we do not run it any more, since
1024 (almost) no new labels should be created. */
1025
1026 /* A map from basic block index to the leading label of that block. */
1027 static struct label_record
1028 {
1029 /* The label. */
1030 tree label;
1031
1032 /* True if the label is referenced from somewhere. */
1033 bool used;
1034 } *label_for_bb;
1035
1036 /* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
1037 static void
1038 update_eh_label (struct eh_region_d *region)
1039 {
1040 tree old_label = get_eh_region_tree_label (region);
1041 if (old_label)
1042 {
1043 tree new_label;
1044 basic_block bb = label_to_block (old_label);
1045
1046 /* ??? After optimizing, there may be EH regions with labels
1047 that have already been removed from the function body, so
1048 there is no basic block for them. */
1049 if (! bb)
1050 return;
1051
1052 new_label = label_for_bb[bb->index].label;
1053 label_for_bb[bb->index].used = true;
1054 set_eh_region_tree_label (region, new_label);
1055 }
1056 }
1057
1058
1059 /* Given LABEL return the first label in the same basic block. */
1060
1061 static tree
1062 main_block_label (tree label)
1063 {
1064 basic_block bb = label_to_block (label);
1065 tree main_label = label_for_bb[bb->index].label;
1066
1067 /* label_to_block possibly inserted undefined label into the chain. */
1068 if (!main_label)
1069 {
1070 label_for_bb[bb->index].label = label;
1071 main_label = label;
1072 }
1073
1074 label_for_bb[bb->index].used = true;
1075 return main_label;
1076 }
1077
1078 /* Cleanup redundant labels. This is a three-step process:
1079 1) Find the leading label for each block.
1080 2) Redirect all references to labels to the leading labels.
1081 3) Cleanup all useless labels. */
1082
1083 void
1084 cleanup_dead_labels (void)
1085 {
1086 basic_block bb;
1087 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1088
1089 /* Find a suitable label for each block. We use the first user-defined
1090 label if there is one, or otherwise just the first label we see. */
1091 FOR_EACH_BB (bb)
1092 {
1093 gimple_stmt_iterator i;
1094
1095 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1096 {
1097 tree label;
1098 gimple stmt = gsi_stmt (i);
1099
1100 if (gimple_code (stmt) != GIMPLE_LABEL)
1101 break;
1102
1103 label = gimple_label_label (stmt);
1104
1105 /* If we have not yet seen a label for the current block,
1106 remember this one and see if there are more labels. */
1107 if (!label_for_bb[bb->index].label)
1108 {
1109 label_for_bb[bb->index].label = label;
1110 continue;
1111 }
1112
1113 /* If we did see a label for the current block already, but it
1114 is an artificially created label, replace it if the current
1115 label is a user defined label. */
1116 if (!DECL_ARTIFICIAL (label)
1117 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1118 {
1119 label_for_bb[bb->index].label = label;
1120 break;
1121 }
1122 }
1123 }
1124
1125 /* Now redirect all jumps/branches to the selected label.
1126 First do so for each block ending in a control statement. */
1127 FOR_EACH_BB (bb)
1128 {
1129 gimple stmt = last_stmt (bb);
1130 if (!stmt)
1131 continue;
1132
1133 switch (gimple_code (stmt))
1134 {
1135 case GIMPLE_COND:
1136 {
1137 tree true_label = gimple_cond_true_label (stmt);
1138 tree false_label = gimple_cond_false_label (stmt);
1139
1140 if (true_label)
1141 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1142 if (false_label)
1143 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1144 break;
1145 }
1146
1147 case GIMPLE_SWITCH:
1148 {
1149 size_t i, n = gimple_switch_num_labels (stmt);
1150
1151 /* Replace all destination labels. */
1152 for (i = 0; i < n; ++i)
1153 {
1154 tree case_label = gimple_switch_label (stmt, i);
1155 tree label = main_block_label (CASE_LABEL (case_label));
1156 CASE_LABEL (case_label) = label;
1157 }
1158 break;
1159 }
1160
1161 /* We have to handle gotos until they're removed, and we don't
1162 remove them until after we've created the CFG edges. */
1163 case GIMPLE_GOTO:
1164 if (!computed_goto_p (stmt))
1165 {
1166 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1167 gimple_goto_set_dest (stmt, new_dest);
1168 break;
1169 }
1170
1171 default:
1172 break;
1173 }
1174 }
1175
1176 for_each_eh_region (update_eh_label);
1177
1178 /* Finally, purge dead labels. All user-defined labels and labels that
1179 can be the target of non-local gotos and labels which have their
1180 address taken are preserved. */
1181 FOR_EACH_BB (bb)
1182 {
1183 gimple_stmt_iterator i;
1184 tree label_for_this_bb = label_for_bb[bb->index].label;
1185
1186 if (!label_for_this_bb)
1187 continue;
1188
1189 /* If the main label of the block is unused, we may still remove it. */
1190 if (!label_for_bb[bb->index].used)
1191 label_for_this_bb = NULL;
1192
1193 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1194 {
1195 tree label;
1196 gimple stmt = gsi_stmt (i);
1197
1198 if (gimple_code (stmt) != GIMPLE_LABEL)
1199 break;
1200
1201 label = gimple_label_label (stmt);
1202
1203 if (label == label_for_this_bb
1204 || !DECL_ARTIFICIAL (label)
1205 || DECL_NONLOCAL (label)
1206 || FORCED_LABEL (label))
1207 gsi_next (&i);
1208 else
1209 gsi_remove (&i, true);
1210 }
1211 }
1212
1213 free (label_for_bb);
1214 }
1215
1216 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1217 and scan the sorted vector of cases. Combine the ones jumping to the
1218 same label.
1219 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1220
1221 void
1222 group_case_labels (void)
1223 {
1224 basic_block bb;
1225
1226 FOR_EACH_BB (bb)
1227 {
1228 gimple stmt = last_stmt (bb);
1229 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1230 {
1231 int old_size = gimple_switch_num_labels (stmt);
1232 int i, j, new_size = old_size;
1233 tree default_case = NULL_TREE;
1234 tree default_label = NULL_TREE;
1235 bool has_default;
1236
1237 /* The default label is always the first case in a switch
1238 statement after gimplification if it was not optimized
1239 away */
1240 if (!CASE_LOW (gimple_switch_default_label (stmt))
1241 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1242 {
1243 default_case = gimple_switch_default_label (stmt);
1244 default_label = CASE_LABEL (default_case);
1245 has_default = true;
1246 }
1247 else
1248 has_default = false;
1249
1250 /* Look for possible opportunities to merge cases. */
1251 if (has_default)
1252 i = 1;
1253 else
1254 i = 0;
1255 while (i < old_size)
1256 {
1257 tree base_case, base_label, base_high;
1258 base_case = gimple_switch_label (stmt, i);
1259
1260 gcc_assert (base_case);
1261 base_label = CASE_LABEL (base_case);
1262
1263 /* Discard cases that have the same destination as the
1264 default case. */
1265 if (base_label == default_label)
1266 {
1267 gimple_switch_set_label (stmt, i, NULL_TREE);
1268 i++;
1269 new_size--;
1270 continue;
1271 }
1272
1273 base_high = CASE_HIGH (base_case)
1274 ? CASE_HIGH (base_case)
1275 : CASE_LOW (base_case);
1276 i++;
1277
1278 /* Try to merge case labels. Break out when we reach the end
1279 of the label vector or when we cannot merge the next case
1280 label with the current one. */
1281 while (i < old_size)
1282 {
1283 tree merge_case = gimple_switch_label (stmt, i);
1284 tree merge_label = CASE_LABEL (merge_case);
1285 tree t = int_const_binop (PLUS_EXPR, base_high,
1286 integer_one_node, 1);
1287
1288 /* Merge the cases if they jump to the same place,
1289 and their ranges are consecutive. */
1290 if (merge_label == base_label
1291 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1292 {
1293 base_high = CASE_HIGH (merge_case) ?
1294 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1295 CASE_HIGH (base_case) = base_high;
1296 gimple_switch_set_label (stmt, i, NULL_TREE);
1297 new_size--;
1298 i++;
1299 }
1300 else
1301 break;
1302 }
1303 }
1304
1305 /* Compress the case labels in the label vector, and adjust the
1306 length of the vector. */
1307 for (i = 0, j = 0; i < new_size; i++)
1308 {
1309 while (! gimple_switch_label (stmt, j))
1310 j++;
1311 gimple_switch_set_label (stmt, i,
1312 gimple_switch_label (stmt, j++));
1313 }
1314
1315 gcc_assert (new_size <= old_size);
1316 gimple_switch_set_num_labels (stmt, new_size);
1317 }
1318 }
1319 }
1320
1321 /* Checks whether we can merge block B into block A. */
1322
1323 static bool
1324 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1325 {
1326 gimple stmt;
1327 gimple_stmt_iterator gsi;
1328 gimple_seq phis;
1329
1330 if (!single_succ_p (a))
1331 return false;
1332
1333 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1334 return false;
1335
1336 if (single_succ (a) != b)
1337 return false;
1338
1339 if (!single_pred_p (b))
1340 return false;
1341
1342 if (b == EXIT_BLOCK_PTR)
1343 return false;
1344
1345 /* If A ends by a statement causing exceptions or something similar, we
1346 cannot merge the blocks. */
1347 stmt = last_stmt (a);
1348 if (stmt && stmt_ends_bb_p (stmt))
1349 return false;
1350
1351 /* Do not allow a block with only a non-local label to be merged. */
1352 if (stmt
1353 && gimple_code (stmt) == GIMPLE_LABEL
1354 && DECL_NONLOCAL (gimple_label_label (stmt)))
1355 return false;
1356
1357 /* It must be possible to eliminate all phi nodes in B. If ssa form
1358 is not up-to-date, we cannot eliminate any phis; however, if only
1359 some symbols as whole are marked for renaming, this is not a problem,
1360 as phi nodes for those symbols are irrelevant in updating anyway. */
1361 phis = phi_nodes (b);
1362 if (!gimple_seq_empty_p (phis))
1363 {
1364 gimple_stmt_iterator i;
1365
1366 if (name_mappings_registered_p ())
1367 return false;
1368
1369 for (i = gsi_start (phis); !gsi_end_p (i); gsi_next (&i))
1370 {
1371 gimple phi = gsi_stmt (i);
1372
1373 if (!is_gimple_reg (gimple_phi_result (phi))
1374 && !may_propagate_copy (gimple_phi_result (phi),
1375 gimple_phi_arg_def (phi, 0)))
1376 return false;
1377 }
1378 }
1379
1380 /* Do not remove user labels. */
1381 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1382 {
1383 stmt = gsi_stmt (gsi);
1384 if (gimple_code (stmt) != GIMPLE_LABEL)
1385 break;
1386 if (!DECL_ARTIFICIAL (gimple_label_label (stmt)))
1387 return false;
1388 }
1389
1390 /* Protect the loop latches. */
1391 if (current_loops
1392 && b->loop_father->latch == b)
1393 return false;
1394
1395 return true;
1396 }
1397
1398 /* Replaces all uses of NAME by VAL. */
1399
1400 void
1401 replace_uses_by (tree name, tree val)
1402 {
1403 imm_use_iterator imm_iter;
1404 use_operand_p use;
1405 gimple stmt;
1406 edge e;
1407
1408 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1409 {
1410 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1411 {
1412 replace_exp (use, val);
1413
1414 if (gimple_code (stmt) == GIMPLE_PHI)
1415 {
1416 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1417 if (e->flags & EDGE_ABNORMAL)
1418 {
1419 /* This can only occur for virtual operands, since
1420 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1421 would prevent replacement. */
1422 gcc_assert (!is_gimple_reg (name));
1423 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1424 }
1425 }
1426 }
1427
1428 if (gimple_code (stmt) != GIMPLE_PHI)
1429 {
1430 size_t i;
1431
1432 fold_stmt_inplace (stmt);
1433 if (cfgcleanup_altered_bbs)
1434 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1435
1436 /* FIXME. This should go in update_stmt. */
1437 for (i = 0; i < gimple_num_ops (stmt); i++)
1438 {
1439 tree op = gimple_op (stmt, i);
1440 /* Operands may be empty here. For example, the labels
1441 of a GIMPLE_COND are nulled out following the creation
1442 of the corresponding CFG edges. */
1443 if (op && TREE_CODE (op) == ADDR_EXPR)
1444 recompute_tree_invariant_for_addr_expr (op);
1445 }
1446
1447 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1448 update_stmt (stmt);
1449 }
1450 }
1451
1452 gcc_assert (has_zero_uses (name));
1453
1454 /* Also update the trees stored in loop structures. */
1455 if (current_loops)
1456 {
1457 struct loop *loop;
1458 loop_iterator li;
1459
1460 FOR_EACH_LOOP (li, loop, 0)
1461 {
1462 substitute_in_loop_info (loop, name, val);
1463 }
1464 }
1465 }
1466
1467 /* Merge block B into block A. */
1468
1469 static void
1470 gimple_merge_blocks (basic_block a, basic_block b)
1471 {
1472 gimple_stmt_iterator last, gsi, psi;
1473 gimple_seq phis = phi_nodes (b);
1474
1475 if (dump_file)
1476 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1477
1478 /* Remove all single-valued PHI nodes from block B of the form
1479 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1480 gsi = gsi_last_bb (a);
1481 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1482 {
1483 gimple phi = gsi_stmt (psi);
1484 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1485 gimple copy;
1486 bool may_replace_uses = !is_gimple_reg (def)
1487 || may_propagate_copy (def, use);
1488
1489 /* In case we maintain loop closed ssa form, do not propagate arguments
1490 of loop exit phi nodes. */
1491 if (current_loops
1492 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1493 && is_gimple_reg (def)
1494 && TREE_CODE (use) == SSA_NAME
1495 && a->loop_father != b->loop_father)
1496 may_replace_uses = false;
1497
1498 if (!may_replace_uses)
1499 {
1500 gcc_assert (is_gimple_reg (def));
1501
1502 /* Note that just emitting the copies is fine -- there is no problem
1503 with ordering of phi nodes. This is because A is the single
1504 predecessor of B, therefore results of the phi nodes cannot
1505 appear as arguments of the phi nodes. */
1506 copy = gimple_build_assign (def, use);
1507 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1508 remove_phi_node (&psi, false);
1509 }
1510 else
1511 {
1512 /* If we deal with a PHI for virtual operands, we can simply
1513 propagate these without fussing with folding or updating
1514 the stmt. */
1515 if (!is_gimple_reg (def))
1516 {
1517 imm_use_iterator iter;
1518 use_operand_p use_p;
1519 gimple stmt;
1520
1521 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1522 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1523 SET_USE (use_p, use);
1524 }
1525 else
1526 replace_uses_by (def, use);
1527
1528 remove_phi_node (&psi, true);
1529 }
1530 }
1531
1532 /* Ensure that B follows A. */
1533 move_block_after (b, a);
1534
1535 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1536 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1537
1538 /* Remove labels from B and set gimple_bb to A for other statements. */
1539 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1540 {
1541 if (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL)
1542 {
1543 gimple label = gsi_stmt (gsi);
1544
1545 gsi_remove (&gsi, false);
1546
1547 /* Now that we can thread computed gotos, we might have
1548 a situation where we have a forced label in block B
1549 However, the label at the start of block B might still be
1550 used in other ways (think about the runtime checking for
1551 Fortran assigned gotos). So we can not just delete the
1552 label. Instead we move the label to the start of block A. */
1553 if (FORCED_LABEL (gimple_label_label (label)))
1554 {
1555 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1556 gsi_insert_before (&dest_gsi, label, GSI_NEW_STMT);
1557 }
1558 }
1559 else
1560 {
1561 gimple_set_bb (gsi_stmt (gsi), a);
1562 gsi_next (&gsi);
1563 }
1564 }
1565
1566 /* Merge the sequences. */
1567 last = gsi_last_bb (a);
1568 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1569 set_bb_seq (b, NULL);
1570
1571 if (cfgcleanup_altered_bbs)
1572 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1573 }
1574
1575
1576 /* Return the one of two successors of BB that is not reachable by a
1577 complex edge, if there is one. Else, return BB. We use
1578 this in optimizations that use post-dominators for their heuristics,
1579 to catch the cases in C++ where function calls are involved. */
1580
1581 basic_block
1582 single_noncomplex_succ (basic_block bb)
1583 {
1584 edge e0, e1;
1585 if (EDGE_COUNT (bb->succs) != 2)
1586 return bb;
1587
1588 e0 = EDGE_SUCC (bb, 0);
1589 e1 = EDGE_SUCC (bb, 1);
1590 if (e0->flags & EDGE_COMPLEX)
1591 return e1->dest;
1592 if (e1->flags & EDGE_COMPLEX)
1593 return e0->dest;
1594
1595 return bb;
1596 }
1597
1598
1599 /* Walk the function tree removing unnecessary statements.
1600
1601 * Empty statement nodes are removed
1602
1603 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1604
1605 * Unnecessary COND_EXPRs are removed
1606
1607 * Some unnecessary BIND_EXPRs are removed
1608
1609 * GOTO_EXPRs immediately preceding destination are removed.
1610
1611 Clearly more work could be done. The trick is doing the analysis
1612 and removal fast enough to be a net improvement in compile times.
1613
1614 Note that when we remove a control structure such as a COND_EXPR
1615 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1616 to ensure we eliminate all the useless code. */
1617
1618 struct rus_data
1619 {
1620 bool repeat;
1621 bool may_throw;
1622 bool may_branch;
1623 bool has_label;
1624 bool last_was_goto;
1625 gimple_stmt_iterator last_goto_gsi;
1626 };
1627
1628
1629 static void remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *);
1630
1631 /* Given a statement sequence, find the first executable statement with
1632 location information, and warn that it is unreachable. When searching,
1633 descend into containers in execution order. */
1634
1635 static bool
1636 remove_useless_stmts_warn_notreached (gimple_seq stmts)
1637 {
1638 gimple_stmt_iterator gsi;
1639
1640 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
1641 {
1642 gimple stmt = gsi_stmt (gsi);
1643
1644 if (gimple_no_warning_p (stmt)) return false;
1645
1646 if (gimple_has_location (stmt))
1647 {
1648 location_t loc = gimple_location (stmt);
1649 if (LOCATION_LINE (loc) > 0)
1650 {
1651 warning_at (loc, OPT_Wunreachable_code, "will never be executed");
1652 return true;
1653 }
1654 }
1655
1656 switch (gimple_code (stmt))
1657 {
1658 /* Unfortunately, we need the CFG now to detect unreachable
1659 branches in a conditional, so conditionals are not handled here. */
1660
1661 case GIMPLE_TRY:
1662 if (remove_useless_stmts_warn_notreached (gimple_try_eval (stmt)))
1663 return true;
1664 if (remove_useless_stmts_warn_notreached (gimple_try_cleanup (stmt)))
1665 return true;
1666 break;
1667
1668 case GIMPLE_CATCH:
1669 return remove_useless_stmts_warn_notreached (gimple_catch_handler (stmt));
1670
1671 case GIMPLE_EH_FILTER:
1672 return remove_useless_stmts_warn_notreached (gimple_eh_filter_failure (stmt));
1673
1674 case GIMPLE_BIND:
1675 return remove_useless_stmts_warn_notreached (gimple_bind_body (stmt));
1676
1677 default:
1678 break;
1679 }
1680 }
1681
1682 return false;
1683 }
1684
1685 /* Helper for remove_useless_stmts_1. Handle GIMPLE_COND statements. */
1686
1687 static void
1688 remove_useless_stmts_cond (gimple_stmt_iterator *gsi, struct rus_data *data)
1689 {
1690 gimple stmt = gsi_stmt (*gsi);
1691
1692 /* The folded result must still be a conditional statement. */
1693 fold_stmt (gsi);
1694 gcc_assert (gsi_stmt (*gsi) == stmt);
1695
1696 data->may_branch = true;
1697
1698 /* Replace trivial conditionals with gotos. */
1699 if (gimple_cond_true_p (stmt))
1700 {
1701 /* Goto THEN label. */
1702 tree then_label = gimple_cond_true_label (stmt);
1703
1704 gsi_replace (gsi, gimple_build_goto (then_label), false);
1705 data->last_goto_gsi = *gsi;
1706 data->last_was_goto = true;
1707 data->repeat = true;
1708 }
1709 else if (gimple_cond_false_p (stmt))
1710 {
1711 /* Goto ELSE label. */
1712 tree else_label = gimple_cond_false_label (stmt);
1713
1714 gsi_replace (gsi, gimple_build_goto (else_label), false);
1715 data->last_goto_gsi = *gsi;
1716 data->last_was_goto = true;
1717 data->repeat = true;
1718 }
1719 else
1720 {
1721 tree then_label = gimple_cond_true_label (stmt);
1722 tree else_label = gimple_cond_false_label (stmt);
1723
1724 if (then_label == else_label)
1725 {
1726 /* Goto common destination. */
1727 gsi_replace (gsi, gimple_build_goto (then_label), false);
1728 data->last_goto_gsi = *gsi;
1729 data->last_was_goto = true;
1730 data->repeat = true;
1731 }
1732 }
1733
1734 gsi_next (gsi);
1735
1736 data->last_was_goto = false;
1737 }
1738
1739 /* Helper for remove_useless_stmts_1.
1740 Handle the try-finally case for GIMPLE_TRY statements. */
1741
1742 static void
1743 remove_useless_stmts_tf (gimple_stmt_iterator *gsi, struct rus_data *data)
1744 {
1745 bool save_may_branch, save_may_throw;
1746 bool this_may_branch, this_may_throw;
1747
1748 gimple_seq eval_seq, cleanup_seq;
1749 gimple_stmt_iterator eval_gsi, cleanup_gsi;
1750
1751 gimple stmt = gsi_stmt (*gsi);
1752
1753 /* Collect may_branch and may_throw information for the body only. */
1754 save_may_branch = data->may_branch;
1755 save_may_throw = data->may_throw;
1756 data->may_branch = false;
1757 data->may_throw = false;
1758 data->last_was_goto = false;
1759
1760 eval_seq = gimple_try_eval (stmt);
1761 eval_gsi = gsi_start (eval_seq);
1762 remove_useless_stmts_1 (&eval_gsi, data);
1763
1764 this_may_branch = data->may_branch;
1765 this_may_throw = data->may_throw;
1766 data->may_branch |= save_may_branch;
1767 data->may_throw |= save_may_throw;
1768 data->last_was_goto = false;
1769
1770 cleanup_seq = gimple_try_cleanup (stmt);
1771 cleanup_gsi = gsi_start (cleanup_seq);
1772 remove_useless_stmts_1 (&cleanup_gsi, data);
1773
1774 /* If the body is empty, then we can emit the FINALLY block without
1775 the enclosing TRY_FINALLY_EXPR. */
1776 if (gimple_seq_empty_p (eval_seq))
1777 {
1778 gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
1779 gsi_remove (gsi, false);
1780 data->repeat = true;
1781 }
1782
1783 /* If the handler is empty, then we can emit the TRY block without
1784 the enclosing TRY_FINALLY_EXPR. */
1785 else if (gimple_seq_empty_p (cleanup_seq))
1786 {
1787 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1788 gsi_remove (gsi, false);
1789 data->repeat = true;
1790 }
1791
1792 /* If the body neither throws, nor branches, then we can safely
1793 string the TRY and FINALLY blocks together. */
1794 else if (!this_may_branch && !this_may_throw)
1795 {
1796 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1797 gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
1798 gsi_remove (gsi, false);
1799 data->repeat = true;
1800 }
1801 else
1802 gsi_next (gsi);
1803 }
1804
1805 /* Helper for remove_useless_stmts_1.
1806 Handle the try-catch case for GIMPLE_TRY statements. */
1807
1808 static void
1809 remove_useless_stmts_tc (gimple_stmt_iterator *gsi, struct rus_data *data)
1810 {
1811 bool save_may_throw, this_may_throw;
1812
1813 gimple_seq eval_seq, cleanup_seq, handler_seq, failure_seq;
1814 gimple_stmt_iterator eval_gsi, cleanup_gsi, handler_gsi, failure_gsi;
1815
1816 gimple stmt = gsi_stmt (*gsi);
1817
1818 /* Collect may_throw information for the body only. */
1819 save_may_throw = data->may_throw;
1820 data->may_throw = false;
1821 data->last_was_goto = false;
1822
1823 eval_seq = gimple_try_eval (stmt);
1824 eval_gsi = gsi_start (eval_seq);
1825 remove_useless_stmts_1 (&eval_gsi, data);
1826
1827 this_may_throw = data->may_throw;
1828 data->may_throw = save_may_throw;
1829
1830 cleanup_seq = gimple_try_cleanup (stmt);
1831
1832 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1833 if (!this_may_throw)
1834 {
1835 if (warn_notreached)
1836 {
1837 remove_useless_stmts_warn_notreached (cleanup_seq);
1838 }
1839 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1840 gsi_remove (gsi, false);
1841 data->repeat = true;
1842 return;
1843 }
1844
1845 /* Process the catch clause specially. We may be able to tell that
1846 no exceptions propagate past this point. */
1847
1848 this_may_throw = true;
1849 cleanup_gsi = gsi_start (cleanup_seq);
1850 stmt = gsi_stmt (cleanup_gsi);
1851 data->last_was_goto = false;
1852
1853 switch (gimple_code (stmt))
1854 {
1855 case GIMPLE_CATCH:
1856 /* If the first element is a catch, they all must be. */
1857 while (!gsi_end_p (cleanup_gsi))
1858 {
1859 stmt = gsi_stmt (cleanup_gsi);
1860 /* If we catch all exceptions, then the body does not
1861 propagate exceptions past this point. */
1862 if (gimple_catch_types (stmt) == NULL)
1863 this_may_throw = false;
1864 data->last_was_goto = false;
1865 handler_seq = gimple_catch_handler (stmt);
1866 handler_gsi = gsi_start (handler_seq);
1867 remove_useless_stmts_1 (&handler_gsi, data);
1868 gsi_next (&cleanup_gsi);
1869 }
1870 gsi_next (gsi);
1871 break;
1872
1873 case GIMPLE_EH_FILTER:
1874 /* If the first element is an eh_filter, it should stand alone. */
1875 if (gimple_eh_filter_must_not_throw (stmt))
1876 this_may_throw = false;
1877 else if (gimple_eh_filter_types (stmt) == NULL)
1878 this_may_throw = false;
1879 failure_seq = gimple_eh_filter_failure (stmt);
1880 failure_gsi = gsi_start (failure_seq);
1881 remove_useless_stmts_1 (&failure_gsi, data);
1882 gsi_next (gsi);
1883 break;
1884
1885 default:
1886 /* Otherwise this is a list of cleanup statements. */
1887 remove_useless_stmts_1 (&cleanup_gsi, data);
1888
1889 /* If the cleanup is empty, then we can emit the TRY block without
1890 the enclosing TRY_CATCH_EXPR. */
1891 if (gimple_seq_empty_p (cleanup_seq))
1892 {
1893 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1894 gsi_remove(gsi, false);
1895 data->repeat = true;
1896 }
1897 else
1898 gsi_next (gsi);
1899 break;
1900 }
1901
1902 data->may_throw |= this_may_throw;
1903 }
1904
1905 /* Helper for remove_useless_stmts_1. Handle GIMPLE_BIND statements. */
1906
1907 static void
1908 remove_useless_stmts_bind (gimple_stmt_iterator *gsi, struct rus_data *data ATTRIBUTE_UNUSED)
1909 {
1910 tree block;
1911 gimple_seq body_seq, fn_body_seq;
1912 gimple_stmt_iterator body_gsi;
1913
1914 gimple stmt = gsi_stmt (*gsi);
1915
1916 /* First remove anything underneath the BIND_EXPR. */
1917
1918 body_seq = gimple_bind_body (stmt);
1919 body_gsi = gsi_start (body_seq);
1920 remove_useless_stmts_1 (&body_gsi, data);
1921
1922 /* If the GIMPLE_BIND has no variables, then we can pull everything
1923 up one level and remove the GIMPLE_BIND, unless this is the toplevel
1924 GIMPLE_BIND for the current function or an inlined function.
1925
1926 When this situation occurs we will want to apply this
1927 optimization again. */
1928 block = gimple_bind_block (stmt);
1929 fn_body_seq = gimple_body (current_function_decl);
1930 if (gimple_bind_vars (stmt) == NULL_TREE
1931 && (gimple_seq_empty_p (fn_body_seq)
1932 || stmt != gimple_seq_first_stmt (fn_body_seq))
1933 && (! block
1934 || ! BLOCK_ABSTRACT_ORIGIN (block)
1935 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
1936 != FUNCTION_DECL)))
1937 {
1938 tree var = NULL_TREE;
1939 /* Even if there are no gimple_bind_vars, there might be other
1940 decls in BLOCK_VARS rendering the GIMPLE_BIND not useless. */
1941 if (block && !BLOCK_NUM_NONLOCALIZED_VARS (block))
1942 for (var = BLOCK_VARS (block); var; var = TREE_CHAIN (var))
1943 if (TREE_CODE (var) == IMPORTED_DECL)
1944 break;
1945 if (var || (block && BLOCK_NUM_NONLOCALIZED_VARS (block)))
1946 gsi_next (gsi);
1947 else
1948 {
1949 gsi_insert_seq_before (gsi, body_seq, GSI_SAME_STMT);
1950 gsi_remove (gsi, false);
1951 data->repeat = true;
1952 }
1953 }
1954 else
1955 gsi_next (gsi);
1956 }
1957
1958 /* Helper for remove_useless_stmts_1. Handle GIMPLE_GOTO statements. */
1959
1960 static void
1961 remove_useless_stmts_goto (gimple_stmt_iterator *gsi, struct rus_data *data)
1962 {
1963 gimple stmt = gsi_stmt (*gsi);
1964
1965 tree dest = gimple_goto_dest (stmt);
1966
1967 data->may_branch = true;
1968 data->last_was_goto = false;
1969
1970 /* Record iterator for last goto expr, so that we can delete it if unnecessary. */
1971 if (TREE_CODE (dest) == LABEL_DECL)
1972 {
1973 data->last_goto_gsi = *gsi;
1974 data->last_was_goto = true;
1975 }
1976
1977 gsi_next(gsi);
1978 }
1979
1980 /* Helper for remove_useless_stmts_1. Handle GIMPLE_LABEL statements. */
1981
1982 static void
1983 remove_useless_stmts_label (gimple_stmt_iterator *gsi, struct rus_data *data)
1984 {
1985 gimple stmt = gsi_stmt (*gsi);
1986
1987 tree label = gimple_label_label (stmt);
1988
1989 data->has_label = true;
1990
1991 /* We do want to jump across non-local label receiver code. */
1992 if (DECL_NONLOCAL (label))
1993 data->last_was_goto = false;
1994
1995 else if (data->last_was_goto
1996 && gimple_goto_dest (gsi_stmt (data->last_goto_gsi)) == label)
1997 {
1998 /* Replace the preceding GIMPLE_GOTO statement with
1999 a GIMPLE_NOP, which will be subsequently removed.
2000 In this way, we avoid invalidating other iterators
2001 active on the statement sequence. */
2002 gsi_replace(&data->last_goto_gsi, gimple_build_nop(), false);
2003 data->last_was_goto = false;
2004 data->repeat = true;
2005 }
2006
2007 /* ??? Add something here to delete unused labels. */
2008
2009 gsi_next (gsi);
2010 }
2011
2012
2013 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2014
2015 void
2016 notice_special_calls (gimple call)
2017 {
2018 int flags = gimple_call_flags (call);
2019
2020 if (flags & ECF_MAY_BE_ALLOCA)
2021 cfun->calls_alloca = true;
2022 if (flags & ECF_RETURNS_TWICE)
2023 cfun->calls_setjmp = true;
2024 }
2025
2026
2027 /* Clear flags set by notice_special_calls. Used by dead code removal
2028 to update the flags. */
2029
2030 void
2031 clear_special_calls (void)
2032 {
2033 cfun->calls_alloca = false;
2034 cfun->calls_setjmp = false;
2035 }
2036
2037 /* Remove useless statements from a statement sequence, and perform
2038 some preliminary simplifications. */
2039
2040 static void
2041 remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *data)
2042 {
2043 while (!gsi_end_p (*gsi))
2044 {
2045 gimple stmt = gsi_stmt (*gsi);
2046
2047 switch (gimple_code (stmt))
2048 {
2049 case GIMPLE_COND:
2050 remove_useless_stmts_cond (gsi, data);
2051 break;
2052
2053 case GIMPLE_GOTO:
2054 remove_useless_stmts_goto (gsi, data);
2055 break;
2056
2057 case GIMPLE_LABEL:
2058 remove_useless_stmts_label (gsi, data);
2059 break;
2060
2061 case GIMPLE_ASSIGN:
2062 fold_stmt (gsi);
2063 stmt = gsi_stmt (*gsi);
2064 data->last_was_goto = false;
2065 if (stmt_could_throw_p (stmt))
2066 data->may_throw = true;
2067 gsi_next (gsi);
2068 break;
2069
2070 case GIMPLE_ASM:
2071 fold_stmt (gsi);
2072 data->last_was_goto = false;
2073 gsi_next (gsi);
2074 break;
2075
2076 case GIMPLE_CALL:
2077 fold_stmt (gsi);
2078 stmt = gsi_stmt (*gsi);
2079 data->last_was_goto = false;
2080 if (is_gimple_call (stmt))
2081 notice_special_calls (stmt);
2082
2083 /* We used to call update_gimple_call_flags here,
2084 which copied side-effects and nothrows status
2085 from the function decl to the call. In the new
2086 tuplified GIMPLE, the accessors for this information
2087 always consult the function decl, so this copying
2088 is no longer necessary. */
2089 if (stmt_could_throw_p (stmt))
2090 data->may_throw = true;
2091 gsi_next (gsi);
2092 break;
2093
2094 case GIMPLE_RETURN:
2095 fold_stmt (gsi);
2096 data->last_was_goto = false;
2097 data->may_branch = true;
2098 gsi_next (gsi);
2099 break;
2100
2101 case GIMPLE_BIND:
2102 remove_useless_stmts_bind (gsi, data);
2103 break;
2104
2105 case GIMPLE_TRY:
2106 if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
2107 remove_useless_stmts_tc (gsi, data);
2108 else if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
2109 remove_useless_stmts_tf (gsi, data);
2110 else
2111 gcc_unreachable ();
2112 break;
2113
2114 case GIMPLE_CATCH:
2115 gcc_unreachable ();
2116 break;
2117
2118 case GIMPLE_NOP:
2119 gsi_remove (gsi, false);
2120 break;
2121
2122 case GIMPLE_OMP_FOR:
2123 {
2124 gimple_seq pre_body_seq = gimple_omp_for_pre_body (stmt);
2125 gimple_stmt_iterator pre_body_gsi = gsi_start (pre_body_seq);
2126
2127 remove_useless_stmts_1 (&pre_body_gsi, data);
2128 data->last_was_goto = false;
2129 }
2130 /* FALLTHROUGH */
2131 case GIMPLE_OMP_CRITICAL:
2132 case GIMPLE_OMP_CONTINUE:
2133 case GIMPLE_OMP_MASTER:
2134 case GIMPLE_OMP_ORDERED:
2135 case GIMPLE_OMP_SECTION:
2136 case GIMPLE_OMP_SECTIONS:
2137 case GIMPLE_OMP_SINGLE:
2138 {
2139 gimple_seq body_seq = gimple_omp_body (stmt);
2140 gimple_stmt_iterator body_gsi = gsi_start (body_seq);
2141
2142 remove_useless_stmts_1 (&body_gsi, data);
2143 data->last_was_goto = false;
2144 gsi_next (gsi);
2145 }
2146 break;
2147
2148 case GIMPLE_OMP_PARALLEL:
2149 case GIMPLE_OMP_TASK:
2150 {
2151 /* Make sure the outermost GIMPLE_BIND isn't removed
2152 as useless. */
2153 gimple_seq body_seq = gimple_omp_body (stmt);
2154 gimple bind = gimple_seq_first_stmt (body_seq);
2155 gimple_seq bind_seq = gimple_bind_body (bind);
2156 gimple_stmt_iterator bind_gsi = gsi_start (bind_seq);
2157
2158 remove_useless_stmts_1 (&bind_gsi, data);
2159 data->last_was_goto = false;
2160 gsi_next (gsi);
2161 }
2162 break;
2163
2164 default:
2165 data->last_was_goto = false;
2166 gsi_next (gsi);
2167 break;
2168 }
2169 }
2170 }
2171
2172 /* Walk the function tree, removing useless statements and performing
2173 some preliminary simplifications. */
2174
2175 static unsigned int
2176 remove_useless_stmts (void)
2177 {
2178 struct rus_data data;
2179
2180 clear_special_calls ();
2181
2182 do
2183 {
2184 gimple_stmt_iterator gsi;
2185
2186 gsi = gsi_start (gimple_body (current_function_decl));
2187 memset (&data, 0, sizeof (data));
2188 remove_useless_stmts_1 (&gsi, &data);
2189 }
2190 while (data.repeat);
2191
2192 #ifdef ENABLE_TYPES_CHECKING
2193 verify_types_in_gimple_seq (gimple_body (current_function_decl));
2194 #endif
2195
2196 return 0;
2197 }
2198
2199
2200 struct gimple_opt_pass pass_remove_useless_stmts =
2201 {
2202 {
2203 GIMPLE_PASS,
2204 "useless", /* name */
2205 NULL, /* gate */
2206 remove_useless_stmts, /* execute */
2207 NULL, /* sub */
2208 NULL, /* next */
2209 0, /* static_pass_number */
2210 TV_NONE, /* tv_id */
2211 PROP_gimple_any, /* properties_required */
2212 0, /* properties_provided */
2213 0, /* properties_destroyed */
2214 0, /* todo_flags_start */
2215 TODO_dump_func /* todo_flags_finish */
2216 }
2217 };
2218
2219 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2220
2221 static void
2222 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2223 {
2224 /* Since this block is no longer reachable, we can just delete all
2225 of its PHI nodes. */
2226 remove_phi_nodes (bb);
2227
2228 /* Remove edges to BB's successors. */
2229 while (EDGE_COUNT (bb->succs) > 0)
2230 remove_edge (EDGE_SUCC (bb, 0));
2231 }
2232
2233
2234 /* Remove statements of basic block BB. */
2235
2236 static void
2237 remove_bb (basic_block bb)
2238 {
2239 gimple_stmt_iterator i;
2240 source_location loc = UNKNOWN_LOCATION;
2241
2242 if (dump_file)
2243 {
2244 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2245 if (dump_flags & TDF_DETAILS)
2246 {
2247 dump_bb (bb, dump_file, 0);
2248 fprintf (dump_file, "\n");
2249 }
2250 }
2251
2252 if (current_loops)
2253 {
2254 struct loop *loop = bb->loop_father;
2255
2256 /* If a loop gets removed, clean up the information associated
2257 with it. */
2258 if (loop->latch == bb
2259 || loop->header == bb)
2260 free_numbers_of_iterations_estimates_loop (loop);
2261 }
2262
2263 /* Remove all the instructions in the block. */
2264 if (bb_seq (bb) != NULL)
2265 {
2266 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2267 {
2268 gimple stmt = gsi_stmt (i);
2269 if (gimple_code (stmt) == GIMPLE_LABEL
2270 && (FORCED_LABEL (gimple_label_label (stmt))
2271 || DECL_NONLOCAL (gimple_label_label (stmt))))
2272 {
2273 basic_block new_bb;
2274 gimple_stmt_iterator new_gsi;
2275
2276 /* A non-reachable non-local label may still be referenced.
2277 But it no longer needs to carry the extra semantics of
2278 non-locality. */
2279 if (DECL_NONLOCAL (gimple_label_label (stmt)))
2280 {
2281 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
2282 FORCED_LABEL (gimple_label_label (stmt)) = 1;
2283 }
2284
2285 new_bb = bb->prev_bb;
2286 new_gsi = gsi_start_bb (new_bb);
2287 gsi_remove (&i, false);
2288 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2289 }
2290 else
2291 {
2292 /* Release SSA definitions if we are in SSA. Note that we
2293 may be called when not in SSA. For example,
2294 final_cleanup calls this function via
2295 cleanup_tree_cfg. */
2296 if (gimple_in_ssa_p (cfun))
2297 release_defs (stmt);
2298
2299 gsi_remove (&i, true);
2300 }
2301
2302 /* Don't warn for removed gotos. Gotos are often removed due to
2303 jump threading, thus resulting in bogus warnings. Not great,
2304 since this way we lose warnings for gotos in the original
2305 program that are indeed unreachable. */
2306 if (gimple_code (stmt) != GIMPLE_GOTO
2307 && gimple_has_location (stmt)
2308 && !loc)
2309 loc = gimple_location (stmt);
2310 }
2311 }
2312
2313 /* If requested, give a warning that the first statement in the
2314 block is unreachable. We walk statements backwards in the
2315 loop above, so the last statement we process is the first statement
2316 in the block. */
2317 if (loc > BUILTINS_LOCATION && LOCATION_LINE (loc) > 0)
2318 warning_at (loc, OPT_Wunreachable_code, "will never be executed");
2319
2320 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2321 bb->il.gimple = NULL;
2322 }
2323
2324
2325 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2326 predicate VAL, return the edge that will be taken out of the block.
2327 If VAL does not match a unique edge, NULL is returned. */
2328
2329 edge
2330 find_taken_edge (basic_block bb, tree val)
2331 {
2332 gimple stmt;
2333
2334 stmt = last_stmt (bb);
2335
2336 gcc_assert (stmt);
2337 gcc_assert (is_ctrl_stmt (stmt));
2338
2339 if (val == NULL)
2340 return NULL;
2341
2342 if (!is_gimple_min_invariant (val))
2343 return NULL;
2344
2345 if (gimple_code (stmt) == GIMPLE_COND)
2346 return find_taken_edge_cond_expr (bb, val);
2347
2348 if (gimple_code (stmt) == GIMPLE_SWITCH)
2349 return find_taken_edge_switch_expr (bb, val);
2350
2351 if (computed_goto_p (stmt))
2352 {
2353 /* Only optimize if the argument is a label, if the argument is
2354 not a label then we can not construct a proper CFG.
2355
2356 It may be the case that we only need to allow the LABEL_REF to
2357 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2358 appear inside a LABEL_EXPR just to be safe. */
2359 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2360 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2361 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2362 return NULL;
2363 }
2364
2365 gcc_unreachable ();
2366 }
2367
2368 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2369 statement, determine which of the outgoing edges will be taken out of the
2370 block. Return NULL if either edge may be taken. */
2371
2372 static edge
2373 find_taken_edge_computed_goto (basic_block bb, tree val)
2374 {
2375 basic_block dest;
2376 edge e = NULL;
2377
2378 dest = label_to_block (val);
2379 if (dest)
2380 {
2381 e = find_edge (bb, dest);
2382 gcc_assert (e != NULL);
2383 }
2384
2385 return e;
2386 }
2387
2388 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2389 statement, determine which of the two edges will be taken out of the
2390 block. Return NULL if either edge may be taken. */
2391
2392 static edge
2393 find_taken_edge_cond_expr (basic_block bb, tree val)
2394 {
2395 edge true_edge, false_edge;
2396
2397 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2398
2399 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2400 return (integer_zerop (val) ? false_edge : true_edge);
2401 }
2402
2403 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2404 statement, determine which edge will be taken out of the block. Return
2405 NULL if any edge may be taken. */
2406
2407 static edge
2408 find_taken_edge_switch_expr (basic_block bb, tree val)
2409 {
2410 basic_block dest_bb;
2411 edge e;
2412 gimple switch_stmt;
2413 tree taken_case;
2414
2415 switch_stmt = last_stmt (bb);
2416 taken_case = find_case_label_for_value (switch_stmt, val);
2417 dest_bb = label_to_block (CASE_LABEL (taken_case));
2418
2419 e = find_edge (bb, dest_bb);
2420 gcc_assert (e);
2421 return e;
2422 }
2423
2424
2425 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2426 We can make optimal use here of the fact that the case labels are
2427 sorted: We can do a binary search for a case matching VAL. */
2428
2429 static tree
2430 find_case_label_for_value (gimple switch_stmt, tree val)
2431 {
2432 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2433 tree default_case = gimple_switch_default_label (switch_stmt);
2434
2435 for (low = 0, high = n; high - low > 1; )
2436 {
2437 size_t i = (high + low) / 2;
2438 tree t = gimple_switch_label (switch_stmt, i);
2439 int cmp;
2440
2441 /* Cache the result of comparing CASE_LOW and val. */
2442 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2443
2444 if (cmp > 0)
2445 high = i;
2446 else
2447 low = i;
2448
2449 if (CASE_HIGH (t) == NULL)
2450 {
2451 /* A singe-valued case label. */
2452 if (cmp == 0)
2453 return t;
2454 }
2455 else
2456 {
2457 /* A case range. We can only handle integer ranges. */
2458 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2459 return t;
2460 }
2461 }
2462
2463 return default_case;
2464 }
2465
2466
2467 /* Dump a basic block on stderr. */
2468
2469 void
2470 gimple_debug_bb (basic_block bb)
2471 {
2472 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2473 }
2474
2475
2476 /* Dump basic block with index N on stderr. */
2477
2478 basic_block
2479 gimple_debug_bb_n (int n)
2480 {
2481 gimple_debug_bb (BASIC_BLOCK (n));
2482 return BASIC_BLOCK (n);
2483 }
2484
2485
2486 /* Dump the CFG on stderr.
2487
2488 FLAGS are the same used by the tree dumping functions
2489 (see TDF_* in tree-pass.h). */
2490
2491 void
2492 gimple_debug_cfg (int flags)
2493 {
2494 gimple_dump_cfg (stderr, flags);
2495 }
2496
2497
2498 /* Dump the program showing basic block boundaries on the given FILE.
2499
2500 FLAGS are the same used by the tree dumping functions (see TDF_* in
2501 tree.h). */
2502
2503 void
2504 gimple_dump_cfg (FILE *file, int flags)
2505 {
2506 if (flags & TDF_DETAILS)
2507 {
2508 const char *funcname
2509 = lang_hooks.decl_printable_name (current_function_decl, 2);
2510
2511 fputc ('\n', file);
2512 fprintf (file, ";; Function %s\n\n", funcname);
2513 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2514 n_basic_blocks, n_edges, last_basic_block);
2515
2516 brief_dump_cfg (file);
2517 fprintf (file, "\n");
2518 }
2519
2520 if (flags & TDF_STATS)
2521 dump_cfg_stats (file);
2522
2523 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2524 }
2525
2526
2527 /* Dump CFG statistics on FILE. */
2528
2529 void
2530 dump_cfg_stats (FILE *file)
2531 {
2532 static long max_num_merged_labels = 0;
2533 unsigned long size, total = 0;
2534 long num_edges;
2535 basic_block bb;
2536 const char * const fmt_str = "%-30s%-13s%12s\n";
2537 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2538 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2539 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2540 const char *funcname
2541 = lang_hooks.decl_printable_name (current_function_decl, 2);
2542
2543
2544 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2545
2546 fprintf (file, "---------------------------------------------------------\n");
2547 fprintf (file, fmt_str, "", " Number of ", "Memory");
2548 fprintf (file, fmt_str, "", " instances ", "used ");
2549 fprintf (file, "---------------------------------------------------------\n");
2550
2551 size = n_basic_blocks * sizeof (struct basic_block_def);
2552 total += size;
2553 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2554 SCALE (size), LABEL (size));
2555
2556 num_edges = 0;
2557 FOR_EACH_BB (bb)
2558 num_edges += EDGE_COUNT (bb->succs);
2559 size = num_edges * sizeof (struct edge_def);
2560 total += size;
2561 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2562
2563 fprintf (file, "---------------------------------------------------------\n");
2564 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2565 LABEL (total));
2566 fprintf (file, "---------------------------------------------------------\n");
2567 fprintf (file, "\n");
2568
2569 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2570 max_num_merged_labels = cfg_stats.num_merged_labels;
2571
2572 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2573 cfg_stats.num_merged_labels, max_num_merged_labels);
2574
2575 fprintf (file, "\n");
2576 }
2577
2578
2579 /* Dump CFG statistics on stderr. Keep extern so that it's always
2580 linked in the final executable. */
2581
2582 void
2583 debug_cfg_stats (void)
2584 {
2585 dump_cfg_stats (stderr);
2586 }
2587
2588
2589 /* Dump the flowgraph to a .vcg FILE. */
2590
2591 static void
2592 gimple_cfg2vcg (FILE *file)
2593 {
2594 edge e;
2595 edge_iterator ei;
2596 basic_block bb;
2597 const char *funcname
2598 = lang_hooks.decl_printable_name (current_function_decl, 2);
2599
2600 /* Write the file header. */
2601 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2602 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2603 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2604
2605 /* Write blocks and edges. */
2606 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2607 {
2608 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2609 e->dest->index);
2610
2611 if (e->flags & EDGE_FAKE)
2612 fprintf (file, " linestyle: dotted priority: 10");
2613 else
2614 fprintf (file, " linestyle: solid priority: 100");
2615
2616 fprintf (file, " }\n");
2617 }
2618 fputc ('\n', file);
2619
2620 FOR_EACH_BB (bb)
2621 {
2622 enum gimple_code head_code, end_code;
2623 const char *head_name, *end_name;
2624 int head_line = 0;
2625 int end_line = 0;
2626 gimple first = first_stmt (bb);
2627 gimple last = last_stmt (bb);
2628
2629 if (first)
2630 {
2631 head_code = gimple_code (first);
2632 head_name = gimple_code_name[head_code];
2633 head_line = get_lineno (first);
2634 }
2635 else
2636 head_name = "no-statement";
2637
2638 if (last)
2639 {
2640 end_code = gimple_code (last);
2641 end_name = gimple_code_name[end_code];
2642 end_line = get_lineno (last);
2643 }
2644 else
2645 end_name = "no-statement";
2646
2647 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2648 bb->index, bb->index, head_name, head_line, end_name,
2649 end_line);
2650
2651 FOR_EACH_EDGE (e, ei, bb->succs)
2652 {
2653 if (e->dest == EXIT_BLOCK_PTR)
2654 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2655 else
2656 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2657
2658 if (e->flags & EDGE_FAKE)
2659 fprintf (file, " priority: 10 linestyle: dotted");
2660 else
2661 fprintf (file, " priority: 100 linestyle: solid");
2662
2663 fprintf (file, " }\n");
2664 }
2665
2666 if (bb->next_bb != EXIT_BLOCK_PTR)
2667 fputc ('\n', file);
2668 }
2669
2670 fputs ("}\n\n", file);
2671 }
2672
2673
2674
2675 /*---------------------------------------------------------------------------
2676 Miscellaneous helpers
2677 ---------------------------------------------------------------------------*/
2678
2679 /* Return true if T represents a stmt that always transfers control. */
2680
2681 bool
2682 is_ctrl_stmt (gimple t)
2683 {
2684 return gimple_code (t) == GIMPLE_COND
2685 || gimple_code (t) == GIMPLE_SWITCH
2686 || gimple_code (t) == GIMPLE_GOTO
2687 || gimple_code (t) == GIMPLE_RETURN
2688 || gimple_code (t) == GIMPLE_RESX;
2689 }
2690
2691
2692 /* Return true if T is a statement that may alter the flow of control
2693 (e.g., a call to a non-returning function). */
2694
2695 bool
2696 is_ctrl_altering_stmt (gimple t)
2697 {
2698 gcc_assert (t);
2699
2700 if (is_gimple_call (t))
2701 {
2702 int flags = gimple_call_flags (t);
2703
2704 /* A non-pure/const call alters flow control if the current
2705 function has nonlocal labels. */
2706 if (!(flags & (ECF_CONST | ECF_PURE))
2707 && cfun->has_nonlocal_label)
2708 return true;
2709
2710 /* A call also alters control flow if it does not return. */
2711 if (gimple_call_flags (t) & ECF_NORETURN)
2712 return true;
2713 }
2714
2715 /* OpenMP directives alter control flow. */
2716 if (is_gimple_omp (t))
2717 return true;
2718
2719 /* If a statement can throw, it alters control flow. */
2720 return stmt_can_throw_internal (t);
2721 }
2722
2723
2724 /* Return true if T is a simple local goto. */
2725
2726 bool
2727 simple_goto_p (gimple t)
2728 {
2729 return (gimple_code (t) == GIMPLE_GOTO
2730 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2731 }
2732
2733
2734 /* Return true if T can make an abnormal transfer of control flow.
2735 Transfers of control flow associated with EH are excluded. */
2736
2737 bool
2738 stmt_can_make_abnormal_goto (gimple t)
2739 {
2740 if (computed_goto_p (t))
2741 return true;
2742 if (is_gimple_call (t))
2743 return gimple_has_side_effects (t) && cfun->has_nonlocal_label;
2744 return false;
2745 }
2746
2747
2748 /* Return true if STMT should start a new basic block. PREV_STMT is
2749 the statement preceding STMT. It is used when STMT is a label or a
2750 case label. Labels should only start a new basic block if their
2751 previous statement wasn't a label. Otherwise, sequence of labels
2752 would generate unnecessary basic blocks that only contain a single
2753 label. */
2754
2755 static inline bool
2756 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2757 {
2758 if (stmt == NULL)
2759 return false;
2760
2761 /* Labels start a new basic block only if the preceding statement
2762 wasn't a label of the same type. This prevents the creation of
2763 consecutive blocks that have nothing but a single label. */
2764 if (gimple_code (stmt) == GIMPLE_LABEL)
2765 {
2766 /* Nonlocal and computed GOTO targets always start a new block. */
2767 if (DECL_NONLOCAL (gimple_label_label (stmt))
2768 || FORCED_LABEL (gimple_label_label (stmt)))
2769 return true;
2770
2771 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2772 {
2773 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2774 return true;
2775
2776 cfg_stats.num_merged_labels++;
2777 return false;
2778 }
2779 else
2780 return true;
2781 }
2782
2783 return false;
2784 }
2785
2786
2787 /* Return true if T should end a basic block. */
2788
2789 bool
2790 stmt_ends_bb_p (gimple t)
2791 {
2792 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2793 }
2794
2795 /* Remove block annotations and other data structures. */
2796
2797 void
2798 delete_tree_cfg_annotations (void)
2799 {
2800 label_to_block_map = NULL;
2801 }
2802
2803
2804 /* Return the first statement in basic block BB. */
2805
2806 gimple
2807 first_stmt (basic_block bb)
2808 {
2809 gimple_stmt_iterator i = gsi_start_bb (bb);
2810 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2811 }
2812
2813 /* Return the first non-label statement in basic block BB. */
2814
2815 static gimple
2816 first_non_label_stmt (basic_block bb)
2817 {
2818 gimple_stmt_iterator i = gsi_start_bb (bb);
2819 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2820 gsi_next (&i);
2821 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2822 }
2823
2824 /* Return the last statement in basic block BB. */
2825
2826 gimple
2827 last_stmt (basic_block bb)
2828 {
2829 gimple_stmt_iterator b = gsi_last_bb (bb);
2830 return !gsi_end_p (b) ? gsi_stmt (b) : NULL;
2831 }
2832
2833 /* Return the last statement of an otherwise empty block. Return NULL
2834 if the block is totally empty, or if it contains more than one
2835 statement. */
2836
2837 gimple
2838 last_and_only_stmt (basic_block bb)
2839 {
2840 gimple_stmt_iterator i = gsi_last_bb (bb);
2841 gimple last, prev;
2842
2843 if (gsi_end_p (i))
2844 return NULL;
2845
2846 last = gsi_stmt (i);
2847 gsi_prev (&i);
2848 if (gsi_end_p (i))
2849 return last;
2850
2851 /* Empty statements should no longer appear in the instruction stream.
2852 Everything that might have appeared before should be deleted by
2853 remove_useless_stmts, and the optimizers should just gsi_remove
2854 instead of smashing with build_empty_stmt.
2855
2856 Thus the only thing that should appear here in a block containing
2857 one executable statement is a label. */
2858 prev = gsi_stmt (i);
2859 if (gimple_code (prev) == GIMPLE_LABEL)
2860 return last;
2861 else
2862 return NULL;
2863 }
2864
2865 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2866
2867 static void
2868 reinstall_phi_args (edge new_edge, edge old_edge)
2869 {
2870 edge_var_map_vector v;
2871 edge_var_map *vm;
2872 int i;
2873 gimple_stmt_iterator phis;
2874
2875 v = redirect_edge_var_map_vector (old_edge);
2876 if (!v)
2877 return;
2878
2879 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2880 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2881 i++, gsi_next (&phis))
2882 {
2883 gimple phi = gsi_stmt (phis);
2884 tree result = redirect_edge_var_map_result (vm);
2885 tree arg = redirect_edge_var_map_def (vm);
2886
2887 gcc_assert (result == gimple_phi_result (phi));
2888
2889 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2890 }
2891
2892 redirect_edge_var_map_clear (old_edge);
2893 }
2894
2895 /* Returns the basic block after which the new basic block created
2896 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2897 near its "logical" location. This is of most help to humans looking
2898 at debugging dumps. */
2899
2900 static basic_block
2901 split_edge_bb_loc (edge edge_in)
2902 {
2903 basic_block dest = edge_in->dest;
2904
2905 if (dest->prev_bb && find_edge (dest->prev_bb, dest))
2906 return edge_in->src;
2907 else
2908 return dest->prev_bb;
2909 }
2910
2911 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2912 Abort on abnormal edges. */
2913
2914 static basic_block
2915 gimple_split_edge (edge edge_in)
2916 {
2917 basic_block new_bb, after_bb, dest;
2918 edge new_edge, e;
2919
2920 /* Abnormal edges cannot be split. */
2921 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2922
2923 dest = edge_in->dest;
2924
2925 after_bb = split_edge_bb_loc (edge_in);
2926
2927 new_bb = create_empty_bb (after_bb);
2928 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2929 new_bb->count = edge_in->count;
2930 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2931 new_edge->probability = REG_BR_PROB_BASE;
2932 new_edge->count = edge_in->count;
2933
2934 e = redirect_edge_and_branch (edge_in, new_bb);
2935 gcc_assert (e == edge_in);
2936 reinstall_phi_args (new_edge, e);
2937
2938 return new_bb;
2939 }
2940
2941 /* Callback for walk_tree, check that all elements with address taken are
2942 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2943 inside a PHI node. */
2944
2945 static tree
2946 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2947 {
2948 tree t = *tp, x;
2949
2950 if (TYPE_P (t))
2951 *walk_subtrees = 0;
2952
2953 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2954 #define CHECK_OP(N, MSG) \
2955 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2956 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2957
2958 switch (TREE_CODE (t))
2959 {
2960 case SSA_NAME:
2961 if (SSA_NAME_IN_FREE_LIST (t))
2962 {
2963 error ("SSA name in freelist but still referenced");
2964 return *tp;
2965 }
2966 break;
2967
2968 case INDIRECT_REF:
2969 x = TREE_OPERAND (t, 0);
2970 if (!is_gimple_reg (x) && !is_gimple_min_invariant (x))
2971 {
2972 error ("Indirect reference's operand is not a register or a constant.");
2973 return x;
2974 }
2975 break;
2976
2977 case ASSERT_EXPR:
2978 x = fold (ASSERT_EXPR_COND (t));
2979 if (x == boolean_false_node)
2980 {
2981 error ("ASSERT_EXPR with an always-false condition");
2982 return *tp;
2983 }
2984 break;
2985
2986 case MODIFY_EXPR:
2987 error ("MODIFY_EXPR not expected while having tuples.");
2988 return *tp;
2989
2990 case ADDR_EXPR:
2991 {
2992 bool old_constant;
2993 bool old_side_effects;
2994 bool new_constant;
2995 bool new_side_effects;
2996
2997 gcc_assert (is_gimple_address (t));
2998
2999 old_constant = TREE_CONSTANT (t);
3000 old_side_effects = TREE_SIDE_EFFECTS (t);
3001
3002 recompute_tree_invariant_for_addr_expr (t);
3003 new_side_effects = TREE_SIDE_EFFECTS (t);
3004 new_constant = TREE_CONSTANT (t);
3005
3006 if (old_constant != new_constant)
3007 {
3008 error ("constant not recomputed when ADDR_EXPR changed");
3009 return t;
3010 }
3011 if (old_side_effects != new_side_effects)
3012 {
3013 error ("side effects not recomputed when ADDR_EXPR changed");
3014 return t;
3015 }
3016
3017 /* Skip any references (they will be checked when we recurse down the
3018 tree) and ensure that any variable used as a prefix is marked
3019 addressable. */
3020 for (x = TREE_OPERAND (t, 0);
3021 handled_component_p (x);
3022 x = TREE_OPERAND (x, 0))
3023 ;
3024
3025 if (!(TREE_CODE (x) == VAR_DECL
3026 || TREE_CODE (x) == PARM_DECL
3027 || TREE_CODE (x) == RESULT_DECL))
3028 return NULL;
3029 if (!TREE_ADDRESSABLE (x))
3030 {
3031 error ("address taken, but ADDRESSABLE bit not set");
3032 return x;
3033 }
3034 if (DECL_GIMPLE_REG_P (x))
3035 {
3036 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3037 return x;
3038 }
3039
3040 break;
3041 }
3042
3043 case COND_EXPR:
3044 x = COND_EXPR_COND (t);
3045 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
3046 {
3047 error ("non-integral used in condition");
3048 return x;
3049 }
3050 if (!is_gimple_condexpr (x))
3051 {
3052 error ("invalid conditional operand");
3053 return x;
3054 }
3055 break;
3056
3057 case NON_LVALUE_EXPR:
3058 gcc_unreachable ();
3059
3060 CASE_CONVERT:
3061 case FIX_TRUNC_EXPR:
3062 case FLOAT_EXPR:
3063 case NEGATE_EXPR:
3064 case ABS_EXPR:
3065 case BIT_NOT_EXPR:
3066 case TRUTH_NOT_EXPR:
3067 CHECK_OP (0, "invalid operand to unary operator");
3068 break;
3069
3070 case REALPART_EXPR:
3071 case IMAGPART_EXPR:
3072 case COMPONENT_REF:
3073 case ARRAY_REF:
3074 case ARRAY_RANGE_REF:
3075 case BIT_FIELD_REF:
3076 case VIEW_CONVERT_EXPR:
3077 /* We have a nest of references. Verify that each of the operands
3078 that determine where to reference is either a constant or a variable,
3079 verify that the base is valid, and then show we've already checked
3080 the subtrees. */
3081 while (handled_component_p (t))
3082 {
3083 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3084 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3085 else if (TREE_CODE (t) == ARRAY_REF
3086 || TREE_CODE (t) == ARRAY_RANGE_REF)
3087 {
3088 CHECK_OP (1, "invalid array index");
3089 if (TREE_OPERAND (t, 2))
3090 CHECK_OP (2, "invalid array lower bound");
3091 if (TREE_OPERAND (t, 3))
3092 CHECK_OP (3, "invalid array stride");
3093 }
3094 else if (TREE_CODE (t) == BIT_FIELD_REF)
3095 {
3096 if (!host_integerp (TREE_OPERAND (t, 1), 1)
3097 || !host_integerp (TREE_OPERAND (t, 2), 1))
3098 {
3099 error ("invalid position or size operand to BIT_FIELD_REF");
3100 return t;
3101 }
3102 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
3103 && (TYPE_PRECISION (TREE_TYPE (t))
3104 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
3105 {
3106 error ("integral result type precision does not match "
3107 "field size of BIT_FIELD_REF");
3108 return t;
3109 }
3110 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
3111 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
3112 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
3113 {
3114 error ("mode precision of non-integral result does not "
3115 "match field size of BIT_FIELD_REF");
3116 return t;
3117 }
3118 }
3119
3120 t = TREE_OPERAND (t, 0);
3121 }
3122
3123 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
3124 {
3125 error ("invalid reference prefix");
3126 return t;
3127 }
3128 *walk_subtrees = 0;
3129 break;
3130 case PLUS_EXPR:
3131 case MINUS_EXPR:
3132 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3133 POINTER_PLUS_EXPR. */
3134 if (POINTER_TYPE_P (TREE_TYPE (t)))
3135 {
3136 error ("invalid operand to plus/minus, type is a pointer");
3137 return t;
3138 }
3139 CHECK_OP (0, "invalid operand to binary operator");
3140 CHECK_OP (1, "invalid operand to binary operator");
3141 break;
3142
3143 case POINTER_PLUS_EXPR:
3144 /* Check to make sure the first operand is a pointer or reference type. */
3145 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
3146 {
3147 error ("invalid operand to pointer plus, first operand is not a pointer");
3148 return t;
3149 }
3150 /* Check to make sure the second operand is an integer with type of
3151 sizetype. */
3152 if (!useless_type_conversion_p (sizetype,
3153 TREE_TYPE (TREE_OPERAND (t, 1))))
3154 {
3155 error ("invalid operand to pointer plus, second operand is not an "
3156 "integer with type of sizetype.");
3157 return t;
3158 }
3159 /* FALLTHROUGH */
3160 case LT_EXPR:
3161 case LE_EXPR:
3162 case GT_EXPR:
3163 case GE_EXPR:
3164 case EQ_EXPR:
3165 case NE_EXPR:
3166 case UNORDERED_EXPR:
3167 case ORDERED_EXPR:
3168 case UNLT_EXPR:
3169 case UNLE_EXPR:
3170 case UNGT_EXPR:
3171 case UNGE_EXPR:
3172 case UNEQ_EXPR:
3173 case LTGT_EXPR:
3174 case MULT_EXPR:
3175 case TRUNC_DIV_EXPR:
3176 case CEIL_DIV_EXPR:
3177 case FLOOR_DIV_EXPR:
3178 case ROUND_DIV_EXPR:
3179 case TRUNC_MOD_EXPR:
3180 case CEIL_MOD_EXPR:
3181 case FLOOR_MOD_EXPR:
3182 case ROUND_MOD_EXPR:
3183 case RDIV_EXPR:
3184 case EXACT_DIV_EXPR:
3185 case MIN_EXPR:
3186 case MAX_EXPR:
3187 case LSHIFT_EXPR:
3188 case RSHIFT_EXPR:
3189 case LROTATE_EXPR:
3190 case RROTATE_EXPR:
3191 case BIT_IOR_EXPR:
3192 case BIT_XOR_EXPR:
3193 case BIT_AND_EXPR:
3194 CHECK_OP (0, "invalid operand to binary operator");
3195 CHECK_OP (1, "invalid operand to binary operator");
3196 break;
3197
3198 case CONSTRUCTOR:
3199 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3200 *walk_subtrees = 0;
3201 break;
3202
3203 default:
3204 break;
3205 }
3206 return NULL;
3207
3208 #undef CHECK_OP
3209 }
3210
3211
3212 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3213 Returns true if there is an error, otherwise false. */
3214
3215 static bool
3216 verify_types_in_gimple_min_lval (tree expr)
3217 {
3218 tree op;
3219
3220 if (is_gimple_id (expr))
3221 return false;
3222
3223 if (!INDIRECT_REF_P (expr)
3224 && TREE_CODE (expr) != TARGET_MEM_REF)
3225 {
3226 error ("invalid expression for min lvalue");
3227 return true;
3228 }
3229
3230 /* TARGET_MEM_REFs are strange beasts. */
3231 if (TREE_CODE (expr) == TARGET_MEM_REF)
3232 return false;
3233
3234 op = TREE_OPERAND (expr, 0);
3235 if (!is_gimple_val (op))
3236 {
3237 error ("invalid operand in indirect reference");
3238 debug_generic_stmt (op);
3239 return true;
3240 }
3241 if (!useless_type_conversion_p (TREE_TYPE (expr),
3242 TREE_TYPE (TREE_TYPE (op))))
3243 {
3244 error ("type mismatch in indirect reference");
3245 debug_generic_stmt (TREE_TYPE (expr));
3246 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3247 return true;
3248 }
3249
3250 return false;
3251 }
3252
3253 /* Verify if EXPR is a valid GIMPLE reference expression. If
3254 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3255 if there is an error, otherwise false. */
3256
3257 static bool
3258 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3259 {
3260 while (handled_component_p (expr))
3261 {
3262 tree op = TREE_OPERAND (expr, 0);
3263
3264 if (TREE_CODE (expr) == ARRAY_REF
3265 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3266 {
3267 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3268 || (TREE_OPERAND (expr, 2)
3269 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3270 || (TREE_OPERAND (expr, 3)
3271 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3272 {
3273 error ("invalid operands to array reference");
3274 debug_generic_stmt (expr);
3275 return true;
3276 }
3277 }
3278
3279 /* Verify if the reference array element types are compatible. */
3280 if (TREE_CODE (expr) == ARRAY_REF
3281 && !useless_type_conversion_p (TREE_TYPE (expr),
3282 TREE_TYPE (TREE_TYPE (op))))
3283 {
3284 error ("type mismatch in array reference");
3285 debug_generic_stmt (TREE_TYPE (expr));
3286 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3287 return true;
3288 }
3289 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3290 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3291 TREE_TYPE (TREE_TYPE (op))))
3292 {
3293 error ("type mismatch in array range reference");
3294 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3295 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3296 return true;
3297 }
3298
3299 if ((TREE_CODE (expr) == REALPART_EXPR
3300 || TREE_CODE (expr) == IMAGPART_EXPR)
3301 && !useless_type_conversion_p (TREE_TYPE (expr),
3302 TREE_TYPE (TREE_TYPE (op))))
3303 {
3304 error ("type mismatch in real/imagpart reference");
3305 debug_generic_stmt (TREE_TYPE (expr));
3306 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3307 return true;
3308 }
3309
3310 if (TREE_CODE (expr) == COMPONENT_REF
3311 && !useless_type_conversion_p (TREE_TYPE (expr),
3312 TREE_TYPE (TREE_OPERAND (expr, 1))))
3313 {
3314 error ("type mismatch in component reference");
3315 debug_generic_stmt (TREE_TYPE (expr));
3316 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3317 return true;
3318 }
3319
3320 /* For VIEW_CONVERT_EXPRs which are allowed here, too, there
3321 is nothing to verify. Gross mismatches at most invoke
3322 undefined behavior. */
3323 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
3324 && !handled_component_p (op))
3325 return false;
3326
3327 expr = op;
3328 }
3329
3330 return ((require_lvalue || !is_gimple_min_invariant (expr))
3331 && verify_types_in_gimple_min_lval (expr));
3332 }
3333
3334 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3335 list of pointer-to types that is trivially convertible to DEST. */
3336
3337 static bool
3338 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3339 {
3340 tree src;
3341
3342 if (!TYPE_POINTER_TO (src_obj))
3343 return true;
3344
3345 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3346 if (useless_type_conversion_p (dest, src))
3347 return true;
3348
3349 return false;
3350 }
3351
3352 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3353 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3354
3355 static bool
3356 valid_fixed_convert_types_p (tree type1, tree type2)
3357 {
3358 return (FIXED_POINT_TYPE_P (type1)
3359 && (INTEGRAL_TYPE_P (type2)
3360 || SCALAR_FLOAT_TYPE_P (type2)
3361 || FIXED_POINT_TYPE_P (type2)));
3362 }
3363
3364 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3365 is a problem, otherwise false. */
3366
3367 static bool
3368 verify_gimple_call (gimple stmt)
3369 {
3370 tree fn = gimple_call_fn (stmt);
3371 tree fntype;
3372
3373 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3374 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3375 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3376 {
3377 error ("non-function in gimple call");
3378 return true;
3379 }
3380
3381 if (gimple_call_lhs (stmt)
3382 && !is_gimple_lvalue (gimple_call_lhs (stmt)))
3383 {
3384 error ("invalid LHS in gimple call");
3385 return true;
3386 }
3387
3388 fntype = TREE_TYPE (TREE_TYPE (fn));
3389 if (gimple_call_lhs (stmt)
3390 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3391 TREE_TYPE (fntype))
3392 /* ??? At least C++ misses conversions at assignments from
3393 void * call results.
3394 ??? Java is completely off. Especially with functions
3395 returning java.lang.Object.
3396 For now simply allow arbitrary pointer type conversions. */
3397 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3398 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3399 {
3400 error ("invalid conversion in gimple call");
3401 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3402 debug_generic_stmt (TREE_TYPE (fntype));
3403 return true;
3404 }
3405
3406 /* ??? The C frontend passes unpromoted arguments in case it
3407 didn't see a function declaration before the call. So for now
3408 leave the call arguments unverified. Once we gimplify
3409 unit-at-a-time we have a chance to fix this. */
3410
3411 return false;
3412 }
3413
3414 /* Verifies the gimple comparison with the result type TYPE and
3415 the operands OP0 and OP1. */
3416
3417 static bool
3418 verify_gimple_comparison (tree type, tree op0, tree op1)
3419 {
3420 tree op0_type = TREE_TYPE (op0);
3421 tree op1_type = TREE_TYPE (op1);
3422
3423 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3424 {
3425 error ("invalid operands in gimple comparison");
3426 return true;
3427 }
3428
3429 /* For comparisons we do not have the operations type as the
3430 effective type the comparison is carried out in. Instead
3431 we require that either the first operand is trivially
3432 convertible into the second, or the other way around.
3433 The resulting type of a comparison may be any integral type.
3434 Because we special-case pointers to void we allow
3435 comparisons of pointers with the same mode as well. */
3436 if ((!useless_type_conversion_p (op0_type, op1_type)
3437 && !useless_type_conversion_p (op1_type, op0_type)
3438 && (!POINTER_TYPE_P (op0_type)
3439 || !POINTER_TYPE_P (op1_type)
3440 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3441 || !INTEGRAL_TYPE_P (type))
3442 {
3443 error ("type mismatch in comparison expression");
3444 debug_generic_expr (type);
3445 debug_generic_expr (op0_type);
3446 debug_generic_expr (op1_type);
3447 return true;
3448 }
3449
3450 return false;
3451 }
3452
3453 /* Verify a gimple assignment statement STMT with an unary rhs.
3454 Returns true if anything is wrong. */
3455
3456 static bool
3457 verify_gimple_assign_unary (gimple stmt)
3458 {
3459 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3460 tree lhs = gimple_assign_lhs (stmt);
3461 tree lhs_type = TREE_TYPE (lhs);
3462 tree rhs1 = gimple_assign_rhs1 (stmt);
3463 tree rhs1_type = TREE_TYPE (rhs1);
3464
3465 if (!is_gimple_reg (lhs)
3466 && !(optimize == 0
3467 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3468 {
3469 error ("non-register as LHS of unary operation");
3470 return true;
3471 }
3472
3473 if (!is_gimple_val (rhs1))
3474 {
3475 error ("invalid operand in unary operation");
3476 return true;
3477 }
3478
3479 /* First handle conversions. */
3480 switch (rhs_code)
3481 {
3482 CASE_CONVERT:
3483 {
3484 /* Allow conversions between integral types and pointers only if
3485 there is no sign or zero extension involved.
3486 For targets were the precision of sizetype doesn't match that
3487 of pointers we need to allow arbitrary conversions from and
3488 to sizetype. */
3489 if ((POINTER_TYPE_P (lhs_type)
3490 && INTEGRAL_TYPE_P (rhs1_type)
3491 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3492 || rhs1_type == sizetype))
3493 || (POINTER_TYPE_P (rhs1_type)
3494 && INTEGRAL_TYPE_P (lhs_type)
3495 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3496 || lhs_type == sizetype)))
3497 return false;
3498
3499 /* Allow conversion from integer to offset type and vice versa. */
3500 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3501 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3502 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3503 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3504 return false;
3505
3506 /* Otherwise assert we are converting between types of the
3507 same kind. */
3508 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3509 {
3510 error ("invalid types in nop conversion");
3511 debug_generic_expr (lhs_type);
3512 debug_generic_expr (rhs1_type);
3513 return true;
3514 }
3515
3516 return false;
3517 }
3518
3519 case FIXED_CONVERT_EXPR:
3520 {
3521 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3522 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3523 {
3524 error ("invalid types in fixed-point conversion");
3525 debug_generic_expr (lhs_type);
3526 debug_generic_expr (rhs1_type);
3527 return true;
3528 }
3529
3530 return false;
3531 }
3532
3533 case FLOAT_EXPR:
3534 {
3535 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3536 {
3537 error ("invalid types in conversion to floating point");
3538 debug_generic_expr (lhs_type);
3539 debug_generic_expr (rhs1_type);
3540 return true;
3541 }
3542
3543 return false;
3544 }
3545
3546 case FIX_TRUNC_EXPR:
3547 {
3548 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3549 {
3550 error ("invalid types in conversion to integer");
3551 debug_generic_expr (lhs_type);
3552 debug_generic_expr (rhs1_type);
3553 return true;
3554 }
3555
3556 return false;
3557 }
3558
3559 case VEC_UNPACK_HI_EXPR:
3560 case VEC_UNPACK_LO_EXPR:
3561 case REDUC_MAX_EXPR:
3562 case REDUC_MIN_EXPR:
3563 case REDUC_PLUS_EXPR:
3564 case VEC_UNPACK_FLOAT_HI_EXPR:
3565 case VEC_UNPACK_FLOAT_LO_EXPR:
3566 /* FIXME. */
3567 return false;
3568
3569 case TRUTH_NOT_EXPR:
3570 case NEGATE_EXPR:
3571 case ABS_EXPR:
3572 case BIT_NOT_EXPR:
3573 case PAREN_EXPR:
3574 case NON_LVALUE_EXPR:
3575 case CONJ_EXPR:
3576 break;
3577
3578 default:
3579 gcc_unreachable ();
3580 }
3581
3582 /* For the remaining codes assert there is no conversion involved. */
3583 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3584 {
3585 error ("non-trivial conversion in unary operation");
3586 debug_generic_expr (lhs_type);
3587 debug_generic_expr (rhs1_type);
3588 return true;
3589 }
3590
3591 return false;
3592 }
3593
3594 /* Verify a gimple assignment statement STMT with a binary rhs.
3595 Returns true if anything is wrong. */
3596
3597 static bool
3598 verify_gimple_assign_binary (gimple stmt)
3599 {
3600 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3601 tree lhs = gimple_assign_lhs (stmt);
3602 tree lhs_type = TREE_TYPE (lhs);
3603 tree rhs1 = gimple_assign_rhs1 (stmt);
3604 tree rhs1_type = TREE_TYPE (rhs1);
3605 tree rhs2 = gimple_assign_rhs2 (stmt);
3606 tree rhs2_type = TREE_TYPE (rhs2);
3607
3608 if (!is_gimple_reg (lhs)
3609 && !(optimize == 0
3610 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3611 {
3612 error ("non-register as LHS of binary operation");
3613 return true;
3614 }
3615
3616 if (!is_gimple_val (rhs1)
3617 || !is_gimple_val (rhs2))
3618 {
3619 error ("invalid operands in binary operation");
3620 return true;
3621 }
3622
3623 /* First handle operations that involve different types. */
3624 switch (rhs_code)
3625 {
3626 case COMPLEX_EXPR:
3627 {
3628 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3629 || !(INTEGRAL_TYPE_P (rhs1_type)
3630 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3631 || !(INTEGRAL_TYPE_P (rhs2_type)
3632 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3633 {
3634 error ("type mismatch in complex expression");
3635 debug_generic_expr (lhs_type);
3636 debug_generic_expr (rhs1_type);
3637 debug_generic_expr (rhs2_type);
3638 return true;
3639 }
3640
3641 return false;
3642 }
3643
3644 case LSHIFT_EXPR:
3645 case RSHIFT_EXPR:
3646 case LROTATE_EXPR:
3647 case RROTATE_EXPR:
3648 {
3649 /* Shifts and rotates are ok on integral types, fixed point
3650 types and integer vector types. */
3651 if ((!INTEGRAL_TYPE_P (rhs1_type)
3652 && !FIXED_POINT_TYPE_P (rhs1_type)
3653 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3654 && TREE_CODE (TREE_TYPE (rhs1_type)) == INTEGER_TYPE))
3655 || (!INTEGRAL_TYPE_P (rhs2_type)
3656 /* Vector shifts of vectors are also ok. */
3657 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3658 && TREE_CODE (TREE_TYPE (rhs1_type)) == INTEGER_TYPE
3659 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3660 && TREE_CODE (TREE_TYPE (rhs2_type)) == INTEGER_TYPE))
3661 || !useless_type_conversion_p (lhs_type, rhs1_type))
3662 {
3663 error ("type mismatch in shift expression");
3664 debug_generic_expr (lhs_type);
3665 debug_generic_expr (rhs1_type);
3666 debug_generic_expr (rhs2_type);
3667 return true;
3668 }
3669
3670 return false;
3671 }
3672
3673 case VEC_LSHIFT_EXPR:
3674 case VEC_RSHIFT_EXPR:
3675 {
3676 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3677 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3678 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3679 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3680 || (!INTEGRAL_TYPE_P (rhs2_type)
3681 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3682 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3683 || !useless_type_conversion_p (lhs_type, rhs1_type))
3684 {
3685 error ("type mismatch in vector shift expression");
3686 debug_generic_expr (lhs_type);
3687 debug_generic_expr (rhs1_type);
3688 debug_generic_expr (rhs2_type);
3689 return true;
3690 }
3691 /* For shifting a vector of floating point components we
3692 only allow shifting by a constant multiple of the element size. */
3693 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
3694 && (TREE_CODE (rhs2) != INTEGER_CST
3695 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3696 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3697 {
3698 error ("non-element sized vector shift of floating point vector");
3699 return true;
3700 }
3701
3702 return false;
3703 }
3704
3705 case PLUS_EXPR:
3706 {
3707 /* We use regular PLUS_EXPR for vectors.
3708 ??? This just makes the checker happy and may not be what is
3709 intended. */
3710 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3711 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3712 {
3713 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3714 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3715 {
3716 error ("invalid non-vector operands to vector valued plus");
3717 return true;
3718 }
3719 lhs_type = TREE_TYPE (lhs_type);
3720 rhs1_type = TREE_TYPE (rhs1_type);
3721 rhs2_type = TREE_TYPE (rhs2_type);
3722 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3723 the pointer to 2nd place. */
3724 if (POINTER_TYPE_P (rhs2_type))
3725 {
3726 tree tem = rhs1_type;
3727 rhs1_type = rhs2_type;
3728 rhs2_type = tem;
3729 }
3730 goto do_pointer_plus_expr_check;
3731 }
3732 }
3733 /* Fallthru. */
3734 case MINUS_EXPR:
3735 {
3736 if (POINTER_TYPE_P (lhs_type)
3737 || POINTER_TYPE_P (rhs1_type)
3738 || POINTER_TYPE_P (rhs2_type))
3739 {
3740 error ("invalid (pointer) operands to plus/minus");
3741 return true;
3742 }
3743
3744 /* Continue with generic binary expression handling. */
3745 break;
3746 }
3747
3748 case POINTER_PLUS_EXPR:
3749 {
3750 do_pointer_plus_expr_check:
3751 if (!POINTER_TYPE_P (rhs1_type)
3752 || !useless_type_conversion_p (lhs_type, rhs1_type)
3753 || !useless_type_conversion_p (sizetype, rhs2_type))
3754 {
3755 error ("type mismatch in pointer plus expression");
3756 debug_generic_stmt (lhs_type);
3757 debug_generic_stmt (rhs1_type);
3758 debug_generic_stmt (rhs2_type);
3759 return true;
3760 }
3761
3762 return false;
3763 }
3764
3765 case TRUTH_ANDIF_EXPR:
3766 case TRUTH_ORIF_EXPR:
3767 gcc_unreachable ();
3768
3769 case TRUTH_AND_EXPR:
3770 case TRUTH_OR_EXPR:
3771 case TRUTH_XOR_EXPR:
3772 {
3773 /* We allow any kind of integral typed argument and result. */
3774 if (!INTEGRAL_TYPE_P (rhs1_type)
3775 || !INTEGRAL_TYPE_P (rhs2_type)
3776 || !INTEGRAL_TYPE_P (lhs_type))
3777 {
3778 error ("type mismatch in binary truth expression");
3779 debug_generic_expr (lhs_type);
3780 debug_generic_expr (rhs1_type);
3781 debug_generic_expr (rhs2_type);
3782 return true;
3783 }
3784
3785 return false;
3786 }
3787
3788 case LT_EXPR:
3789 case LE_EXPR:
3790 case GT_EXPR:
3791 case GE_EXPR:
3792 case EQ_EXPR:
3793 case NE_EXPR:
3794 case UNORDERED_EXPR:
3795 case ORDERED_EXPR:
3796 case UNLT_EXPR:
3797 case UNLE_EXPR:
3798 case UNGT_EXPR:
3799 case UNGE_EXPR:
3800 case UNEQ_EXPR:
3801 case LTGT_EXPR:
3802 /* Comparisons are also binary, but the result type is not
3803 connected to the operand types. */
3804 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3805
3806 case WIDEN_SUM_EXPR:
3807 case WIDEN_MULT_EXPR:
3808 case VEC_WIDEN_MULT_HI_EXPR:
3809 case VEC_WIDEN_MULT_LO_EXPR:
3810 case VEC_PACK_TRUNC_EXPR:
3811 case VEC_PACK_SAT_EXPR:
3812 case VEC_PACK_FIX_TRUNC_EXPR:
3813 case VEC_EXTRACT_EVEN_EXPR:
3814 case VEC_EXTRACT_ODD_EXPR:
3815 case VEC_INTERLEAVE_HIGH_EXPR:
3816 case VEC_INTERLEAVE_LOW_EXPR:
3817 /* FIXME. */
3818 return false;
3819
3820 case MULT_EXPR:
3821 case TRUNC_DIV_EXPR:
3822 case CEIL_DIV_EXPR:
3823 case FLOOR_DIV_EXPR:
3824 case ROUND_DIV_EXPR:
3825 case TRUNC_MOD_EXPR:
3826 case CEIL_MOD_EXPR:
3827 case FLOOR_MOD_EXPR:
3828 case ROUND_MOD_EXPR:
3829 case RDIV_EXPR:
3830 case EXACT_DIV_EXPR:
3831 case MIN_EXPR:
3832 case MAX_EXPR:
3833 case BIT_IOR_EXPR:
3834 case BIT_XOR_EXPR:
3835 case BIT_AND_EXPR:
3836 /* Continue with generic binary expression handling. */
3837 break;
3838
3839 default:
3840 gcc_unreachable ();
3841 }
3842
3843 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3844 || !useless_type_conversion_p (lhs_type, rhs2_type))
3845 {
3846 error ("type mismatch in binary expression");
3847 debug_generic_stmt (lhs_type);
3848 debug_generic_stmt (rhs1_type);
3849 debug_generic_stmt (rhs2_type);
3850 return true;
3851 }
3852
3853 return false;
3854 }
3855
3856 /* Verify a gimple assignment statement STMT with a single rhs.
3857 Returns true if anything is wrong. */
3858
3859 static bool
3860 verify_gimple_assign_single (gimple stmt)
3861 {
3862 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3863 tree lhs = gimple_assign_lhs (stmt);
3864 tree lhs_type = TREE_TYPE (lhs);
3865 tree rhs1 = gimple_assign_rhs1 (stmt);
3866 tree rhs1_type = TREE_TYPE (rhs1);
3867 bool res = false;
3868
3869 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3870 {
3871 error ("non-trivial conversion at assignment");
3872 debug_generic_expr (lhs_type);
3873 debug_generic_expr (rhs1_type);
3874 return true;
3875 }
3876
3877 if (handled_component_p (lhs))
3878 res |= verify_types_in_gimple_reference (lhs, true);
3879
3880 /* Special codes we cannot handle via their class. */
3881 switch (rhs_code)
3882 {
3883 case ADDR_EXPR:
3884 {
3885 tree op = TREE_OPERAND (rhs1, 0);
3886 if (!is_gimple_addressable (op))
3887 {
3888 error ("invalid operand in unary expression");
3889 return true;
3890 }
3891
3892 if (!types_compatible_p (TREE_TYPE (op), TREE_TYPE (TREE_TYPE (rhs1)))
3893 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3894 TREE_TYPE (op)))
3895 {
3896 error ("type mismatch in address expression");
3897 debug_generic_stmt (TREE_TYPE (rhs1));
3898 debug_generic_stmt (TREE_TYPE (op));
3899 return true;
3900 }
3901
3902 return verify_types_in_gimple_reference (op, true);
3903 }
3904
3905 /* tcc_reference */
3906 case COMPONENT_REF:
3907 case BIT_FIELD_REF:
3908 case INDIRECT_REF:
3909 case ALIGN_INDIRECT_REF:
3910 case MISALIGNED_INDIRECT_REF:
3911 case ARRAY_REF:
3912 case ARRAY_RANGE_REF:
3913 case VIEW_CONVERT_EXPR:
3914 case REALPART_EXPR:
3915 case IMAGPART_EXPR:
3916 case TARGET_MEM_REF:
3917 if (!is_gimple_reg (lhs)
3918 && is_gimple_reg_type (TREE_TYPE (lhs)))
3919 {
3920 error ("invalid rhs for gimple memory store");
3921 debug_generic_stmt (lhs);
3922 debug_generic_stmt (rhs1);
3923 return true;
3924 }
3925 return res || verify_types_in_gimple_reference (rhs1, false);
3926
3927 /* tcc_constant */
3928 case SSA_NAME:
3929 case INTEGER_CST:
3930 case REAL_CST:
3931 case FIXED_CST:
3932 case COMPLEX_CST:
3933 case VECTOR_CST:
3934 case STRING_CST:
3935 return res;
3936
3937 /* tcc_declaration */
3938 case CONST_DECL:
3939 return res;
3940 case VAR_DECL:
3941 case PARM_DECL:
3942 if (!is_gimple_reg (lhs)
3943 && !is_gimple_reg (rhs1)
3944 && is_gimple_reg_type (TREE_TYPE (lhs)))
3945 {
3946 error ("invalid rhs for gimple memory store");
3947 debug_generic_stmt (lhs);
3948 debug_generic_stmt (rhs1);
3949 return true;
3950 }
3951 return res;
3952
3953 case COND_EXPR:
3954 case CONSTRUCTOR:
3955 case OBJ_TYPE_REF:
3956 case ASSERT_EXPR:
3957 case WITH_SIZE_EXPR:
3958 case EXC_PTR_EXPR:
3959 case FILTER_EXPR:
3960 case POLYNOMIAL_CHREC:
3961 case DOT_PROD_EXPR:
3962 case VEC_COND_EXPR:
3963 case REALIGN_LOAD_EXPR:
3964 /* FIXME. */
3965 return res;
3966
3967 default:;
3968 }
3969
3970 return res;
3971 }
3972
3973 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3974 is a problem, otherwise false. */
3975
3976 static bool
3977 verify_gimple_assign (gimple stmt)
3978 {
3979 switch (gimple_assign_rhs_class (stmt))
3980 {
3981 case GIMPLE_SINGLE_RHS:
3982 return verify_gimple_assign_single (stmt);
3983
3984 case GIMPLE_UNARY_RHS:
3985 return verify_gimple_assign_unary (stmt);
3986
3987 case GIMPLE_BINARY_RHS:
3988 return verify_gimple_assign_binary (stmt);
3989
3990 default:
3991 gcc_unreachable ();
3992 }
3993 }
3994
3995 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3996 is a problem, otherwise false. */
3997
3998 static bool
3999 verify_gimple_return (gimple stmt)
4000 {
4001 tree op = gimple_return_retval (stmt);
4002 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4003
4004 /* We cannot test for present return values as we do not fix up missing
4005 return values from the original source. */
4006 if (op == NULL)
4007 return false;
4008
4009 if (!is_gimple_val (op)
4010 && TREE_CODE (op) != RESULT_DECL)
4011 {
4012 error ("invalid operand in return statement");
4013 debug_generic_stmt (op);
4014 return true;
4015 }
4016
4017 if (!useless_type_conversion_p (restype, TREE_TYPE (op))
4018 /* ??? With C++ we can have the situation that the result
4019 decl is a reference type while the return type is an aggregate. */
4020 && !(TREE_CODE (op) == RESULT_DECL
4021 && TREE_CODE (TREE_TYPE (op)) == REFERENCE_TYPE
4022 && useless_type_conversion_p (restype, TREE_TYPE (TREE_TYPE (op)))))
4023 {
4024 error ("invalid conversion in return statement");
4025 debug_generic_stmt (restype);
4026 debug_generic_stmt (TREE_TYPE (op));
4027 return true;
4028 }
4029
4030 return false;
4031 }
4032
4033
4034 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4035 is a problem, otherwise false. */
4036
4037 static bool
4038 verify_gimple_goto (gimple stmt)
4039 {
4040 tree dest = gimple_goto_dest (stmt);
4041
4042 /* ??? We have two canonical forms of direct goto destinations, a
4043 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4044 if (TREE_CODE (dest) != LABEL_DECL
4045 && (!is_gimple_val (dest)
4046 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4047 {
4048 error ("goto destination is neither a label nor a pointer");
4049 return true;
4050 }
4051
4052 return false;
4053 }
4054
4055 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4056 is a problem, otherwise false. */
4057
4058 static bool
4059 verify_gimple_switch (gimple stmt)
4060 {
4061 if (!is_gimple_val (gimple_switch_index (stmt)))
4062 {
4063 error ("invalid operand to switch statement");
4064 debug_generic_stmt (gimple_switch_index (stmt));
4065 return true;
4066 }
4067
4068 return false;
4069 }
4070
4071
4072 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4073 and false otherwise. */
4074
4075 static bool
4076 verify_gimple_phi (gimple stmt)
4077 {
4078 tree type = TREE_TYPE (gimple_phi_result (stmt));
4079 unsigned i;
4080
4081 if (!is_gimple_variable (gimple_phi_result (stmt)))
4082 {
4083 error ("Invalid PHI result");
4084 return true;
4085 }
4086
4087 for (i = 0; i < gimple_phi_num_args (stmt); i++)
4088 {
4089 tree arg = gimple_phi_arg_def (stmt, i);
4090 if ((is_gimple_reg (gimple_phi_result (stmt))
4091 && !is_gimple_val (arg))
4092 || (!is_gimple_reg (gimple_phi_result (stmt))
4093 && !is_gimple_addressable (arg)))
4094 {
4095 error ("Invalid PHI argument");
4096 debug_generic_stmt (arg);
4097 return true;
4098 }
4099 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
4100 {
4101 error ("Incompatible types in PHI argument %u", i);
4102 debug_generic_stmt (type);
4103 debug_generic_stmt (TREE_TYPE (arg));
4104 return true;
4105 }
4106 }
4107
4108 return false;
4109 }
4110
4111
4112 /* Verify the GIMPLE statement STMT. Returns true if there is an
4113 error, otherwise false. */
4114
4115 static bool
4116 verify_types_in_gimple_stmt (gimple stmt)
4117 {
4118 if (is_gimple_omp (stmt))
4119 {
4120 /* OpenMP directives are validated by the FE and never operated
4121 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4122 non-gimple expressions when the main index variable has had
4123 its address taken. This does not affect the loop itself
4124 because the header of an GIMPLE_OMP_FOR is merely used to determine
4125 how to setup the parallel iteration. */
4126 return false;
4127 }
4128
4129 switch (gimple_code (stmt))
4130 {
4131 case GIMPLE_ASSIGN:
4132 return verify_gimple_assign (stmt);
4133
4134 case GIMPLE_LABEL:
4135 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
4136
4137 case GIMPLE_CALL:
4138 return verify_gimple_call (stmt);
4139
4140 case GIMPLE_COND:
4141 return verify_gimple_comparison (boolean_type_node,
4142 gimple_cond_lhs (stmt),
4143 gimple_cond_rhs (stmt));
4144
4145 case GIMPLE_GOTO:
4146 return verify_gimple_goto (stmt);
4147
4148 case GIMPLE_SWITCH:
4149 return verify_gimple_switch (stmt);
4150
4151 case GIMPLE_RETURN:
4152 return verify_gimple_return (stmt);
4153
4154 case GIMPLE_ASM:
4155 return false;
4156
4157 case GIMPLE_PHI:
4158 return verify_gimple_phi (stmt);
4159
4160 /* Tuples that do not have tree operands. */
4161 case GIMPLE_NOP:
4162 case GIMPLE_RESX:
4163 case GIMPLE_PREDICT:
4164 return false;
4165
4166 default:
4167 gcc_unreachable ();
4168 }
4169 }
4170
4171 /* Verify the GIMPLE statements inside the sequence STMTS. */
4172
4173 static bool
4174 verify_types_in_gimple_seq_2 (gimple_seq stmts)
4175 {
4176 gimple_stmt_iterator ittr;
4177 bool err = false;
4178
4179 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4180 {
4181 gimple stmt = gsi_stmt (ittr);
4182
4183 switch (gimple_code (stmt))
4184 {
4185 case GIMPLE_BIND:
4186 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
4187 break;
4188
4189 case GIMPLE_TRY:
4190 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
4191 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
4192 break;
4193
4194 case GIMPLE_EH_FILTER:
4195 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
4196 break;
4197
4198 case GIMPLE_CATCH:
4199 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
4200 break;
4201
4202 default:
4203 {
4204 bool err2 = verify_types_in_gimple_stmt (stmt);
4205 if (err2)
4206 debug_gimple_stmt (stmt);
4207 err |= err2;
4208 }
4209 }
4210 }
4211
4212 return err;
4213 }
4214
4215
4216 /* Verify the GIMPLE statements inside the statement list STMTS. */
4217
4218 void
4219 verify_types_in_gimple_seq (gimple_seq stmts)
4220 {
4221 if (verify_types_in_gimple_seq_2 (stmts))
4222 internal_error ("verify_gimple failed");
4223 }
4224
4225
4226 /* Verify STMT, return true if STMT is not in GIMPLE form.
4227 TODO: Implement type checking. */
4228
4229 static bool
4230 verify_stmt (gimple_stmt_iterator *gsi)
4231 {
4232 tree addr;
4233 struct walk_stmt_info wi;
4234 bool last_in_block = gsi_one_before_end_p (*gsi);
4235 gimple stmt = gsi_stmt (*gsi);
4236
4237 if (is_gimple_omp (stmt))
4238 {
4239 /* OpenMP directives are validated by the FE and never operated
4240 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4241 non-gimple expressions when the main index variable has had
4242 its address taken. This does not affect the loop itself
4243 because the header of an GIMPLE_OMP_FOR is merely used to determine
4244 how to setup the parallel iteration. */
4245 return false;
4246 }
4247
4248 /* FIXME. The C frontend passes unpromoted arguments in case it
4249 didn't see a function declaration before the call. */
4250 if (is_gimple_call (stmt))
4251 {
4252 tree decl;
4253
4254 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4255 {
4256 error ("invalid function in call statement");
4257 return true;
4258 }
4259
4260 decl = gimple_call_fndecl (stmt);
4261 if (decl
4262 && TREE_CODE (decl) == FUNCTION_DECL
4263 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4264 && (!DECL_PURE_P (decl))
4265 && (!TREE_READONLY (decl)))
4266 {
4267 error ("invalid pure const state for function");
4268 return true;
4269 }
4270 }
4271
4272 memset (&wi, 0, sizeof (wi));
4273 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4274 if (addr)
4275 {
4276 debug_generic_expr (addr);
4277 inform (gimple_location (gsi_stmt (*gsi)), "in statement");
4278 debug_gimple_stmt (stmt);
4279 return true;
4280 }
4281
4282 /* If the statement is marked as part of an EH region, then it is
4283 expected that the statement could throw. Verify that when we
4284 have optimizations that simplify statements such that we prove
4285 that they cannot throw, that we update other data structures
4286 to match. */
4287 if (lookup_stmt_eh_region (stmt) >= 0)
4288 {
4289 /* During IPA passes, ipa-pure-const sets nothrow flags on calls
4290 and they are updated on statements only after fixup_cfg
4291 is executed at beggining of expansion stage. */
4292 if (!stmt_could_throw_p (stmt) && cgraph_state != CGRAPH_STATE_IPA_SSA)
4293 {
4294 error ("statement marked for throw, but doesn%'t");
4295 goto fail;
4296 }
4297 if (!last_in_block && stmt_can_throw_internal (stmt))
4298 {
4299 error ("statement marked for throw in middle of block");
4300 goto fail;
4301 }
4302 }
4303
4304 return false;
4305
4306 fail:
4307 debug_gimple_stmt (stmt);
4308 return true;
4309 }
4310
4311
4312 /* Return true when the T can be shared. */
4313
4314 static bool
4315 tree_node_can_be_shared (tree t)
4316 {
4317 if (IS_TYPE_OR_DECL_P (t)
4318 || is_gimple_min_invariant (t)
4319 || TREE_CODE (t) == SSA_NAME
4320 || t == error_mark_node
4321 || TREE_CODE (t) == IDENTIFIER_NODE)
4322 return true;
4323
4324 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4325 return true;
4326
4327 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4328 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4329 || TREE_CODE (t) == COMPONENT_REF
4330 || TREE_CODE (t) == REALPART_EXPR
4331 || TREE_CODE (t) == IMAGPART_EXPR)
4332 t = TREE_OPERAND (t, 0);
4333
4334 if (DECL_P (t))
4335 return true;
4336
4337 return false;
4338 }
4339
4340
4341 /* Called via walk_gimple_stmt. Verify tree sharing. */
4342
4343 static tree
4344 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4345 {
4346 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4347 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4348
4349 if (tree_node_can_be_shared (*tp))
4350 {
4351 *walk_subtrees = false;
4352 return NULL;
4353 }
4354
4355 if (pointer_set_insert (visited, *tp))
4356 return *tp;
4357
4358 return NULL;
4359 }
4360
4361
4362 static bool eh_error_found;
4363 static int
4364 verify_eh_throw_stmt_node (void **slot, void *data)
4365 {
4366 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4367 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4368
4369 if (!pointer_set_contains (visited, node->stmt))
4370 {
4371 error ("Dead STMT in EH table");
4372 debug_gimple_stmt (node->stmt);
4373 eh_error_found = true;
4374 }
4375 return 1;
4376 }
4377
4378
4379 /* Verify the GIMPLE statements in every basic block. */
4380
4381 void
4382 verify_stmts (void)
4383 {
4384 basic_block bb;
4385 gimple_stmt_iterator gsi;
4386 bool err = false;
4387 struct pointer_set_t *visited, *visited_stmts;
4388 tree addr;
4389 struct walk_stmt_info wi;
4390
4391 timevar_push (TV_TREE_STMT_VERIFY);
4392 visited = pointer_set_create ();
4393 visited_stmts = pointer_set_create ();
4394
4395 memset (&wi, 0, sizeof (wi));
4396 wi.info = (void *) visited;
4397
4398 FOR_EACH_BB (bb)
4399 {
4400 gimple phi;
4401 size_t i;
4402
4403 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4404 {
4405 phi = gsi_stmt (gsi);
4406 pointer_set_insert (visited_stmts, phi);
4407 if (gimple_bb (phi) != bb)
4408 {
4409 error ("gimple_bb (phi) is set to a wrong basic block");
4410 err |= true;
4411 }
4412
4413 for (i = 0; i < gimple_phi_num_args (phi); i++)
4414 {
4415 tree t = gimple_phi_arg_def (phi, i);
4416 tree addr;
4417
4418 if (!t)
4419 {
4420 error ("missing PHI def");
4421 debug_gimple_stmt (phi);
4422 err |= true;
4423 continue;
4424 }
4425 /* Addressable variables do have SSA_NAMEs but they
4426 are not considered gimple values. */
4427 else if (TREE_CODE (t) != SSA_NAME
4428 && TREE_CODE (t) != FUNCTION_DECL
4429 && !is_gimple_min_invariant (t))
4430 {
4431 error ("PHI argument is not a GIMPLE value");
4432 debug_gimple_stmt (phi);
4433 debug_generic_expr (t);
4434 err |= true;
4435 }
4436
4437 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4438 if (addr)
4439 {
4440 error ("incorrect sharing of tree nodes");
4441 debug_gimple_stmt (phi);
4442 debug_generic_expr (addr);
4443 err |= true;
4444 }
4445 }
4446
4447 #ifdef ENABLE_TYPES_CHECKING
4448 if (verify_gimple_phi (phi))
4449 {
4450 debug_gimple_stmt (phi);
4451 err |= true;
4452 }
4453 #endif
4454 }
4455
4456 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4457 {
4458 gimple stmt = gsi_stmt (gsi);
4459
4460 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4461 || gimple_code (stmt) == GIMPLE_BIND)
4462 {
4463 error ("invalid GIMPLE statement");
4464 debug_gimple_stmt (stmt);
4465 err |= true;
4466 }
4467
4468 pointer_set_insert (visited_stmts, stmt);
4469
4470 if (gimple_bb (stmt) != bb)
4471 {
4472 error ("gimple_bb (stmt) is set to a wrong basic block");
4473 debug_gimple_stmt (stmt);
4474 err |= true;
4475 }
4476
4477 if (gimple_code (stmt) == GIMPLE_LABEL)
4478 {
4479 tree decl = gimple_label_label (stmt);
4480 int uid = LABEL_DECL_UID (decl);
4481
4482 if (uid == -1
4483 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4484 {
4485 error ("incorrect entry in label_to_block_map.\n");
4486 err |= true;
4487 }
4488 }
4489
4490 err |= verify_stmt (&gsi);
4491
4492 #ifdef ENABLE_TYPES_CHECKING
4493 if (verify_types_in_gimple_stmt (gsi_stmt (gsi)))
4494 {
4495 debug_gimple_stmt (stmt);
4496 err |= true;
4497 }
4498 #endif
4499 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4500 if (addr)
4501 {
4502 error ("incorrect sharing of tree nodes");
4503 debug_gimple_stmt (stmt);
4504 debug_generic_expr (addr);
4505 err |= true;
4506 }
4507 gsi_next (&gsi);
4508 }
4509 }
4510
4511 eh_error_found = false;
4512 if (get_eh_throw_stmt_table (cfun))
4513 htab_traverse (get_eh_throw_stmt_table (cfun),
4514 verify_eh_throw_stmt_node,
4515 visited_stmts);
4516
4517 if (err | eh_error_found)
4518 internal_error ("verify_stmts failed");
4519
4520 pointer_set_destroy (visited);
4521 pointer_set_destroy (visited_stmts);
4522 verify_histograms ();
4523 timevar_pop (TV_TREE_STMT_VERIFY);
4524 }
4525
4526
4527 /* Verifies that the flow information is OK. */
4528
4529 static int
4530 gimple_verify_flow_info (void)
4531 {
4532 int err = 0;
4533 basic_block bb;
4534 gimple_stmt_iterator gsi;
4535 gimple stmt;
4536 edge e;
4537 edge_iterator ei;
4538
4539 if (ENTRY_BLOCK_PTR->il.gimple)
4540 {
4541 error ("ENTRY_BLOCK has IL associated with it");
4542 err = 1;
4543 }
4544
4545 if (EXIT_BLOCK_PTR->il.gimple)
4546 {
4547 error ("EXIT_BLOCK has IL associated with it");
4548 err = 1;
4549 }
4550
4551 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4552 if (e->flags & EDGE_FALLTHRU)
4553 {
4554 error ("fallthru to exit from bb %d", e->src->index);
4555 err = 1;
4556 }
4557
4558 FOR_EACH_BB (bb)
4559 {
4560 bool found_ctrl_stmt = false;
4561
4562 stmt = NULL;
4563
4564 /* Skip labels on the start of basic block. */
4565 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4566 {
4567 tree label;
4568 gimple prev_stmt = stmt;
4569
4570 stmt = gsi_stmt (gsi);
4571
4572 if (gimple_code (stmt) != GIMPLE_LABEL)
4573 break;
4574
4575 label = gimple_label_label (stmt);
4576 if (prev_stmt && DECL_NONLOCAL (label))
4577 {
4578 error ("nonlocal label ");
4579 print_generic_expr (stderr, label, 0);
4580 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4581 bb->index);
4582 err = 1;
4583 }
4584
4585 if (label_to_block (label) != bb)
4586 {
4587 error ("label ");
4588 print_generic_expr (stderr, label, 0);
4589 fprintf (stderr, " to block does not match in bb %d",
4590 bb->index);
4591 err = 1;
4592 }
4593
4594 if (decl_function_context (label) != current_function_decl)
4595 {
4596 error ("label ");
4597 print_generic_expr (stderr, label, 0);
4598 fprintf (stderr, " has incorrect context in bb %d",
4599 bb->index);
4600 err = 1;
4601 }
4602 }
4603
4604 /* Verify that body of basic block BB is free of control flow. */
4605 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4606 {
4607 gimple stmt = gsi_stmt (gsi);
4608
4609 if (found_ctrl_stmt)
4610 {
4611 error ("control flow in the middle of basic block %d",
4612 bb->index);
4613 err = 1;
4614 }
4615
4616 if (stmt_ends_bb_p (stmt))
4617 found_ctrl_stmt = true;
4618
4619 if (gimple_code (stmt) == GIMPLE_LABEL)
4620 {
4621 error ("label ");
4622 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4623 fprintf (stderr, " in the middle of basic block %d", bb->index);
4624 err = 1;
4625 }
4626 }
4627
4628 gsi = gsi_last_bb (bb);
4629 if (gsi_end_p (gsi))
4630 continue;
4631
4632 stmt = gsi_stmt (gsi);
4633
4634 err |= verify_eh_edges (stmt);
4635
4636 if (is_ctrl_stmt (stmt))
4637 {
4638 FOR_EACH_EDGE (e, ei, bb->succs)
4639 if (e->flags & EDGE_FALLTHRU)
4640 {
4641 error ("fallthru edge after a control statement in bb %d",
4642 bb->index);
4643 err = 1;
4644 }
4645 }
4646
4647 if (gimple_code (stmt) != GIMPLE_COND)
4648 {
4649 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4650 after anything else but if statement. */
4651 FOR_EACH_EDGE (e, ei, bb->succs)
4652 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4653 {
4654 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4655 bb->index);
4656 err = 1;
4657 }
4658 }
4659
4660 switch (gimple_code (stmt))
4661 {
4662 case GIMPLE_COND:
4663 {
4664 edge true_edge;
4665 edge false_edge;
4666
4667 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4668
4669 if (!true_edge
4670 || !false_edge
4671 || !(true_edge->flags & EDGE_TRUE_VALUE)
4672 || !(false_edge->flags & EDGE_FALSE_VALUE)
4673 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4674 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4675 || EDGE_COUNT (bb->succs) >= 3)
4676 {
4677 error ("wrong outgoing edge flags at end of bb %d",
4678 bb->index);
4679 err = 1;
4680 }
4681 }
4682 break;
4683
4684 case GIMPLE_GOTO:
4685 if (simple_goto_p (stmt))
4686 {
4687 error ("explicit goto at end of bb %d", bb->index);
4688 err = 1;
4689 }
4690 else
4691 {
4692 /* FIXME. We should double check that the labels in the
4693 destination blocks have their address taken. */
4694 FOR_EACH_EDGE (e, ei, bb->succs)
4695 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4696 | EDGE_FALSE_VALUE))
4697 || !(e->flags & EDGE_ABNORMAL))
4698 {
4699 error ("wrong outgoing edge flags at end of bb %d",
4700 bb->index);
4701 err = 1;
4702 }
4703 }
4704 break;
4705
4706 case GIMPLE_RETURN:
4707 if (!single_succ_p (bb)
4708 || (single_succ_edge (bb)->flags
4709 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4710 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4711 {
4712 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4713 err = 1;
4714 }
4715 if (single_succ (bb) != EXIT_BLOCK_PTR)
4716 {
4717 error ("return edge does not point to exit in bb %d",
4718 bb->index);
4719 err = 1;
4720 }
4721 break;
4722
4723 case GIMPLE_SWITCH:
4724 {
4725 tree prev;
4726 edge e;
4727 size_t i, n;
4728
4729 n = gimple_switch_num_labels (stmt);
4730
4731 /* Mark all the destination basic blocks. */
4732 for (i = 0; i < n; ++i)
4733 {
4734 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4735 basic_block label_bb = label_to_block (lab);
4736 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4737 label_bb->aux = (void *)1;
4738 }
4739
4740 /* Verify that the case labels are sorted. */
4741 prev = gimple_switch_label (stmt, 0);
4742 for (i = 1; i < n; ++i)
4743 {
4744 tree c = gimple_switch_label (stmt, i);
4745 if (!CASE_LOW (c))
4746 {
4747 error ("found default case not at the start of "
4748 "case vector");
4749 err = 1;
4750 continue;
4751 }
4752 if (CASE_LOW (prev)
4753 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4754 {
4755 error ("case labels not sorted: ");
4756 print_generic_expr (stderr, prev, 0);
4757 fprintf (stderr," is greater than ");
4758 print_generic_expr (stderr, c, 0);
4759 fprintf (stderr," but comes before it.\n");
4760 err = 1;
4761 }
4762 prev = c;
4763 }
4764 /* VRP will remove the default case if it can prove it will
4765 never be executed. So do not verify there always exists
4766 a default case here. */
4767
4768 FOR_EACH_EDGE (e, ei, bb->succs)
4769 {
4770 if (!e->dest->aux)
4771 {
4772 error ("extra outgoing edge %d->%d",
4773 bb->index, e->dest->index);
4774 err = 1;
4775 }
4776
4777 e->dest->aux = (void *)2;
4778 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4779 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4780 {
4781 error ("wrong outgoing edge flags at end of bb %d",
4782 bb->index);
4783 err = 1;
4784 }
4785 }
4786
4787 /* Check that we have all of them. */
4788 for (i = 0; i < n; ++i)
4789 {
4790 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4791 basic_block label_bb = label_to_block (lab);
4792
4793 if (label_bb->aux != (void *)2)
4794 {
4795 error ("missing edge %i->%i", bb->index, label_bb->index);
4796 err = 1;
4797 }
4798 }
4799
4800 FOR_EACH_EDGE (e, ei, bb->succs)
4801 e->dest->aux = (void *)0;
4802 }
4803
4804 default: ;
4805 }
4806 }
4807
4808 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4809 verify_dominators (CDI_DOMINATORS);
4810
4811 return err;
4812 }
4813
4814
4815 /* Updates phi nodes after creating a forwarder block joined
4816 by edge FALLTHRU. */
4817
4818 static void
4819 gimple_make_forwarder_block (edge fallthru)
4820 {
4821 edge e;
4822 edge_iterator ei;
4823 basic_block dummy, bb;
4824 tree var;
4825 gimple_stmt_iterator gsi;
4826
4827 dummy = fallthru->src;
4828 bb = fallthru->dest;
4829
4830 if (single_pred_p (bb))
4831 return;
4832
4833 /* If we redirected a branch we must create new PHI nodes at the
4834 start of BB. */
4835 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4836 {
4837 gimple phi, new_phi;
4838
4839 phi = gsi_stmt (gsi);
4840 var = gimple_phi_result (phi);
4841 new_phi = create_phi_node (var, bb);
4842 SSA_NAME_DEF_STMT (var) = new_phi;
4843 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4844 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4845 UNKNOWN_LOCATION);
4846 }
4847
4848 /* Add the arguments we have stored on edges. */
4849 FOR_EACH_EDGE (e, ei, bb->preds)
4850 {
4851 if (e == fallthru)
4852 continue;
4853
4854 flush_pending_stmts (e);
4855 }
4856 }
4857
4858
4859 /* Return a non-special label in the head of basic block BLOCK.
4860 Create one if it doesn't exist. */
4861
4862 tree
4863 gimple_block_label (basic_block bb)
4864 {
4865 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4866 bool first = true;
4867 tree label;
4868 gimple stmt;
4869
4870 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4871 {
4872 stmt = gsi_stmt (i);
4873 if (gimple_code (stmt) != GIMPLE_LABEL)
4874 break;
4875 label = gimple_label_label (stmt);
4876 if (!DECL_NONLOCAL (label))
4877 {
4878 if (!first)
4879 gsi_move_before (&i, &s);
4880 return label;
4881 }
4882 }
4883
4884 label = create_artificial_label (UNKNOWN_LOCATION);
4885 stmt = gimple_build_label (label);
4886 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4887 return label;
4888 }
4889
4890
4891 /* Attempt to perform edge redirection by replacing a possibly complex
4892 jump instruction by a goto or by removing the jump completely.
4893 This can apply only if all edges now point to the same block. The
4894 parameters and return values are equivalent to
4895 redirect_edge_and_branch. */
4896
4897 static edge
4898 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4899 {
4900 basic_block src = e->src;
4901 gimple_stmt_iterator i;
4902 gimple stmt;
4903
4904 /* We can replace or remove a complex jump only when we have exactly
4905 two edges. */
4906 if (EDGE_COUNT (src->succs) != 2
4907 /* Verify that all targets will be TARGET. Specifically, the
4908 edge that is not E must also go to TARGET. */
4909 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4910 return NULL;
4911
4912 i = gsi_last_bb (src);
4913 if (gsi_end_p (i))
4914 return NULL;
4915
4916 stmt = gsi_stmt (i);
4917
4918 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4919 {
4920 gsi_remove (&i, true);
4921 e = ssa_redirect_edge (e, target);
4922 e->flags = EDGE_FALLTHRU;
4923 return e;
4924 }
4925
4926 return NULL;
4927 }
4928
4929
4930 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4931 edge representing the redirected branch. */
4932
4933 static edge
4934 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4935 {
4936 basic_block bb = e->src;
4937 gimple_stmt_iterator gsi;
4938 edge ret;
4939 gimple stmt;
4940
4941 if (e->flags & EDGE_ABNORMAL)
4942 return NULL;
4943
4944 if (e->src != ENTRY_BLOCK_PTR
4945 && (ret = gimple_try_redirect_by_replacing_jump (e, dest)))
4946 return ret;
4947
4948 if (e->dest == dest)
4949 return NULL;
4950
4951 if (e->flags & EDGE_EH)
4952 return redirect_eh_edge (e, dest);
4953
4954 gsi = gsi_last_bb (bb);
4955 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4956
4957 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4958 {
4959 case GIMPLE_COND:
4960 /* For COND_EXPR, we only need to redirect the edge. */
4961 break;
4962
4963 case GIMPLE_GOTO:
4964 /* No non-abnormal edges should lead from a non-simple goto, and
4965 simple ones should be represented implicitly. */
4966 gcc_unreachable ();
4967
4968 case GIMPLE_SWITCH:
4969 {
4970 tree label = gimple_block_label (dest);
4971 tree cases = get_cases_for_edge (e, stmt);
4972
4973 /* If we have a list of cases associated with E, then use it
4974 as it's a lot faster than walking the entire case vector. */
4975 if (cases)
4976 {
4977 edge e2 = find_edge (e->src, dest);
4978 tree last, first;
4979
4980 first = cases;
4981 while (cases)
4982 {
4983 last = cases;
4984 CASE_LABEL (cases) = label;
4985 cases = TREE_CHAIN (cases);
4986 }
4987
4988 /* If there was already an edge in the CFG, then we need
4989 to move all the cases associated with E to E2. */
4990 if (e2)
4991 {
4992 tree cases2 = get_cases_for_edge (e2, stmt);
4993
4994 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4995 TREE_CHAIN (cases2) = first;
4996 }
4997 }
4998 else
4999 {
5000 size_t i, n = gimple_switch_num_labels (stmt);
5001
5002 for (i = 0; i < n; i++)
5003 {
5004 tree elt = gimple_switch_label (stmt, i);
5005 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5006 CASE_LABEL (elt) = label;
5007 }
5008 }
5009
5010 break;
5011 }
5012
5013 case GIMPLE_RETURN:
5014 gsi_remove (&gsi, true);
5015 e->flags |= EDGE_FALLTHRU;
5016 break;
5017
5018 case GIMPLE_OMP_RETURN:
5019 case GIMPLE_OMP_CONTINUE:
5020 case GIMPLE_OMP_SECTIONS_SWITCH:
5021 case GIMPLE_OMP_FOR:
5022 /* The edges from OMP constructs can be simply redirected. */
5023 break;
5024
5025 default:
5026 /* Otherwise it must be a fallthru edge, and we don't need to
5027 do anything besides redirecting it. */
5028 gcc_assert (e->flags & EDGE_FALLTHRU);
5029 break;
5030 }
5031
5032 /* Update/insert PHI nodes as necessary. */
5033
5034 /* Now update the edges in the CFG. */
5035 e = ssa_redirect_edge (e, dest);
5036
5037 return e;
5038 }
5039
5040 /* Returns true if it is possible to remove edge E by redirecting
5041 it to the destination of the other edge from E->src. */
5042
5043 static bool
5044 gimple_can_remove_branch_p (const_edge e)
5045 {
5046 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5047 return false;
5048
5049 return true;
5050 }
5051
5052 /* Simple wrapper, as we can always redirect fallthru edges. */
5053
5054 static basic_block
5055 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5056 {
5057 e = gimple_redirect_edge_and_branch (e, dest);
5058 gcc_assert (e);
5059
5060 return NULL;
5061 }
5062
5063
5064 /* Splits basic block BB after statement STMT (but at least after the
5065 labels). If STMT is NULL, BB is split just after the labels. */
5066
5067 static basic_block
5068 gimple_split_block (basic_block bb, void *stmt)
5069 {
5070 gimple_stmt_iterator gsi;
5071 gimple_stmt_iterator gsi_tgt;
5072 gimple act;
5073 gimple_seq list;
5074 basic_block new_bb;
5075 edge e;
5076 edge_iterator ei;
5077
5078 new_bb = create_empty_bb (bb);
5079
5080 /* Redirect the outgoing edges. */
5081 new_bb->succs = bb->succs;
5082 bb->succs = NULL;
5083 FOR_EACH_EDGE (e, ei, new_bb->succs)
5084 e->src = new_bb;
5085
5086 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5087 stmt = NULL;
5088
5089 /* Move everything from GSI to the new basic block. */
5090 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5091 {
5092 act = gsi_stmt (gsi);
5093 if (gimple_code (act) == GIMPLE_LABEL)
5094 continue;
5095
5096 if (!stmt)
5097 break;
5098
5099 if (stmt == act)
5100 {
5101 gsi_next (&gsi);
5102 break;
5103 }
5104 }
5105
5106 if (gsi_end_p (gsi))
5107 return new_bb;
5108
5109 /* Split the statement list - avoid re-creating new containers as this
5110 brings ugly quadratic memory consumption in the inliner.
5111 (We are still quadratic since we need to update stmt BB pointers,
5112 sadly.) */
5113 list = gsi_split_seq_before (&gsi);
5114 set_bb_seq (new_bb, list);
5115 for (gsi_tgt = gsi_start (list);
5116 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5117 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5118
5119 return new_bb;
5120 }
5121
5122
5123 /* Moves basic block BB after block AFTER. */
5124
5125 static bool
5126 gimple_move_block_after (basic_block bb, basic_block after)
5127 {
5128 if (bb->prev_bb == after)
5129 return true;
5130
5131 unlink_block (bb);
5132 link_block (bb, after);
5133
5134 return true;
5135 }
5136
5137
5138 /* Return true if basic_block can be duplicated. */
5139
5140 static bool
5141 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5142 {
5143 return true;
5144 }
5145
5146 /* Create a duplicate of the basic block BB. NOTE: This does not
5147 preserve SSA form. */
5148
5149 static basic_block
5150 gimple_duplicate_bb (basic_block bb)
5151 {
5152 basic_block new_bb;
5153 gimple_stmt_iterator gsi, gsi_tgt;
5154 gimple_seq phis = phi_nodes (bb);
5155 gimple phi, stmt, copy;
5156
5157 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5158
5159 /* Copy the PHI nodes. We ignore PHI node arguments here because
5160 the incoming edges have not been setup yet. */
5161 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5162 {
5163 phi = gsi_stmt (gsi);
5164 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5165 create_new_def_for (gimple_phi_result (copy), copy,
5166 gimple_phi_result_ptr (copy));
5167 }
5168
5169 gsi_tgt = gsi_start_bb (new_bb);
5170 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5171 {
5172 def_operand_p def_p;
5173 ssa_op_iter op_iter;
5174 int region;
5175
5176 stmt = gsi_stmt (gsi);
5177 if (gimple_code (stmt) == GIMPLE_LABEL)
5178 continue;
5179
5180 /* Create a new copy of STMT and duplicate STMT's virtual
5181 operands. */
5182 copy = gimple_copy (stmt);
5183 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5184 region = lookup_stmt_eh_region (stmt);
5185 if (region >= 0)
5186 add_stmt_to_eh_region (copy, region);
5187 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5188
5189 /* Create new names for all the definitions created by COPY and
5190 add replacement mappings for each new name. */
5191 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5192 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5193 }
5194
5195 return new_bb;
5196 }
5197
5198 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5199
5200 static void
5201 add_phi_args_after_copy_edge (edge e_copy)
5202 {
5203 basic_block bb, bb_copy = e_copy->src, dest;
5204 edge e;
5205 edge_iterator ei;
5206 gimple phi, phi_copy;
5207 tree def;
5208 gimple_stmt_iterator psi, psi_copy;
5209
5210 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5211 return;
5212
5213 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5214
5215 if (e_copy->dest->flags & BB_DUPLICATED)
5216 dest = get_bb_original (e_copy->dest);
5217 else
5218 dest = e_copy->dest;
5219
5220 e = find_edge (bb, dest);
5221 if (!e)
5222 {
5223 /* During loop unrolling the target of the latch edge is copied.
5224 In this case we are not looking for edge to dest, but to
5225 duplicated block whose original was dest. */
5226 FOR_EACH_EDGE (e, ei, bb->succs)
5227 {
5228 if ((e->dest->flags & BB_DUPLICATED)
5229 && get_bb_original (e->dest) == dest)
5230 break;
5231 }
5232
5233 gcc_assert (e != NULL);
5234 }
5235
5236 for (psi = gsi_start_phis (e->dest),
5237 psi_copy = gsi_start_phis (e_copy->dest);
5238 !gsi_end_p (psi);
5239 gsi_next (&psi), gsi_next (&psi_copy))
5240 {
5241 phi = gsi_stmt (psi);
5242 phi_copy = gsi_stmt (psi_copy);
5243 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5244 add_phi_arg (phi_copy, def, e_copy,
5245 gimple_phi_arg_location_from_edge (phi, e));
5246 }
5247 }
5248
5249
5250 /* Basic block BB_COPY was created by code duplication. Add phi node
5251 arguments for edges going out of BB_COPY. The blocks that were
5252 duplicated have BB_DUPLICATED set. */
5253
5254 void
5255 add_phi_args_after_copy_bb (basic_block bb_copy)
5256 {
5257 edge e_copy;
5258 edge_iterator ei;
5259
5260 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5261 {
5262 add_phi_args_after_copy_edge (e_copy);
5263 }
5264 }
5265
5266 /* Blocks in REGION_COPY array of length N_REGION were created by
5267 duplication of basic blocks. Add phi node arguments for edges
5268 going from these blocks. If E_COPY is not NULL, also add
5269 phi node arguments for its destination.*/
5270
5271 void
5272 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5273 edge e_copy)
5274 {
5275 unsigned i;
5276
5277 for (i = 0; i < n_region; i++)
5278 region_copy[i]->flags |= BB_DUPLICATED;
5279
5280 for (i = 0; i < n_region; i++)
5281 add_phi_args_after_copy_bb (region_copy[i]);
5282 if (e_copy)
5283 add_phi_args_after_copy_edge (e_copy);
5284
5285 for (i = 0; i < n_region; i++)
5286 region_copy[i]->flags &= ~BB_DUPLICATED;
5287 }
5288
5289 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5290 important exit edge EXIT. By important we mean that no SSA name defined
5291 inside region is live over the other exit edges of the region. All entry
5292 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5293 to the duplicate of the region. SSA form, dominance and loop information
5294 is updated. The new basic blocks are stored to REGION_COPY in the same
5295 order as they had in REGION, provided that REGION_COPY is not NULL.
5296 The function returns false if it is unable to copy the region,
5297 true otherwise. */
5298
5299 bool
5300 gimple_duplicate_sese_region (edge entry, edge exit,
5301 basic_block *region, unsigned n_region,
5302 basic_block *region_copy)
5303 {
5304 unsigned i;
5305 bool free_region_copy = false, copying_header = false;
5306 struct loop *loop = entry->dest->loop_father;
5307 edge exit_copy;
5308 VEC (basic_block, heap) *doms;
5309 edge redirected;
5310 int total_freq = 0, entry_freq = 0;
5311 gcov_type total_count = 0, entry_count = 0;
5312
5313 if (!can_copy_bbs_p (region, n_region))
5314 return false;
5315
5316 /* Some sanity checking. Note that we do not check for all possible
5317 missuses of the functions. I.e. if you ask to copy something weird,
5318 it will work, but the state of structures probably will not be
5319 correct. */
5320 for (i = 0; i < n_region; i++)
5321 {
5322 /* We do not handle subloops, i.e. all the blocks must belong to the
5323 same loop. */
5324 if (region[i]->loop_father != loop)
5325 return false;
5326
5327 if (region[i] != entry->dest
5328 && region[i] == loop->header)
5329 return false;
5330 }
5331
5332 set_loop_copy (loop, loop);
5333
5334 /* In case the function is used for loop header copying (which is the primary
5335 use), ensure that EXIT and its copy will be new latch and entry edges. */
5336 if (loop->header == entry->dest)
5337 {
5338 copying_header = true;
5339 set_loop_copy (loop, loop_outer (loop));
5340
5341 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5342 return false;
5343
5344 for (i = 0; i < n_region; i++)
5345 if (region[i] != exit->src
5346 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5347 return false;
5348 }
5349
5350 if (!region_copy)
5351 {
5352 region_copy = XNEWVEC (basic_block, n_region);
5353 free_region_copy = true;
5354 }
5355
5356 gcc_assert (!need_ssa_update_p (cfun));
5357
5358 /* Record blocks outside the region that are dominated by something
5359 inside. */
5360 doms = NULL;
5361 initialize_original_copy_tables ();
5362
5363 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5364
5365 if (entry->dest->count)
5366 {
5367 total_count = entry->dest->count;
5368 entry_count = entry->count;
5369 /* Fix up corner cases, to avoid division by zero or creation of negative
5370 frequencies. */
5371 if (entry_count > total_count)
5372 entry_count = total_count;
5373 }
5374 else
5375 {
5376 total_freq = entry->dest->frequency;
5377 entry_freq = EDGE_FREQUENCY (entry);
5378 /* Fix up corner cases, to avoid division by zero or creation of negative
5379 frequencies. */
5380 if (total_freq == 0)
5381 total_freq = 1;
5382 else if (entry_freq > total_freq)
5383 entry_freq = total_freq;
5384 }
5385
5386 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5387 split_edge_bb_loc (entry));
5388 if (total_count)
5389 {
5390 scale_bbs_frequencies_gcov_type (region, n_region,
5391 total_count - entry_count,
5392 total_count);
5393 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5394 total_count);
5395 }
5396 else
5397 {
5398 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5399 total_freq);
5400 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5401 }
5402
5403 if (copying_header)
5404 {
5405 loop->header = exit->dest;
5406 loop->latch = exit->src;
5407 }
5408
5409 /* Redirect the entry and add the phi node arguments. */
5410 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5411 gcc_assert (redirected != NULL);
5412 flush_pending_stmts (entry);
5413
5414 /* Concerning updating of dominators: We must recount dominators
5415 for entry block and its copy. Anything that is outside of the
5416 region, but was dominated by something inside needs recounting as
5417 well. */
5418 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5419 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5420 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5421 VEC_free (basic_block, heap, doms);
5422
5423 /* Add the other PHI node arguments. */
5424 add_phi_args_after_copy (region_copy, n_region, NULL);
5425
5426 /* Update the SSA web. */
5427 update_ssa (TODO_update_ssa);
5428
5429 if (free_region_copy)
5430 free (region_copy);
5431
5432 free_original_copy_tables ();
5433 return true;
5434 }
5435
5436 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5437 are stored to REGION_COPY in the same order in that they appear
5438 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5439 the region, EXIT an exit from it. The condition guarding EXIT
5440 is moved to ENTRY. Returns true if duplication succeeds, false
5441 otherwise.
5442
5443 For example,
5444
5445 some_code;
5446 if (cond)
5447 A;
5448 else
5449 B;
5450
5451 is transformed to
5452
5453 if (cond)
5454 {
5455 some_code;
5456 A;
5457 }
5458 else
5459 {
5460 some_code;
5461 B;
5462 }
5463 */
5464
5465 bool
5466 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5467 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5468 basic_block *region_copy ATTRIBUTE_UNUSED)
5469 {
5470 unsigned i;
5471 bool free_region_copy = false;
5472 struct loop *loop = exit->dest->loop_father;
5473 struct loop *orig_loop = entry->dest->loop_father;
5474 basic_block switch_bb, entry_bb, nentry_bb;
5475 VEC (basic_block, heap) *doms;
5476 int total_freq = 0, exit_freq = 0;
5477 gcov_type total_count = 0, exit_count = 0;
5478 edge exits[2], nexits[2], e;
5479 gimple_stmt_iterator gsi;
5480 gimple cond_stmt;
5481 edge sorig, snew;
5482
5483 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5484 exits[0] = exit;
5485 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5486
5487 if (!can_copy_bbs_p (region, n_region))
5488 return false;
5489
5490 /* Some sanity checking. Note that we do not check for all possible
5491 missuses of the functions. I.e. if you ask to copy something weird
5492 (e.g., in the example, if there is a jump from inside to the middle
5493 of some_code, or come_code defines some of the values used in cond)
5494 it will work, but the resulting code will not be correct. */
5495 for (i = 0; i < n_region; i++)
5496 {
5497 /* We do not handle subloops, i.e. all the blocks must belong to the
5498 same loop. */
5499 if (region[i]->loop_father != orig_loop)
5500 return false;
5501
5502 if (region[i] == orig_loop->latch)
5503 return false;
5504 }
5505
5506 initialize_original_copy_tables ();
5507 set_loop_copy (orig_loop, loop);
5508
5509 if (!region_copy)
5510 {
5511 region_copy = XNEWVEC (basic_block, n_region);
5512 free_region_copy = true;
5513 }
5514
5515 gcc_assert (!need_ssa_update_p (cfun));
5516
5517 /* Record blocks outside the region that are dominated by something
5518 inside. */
5519 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5520
5521 if (exit->src->count)
5522 {
5523 total_count = exit->src->count;
5524 exit_count = exit->count;
5525 /* Fix up corner cases, to avoid division by zero or creation of negative
5526 frequencies. */
5527 if (exit_count > total_count)
5528 exit_count = total_count;
5529 }
5530 else
5531 {
5532 total_freq = exit->src->frequency;
5533 exit_freq = EDGE_FREQUENCY (exit);
5534 /* Fix up corner cases, to avoid division by zero or creation of negative
5535 frequencies. */
5536 if (total_freq == 0)
5537 total_freq = 1;
5538 if (exit_freq > total_freq)
5539 exit_freq = total_freq;
5540 }
5541
5542 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5543 split_edge_bb_loc (exit));
5544 if (total_count)
5545 {
5546 scale_bbs_frequencies_gcov_type (region, n_region,
5547 total_count - exit_count,
5548 total_count);
5549 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5550 total_count);
5551 }
5552 else
5553 {
5554 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5555 total_freq);
5556 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5557 }
5558
5559 /* Create the switch block, and put the exit condition to it. */
5560 entry_bb = entry->dest;
5561 nentry_bb = get_bb_copy (entry_bb);
5562 if (!last_stmt (entry->src)
5563 || !stmt_ends_bb_p (last_stmt (entry->src)))
5564 switch_bb = entry->src;
5565 else
5566 switch_bb = split_edge (entry);
5567 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5568
5569 gsi = gsi_last_bb (switch_bb);
5570 cond_stmt = last_stmt (exit->src);
5571 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5572 cond_stmt = gimple_copy (cond_stmt);
5573 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5574 gimple_cond_set_rhs (cond_stmt, unshare_expr (gimple_cond_rhs (cond_stmt)));
5575 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5576
5577 sorig = single_succ_edge (switch_bb);
5578 sorig->flags = exits[1]->flags;
5579 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5580
5581 /* Register the new edge from SWITCH_BB in loop exit lists. */
5582 rescan_loop_exit (snew, true, false);
5583
5584 /* Add the PHI node arguments. */
5585 add_phi_args_after_copy (region_copy, n_region, snew);
5586
5587 /* Get rid of now superfluous conditions and associated edges (and phi node
5588 arguments). */
5589 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5590 PENDING_STMT (e) = NULL;
5591 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
5592 PENDING_STMT (e) = NULL;
5593
5594 /* Anything that is outside of the region, but was dominated by something
5595 inside needs to update dominance info. */
5596 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5597 VEC_free (basic_block, heap, doms);
5598
5599 /* Update the SSA web. */
5600 update_ssa (TODO_update_ssa);
5601
5602 if (free_region_copy)
5603 free (region_copy);
5604
5605 free_original_copy_tables ();
5606 return true;
5607 }
5608
5609 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5610 adding blocks when the dominator traversal reaches EXIT. This
5611 function silently assumes that ENTRY strictly dominates EXIT. */
5612
5613 void
5614 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5615 VEC(basic_block,heap) **bbs_p)
5616 {
5617 basic_block son;
5618
5619 for (son = first_dom_son (CDI_DOMINATORS, entry);
5620 son;
5621 son = next_dom_son (CDI_DOMINATORS, son))
5622 {
5623 VEC_safe_push (basic_block, heap, *bbs_p, son);
5624 if (son != exit)
5625 gather_blocks_in_sese_region (son, exit, bbs_p);
5626 }
5627 }
5628
5629 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5630 The duplicates are recorded in VARS_MAP. */
5631
5632 static void
5633 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5634 tree to_context)
5635 {
5636 tree t = *tp, new_t;
5637 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5638 void **loc;
5639
5640 if (DECL_CONTEXT (t) == to_context)
5641 return;
5642
5643 loc = pointer_map_contains (vars_map, t);
5644
5645 if (!loc)
5646 {
5647 loc = pointer_map_insert (vars_map, t);
5648
5649 if (SSA_VAR_P (t))
5650 {
5651 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5652 f->local_decls = tree_cons (NULL_TREE, new_t, f->local_decls);
5653 }
5654 else
5655 {
5656 gcc_assert (TREE_CODE (t) == CONST_DECL);
5657 new_t = copy_node (t);
5658 }
5659 DECL_CONTEXT (new_t) = to_context;
5660
5661 *loc = new_t;
5662 }
5663 else
5664 new_t = (tree) *loc;
5665
5666 *tp = new_t;
5667 }
5668
5669
5670 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5671 VARS_MAP maps old ssa names and var_decls to the new ones. */
5672
5673 static tree
5674 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5675 tree to_context)
5676 {
5677 void **loc;
5678 tree new_name, decl = SSA_NAME_VAR (name);
5679
5680 gcc_assert (is_gimple_reg (name));
5681
5682 loc = pointer_map_contains (vars_map, name);
5683
5684 if (!loc)
5685 {
5686 replace_by_duplicate_decl (&decl, vars_map, to_context);
5687
5688 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5689 if (gimple_in_ssa_p (cfun))
5690 add_referenced_var (decl);
5691
5692 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5693 if (SSA_NAME_IS_DEFAULT_DEF (name))
5694 set_default_def (decl, new_name);
5695 pop_cfun ();
5696
5697 loc = pointer_map_insert (vars_map, name);
5698 *loc = new_name;
5699 }
5700 else
5701 new_name = (tree) *loc;
5702
5703 return new_name;
5704 }
5705
5706 struct move_stmt_d
5707 {
5708 tree orig_block;
5709 tree new_block;
5710 tree from_context;
5711 tree to_context;
5712 struct pointer_map_t *vars_map;
5713 htab_t new_label_map;
5714 bool remap_decls_p;
5715 };
5716
5717 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5718 contained in *TP if it has been ORIG_BLOCK previously and change the
5719 DECL_CONTEXT of every local variable referenced in *TP. */
5720
5721 static tree
5722 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5723 {
5724 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5725 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5726 tree t = *tp;
5727
5728 if (EXPR_P (t))
5729 /* We should never have TREE_BLOCK set on non-statements. */
5730 gcc_assert (!TREE_BLOCK (t));
5731
5732 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5733 {
5734 if (TREE_CODE (t) == SSA_NAME)
5735 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5736 else if (TREE_CODE (t) == LABEL_DECL)
5737 {
5738 if (p->new_label_map)
5739 {
5740 struct tree_map in, *out;
5741 in.base.from = t;
5742 out = (struct tree_map *)
5743 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5744 if (out)
5745 *tp = t = out->to;
5746 }
5747
5748 DECL_CONTEXT (t) = p->to_context;
5749 }
5750 else if (p->remap_decls_p)
5751 {
5752 /* Replace T with its duplicate. T should no longer appear in the
5753 parent function, so this looks wasteful; however, it may appear
5754 in referenced_vars, and more importantly, as virtual operands of
5755 statements, and in alias lists of other variables. It would be
5756 quite difficult to expunge it from all those places. ??? It might
5757 suffice to do this for addressable variables. */
5758 if ((TREE_CODE (t) == VAR_DECL
5759 && !is_global_var (t))
5760 || TREE_CODE (t) == CONST_DECL)
5761 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5762
5763 if (SSA_VAR_P (t)
5764 && gimple_in_ssa_p (cfun))
5765 {
5766 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5767 add_referenced_var (*tp);
5768 pop_cfun ();
5769 }
5770 }
5771 *walk_subtrees = 0;
5772 }
5773 else if (TYPE_P (t))
5774 *walk_subtrees = 0;
5775
5776 return NULL_TREE;
5777 }
5778
5779 /* Like move_stmt_op, but for gimple statements.
5780
5781 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5782 contained in the current statement in *GSI_P and change the
5783 DECL_CONTEXT of every local variable referenced in the current
5784 statement. */
5785
5786 static tree
5787 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5788 struct walk_stmt_info *wi)
5789 {
5790 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5791 gimple stmt = gsi_stmt (*gsi_p);
5792 tree block = gimple_block (stmt);
5793
5794 if (p->orig_block == NULL_TREE
5795 || block == p->orig_block
5796 || block == NULL_TREE)
5797 gimple_set_block (stmt, p->new_block);
5798 #ifdef ENABLE_CHECKING
5799 else if (block != p->new_block)
5800 {
5801 while (block && block != p->orig_block)
5802 block = BLOCK_SUPERCONTEXT (block);
5803 gcc_assert (block);
5804 }
5805 #endif
5806
5807 if (is_gimple_omp (stmt)
5808 && gimple_code (stmt) != GIMPLE_OMP_RETURN
5809 && gimple_code (stmt) != GIMPLE_OMP_CONTINUE)
5810 {
5811 /* Do not remap variables inside OMP directives. Variables
5812 referenced in clauses and directive header belong to the
5813 parent function and should not be moved into the child
5814 function. */
5815 bool save_remap_decls_p = p->remap_decls_p;
5816 p->remap_decls_p = false;
5817 *handled_ops_p = true;
5818
5819 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r, move_stmt_op, wi);
5820
5821 p->remap_decls_p = save_remap_decls_p;
5822 }
5823
5824 return NULL_TREE;
5825 }
5826
5827 /* Marks virtual operands of all statements in basic blocks BBS for
5828 renaming. */
5829
5830 void
5831 mark_virtual_ops_in_bb (basic_block bb)
5832 {
5833 gimple_stmt_iterator gsi;
5834
5835 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5836 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5837
5838 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5839 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5840 }
5841
5842 /* Move basic block BB from function CFUN to function DEST_FN. The
5843 block is moved out of the original linked list and placed after
5844 block AFTER in the new list. Also, the block is removed from the
5845 original array of blocks and placed in DEST_FN's array of blocks.
5846 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5847 updated to reflect the moved edges.
5848
5849 The local variables are remapped to new instances, VARS_MAP is used
5850 to record the mapping. */
5851
5852 static void
5853 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5854 basic_block after, bool update_edge_count_p,
5855 struct move_stmt_d *d, int eh_offset)
5856 {
5857 struct control_flow_graph *cfg;
5858 edge_iterator ei;
5859 edge e;
5860 gimple_stmt_iterator si;
5861 unsigned old_len, new_len;
5862
5863 /* Remove BB from dominance structures. */
5864 delete_from_dominance_info (CDI_DOMINATORS, bb);
5865 if (current_loops)
5866 remove_bb_from_loops (bb);
5867
5868 /* Link BB to the new linked list. */
5869 move_block_after (bb, after);
5870
5871 /* Update the edge count in the corresponding flowgraphs. */
5872 if (update_edge_count_p)
5873 FOR_EACH_EDGE (e, ei, bb->succs)
5874 {
5875 cfun->cfg->x_n_edges--;
5876 dest_cfun->cfg->x_n_edges++;
5877 }
5878
5879 /* Remove BB from the original basic block array. */
5880 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5881 cfun->cfg->x_n_basic_blocks--;
5882
5883 /* Grow DEST_CFUN's basic block array if needed. */
5884 cfg = dest_cfun->cfg;
5885 cfg->x_n_basic_blocks++;
5886 if (bb->index >= cfg->x_last_basic_block)
5887 cfg->x_last_basic_block = bb->index + 1;
5888
5889 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5890 if ((unsigned) cfg->x_last_basic_block >= old_len)
5891 {
5892 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5893 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5894 new_len);
5895 }
5896
5897 VEC_replace (basic_block, cfg->x_basic_block_info,
5898 bb->index, bb);
5899
5900 /* Remap the variables in phi nodes. */
5901 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5902 {
5903 gimple phi = gsi_stmt (si);
5904 use_operand_p use;
5905 tree op = PHI_RESULT (phi);
5906 ssa_op_iter oi;
5907
5908 if (!is_gimple_reg (op))
5909 {
5910 /* Remove the phi nodes for virtual operands (alias analysis will be
5911 run for the new function, anyway). */
5912 remove_phi_node (&si, true);
5913 continue;
5914 }
5915
5916 SET_PHI_RESULT (phi,
5917 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5918 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5919 {
5920 op = USE_FROM_PTR (use);
5921 if (TREE_CODE (op) == SSA_NAME)
5922 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5923 }
5924
5925 gsi_next (&si);
5926 }
5927
5928 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5929 {
5930 gimple stmt = gsi_stmt (si);
5931 int region;
5932 struct walk_stmt_info wi;
5933
5934 memset (&wi, 0, sizeof (wi));
5935 wi.info = d;
5936 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5937
5938 if (gimple_code (stmt) == GIMPLE_LABEL)
5939 {
5940 tree label = gimple_label_label (stmt);
5941 int uid = LABEL_DECL_UID (label);
5942
5943 gcc_assert (uid > -1);
5944
5945 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5946 if (old_len <= (unsigned) uid)
5947 {
5948 new_len = 3 * uid / 2 + 1;
5949 VEC_safe_grow_cleared (basic_block, gc,
5950 cfg->x_label_to_block_map, new_len);
5951 }
5952
5953 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5954 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5955
5956 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5957
5958 if (uid >= dest_cfun->cfg->last_label_uid)
5959 dest_cfun->cfg->last_label_uid = uid + 1;
5960 }
5961 else if (gimple_code (stmt) == GIMPLE_RESX && eh_offset != 0)
5962 gimple_resx_set_region (stmt, gimple_resx_region (stmt) + eh_offset);
5963
5964 region = lookup_stmt_eh_region (stmt);
5965 if (region >= 0)
5966 {
5967 add_stmt_to_eh_region_fn (dest_cfun, stmt, region + eh_offset);
5968 remove_stmt_from_eh_region (stmt);
5969 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5970 gimple_remove_stmt_histograms (cfun, stmt);
5971 }
5972
5973 /* We cannot leave any operands allocated from the operand caches of
5974 the current function. */
5975 free_stmt_operands (stmt);
5976 push_cfun (dest_cfun);
5977 update_stmt (stmt);
5978 pop_cfun ();
5979 }
5980
5981 FOR_EACH_EDGE (e, ei, bb->succs)
5982 if (e->goto_locus)
5983 {
5984 tree block = e->goto_block;
5985 if (d->orig_block == NULL_TREE
5986 || block == d->orig_block)
5987 e->goto_block = d->new_block;
5988 #ifdef ENABLE_CHECKING
5989 else if (block != d->new_block)
5990 {
5991 while (block && block != d->orig_block)
5992 block = BLOCK_SUPERCONTEXT (block);
5993 gcc_assert (block);
5994 }
5995 #endif
5996 }
5997 }
5998
5999 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6000 the outermost EH region. Use REGION as the incoming base EH region. */
6001
6002 static int
6003 find_outermost_region_in_block (struct function *src_cfun,
6004 basic_block bb, int region)
6005 {
6006 gimple_stmt_iterator si;
6007
6008 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6009 {
6010 gimple stmt = gsi_stmt (si);
6011 int stmt_region;
6012
6013 if (gimple_code (stmt) == GIMPLE_RESX)
6014 stmt_region = gimple_resx_region (stmt);
6015 else
6016 stmt_region = lookup_stmt_eh_region_fn (src_cfun, stmt);
6017 if (stmt_region > 0)
6018 {
6019 if (region < 0)
6020 region = stmt_region;
6021 else if (stmt_region != region)
6022 {
6023 region = eh_region_outermost (src_cfun, stmt_region, region);
6024 gcc_assert (region != -1);
6025 }
6026 }
6027 }
6028
6029 return region;
6030 }
6031
6032 static tree
6033 new_label_mapper (tree decl, void *data)
6034 {
6035 htab_t hash = (htab_t) data;
6036 struct tree_map *m;
6037 void **slot;
6038
6039 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6040
6041 m = XNEW (struct tree_map);
6042 m->hash = DECL_UID (decl);
6043 m->base.from = decl;
6044 m->to = create_artificial_label (UNKNOWN_LOCATION);
6045 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6046 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6047 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6048
6049 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6050 gcc_assert (*slot == NULL);
6051
6052 *slot = m;
6053
6054 return m->to;
6055 }
6056
6057 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6058 subblocks. */
6059
6060 static void
6061 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6062 tree to_context)
6063 {
6064 tree *tp, t;
6065
6066 for (tp = &BLOCK_VARS (block); *tp; tp = &TREE_CHAIN (*tp))
6067 {
6068 t = *tp;
6069 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6070 continue;
6071 replace_by_duplicate_decl (&t, vars_map, to_context);
6072 if (t != *tp)
6073 {
6074 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6075 {
6076 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6077 DECL_HAS_VALUE_EXPR_P (t) = 1;
6078 }
6079 TREE_CHAIN (t) = TREE_CHAIN (*tp);
6080 *tp = t;
6081 }
6082 }
6083
6084 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6085 replace_block_vars_by_duplicates (block, vars_map, to_context);
6086 }
6087
6088 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6089 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6090 single basic block in the original CFG and the new basic block is
6091 returned. DEST_CFUN must not have a CFG yet.
6092
6093 Note that the region need not be a pure SESE region. Blocks inside
6094 the region may contain calls to abort/exit. The only restriction
6095 is that ENTRY_BB should be the only entry point and it must
6096 dominate EXIT_BB.
6097
6098 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6099 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6100 to the new function.
6101
6102 All local variables referenced in the region are assumed to be in
6103 the corresponding BLOCK_VARS and unexpanded variable lists
6104 associated with DEST_CFUN. */
6105
6106 basic_block
6107 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6108 basic_block exit_bb, tree orig_block)
6109 {
6110 VEC(basic_block,heap) *bbs, *dom_bbs;
6111 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6112 basic_block after, bb, *entry_pred, *exit_succ, abb;
6113 struct function *saved_cfun = cfun;
6114 int *entry_flag, *exit_flag, eh_offset;
6115 unsigned *entry_prob, *exit_prob;
6116 unsigned i, num_entry_edges, num_exit_edges;
6117 edge e;
6118 edge_iterator ei;
6119 htab_t new_label_map;
6120 struct pointer_map_t *vars_map;
6121 struct loop *loop = entry_bb->loop_father;
6122 struct move_stmt_d d;
6123
6124 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6125 region. */
6126 gcc_assert (entry_bb != exit_bb
6127 && (!exit_bb
6128 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6129
6130 /* Collect all the blocks in the region. Manually add ENTRY_BB
6131 because it won't be added by dfs_enumerate_from. */
6132 bbs = NULL;
6133 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6134 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6135
6136 /* The blocks that used to be dominated by something in BBS will now be
6137 dominated by the new block. */
6138 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6139 VEC_address (basic_block, bbs),
6140 VEC_length (basic_block, bbs));
6141
6142 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6143 the predecessor edges to ENTRY_BB and the successor edges to
6144 EXIT_BB so that we can re-attach them to the new basic block that
6145 will replace the region. */
6146 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6147 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6148 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6149 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6150 i = 0;
6151 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6152 {
6153 entry_prob[i] = e->probability;
6154 entry_flag[i] = e->flags;
6155 entry_pred[i++] = e->src;
6156 remove_edge (e);
6157 }
6158
6159 if (exit_bb)
6160 {
6161 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6162 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6163 sizeof (basic_block));
6164 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6165 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6166 i = 0;
6167 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6168 {
6169 exit_prob[i] = e->probability;
6170 exit_flag[i] = e->flags;
6171 exit_succ[i++] = e->dest;
6172 remove_edge (e);
6173 }
6174 }
6175 else
6176 {
6177 num_exit_edges = 0;
6178 exit_succ = NULL;
6179 exit_flag = NULL;
6180 exit_prob = NULL;
6181 }
6182
6183 /* Switch context to the child function to initialize DEST_FN's CFG. */
6184 gcc_assert (dest_cfun->cfg == NULL);
6185 push_cfun (dest_cfun);
6186
6187 init_empty_tree_cfg ();
6188
6189 /* Initialize EH information for the new function. */
6190 eh_offset = 0;
6191 new_label_map = NULL;
6192 if (saved_cfun->eh)
6193 {
6194 int region = -1;
6195
6196 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
6197 region = find_outermost_region_in_block (saved_cfun, bb, region);
6198
6199 init_eh_for_function ();
6200 if (region != -1)
6201 {
6202 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6203 eh_offset = duplicate_eh_regions (saved_cfun, new_label_mapper,
6204 new_label_map, region, 0);
6205 }
6206 }
6207
6208 pop_cfun ();
6209
6210 /* Move blocks from BBS into DEST_CFUN. */
6211 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6212 after = dest_cfun->cfg->x_entry_block_ptr;
6213 vars_map = pointer_map_create ();
6214
6215 memset (&d, 0, sizeof (d));
6216 d.vars_map = vars_map;
6217 d.from_context = cfun->decl;
6218 d.to_context = dest_cfun->decl;
6219 d.new_label_map = new_label_map;
6220 d.remap_decls_p = true;
6221 d.orig_block = orig_block;
6222 d.new_block = DECL_INITIAL (dest_cfun->decl);
6223
6224 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
6225 {
6226 /* No need to update edge counts on the last block. It has
6227 already been updated earlier when we detached the region from
6228 the original CFG. */
6229 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d, eh_offset);
6230 after = bb;
6231 }
6232
6233 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6234 if (orig_block)
6235 {
6236 tree block;
6237 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6238 == NULL_TREE);
6239 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6240 = BLOCK_SUBBLOCKS (orig_block);
6241 for (block = BLOCK_SUBBLOCKS (orig_block);
6242 block; block = BLOCK_CHAIN (block))
6243 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6244 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6245 }
6246
6247 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6248 vars_map, dest_cfun->decl);
6249
6250 if (new_label_map)
6251 htab_delete (new_label_map);
6252 pointer_map_destroy (vars_map);
6253
6254 /* Rewire the entry and exit blocks. The successor to the entry
6255 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6256 the child function. Similarly, the predecessor of DEST_FN's
6257 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6258 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6259 various CFG manipulation function get to the right CFG.
6260
6261 FIXME, this is silly. The CFG ought to become a parameter to
6262 these helpers. */
6263 push_cfun (dest_cfun);
6264 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6265 if (exit_bb)
6266 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6267 pop_cfun ();
6268
6269 /* Back in the original function, the SESE region has disappeared,
6270 create a new basic block in its place. */
6271 bb = create_empty_bb (entry_pred[0]);
6272 if (current_loops)
6273 add_bb_to_loop (bb, loop);
6274 for (i = 0; i < num_entry_edges; i++)
6275 {
6276 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6277 e->probability = entry_prob[i];
6278 }
6279
6280 for (i = 0; i < num_exit_edges; i++)
6281 {
6282 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6283 e->probability = exit_prob[i];
6284 }
6285
6286 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6287 for (i = 0; VEC_iterate (basic_block, dom_bbs, i, abb); i++)
6288 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6289 VEC_free (basic_block, heap, dom_bbs);
6290
6291 if (exit_bb)
6292 {
6293 free (exit_prob);
6294 free (exit_flag);
6295 free (exit_succ);
6296 }
6297 free (entry_prob);
6298 free (entry_flag);
6299 free (entry_pred);
6300 VEC_free (basic_block, heap, bbs);
6301
6302 return bb;
6303 }
6304
6305
6306 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6307 */
6308
6309 void
6310 dump_function_to_file (tree fn, FILE *file, int flags)
6311 {
6312 tree arg, vars, var;
6313 struct function *dsf;
6314 bool ignore_topmost_bind = false, any_var = false;
6315 basic_block bb;
6316 tree chain;
6317
6318 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6319
6320 arg = DECL_ARGUMENTS (fn);
6321 while (arg)
6322 {
6323 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6324 fprintf (file, " ");
6325 print_generic_expr (file, arg, dump_flags);
6326 if (flags & TDF_VERBOSE)
6327 print_node (file, "", arg, 4);
6328 if (TREE_CHAIN (arg))
6329 fprintf (file, ", ");
6330 arg = TREE_CHAIN (arg);
6331 }
6332 fprintf (file, ")\n");
6333
6334 if (flags & TDF_VERBOSE)
6335 print_node (file, "", fn, 2);
6336
6337 dsf = DECL_STRUCT_FUNCTION (fn);
6338 if (dsf && (flags & TDF_DETAILS))
6339 dump_eh_tree (file, dsf);
6340
6341 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6342 {
6343 dump_node (fn, TDF_SLIM | flags, file);
6344 return;
6345 }
6346
6347 /* Switch CFUN to point to FN. */
6348 push_cfun (DECL_STRUCT_FUNCTION (fn));
6349
6350 /* When GIMPLE is lowered, the variables are no longer available in
6351 BIND_EXPRs, so display them separately. */
6352 if (cfun && cfun->decl == fn && cfun->local_decls)
6353 {
6354 ignore_topmost_bind = true;
6355
6356 fprintf (file, "{\n");
6357 for (vars = cfun->local_decls; vars; vars = TREE_CHAIN (vars))
6358 {
6359 var = TREE_VALUE (vars);
6360
6361 print_generic_decl (file, var, flags);
6362 if (flags & TDF_VERBOSE)
6363 print_node (file, "", var, 4);
6364 fprintf (file, "\n");
6365
6366 any_var = true;
6367 }
6368 }
6369
6370 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6371 {
6372 /* If the CFG has been built, emit a CFG-based dump. */
6373 check_bb_profile (ENTRY_BLOCK_PTR, file);
6374 if (!ignore_topmost_bind)
6375 fprintf (file, "{\n");
6376
6377 if (any_var && n_basic_blocks)
6378 fprintf (file, "\n");
6379
6380 FOR_EACH_BB (bb)
6381 gimple_dump_bb (bb, file, 2, flags);
6382
6383 fprintf (file, "}\n");
6384 check_bb_profile (EXIT_BLOCK_PTR, file);
6385 }
6386 else if (DECL_SAVED_TREE (fn) == NULL)
6387 {
6388 /* The function is now in GIMPLE form but the CFG has not been
6389 built yet. Emit the single sequence of GIMPLE statements
6390 that make up its body. */
6391 gimple_seq body = gimple_body (fn);
6392
6393 if (gimple_seq_first_stmt (body)
6394 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6395 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6396 print_gimple_seq (file, body, 0, flags);
6397 else
6398 {
6399 if (!ignore_topmost_bind)
6400 fprintf (file, "{\n");
6401
6402 if (any_var)
6403 fprintf (file, "\n");
6404
6405 print_gimple_seq (file, body, 2, flags);
6406 fprintf (file, "}\n");
6407 }
6408 }
6409 else
6410 {
6411 int indent;
6412
6413 /* Make a tree based dump. */
6414 chain = DECL_SAVED_TREE (fn);
6415
6416 if (chain && TREE_CODE (chain) == BIND_EXPR)
6417 {
6418 if (ignore_topmost_bind)
6419 {
6420 chain = BIND_EXPR_BODY (chain);
6421 indent = 2;
6422 }
6423 else
6424 indent = 0;
6425 }
6426 else
6427 {
6428 if (!ignore_topmost_bind)
6429 fprintf (file, "{\n");
6430 indent = 2;
6431 }
6432
6433 if (any_var)
6434 fprintf (file, "\n");
6435
6436 print_generic_stmt_indented (file, chain, flags, indent);
6437 if (ignore_topmost_bind)
6438 fprintf (file, "}\n");
6439 }
6440
6441 fprintf (file, "\n\n");
6442
6443 /* Restore CFUN. */
6444 pop_cfun ();
6445 }
6446
6447
6448 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6449
6450 void
6451 debug_function (tree fn, int flags)
6452 {
6453 dump_function_to_file (fn, stderr, flags);
6454 }
6455
6456
6457 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6458
6459 static void
6460 print_pred_bbs (FILE *file, basic_block bb)
6461 {
6462 edge e;
6463 edge_iterator ei;
6464
6465 FOR_EACH_EDGE (e, ei, bb->preds)
6466 fprintf (file, "bb_%d ", e->src->index);
6467 }
6468
6469
6470 /* Print on FILE the indexes for the successors of basic_block BB. */
6471
6472 static void
6473 print_succ_bbs (FILE *file, basic_block bb)
6474 {
6475 edge e;
6476 edge_iterator ei;
6477
6478 FOR_EACH_EDGE (e, ei, bb->succs)
6479 fprintf (file, "bb_%d ", e->dest->index);
6480 }
6481
6482 /* Print to FILE the basic block BB following the VERBOSITY level. */
6483
6484 void
6485 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6486 {
6487 char *s_indent = (char *) alloca ((size_t) indent + 1);
6488 memset ((void *) s_indent, ' ', (size_t) indent);
6489 s_indent[indent] = '\0';
6490
6491 /* Print basic_block's header. */
6492 if (verbosity >= 2)
6493 {
6494 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6495 print_pred_bbs (file, bb);
6496 fprintf (file, "}, succs = {");
6497 print_succ_bbs (file, bb);
6498 fprintf (file, "})\n");
6499 }
6500
6501 /* Print basic_block's body. */
6502 if (verbosity >= 3)
6503 {
6504 fprintf (file, "%s {\n", s_indent);
6505 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6506 fprintf (file, "%s }\n", s_indent);
6507 }
6508 }
6509
6510 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6511
6512 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6513 VERBOSITY level this outputs the contents of the loop, or just its
6514 structure. */
6515
6516 static void
6517 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6518 {
6519 char *s_indent;
6520 basic_block bb;
6521
6522 if (loop == NULL)
6523 return;
6524
6525 s_indent = (char *) alloca ((size_t) indent + 1);
6526 memset ((void *) s_indent, ' ', (size_t) indent);
6527 s_indent[indent] = '\0';
6528
6529 /* Print loop's header. */
6530 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6531 loop->num, loop->header->index, loop->latch->index);
6532 fprintf (file, ", niter = ");
6533 print_generic_expr (file, loop->nb_iterations, 0);
6534
6535 if (loop->any_upper_bound)
6536 {
6537 fprintf (file, ", upper_bound = ");
6538 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6539 }
6540
6541 if (loop->any_estimate)
6542 {
6543 fprintf (file, ", estimate = ");
6544 dump_double_int (file, loop->nb_iterations_estimate, true);
6545 }
6546 fprintf (file, ")\n");
6547
6548 /* Print loop's body. */
6549 if (verbosity >= 1)
6550 {
6551 fprintf (file, "%s{\n", s_indent);
6552 FOR_EACH_BB (bb)
6553 if (bb->loop_father == loop)
6554 print_loops_bb (file, bb, indent, verbosity);
6555
6556 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6557 fprintf (file, "%s}\n", s_indent);
6558 }
6559 }
6560
6561 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6562 spaces. Following VERBOSITY level this outputs the contents of the
6563 loop, or just its structure. */
6564
6565 static void
6566 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6567 {
6568 if (loop == NULL)
6569 return;
6570
6571 print_loop (file, loop, indent, verbosity);
6572 print_loop_and_siblings (file, loop->next, indent, verbosity);
6573 }
6574
6575 /* Follow a CFG edge from the entry point of the program, and on entry
6576 of a loop, pretty print the loop structure on FILE. */
6577
6578 void
6579 print_loops (FILE *file, int verbosity)
6580 {
6581 basic_block bb;
6582
6583 bb = ENTRY_BLOCK_PTR;
6584 if (bb && bb->loop_father)
6585 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6586 }
6587
6588
6589 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6590
6591 void
6592 debug_loops (int verbosity)
6593 {
6594 print_loops (stderr, verbosity);
6595 }
6596
6597 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6598
6599 void
6600 debug_loop (struct loop *loop, int verbosity)
6601 {
6602 print_loop (stderr, loop, 0, verbosity);
6603 }
6604
6605 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6606 level. */
6607
6608 void
6609 debug_loop_num (unsigned num, int verbosity)
6610 {
6611 debug_loop (get_loop (num), verbosity);
6612 }
6613
6614 /* Return true if BB ends with a call, possibly followed by some
6615 instructions that must stay with the call. Return false,
6616 otherwise. */
6617
6618 static bool
6619 gimple_block_ends_with_call_p (basic_block bb)
6620 {
6621 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6622 return is_gimple_call (gsi_stmt (gsi));
6623 }
6624
6625
6626 /* Return true if BB ends with a conditional branch. Return false,
6627 otherwise. */
6628
6629 static bool
6630 gimple_block_ends_with_condjump_p (const_basic_block bb)
6631 {
6632 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6633 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6634 }
6635
6636
6637 /* Return true if we need to add fake edge to exit at statement T.
6638 Helper function for gimple_flow_call_edges_add. */
6639
6640 static bool
6641 need_fake_edge_p (gimple t)
6642 {
6643 tree fndecl = NULL_TREE;
6644 int call_flags = 0;
6645
6646 /* NORETURN and LONGJMP calls already have an edge to exit.
6647 CONST and PURE calls do not need one.
6648 We don't currently check for CONST and PURE here, although
6649 it would be a good idea, because those attributes are
6650 figured out from the RTL in mark_constant_function, and
6651 the counter incrementation code from -fprofile-arcs
6652 leads to different results from -fbranch-probabilities. */
6653 if (is_gimple_call (t))
6654 {
6655 fndecl = gimple_call_fndecl (t);
6656 call_flags = gimple_call_flags (t);
6657 }
6658
6659 if (is_gimple_call (t)
6660 && fndecl
6661 && DECL_BUILT_IN (fndecl)
6662 && (call_flags & ECF_NOTHROW)
6663 && !(call_flags & ECF_RETURNS_TWICE)
6664 /* fork() doesn't really return twice, but the effect of
6665 wrapping it in __gcov_fork() which calls __gcov_flush()
6666 and clears the counters before forking has the same
6667 effect as returning twice. Force a fake edge. */
6668 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6669 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6670 return false;
6671
6672 if (is_gimple_call (t)
6673 && !(call_flags & ECF_NORETURN))
6674 return true;
6675
6676 if (gimple_code (t) == GIMPLE_ASM
6677 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6678 return true;
6679
6680 return false;
6681 }
6682
6683
6684 /* Add fake edges to the function exit for any non constant and non
6685 noreturn calls, volatile inline assembly in the bitmap of blocks
6686 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6687 the number of blocks that were split.
6688
6689 The goal is to expose cases in which entering a basic block does
6690 not imply that all subsequent instructions must be executed. */
6691
6692 static int
6693 gimple_flow_call_edges_add (sbitmap blocks)
6694 {
6695 int i;
6696 int blocks_split = 0;
6697 int last_bb = last_basic_block;
6698 bool check_last_block = false;
6699
6700 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6701 return 0;
6702
6703 if (! blocks)
6704 check_last_block = true;
6705 else
6706 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6707
6708 /* In the last basic block, before epilogue generation, there will be
6709 a fallthru edge to EXIT. Special care is required if the last insn
6710 of the last basic block is a call because make_edge folds duplicate
6711 edges, which would result in the fallthru edge also being marked
6712 fake, which would result in the fallthru edge being removed by
6713 remove_fake_edges, which would result in an invalid CFG.
6714
6715 Moreover, we can't elide the outgoing fake edge, since the block
6716 profiler needs to take this into account in order to solve the minimal
6717 spanning tree in the case that the call doesn't return.
6718
6719 Handle this by adding a dummy instruction in a new last basic block. */
6720 if (check_last_block)
6721 {
6722 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6723 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6724 gimple t = NULL;
6725
6726 if (!gsi_end_p (gsi))
6727 t = gsi_stmt (gsi);
6728
6729 if (t && need_fake_edge_p (t))
6730 {
6731 edge e;
6732
6733 e = find_edge (bb, EXIT_BLOCK_PTR);
6734 if (e)
6735 {
6736 gsi_insert_on_edge (e, gimple_build_nop ());
6737 gsi_commit_edge_inserts ();
6738 }
6739 }
6740 }
6741
6742 /* Now add fake edges to the function exit for any non constant
6743 calls since there is no way that we can determine if they will
6744 return or not... */
6745 for (i = 0; i < last_bb; i++)
6746 {
6747 basic_block bb = BASIC_BLOCK (i);
6748 gimple_stmt_iterator gsi;
6749 gimple stmt, last_stmt;
6750
6751 if (!bb)
6752 continue;
6753
6754 if (blocks && !TEST_BIT (blocks, i))
6755 continue;
6756
6757 gsi = gsi_last_bb (bb);
6758 if (!gsi_end_p (gsi))
6759 {
6760 last_stmt = gsi_stmt (gsi);
6761 do
6762 {
6763 stmt = gsi_stmt (gsi);
6764 if (need_fake_edge_p (stmt))
6765 {
6766 edge e;
6767
6768 /* The handling above of the final block before the
6769 epilogue should be enough to verify that there is
6770 no edge to the exit block in CFG already.
6771 Calling make_edge in such case would cause us to
6772 mark that edge as fake and remove it later. */
6773 #ifdef ENABLE_CHECKING
6774 if (stmt == last_stmt)
6775 {
6776 e = find_edge (bb, EXIT_BLOCK_PTR);
6777 gcc_assert (e == NULL);
6778 }
6779 #endif
6780
6781 /* Note that the following may create a new basic block
6782 and renumber the existing basic blocks. */
6783 if (stmt != last_stmt)
6784 {
6785 e = split_block (bb, stmt);
6786 if (e)
6787 blocks_split++;
6788 }
6789 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6790 }
6791 gsi_prev (&gsi);
6792 }
6793 while (!gsi_end_p (gsi));
6794 }
6795 }
6796
6797 if (blocks_split)
6798 verify_flow_info ();
6799
6800 return blocks_split;
6801 }
6802
6803 /* Purge dead abnormal call edges from basic block BB. */
6804
6805 bool
6806 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6807 {
6808 bool changed = gimple_purge_dead_eh_edges (bb);
6809
6810 if (cfun->has_nonlocal_label)
6811 {
6812 gimple stmt = last_stmt (bb);
6813 edge_iterator ei;
6814 edge e;
6815
6816 if (!(stmt && stmt_can_make_abnormal_goto (stmt)))
6817 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6818 {
6819 if (e->flags & EDGE_ABNORMAL)
6820 {
6821 remove_edge (e);
6822 changed = true;
6823 }
6824 else
6825 ei_next (&ei);
6826 }
6827
6828 /* See gimple_purge_dead_eh_edges below. */
6829 if (changed)
6830 free_dominance_info (CDI_DOMINATORS);
6831 }
6832
6833 return changed;
6834 }
6835
6836 /* Removes edge E and all the blocks dominated by it, and updates dominance
6837 information. The IL in E->src needs to be updated separately.
6838 If dominance info is not available, only the edge E is removed.*/
6839
6840 void
6841 remove_edge_and_dominated_blocks (edge e)
6842 {
6843 VEC (basic_block, heap) *bbs_to_remove = NULL;
6844 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6845 bitmap df, df_idom;
6846 edge f;
6847 edge_iterator ei;
6848 bool none_removed = false;
6849 unsigned i;
6850 basic_block bb, dbb;
6851 bitmap_iterator bi;
6852
6853 if (!dom_info_available_p (CDI_DOMINATORS))
6854 {
6855 remove_edge (e);
6856 return;
6857 }
6858
6859 /* No updating is needed for edges to exit. */
6860 if (e->dest == EXIT_BLOCK_PTR)
6861 {
6862 if (cfgcleanup_altered_bbs)
6863 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6864 remove_edge (e);
6865 return;
6866 }
6867
6868 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6869 that is not dominated by E->dest, then this set is empty. Otherwise,
6870 all the basic blocks dominated by E->dest are removed.
6871
6872 Also, to DF_IDOM we store the immediate dominators of the blocks in
6873 the dominance frontier of E (i.e., of the successors of the
6874 removed blocks, if there are any, and of E->dest otherwise). */
6875 FOR_EACH_EDGE (f, ei, e->dest->preds)
6876 {
6877 if (f == e)
6878 continue;
6879
6880 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6881 {
6882 none_removed = true;
6883 break;
6884 }
6885 }
6886
6887 df = BITMAP_ALLOC (NULL);
6888 df_idom = BITMAP_ALLOC (NULL);
6889
6890 if (none_removed)
6891 bitmap_set_bit (df_idom,
6892 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6893 else
6894 {
6895 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6896 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6897 {
6898 FOR_EACH_EDGE (f, ei, bb->succs)
6899 {
6900 if (f->dest != EXIT_BLOCK_PTR)
6901 bitmap_set_bit (df, f->dest->index);
6902 }
6903 }
6904 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6905 bitmap_clear_bit (df, bb->index);
6906
6907 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6908 {
6909 bb = BASIC_BLOCK (i);
6910 bitmap_set_bit (df_idom,
6911 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6912 }
6913 }
6914
6915 if (cfgcleanup_altered_bbs)
6916 {
6917 /* Record the set of the altered basic blocks. */
6918 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6919 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6920 }
6921
6922 /* Remove E and the cancelled blocks. */
6923 if (none_removed)
6924 remove_edge (e);
6925 else
6926 {
6927 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6928 delete_basic_block (bb);
6929 }
6930
6931 /* Update the dominance information. The immediate dominator may change only
6932 for blocks whose immediate dominator belongs to DF_IDOM:
6933
6934 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6935 removal. Let Z the arbitrary block such that idom(Z) = Y and
6936 Z dominates X after the removal. Before removal, there exists a path P
6937 from Y to X that avoids Z. Let F be the last edge on P that is
6938 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6939 dominates W, and because of P, Z does not dominate W), and W belongs to
6940 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6941 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6942 {
6943 bb = BASIC_BLOCK (i);
6944 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6945 dbb;
6946 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6947 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6948 }
6949
6950 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6951
6952 BITMAP_FREE (df);
6953 BITMAP_FREE (df_idom);
6954 VEC_free (basic_block, heap, bbs_to_remove);
6955 VEC_free (basic_block, heap, bbs_to_fix_dom);
6956 }
6957
6958 /* Purge dead EH edges from basic block BB. */
6959
6960 bool
6961 gimple_purge_dead_eh_edges (basic_block bb)
6962 {
6963 bool changed = false;
6964 edge e;
6965 edge_iterator ei;
6966 gimple stmt = last_stmt (bb);
6967
6968 if (stmt && stmt_can_throw_internal (stmt))
6969 return false;
6970
6971 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6972 {
6973 if (e->flags & EDGE_EH)
6974 {
6975 remove_edge_and_dominated_blocks (e);
6976 changed = true;
6977 }
6978 else
6979 ei_next (&ei);
6980 }
6981
6982 return changed;
6983 }
6984
6985 bool
6986 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6987 {
6988 bool changed = false;
6989 unsigned i;
6990 bitmap_iterator bi;
6991
6992 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6993 {
6994 basic_block bb = BASIC_BLOCK (i);
6995
6996 /* Earlier gimple_purge_dead_eh_edges could have removed
6997 this basic block already. */
6998 gcc_assert (bb || changed);
6999 if (bb != NULL)
7000 changed |= gimple_purge_dead_eh_edges (bb);
7001 }
7002
7003 return changed;
7004 }
7005
7006 /* This function is called whenever a new edge is created or
7007 redirected. */
7008
7009 static void
7010 gimple_execute_on_growing_pred (edge e)
7011 {
7012 basic_block bb = e->dest;
7013
7014 if (phi_nodes (bb))
7015 reserve_phi_args_for_new_edge (bb);
7016 }
7017
7018 /* This function is called immediately before edge E is removed from
7019 the edge vector E->dest->preds. */
7020
7021 static void
7022 gimple_execute_on_shrinking_pred (edge e)
7023 {
7024 if (phi_nodes (e->dest))
7025 remove_phi_args (e);
7026 }
7027
7028 /*---------------------------------------------------------------------------
7029 Helper functions for Loop versioning
7030 ---------------------------------------------------------------------------*/
7031
7032 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7033 of 'first'. Both of them are dominated by 'new_head' basic block. When
7034 'new_head' was created by 'second's incoming edge it received phi arguments
7035 on the edge by split_edge(). Later, additional edge 'e' was created to
7036 connect 'new_head' and 'first'. Now this routine adds phi args on this
7037 additional edge 'e' that new_head to second edge received as part of edge
7038 splitting. */
7039
7040 static void
7041 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7042 basic_block new_head, edge e)
7043 {
7044 gimple phi1, phi2;
7045 gimple_stmt_iterator psi1, psi2;
7046 tree def;
7047 edge e2 = find_edge (new_head, second);
7048
7049 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7050 edge, we should always have an edge from NEW_HEAD to SECOND. */
7051 gcc_assert (e2 != NULL);
7052
7053 /* Browse all 'second' basic block phi nodes and add phi args to
7054 edge 'e' for 'first' head. PHI args are always in correct order. */
7055
7056 for (psi2 = gsi_start_phis (second),
7057 psi1 = gsi_start_phis (first);
7058 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7059 gsi_next (&psi2), gsi_next (&psi1))
7060 {
7061 phi1 = gsi_stmt (psi1);
7062 phi2 = gsi_stmt (psi2);
7063 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7064 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7065 }
7066 }
7067
7068
7069 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7070 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7071 the destination of the ELSE part. */
7072
7073 static void
7074 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7075 basic_block second_head ATTRIBUTE_UNUSED,
7076 basic_block cond_bb, void *cond_e)
7077 {
7078 gimple_stmt_iterator gsi;
7079 gimple new_cond_expr;
7080 tree cond_expr = (tree) cond_e;
7081 edge e0;
7082
7083 /* Build new conditional expr */
7084 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7085 NULL_TREE, NULL_TREE);
7086
7087 /* Add new cond in cond_bb. */
7088 gsi = gsi_last_bb (cond_bb);
7089 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7090
7091 /* Adjust edges appropriately to connect new head with first head
7092 as well as second head. */
7093 e0 = single_succ_edge (cond_bb);
7094 e0->flags &= ~EDGE_FALLTHRU;
7095 e0->flags |= EDGE_FALSE_VALUE;
7096 }
7097
7098 struct cfg_hooks gimple_cfg_hooks = {
7099 "gimple",
7100 gimple_verify_flow_info,
7101 gimple_dump_bb, /* dump_bb */
7102 create_bb, /* create_basic_block */
7103 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7104 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7105 gimple_can_remove_branch_p, /* can_remove_branch_p */
7106 remove_bb, /* delete_basic_block */
7107 gimple_split_block, /* split_block */
7108 gimple_move_block_after, /* move_block_after */
7109 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7110 gimple_merge_blocks, /* merge_blocks */
7111 gimple_predict_edge, /* predict_edge */
7112 gimple_predicted_by_p, /* predicted_by_p */
7113 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7114 gimple_duplicate_bb, /* duplicate_block */
7115 gimple_split_edge, /* split_edge */
7116 gimple_make_forwarder_block, /* make_forward_block */
7117 NULL, /* tidy_fallthru_edge */
7118 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7119 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7120 gimple_flow_call_edges_add, /* flow_call_edges_add */
7121 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7122 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7123 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7124 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7125 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7126 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7127 flush_pending_stmts /* flush_pending_stmts */
7128 };
7129
7130
7131 /* Split all critical edges. */
7132
7133 static unsigned int
7134 split_critical_edges (void)
7135 {
7136 basic_block bb;
7137 edge e;
7138 edge_iterator ei;
7139
7140 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7141 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7142 mappings around the calls to split_edge. */
7143 start_recording_case_labels ();
7144 FOR_ALL_BB (bb)
7145 {
7146 FOR_EACH_EDGE (e, ei, bb->succs)
7147 {
7148 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7149 split_edge (e);
7150 /* PRE inserts statements to edges and expects that
7151 since split_critical_edges was done beforehand, committing edge
7152 insertions will not split more edges. In addition to critical
7153 edges we must split edges that have multiple successors and
7154 end by control flow statements, such as RESX.
7155 Go ahead and split them too. This matches the logic in
7156 gimple_find_edge_insert_loc. */
7157 else if ((!single_pred_p (e->dest)
7158 || phi_nodes (e->dest)
7159 || e->dest == EXIT_BLOCK_PTR)
7160 && e->src != ENTRY_BLOCK_PTR
7161 && !(e->flags & EDGE_ABNORMAL))
7162 {
7163 gimple_stmt_iterator gsi;
7164
7165 gsi = gsi_last_bb (e->src);
7166 if (!gsi_end_p (gsi)
7167 && stmt_ends_bb_p (gsi_stmt (gsi))
7168 && gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN)
7169 split_edge (e);
7170 }
7171 }
7172 }
7173 end_recording_case_labels ();
7174 return 0;
7175 }
7176
7177 struct gimple_opt_pass pass_split_crit_edges =
7178 {
7179 {
7180 GIMPLE_PASS,
7181 "crited", /* name */
7182 NULL, /* gate */
7183 split_critical_edges, /* execute */
7184 NULL, /* sub */
7185 NULL, /* next */
7186 0, /* static_pass_number */
7187 TV_TREE_SPLIT_EDGES, /* tv_id */
7188 PROP_cfg, /* properties required */
7189 PROP_no_crit_edges, /* properties_provided */
7190 0, /* properties_destroyed */
7191 0, /* todo_flags_start */
7192 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7193 }
7194 };
7195
7196
7197 /* Build a ternary operation and gimplify it. Emit code before GSI.
7198 Return the gimple_val holding the result. */
7199
7200 tree
7201 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7202 tree type, tree a, tree b, tree c)
7203 {
7204 tree ret;
7205 location_t loc = gimple_location (gsi_stmt (*gsi));
7206
7207 ret = fold_build3_loc (loc, code, type, a, b, c);
7208 STRIP_NOPS (ret);
7209
7210 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7211 GSI_SAME_STMT);
7212 }
7213
7214 /* Build a binary operation and gimplify it. Emit code before GSI.
7215 Return the gimple_val holding the result. */
7216
7217 tree
7218 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7219 tree type, tree a, tree b)
7220 {
7221 tree ret;
7222
7223 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7224 STRIP_NOPS (ret);
7225
7226 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7227 GSI_SAME_STMT);
7228 }
7229
7230 /* Build a unary operation and gimplify it. Emit code before GSI.
7231 Return the gimple_val holding the result. */
7232
7233 tree
7234 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7235 tree a)
7236 {
7237 tree ret;
7238
7239 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7240 STRIP_NOPS (ret);
7241
7242 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7243 GSI_SAME_STMT);
7244 }
7245
7246
7247 \f
7248 /* Emit return warnings. */
7249
7250 static unsigned int
7251 execute_warn_function_return (void)
7252 {
7253 source_location location;
7254 gimple last;
7255 edge e;
7256 edge_iterator ei;
7257
7258 /* If we have a path to EXIT, then we do return. */
7259 if (TREE_THIS_VOLATILE (cfun->decl)
7260 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7261 {
7262 location = UNKNOWN_LOCATION;
7263 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7264 {
7265 last = last_stmt (e->src);
7266 if (gimple_code (last) == GIMPLE_RETURN
7267 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7268 break;
7269 }
7270 if (location == UNKNOWN_LOCATION)
7271 location = cfun->function_end_locus;
7272 warning_at (location, 0, "%<noreturn%> function does return");
7273 }
7274
7275 /* If we see "return;" in some basic block, then we do reach the end
7276 without returning a value. */
7277 else if (warn_return_type
7278 && !TREE_NO_WARNING (cfun->decl)
7279 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7280 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7281 {
7282 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7283 {
7284 gimple last = last_stmt (e->src);
7285 if (gimple_code (last) == GIMPLE_RETURN
7286 && gimple_return_retval (last) == NULL
7287 && !gimple_no_warning_p (last))
7288 {
7289 location = gimple_location (last);
7290 if (location == UNKNOWN_LOCATION)
7291 location = cfun->function_end_locus;
7292 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7293 TREE_NO_WARNING (cfun->decl) = 1;
7294 break;
7295 }
7296 }
7297 }
7298 return 0;
7299 }
7300
7301
7302 /* Given a basic block B which ends with a conditional and has
7303 precisely two successors, determine which of the edges is taken if
7304 the conditional is true and which is taken if the conditional is
7305 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7306
7307 void
7308 extract_true_false_edges_from_block (basic_block b,
7309 edge *true_edge,
7310 edge *false_edge)
7311 {
7312 edge e = EDGE_SUCC (b, 0);
7313
7314 if (e->flags & EDGE_TRUE_VALUE)
7315 {
7316 *true_edge = e;
7317 *false_edge = EDGE_SUCC (b, 1);
7318 }
7319 else
7320 {
7321 *false_edge = e;
7322 *true_edge = EDGE_SUCC (b, 1);
7323 }
7324 }
7325
7326 struct gimple_opt_pass pass_warn_function_return =
7327 {
7328 {
7329 GIMPLE_PASS,
7330 NULL, /* name */
7331 NULL, /* gate */
7332 execute_warn_function_return, /* execute */
7333 NULL, /* sub */
7334 NULL, /* next */
7335 0, /* static_pass_number */
7336 TV_NONE, /* tv_id */
7337 PROP_cfg, /* properties_required */
7338 0, /* properties_provided */
7339 0, /* properties_destroyed */
7340 0, /* todo_flags_start */
7341 0 /* todo_flags_finish */
7342 }
7343 };
7344
7345 /* Emit noreturn warnings. */
7346
7347 static unsigned int
7348 execute_warn_function_noreturn (void)
7349 {
7350 if (warn_missing_noreturn
7351 && !TREE_THIS_VOLATILE (cfun->decl)
7352 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
7353 && !lang_hooks.missing_noreturn_ok_p (cfun->decl))
7354 warning_at (DECL_SOURCE_LOCATION (cfun->decl), OPT_Wmissing_noreturn,
7355 "function might be possible candidate "
7356 "for attribute %<noreturn%>");
7357 return 0;
7358 }
7359
7360 struct gimple_opt_pass pass_warn_function_noreturn =
7361 {
7362 {
7363 GIMPLE_PASS,
7364 NULL, /* name */
7365 NULL, /* gate */
7366 execute_warn_function_noreturn, /* execute */
7367 NULL, /* sub */
7368 NULL, /* next */
7369 0, /* static_pass_number */
7370 TV_NONE, /* tv_id */
7371 PROP_cfg, /* properties_required */
7372 0, /* properties_provided */
7373 0, /* properties_destroyed */
7374 0, /* todo_flags_start */
7375 0 /* todo_flags_finish */
7376 }
7377 };
7378
7379
7380 /* Walk a gimplified function and warn for functions whose return value is
7381 ignored and attribute((warn_unused_result)) is set. This is done before
7382 inlining, so we don't have to worry about that. */
7383
7384 static void
7385 do_warn_unused_result (gimple_seq seq)
7386 {
7387 tree fdecl, ftype;
7388 gimple_stmt_iterator i;
7389
7390 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7391 {
7392 gimple g = gsi_stmt (i);
7393
7394 switch (gimple_code (g))
7395 {
7396 case GIMPLE_BIND:
7397 do_warn_unused_result (gimple_bind_body (g));
7398 break;
7399 case GIMPLE_TRY:
7400 do_warn_unused_result (gimple_try_eval (g));
7401 do_warn_unused_result (gimple_try_cleanup (g));
7402 break;
7403 case GIMPLE_CATCH:
7404 do_warn_unused_result (gimple_catch_handler (g));
7405 break;
7406 case GIMPLE_EH_FILTER:
7407 do_warn_unused_result (gimple_eh_filter_failure (g));
7408 break;
7409
7410 case GIMPLE_CALL:
7411 if (gimple_call_lhs (g))
7412 break;
7413
7414 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7415 LHS. All calls whose value is ignored should be
7416 represented like this. Look for the attribute. */
7417 fdecl = gimple_call_fndecl (g);
7418 ftype = TREE_TYPE (TREE_TYPE (gimple_call_fn (g)));
7419
7420 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7421 {
7422 location_t loc = gimple_location (g);
7423
7424 if (fdecl)
7425 warning_at (loc, OPT_Wunused_result,
7426 "ignoring return value of %qD, "
7427 "declared with attribute warn_unused_result",
7428 fdecl);
7429 else
7430 warning_at (loc, OPT_Wunused_result,
7431 "ignoring return value of function "
7432 "declared with attribute warn_unused_result");
7433 }
7434 break;
7435
7436 default:
7437 /* Not a container, not a call, or a call whose value is used. */
7438 break;
7439 }
7440 }
7441 }
7442
7443 static unsigned int
7444 run_warn_unused_result (void)
7445 {
7446 do_warn_unused_result (gimple_body (current_function_decl));
7447 return 0;
7448 }
7449
7450 static bool
7451 gate_warn_unused_result (void)
7452 {
7453 return flag_warn_unused_result;
7454 }
7455
7456 struct gimple_opt_pass pass_warn_unused_result =
7457 {
7458 {
7459 GIMPLE_PASS,
7460 "*warn_unused_result", /* name */
7461 gate_warn_unused_result, /* gate */
7462 run_warn_unused_result, /* execute */
7463 NULL, /* sub */
7464 NULL, /* next */
7465 0, /* static_pass_number */
7466 TV_NONE, /* tv_id */
7467 PROP_gimple_any, /* properties_required */
7468 0, /* properties_provided */
7469 0, /* properties_destroyed */
7470 0, /* todo_flags_start */
7471 0, /* todo_flags_finish */
7472 }
7473 };
7474