g-expect-vms.adb:
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "ggc.h"
37 #include "langhooks.h"
38 #include "diagnostic.h"
39 #include "tree-flow.h"
40 #include "timevar.h"
41 #include "tree-dump.h"
42 #include "tree-pass.h"
43 #include "toplev.h"
44 #include "except.h"
45 #include "cfgloop.h"
46 #include "cfglayout.h"
47 #include "tree-ssa-propagate.h"
48 #include "value-prof.h"
49 #include "pointer-set.h"
50
51 /* This file contains functions for building the Control Flow Graph (CFG)
52 for a function tree. */
53
54 /* Local declarations. */
55
56 /* Initial capacity for the basic block array. */
57 static const int initial_cfg_capacity = 20;
58
59 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
60 which use a particular edge. The CASE_LABEL_EXPRs are chained together
61 via their TREE_CHAIN field, which we clear after we're done with the
62 hash table to prevent problems with duplication of SWITCH_EXPRs.
63
64 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
65 update the case vector in response to edge redirections.
66
67 Right now this table is set up and torn down at key points in the
68 compilation process. It would be nice if we could make the table
69 more persistent. The key is getting notification of changes to
70 the CFG (particularly edge removal, creation and redirection). */
71
72 static struct pointer_map_t *edge_to_cases;
73
74 /* CFG statistics. */
75 struct cfg_stats_d
76 {
77 long num_merged_labels;
78 };
79
80 static struct cfg_stats_d cfg_stats;
81
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
84
85 /* Basic blocks and flowgraphs. */
86 static basic_block create_bb (void *, void *, basic_block);
87 static void make_blocks (tree);
88 static void factor_computed_gotos (void);
89
90 /* Edges. */
91 static void make_edges (void);
92 static void make_cond_expr_edges (basic_block);
93 static void make_switch_expr_edges (basic_block);
94 static void make_goto_expr_edges (basic_block);
95 static edge tree_redirect_edge_and_branch (edge, basic_block);
96 static edge tree_try_redirect_by_replacing_jump (edge, basic_block);
97 static unsigned int split_critical_edges (void);
98
99 /* Various helpers. */
100 static inline bool stmt_starts_bb_p (tree, tree);
101 static int tree_verify_flow_info (void);
102 static void tree_make_forwarder_block (edge);
103 static void tree_cfg2vcg (FILE *);
104 static inline void change_bb_for_stmt (tree t, basic_block bb);
105
106 /* Flowgraph optimization and cleanup. */
107 static void tree_merge_blocks (basic_block, basic_block);
108 static bool tree_can_merge_blocks_p (basic_block, basic_block);
109 static void remove_bb (basic_block);
110 static edge find_taken_edge_computed_goto (basic_block, tree);
111 static edge find_taken_edge_cond_expr (basic_block, tree);
112 static edge find_taken_edge_switch_expr (basic_block, tree);
113 static tree find_case_label_for_value (tree, tree);
114
115 void
116 init_empty_tree_cfg (void)
117 {
118 /* Initialize the basic block array. */
119 init_flow ();
120 profile_status = PROFILE_ABSENT;
121 n_basic_blocks = NUM_FIXED_BLOCKS;
122 last_basic_block = NUM_FIXED_BLOCKS;
123 basic_block_info = VEC_alloc (basic_block, gc, initial_cfg_capacity);
124 VEC_safe_grow_cleared (basic_block, gc, basic_block_info,
125 initial_cfg_capacity);
126
127 /* Build a mapping of labels to their associated blocks. */
128 label_to_block_map = VEC_alloc (basic_block, gc, initial_cfg_capacity);
129 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
130 initial_cfg_capacity);
131
132 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
133 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
134 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
135 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
136 }
137
138 /*---------------------------------------------------------------------------
139 Create basic blocks
140 ---------------------------------------------------------------------------*/
141
142 /* Entry point to the CFG builder for trees. TP points to the list of
143 statements to be added to the flowgraph. */
144
145 static void
146 build_tree_cfg (tree *tp)
147 {
148 /* Register specific tree functions. */
149 tree_register_cfg_hooks ();
150
151 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
152
153 init_empty_tree_cfg ();
154
155 found_computed_goto = 0;
156 make_blocks (*tp);
157
158 /* Computed gotos are hell to deal with, especially if there are
159 lots of them with a large number of destinations. So we factor
160 them to a common computed goto location before we build the
161 edge list. After we convert back to normal form, we will un-factor
162 the computed gotos since factoring introduces an unwanted jump. */
163 if (found_computed_goto)
164 factor_computed_gotos ();
165
166 /* Make sure there is always at least one block, even if it's empty. */
167 if (n_basic_blocks == NUM_FIXED_BLOCKS)
168 create_empty_bb (ENTRY_BLOCK_PTR);
169
170 /* Adjust the size of the array. */
171 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
172 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
173
174 /* To speed up statement iterator walks, we first purge dead labels. */
175 cleanup_dead_labels ();
176
177 /* Group case nodes to reduce the number of edges.
178 We do this after cleaning up dead labels because otherwise we miss
179 a lot of obvious case merging opportunities. */
180 group_case_labels ();
181
182 /* Create the edges of the flowgraph. */
183 make_edges ();
184 cleanup_dead_labels ();
185
186 /* Debugging dumps. */
187
188 /* Write the flowgraph to a VCG file. */
189 {
190 int local_dump_flags;
191 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
192 if (vcg_file)
193 {
194 tree_cfg2vcg (vcg_file);
195 dump_end (TDI_vcg, vcg_file);
196 }
197 }
198
199 #ifdef ENABLE_CHECKING
200 verify_stmts ();
201 #endif
202
203 /* Dump a textual representation of the flowgraph. */
204 if (dump_file)
205 dump_tree_cfg (dump_file, dump_flags);
206 }
207
208 static unsigned int
209 execute_build_cfg (void)
210 {
211 build_tree_cfg (&DECL_SAVED_TREE (current_function_decl));
212 return 0;
213 }
214
215 struct tree_opt_pass pass_build_cfg =
216 {
217 "cfg", /* name */
218 NULL, /* gate */
219 execute_build_cfg, /* execute */
220 NULL, /* sub */
221 NULL, /* next */
222 0, /* static_pass_number */
223 TV_TREE_CFG, /* tv_id */
224 PROP_gimple_leh, /* properties_required */
225 PROP_cfg, /* properties_provided */
226 0, /* properties_destroyed */
227 0, /* todo_flags_start */
228 TODO_verify_stmts | TODO_cleanup_cfg, /* todo_flags_finish */
229 0 /* letter */
230 };
231
232 /* Search the CFG for any computed gotos. If found, factor them to a
233 common computed goto site. Also record the location of that site so
234 that we can un-factor the gotos after we have converted back to
235 normal form. */
236
237 static void
238 factor_computed_gotos (void)
239 {
240 basic_block bb;
241 tree factored_label_decl = NULL;
242 tree var = NULL;
243 tree factored_computed_goto_label = NULL;
244 tree factored_computed_goto = NULL;
245
246 /* We know there are one or more computed gotos in this function.
247 Examine the last statement in each basic block to see if the block
248 ends with a computed goto. */
249
250 FOR_EACH_BB (bb)
251 {
252 block_stmt_iterator bsi = bsi_last (bb);
253 tree last;
254
255 if (bsi_end_p (bsi))
256 continue;
257 last = bsi_stmt (bsi);
258
259 /* Ignore the computed goto we create when we factor the original
260 computed gotos. */
261 if (last == factored_computed_goto)
262 continue;
263
264 /* If the last statement is a computed goto, factor it. */
265 if (computed_goto_p (last))
266 {
267 tree assignment;
268
269 /* The first time we find a computed goto we need to create
270 the factored goto block and the variable each original
271 computed goto will use for their goto destination. */
272 if (! factored_computed_goto)
273 {
274 basic_block new_bb = create_empty_bb (bb);
275 block_stmt_iterator new_bsi = bsi_start (new_bb);
276
277 /* Create the destination of the factored goto. Each original
278 computed goto will put its desired destination into this
279 variable and jump to the label we create immediately
280 below. */
281 var = create_tmp_var (ptr_type_node, "gotovar");
282
283 /* Build a label for the new block which will contain the
284 factored computed goto. */
285 factored_label_decl = create_artificial_label ();
286 factored_computed_goto_label
287 = build1 (LABEL_EXPR, void_type_node, factored_label_decl);
288 bsi_insert_after (&new_bsi, factored_computed_goto_label,
289 BSI_NEW_STMT);
290
291 /* Build our new computed goto. */
292 factored_computed_goto = build1 (GOTO_EXPR, void_type_node, var);
293 bsi_insert_after (&new_bsi, factored_computed_goto,
294 BSI_NEW_STMT);
295 }
296
297 /* Copy the original computed goto's destination into VAR. */
298 assignment = build_gimple_modify_stmt (var,
299 GOTO_DESTINATION (last));
300 bsi_insert_before (&bsi, assignment, BSI_SAME_STMT);
301
302 /* And re-vector the computed goto to the new destination. */
303 GOTO_DESTINATION (last) = factored_label_decl;
304 }
305 }
306 }
307
308
309 /* Build a flowgraph for the statement_list STMT_LIST. */
310
311 static void
312 make_blocks (tree stmt_list)
313 {
314 tree_stmt_iterator i = tsi_start (stmt_list);
315 tree stmt = NULL;
316 bool start_new_block = true;
317 bool first_stmt_of_list = true;
318 basic_block bb = ENTRY_BLOCK_PTR;
319
320 while (!tsi_end_p (i))
321 {
322 tree prev_stmt;
323
324 prev_stmt = stmt;
325 stmt = tsi_stmt (i);
326
327 /* If the statement starts a new basic block or if we have determined
328 in a previous pass that we need to create a new block for STMT, do
329 so now. */
330 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
331 {
332 if (!first_stmt_of_list)
333 stmt_list = tsi_split_statement_list_before (&i);
334 bb = create_basic_block (stmt_list, NULL, bb);
335 start_new_block = false;
336 }
337
338 /* Now add STMT to BB and create the subgraphs for special statement
339 codes. */
340 set_bb_for_stmt (stmt, bb);
341
342 if (computed_goto_p (stmt))
343 found_computed_goto = true;
344
345 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
346 next iteration. */
347 if (stmt_ends_bb_p (stmt))
348 start_new_block = true;
349
350 tsi_next (&i);
351 first_stmt_of_list = false;
352 }
353 }
354
355
356 /* Create and return a new empty basic block after bb AFTER. */
357
358 static basic_block
359 create_bb (void *h, void *e, basic_block after)
360 {
361 basic_block bb;
362
363 gcc_assert (!e);
364
365 /* Create and initialize a new basic block. Since alloc_block uses
366 ggc_alloc_cleared to allocate a basic block, we do not have to
367 clear the newly allocated basic block here. */
368 bb = alloc_block ();
369
370 bb->index = last_basic_block;
371 bb->flags = BB_NEW;
372 bb->il.tree = GGC_CNEW (struct tree_bb_info);
373 set_bb_stmt_list (bb, h ? (tree) h : alloc_stmt_list ());
374
375 /* Add the new block to the linked list of blocks. */
376 link_block (bb, after);
377
378 /* Grow the basic block array if needed. */
379 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
380 {
381 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
382 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
383 }
384
385 /* Add the newly created block to the array. */
386 SET_BASIC_BLOCK (last_basic_block, bb);
387
388 n_basic_blocks++;
389 last_basic_block++;
390
391 return bb;
392 }
393
394
395 /*---------------------------------------------------------------------------
396 Edge creation
397 ---------------------------------------------------------------------------*/
398
399 /* Fold COND_EXPR_COND of each COND_EXPR. */
400
401 void
402 fold_cond_expr_cond (void)
403 {
404 basic_block bb;
405
406 FOR_EACH_BB (bb)
407 {
408 tree stmt = last_stmt (bb);
409
410 if (stmt
411 && TREE_CODE (stmt) == COND_EXPR)
412 {
413 tree cond;
414 bool zerop, onep;
415
416 fold_defer_overflow_warnings ();
417 cond = fold (COND_EXPR_COND (stmt));
418 zerop = integer_zerop (cond);
419 onep = integer_onep (cond);
420 fold_undefer_overflow_warnings (((zerop || onep)
421 && !TREE_NO_WARNING (stmt)),
422 stmt,
423 WARN_STRICT_OVERFLOW_CONDITIONAL);
424 if (zerop)
425 COND_EXPR_COND (stmt) = boolean_false_node;
426 else if (onep)
427 COND_EXPR_COND (stmt) = boolean_true_node;
428 }
429 }
430 }
431
432 /* Join all the blocks in the flowgraph. */
433
434 static void
435 make_edges (void)
436 {
437 basic_block bb;
438 struct omp_region *cur_region = NULL;
439
440 /* Create an edge from entry to the first block with executable
441 statements in it. */
442 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
443
444 /* Traverse the basic block array placing edges. */
445 FOR_EACH_BB (bb)
446 {
447 tree last = last_stmt (bb);
448 bool fallthru;
449
450 if (last)
451 {
452 enum tree_code code = TREE_CODE (last);
453 switch (code)
454 {
455 case GOTO_EXPR:
456 make_goto_expr_edges (bb);
457 fallthru = false;
458 break;
459 case RETURN_EXPR:
460 make_edge (bb, EXIT_BLOCK_PTR, 0);
461 fallthru = false;
462 break;
463 case COND_EXPR:
464 make_cond_expr_edges (bb);
465 fallthru = false;
466 break;
467 case SWITCH_EXPR:
468 make_switch_expr_edges (bb);
469 fallthru = false;
470 break;
471 case RESX_EXPR:
472 make_eh_edges (last);
473 fallthru = false;
474 break;
475
476 case CALL_EXPR:
477 /* If this function receives a nonlocal goto, then we need to
478 make edges from this call site to all the nonlocal goto
479 handlers. */
480 if (tree_can_make_abnormal_goto (last))
481 make_abnormal_goto_edges (bb, true);
482
483 /* If this statement has reachable exception handlers, then
484 create abnormal edges to them. */
485 make_eh_edges (last);
486
487 /* Some calls are known not to return. */
488 fallthru = !(call_expr_flags (last) & ECF_NORETURN);
489 break;
490
491 case MODIFY_EXPR:
492 gcc_unreachable ();
493
494 case GIMPLE_MODIFY_STMT:
495 if (is_ctrl_altering_stmt (last))
496 {
497 /* A GIMPLE_MODIFY_STMT may have a CALL_EXPR on its RHS and
498 the CALL_EXPR may have an abnormal edge. Search the RHS
499 for this case and create any required edges. */
500 if (tree_can_make_abnormal_goto (last))
501 make_abnormal_goto_edges (bb, true);
502
503 make_eh_edges (last);
504 }
505 fallthru = true;
506 break;
507
508 case OMP_PARALLEL:
509 case OMP_FOR:
510 case OMP_SINGLE:
511 case OMP_MASTER:
512 case OMP_ORDERED:
513 case OMP_CRITICAL:
514 case OMP_SECTION:
515 cur_region = new_omp_region (bb, code, cur_region);
516 fallthru = true;
517 break;
518
519 case OMP_SECTIONS:
520 cur_region = new_omp_region (bb, code, cur_region);
521 fallthru = false;
522 break;
523
524 case OMP_RETURN:
525 /* In the case of an OMP_SECTION, the edge will go somewhere
526 other than the next block. This will be created later. */
527 cur_region->exit = bb;
528 fallthru = cur_region->type != OMP_SECTION;
529 cur_region = cur_region->outer;
530 break;
531
532 case OMP_CONTINUE:
533 cur_region->cont = bb;
534 switch (cur_region->type)
535 {
536 case OMP_FOR:
537 /* ??? Technically there should be a some sort of loopback
538 edge here, but it goes to a block that doesn't exist yet,
539 and without it, updating the ssa form would be a real
540 bear. Fortunately, we don't yet do ssa before expanding
541 these nodes. */
542 break;
543
544 case OMP_SECTIONS:
545 /* Wire up the edges into and out of the nested sections. */
546 /* ??? Similarly wrt loopback. */
547 {
548 struct omp_region *i;
549 for (i = cur_region->inner; i ; i = i->next)
550 {
551 gcc_assert (i->type == OMP_SECTION);
552 make_edge (cur_region->entry, i->entry, 0);
553 make_edge (i->exit, bb, EDGE_FALLTHRU);
554 }
555 }
556 break;
557
558 default:
559 gcc_unreachable ();
560 }
561 fallthru = true;
562 break;
563
564 default:
565 gcc_assert (!stmt_ends_bb_p (last));
566 fallthru = true;
567 }
568 }
569 else
570 fallthru = true;
571
572 if (fallthru)
573 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
574 }
575
576 if (root_omp_region)
577 free_omp_regions ();
578
579 /* Fold COND_EXPR_COND of each COND_EXPR. */
580 fold_cond_expr_cond ();
581 }
582
583
584 /* Create the edges for a COND_EXPR starting at block BB.
585 At this point, both clauses must contain only simple gotos. */
586
587 static void
588 make_cond_expr_edges (basic_block bb)
589 {
590 tree entry = last_stmt (bb);
591 basic_block then_bb, else_bb;
592 tree then_label, else_label;
593 edge e;
594
595 gcc_assert (entry);
596 gcc_assert (TREE_CODE (entry) == COND_EXPR);
597
598 /* Entry basic blocks for each component. */
599 then_label = GOTO_DESTINATION (COND_EXPR_THEN (entry));
600 else_label = GOTO_DESTINATION (COND_EXPR_ELSE (entry));
601 then_bb = label_to_block (then_label);
602 else_bb = label_to_block (else_label);
603
604 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
605 #ifdef USE_MAPPED_LOCATION
606 e->goto_locus = EXPR_LOCATION (COND_EXPR_THEN (entry));
607 #else
608 e->goto_locus = EXPR_LOCUS (COND_EXPR_THEN (entry));
609 #endif
610 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
611 if (e)
612 {
613 #ifdef USE_MAPPED_LOCATION
614 e->goto_locus = EXPR_LOCATION (COND_EXPR_ELSE (entry));
615 #else
616 e->goto_locus = EXPR_LOCUS (COND_EXPR_ELSE (entry));
617 #endif
618 }
619
620 /* We do not need the gotos anymore. */
621 COND_EXPR_THEN (entry) = NULL_TREE;
622 COND_EXPR_ELSE (entry) = NULL_TREE;
623 }
624
625
626 /* Called for each element in the hash table (P) as we delete the
627 edge to cases hash table.
628
629 Clear all the TREE_CHAINs to prevent problems with copying of
630 SWITCH_EXPRs and structure sharing rules, then free the hash table
631 element. */
632
633 static bool
634 edge_to_cases_cleanup (void *key ATTRIBUTE_UNUSED, void **value,
635 void *data ATTRIBUTE_UNUSED)
636 {
637 tree t, next;
638
639 for (t = (tree) *value; t; t = next)
640 {
641 next = TREE_CHAIN (t);
642 TREE_CHAIN (t) = NULL;
643 }
644
645 *value = NULL;
646 return false;
647 }
648
649 /* Start recording information mapping edges to case labels. */
650
651 void
652 start_recording_case_labels (void)
653 {
654 gcc_assert (edge_to_cases == NULL);
655 edge_to_cases = pointer_map_create ();
656 }
657
658 /* Return nonzero if we are recording information for case labels. */
659
660 static bool
661 recording_case_labels_p (void)
662 {
663 return (edge_to_cases != NULL);
664 }
665
666 /* Stop recording information mapping edges to case labels and
667 remove any information we have recorded. */
668 void
669 end_recording_case_labels (void)
670 {
671 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
672 pointer_map_destroy (edge_to_cases);
673 edge_to_cases = NULL;
674 }
675
676 /* If we are inside a {start,end}_recording_cases block, then return
677 a chain of CASE_LABEL_EXPRs from T which reference E.
678
679 Otherwise return NULL. */
680
681 static tree
682 get_cases_for_edge (edge e, tree t)
683 {
684 void **slot;
685 size_t i, n;
686 tree vec;
687
688 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
689 chains available. Return NULL so the caller can detect this case. */
690 if (!recording_case_labels_p ())
691 return NULL;
692
693 slot = pointer_map_contains (edge_to_cases, e);
694 if (slot)
695 return (tree) *slot;
696
697 /* If we did not find E in the hash table, then this must be the first
698 time we have been queried for information about E & T. Add all the
699 elements from T to the hash table then perform the query again. */
700
701 vec = SWITCH_LABELS (t);
702 n = TREE_VEC_LENGTH (vec);
703 for (i = 0; i < n; i++)
704 {
705 tree elt = TREE_VEC_ELT (vec, i);
706 tree lab = CASE_LABEL (elt);
707 basic_block label_bb = label_to_block (lab);
708 edge this_edge = find_edge (e->src, label_bb);
709
710 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
711 a new chain. */
712 slot = pointer_map_insert (edge_to_cases, this_edge);
713 TREE_CHAIN (elt) = (tree) *slot;
714 *slot = elt;
715 }
716
717 return (tree) *pointer_map_contains (edge_to_cases, e);
718 }
719
720 /* Create the edges for a SWITCH_EXPR starting at block BB.
721 At this point, the switch body has been lowered and the
722 SWITCH_LABELS filled in, so this is in effect a multi-way branch. */
723
724 static void
725 make_switch_expr_edges (basic_block bb)
726 {
727 tree entry = last_stmt (bb);
728 size_t i, n;
729 tree vec;
730
731 vec = SWITCH_LABELS (entry);
732 n = TREE_VEC_LENGTH (vec);
733
734 for (i = 0; i < n; ++i)
735 {
736 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
737 basic_block label_bb = label_to_block (lab);
738 make_edge (bb, label_bb, 0);
739 }
740 }
741
742
743 /* Return the basic block holding label DEST. */
744
745 basic_block
746 label_to_block_fn (struct function *ifun, tree dest)
747 {
748 int uid = LABEL_DECL_UID (dest);
749
750 /* We would die hard when faced by an undefined label. Emit a label to
751 the very first basic block. This will hopefully make even the dataflow
752 and undefined variable warnings quite right. */
753 if ((errorcount || sorrycount) && uid < 0)
754 {
755 block_stmt_iterator bsi =
756 bsi_start (BASIC_BLOCK (NUM_FIXED_BLOCKS));
757 tree stmt;
758
759 stmt = build1 (LABEL_EXPR, void_type_node, dest);
760 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
761 uid = LABEL_DECL_UID (dest);
762 }
763 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
764 <= (unsigned int) uid)
765 return NULL;
766 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
767 }
768
769 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
770 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
771
772 void
773 make_abnormal_goto_edges (basic_block bb, bool for_call)
774 {
775 basic_block target_bb;
776 block_stmt_iterator bsi;
777
778 FOR_EACH_BB (target_bb)
779 for (bsi = bsi_start (target_bb); !bsi_end_p (bsi); bsi_next (&bsi))
780 {
781 tree target = bsi_stmt (bsi);
782
783 if (TREE_CODE (target) != LABEL_EXPR)
784 break;
785
786 target = LABEL_EXPR_LABEL (target);
787
788 /* Make an edge to every label block that has been marked as a
789 potential target for a computed goto or a non-local goto. */
790 if ((FORCED_LABEL (target) && !for_call)
791 || (DECL_NONLOCAL (target) && for_call))
792 {
793 make_edge (bb, target_bb, EDGE_ABNORMAL);
794 break;
795 }
796 }
797 }
798
799 /* Create edges for a goto statement at block BB. */
800
801 static void
802 make_goto_expr_edges (basic_block bb)
803 {
804 block_stmt_iterator last = bsi_last (bb);
805 tree goto_t = bsi_stmt (last);
806
807 /* A simple GOTO creates normal edges. */
808 if (simple_goto_p (goto_t))
809 {
810 tree dest = GOTO_DESTINATION (goto_t);
811 edge e = make_edge (bb, label_to_block (dest), EDGE_FALLTHRU);
812 #ifdef USE_MAPPED_LOCATION
813 e->goto_locus = EXPR_LOCATION (goto_t);
814 #else
815 e->goto_locus = EXPR_LOCUS (goto_t);
816 #endif
817 bsi_remove (&last, true);
818 return;
819 }
820
821 /* A computed GOTO creates abnormal edges. */
822 make_abnormal_goto_edges (bb, false);
823 }
824
825
826 /*---------------------------------------------------------------------------
827 Flowgraph analysis
828 ---------------------------------------------------------------------------*/
829
830 /* Cleanup useless labels in basic blocks. This is something we wish
831 to do early because it allows us to group case labels before creating
832 the edges for the CFG, and it speeds up block statement iterators in
833 all passes later on.
834 We rerun this pass after CFG is created, to get rid of the labels that
835 are no longer referenced. After then we do not run it any more, since
836 (almost) no new labels should be created. */
837
838 /* A map from basic block index to the leading label of that block. */
839 static struct label_record
840 {
841 /* The label. */
842 tree label;
843
844 /* True if the label is referenced from somewhere. */
845 bool used;
846 } *label_for_bb;
847
848 /* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
849 static void
850 update_eh_label (struct eh_region *region)
851 {
852 tree old_label = get_eh_region_tree_label (region);
853 if (old_label)
854 {
855 tree new_label;
856 basic_block bb = label_to_block (old_label);
857
858 /* ??? After optimizing, there may be EH regions with labels
859 that have already been removed from the function body, so
860 there is no basic block for them. */
861 if (! bb)
862 return;
863
864 new_label = label_for_bb[bb->index].label;
865 label_for_bb[bb->index].used = true;
866 set_eh_region_tree_label (region, new_label);
867 }
868 }
869
870 /* Given LABEL return the first label in the same basic block. */
871 static tree
872 main_block_label (tree label)
873 {
874 basic_block bb = label_to_block (label);
875 tree main_label = label_for_bb[bb->index].label;
876
877 /* label_to_block possibly inserted undefined label into the chain. */
878 if (!main_label)
879 {
880 label_for_bb[bb->index].label = label;
881 main_label = label;
882 }
883
884 label_for_bb[bb->index].used = true;
885 return main_label;
886 }
887
888 /* Cleanup redundant labels. This is a three-step process:
889 1) Find the leading label for each block.
890 2) Redirect all references to labels to the leading labels.
891 3) Cleanup all useless labels. */
892
893 void
894 cleanup_dead_labels (void)
895 {
896 basic_block bb;
897 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
898
899 /* Find a suitable label for each block. We use the first user-defined
900 label if there is one, or otherwise just the first label we see. */
901 FOR_EACH_BB (bb)
902 {
903 block_stmt_iterator i;
904
905 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
906 {
907 tree label, stmt = bsi_stmt (i);
908
909 if (TREE_CODE (stmt) != LABEL_EXPR)
910 break;
911
912 label = LABEL_EXPR_LABEL (stmt);
913
914 /* If we have not yet seen a label for the current block,
915 remember this one and see if there are more labels. */
916 if (!label_for_bb[bb->index].label)
917 {
918 label_for_bb[bb->index].label = label;
919 continue;
920 }
921
922 /* If we did see a label for the current block already, but it
923 is an artificially created label, replace it if the current
924 label is a user defined label. */
925 if (!DECL_ARTIFICIAL (label)
926 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
927 {
928 label_for_bb[bb->index].label = label;
929 break;
930 }
931 }
932 }
933
934 /* Now redirect all jumps/branches to the selected label.
935 First do so for each block ending in a control statement. */
936 FOR_EACH_BB (bb)
937 {
938 tree stmt = last_stmt (bb);
939 if (!stmt)
940 continue;
941
942 switch (TREE_CODE (stmt))
943 {
944 case COND_EXPR:
945 {
946 tree true_branch, false_branch;
947
948 true_branch = COND_EXPR_THEN (stmt);
949 false_branch = COND_EXPR_ELSE (stmt);
950
951 if (true_branch)
952 GOTO_DESTINATION (true_branch)
953 = main_block_label (GOTO_DESTINATION (true_branch));
954 if (false_branch)
955 GOTO_DESTINATION (false_branch)
956 = main_block_label (GOTO_DESTINATION (false_branch));
957
958 break;
959 }
960
961 case SWITCH_EXPR:
962 {
963 size_t i;
964 tree vec = SWITCH_LABELS (stmt);
965 size_t n = TREE_VEC_LENGTH (vec);
966
967 /* Replace all destination labels. */
968 for (i = 0; i < n; ++i)
969 {
970 tree elt = TREE_VEC_ELT (vec, i);
971 tree label = main_block_label (CASE_LABEL (elt));
972 CASE_LABEL (elt) = label;
973 }
974 break;
975 }
976
977 /* We have to handle GOTO_EXPRs until they're removed, and we don't
978 remove them until after we've created the CFG edges. */
979 case GOTO_EXPR:
980 if (! computed_goto_p (stmt))
981 {
982 GOTO_DESTINATION (stmt)
983 = main_block_label (GOTO_DESTINATION (stmt));
984 break;
985 }
986
987 default:
988 break;
989 }
990 }
991
992 for_each_eh_region (update_eh_label);
993
994 /* Finally, purge dead labels. All user-defined labels and labels that
995 can be the target of non-local gotos and labels which have their
996 address taken are preserved. */
997 FOR_EACH_BB (bb)
998 {
999 block_stmt_iterator i;
1000 tree label_for_this_bb = label_for_bb[bb->index].label;
1001
1002 if (!label_for_this_bb)
1003 continue;
1004
1005 /* If the main label of the block is unused, we may still remove it. */
1006 if (!label_for_bb[bb->index].used)
1007 label_for_this_bb = NULL;
1008
1009 for (i = bsi_start (bb); !bsi_end_p (i); )
1010 {
1011 tree label, stmt = bsi_stmt (i);
1012
1013 if (TREE_CODE (stmt) != LABEL_EXPR)
1014 break;
1015
1016 label = LABEL_EXPR_LABEL (stmt);
1017
1018 if (label == label_for_this_bb
1019 || ! DECL_ARTIFICIAL (label)
1020 || DECL_NONLOCAL (label)
1021 || FORCED_LABEL (label))
1022 bsi_next (&i);
1023 else
1024 bsi_remove (&i, true);
1025 }
1026 }
1027
1028 free (label_for_bb);
1029 }
1030
1031 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1032 and scan the sorted vector of cases. Combine the ones jumping to the
1033 same label.
1034 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1035
1036 void
1037 group_case_labels (void)
1038 {
1039 basic_block bb;
1040
1041 FOR_EACH_BB (bb)
1042 {
1043 tree stmt = last_stmt (bb);
1044 if (stmt && TREE_CODE (stmt) == SWITCH_EXPR)
1045 {
1046 tree labels = SWITCH_LABELS (stmt);
1047 int old_size = TREE_VEC_LENGTH (labels);
1048 int i, j, new_size = old_size;
1049 tree default_case = TREE_VEC_ELT (labels, old_size - 1);
1050 tree default_label;
1051
1052 /* The default label is always the last case in a switch
1053 statement after gimplification. */
1054 default_label = CASE_LABEL (default_case);
1055
1056 /* Look for possible opportunities to merge cases.
1057 Ignore the last element of the label vector because it
1058 must be the default case. */
1059 i = 0;
1060 while (i < old_size - 1)
1061 {
1062 tree base_case, base_label, base_high;
1063 base_case = TREE_VEC_ELT (labels, i);
1064
1065 gcc_assert (base_case);
1066 base_label = CASE_LABEL (base_case);
1067
1068 /* Discard cases that have the same destination as the
1069 default case. */
1070 if (base_label == default_label)
1071 {
1072 TREE_VEC_ELT (labels, i) = NULL_TREE;
1073 i++;
1074 new_size--;
1075 continue;
1076 }
1077
1078 base_high = CASE_HIGH (base_case) ?
1079 CASE_HIGH (base_case) : CASE_LOW (base_case);
1080 i++;
1081 /* Try to merge case labels. Break out when we reach the end
1082 of the label vector or when we cannot merge the next case
1083 label with the current one. */
1084 while (i < old_size - 1)
1085 {
1086 tree merge_case = TREE_VEC_ELT (labels, i);
1087 tree merge_label = CASE_LABEL (merge_case);
1088 tree t = int_const_binop (PLUS_EXPR, base_high,
1089 integer_one_node, 1);
1090
1091 /* Merge the cases if they jump to the same place,
1092 and their ranges are consecutive. */
1093 if (merge_label == base_label
1094 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1095 {
1096 base_high = CASE_HIGH (merge_case) ?
1097 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1098 CASE_HIGH (base_case) = base_high;
1099 TREE_VEC_ELT (labels, i) = NULL_TREE;
1100 new_size--;
1101 i++;
1102 }
1103 else
1104 break;
1105 }
1106 }
1107
1108 /* Compress the case labels in the label vector, and adjust the
1109 length of the vector. */
1110 for (i = 0, j = 0; i < new_size; i++)
1111 {
1112 while (! TREE_VEC_ELT (labels, j))
1113 j++;
1114 TREE_VEC_ELT (labels, i) = TREE_VEC_ELT (labels, j++);
1115 }
1116 TREE_VEC_LENGTH (labels) = new_size;
1117 }
1118 }
1119 }
1120
1121 /* Checks whether we can merge block B into block A. */
1122
1123 static bool
1124 tree_can_merge_blocks_p (basic_block a, basic_block b)
1125 {
1126 tree stmt;
1127 block_stmt_iterator bsi;
1128 tree phi;
1129
1130 if (!single_succ_p (a))
1131 return false;
1132
1133 if (single_succ_edge (a)->flags & EDGE_ABNORMAL)
1134 return false;
1135
1136 if (single_succ (a) != b)
1137 return false;
1138
1139 if (!single_pred_p (b))
1140 return false;
1141
1142 if (b == EXIT_BLOCK_PTR)
1143 return false;
1144
1145 /* If A ends by a statement causing exceptions or something similar, we
1146 cannot merge the blocks. */
1147 stmt = last_stmt (a);
1148 if (stmt && stmt_ends_bb_p (stmt))
1149 return false;
1150
1151 /* Do not allow a block with only a non-local label to be merged. */
1152 if (stmt && TREE_CODE (stmt) == LABEL_EXPR
1153 && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
1154 return false;
1155
1156 /* It must be possible to eliminate all phi nodes in B. If ssa form
1157 is not up-to-date, we cannot eliminate any phis; however, if only
1158 some symbols as whole are marked for renaming, this is not a problem,
1159 as phi nodes for those symbols are irrelevant in updating anyway. */
1160 phi = phi_nodes (b);
1161 if (phi)
1162 {
1163 if (name_mappings_registered_p ())
1164 return false;
1165
1166 for (; phi; phi = PHI_CHAIN (phi))
1167 if (!is_gimple_reg (PHI_RESULT (phi))
1168 && !may_propagate_copy (PHI_RESULT (phi), PHI_ARG_DEF (phi, 0)))
1169 return false;
1170 }
1171
1172 /* Do not remove user labels. */
1173 for (bsi = bsi_start (b); !bsi_end_p (bsi); bsi_next (&bsi))
1174 {
1175 stmt = bsi_stmt (bsi);
1176 if (TREE_CODE (stmt) != LABEL_EXPR)
1177 break;
1178 if (!DECL_ARTIFICIAL (LABEL_EXPR_LABEL (stmt)))
1179 return false;
1180 }
1181
1182 /* Protect the loop latches. */
1183 if (current_loops
1184 && b->loop_father->latch == b)
1185 return false;
1186
1187 return true;
1188 }
1189
1190 /* Replaces all uses of NAME by VAL. */
1191
1192 void
1193 replace_uses_by (tree name, tree val)
1194 {
1195 imm_use_iterator imm_iter;
1196 use_operand_p use;
1197 tree stmt;
1198 edge e;
1199
1200 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1201 {
1202 if (TREE_CODE (stmt) != PHI_NODE)
1203 push_stmt_changes (&stmt);
1204
1205 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1206 {
1207 replace_exp (use, val);
1208
1209 if (TREE_CODE (stmt) == PHI_NODE)
1210 {
1211 e = PHI_ARG_EDGE (stmt, PHI_ARG_INDEX_FROM_USE (use));
1212 if (e->flags & EDGE_ABNORMAL)
1213 {
1214 /* This can only occur for virtual operands, since
1215 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1216 would prevent replacement. */
1217 gcc_assert (!is_gimple_reg (name));
1218 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1219 }
1220 }
1221 }
1222
1223 if (TREE_CODE (stmt) != PHI_NODE)
1224 {
1225 tree rhs;
1226
1227 fold_stmt_inplace (stmt);
1228 if (cfgcleanup_altered_bbs)
1229 bitmap_set_bit (cfgcleanup_altered_bbs, bb_for_stmt (stmt)->index);
1230
1231 /* FIXME. This should go in pop_stmt_changes. */
1232 rhs = get_rhs (stmt);
1233 if (TREE_CODE (rhs) == ADDR_EXPR)
1234 recompute_tree_invariant_for_addr_expr (rhs);
1235
1236 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1237
1238 pop_stmt_changes (&stmt);
1239 }
1240 }
1241
1242 gcc_assert (has_zero_uses (name));
1243
1244 /* Also update the trees stored in loop structures. */
1245 if (current_loops)
1246 {
1247 struct loop *loop;
1248 loop_iterator li;
1249
1250 FOR_EACH_LOOP (li, loop, 0)
1251 {
1252 substitute_in_loop_info (loop, name, val);
1253 }
1254 }
1255 }
1256
1257 /* Merge block B into block A. */
1258
1259 static void
1260 tree_merge_blocks (basic_block a, basic_block b)
1261 {
1262 block_stmt_iterator bsi;
1263 tree_stmt_iterator last;
1264 tree phi;
1265
1266 if (dump_file)
1267 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1268
1269 /* Remove all single-valued PHI nodes from block B of the form
1270 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1271 bsi = bsi_last (a);
1272 for (phi = phi_nodes (b); phi; phi = phi_nodes (b))
1273 {
1274 tree def = PHI_RESULT (phi), use = PHI_ARG_DEF (phi, 0);
1275 tree copy;
1276 bool may_replace_uses = may_propagate_copy (def, use);
1277
1278 /* In case we have loops to care about, do not propagate arguments of
1279 loop closed ssa phi nodes. */
1280 if (current_loops
1281 && is_gimple_reg (def)
1282 && TREE_CODE (use) == SSA_NAME
1283 && a->loop_father != b->loop_father)
1284 may_replace_uses = false;
1285
1286 if (!may_replace_uses)
1287 {
1288 gcc_assert (is_gimple_reg (def));
1289
1290 /* Note that just emitting the copies is fine -- there is no problem
1291 with ordering of phi nodes. This is because A is the single
1292 predecessor of B, therefore results of the phi nodes cannot
1293 appear as arguments of the phi nodes. */
1294 copy = build_gimple_modify_stmt (def, use);
1295 bsi_insert_after (&bsi, copy, BSI_NEW_STMT);
1296 SSA_NAME_DEF_STMT (def) = copy;
1297 remove_phi_node (phi, NULL, false);
1298 }
1299 else
1300 {
1301 replace_uses_by (def, use);
1302 remove_phi_node (phi, NULL, true);
1303 }
1304 }
1305
1306 /* Ensure that B follows A. */
1307 move_block_after (b, a);
1308
1309 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1310 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1311
1312 /* Remove labels from B and set bb_for_stmt to A for other statements. */
1313 for (bsi = bsi_start (b); !bsi_end_p (bsi);)
1314 {
1315 if (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
1316 {
1317 tree label = bsi_stmt (bsi);
1318
1319 bsi_remove (&bsi, false);
1320 /* Now that we can thread computed gotos, we might have
1321 a situation where we have a forced label in block B
1322 However, the label at the start of block B might still be
1323 used in other ways (think about the runtime checking for
1324 Fortran assigned gotos). So we can not just delete the
1325 label. Instead we move the label to the start of block A. */
1326 if (FORCED_LABEL (LABEL_EXPR_LABEL (label)))
1327 {
1328 block_stmt_iterator dest_bsi = bsi_start (a);
1329 bsi_insert_before (&dest_bsi, label, BSI_NEW_STMT);
1330 }
1331 }
1332 else
1333 {
1334 change_bb_for_stmt (bsi_stmt (bsi), a);
1335 bsi_next (&bsi);
1336 }
1337 }
1338
1339 /* Merge the chains. */
1340 last = tsi_last (bb_stmt_list (a));
1341 tsi_link_after (&last, bb_stmt_list (b), TSI_NEW_STMT);
1342 set_bb_stmt_list (b, NULL_TREE);
1343
1344 if (cfgcleanup_altered_bbs)
1345 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1346 }
1347
1348
1349 /* Return the one of two successors of BB that is not reachable by a
1350 reached by a complex edge, if there is one. Else, return BB. We use
1351 this in optimizations that use post-dominators for their heuristics,
1352 to catch the cases in C++ where function calls are involved. */
1353
1354 basic_block
1355 single_noncomplex_succ (basic_block bb)
1356 {
1357 edge e0, e1;
1358 if (EDGE_COUNT (bb->succs) != 2)
1359 return bb;
1360
1361 e0 = EDGE_SUCC (bb, 0);
1362 e1 = EDGE_SUCC (bb, 1);
1363 if (e0->flags & EDGE_COMPLEX)
1364 return e1->dest;
1365 if (e1->flags & EDGE_COMPLEX)
1366 return e0->dest;
1367
1368 return bb;
1369 }
1370
1371
1372 /* Walk the function tree removing unnecessary statements.
1373
1374 * Empty statement nodes are removed
1375
1376 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1377
1378 * Unnecessary COND_EXPRs are removed
1379
1380 * Some unnecessary BIND_EXPRs are removed
1381
1382 Clearly more work could be done. The trick is doing the analysis
1383 and removal fast enough to be a net improvement in compile times.
1384
1385 Note that when we remove a control structure such as a COND_EXPR
1386 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1387 to ensure we eliminate all the useless code. */
1388
1389 struct rus_data
1390 {
1391 tree *last_goto;
1392 bool repeat;
1393 bool may_throw;
1394 bool may_branch;
1395 bool has_label;
1396 };
1397
1398 static void remove_useless_stmts_1 (tree *, struct rus_data *);
1399
1400 static bool
1401 remove_useless_stmts_warn_notreached (tree stmt)
1402 {
1403 if (EXPR_HAS_LOCATION (stmt))
1404 {
1405 location_t loc = EXPR_LOCATION (stmt);
1406 if (LOCATION_LINE (loc) > 0)
1407 {
1408 warning (0, "%Hwill never be executed", &loc);
1409 return true;
1410 }
1411 }
1412
1413 switch (TREE_CODE (stmt))
1414 {
1415 case STATEMENT_LIST:
1416 {
1417 tree_stmt_iterator i;
1418 for (i = tsi_start (stmt); !tsi_end_p (i); tsi_next (&i))
1419 if (remove_useless_stmts_warn_notreached (tsi_stmt (i)))
1420 return true;
1421 }
1422 break;
1423
1424 case COND_EXPR:
1425 if (remove_useless_stmts_warn_notreached (COND_EXPR_COND (stmt)))
1426 return true;
1427 if (remove_useless_stmts_warn_notreached (COND_EXPR_THEN (stmt)))
1428 return true;
1429 if (remove_useless_stmts_warn_notreached (COND_EXPR_ELSE (stmt)))
1430 return true;
1431 break;
1432
1433 case TRY_FINALLY_EXPR:
1434 case TRY_CATCH_EXPR:
1435 if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 0)))
1436 return true;
1437 if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 1)))
1438 return true;
1439 break;
1440
1441 case CATCH_EXPR:
1442 return remove_useless_stmts_warn_notreached (CATCH_BODY (stmt));
1443 case EH_FILTER_EXPR:
1444 return remove_useless_stmts_warn_notreached (EH_FILTER_FAILURE (stmt));
1445 case BIND_EXPR:
1446 return remove_useless_stmts_warn_notreached (BIND_EXPR_BLOCK (stmt));
1447
1448 default:
1449 /* Not a live container. */
1450 break;
1451 }
1452
1453 return false;
1454 }
1455
1456 static void
1457 remove_useless_stmts_cond (tree *stmt_p, struct rus_data *data)
1458 {
1459 tree then_clause, else_clause, cond;
1460 bool save_has_label, then_has_label, else_has_label;
1461
1462 save_has_label = data->has_label;
1463 data->has_label = false;
1464 data->last_goto = NULL;
1465
1466 remove_useless_stmts_1 (&COND_EXPR_THEN (*stmt_p), data);
1467
1468 then_has_label = data->has_label;
1469 data->has_label = false;
1470 data->last_goto = NULL;
1471
1472 remove_useless_stmts_1 (&COND_EXPR_ELSE (*stmt_p), data);
1473
1474 else_has_label = data->has_label;
1475 data->has_label = save_has_label | then_has_label | else_has_label;
1476
1477 then_clause = COND_EXPR_THEN (*stmt_p);
1478 else_clause = COND_EXPR_ELSE (*stmt_p);
1479 cond = fold (COND_EXPR_COND (*stmt_p));
1480
1481 /* If neither arm does anything at all, we can remove the whole IF. */
1482 if (!TREE_SIDE_EFFECTS (then_clause) && !TREE_SIDE_EFFECTS (else_clause))
1483 {
1484 *stmt_p = build_empty_stmt ();
1485 data->repeat = true;
1486 }
1487
1488 /* If there are no reachable statements in an arm, then we can
1489 zap the entire conditional. */
1490 else if (integer_nonzerop (cond) && !else_has_label)
1491 {
1492 if (warn_notreached)
1493 remove_useless_stmts_warn_notreached (else_clause);
1494 *stmt_p = then_clause;
1495 data->repeat = true;
1496 }
1497 else if (integer_zerop (cond) && !then_has_label)
1498 {
1499 if (warn_notreached)
1500 remove_useless_stmts_warn_notreached (then_clause);
1501 *stmt_p = else_clause;
1502 data->repeat = true;
1503 }
1504
1505 /* Check a couple of simple things on then/else with single stmts. */
1506 else
1507 {
1508 tree then_stmt = expr_only (then_clause);
1509 tree else_stmt = expr_only (else_clause);
1510
1511 /* Notice branches to a common destination. */
1512 if (then_stmt && else_stmt
1513 && TREE_CODE (then_stmt) == GOTO_EXPR
1514 && TREE_CODE (else_stmt) == GOTO_EXPR
1515 && (GOTO_DESTINATION (then_stmt) == GOTO_DESTINATION (else_stmt)))
1516 {
1517 *stmt_p = then_stmt;
1518 data->repeat = true;
1519 }
1520
1521 /* If the THEN/ELSE clause merely assigns a value to a variable or
1522 parameter which is already known to contain that value, then
1523 remove the useless THEN/ELSE clause. */
1524 else if (TREE_CODE (cond) == VAR_DECL || TREE_CODE (cond) == PARM_DECL)
1525 {
1526 if (else_stmt
1527 && TREE_CODE (else_stmt) == GIMPLE_MODIFY_STMT
1528 && GIMPLE_STMT_OPERAND (else_stmt, 0) == cond
1529 && integer_zerop (GIMPLE_STMT_OPERAND (else_stmt, 1)))
1530 COND_EXPR_ELSE (*stmt_p) = alloc_stmt_list ();
1531 }
1532 else if ((TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
1533 && (TREE_CODE (TREE_OPERAND (cond, 0)) == VAR_DECL
1534 || TREE_CODE (TREE_OPERAND (cond, 0)) == PARM_DECL)
1535 && TREE_CONSTANT (TREE_OPERAND (cond, 1)))
1536 {
1537 tree stmt = (TREE_CODE (cond) == EQ_EXPR
1538 ? then_stmt : else_stmt);
1539 tree *location = (TREE_CODE (cond) == EQ_EXPR
1540 ? &COND_EXPR_THEN (*stmt_p)
1541 : &COND_EXPR_ELSE (*stmt_p));
1542
1543 if (stmt
1544 && TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1545 && GIMPLE_STMT_OPERAND (stmt, 0) == TREE_OPERAND (cond, 0)
1546 && GIMPLE_STMT_OPERAND (stmt, 1) == TREE_OPERAND (cond, 1))
1547 *location = alloc_stmt_list ();
1548 }
1549 }
1550
1551 /* Protect GOTOs in the arm of COND_EXPRs from being removed. They
1552 would be re-introduced during lowering. */
1553 data->last_goto = NULL;
1554 }
1555
1556
1557 static void
1558 remove_useless_stmts_tf (tree *stmt_p, struct rus_data *data)
1559 {
1560 bool save_may_branch, save_may_throw;
1561 bool this_may_branch, this_may_throw;
1562
1563 /* Collect may_branch and may_throw information for the body only. */
1564 save_may_branch = data->may_branch;
1565 save_may_throw = data->may_throw;
1566 data->may_branch = false;
1567 data->may_throw = false;
1568 data->last_goto = NULL;
1569
1570 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
1571
1572 this_may_branch = data->may_branch;
1573 this_may_throw = data->may_throw;
1574 data->may_branch |= save_may_branch;
1575 data->may_throw |= save_may_throw;
1576 data->last_goto = NULL;
1577
1578 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
1579
1580 /* If the body is empty, then we can emit the FINALLY block without
1581 the enclosing TRY_FINALLY_EXPR. */
1582 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 0)))
1583 {
1584 *stmt_p = TREE_OPERAND (*stmt_p, 1);
1585 data->repeat = true;
1586 }
1587
1588 /* If the handler is empty, then we can emit the TRY block without
1589 the enclosing TRY_FINALLY_EXPR. */
1590 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
1591 {
1592 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1593 data->repeat = true;
1594 }
1595
1596 /* If the body neither throws, nor branches, then we can safely
1597 string the TRY and FINALLY blocks together. */
1598 else if (!this_may_branch && !this_may_throw)
1599 {
1600 tree stmt = *stmt_p;
1601 *stmt_p = TREE_OPERAND (stmt, 0);
1602 append_to_statement_list (TREE_OPERAND (stmt, 1), stmt_p);
1603 data->repeat = true;
1604 }
1605 }
1606
1607
1608 static void
1609 remove_useless_stmts_tc (tree *stmt_p, struct rus_data *data)
1610 {
1611 bool save_may_throw, this_may_throw;
1612 tree_stmt_iterator i;
1613 tree stmt;
1614
1615 /* Collect may_throw information for the body only. */
1616 save_may_throw = data->may_throw;
1617 data->may_throw = false;
1618 data->last_goto = NULL;
1619
1620 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
1621
1622 this_may_throw = data->may_throw;
1623 data->may_throw = save_may_throw;
1624
1625 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1626 if (!this_may_throw)
1627 {
1628 if (warn_notreached)
1629 remove_useless_stmts_warn_notreached (TREE_OPERAND (*stmt_p, 1));
1630 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1631 data->repeat = true;
1632 return;
1633 }
1634
1635 /* Process the catch clause specially. We may be able to tell that
1636 no exceptions propagate past this point. */
1637
1638 this_may_throw = true;
1639 i = tsi_start (TREE_OPERAND (*stmt_p, 1));
1640 stmt = tsi_stmt (i);
1641 data->last_goto = NULL;
1642
1643 switch (TREE_CODE (stmt))
1644 {
1645 case CATCH_EXPR:
1646 for (; !tsi_end_p (i); tsi_next (&i))
1647 {
1648 stmt = tsi_stmt (i);
1649 /* If we catch all exceptions, then the body does not
1650 propagate exceptions past this point. */
1651 if (CATCH_TYPES (stmt) == NULL)
1652 this_may_throw = false;
1653 data->last_goto = NULL;
1654 remove_useless_stmts_1 (&CATCH_BODY (stmt), data);
1655 }
1656 break;
1657
1658 case EH_FILTER_EXPR:
1659 if (EH_FILTER_MUST_NOT_THROW (stmt))
1660 this_may_throw = false;
1661 else if (EH_FILTER_TYPES (stmt) == NULL)
1662 this_may_throw = false;
1663 remove_useless_stmts_1 (&EH_FILTER_FAILURE (stmt), data);
1664 break;
1665
1666 default:
1667 /* Otherwise this is a cleanup. */
1668 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
1669
1670 /* If the cleanup is empty, then we can emit the TRY block without
1671 the enclosing TRY_CATCH_EXPR. */
1672 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
1673 {
1674 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1675 data->repeat = true;
1676 }
1677 break;
1678 }
1679 data->may_throw |= this_may_throw;
1680 }
1681
1682
1683 static void
1684 remove_useless_stmts_bind (tree *stmt_p, struct rus_data *data)
1685 {
1686 tree block;
1687
1688 /* First remove anything underneath the BIND_EXPR. */
1689 remove_useless_stmts_1 (&BIND_EXPR_BODY (*stmt_p), data);
1690
1691 /* If the BIND_EXPR has no variables, then we can pull everything
1692 up one level and remove the BIND_EXPR, unless this is the toplevel
1693 BIND_EXPR for the current function or an inlined function.
1694
1695 When this situation occurs we will want to apply this
1696 optimization again. */
1697 block = BIND_EXPR_BLOCK (*stmt_p);
1698 if (BIND_EXPR_VARS (*stmt_p) == NULL_TREE
1699 && *stmt_p != DECL_SAVED_TREE (current_function_decl)
1700 && (! block
1701 || ! BLOCK_ABSTRACT_ORIGIN (block)
1702 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
1703 != FUNCTION_DECL)))
1704 {
1705 *stmt_p = BIND_EXPR_BODY (*stmt_p);
1706 data->repeat = true;
1707 }
1708 }
1709
1710
1711 static void
1712 remove_useless_stmts_goto (tree *stmt_p, struct rus_data *data)
1713 {
1714 tree dest = GOTO_DESTINATION (*stmt_p);
1715
1716 data->may_branch = true;
1717 data->last_goto = NULL;
1718
1719 /* Record the last goto expr, so that we can delete it if unnecessary. */
1720 if (TREE_CODE (dest) == LABEL_DECL)
1721 data->last_goto = stmt_p;
1722 }
1723
1724
1725 static void
1726 remove_useless_stmts_label (tree *stmt_p, struct rus_data *data)
1727 {
1728 tree label = LABEL_EXPR_LABEL (*stmt_p);
1729
1730 data->has_label = true;
1731
1732 /* We do want to jump across non-local label receiver code. */
1733 if (DECL_NONLOCAL (label))
1734 data->last_goto = NULL;
1735
1736 else if (data->last_goto && GOTO_DESTINATION (*data->last_goto) == label)
1737 {
1738 *data->last_goto = build_empty_stmt ();
1739 data->repeat = true;
1740 }
1741
1742 /* ??? Add something here to delete unused labels. */
1743 }
1744
1745
1746 /* If the function is "const" or "pure", then clear TREE_SIDE_EFFECTS on its
1747 decl. This allows us to eliminate redundant or useless
1748 calls to "const" functions.
1749
1750 Gimplifier already does the same operation, but we may notice functions
1751 being const and pure once their calls has been gimplified, so we need
1752 to update the flag. */
1753
1754 static void
1755 update_call_expr_flags (tree call)
1756 {
1757 tree decl = get_callee_fndecl (call);
1758 if (!decl)
1759 return;
1760 if (call_expr_flags (call) & (ECF_CONST | ECF_PURE))
1761 TREE_SIDE_EFFECTS (call) = 0;
1762 if (TREE_NOTHROW (decl))
1763 TREE_NOTHROW (call) = 1;
1764 }
1765
1766
1767 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1768
1769 void
1770 notice_special_calls (tree t)
1771 {
1772 int flags = call_expr_flags (t);
1773
1774 if (flags & ECF_MAY_BE_ALLOCA)
1775 current_function_calls_alloca = true;
1776 if (flags & ECF_RETURNS_TWICE)
1777 current_function_calls_setjmp = true;
1778 }
1779
1780
1781 /* Clear flags set by notice_special_calls. Used by dead code removal
1782 to update the flags. */
1783
1784 void
1785 clear_special_calls (void)
1786 {
1787 current_function_calls_alloca = false;
1788 current_function_calls_setjmp = false;
1789 }
1790
1791
1792 static void
1793 remove_useless_stmts_1 (tree *tp, struct rus_data *data)
1794 {
1795 tree t = *tp, op;
1796
1797 switch (TREE_CODE (t))
1798 {
1799 case COND_EXPR:
1800 remove_useless_stmts_cond (tp, data);
1801 break;
1802
1803 case TRY_FINALLY_EXPR:
1804 remove_useless_stmts_tf (tp, data);
1805 break;
1806
1807 case TRY_CATCH_EXPR:
1808 remove_useless_stmts_tc (tp, data);
1809 break;
1810
1811 case BIND_EXPR:
1812 remove_useless_stmts_bind (tp, data);
1813 break;
1814
1815 case GOTO_EXPR:
1816 remove_useless_stmts_goto (tp, data);
1817 break;
1818
1819 case LABEL_EXPR:
1820 remove_useless_stmts_label (tp, data);
1821 break;
1822
1823 case RETURN_EXPR:
1824 fold_stmt (tp);
1825 data->last_goto = NULL;
1826 data->may_branch = true;
1827 break;
1828
1829 case CALL_EXPR:
1830 fold_stmt (tp);
1831 data->last_goto = NULL;
1832 notice_special_calls (t);
1833 update_call_expr_flags (t);
1834 if (tree_could_throw_p (t))
1835 data->may_throw = true;
1836 break;
1837
1838 case MODIFY_EXPR:
1839 gcc_unreachable ();
1840
1841 case GIMPLE_MODIFY_STMT:
1842 data->last_goto = NULL;
1843 fold_stmt (tp);
1844 op = get_call_expr_in (t);
1845 if (op)
1846 {
1847 update_call_expr_flags (op);
1848 notice_special_calls (op);
1849 }
1850 if (tree_could_throw_p (t))
1851 data->may_throw = true;
1852 break;
1853
1854 case STATEMENT_LIST:
1855 {
1856 tree_stmt_iterator i = tsi_start (t);
1857 while (!tsi_end_p (i))
1858 {
1859 t = tsi_stmt (i);
1860 if (IS_EMPTY_STMT (t))
1861 {
1862 tsi_delink (&i);
1863 continue;
1864 }
1865
1866 remove_useless_stmts_1 (tsi_stmt_ptr (i), data);
1867
1868 t = tsi_stmt (i);
1869 if (TREE_CODE (t) == STATEMENT_LIST)
1870 {
1871 tsi_link_before (&i, t, TSI_SAME_STMT);
1872 tsi_delink (&i);
1873 }
1874 else
1875 tsi_next (&i);
1876 }
1877 }
1878 break;
1879 case ASM_EXPR:
1880 fold_stmt (tp);
1881 data->last_goto = NULL;
1882 break;
1883
1884 default:
1885 data->last_goto = NULL;
1886 break;
1887 }
1888 }
1889
1890 static unsigned int
1891 remove_useless_stmts (void)
1892 {
1893 struct rus_data data;
1894
1895 clear_special_calls ();
1896
1897 do
1898 {
1899 memset (&data, 0, sizeof (data));
1900 remove_useless_stmts_1 (&DECL_SAVED_TREE (current_function_decl), &data);
1901 }
1902 while (data.repeat);
1903 return 0;
1904 }
1905
1906
1907 struct tree_opt_pass pass_remove_useless_stmts =
1908 {
1909 "useless", /* name */
1910 NULL, /* gate */
1911 remove_useless_stmts, /* execute */
1912 NULL, /* sub */
1913 NULL, /* next */
1914 0, /* static_pass_number */
1915 0, /* tv_id */
1916 PROP_gimple_any, /* properties_required */
1917 0, /* properties_provided */
1918 0, /* properties_destroyed */
1919 0, /* todo_flags_start */
1920 TODO_dump_func, /* todo_flags_finish */
1921 0 /* letter */
1922 };
1923
1924 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1925
1926 static void
1927 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1928 {
1929 tree phi;
1930
1931 /* Since this block is no longer reachable, we can just delete all
1932 of its PHI nodes. */
1933 phi = phi_nodes (bb);
1934 while (phi)
1935 {
1936 tree next = PHI_CHAIN (phi);
1937 remove_phi_node (phi, NULL_TREE, true);
1938 phi = next;
1939 }
1940
1941 /* Remove edges to BB's successors. */
1942 while (EDGE_COUNT (bb->succs) > 0)
1943 remove_edge (EDGE_SUCC (bb, 0));
1944 }
1945
1946
1947 /* Remove statements of basic block BB. */
1948
1949 static void
1950 remove_bb (basic_block bb)
1951 {
1952 block_stmt_iterator i;
1953 #ifdef USE_MAPPED_LOCATION
1954 source_location loc = UNKNOWN_LOCATION;
1955 #else
1956 source_locus loc = 0;
1957 #endif
1958
1959 if (dump_file)
1960 {
1961 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1962 if (dump_flags & TDF_DETAILS)
1963 {
1964 dump_bb (bb, dump_file, 0);
1965 fprintf (dump_file, "\n");
1966 }
1967 }
1968
1969 if (current_loops)
1970 {
1971 struct loop *loop = bb->loop_father;
1972
1973 /* If a loop gets removed, clean up the information associated
1974 with it. */
1975 if (loop->latch == bb
1976 || loop->header == bb)
1977 free_numbers_of_iterations_estimates_loop (loop);
1978 }
1979
1980 /* Remove all the instructions in the block. */
1981 if (bb_stmt_list (bb) != NULL_TREE)
1982 {
1983 for (i = bsi_start (bb); !bsi_end_p (i);)
1984 {
1985 tree stmt = bsi_stmt (i);
1986 if (TREE_CODE (stmt) == LABEL_EXPR
1987 && (FORCED_LABEL (LABEL_EXPR_LABEL (stmt))
1988 || DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt))))
1989 {
1990 basic_block new_bb;
1991 block_stmt_iterator new_bsi;
1992
1993 /* A non-reachable non-local label may still be referenced.
1994 But it no longer needs to carry the extra semantics of
1995 non-locality. */
1996 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
1997 {
1998 DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)) = 0;
1999 FORCED_LABEL (LABEL_EXPR_LABEL (stmt)) = 1;
2000 }
2001
2002 new_bb = bb->prev_bb;
2003 new_bsi = bsi_start (new_bb);
2004 bsi_remove (&i, false);
2005 bsi_insert_before (&new_bsi, stmt, BSI_NEW_STMT);
2006 }
2007 else
2008 {
2009 /* Release SSA definitions if we are in SSA. Note that we
2010 may be called when not in SSA. For example,
2011 final_cleanup calls this function via
2012 cleanup_tree_cfg. */
2013 if (gimple_in_ssa_p (cfun))
2014 release_defs (stmt);
2015
2016 bsi_remove (&i, true);
2017 }
2018
2019 /* Don't warn for removed gotos. Gotos are often removed due to
2020 jump threading, thus resulting in bogus warnings. Not great,
2021 since this way we lose warnings for gotos in the original
2022 program that are indeed unreachable. */
2023 if (TREE_CODE (stmt) != GOTO_EXPR && EXPR_HAS_LOCATION (stmt) && !loc)
2024 {
2025 #ifdef USE_MAPPED_LOCATION
2026 if (EXPR_HAS_LOCATION (stmt))
2027 loc = EXPR_LOCATION (stmt);
2028 #else
2029 source_locus t;
2030 t = EXPR_LOCUS (stmt);
2031 if (t && LOCATION_LINE (*t) > 0)
2032 loc = t;
2033 #endif
2034 }
2035 }
2036 }
2037
2038 /* If requested, give a warning that the first statement in the
2039 block is unreachable. We walk statements backwards in the
2040 loop above, so the last statement we process is the first statement
2041 in the block. */
2042 #ifdef USE_MAPPED_LOCATION
2043 if (loc > BUILTINS_LOCATION)
2044 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
2045 #else
2046 if (loc)
2047 warning (OPT_Wunreachable_code, "%Hwill never be executed", loc);
2048 #endif
2049
2050 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2051 bb->il.tree = NULL;
2052 }
2053
2054
2055 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2056 predicate VAL, return the edge that will be taken out of the block.
2057 If VAL does not match a unique edge, NULL is returned. */
2058
2059 edge
2060 find_taken_edge (basic_block bb, tree val)
2061 {
2062 tree stmt;
2063
2064 stmt = last_stmt (bb);
2065
2066 gcc_assert (stmt);
2067 gcc_assert (is_ctrl_stmt (stmt));
2068 gcc_assert (val);
2069
2070 if (! is_gimple_min_invariant (val))
2071 return NULL;
2072
2073 if (TREE_CODE (stmt) == COND_EXPR)
2074 return find_taken_edge_cond_expr (bb, val);
2075
2076 if (TREE_CODE (stmt) == SWITCH_EXPR)
2077 return find_taken_edge_switch_expr (bb, val);
2078
2079 if (computed_goto_p (stmt))
2080 {
2081 /* Only optimize if the argument is a label, if the argument is
2082 not a label then we can not construct a proper CFG.
2083
2084 It may be the case that we only need to allow the LABEL_REF to
2085 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2086 appear inside a LABEL_EXPR just to be safe. */
2087 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2088 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2089 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2090 return NULL;
2091 }
2092
2093 gcc_unreachable ();
2094 }
2095
2096 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2097 statement, determine which of the outgoing edges will be taken out of the
2098 block. Return NULL if either edge may be taken. */
2099
2100 static edge
2101 find_taken_edge_computed_goto (basic_block bb, tree val)
2102 {
2103 basic_block dest;
2104 edge e = NULL;
2105
2106 dest = label_to_block (val);
2107 if (dest)
2108 {
2109 e = find_edge (bb, dest);
2110 gcc_assert (e != NULL);
2111 }
2112
2113 return e;
2114 }
2115
2116 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2117 statement, determine which of the two edges will be taken out of the
2118 block. Return NULL if either edge may be taken. */
2119
2120 static edge
2121 find_taken_edge_cond_expr (basic_block bb, tree val)
2122 {
2123 edge true_edge, false_edge;
2124
2125 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2126
2127 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2128 return (integer_zerop (val) ? false_edge : true_edge);
2129 }
2130
2131 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2132 statement, determine which edge will be taken out of the block. Return
2133 NULL if any edge may be taken. */
2134
2135 static edge
2136 find_taken_edge_switch_expr (basic_block bb, tree val)
2137 {
2138 tree switch_expr, taken_case;
2139 basic_block dest_bb;
2140 edge e;
2141
2142 switch_expr = last_stmt (bb);
2143 taken_case = find_case_label_for_value (switch_expr, val);
2144 dest_bb = label_to_block (CASE_LABEL (taken_case));
2145
2146 e = find_edge (bb, dest_bb);
2147 gcc_assert (e);
2148 return e;
2149 }
2150
2151
2152 /* Return the CASE_LABEL_EXPR that SWITCH_EXPR will take for VAL.
2153 We can make optimal use here of the fact that the case labels are
2154 sorted: We can do a binary search for a case matching VAL. */
2155
2156 static tree
2157 find_case_label_for_value (tree switch_expr, tree val)
2158 {
2159 tree vec = SWITCH_LABELS (switch_expr);
2160 size_t low, high, n = TREE_VEC_LENGTH (vec);
2161 tree default_case = TREE_VEC_ELT (vec, n - 1);
2162
2163 for (low = -1, high = n - 1; high - low > 1; )
2164 {
2165 size_t i = (high + low) / 2;
2166 tree t = TREE_VEC_ELT (vec, i);
2167 int cmp;
2168
2169 /* Cache the result of comparing CASE_LOW and val. */
2170 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2171
2172 if (cmp > 0)
2173 high = i;
2174 else
2175 low = i;
2176
2177 if (CASE_HIGH (t) == NULL)
2178 {
2179 /* A singe-valued case label. */
2180 if (cmp == 0)
2181 return t;
2182 }
2183 else
2184 {
2185 /* A case range. We can only handle integer ranges. */
2186 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2187 return t;
2188 }
2189 }
2190
2191 return default_case;
2192 }
2193
2194
2195
2196
2197 /*---------------------------------------------------------------------------
2198 Debugging functions
2199 ---------------------------------------------------------------------------*/
2200
2201 /* Dump tree-specific information of block BB to file OUTF. */
2202
2203 void
2204 tree_dump_bb (basic_block bb, FILE *outf, int indent)
2205 {
2206 dump_generic_bb (outf, bb, indent, TDF_VOPS|TDF_MEMSYMS);
2207 }
2208
2209
2210 /* Dump a basic block on stderr. */
2211
2212 void
2213 debug_tree_bb (basic_block bb)
2214 {
2215 dump_bb (bb, stderr, 0);
2216 }
2217
2218
2219 /* Dump basic block with index N on stderr. */
2220
2221 basic_block
2222 debug_tree_bb_n (int n)
2223 {
2224 debug_tree_bb (BASIC_BLOCK (n));
2225 return BASIC_BLOCK (n);
2226 }
2227
2228
2229 /* Dump the CFG on stderr.
2230
2231 FLAGS are the same used by the tree dumping functions
2232 (see TDF_* in tree-pass.h). */
2233
2234 void
2235 debug_tree_cfg (int flags)
2236 {
2237 dump_tree_cfg (stderr, flags);
2238 }
2239
2240
2241 /* Dump the program showing basic block boundaries on the given FILE.
2242
2243 FLAGS are the same used by the tree dumping functions (see TDF_* in
2244 tree.h). */
2245
2246 void
2247 dump_tree_cfg (FILE *file, int flags)
2248 {
2249 if (flags & TDF_DETAILS)
2250 {
2251 const char *funcname
2252 = lang_hooks.decl_printable_name (current_function_decl, 2);
2253
2254 fputc ('\n', file);
2255 fprintf (file, ";; Function %s\n\n", funcname);
2256 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2257 n_basic_blocks, n_edges, last_basic_block);
2258
2259 brief_dump_cfg (file);
2260 fprintf (file, "\n");
2261 }
2262
2263 if (flags & TDF_STATS)
2264 dump_cfg_stats (file);
2265
2266 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2267 }
2268
2269
2270 /* Dump CFG statistics on FILE. */
2271
2272 void
2273 dump_cfg_stats (FILE *file)
2274 {
2275 static long max_num_merged_labels = 0;
2276 unsigned long size, total = 0;
2277 long num_edges;
2278 basic_block bb;
2279 const char * const fmt_str = "%-30s%-13s%12s\n";
2280 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2281 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2282 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2283 const char *funcname
2284 = lang_hooks.decl_printable_name (current_function_decl, 2);
2285
2286
2287 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2288
2289 fprintf (file, "---------------------------------------------------------\n");
2290 fprintf (file, fmt_str, "", " Number of ", "Memory");
2291 fprintf (file, fmt_str, "", " instances ", "used ");
2292 fprintf (file, "---------------------------------------------------------\n");
2293
2294 size = n_basic_blocks * sizeof (struct basic_block_def);
2295 total += size;
2296 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2297 SCALE (size), LABEL (size));
2298
2299 num_edges = 0;
2300 FOR_EACH_BB (bb)
2301 num_edges += EDGE_COUNT (bb->succs);
2302 size = num_edges * sizeof (struct edge_def);
2303 total += size;
2304 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2305
2306 fprintf (file, "---------------------------------------------------------\n");
2307 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2308 LABEL (total));
2309 fprintf (file, "---------------------------------------------------------\n");
2310 fprintf (file, "\n");
2311
2312 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2313 max_num_merged_labels = cfg_stats.num_merged_labels;
2314
2315 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2316 cfg_stats.num_merged_labels, max_num_merged_labels);
2317
2318 fprintf (file, "\n");
2319 }
2320
2321
2322 /* Dump CFG statistics on stderr. Keep extern so that it's always
2323 linked in the final executable. */
2324
2325 void
2326 debug_cfg_stats (void)
2327 {
2328 dump_cfg_stats (stderr);
2329 }
2330
2331
2332 /* Dump the flowgraph to a .vcg FILE. */
2333
2334 static void
2335 tree_cfg2vcg (FILE *file)
2336 {
2337 edge e;
2338 edge_iterator ei;
2339 basic_block bb;
2340 const char *funcname
2341 = lang_hooks.decl_printable_name (current_function_decl, 2);
2342
2343 /* Write the file header. */
2344 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2345 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2346 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2347
2348 /* Write blocks and edges. */
2349 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2350 {
2351 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2352 e->dest->index);
2353
2354 if (e->flags & EDGE_FAKE)
2355 fprintf (file, " linestyle: dotted priority: 10");
2356 else
2357 fprintf (file, " linestyle: solid priority: 100");
2358
2359 fprintf (file, " }\n");
2360 }
2361 fputc ('\n', file);
2362
2363 FOR_EACH_BB (bb)
2364 {
2365 enum tree_code head_code, end_code;
2366 const char *head_name, *end_name;
2367 int head_line = 0;
2368 int end_line = 0;
2369 tree first = first_stmt (bb);
2370 tree last = last_stmt (bb);
2371
2372 if (first)
2373 {
2374 head_code = TREE_CODE (first);
2375 head_name = tree_code_name[head_code];
2376 head_line = get_lineno (first);
2377 }
2378 else
2379 head_name = "no-statement";
2380
2381 if (last)
2382 {
2383 end_code = TREE_CODE (last);
2384 end_name = tree_code_name[end_code];
2385 end_line = get_lineno (last);
2386 }
2387 else
2388 end_name = "no-statement";
2389
2390 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2391 bb->index, bb->index, head_name, head_line, end_name,
2392 end_line);
2393
2394 FOR_EACH_EDGE (e, ei, bb->succs)
2395 {
2396 if (e->dest == EXIT_BLOCK_PTR)
2397 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2398 else
2399 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2400
2401 if (e->flags & EDGE_FAKE)
2402 fprintf (file, " priority: 10 linestyle: dotted");
2403 else
2404 fprintf (file, " priority: 100 linestyle: solid");
2405
2406 fprintf (file, " }\n");
2407 }
2408
2409 if (bb->next_bb != EXIT_BLOCK_PTR)
2410 fputc ('\n', file);
2411 }
2412
2413 fputs ("}\n\n", file);
2414 }
2415
2416
2417
2418 /*---------------------------------------------------------------------------
2419 Miscellaneous helpers
2420 ---------------------------------------------------------------------------*/
2421
2422 /* Return true if T represents a stmt that always transfers control. */
2423
2424 bool
2425 is_ctrl_stmt (tree t)
2426 {
2427 return (TREE_CODE (t) == COND_EXPR
2428 || TREE_CODE (t) == SWITCH_EXPR
2429 || TREE_CODE (t) == GOTO_EXPR
2430 || TREE_CODE (t) == RETURN_EXPR
2431 || TREE_CODE (t) == RESX_EXPR);
2432 }
2433
2434
2435 /* Return true if T is a statement that may alter the flow of control
2436 (e.g., a call to a non-returning function). */
2437
2438 bool
2439 is_ctrl_altering_stmt (tree t)
2440 {
2441 tree call;
2442
2443 gcc_assert (t);
2444 call = get_call_expr_in (t);
2445 if (call)
2446 {
2447 /* A non-pure/const CALL_EXPR alters flow control if the current
2448 function has nonlocal labels. */
2449 if (TREE_SIDE_EFFECTS (call) && current_function_has_nonlocal_label)
2450 return true;
2451
2452 /* A CALL_EXPR also alters control flow if it does not return. */
2453 if (call_expr_flags (call) & ECF_NORETURN)
2454 return true;
2455 }
2456
2457 /* OpenMP directives alter control flow. */
2458 if (OMP_DIRECTIVE_P (t))
2459 return true;
2460
2461 /* If a statement can throw, it alters control flow. */
2462 return tree_can_throw_internal (t);
2463 }
2464
2465
2466 /* Return true if T is a computed goto. */
2467
2468 bool
2469 computed_goto_p (tree t)
2470 {
2471 return (TREE_CODE (t) == GOTO_EXPR
2472 && TREE_CODE (GOTO_DESTINATION (t)) != LABEL_DECL);
2473 }
2474
2475
2476 /* Return true if T is a simple local goto. */
2477
2478 bool
2479 simple_goto_p (tree t)
2480 {
2481 return (TREE_CODE (t) == GOTO_EXPR
2482 && TREE_CODE (GOTO_DESTINATION (t)) == LABEL_DECL);
2483 }
2484
2485
2486 /* Return true if T can make an abnormal transfer of control flow.
2487 Transfers of control flow associated with EH are excluded. */
2488
2489 bool
2490 tree_can_make_abnormal_goto (tree t)
2491 {
2492 if (computed_goto_p (t))
2493 return true;
2494 if (TREE_CODE (t) == GIMPLE_MODIFY_STMT)
2495 t = GIMPLE_STMT_OPERAND (t, 1);
2496 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2497 t = TREE_OPERAND (t, 0);
2498 if (TREE_CODE (t) == CALL_EXPR)
2499 return TREE_SIDE_EFFECTS (t) && current_function_has_nonlocal_label;
2500 return false;
2501 }
2502
2503
2504 /* Return true if T should start a new basic block. PREV_T is the
2505 statement preceding T. It is used when T is a label or a case label.
2506 Labels should only start a new basic block if their previous statement
2507 wasn't a label. Otherwise, sequence of labels would generate
2508 unnecessary basic blocks that only contain a single label. */
2509
2510 static inline bool
2511 stmt_starts_bb_p (tree t, tree prev_t)
2512 {
2513 if (t == NULL_TREE)
2514 return false;
2515
2516 /* LABEL_EXPRs start a new basic block only if the preceding
2517 statement wasn't a label of the same type. This prevents the
2518 creation of consecutive blocks that have nothing but a single
2519 label. */
2520 if (TREE_CODE (t) == LABEL_EXPR)
2521 {
2522 /* Nonlocal and computed GOTO targets always start a new block. */
2523 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (t))
2524 || FORCED_LABEL (LABEL_EXPR_LABEL (t)))
2525 return true;
2526
2527 if (prev_t && TREE_CODE (prev_t) == LABEL_EXPR)
2528 {
2529 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (prev_t)))
2530 return true;
2531
2532 cfg_stats.num_merged_labels++;
2533 return false;
2534 }
2535 else
2536 return true;
2537 }
2538
2539 return false;
2540 }
2541
2542
2543 /* Return true if T should end a basic block. */
2544
2545 bool
2546 stmt_ends_bb_p (tree t)
2547 {
2548 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2549 }
2550
2551 /* Remove block annotations and other datastructures. */
2552
2553 void
2554 delete_tree_cfg_annotations (void)
2555 {
2556 basic_block bb;
2557 block_stmt_iterator bsi;
2558
2559 /* Remove annotations from every tree in the function. */
2560 FOR_EACH_BB (bb)
2561 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
2562 {
2563 tree stmt = bsi_stmt (bsi);
2564 ggc_free (stmt->base.ann);
2565 stmt->base.ann = NULL;
2566 }
2567 label_to_block_map = NULL;
2568 }
2569
2570
2571 /* Return the first statement in basic block BB. */
2572
2573 tree
2574 first_stmt (basic_block bb)
2575 {
2576 block_stmt_iterator i = bsi_start (bb);
2577 return !bsi_end_p (i) ? bsi_stmt (i) : NULL_TREE;
2578 }
2579
2580
2581 /* Return the last statement in basic block BB. */
2582
2583 tree
2584 last_stmt (basic_block bb)
2585 {
2586 block_stmt_iterator b = bsi_last (bb);
2587 return !bsi_end_p (b) ? bsi_stmt (b) : NULL_TREE;
2588 }
2589
2590
2591 /* Return the last statement of an otherwise empty block. Return NULL
2592 if the block is totally empty, or if it contains more than one
2593 statement. */
2594
2595 tree
2596 last_and_only_stmt (basic_block bb)
2597 {
2598 block_stmt_iterator i = bsi_last (bb);
2599 tree last, prev;
2600
2601 if (bsi_end_p (i))
2602 return NULL_TREE;
2603
2604 last = bsi_stmt (i);
2605 bsi_prev (&i);
2606 if (bsi_end_p (i))
2607 return last;
2608
2609 /* Empty statements should no longer appear in the instruction stream.
2610 Everything that might have appeared before should be deleted by
2611 remove_useless_stmts, and the optimizers should just bsi_remove
2612 instead of smashing with build_empty_stmt.
2613
2614 Thus the only thing that should appear here in a block containing
2615 one executable statement is a label. */
2616 prev = bsi_stmt (i);
2617 if (TREE_CODE (prev) == LABEL_EXPR)
2618 return last;
2619 else
2620 return NULL_TREE;
2621 }
2622
2623
2624 /* Mark BB as the basic block holding statement T. */
2625
2626 void
2627 set_bb_for_stmt (tree t, basic_block bb)
2628 {
2629 if (TREE_CODE (t) == PHI_NODE)
2630 PHI_BB (t) = bb;
2631 else if (TREE_CODE (t) == STATEMENT_LIST)
2632 {
2633 tree_stmt_iterator i;
2634 for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
2635 set_bb_for_stmt (tsi_stmt (i), bb);
2636 }
2637 else
2638 {
2639 stmt_ann_t ann = get_stmt_ann (t);
2640 ann->bb = bb;
2641
2642 /* If the statement is a label, add the label to block-to-labels map
2643 so that we can speed up edge creation for GOTO_EXPRs. */
2644 if (TREE_CODE (t) == LABEL_EXPR)
2645 {
2646 int uid;
2647
2648 t = LABEL_EXPR_LABEL (t);
2649 uid = LABEL_DECL_UID (t);
2650 if (uid == -1)
2651 {
2652 unsigned old_len = VEC_length (basic_block, label_to_block_map);
2653 LABEL_DECL_UID (t) = uid = cfun->last_label_uid++;
2654 if (old_len <= (unsigned) uid)
2655 {
2656 unsigned new_len = 3 * uid / 2;
2657
2658 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
2659 new_len);
2660 }
2661 }
2662 else
2663 /* We're moving an existing label. Make sure that we've
2664 removed it from the old block. */
2665 gcc_assert (!bb
2666 || !VEC_index (basic_block, label_to_block_map, uid));
2667 VEC_replace (basic_block, label_to_block_map, uid, bb);
2668 }
2669 }
2670 }
2671
2672 /* Faster version of set_bb_for_stmt that assume that statement is being moved
2673 from one basic block to another.
2674 For BB splitting we can run into quadratic case, so performance is quite
2675 important and knowing that the tables are big enough, change_bb_for_stmt
2676 can inline as leaf function. */
2677 static inline void
2678 change_bb_for_stmt (tree t, basic_block bb)
2679 {
2680 get_stmt_ann (t)->bb = bb;
2681 if (TREE_CODE (t) == LABEL_EXPR)
2682 VEC_replace (basic_block, label_to_block_map,
2683 LABEL_DECL_UID (LABEL_EXPR_LABEL (t)), bb);
2684 }
2685
2686 /* Finds iterator for STMT. */
2687
2688 extern block_stmt_iterator
2689 bsi_for_stmt (tree stmt)
2690 {
2691 block_stmt_iterator bsi;
2692
2693 for (bsi = bsi_start (bb_for_stmt (stmt)); !bsi_end_p (bsi); bsi_next (&bsi))
2694 if (bsi_stmt (bsi) == stmt)
2695 return bsi;
2696
2697 gcc_unreachable ();
2698 }
2699
2700 /* Mark statement T as modified, and update it. */
2701 static inline void
2702 update_modified_stmts (tree t)
2703 {
2704 if (!ssa_operands_active ())
2705 return;
2706 if (TREE_CODE (t) == STATEMENT_LIST)
2707 {
2708 tree_stmt_iterator i;
2709 tree stmt;
2710 for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
2711 {
2712 stmt = tsi_stmt (i);
2713 update_stmt_if_modified (stmt);
2714 }
2715 }
2716 else
2717 update_stmt_if_modified (t);
2718 }
2719
2720 /* Insert statement (or statement list) T before the statement
2721 pointed-to by iterator I. M specifies how to update iterator I
2722 after insertion (see enum bsi_iterator_update). */
2723
2724 void
2725 bsi_insert_before (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
2726 {
2727 set_bb_for_stmt (t, i->bb);
2728 update_modified_stmts (t);
2729 tsi_link_before (&i->tsi, t, m);
2730 }
2731
2732
2733 /* Insert statement (or statement list) T after the statement
2734 pointed-to by iterator I. M specifies how to update iterator I
2735 after insertion (see enum bsi_iterator_update). */
2736
2737 void
2738 bsi_insert_after (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
2739 {
2740 set_bb_for_stmt (t, i->bb);
2741 update_modified_stmts (t);
2742 tsi_link_after (&i->tsi, t, m);
2743 }
2744
2745
2746 /* Remove the statement pointed to by iterator I. The iterator is updated
2747 to the next statement.
2748
2749 When REMOVE_EH_INFO is true we remove the statement pointed to by
2750 iterator I from the EH tables. Otherwise we do not modify the EH
2751 tables.
2752
2753 Generally, REMOVE_EH_INFO should be true when the statement is going to
2754 be removed from the IL and not reinserted elsewhere. */
2755
2756 void
2757 bsi_remove (block_stmt_iterator *i, bool remove_eh_info)
2758 {
2759 tree t = bsi_stmt (*i);
2760 set_bb_for_stmt (t, NULL);
2761 delink_stmt_imm_use (t);
2762 tsi_delink (&i->tsi);
2763 mark_stmt_modified (t);
2764 if (remove_eh_info)
2765 {
2766 remove_stmt_from_eh_region (t);
2767 gimple_remove_stmt_histograms (cfun, t);
2768 }
2769 }
2770
2771
2772 /* Move the statement at FROM so it comes right after the statement at TO. */
2773
2774 void
2775 bsi_move_after (block_stmt_iterator *from, block_stmt_iterator *to)
2776 {
2777 tree stmt = bsi_stmt (*from);
2778 bsi_remove (from, false);
2779 /* We must have BSI_NEW_STMT here, as bsi_move_after is sometimes used to
2780 move statements to an empty block. */
2781 bsi_insert_after (to, stmt, BSI_NEW_STMT);
2782 }
2783
2784
2785 /* Move the statement at FROM so it comes right before the statement at TO. */
2786
2787 void
2788 bsi_move_before (block_stmt_iterator *from, block_stmt_iterator *to)
2789 {
2790 tree stmt = bsi_stmt (*from);
2791 bsi_remove (from, false);
2792 /* For consistency with bsi_move_after, it might be better to have
2793 BSI_NEW_STMT here; however, that breaks several places that expect
2794 that TO does not change. */
2795 bsi_insert_before (to, stmt, BSI_SAME_STMT);
2796 }
2797
2798
2799 /* Move the statement at FROM to the end of basic block BB. */
2800
2801 void
2802 bsi_move_to_bb_end (block_stmt_iterator *from, basic_block bb)
2803 {
2804 block_stmt_iterator last = bsi_last (bb);
2805
2806 /* Have to check bsi_end_p because it could be an empty block. */
2807 if (!bsi_end_p (last) && is_ctrl_stmt (bsi_stmt (last)))
2808 bsi_move_before (from, &last);
2809 else
2810 bsi_move_after (from, &last);
2811 }
2812
2813
2814 /* Replace the contents of the statement pointed to by iterator BSI
2815 with STMT. If UPDATE_EH_INFO is true, the exception handling
2816 information of the original statement is moved to the new statement. */
2817
2818 void
2819 bsi_replace (const block_stmt_iterator *bsi, tree stmt, bool update_eh_info)
2820 {
2821 int eh_region;
2822 tree orig_stmt = bsi_stmt (*bsi);
2823
2824 if (stmt == orig_stmt)
2825 return;
2826 SET_EXPR_LOCUS (stmt, EXPR_LOCUS (orig_stmt));
2827 set_bb_for_stmt (stmt, bsi->bb);
2828
2829 /* Preserve EH region information from the original statement, if
2830 requested by the caller. */
2831 if (update_eh_info)
2832 {
2833 eh_region = lookup_stmt_eh_region (orig_stmt);
2834 if (eh_region >= 0)
2835 {
2836 remove_stmt_from_eh_region (orig_stmt);
2837 add_stmt_to_eh_region (stmt, eh_region);
2838 }
2839 }
2840
2841 gimple_duplicate_stmt_histograms (cfun, stmt, cfun, orig_stmt);
2842 gimple_remove_stmt_histograms (cfun, orig_stmt);
2843 delink_stmt_imm_use (orig_stmt);
2844 *bsi_stmt_ptr (*bsi) = stmt;
2845 mark_stmt_modified (stmt);
2846 update_modified_stmts (stmt);
2847 }
2848
2849
2850 /* Insert the statement pointed-to by BSI into edge E. Every attempt
2851 is made to place the statement in an existing basic block, but
2852 sometimes that isn't possible. When it isn't possible, the edge is
2853 split and the statement is added to the new block.
2854
2855 In all cases, the returned *BSI points to the correct location. The
2856 return value is true if insertion should be done after the location,
2857 or false if it should be done before the location. If new basic block
2858 has to be created, it is stored in *NEW_BB. */
2859
2860 static bool
2861 tree_find_edge_insert_loc (edge e, block_stmt_iterator *bsi,
2862 basic_block *new_bb)
2863 {
2864 basic_block dest, src;
2865 tree tmp;
2866
2867 dest = e->dest;
2868 restart:
2869
2870 /* If the destination has one predecessor which has no PHI nodes,
2871 insert there. Except for the exit block.
2872
2873 The requirement for no PHI nodes could be relaxed. Basically we
2874 would have to examine the PHIs to prove that none of them used
2875 the value set by the statement we want to insert on E. That
2876 hardly seems worth the effort. */
2877 if (single_pred_p (dest)
2878 && ! phi_nodes (dest)
2879 && dest != EXIT_BLOCK_PTR)
2880 {
2881 *bsi = bsi_start (dest);
2882 if (bsi_end_p (*bsi))
2883 return true;
2884
2885 /* Make sure we insert after any leading labels. */
2886 tmp = bsi_stmt (*bsi);
2887 while (TREE_CODE (tmp) == LABEL_EXPR)
2888 {
2889 bsi_next (bsi);
2890 if (bsi_end_p (*bsi))
2891 break;
2892 tmp = bsi_stmt (*bsi);
2893 }
2894
2895 if (bsi_end_p (*bsi))
2896 {
2897 *bsi = bsi_last (dest);
2898 return true;
2899 }
2900 else
2901 return false;
2902 }
2903
2904 /* If the source has one successor, the edge is not abnormal and
2905 the last statement does not end a basic block, insert there.
2906 Except for the entry block. */
2907 src = e->src;
2908 if ((e->flags & EDGE_ABNORMAL) == 0
2909 && single_succ_p (src)
2910 && src != ENTRY_BLOCK_PTR)
2911 {
2912 *bsi = bsi_last (src);
2913 if (bsi_end_p (*bsi))
2914 return true;
2915
2916 tmp = bsi_stmt (*bsi);
2917 if (!stmt_ends_bb_p (tmp))
2918 return true;
2919
2920 /* Insert code just before returning the value. We may need to decompose
2921 the return in the case it contains non-trivial operand. */
2922 if (TREE_CODE (tmp) == RETURN_EXPR)
2923 {
2924 tree op = TREE_OPERAND (tmp, 0);
2925 if (op && !is_gimple_val (op))
2926 {
2927 gcc_assert (TREE_CODE (op) == GIMPLE_MODIFY_STMT);
2928 bsi_insert_before (bsi, op, BSI_NEW_STMT);
2929 TREE_OPERAND (tmp, 0) = GIMPLE_STMT_OPERAND (op, 0);
2930 }
2931 bsi_prev (bsi);
2932 return true;
2933 }
2934 }
2935
2936 /* Otherwise, create a new basic block, and split this edge. */
2937 dest = split_edge (e);
2938 if (new_bb)
2939 *new_bb = dest;
2940 e = single_pred_edge (dest);
2941 goto restart;
2942 }
2943
2944
2945 /* This routine will commit all pending edge insertions, creating any new
2946 basic blocks which are necessary. */
2947
2948 void
2949 bsi_commit_edge_inserts (void)
2950 {
2951 basic_block bb;
2952 edge e;
2953 edge_iterator ei;
2954
2955 bsi_commit_one_edge_insert (single_succ_edge (ENTRY_BLOCK_PTR), NULL);
2956
2957 FOR_EACH_BB (bb)
2958 FOR_EACH_EDGE (e, ei, bb->succs)
2959 bsi_commit_one_edge_insert (e, NULL);
2960 }
2961
2962
2963 /* Commit insertions pending at edge E. If a new block is created, set NEW_BB
2964 to this block, otherwise set it to NULL. */
2965
2966 void
2967 bsi_commit_one_edge_insert (edge e, basic_block *new_bb)
2968 {
2969 if (new_bb)
2970 *new_bb = NULL;
2971 if (PENDING_STMT (e))
2972 {
2973 block_stmt_iterator bsi;
2974 tree stmt = PENDING_STMT (e);
2975
2976 PENDING_STMT (e) = NULL_TREE;
2977
2978 if (tree_find_edge_insert_loc (e, &bsi, new_bb))
2979 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
2980 else
2981 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
2982 }
2983 }
2984
2985
2986 /* Add STMT to the pending list of edge E. No actual insertion is
2987 made until a call to bsi_commit_edge_inserts () is made. */
2988
2989 void
2990 bsi_insert_on_edge (edge e, tree stmt)
2991 {
2992 append_to_statement_list (stmt, &PENDING_STMT (e));
2993 }
2994
2995 /* Similar to bsi_insert_on_edge+bsi_commit_edge_inserts. If a new
2996 block has to be created, it is returned. */
2997
2998 basic_block
2999 bsi_insert_on_edge_immediate (edge e, tree stmt)
3000 {
3001 block_stmt_iterator bsi;
3002 basic_block new_bb = NULL;
3003
3004 gcc_assert (!PENDING_STMT (e));
3005
3006 if (tree_find_edge_insert_loc (e, &bsi, &new_bb))
3007 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
3008 else
3009 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
3010
3011 return new_bb;
3012 }
3013
3014 /*---------------------------------------------------------------------------
3015 Tree specific functions for CFG manipulation
3016 ---------------------------------------------------------------------------*/
3017
3018 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
3019
3020 static void
3021 reinstall_phi_args (edge new_edge, edge old_edge)
3022 {
3023 tree var, phi;
3024
3025 if (!PENDING_STMT (old_edge))
3026 return;
3027
3028 for (var = PENDING_STMT (old_edge), phi = phi_nodes (new_edge->dest);
3029 var && phi;
3030 var = TREE_CHAIN (var), phi = PHI_CHAIN (phi))
3031 {
3032 tree result = TREE_PURPOSE (var);
3033 tree arg = TREE_VALUE (var);
3034
3035 gcc_assert (result == PHI_RESULT (phi));
3036
3037 add_phi_arg (phi, arg, new_edge);
3038 }
3039
3040 PENDING_STMT (old_edge) = NULL;
3041 }
3042
3043 /* Returns the basic block after which the new basic block created
3044 by splitting edge EDGE_IN should be placed. Tries to keep the new block
3045 near its "logical" location. This is of most help to humans looking
3046 at debugging dumps. */
3047
3048 static basic_block
3049 split_edge_bb_loc (edge edge_in)
3050 {
3051 basic_block dest = edge_in->dest;
3052
3053 if (dest->prev_bb && find_edge (dest->prev_bb, dest))
3054 return edge_in->src;
3055 else
3056 return dest->prev_bb;
3057 }
3058
3059 /* Split a (typically critical) edge EDGE_IN. Return the new block.
3060 Abort on abnormal edges. */
3061
3062 static basic_block
3063 tree_split_edge (edge edge_in)
3064 {
3065 basic_block new_bb, after_bb, dest;
3066 edge new_edge, e;
3067
3068 /* Abnormal edges cannot be split. */
3069 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
3070
3071 dest = edge_in->dest;
3072
3073 after_bb = split_edge_bb_loc (edge_in);
3074
3075 new_bb = create_empty_bb (after_bb);
3076 new_bb->frequency = EDGE_FREQUENCY (edge_in);
3077 new_bb->count = edge_in->count;
3078 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
3079 new_edge->probability = REG_BR_PROB_BASE;
3080 new_edge->count = edge_in->count;
3081
3082 e = redirect_edge_and_branch (edge_in, new_bb);
3083 gcc_assert (e == edge_in);
3084 reinstall_phi_args (new_edge, e);
3085
3086 return new_bb;
3087 }
3088
3089 /* Callback for walk_tree, check that all elements with address taken are
3090 properly noticed as such. The DATA is an int* that is 1 if TP was seen
3091 inside a PHI node. */
3092
3093 static tree
3094 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3095 {
3096 tree t = *tp, x;
3097 bool in_phi = (data != NULL);
3098
3099 if (TYPE_P (t))
3100 *walk_subtrees = 0;
3101
3102 /* Check operand N for being valid GIMPLE and give error MSG if not. */
3103 #define CHECK_OP(N, MSG) \
3104 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
3105 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
3106
3107 switch (TREE_CODE (t))
3108 {
3109 case SSA_NAME:
3110 if (SSA_NAME_IN_FREE_LIST (t))
3111 {
3112 error ("SSA name in freelist but still referenced");
3113 return *tp;
3114 }
3115 break;
3116
3117 case ASSERT_EXPR:
3118 x = fold (ASSERT_EXPR_COND (t));
3119 if (x == boolean_false_node)
3120 {
3121 error ("ASSERT_EXPR with an always-false condition");
3122 return *tp;
3123 }
3124 break;
3125
3126 case MODIFY_EXPR:
3127 gcc_unreachable ();
3128
3129 case GIMPLE_MODIFY_STMT:
3130 x = GIMPLE_STMT_OPERAND (t, 0);
3131 if (TREE_CODE (x) == BIT_FIELD_REF
3132 && is_gimple_reg (TREE_OPERAND (x, 0)))
3133 {
3134 error ("GIMPLE register modified with BIT_FIELD_REF");
3135 return t;
3136 }
3137 break;
3138
3139 case ADDR_EXPR:
3140 {
3141 bool old_invariant;
3142 bool old_constant;
3143 bool old_side_effects;
3144 bool new_invariant;
3145 bool new_constant;
3146 bool new_side_effects;
3147
3148 /* ??? tree-ssa-alias.c may have overlooked dead PHI nodes, missing
3149 dead PHIs that take the address of something. But if the PHI
3150 result is dead, the fact that it takes the address of anything
3151 is irrelevant. Because we can not tell from here if a PHI result
3152 is dead, we just skip this check for PHIs altogether. This means
3153 we may be missing "valid" checks, but what can you do?
3154 This was PR19217. */
3155 if (in_phi)
3156 break;
3157
3158 old_invariant = TREE_INVARIANT (t);
3159 old_constant = TREE_CONSTANT (t);
3160 old_side_effects = TREE_SIDE_EFFECTS (t);
3161
3162 recompute_tree_invariant_for_addr_expr (t);
3163 new_invariant = TREE_INVARIANT (t);
3164 new_side_effects = TREE_SIDE_EFFECTS (t);
3165 new_constant = TREE_CONSTANT (t);
3166
3167 if (old_invariant != new_invariant)
3168 {
3169 error ("invariant not recomputed when ADDR_EXPR changed");
3170 return t;
3171 }
3172
3173 if (old_constant != new_constant)
3174 {
3175 error ("constant not recomputed when ADDR_EXPR changed");
3176 return t;
3177 }
3178 if (old_side_effects != new_side_effects)
3179 {
3180 error ("side effects not recomputed when ADDR_EXPR changed");
3181 return t;
3182 }
3183
3184 /* Skip any references (they will be checked when we recurse down the
3185 tree) and ensure that any variable used as a prefix is marked
3186 addressable. */
3187 for (x = TREE_OPERAND (t, 0);
3188 handled_component_p (x);
3189 x = TREE_OPERAND (x, 0))
3190 ;
3191
3192 if (TREE_CODE (x) != VAR_DECL && TREE_CODE (x) != PARM_DECL)
3193 return NULL;
3194 if (!TREE_ADDRESSABLE (x))
3195 {
3196 error ("address taken, but ADDRESSABLE bit not set");
3197 return x;
3198 }
3199 break;
3200 }
3201
3202 case COND_EXPR:
3203 x = COND_EXPR_COND (t);
3204 if (TREE_CODE (TREE_TYPE (x)) != BOOLEAN_TYPE)
3205 {
3206 error ("non-boolean used in condition");
3207 return x;
3208 }
3209 if (!is_gimple_condexpr (x))
3210 {
3211 error ("invalid conditional operand");
3212 return x;
3213 }
3214 break;
3215
3216 case NOP_EXPR:
3217 case CONVERT_EXPR:
3218 case FIX_TRUNC_EXPR:
3219 case FLOAT_EXPR:
3220 case NEGATE_EXPR:
3221 case ABS_EXPR:
3222 case BIT_NOT_EXPR:
3223 case NON_LVALUE_EXPR:
3224 case TRUTH_NOT_EXPR:
3225 CHECK_OP (0, "invalid operand to unary operator");
3226 break;
3227
3228 case REALPART_EXPR:
3229 case IMAGPART_EXPR:
3230 case COMPONENT_REF:
3231 case ARRAY_REF:
3232 case ARRAY_RANGE_REF:
3233 case BIT_FIELD_REF:
3234 case VIEW_CONVERT_EXPR:
3235 /* We have a nest of references. Verify that each of the operands
3236 that determine where to reference is either a constant or a variable,
3237 verify that the base is valid, and then show we've already checked
3238 the subtrees. */
3239 while (handled_component_p (t))
3240 {
3241 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3242 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3243 else if (TREE_CODE (t) == ARRAY_REF
3244 || TREE_CODE (t) == ARRAY_RANGE_REF)
3245 {
3246 CHECK_OP (1, "invalid array index");
3247 if (TREE_OPERAND (t, 2))
3248 CHECK_OP (2, "invalid array lower bound");
3249 if (TREE_OPERAND (t, 3))
3250 CHECK_OP (3, "invalid array stride");
3251 }
3252 else if (TREE_CODE (t) == BIT_FIELD_REF)
3253 {
3254 CHECK_OP (1, "invalid operand to BIT_FIELD_REF");
3255 CHECK_OP (2, "invalid operand to BIT_FIELD_REF");
3256 }
3257
3258 t = TREE_OPERAND (t, 0);
3259 }
3260
3261 if (!CONSTANT_CLASS_P (t) && !is_gimple_lvalue (t))
3262 {
3263 error ("invalid reference prefix");
3264 return t;
3265 }
3266 *walk_subtrees = 0;
3267 break;
3268
3269 case LT_EXPR:
3270 case LE_EXPR:
3271 case GT_EXPR:
3272 case GE_EXPR:
3273 case EQ_EXPR:
3274 case NE_EXPR:
3275 case UNORDERED_EXPR:
3276 case ORDERED_EXPR:
3277 case UNLT_EXPR:
3278 case UNLE_EXPR:
3279 case UNGT_EXPR:
3280 case UNGE_EXPR:
3281 case UNEQ_EXPR:
3282 case LTGT_EXPR:
3283 case PLUS_EXPR:
3284 case MINUS_EXPR:
3285 case MULT_EXPR:
3286 case TRUNC_DIV_EXPR:
3287 case CEIL_DIV_EXPR:
3288 case FLOOR_DIV_EXPR:
3289 case ROUND_DIV_EXPR:
3290 case TRUNC_MOD_EXPR:
3291 case CEIL_MOD_EXPR:
3292 case FLOOR_MOD_EXPR:
3293 case ROUND_MOD_EXPR:
3294 case RDIV_EXPR:
3295 case EXACT_DIV_EXPR:
3296 case MIN_EXPR:
3297 case MAX_EXPR:
3298 case LSHIFT_EXPR:
3299 case RSHIFT_EXPR:
3300 case LROTATE_EXPR:
3301 case RROTATE_EXPR:
3302 case BIT_IOR_EXPR:
3303 case BIT_XOR_EXPR:
3304 case BIT_AND_EXPR:
3305 CHECK_OP (0, "invalid operand to binary operator");
3306 CHECK_OP (1, "invalid operand to binary operator");
3307 break;
3308
3309 case CONSTRUCTOR:
3310 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3311 *walk_subtrees = 0;
3312 break;
3313
3314 default:
3315 break;
3316 }
3317 return NULL;
3318
3319 #undef CHECK_OP
3320 }
3321
3322
3323 /* Verify STMT, return true if STMT is not in GIMPLE form.
3324 TODO: Implement type checking. */
3325
3326 static bool
3327 verify_stmt (tree stmt, bool last_in_block)
3328 {
3329 tree addr;
3330
3331 if (OMP_DIRECTIVE_P (stmt))
3332 {
3333 /* OpenMP directives are validated by the FE and never operated
3334 on by the optimizers. Furthermore, OMP_FOR may contain
3335 non-gimple expressions when the main index variable has had
3336 its address taken. This does not affect the loop itself
3337 because the header of an OMP_FOR is merely used to determine
3338 how to setup the parallel iteration. */
3339 return false;
3340 }
3341
3342 if (!is_gimple_stmt (stmt))
3343 {
3344 error ("is not a valid GIMPLE statement");
3345 goto fail;
3346 }
3347
3348 addr = walk_tree (&stmt, verify_expr, NULL, NULL);
3349 if (addr)
3350 {
3351 debug_generic_stmt (addr);
3352 return true;
3353 }
3354
3355 /* If the statement is marked as part of an EH region, then it is
3356 expected that the statement could throw. Verify that when we
3357 have optimizations that simplify statements such that we prove
3358 that they cannot throw, that we update other data structures
3359 to match. */
3360 if (lookup_stmt_eh_region (stmt) >= 0)
3361 {
3362 if (!tree_could_throw_p (stmt))
3363 {
3364 error ("statement marked for throw, but doesn%'t");
3365 goto fail;
3366 }
3367 if (!last_in_block && tree_can_throw_internal (stmt))
3368 {
3369 error ("statement marked for throw in middle of block");
3370 goto fail;
3371 }
3372 }
3373
3374 return false;
3375
3376 fail:
3377 debug_generic_stmt (stmt);
3378 return true;
3379 }
3380
3381
3382 /* Return true when the T can be shared. */
3383
3384 static bool
3385 tree_node_can_be_shared (tree t)
3386 {
3387 if (IS_TYPE_OR_DECL_P (t)
3388 || is_gimple_min_invariant (t)
3389 || TREE_CODE (t) == SSA_NAME
3390 || t == error_mark_node
3391 || TREE_CODE (t) == IDENTIFIER_NODE)
3392 return true;
3393
3394 if (TREE_CODE (t) == CASE_LABEL_EXPR)
3395 return true;
3396
3397 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3398 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
3399 || TREE_CODE (t) == COMPONENT_REF
3400 || TREE_CODE (t) == REALPART_EXPR
3401 || TREE_CODE (t) == IMAGPART_EXPR)
3402 t = TREE_OPERAND (t, 0);
3403
3404 if (DECL_P (t))
3405 return true;
3406
3407 return false;
3408 }
3409
3410
3411 /* Called via walk_trees. Verify tree sharing. */
3412
3413 static tree
3414 verify_node_sharing (tree * tp, int *walk_subtrees, void *data)
3415 {
3416 struct pointer_set_t *visited = (struct pointer_set_t *) data;
3417
3418 if (tree_node_can_be_shared (*tp))
3419 {
3420 *walk_subtrees = false;
3421 return NULL;
3422 }
3423
3424 if (pointer_set_insert (visited, *tp))
3425 return *tp;
3426
3427 return NULL;
3428 }
3429
3430
3431 /* Helper function for verify_gimple_tuples. */
3432
3433 static tree
3434 verify_gimple_tuples_1 (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
3435 void *data ATTRIBUTE_UNUSED)
3436 {
3437 switch (TREE_CODE (*tp))
3438 {
3439 case MODIFY_EXPR:
3440 error ("unexpected non-tuple");
3441 debug_tree (*tp);
3442 gcc_unreachable ();
3443 return NULL_TREE;
3444
3445 default:
3446 return NULL_TREE;
3447 }
3448 }
3449
3450 /* Verify that there are no trees that should have been converted to
3451 gimple tuples. Return true if T contains a node that should have
3452 been converted to a gimple tuple, but hasn't. */
3453
3454 static bool
3455 verify_gimple_tuples (tree t)
3456 {
3457 return walk_tree (&t, verify_gimple_tuples_1, NULL, NULL) != NULL;
3458 }
3459
3460 static bool eh_error_found;
3461 static int
3462 verify_eh_throw_stmt_node (void **slot, void *data)
3463 {
3464 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
3465 struct pointer_set_t *visited = (struct pointer_set_t *) data;
3466
3467 if (!pointer_set_contains (visited, node->stmt))
3468 {
3469 error ("Dead STMT in EH table");
3470 debug_generic_stmt (node->stmt);
3471 eh_error_found = true;
3472 }
3473 return 0;
3474 }
3475
3476 /* Verify the GIMPLE statement chain. */
3477
3478 void
3479 verify_stmts (void)
3480 {
3481 basic_block bb;
3482 block_stmt_iterator bsi;
3483 bool err = false;
3484 struct pointer_set_t *visited, *visited_stmts;
3485 tree addr;
3486
3487 timevar_push (TV_TREE_STMT_VERIFY);
3488 visited = pointer_set_create ();
3489 visited_stmts = pointer_set_create ();
3490
3491 FOR_EACH_BB (bb)
3492 {
3493 tree phi;
3494 int i;
3495
3496 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3497 {
3498 int phi_num_args = PHI_NUM_ARGS (phi);
3499
3500 pointer_set_insert (visited_stmts, phi);
3501 if (bb_for_stmt (phi) != bb)
3502 {
3503 error ("bb_for_stmt (phi) is set to a wrong basic block");
3504 err |= true;
3505 }
3506
3507 for (i = 0; i < phi_num_args; i++)
3508 {
3509 tree t = PHI_ARG_DEF (phi, i);
3510 tree addr;
3511
3512 /* Addressable variables do have SSA_NAMEs but they
3513 are not considered gimple values. */
3514 if (TREE_CODE (t) != SSA_NAME
3515 && TREE_CODE (t) != FUNCTION_DECL
3516 && !is_gimple_val (t))
3517 {
3518 error ("PHI def is not a GIMPLE value");
3519 debug_generic_stmt (phi);
3520 debug_generic_stmt (t);
3521 err |= true;
3522 }
3523
3524 addr = walk_tree (&t, verify_expr, (void *) 1, NULL);
3525 if (addr)
3526 {
3527 debug_generic_stmt (addr);
3528 err |= true;
3529 }
3530
3531 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
3532 if (addr)
3533 {
3534 error ("incorrect sharing of tree nodes");
3535 debug_generic_stmt (phi);
3536 debug_generic_stmt (addr);
3537 err |= true;
3538 }
3539 }
3540 }
3541
3542 for (bsi = bsi_start (bb); !bsi_end_p (bsi); )
3543 {
3544 tree stmt = bsi_stmt (bsi);
3545
3546 pointer_set_insert (visited_stmts, stmt);
3547 err |= verify_gimple_tuples (stmt);
3548
3549 if (bb_for_stmt (stmt) != bb)
3550 {
3551 error ("bb_for_stmt (stmt) is set to a wrong basic block");
3552 err |= true;
3553 }
3554
3555 bsi_next (&bsi);
3556 err |= verify_stmt (stmt, bsi_end_p (bsi));
3557 addr = walk_tree (&stmt, verify_node_sharing, visited, NULL);
3558 if (addr)
3559 {
3560 error ("incorrect sharing of tree nodes");
3561 debug_generic_stmt (stmt);
3562 debug_generic_stmt (addr);
3563 err |= true;
3564 }
3565 }
3566 }
3567 eh_error_found = false;
3568 if (get_eh_throw_stmt_table (cfun))
3569 htab_traverse (get_eh_throw_stmt_table (cfun),
3570 verify_eh_throw_stmt_node,
3571 visited_stmts);
3572
3573 if (err | eh_error_found)
3574 internal_error ("verify_stmts failed");
3575
3576 pointer_set_destroy (visited);
3577 pointer_set_destroy (visited_stmts);
3578 verify_histograms ();
3579 timevar_pop (TV_TREE_STMT_VERIFY);
3580 }
3581
3582
3583 /* Verifies that the flow information is OK. */
3584
3585 static int
3586 tree_verify_flow_info (void)
3587 {
3588 int err = 0;
3589 basic_block bb;
3590 block_stmt_iterator bsi;
3591 tree stmt;
3592 edge e;
3593 edge_iterator ei;
3594
3595 if (ENTRY_BLOCK_PTR->il.tree)
3596 {
3597 error ("ENTRY_BLOCK has IL associated with it");
3598 err = 1;
3599 }
3600
3601 if (EXIT_BLOCK_PTR->il.tree)
3602 {
3603 error ("EXIT_BLOCK has IL associated with it");
3604 err = 1;
3605 }
3606
3607 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
3608 if (e->flags & EDGE_FALLTHRU)
3609 {
3610 error ("fallthru to exit from bb %d", e->src->index);
3611 err = 1;
3612 }
3613
3614 FOR_EACH_BB (bb)
3615 {
3616 bool found_ctrl_stmt = false;
3617
3618 stmt = NULL_TREE;
3619
3620 /* Skip labels on the start of basic block. */
3621 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3622 {
3623 tree prev_stmt = stmt;
3624
3625 stmt = bsi_stmt (bsi);
3626
3627 if (TREE_CODE (stmt) != LABEL_EXPR)
3628 break;
3629
3630 if (prev_stmt && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
3631 {
3632 error ("nonlocal label ");
3633 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3634 fprintf (stderr, " is not first in a sequence of labels in bb %d",
3635 bb->index);
3636 err = 1;
3637 }
3638
3639 if (label_to_block (LABEL_EXPR_LABEL (stmt)) != bb)
3640 {
3641 error ("label ");
3642 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3643 fprintf (stderr, " to block does not match in bb %d",
3644 bb->index);
3645 err = 1;
3646 }
3647
3648 if (decl_function_context (LABEL_EXPR_LABEL (stmt))
3649 != current_function_decl)
3650 {
3651 error ("label ");
3652 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3653 fprintf (stderr, " has incorrect context in bb %d",
3654 bb->index);
3655 err = 1;
3656 }
3657 }
3658
3659 /* Verify that body of basic block BB is free of control flow. */
3660 for (; !bsi_end_p (bsi); bsi_next (&bsi))
3661 {
3662 tree stmt = bsi_stmt (bsi);
3663
3664 if (found_ctrl_stmt)
3665 {
3666 error ("control flow in the middle of basic block %d",
3667 bb->index);
3668 err = 1;
3669 }
3670
3671 if (stmt_ends_bb_p (stmt))
3672 found_ctrl_stmt = true;
3673
3674 if (TREE_CODE (stmt) == LABEL_EXPR)
3675 {
3676 error ("label ");
3677 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3678 fprintf (stderr, " in the middle of basic block %d", bb->index);
3679 err = 1;
3680 }
3681 }
3682
3683 bsi = bsi_last (bb);
3684 if (bsi_end_p (bsi))
3685 continue;
3686
3687 stmt = bsi_stmt (bsi);
3688
3689 err |= verify_eh_edges (stmt);
3690
3691 if (is_ctrl_stmt (stmt))
3692 {
3693 FOR_EACH_EDGE (e, ei, bb->succs)
3694 if (e->flags & EDGE_FALLTHRU)
3695 {
3696 error ("fallthru edge after a control statement in bb %d",
3697 bb->index);
3698 err = 1;
3699 }
3700 }
3701
3702 if (TREE_CODE (stmt) != COND_EXPR)
3703 {
3704 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
3705 after anything else but if statement. */
3706 FOR_EACH_EDGE (e, ei, bb->succs)
3707 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
3708 {
3709 error ("true/false edge after a non-COND_EXPR in bb %d",
3710 bb->index);
3711 err = 1;
3712 }
3713 }
3714
3715 switch (TREE_CODE (stmt))
3716 {
3717 case COND_EXPR:
3718 {
3719 edge true_edge;
3720 edge false_edge;
3721
3722 if (COND_EXPR_THEN (stmt) != NULL_TREE
3723 || COND_EXPR_ELSE (stmt) != NULL_TREE)
3724 {
3725 error ("COND_EXPR with code in branches at the end of bb %d",
3726 bb->index);
3727 err = 1;
3728 }
3729
3730 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
3731
3732 if (!true_edge || !false_edge
3733 || !(true_edge->flags & EDGE_TRUE_VALUE)
3734 || !(false_edge->flags & EDGE_FALSE_VALUE)
3735 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
3736 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
3737 || EDGE_COUNT (bb->succs) >= 3)
3738 {
3739 error ("wrong outgoing edge flags at end of bb %d",
3740 bb->index);
3741 err = 1;
3742 }
3743 }
3744 break;
3745
3746 case GOTO_EXPR:
3747 if (simple_goto_p (stmt))
3748 {
3749 error ("explicit goto at end of bb %d", bb->index);
3750 err = 1;
3751 }
3752 else
3753 {
3754 /* FIXME. We should double check that the labels in the
3755 destination blocks have their address taken. */
3756 FOR_EACH_EDGE (e, ei, bb->succs)
3757 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
3758 | EDGE_FALSE_VALUE))
3759 || !(e->flags & EDGE_ABNORMAL))
3760 {
3761 error ("wrong outgoing edge flags at end of bb %d",
3762 bb->index);
3763 err = 1;
3764 }
3765 }
3766 break;
3767
3768 case RETURN_EXPR:
3769 if (!single_succ_p (bb)
3770 || (single_succ_edge (bb)->flags
3771 & (EDGE_FALLTHRU | EDGE_ABNORMAL
3772 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3773 {
3774 error ("wrong outgoing edge flags at end of bb %d", bb->index);
3775 err = 1;
3776 }
3777 if (single_succ (bb) != EXIT_BLOCK_PTR)
3778 {
3779 error ("return edge does not point to exit in bb %d",
3780 bb->index);
3781 err = 1;
3782 }
3783 break;
3784
3785 case SWITCH_EXPR:
3786 {
3787 tree prev;
3788 edge e;
3789 size_t i, n;
3790 tree vec;
3791
3792 vec = SWITCH_LABELS (stmt);
3793 n = TREE_VEC_LENGTH (vec);
3794
3795 /* Mark all the destination basic blocks. */
3796 for (i = 0; i < n; ++i)
3797 {
3798 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
3799 basic_block label_bb = label_to_block (lab);
3800
3801 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
3802 label_bb->aux = (void *)1;
3803 }
3804
3805 /* Verify that the case labels are sorted. */
3806 prev = TREE_VEC_ELT (vec, 0);
3807 for (i = 1; i < n - 1; ++i)
3808 {
3809 tree c = TREE_VEC_ELT (vec, i);
3810 if (! CASE_LOW (c))
3811 {
3812 error ("found default case not at end of case vector");
3813 err = 1;
3814 continue;
3815 }
3816 if (! tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
3817 {
3818 error ("case labels not sorted: ");
3819 print_generic_expr (stderr, prev, 0);
3820 fprintf (stderr," is greater than ");
3821 print_generic_expr (stderr, c, 0);
3822 fprintf (stderr," but comes before it.\n");
3823 err = 1;
3824 }
3825 prev = c;
3826 }
3827 if (CASE_LOW (TREE_VEC_ELT (vec, n - 1)))
3828 {
3829 error ("no default case found at end of case vector");
3830 err = 1;
3831 }
3832
3833 FOR_EACH_EDGE (e, ei, bb->succs)
3834 {
3835 if (!e->dest->aux)
3836 {
3837 error ("extra outgoing edge %d->%d",
3838 bb->index, e->dest->index);
3839 err = 1;
3840 }
3841 e->dest->aux = (void *)2;
3842 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
3843 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3844 {
3845 error ("wrong outgoing edge flags at end of bb %d",
3846 bb->index);
3847 err = 1;
3848 }
3849 }
3850
3851 /* Check that we have all of them. */
3852 for (i = 0; i < n; ++i)
3853 {
3854 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
3855 basic_block label_bb = label_to_block (lab);
3856
3857 if (label_bb->aux != (void *)2)
3858 {
3859 error ("missing edge %i->%i",
3860 bb->index, label_bb->index);
3861 err = 1;
3862 }
3863 }
3864
3865 FOR_EACH_EDGE (e, ei, bb->succs)
3866 e->dest->aux = (void *)0;
3867 }
3868
3869 default: ;
3870 }
3871 }
3872
3873 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
3874 verify_dominators (CDI_DOMINATORS);
3875
3876 return err;
3877 }
3878
3879
3880 /* Updates phi nodes after creating a forwarder block joined
3881 by edge FALLTHRU. */
3882
3883 static void
3884 tree_make_forwarder_block (edge fallthru)
3885 {
3886 edge e;
3887 edge_iterator ei;
3888 basic_block dummy, bb;
3889 tree phi, new_phi, var;
3890
3891 dummy = fallthru->src;
3892 bb = fallthru->dest;
3893
3894 if (single_pred_p (bb))
3895 return;
3896
3897 /* If we redirected a branch we must create new PHI nodes at the
3898 start of BB. */
3899 for (phi = phi_nodes (dummy); phi; phi = PHI_CHAIN (phi))
3900 {
3901 var = PHI_RESULT (phi);
3902 new_phi = create_phi_node (var, bb);
3903 SSA_NAME_DEF_STMT (var) = new_phi;
3904 SET_PHI_RESULT (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
3905 add_phi_arg (new_phi, PHI_RESULT (phi), fallthru);
3906 }
3907
3908 /* Ensure that the PHI node chain is in the same order. */
3909 set_phi_nodes (bb, phi_reverse (phi_nodes (bb)));
3910
3911 /* Add the arguments we have stored on edges. */
3912 FOR_EACH_EDGE (e, ei, bb->preds)
3913 {
3914 if (e == fallthru)
3915 continue;
3916
3917 flush_pending_stmts (e);
3918 }
3919 }
3920
3921
3922 /* Return a non-special label in the head of basic block BLOCK.
3923 Create one if it doesn't exist. */
3924
3925 tree
3926 tree_block_label (basic_block bb)
3927 {
3928 block_stmt_iterator i, s = bsi_start (bb);
3929 bool first = true;
3930 tree label, stmt;
3931
3932 for (i = s; !bsi_end_p (i); first = false, bsi_next (&i))
3933 {
3934 stmt = bsi_stmt (i);
3935 if (TREE_CODE (stmt) != LABEL_EXPR)
3936 break;
3937 label = LABEL_EXPR_LABEL (stmt);
3938 if (!DECL_NONLOCAL (label))
3939 {
3940 if (!first)
3941 bsi_move_before (&i, &s);
3942 return label;
3943 }
3944 }
3945
3946 label = create_artificial_label ();
3947 stmt = build1 (LABEL_EXPR, void_type_node, label);
3948 bsi_insert_before (&s, stmt, BSI_NEW_STMT);
3949 return label;
3950 }
3951
3952
3953 /* Attempt to perform edge redirection by replacing a possibly complex
3954 jump instruction by a goto or by removing the jump completely.
3955 This can apply only if all edges now point to the same block. The
3956 parameters and return values are equivalent to
3957 redirect_edge_and_branch. */
3958
3959 static edge
3960 tree_try_redirect_by_replacing_jump (edge e, basic_block target)
3961 {
3962 basic_block src = e->src;
3963 block_stmt_iterator b;
3964 tree stmt;
3965
3966 /* We can replace or remove a complex jump only when we have exactly
3967 two edges. */
3968 if (EDGE_COUNT (src->succs) != 2
3969 /* Verify that all targets will be TARGET. Specifically, the
3970 edge that is not E must also go to TARGET. */
3971 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
3972 return NULL;
3973
3974 b = bsi_last (src);
3975 if (bsi_end_p (b))
3976 return NULL;
3977 stmt = bsi_stmt (b);
3978
3979 if (TREE_CODE (stmt) == COND_EXPR
3980 || TREE_CODE (stmt) == SWITCH_EXPR)
3981 {
3982 bsi_remove (&b, true);
3983 e = ssa_redirect_edge (e, target);
3984 e->flags = EDGE_FALLTHRU;
3985 return e;
3986 }
3987
3988 return NULL;
3989 }
3990
3991
3992 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
3993 edge representing the redirected branch. */
3994
3995 static edge
3996 tree_redirect_edge_and_branch (edge e, basic_block dest)
3997 {
3998 basic_block bb = e->src;
3999 block_stmt_iterator bsi;
4000 edge ret;
4001 tree stmt;
4002
4003 if (e->flags & EDGE_ABNORMAL)
4004 return NULL;
4005
4006 if (e->src != ENTRY_BLOCK_PTR
4007 && (ret = tree_try_redirect_by_replacing_jump (e, dest)))
4008 return ret;
4009
4010 if (e->dest == dest)
4011 return NULL;
4012
4013 bsi = bsi_last (bb);
4014 stmt = bsi_end_p (bsi) ? NULL : bsi_stmt (bsi);
4015
4016 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
4017 {
4018 case COND_EXPR:
4019 /* For COND_EXPR, we only need to redirect the edge. */
4020 break;
4021
4022 case GOTO_EXPR:
4023 /* No non-abnormal edges should lead from a non-simple goto, and
4024 simple ones should be represented implicitly. */
4025 gcc_unreachable ();
4026
4027 case SWITCH_EXPR:
4028 {
4029 tree cases = get_cases_for_edge (e, stmt);
4030 tree label = tree_block_label (dest);
4031
4032 /* If we have a list of cases associated with E, then use it
4033 as it's a lot faster than walking the entire case vector. */
4034 if (cases)
4035 {
4036 edge e2 = find_edge (e->src, dest);
4037 tree last, first;
4038
4039 first = cases;
4040 while (cases)
4041 {
4042 last = cases;
4043 CASE_LABEL (cases) = label;
4044 cases = TREE_CHAIN (cases);
4045 }
4046
4047 /* If there was already an edge in the CFG, then we need
4048 to move all the cases associated with E to E2. */
4049 if (e2)
4050 {
4051 tree cases2 = get_cases_for_edge (e2, stmt);
4052
4053 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4054 TREE_CHAIN (cases2) = first;
4055 }
4056 }
4057 else
4058 {
4059 tree vec = SWITCH_LABELS (stmt);
4060 size_t i, n = TREE_VEC_LENGTH (vec);
4061
4062 for (i = 0; i < n; i++)
4063 {
4064 tree elt = TREE_VEC_ELT (vec, i);
4065
4066 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4067 CASE_LABEL (elt) = label;
4068 }
4069 }
4070
4071 break;
4072 }
4073
4074 case RETURN_EXPR:
4075 bsi_remove (&bsi, true);
4076 e->flags |= EDGE_FALLTHRU;
4077 break;
4078
4079 default:
4080 /* Otherwise it must be a fallthru edge, and we don't need to
4081 do anything besides redirecting it. */
4082 gcc_assert (e->flags & EDGE_FALLTHRU);
4083 break;
4084 }
4085
4086 /* Update/insert PHI nodes as necessary. */
4087
4088 /* Now update the edges in the CFG. */
4089 e = ssa_redirect_edge (e, dest);
4090
4091 return e;
4092 }
4093
4094 /* Returns true if it is possible to remove edge E by redirecting
4095 it to the destination of the other edge from E->src. */
4096
4097 static bool
4098 tree_can_remove_branch_p (edge e)
4099 {
4100 if (e->flags & EDGE_ABNORMAL)
4101 return false;
4102
4103 return true;
4104 }
4105
4106 /* Simple wrapper, as we can always redirect fallthru edges. */
4107
4108 static basic_block
4109 tree_redirect_edge_and_branch_force (edge e, basic_block dest)
4110 {
4111 e = tree_redirect_edge_and_branch (e, dest);
4112 gcc_assert (e);
4113
4114 return NULL;
4115 }
4116
4117
4118 /* Splits basic block BB after statement STMT (but at least after the
4119 labels). If STMT is NULL, BB is split just after the labels. */
4120
4121 static basic_block
4122 tree_split_block (basic_block bb, void *stmt)
4123 {
4124 block_stmt_iterator bsi;
4125 tree_stmt_iterator tsi_tgt;
4126 tree act, list;
4127 basic_block new_bb;
4128 edge e;
4129 edge_iterator ei;
4130
4131 new_bb = create_empty_bb (bb);
4132
4133 /* Redirect the outgoing edges. */
4134 new_bb->succs = bb->succs;
4135 bb->succs = NULL;
4136 FOR_EACH_EDGE (e, ei, new_bb->succs)
4137 e->src = new_bb;
4138
4139 if (stmt && TREE_CODE ((tree) stmt) == LABEL_EXPR)
4140 stmt = NULL;
4141
4142 /* Move everything from BSI to the new basic block. */
4143 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4144 {
4145 act = bsi_stmt (bsi);
4146 if (TREE_CODE (act) == LABEL_EXPR)
4147 continue;
4148
4149 if (!stmt)
4150 break;
4151
4152 if (stmt == act)
4153 {
4154 bsi_next (&bsi);
4155 break;
4156 }
4157 }
4158
4159 if (bsi_end_p (bsi))
4160 return new_bb;
4161
4162 /* Split the statement list - avoid re-creating new containers as this
4163 brings ugly quadratic memory consumption in the inliner.
4164 (We are still quadratic since we need to update stmt BB pointers,
4165 sadly.) */
4166 list = tsi_split_statement_list_before (&bsi.tsi);
4167 set_bb_stmt_list (new_bb, list);
4168 for (tsi_tgt = tsi_start (list);
4169 !tsi_end_p (tsi_tgt); tsi_next (&tsi_tgt))
4170 change_bb_for_stmt (tsi_stmt (tsi_tgt), new_bb);
4171
4172 return new_bb;
4173 }
4174
4175
4176 /* Moves basic block BB after block AFTER. */
4177
4178 static bool
4179 tree_move_block_after (basic_block bb, basic_block after)
4180 {
4181 if (bb->prev_bb == after)
4182 return true;
4183
4184 unlink_block (bb);
4185 link_block (bb, after);
4186
4187 return true;
4188 }
4189
4190
4191 /* Return true if basic_block can be duplicated. */
4192
4193 static bool
4194 tree_can_duplicate_bb_p (basic_block bb ATTRIBUTE_UNUSED)
4195 {
4196 return true;
4197 }
4198
4199
4200 /* Create a duplicate of the basic block BB. NOTE: This does not
4201 preserve SSA form. */
4202
4203 static basic_block
4204 tree_duplicate_bb (basic_block bb)
4205 {
4206 basic_block new_bb;
4207 block_stmt_iterator bsi, bsi_tgt;
4208 tree phi;
4209
4210 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
4211
4212 /* Copy the PHI nodes. We ignore PHI node arguments here because
4213 the incoming edges have not been setup yet. */
4214 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4215 {
4216 tree copy = create_phi_node (PHI_RESULT (phi), new_bb);
4217 create_new_def_for (PHI_RESULT (copy), copy, PHI_RESULT_PTR (copy));
4218 }
4219
4220 /* Keep the chain of PHI nodes in the same order so that they can be
4221 updated by ssa_redirect_edge. */
4222 set_phi_nodes (new_bb, phi_reverse (phi_nodes (new_bb)));
4223
4224 bsi_tgt = bsi_start (new_bb);
4225 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4226 {
4227 def_operand_p def_p;
4228 ssa_op_iter op_iter;
4229 tree stmt, copy;
4230 int region;
4231
4232 stmt = bsi_stmt (bsi);
4233 if (TREE_CODE (stmt) == LABEL_EXPR)
4234 continue;
4235
4236 /* Create a new copy of STMT and duplicate STMT's virtual
4237 operands. */
4238 copy = unshare_expr (stmt);
4239 bsi_insert_after (&bsi_tgt, copy, BSI_NEW_STMT);
4240 copy_virtual_operands (copy, stmt);
4241 region = lookup_stmt_eh_region (stmt);
4242 if (region >= 0)
4243 add_stmt_to_eh_region (copy, region);
4244 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
4245
4246 /* Create new names for all the definitions created by COPY and
4247 add replacement mappings for each new name. */
4248 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
4249 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
4250 }
4251
4252 return new_bb;
4253 }
4254
4255
4256 /* Basic block BB_COPY was created by code duplication. Add phi node
4257 arguments for edges going out of BB_COPY. The blocks that were
4258 duplicated have BB_DUPLICATED set. */
4259
4260 void
4261 add_phi_args_after_copy_bb (basic_block bb_copy)
4262 {
4263 basic_block bb, dest;
4264 edge e, e_copy;
4265 edge_iterator ei;
4266 tree phi, phi_copy, phi_next, def;
4267
4268 bb = get_bb_original (bb_copy);
4269
4270 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
4271 {
4272 if (!phi_nodes (e_copy->dest))
4273 continue;
4274
4275 if (e_copy->dest->flags & BB_DUPLICATED)
4276 dest = get_bb_original (e_copy->dest);
4277 else
4278 dest = e_copy->dest;
4279
4280 e = find_edge (bb, dest);
4281 if (!e)
4282 {
4283 /* During loop unrolling the target of the latch edge is copied.
4284 In this case we are not looking for edge to dest, but to
4285 duplicated block whose original was dest. */
4286 FOR_EACH_EDGE (e, ei, bb->succs)
4287 if ((e->dest->flags & BB_DUPLICATED)
4288 && get_bb_original (e->dest) == dest)
4289 break;
4290
4291 gcc_assert (e != NULL);
4292 }
4293
4294 for (phi = phi_nodes (e->dest), phi_copy = phi_nodes (e_copy->dest);
4295 phi;
4296 phi = phi_next, phi_copy = PHI_CHAIN (phi_copy))
4297 {
4298 phi_next = PHI_CHAIN (phi);
4299 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
4300 add_phi_arg (phi_copy, def, e_copy);
4301 }
4302 }
4303 }
4304
4305 /* Blocks in REGION_COPY array of length N_REGION were created by
4306 duplication of basic blocks. Add phi node arguments for edges
4307 going from these blocks. */
4308
4309 void
4310 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region)
4311 {
4312 unsigned i;
4313
4314 for (i = 0; i < n_region; i++)
4315 region_copy[i]->flags |= BB_DUPLICATED;
4316
4317 for (i = 0; i < n_region; i++)
4318 add_phi_args_after_copy_bb (region_copy[i]);
4319
4320 for (i = 0; i < n_region; i++)
4321 region_copy[i]->flags &= ~BB_DUPLICATED;
4322 }
4323
4324 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
4325 important exit edge EXIT. By important we mean that no SSA name defined
4326 inside region is live over the other exit edges of the region. All entry
4327 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
4328 to the duplicate of the region. SSA form, dominance and loop information
4329 is updated. The new basic blocks are stored to REGION_COPY in the same
4330 order as they had in REGION, provided that REGION_COPY is not NULL.
4331 The function returns false if it is unable to copy the region,
4332 true otherwise. */
4333
4334 bool
4335 tree_duplicate_sese_region (edge entry, edge exit,
4336 basic_block *region, unsigned n_region,
4337 basic_block *region_copy)
4338 {
4339 unsigned i;
4340 bool free_region_copy = false, copying_header = false;
4341 struct loop *loop = entry->dest->loop_father;
4342 edge exit_copy;
4343 VEC (basic_block, heap) *doms;
4344 edge redirected;
4345 int total_freq = 0, entry_freq = 0;
4346 gcov_type total_count = 0, entry_count = 0;
4347
4348 if (!can_copy_bbs_p (region, n_region))
4349 return false;
4350
4351 /* Some sanity checking. Note that we do not check for all possible
4352 missuses of the functions. I.e. if you ask to copy something weird,
4353 it will work, but the state of structures probably will not be
4354 correct. */
4355 for (i = 0; i < n_region; i++)
4356 {
4357 /* We do not handle subloops, i.e. all the blocks must belong to the
4358 same loop. */
4359 if (region[i]->loop_father != loop)
4360 return false;
4361
4362 if (region[i] != entry->dest
4363 && region[i] == loop->header)
4364 return false;
4365 }
4366
4367 set_loop_copy (loop, loop);
4368
4369 /* In case the function is used for loop header copying (which is the primary
4370 use), ensure that EXIT and its copy will be new latch and entry edges. */
4371 if (loop->header == entry->dest)
4372 {
4373 copying_header = true;
4374 set_loop_copy (loop, loop_outer (loop));
4375
4376 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
4377 return false;
4378
4379 for (i = 0; i < n_region; i++)
4380 if (region[i] != exit->src
4381 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
4382 return false;
4383 }
4384
4385 if (!region_copy)
4386 {
4387 region_copy = XNEWVEC (basic_block, n_region);
4388 free_region_copy = true;
4389 }
4390
4391 gcc_assert (!need_ssa_update_p ());
4392
4393 /* Record blocks outside the region that are dominated by something
4394 inside. */
4395 doms = NULL;
4396 initialize_original_copy_tables ();
4397
4398 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
4399
4400 if (entry->dest->count)
4401 {
4402 total_count = entry->dest->count;
4403 entry_count = entry->count;
4404 /* Fix up corner cases, to avoid division by zero or creation of negative
4405 frequencies. */
4406 if (entry_count > total_count)
4407 entry_count = total_count;
4408 }
4409 else
4410 {
4411 total_freq = entry->dest->frequency;
4412 entry_freq = EDGE_FREQUENCY (entry);
4413 /* Fix up corner cases, to avoid division by zero or creation of negative
4414 frequencies. */
4415 if (total_freq == 0)
4416 total_freq = 1;
4417 else if (entry_freq > total_freq)
4418 entry_freq = total_freq;
4419 }
4420
4421 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
4422 split_edge_bb_loc (entry));
4423 if (total_count)
4424 {
4425 scale_bbs_frequencies_gcov_type (region, n_region,
4426 total_count - entry_count,
4427 total_count);
4428 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
4429 total_count);
4430 }
4431 else
4432 {
4433 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
4434 total_freq);
4435 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
4436 }
4437
4438 if (copying_header)
4439 {
4440 loop->header = exit->dest;
4441 loop->latch = exit->src;
4442 }
4443
4444 /* Redirect the entry and add the phi node arguments. */
4445 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
4446 gcc_assert (redirected != NULL);
4447 flush_pending_stmts (entry);
4448
4449 /* Concerning updating of dominators: We must recount dominators
4450 for entry block and its copy. Anything that is outside of the
4451 region, but was dominated by something inside needs recounting as
4452 well. */
4453 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
4454 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
4455 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
4456 free (doms);
4457
4458 /* Add the other PHI node arguments. */
4459 add_phi_args_after_copy (region_copy, n_region);
4460
4461 /* Update the SSA web. */
4462 update_ssa (TODO_update_ssa);
4463
4464 if (free_region_copy)
4465 free (region_copy);
4466
4467 free_original_copy_tables ();
4468 return true;
4469 }
4470
4471 /*
4472 DEF_VEC_P(basic_block);
4473 DEF_VEC_ALLOC_P(basic_block,heap);
4474 */
4475
4476 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
4477 adding blocks when the dominator traversal reaches EXIT. This
4478 function silently assumes that ENTRY strictly dominates EXIT. */
4479
4480 static void
4481 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
4482 VEC(basic_block,heap) **bbs_p)
4483 {
4484 basic_block son;
4485
4486 for (son = first_dom_son (CDI_DOMINATORS, entry);
4487 son;
4488 son = next_dom_son (CDI_DOMINATORS, son))
4489 {
4490 VEC_safe_push (basic_block, heap, *bbs_p, son);
4491 if (son != exit)
4492 gather_blocks_in_sese_region (son, exit, bbs_p);
4493 }
4494 }
4495
4496
4497 struct move_stmt_d
4498 {
4499 tree block;
4500 tree from_context;
4501 tree to_context;
4502 bitmap vars_to_remove;
4503 htab_t new_label_map;
4504 bool remap_decls_p;
4505 };
4506
4507 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
4508 contained in *TP and change the DECL_CONTEXT of every local
4509 variable referenced in *TP. */
4510
4511 static tree
4512 move_stmt_r (tree *tp, int *walk_subtrees, void *data)
4513 {
4514 struct move_stmt_d *p = (struct move_stmt_d *) data;
4515 tree t = *tp;
4516
4517 if (p->block
4518 && (EXPR_P (t) || GIMPLE_STMT_P (t)))
4519 TREE_BLOCK (t) = p->block;
4520
4521 if (OMP_DIRECTIVE_P (t)
4522 && TREE_CODE (t) != OMP_RETURN
4523 && TREE_CODE (t) != OMP_CONTINUE)
4524 {
4525 /* Do not remap variables inside OMP directives. Variables
4526 referenced in clauses and directive header belong to the
4527 parent function and should not be moved into the child
4528 function. */
4529 bool save_remap_decls_p = p->remap_decls_p;
4530 p->remap_decls_p = false;
4531 *walk_subtrees = 0;
4532
4533 walk_tree (&OMP_BODY (t), move_stmt_r, p, NULL);
4534
4535 p->remap_decls_p = save_remap_decls_p;
4536 }
4537 else if (DECL_P (t) && DECL_CONTEXT (t) == p->from_context)
4538 {
4539 if (TREE_CODE (t) == LABEL_DECL)
4540 {
4541 if (p->new_label_map)
4542 {
4543 struct tree_map in, *out;
4544 in.base.from = t;
4545 out = htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
4546 if (out)
4547 *tp = t = out->to;
4548 }
4549
4550 DECL_CONTEXT (t) = p->to_context;
4551 }
4552 else if (p->remap_decls_p)
4553 {
4554 DECL_CONTEXT (t) = p->to_context;
4555
4556 if (TREE_CODE (t) == VAR_DECL)
4557 {
4558 struct function *f = DECL_STRUCT_FUNCTION (p->to_context);
4559 f->unexpanded_var_list
4560 = tree_cons (0, t, f->unexpanded_var_list);
4561
4562 /* Mark T to be removed from the original function,
4563 otherwise it will be given a DECL_RTL when the
4564 original function is expanded. */
4565 bitmap_set_bit (p->vars_to_remove, DECL_UID (t));
4566 }
4567 }
4568 }
4569 else if (TYPE_P (t))
4570 *walk_subtrees = 0;
4571
4572 return NULL_TREE;
4573 }
4574
4575
4576 /* Move basic block BB from function CFUN to function DEST_FN. The
4577 block is moved out of the original linked list and placed after
4578 block AFTER in the new list. Also, the block is removed from the
4579 original array of blocks and placed in DEST_FN's array of blocks.
4580 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
4581 updated to reflect the moved edges.
4582
4583 On exit, local variables that need to be removed from
4584 CFUN->UNEXPANDED_VAR_LIST will have been added to VARS_TO_REMOVE. */
4585
4586 static void
4587 move_block_to_fn (struct function *dest_cfun, basic_block bb,
4588 basic_block after, bool update_edge_count_p,
4589 bitmap vars_to_remove, htab_t new_label_map, int eh_offset)
4590 {
4591 struct control_flow_graph *cfg;
4592 edge_iterator ei;
4593 edge e;
4594 block_stmt_iterator si;
4595 struct move_stmt_d d;
4596 unsigned old_len, new_len;
4597
4598 /* Remove BB from dominance structures. */
4599 delete_from_dominance_info (CDI_DOMINATORS, bb);
4600
4601 /* Link BB to the new linked list. */
4602 move_block_after (bb, after);
4603
4604 /* Update the edge count in the corresponding flowgraphs. */
4605 if (update_edge_count_p)
4606 FOR_EACH_EDGE (e, ei, bb->succs)
4607 {
4608 cfun->cfg->x_n_edges--;
4609 dest_cfun->cfg->x_n_edges++;
4610 }
4611
4612 /* Remove BB from the original basic block array. */
4613 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
4614 cfun->cfg->x_n_basic_blocks--;
4615
4616 /* Grow DEST_CFUN's basic block array if needed. */
4617 cfg = dest_cfun->cfg;
4618 cfg->x_n_basic_blocks++;
4619 if (bb->index >= cfg->x_last_basic_block)
4620 cfg->x_last_basic_block = bb->index + 1;
4621
4622 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
4623 if ((unsigned) cfg->x_last_basic_block >= old_len)
4624 {
4625 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
4626 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
4627 new_len);
4628 }
4629
4630 VEC_replace (basic_block, cfg->x_basic_block_info,
4631 bb->index, bb);
4632
4633 /* The statements in BB need to be associated with a new TREE_BLOCK.
4634 Labels need to be associated with a new label-to-block map. */
4635 memset (&d, 0, sizeof (d));
4636 d.vars_to_remove = vars_to_remove;
4637
4638 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4639 {
4640 tree stmt = bsi_stmt (si);
4641 int region;
4642
4643 d.from_context = cfun->decl;
4644 d.to_context = dest_cfun->decl;
4645 d.remap_decls_p = true;
4646 d.new_label_map = new_label_map;
4647 if (TREE_BLOCK (stmt))
4648 d.block = DECL_INITIAL (dest_cfun->decl);
4649
4650 walk_tree (&stmt, move_stmt_r, &d, NULL);
4651
4652 if (TREE_CODE (stmt) == LABEL_EXPR)
4653 {
4654 tree label = LABEL_EXPR_LABEL (stmt);
4655 int uid = LABEL_DECL_UID (label);
4656
4657 gcc_assert (uid > -1);
4658
4659 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
4660 if (old_len <= (unsigned) uid)
4661 {
4662 new_len = 3 * uid / 2;
4663 VEC_safe_grow_cleared (basic_block, gc,
4664 cfg->x_label_to_block_map, new_len);
4665 }
4666
4667 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
4668 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
4669
4670 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
4671
4672 if (uid >= dest_cfun->last_label_uid)
4673 dest_cfun->last_label_uid = uid + 1;
4674 }
4675 else if (TREE_CODE (stmt) == RESX_EXPR && eh_offset != 0)
4676 TREE_OPERAND (stmt, 0) =
4677 build_int_cst (NULL_TREE,
4678 TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0))
4679 + eh_offset);
4680
4681 region = lookup_stmt_eh_region (stmt);
4682 if (region >= 0)
4683 {
4684 add_stmt_to_eh_region_fn (dest_cfun, stmt, region + eh_offset);
4685 remove_stmt_from_eh_region (stmt);
4686 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
4687 gimple_remove_stmt_histograms (cfun, stmt);
4688 }
4689 }
4690 }
4691
4692 /* Examine the statements in BB (which is in SRC_CFUN); find and return
4693 the outermost EH region. Use REGION as the incoming base EH region. */
4694
4695 static int
4696 find_outermost_region_in_block (struct function *src_cfun,
4697 basic_block bb, int region)
4698 {
4699 block_stmt_iterator si;
4700
4701 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4702 {
4703 tree stmt = bsi_stmt (si);
4704 int stmt_region;
4705
4706 if (TREE_CODE (stmt) == RESX_EXPR)
4707 stmt_region = TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0));
4708 else
4709 stmt_region = lookup_stmt_eh_region_fn (src_cfun, stmt);
4710 if (stmt_region > 0)
4711 {
4712 if (region < 0)
4713 region = stmt_region;
4714 else if (stmt_region != region)
4715 {
4716 region = eh_region_outermost (src_cfun, stmt_region, region);
4717 gcc_assert (region != -1);
4718 }
4719 }
4720 }
4721
4722 return region;
4723 }
4724
4725 static tree
4726 new_label_mapper (tree decl, void *data)
4727 {
4728 htab_t hash = (htab_t) data;
4729 struct tree_map *m;
4730 void **slot;
4731
4732 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
4733
4734 m = xmalloc (sizeof (struct tree_map));
4735 m->hash = DECL_UID (decl);
4736 m->base.from = decl;
4737 m->to = create_artificial_label ();
4738 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
4739
4740 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
4741 gcc_assert (*slot == NULL);
4742
4743 *slot = m;
4744
4745 return m->to;
4746 }
4747
4748 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
4749 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
4750 single basic block in the original CFG and the new basic block is
4751 returned. DEST_CFUN must not have a CFG yet.
4752
4753 Note that the region need not be a pure SESE region. Blocks inside
4754 the region may contain calls to abort/exit. The only restriction
4755 is that ENTRY_BB should be the only entry point and it must
4756 dominate EXIT_BB.
4757
4758 All local variables referenced in the region are assumed to be in
4759 the corresponding BLOCK_VARS and unexpanded variable lists
4760 associated with DEST_CFUN. */
4761
4762 basic_block
4763 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
4764 basic_block exit_bb)
4765 {
4766 VEC(basic_block,heap) *bbs;
4767 basic_block after, bb, *entry_pred, *exit_succ;
4768 struct function *saved_cfun;
4769 int *entry_flag, *exit_flag, eh_offset;
4770 unsigned i, num_entry_edges, num_exit_edges;
4771 edge e;
4772 edge_iterator ei;
4773 bitmap vars_to_remove;
4774 htab_t new_label_map;
4775
4776 saved_cfun = cfun;
4777
4778 /* Collect all the blocks in the region. Manually add ENTRY_BB
4779 because it won't be added by dfs_enumerate_from. */
4780 calculate_dominance_info (CDI_DOMINATORS);
4781
4782 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
4783 region. */
4784 gcc_assert (entry_bb != exit_bb
4785 && (!exit_bb
4786 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
4787
4788 bbs = NULL;
4789 VEC_safe_push (basic_block, heap, bbs, entry_bb);
4790 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
4791
4792 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
4793 the predecessor edges to ENTRY_BB and the successor edges to
4794 EXIT_BB so that we can re-attach them to the new basic block that
4795 will replace the region. */
4796 num_entry_edges = EDGE_COUNT (entry_bb->preds);
4797 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
4798 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
4799 i = 0;
4800 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
4801 {
4802 entry_flag[i] = e->flags;
4803 entry_pred[i++] = e->src;
4804 remove_edge (e);
4805 }
4806
4807 if (exit_bb)
4808 {
4809 num_exit_edges = EDGE_COUNT (exit_bb->succs);
4810 exit_succ = (basic_block *) xcalloc (num_exit_edges,
4811 sizeof (basic_block));
4812 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
4813 i = 0;
4814 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
4815 {
4816 exit_flag[i] = e->flags;
4817 exit_succ[i++] = e->dest;
4818 remove_edge (e);
4819 }
4820 }
4821 else
4822 {
4823 num_exit_edges = 0;
4824 exit_succ = NULL;
4825 exit_flag = NULL;
4826 }
4827
4828 /* Switch context to the child function to initialize DEST_FN's CFG. */
4829 gcc_assert (dest_cfun->cfg == NULL);
4830 cfun = dest_cfun;
4831
4832 init_empty_tree_cfg ();
4833
4834 /* Initialize EH information for the new function. */
4835 eh_offset = 0;
4836 new_label_map = NULL;
4837 if (saved_cfun->eh)
4838 {
4839 int region = -1;
4840
4841 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
4842 region = find_outermost_region_in_block (saved_cfun, bb, region);
4843
4844 init_eh_for_function ();
4845 if (region != -1)
4846 {
4847 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
4848 eh_offset = duplicate_eh_regions (saved_cfun, new_label_mapper,
4849 new_label_map, region, 0);
4850 }
4851 }
4852
4853 cfun = saved_cfun;
4854
4855 /* Move blocks from BBS into DEST_CFUN. */
4856 gcc_assert (VEC_length (basic_block, bbs) >= 2);
4857 after = dest_cfun->cfg->x_entry_block_ptr;
4858 vars_to_remove = BITMAP_ALLOC (NULL);
4859 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
4860 {
4861 /* No need to update edge counts on the last block. It has
4862 already been updated earlier when we detached the region from
4863 the original CFG. */
4864 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, vars_to_remove,
4865 new_label_map, eh_offset);
4866 after = bb;
4867 }
4868
4869 if (new_label_map)
4870 htab_delete (new_label_map);
4871
4872 /* Remove the variables marked in VARS_TO_REMOVE from
4873 CFUN->UNEXPANDED_VAR_LIST. Otherwise, they will be given a
4874 DECL_RTL in the context of CFUN. */
4875 if (!bitmap_empty_p (vars_to_remove))
4876 {
4877 tree *p;
4878
4879 for (p = &cfun->unexpanded_var_list; *p; )
4880 {
4881 tree var = TREE_VALUE (*p);
4882 if (bitmap_bit_p (vars_to_remove, DECL_UID (var)))
4883 {
4884 *p = TREE_CHAIN (*p);
4885 continue;
4886 }
4887
4888 p = &TREE_CHAIN (*p);
4889 }
4890 }
4891
4892 BITMAP_FREE (vars_to_remove);
4893
4894 /* Rewire the entry and exit blocks. The successor to the entry
4895 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
4896 the child function. Similarly, the predecessor of DEST_FN's
4897 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
4898 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
4899 various CFG manipulation function get to the right CFG.
4900
4901 FIXME, this is silly. The CFG ought to become a parameter to
4902 these helpers. */
4903 cfun = dest_cfun;
4904 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
4905 if (exit_bb)
4906 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
4907 cfun = saved_cfun;
4908
4909 /* Back in the original function, the SESE region has disappeared,
4910 create a new basic block in its place. */
4911 bb = create_empty_bb (entry_pred[0]);
4912 for (i = 0; i < num_entry_edges; i++)
4913 make_edge (entry_pred[i], bb, entry_flag[i]);
4914
4915 for (i = 0; i < num_exit_edges; i++)
4916 make_edge (bb, exit_succ[i], exit_flag[i]);
4917
4918 if (exit_bb)
4919 {
4920 free (exit_flag);
4921 free (exit_succ);
4922 }
4923 free (entry_flag);
4924 free (entry_pred);
4925 free_dominance_info (CDI_DOMINATORS);
4926 free_dominance_info (CDI_POST_DOMINATORS);
4927 VEC_free (basic_block, heap, bbs);
4928
4929 return bb;
4930 }
4931
4932
4933 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree.h) */
4934
4935 void
4936 dump_function_to_file (tree fn, FILE *file, int flags)
4937 {
4938 tree arg, vars, var;
4939 struct function *dsf;
4940 bool ignore_topmost_bind = false, any_var = false;
4941 basic_block bb;
4942 tree chain;
4943 struct function *saved_cfun;
4944
4945 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
4946
4947 arg = DECL_ARGUMENTS (fn);
4948 while (arg)
4949 {
4950 print_generic_expr (file, arg, dump_flags);
4951 if (TREE_CHAIN (arg))
4952 fprintf (file, ", ");
4953 arg = TREE_CHAIN (arg);
4954 }
4955 fprintf (file, ")\n");
4956
4957 dsf = DECL_STRUCT_FUNCTION (fn);
4958 if (dsf && (flags & TDF_DETAILS))
4959 dump_eh_tree (file, dsf);
4960
4961 if (flags & TDF_RAW)
4962 {
4963 dump_node (fn, TDF_SLIM | flags, file);
4964 return;
4965 }
4966
4967 /* Switch CFUN to point to FN. */
4968 saved_cfun = cfun;
4969 cfun = DECL_STRUCT_FUNCTION (fn);
4970
4971 /* When GIMPLE is lowered, the variables are no longer available in
4972 BIND_EXPRs, so display them separately. */
4973 if (cfun && cfun->decl == fn && cfun->unexpanded_var_list)
4974 {
4975 ignore_topmost_bind = true;
4976
4977 fprintf (file, "{\n");
4978 for (vars = cfun->unexpanded_var_list; vars; vars = TREE_CHAIN (vars))
4979 {
4980 var = TREE_VALUE (vars);
4981
4982 print_generic_decl (file, var, flags);
4983 fprintf (file, "\n");
4984
4985 any_var = true;
4986 }
4987 }
4988
4989 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
4990 {
4991 /* Make a CFG based dump. */
4992 check_bb_profile (ENTRY_BLOCK_PTR, file);
4993 if (!ignore_topmost_bind)
4994 fprintf (file, "{\n");
4995
4996 if (any_var && n_basic_blocks)
4997 fprintf (file, "\n");
4998
4999 FOR_EACH_BB (bb)
5000 dump_generic_bb (file, bb, 2, flags);
5001
5002 fprintf (file, "}\n");
5003 check_bb_profile (EXIT_BLOCK_PTR, file);
5004 }
5005 else
5006 {
5007 int indent;
5008
5009 /* Make a tree based dump. */
5010 chain = DECL_SAVED_TREE (fn);
5011
5012 if (chain && TREE_CODE (chain) == BIND_EXPR)
5013 {
5014 if (ignore_topmost_bind)
5015 {
5016 chain = BIND_EXPR_BODY (chain);
5017 indent = 2;
5018 }
5019 else
5020 indent = 0;
5021 }
5022 else
5023 {
5024 if (!ignore_topmost_bind)
5025 fprintf (file, "{\n");
5026 indent = 2;
5027 }
5028
5029 if (any_var)
5030 fprintf (file, "\n");
5031
5032 print_generic_stmt_indented (file, chain, flags, indent);
5033 if (ignore_topmost_bind)
5034 fprintf (file, "}\n");
5035 }
5036
5037 fprintf (file, "\n\n");
5038
5039 /* Restore CFUN. */
5040 cfun = saved_cfun;
5041 }
5042
5043
5044 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
5045
5046 void
5047 debug_function (tree fn, int flags)
5048 {
5049 dump_function_to_file (fn, stderr, flags);
5050 }
5051
5052
5053 /* Pretty print of the loops intermediate representation. */
5054 static void print_loop (FILE *, struct loop *, int);
5055 static void print_pred_bbs (FILE *, basic_block bb);
5056 static void print_succ_bbs (FILE *, basic_block bb);
5057
5058
5059 /* Print on FILE the indexes for the predecessors of basic_block BB. */
5060
5061 static void
5062 print_pred_bbs (FILE *file, basic_block bb)
5063 {
5064 edge e;
5065 edge_iterator ei;
5066
5067 FOR_EACH_EDGE (e, ei, bb->preds)
5068 fprintf (file, "bb_%d ", e->src->index);
5069 }
5070
5071
5072 /* Print on FILE the indexes for the successors of basic_block BB. */
5073
5074 static void
5075 print_succ_bbs (FILE *file, basic_block bb)
5076 {
5077 edge e;
5078 edge_iterator ei;
5079
5080 FOR_EACH_EDGE (e, ei, bb->succs)
5081 fprintf (file, "bb_%d ", e->dest->index);
5082 }
5083
5084
5085 /* Pretty print LOOP on FILE, indented INDENT spaces. */
5086
5087 static void
5088 print_loop (FILE *file, struct loop *loop, int indent)
5089 {
5090 char *s_indent;
5091 basic_block bb;
5092
5093 if (loop == NULL)
5094 return;
5095
5096 s_indent = (char *) alloca ((size_t) indent + 1);
5097 memset ((void *) s_indent, ' ', (size_t) indent);
5098 s_indent[indent] = '\0';
5099
5100 /* Print the loop's header. */
5101 fprintf (file, "%sloop_%d\n", s_indent, loop->num);
5102
5103 /* Print the loop's body. */
5104 fprintf (file, "%s{\n", s_indent);
5105 FOR_EACH_BB (bb)
5106 if (bb->loop_father == loop)
5107 {
5108 /* Print the basic_block's header. */
5109 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
5110 print_pred_bbs (file, bb);
5111 fprintf (file, "}, succs = {");
5112 print_succ_bbs (file, bb);
5113 fprintf (file, "})\n");
5114
5115 /* Print the basic_block's body. */
5116 fprintf (file, "%s {\n", s_indent);
5117 tree_dump_bb (bb, file, indent + 4);
5118 fprintf (file, "%s }\n", s_indent);
5119 }
5120
5121 print_loop (file, loop->inner, indent + 2);
5122 fprintf (file, "%s}\n", s_indent);
5123 print_loop (file, loop->next, indent);
5124 }
5125
5126
5127 /* Follow a CFG edge from the entry point of the program, and on entry
5128 of a loop, pretty print the loop structure on FILE. */
5129
5130 void
5131 print_loop_ir (FILE *file)
5132 {
5133 basic_block bb;
5134
5135 bb = BASIC_BLOCK (NUM_FIXED_BLOCKS);
5136 if (bb && bb->loop_father)
5137 print_loop (file, bb->loop_father, 0);
5138 }
5139
5140
5141 /* Debugging loops structure at tree level. */
5142
5143 void
5144 debug_loop_ir (void)
5145 {
5146 print_loop_ir (stderr);
5147 }
5148
5149
5150 /* Return true if BB ends with a call, possibly followed by some
5151 instructions that must stay with the call. Return false,
5152 otherwise. */
5153
5154 static bool
5155 tree_block_ends_with_call_p (basic_block bb)
5156 {
5157 block_stmt_iterator bsi = bsi_last (bb);
5158 return get_call_expr_in (bsi_stmt (bsi)) != NULL;
5159 }
5160
5161
5162 /* Return true if BB ends with a conditional branch. Return false,
5163 otherwise. */
5164
5165 static bool
5166 tree_block_ends_with_condjump_p (basic_block bb)
5167 {
5168 tree stmt = last_stmt (bb);
5169 return (stmt && TREE_CODE (stmt) == COND_EXPR);
5170 }
5171
5172
5173 /* Return true if we need to add fake edge to exit at statement T.
5174 Helper function for tree_flow_call_edges_add. */
5175
5176 static bool
5177 need_fake_edge_p (tree t)
5178 {
5179 tree call;
5180
5181 /* NORETURN and LONGJMP calls already have an edge to exit.
5182 CONST and PURE calls do not need one.
5183 We don't currently check for CONST and PURE here, although
5184 it would be a good idea, because those attributes are
5185 figured out from the RTL in mark_constant_function, and
5186 the counter incrementation code from -fprofile-arcs
5187 leads to different results from -fbranch-probabilities. */
5188 call = get_call_expr_in (t);
5189 if (call
5190 && !(call_expr_flags (call) & ECF_NORETURN))
5191 return true;
5192
5193 if (TREE_CODE (t) == ASM_EXPR
5194 && (ASM_VOLATILE_P (t) || ASM_INPUT_P (t)))
5195 return true;
5196
5197 return false;
5198 }
5199
5200
5201 /* Add fake edges to the function exit for any non constant and non
5202 noreturn calls, volatile inline assembly in the bitmap of blocks
5203 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
5204 the number of blocks that were split.
5205
5206 The goal is to expose cases in which entering a basic block does
5207 not imply that all subsequent instructions must be executed. */
5208
5209 static int
5210 tree_flow_call_edges_add (sbitmap blocks)
5211 {
5212 int i;
5213 int blocks_split = 0;
5214 int last_bb = last_basic_block;
5215 bool check_last_block = false;
5216
5217 if (n_basic_blocks == NUM_FIXED_BLOCKS)
5218 return 0;
5219
5220 if (! blocks)
5221 check_last_block = true;
5222 else
5223 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
5224
5225 /* In the last basic block, before epilogue generation, there will be
5226 a fallthru edge to EXIT. Special care is required if the last insn
5227 of the last basic block is a call because make_edge folds duplicate
5228 edges, which would result in the fallthru edge also being marked
5229 fake, which would result in the fallthru edge being removed by
5230 remove_fake_edges, which would result in an invalid CFG.
5231
5232 Moreover, we can't elide the outgoing fake edge, since the block
5233 profiler needs to take this into account in order to solve the minimal
5234 spanning tree in the case that the call doesn't return.
5235
5236 Handle this by adding a dummy instruction in a new last basic block. */
5237 if (check_last_block)
5238 {
5239 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
5240 block_stmt_iterator bsi = bsi_last (bb);
5241 tree t = NULL_TREE;
5242 if (!bsi_end_p (bsi))
5243 t = bsi_stmt (bsi);
5244
5245 if (t && need_fake_edge_p (t))
5246 {
5247 edge e;
5248
5249 e = find_edge (bb, EXIT_BLOCK_PTR);
5250 if (e)
5251 {
5252 bsi_insert_on_edge (e, build_empty_stmt ());
5253 bsi_commit_edge_inserts ();
5254 }
5255 }
5256 }
5257
5258 /* Now add fake edges to the function exit for any non constant
5259 calls since there is no way that we can determine if they will
5260 return or not... */
5261 for (i = 0; i < last_bb; i++)
5262 {
5263 basic_block bb = BASIC_BLOCK (i);
5264 block_stmt_iterator bsi;
5265 tree stmt, last_stmt;
5266
5267 if (!bb)
5268 continue;
5269
5270 if (blocks && !TEST_BIT (blocks, i))
5271 continue;
5272
5273 bsi = bsi_last (bb);
5274 if (!bsi_end_p (bsi))
5275 {
5276 last_stmt = bsi_stmt (bsi);
5277 do
5278 {
5279 stmt = bsi_stmt (bsi);
5280 if (need_fake_edge_p (stmt))
5281 {
5282 edge e;
5283 /* The handling above of the final block before the
5284 epilogue should be enough to verify that there is
5285 no edge to the exit block in CFG already.
5286 Calling make_edge in such case would cause us to
5287 mark that edge as fake and remove it later. */
5288 #ifdef ENABLE_CHECKING
5289 if (stmt == last_stmt)
5290 {
5291 e = find_edge (bb, EXIT_BLOCK_PTR);
5292 gcc_assert (e == NULL);
5293 }
5294 #endif
5295
5296 /* Note that the following may create a new basic block
5297 and renumber the existing basic blocks. */
5298 if (stmt != last_stmt)
5299 {
5300 e = split_block (bb, stmt);
5301 if (e)
5302 blocks_split++;
5303 }
5304 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
5305 }
5306 bsi_prev (&bsi);
5307 }
5308 while (!bsi_end_p (bsi));
5309 }
5310 }
5311
5312 if (blocks_split)
5313 verify_flow_info ();
5314
5315 return blocks_split;
5316 }
5317
5318 /* Purge dead abnormal call edges from basic block BB. */
5319
5320 bool
5321 tree_purge_dead_abnormal_call_edges (basic_block bb)
5322 {
5323 bool changed = tree_purge_dead_eh_edges (bb);
5324
5325 if (current_function_has_nonlocal_label)
5326 {
5327 tree stmt = last_stmt (bb);
5328 edge_iterator ei;
5329 edge e;
5330
5331 if (!(stmt && tree_can_make_abnormal_goto (stmt)))
5332 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
5333 {
5334 if (e->flags & EDGE_ABNORMAL)
5335 {
5336 remove_edge (e);
5337 changed = true;
5338 }
5339 else
5340 ei_next (&ei);
5341 }
5342
5343 /* See tree_purge_dead_eh_edges below. */
5344 if (changed)
5345 free_dominance_info (CDI_DOMINATORS);
5346 }
5347
5348 return changed;
5349 }
5350
5351 /* Stores all basic blocks dominated by BB to DOM_BBS. */
5352
5353 static void
5354 get_all_dominated_blocks (basic_block bb, VEC (basic_block, heap) **dom_bbs)
5355 {
5356 basic_block son;
5357
5358 VEC_safe_push (basic_block, heap, *dom_bbs, bb);
5359 for (son = first_dom_son (CDI_DOMINATORS, bb);
5360 son;
5361 son = next_dom_son (CDI_DOMINATORS, son))
5362 get_all_dominated_blocks (son, dom_bbs);
5363 }
5364
5365 /* Removes edge E and all the blocks dominated by it, and updates dominance
5366 information. The IL in E->src needs to be updated separately.
5367 If dominance info is not available, only the edge E is removed.*/
5368
5369 void
5370 remove_edge_and_dominated_blocks (edge e)
5371 {
5372 VEC (basic_block, heap) *bbs_to_remove = NULL;
5373 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
5374 bitmap df, df_idom;
5375 edge f;
5376 edge_iterator ei;
5377 bool none_removed = false;
5378 unsigned i;
5379 basic_block bb, dbb;
5380 bitmap_iterator bi;
5381
5382 if (!dom_info_available_p (CDI_DOMINATORS))
5383 {
5384 remove_edge (e);
5385 return;
5386 }
5387
5388 /* No updating is needed for edges to exit. */
5389 if (e->dest == EXIT_BLOCK_PTR)
5390 {
5391 if (cfgcleanup_altered_bbs)
5392 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
5393 remove_edge (e);
5394 return;
5395 }
5396
5397 /* First, we find the basic blocks to remove. If E->dest has a predecessor
5398 that is not dominated by E->dest, then this set is empty. Otherwise,
5399 all the basic blocks dominated by E->dest are removed.
5400
5401 Also, to DF_IDOM we store the immediate dominators of the blocks in
5402 the dominance frontier of E (i.e., of the successors of the
5403 removed blocks, if there are any, and of E->dest otherwise). */
5404 FOR_EACH_EDGE (f, ei, e->dest->preds)
5405 {
5406 if (f == e)
5407 continue;
5408
5409 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
5410 {
5411 none_removed = true;
5412 break;
5413 }
5414 }
5415
5416 df = BITMAP_ALLOC (NULL);
5417 df_idom = BITMAP_ALLOC (NULL);
5418
5419 if (none_removed)
5420 bitmap_set_bit (df_idom,
5421 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
5422 else
5423 {
5424 get_all_dominated_blocks (e->dest, &bbs_to_remove);
5425 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
5426 {
5427 FOR_EACH_EDGE (f, ei, bb->succs)
5428 {
5429 if (f->dest != EXIT_BLOCK_PTR)
5430 bitmap_set_bit (df, f->dest->index);
5431 }
5432 }
5433 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
5434 bitmap_clear_bit (df, bb->index);
5435
5436 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
5437 {
5438 bb = BASIC_BLOCK (i);
5439 bitmap_set_bit (df_idom,
5440 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
5441 }
5442 }
5443
5444 if (cfgcleanup_altered_bbs)
5445 {
5446 /* Record the set of the altered basic blocks. */
5447 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
5448 bitmap_ior_into (cfgcleanup_altered_bbs, df);
5449 }
5450
5451 /* Remove E and the cancelled blocks. */
5452 if (none_removed)
5453 remove_edge (e);
5454 else
5455 {
5456 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
5457 delete_basic_block (bb);
5458 }
5459
5460 /* Update the dominance information. The immediate dominator may change only
5461 for blocks whose immediate dominator belongs to DF_IDOM:
5462
5463 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
5464 removal. Let Z the arbitrary block such that idom(Z) = Y and
5465 Z dominates X after the removal. Before removal, there exists a path P
5466 from Y to X that avoids Z. Let F be the last edge on P that is
5467 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
5468 dominates W, and because of P, Z does not dominate W), and W belongs to
5469 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
5470 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
5471 {
5472 bb = BASIC_BLOCK (i);
5473 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
5474 dbb;
5475 dbb = next_dom_son (CDI_DOMINATORS, dbb))
5476 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
5477 }
5478
5479 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
5480
5481 BITMAP_FREE (df);
5482 BITMAP_FREE (df_idom);
5483 VEC_free (basic_block, heap, bbs_to_remove);
5484 VEC_free (basic_block, heap, bbs_to_fix_dom);
5485 }
5486
5487 /* Purge dead EH edges from basic block BB. */
5488
5489 bool
5490 tree_purge_dead_eh_edges (basic_block bb)
5491 {
5492 bool changed = false;
5493 edge e;
5494 edge_iterator ei;
5495 tree stmt = last_stmt (bb);
5496
5497 if (stmt && tree_can_throw_internal (stmt))
5498 return false;
5499
5500 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
5501 {
5502 if (e->flags & EDGE_EH)
5503 {
5504 remove_edge_and_dominated_blocks (e);
5505 changed = true;
5506 }
5507 else
5508 ei_next (&ei);
5509 }
5510
5511 return changed;
5512 }
5513
5514 bool
5515 tree_purge_all_dead_eh_edges (bitmap blocks)
5516 {
5517 bool changed = false;
5518 unsigned i;
5519 bitmap_iterator bi;
5520
5521 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
5522 {
5523 changed |= tree_purge_dead_eh_edges (BASIC_BLOCK (i));
5524 }
5525
5526 return changed;
5527 }
5528
5529 /* This function is called whenever a new edge is created or
5530 redirected. */
5531
5532 static void
5533 tree_execute_on_growing_pred (edge e)
5534 {
5535 basic_block bb = e->dest;
5536
5537 if (phi_nodes (bb))
5538 reserve_phi_args_for_new_edge (bb);
5539 }
5540
5541 /* This function is called immediately before edge E is removed from
5542 the edge vector E->dest->preds. */
5543
5544 static void
5545 tree_execute_on_shrinking_pred (edge e)
5546 {
5547 if (phi_nodes (e->dest))
5548 remove_phi_args (e);
5549 }
5550
5551 /*---------------------------------------------------------------------------
5552 Helper functions for Loop versioning
5553 ---------------------------------------------------------------------------*/
5554
5555 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
5556 of 'first'. Both of them are dominated by 'new_head' basic block. When
5557 'new_head' was created by 'second's incoming edge it received phi arguments
5558 on the edge by split_edge(). Later, additional edge 'e' was created to
5559 connect 'new_head' and 'first'. Now this routine adds phi args on this
5560 additional edge 'e' that new_head to second edge received as part of edge
5561 splitting.
5562 */
5563
5564 static void
5565 tree_lv_adjust_loop_header_phi (basic_block first, basic_block second,
5566 basic_block new_head, edge e)
5567 {
5568 tree phi1, phi2;
5569 edge e2 = find_edge (new_head, second);
5570
5571 /* Because NEW_HEAD has been created by splitting SECOND's incoming
5572 edge, we should always have an edge from NEW_HEAD to SECOND. */
5573 gcc_assert (e2 != NULL);
5574
5575 /* Browse all 'second' basic block phi nodes and add phi args to
5576 edge 'e' for 'first' head. PHI args are always in correct order. */
5577
5578 for (phi2 = phi_nodes (second), phi1 = phi_nodes (first);
5579 phi2 && phi1;
5580 phi2 = PHI_CHAIN (phi2), phi1 = PHI_CHAIN (phi1))
5581 {
5582 tree def = PHI_ARG_DEF (phi2, e2->dest_idx);
5583 add_phi_arg (phi1, def, e);
5584 }
5585 }
5586
5587 /* Adds a if else statement to COND_BB with condition COND_EXPR.
5588 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
5589 the destination of the ELSE part. */
5590 static void
5591 tree_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
5592 basic_block second_head ATTRIBUTE_UNUSED,
5593 basic_block cond_bb, void *cond_e)
5594 {
5595 block_stmt_iterator bsi;
5596 tree new_cond_expr = NULL_TREE;
5597 tree cond_expr = (tree) cond_e;
5598 edge e0;
5599
5600 /* Build new conditional expr */
5601 new_cond_expr = build3 (COND_EXPR, void_type_node, cond_expr,
5602 NULL_TREE, NULL_TREE);
5603
5604 /* Add new cond in cond_bb. */
5605 bsi = bsi_start (cond_bb);
5606 bsi_insert_after (&bsi, new_cond_expr, BSI_NEW_STMT);
5607 /* Adjust edges appropriately to connect new head with first head
5608 as well as second head. */
5609 e0 = single_succ_edge (cond_bb);
5610 e0->flags &= ~EDGE_FALLTHRU;
5611 e0->flags |= EDGE_FALSE_VALUE;
5612 }
5613
5614 struct cfg_hooks tree_cfg_hooks = {
5615 "tree",
5616 tree_verify_flow_info,
5617 tree_dump_bb, /* dump_bb */
5618 create_bb, /* create_basic_block */
5619 tree_redirect_edge_and_branch,/* redirect_edge_and_branch */
5620 tree_redirect_edge_and_branch_force,/* redirect_edge_and_branch_force */
5621 tree_can_remove_branch_p, /* can_remove_branch_p */
5622 remove_bb, /* delete_basic_block */
5623 tree_split_block, /* split_block */
5624 tree_move_block_after, /* move_block_after */
5625 tree_can_merge_blocks_p, /* can_merge_blocks_p */
5626 tree_merge_blocks, /* merge_blocks */
5627 tree_predict_edge, /* predict_edge */
5628 tree_predicted_by_p, /* predicted_by_p */
5629 tree_can_duplicate_bb_p, /* can_duplicate_block_p */
5630 tree_duplicate_bb, /* duplicate_block */
5631 tree_split_edge, /* split_edge */
5632 tree_make_forwarder_block, /* make_forward_block */
5633 NULL, /* tidy_fallthru_edge */
5634 tree_block_ends_with_call_p, /* block_ends_with_call_p */
5635 tree_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
5636 tree_flow_call_edges_add, /* flow_call_edges_add */
5637 tree_execute_on_growing_pred, /* execute_on_growing_pred */
5638 tree_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
5639 tree_duplicate_loop_to_header_edge, /* duplicate loop for trees */
5640 tree_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5641 tree_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
5642 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
5643 flush_pending_stmts /* flush_pending_stmts */
5644 };
5645
5646
5647 /* Split all critical edges. */
5648
5649 static unsigned int
5650 split_critical_edges (void)
5651 {
5652 basic_block bb;
5653 edge e;
5654 edge_iterator ei;
5655
5656 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
5657 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
5658 mappings around the calls to split_edge. */
5659 start_recording_case_labels ();
5660 FOR_ALL_BB (bb)
5661 {
5662 FOR_EACH_EDGE (e, ei, bb->succs)
5663 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
5664 {
5665 split_edge (e);
5666 }
5667 }
5668 end_recording_case_labels ();
5669 return 0;
5670 }
5671
5672 struct tree_opt_pass pass_split_crit_edges =
5673 {
5674 "crited", /* name */
5675 NULL, /* gate */
5676 split_critical_edges, /* execute */
5677 NULL, /* sub */
5678 NULL, /* next */
5679 0, /* static_pass_number */
5680 TV_TREE_SPLIT_EDGES, /* tv_id */
5681 PROP_cfg, /* properties required */
5682 PROP_no_crit_edges, /* properties_provided */
5683 0, /* properties_destroyed */
5684 0, /* todo_flags_start */
5685 TODO_dump_func, /* todo_flags_finish */
5686 0 /* letter */
5687 };
5688
5689 \f
5690 /* Return EXP if it is a valid GIMPLE rvalue, else gimplify it into
5691 a temporary, make sure and register it to be renamed if necessary,
5692 and finally return the temporary. Put the statements to compute
5693 EXP before the current statement in BSI. */
5694
5695 tree
5696 gimplify_val (block_stmt_iterator *bsi, tree type, tree exp)
5697 {
5698 tree t, new_stmt, orig_stmt;
5699
5700 if (is_gimple_val (exp))
5701 return exp;
5702
5703 t = make_rename_temp (type, NULL);
5704 new_stmt = build_gimple_modify_stmt (t, exp);
5705
5706 orig_stmt = bsi_stmt (*bsi);
5707 SET_EXPR_LOCUS (new_stmt, EXPR_LOCUS (orig_stmt));
5708 TREE_BLOCK (new_stmt) = TREE_BLOCK (orig_stmt);
5709
5710 bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT);
5711 if (gimple_in_ssa_p (cfun))
5712 mark_symbols_for_renaming (new_stmt);
5713
5714 return t;
5715 }
5716
5717 /* Build a ternary operation and gimplify it. Emit code before BSI.
5718 Return the gimple_val holding the result. */
5719
5720 tree
5721 gimplify_build3 (block_stmt_iterator *bsi, enum tree_code code,
5722 tree type, tree a, tree b, tree c)
5723 {
5724 tree ret;
5725
5726 ret = fold_build3 (code, type, a, b, c);
5727 STRIP_NOPS (ret);
5728
5729 return gimplify_val (bsi, type, ret);
5730 }
5731
5732 /* Build a binary operation and gimplify it. Emit code before BSI.
5733 Return the gimple_val holding the result. */
5734
5735 tree
5736 gimplify_build2 (block_stmt_iterator *bsi, enum tree_code code,
5737 tree type, tree a, tree b)
5738 {
5739 tree ret;
5740
5741 ret = fold_build2 (code, type, a, b);
5742 STRIP_NOPS (ret);
5743
5744 return gimplify_val (bsi, type, ret);
5745 }
5746
5747 /* Build a unary operation and gimplify it. Emit code before BSI.
5748 Return the gimple_val holding the result. */
5749
5750 tree
5751 gimplify_build1 (block_stmt_iterator *bsi, enum tree_code code, tree type,
5752 tree a)
5753 {
5754 tree ret;
5755
5756 ret = fold_build1 (code, type, a);
5757 STRIP_NOPS (ret);
5758
5759 return gimplify_val (bsi, type, ret);
5760 }
5761
5762
5763 \f
5764 /* Emit return warnings. */
5765
5766 static unsigned int
5767 execute_warn_function_return (void)
5768 {
5769 #ifdef USE_MAPPED_LOCATION
5770 source_location location;
5771 #else
5772 location_t *locus;
5773 #endif
5774 tree last;
5775 edge e;
5776 edge_iterator ei;
5777
5778 /* If we have a path to EXIT, then we do return. */
5779 if (TREE_THIS_VOLATILE (cfun->decl)
5780 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
5781 {
5782 #ifdef USE_MAPPED_LOCATION
5783 location = UNKNOWN_LOCATION;
5784 #else
5785 locus = NULL;
5786 #endif
5787 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5788 {
5789 last = last_stmt (e->src);
5790 if (TREE_CODE (last) == RETURN_EXPR
5791 #ifdef USE_MAPPED_LOCATION
5792 && (location = EXPR_LOCATION (last)) != UNKNOWN_LOCATION)
5793 #else
5794 && (locus = EXPR_LOCUS (last)) != NULL)
5795 #endif
5796 break;
5797 }
5798 #ifdef USE_MAPPED_LOCATION
5799 if (location == UNKNOWN_LOCATION)
5800 location = cfun->function_end_locus;
5801 warning (0, "%H%<noreturn%> function does return", &location);
5802 #else
5803 if (!locus)
5804 locus = &cfun->function_end_locus;
5805 warning (0, "%H%<noreturn%> function does return", locus);
5806 #endif
5807 }
5808
5809 /* If we see "return;" in some basic block, then we do reach the end
5810 without returning a value. */
5811 else if (warn_return_type
5812 && !TREE_NO_WARNING (cfun->decl)
5813 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
5814 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
5815 {
5816 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5817 {
5818 tree last = last_stmt (e->src);
5819 if (TREE_CODE (last) == RETURN_EXPR
5820 && TREE_OPERAND (last, 0) == NULL
5821 && !TREE_NO_WARNING (last))
5822 {
5823 #ifdef USE_MAPPED_LOCATION
5824 location = EXPR_LOCATION (last);
5825 if (location == UNKNOWN_LOCATION)
5826 location = cfun->function_end_locus;
5827 warning (0, "%Hcontrol reaches end of non-void function", &location);
5828 #else
5829 locus = EXPR_LOCUS (last);
5830 if (!locus)
5831 locus = &cfun->function_end_locus;
5832 warning (0, "%Hcontrol reaches end of non-void function", locus);
5833 #endif
5834 TREE_NO_WARNING (cfun->decl) = 1;
5835 break;
5836 }
5837 }
5838 }
5839 return 0;
5840 }
5841
5842
5843 /* Given a basic block B which ends with a conditional and has
5844 precisely two successors, determine which of the edges is taken if
5845 the conditional is true and which is taken if the conditional is
5846 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
5847
5848 void
5849 extract_true_false_edges_from_block (basic_block b,
5850 edge *true_edge,
5851 edge *false_edge)
5852 {
5853 edge e = EDGE_SUCC (b, 0);
5854
5855 if (e->flags & EDGE_TRUE_VALUE)
5856 {
5857 *true_edge = e;
5858 *false_edge = EDGE_SUCC (b, 1);
5859 }
5860 else
5861 {
5862 *false_edge = e;
5863 *true_edge = EDGE_SUCC (b, 1);
5864 }
5865 }
5866
5867 struct tree_opt_pass pass_warn_function_return =
5868 {
5869 NULL, /* name */
5870 NULL, /* gate */
5871 execute_warn_function_return, /* execute */
5872 NULL, /* sub */
5873 NULL, /* next */
5874 0, /* static_pass_number */
5875 0, /* tv_id */
5876 PROP_cfg, /* properties_required */
5877 0, /* properties_provided */
5878 0, /* properties_destroyed */
5879 0, /* todo_flags_start */
5880 0, /* todo_flags_finish */
5881 0 /* letter */
5882 };
5883
5884 /* Emit noreturn warnings. */
5885
5886 static unsigned int
5887 execute_warn_function_noreturn (void)
5888 {
5889 if (warn_missing_noreturn
5890 && !TREE_THIS_VOLATILE (cfun->decl)
5891 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
5892 && !lang_hooks.function.missing_noreturn_ok_p (cfun->decl))
5893 warning (OPT_Wmissing_noreturn, "%Jfunction might be possible candidate "
5894 "for attribute %<noreturn%>",
5895 cfun->decl);
5896 return 0;
5897 }
5898
5899 struct tree_opt_pass pass_warn_function_noreturn =
5900 {
5901 NULL, /* name */
5902 NULL, /* gate */
5903 execute_warn_function_noreturn, /* execute */
5904 NULL, /* sub */
5905 NULL, /* next */
5906 0, /* static_pass_number */
5907 0, /* tv_id */
5908 PROP_cfg, /* properties_required */
5909 0, /* properties_provided */
5910 0, /* properties_destroyed */
5911 0, /* todo_flags_start */
5912 0, /* todo_flags_finish */
5913 0 /* letter */
5914 };