Daily bump.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120 static bool verify_gimple_transaction (gimple);
121
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block, basic_block);
124 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
125 static void remove_bb (basic_block);
126 static edge find_taken_edge_computed_goto (basic_block, tree);
127 static edge find_taken_edge_cond_expr (basic_block, tree);
128 static edge find_taken_edge_switch_expr (basic_block, tree);
129 static tree find_case_label_for_value (gimple, tree);
130 static void group_case_labels_stmt (gimple);
131
132 void
133 init_empty_tree_cfg_for_function (struct function *fn)
134 {
135 /* Initialize the basic block array. */
136 init_flow (fn);
137 profile_status_for_function (fn) = PROFILE_ABSENT;
138 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
139 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
140 basic_block_info_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 basic_block_info_for_function (fn),
144 initial_cfg_capacity);
145
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn)
148 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
149 VEC_safe_grow_cleared (basic_block, gc,
150 label_to_block_map_for_function (fn),
151 initial_cfg_capacity);
152
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
157
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
162 }
163
164 void
165 init_empty_tree_cfg (void)
166 {
167 init_empty_tree_cfg_for_function (cfun);
168 }
169
170 /*---------------------------------------------------------------------------
171 Create basic blocks
172 ---------------------------------------------------------------------------*/
173
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
176
177 static void
178 build_gimple_cfg (gimple_seq seq)
179 {
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
182
183 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
184
185 init_empty_tree_cfg ();
186
187 found_computed_goto = 0;
188 make_blocks (seq);
189
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto)
196 factor_computed_gotos ();
197
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks == NUM_FIXED_BLOCKS)
200 create_empty_bb (ENTRY_BLOCK_PTR);
201
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
204 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
205
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
208
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
213
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
216 free);
217 make_edges ();
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus);
220
221 /* Debugging dumps. */
222
223 /* Write the flowgraph to a VCG file. */
224 {
225 int local_dump_flags;
226 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
227 if (vcg_file)
228 {
229 gimple_cfg2vcg (vcg_file);
230 dump_end (TDI_vcg, vcg_file);
231 }
232 }
233 }
234
235 static unsigned int
236 execute_build_cfg (void)
237 {
238 gimple_seq body = gimple_body (current_function_decl);
239
240 build_gimple_cfg (body);
241 gimple_set_body (current_function_decl, NULL);
242 if (dump_file && (dump_flags & TDF_DETAILS))
243 {
244 fprintf (dump_file, "Scope blocks:\n");
245 dump_scope_blocks (dump_file, dump_flags);
246 }
247 return 0;
248 }
249
250 struct gimple_opt_pass pass_build_cfg =
251 {
252 {
253 GIMPLE_PASS,
254 "cfg", /* name */
255 NULL, /* gate */
256 execute_build_cfg, /* execute */
257 NULL, /* sub */
258 NULL, /* next */
259 0, /* static_pass_number */
260 TV_TREE_CFG, /* tv_id */
261 PROP_gimple_leh, /* properties_required */
262 PROP_cfg, /* properties_provided */
263 0, /* properties_destroyed */
264 0, /* todo_flags_start */
265 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
266 }
267 };
268
269
270 /* Return true if T is a computed goto. */
271
272 static bool
273 computed_goto_p (gimple t)
274 {
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
277 }
278
279
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
284
285 static void
286 factor_computed_gotos (void)
287 {
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
293
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
297
298 FOR_EACH_BB (bb)
299 {
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
302
303 if (gsi_end_p (gsi))
304 continue;
305
306 last = gsi_stmt (gsi);
307
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
312
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
315 {
316 gimple assignment;
317
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
322 {
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
325
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
331
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
339
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
343 }
344
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
348
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
351 }
352 }
353 }
354
355
356 /* Build a flowgraph for the sequence of stmts SEQ. */
357
358 static void
359 make_blocks (gimple_seq seq)
360 {
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
366
367 while (!gsi_end_p (i))
368 {
369 gimple prev_stmt;
370
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
373
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
378 {
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
383 }
384
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
388
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
391
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
395 {
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
404 {
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
415 }
416 start_new_block = true;
417 }
418
419 gsi_next (&i);
420 first_stmt_of_seq = false;
421 }
422 }
423
424
425 /* Create and return a new empty basic block after bb AFTER. */
426
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
429 {
430 basic_block bb;
431
432 gcc_assert (!e);
433
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
438
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
443
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
446
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
449 {
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
452 }
453
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
456
457 n_basic_blocks++;
458 last_basic_block++;
459
460 return bb;
461 }
462
463
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
467
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
469
470 void
471 fold_cond_expr_cond (void)
472 {
473 basic_block bb;
474
475 FOR_EACH_BB (bb)
476 {
477 gimple stmt = last_stmt (bb);
478
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
480 {
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
484
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
489 {
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
492 }
493 else
494 zerop = onep = false;
495
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
503 }
504 }
505 }
506
507 /* Join all the blocks in the flowgraph. */
508
509 static void
510 make_edges (void)
511 {
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
514
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
518
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
521 {
522 gimple last = last_stmt (bb);
523 bool fallthru;
524
525 if (last)
526 {
527 enum gimple_code code = gimple_code (last);
528 switch (code)
529 {
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
553
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
560
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
564
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
572
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
580
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
585
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
597
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
602
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
606
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
611
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
620
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
624 {
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
633
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
641
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
644 {
645 basic_block switch_bb = single_succ (cur_region->entry);
646
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
649 {
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
653 }
654
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
658
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
662 }
663 break;
664
665 default:
666 gcc_unreachable ();
667 }
668 break;
669
670 case GIMPLE_TRANSACTION:
671 {
672 tree abort_label = gimple_transaction_label (last);
673 if (abort_label)
674 make_edge (bb, label_to_block (abort_label), 0);
675 fallthru = true;
676 }
677 break;
678
679 default:
680 gcc_assert (!stmt_ends_bb_p (last));
681 fallthru = true;
682 }
683 }
684 else
685 fallthru = true;
686
687 if (fallthru)
688 {
689 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
690 if (last)
691 assign_discriminator (gimple_location (last), bb->next_bb);
692 }
693 }
694
695 if (root_omp_region)
696 free_omp_regions ();
697
698 /* Fold COND_EXPR_COND of each COND_EXPR. */
699 fold_cond_expr_cond ();
700 }
701
702 /* Trivial hash function for a location_t. ITEM is a pointer to
703 a hash table entry that maps a location_t to a discriminator. */
704
705 static unsigned int
706 locus_map_hash (const void *item)
707 {
708 return ((const struct locus_discrim_map *) item)->locus;
709 }
710
711 /* Equality function for the locus-to-discriminator map. VA and VB
712 point to the two hash table entries to compare. */
713
714 static int
715 locus_map_eq (const void *va, const void *vb)
716 {
717 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
718 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
719 return a->locus == b->locus;
720 }
721
722 /* Find the next available discriminator value for LOCUS. The
723 discriminator distinguishes among several basic blocks that
724 share a common locus, allowing for more accurate sample-based
725 profiling. */
726
727 static int
728 next_discriminator_for_locus (location_t locus)
729 {
730 struct locus_discrim_map item;
731 struct locus_discrim_map **slot;
732
733 item.locus = locus;
734 item.discriminator = 0;
735 slot = (struct locus_discrim_map **)
736 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
737 (hashval_t) locus, INSERT);
738 gcc_assert (slot);
739 if (*slot == HTAB_EMPTY_ENTRY)
740 {
741 *slot = XNEW (struct locus_discrim_map);
742 gcc_assert (*slot);
743 (*slot)->locus = locus;
744 (*slot)->discriminator = 0;
745 }
746 (*slot)->discriminator++;
747 return (*slot)->discriminator;
748 }
749
750 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
751
752 static bool
753 same_line_p (location_t locus1, location_t locus2)
754 {
755 expanded_location from, to;
756
757 if (locus1 == locus2)
758 return true;
759
760 from = expand_location (locus1);
761 to = expand_location (locus2);
762
763 if (from.line != to.line)
764 return false;
765 if (from.file == to.file)
766 return true;
767 return (from.file != NULL
768 && to.file != NULL
769 && filename_cmp (from.file, to.file) == 0);
770 }
771
772 /* Assign a unique discriminator value to block BB if it begins at the same
773 LOCUS as its predecessor block. */
774
775 static void
776 assign_discriminator (location_t locus, basic_block bb)
777 {
778 gimple first_in_to_bb, last_in_to_bb;
779
780 if (locus == 0 || bb->discriminator != 0)
781 return;
782
783 first_in_to_bb = first_non_label_stmt (bb);
784 last_in_to_bb = last_stmt (bb);
785 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
786 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
787 bb->discriminator = next_discriminator_for_locus (locus);
788 }
789
790 /* Create the edges for a GIMPLE_COND starting at block BB. */
791
792 static void
793 make_cond_expr_edges (basic_block bb)
794 {
795 gimple entry = last_stmt (bb);
796 gimple then_stmt, else_stmt;
797 basic_block then_bb, else_bb;
798 tree then_label, else_label;
799 edge e;
800 location_t entry_locus;
801
802 gcc_assert (entry);
803 gcc_assert (gimple_code (entry) == GIMPLE_COND);
804
805 entry_locus = gimple_location (entry);
806
807 /* Entry basic blocks for each component. */
808 then_label = gimple_cond_true_label (entry);
809 else_label = gimple_cond_false_label (entry);
810 then_bb = label_to_block (then_label);
811 else_bb = label_to_block (else_label);
812 then_stmt = first_stmt (then_bb);
813 else_stmt = first_stmt (else_bb);
814
815 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
816 assign_discriminator (entry_locus, then_bb);
817 e->goto_locus = gimple_location (then_stmt);
818 if (e->goto_locus)
819 e->goto_block = gimple_block (then_stmt);
820 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
821 if (e)
822 {
823 assign_discriminator (entry_locus, else_bb);
824 e->goto_locus = gimple_location (else_stmt);
825 if (e->goto_locus)
826 e->goto_block = gimple_block (else_stmt);
827 }
828
829 /* We do not need the labels anymore. */
830 gimple_cond_set_true_label (entry, NULL_TREE);
831 gimple_cond_set_false_label (entry, NULL_TREE);
832 }
833
834
835 /* Called for each element in the hash table (P) as we delete the
836 edge to cases hash table.
837
838 Clear all the TREE_CHAINs to prevent problems with copying of
839 SWITCH_EXPRs and structure sharing rules, then free the hash table
840 element. */
841
842 static bool
843 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
844 void *data ATTRIBUTE_UNUSED)
845 {
846 tree t, next;
847
848 for (t = (tree) *value; t; t = next)
849 {
850 next = CASE_CHAIN (t);
851 CASE_CHAIN (t) = NULL;
852 }
853
854 *value = NULL;
855 return true;
856 }
857
858 /* Start recording information mapping edges to case labels. */
859
860 void
861 start_recording_case_labels (void)
862 {
863 gcc_assert (edge_to_cases == NULL);
864 edge_to_cases = pointer_map_create ();
865 touched_switch_bbs = BITMAP_ALLOC (NULL);
866 }
867
868 /* Return nonzero if we are recording information for case labels. */
869
870 static bool
871 recording_case_labels_p (void)
872 {
873 return (edge_to_cases != NULL);
874 }
875
876 /* Stop recording information mapping edges to case labels and
877 remove any information we have recorded. */
878 void
879 end_recording_case_labels (void)
880 {
881 bitmap_iterator bi;
882 unsigned i;
883 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
884 pointer_map_destroy (edge_to_cases);
885 edge_to_cases = NULL;
886 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
887 {
888 basic_block bb = BASIC_BLOCK (i);
889 if (bb)
890 {
891 gimple stmt = last_stmt (bb);
892 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
893 group_case_labels_stmt (stmt);
894 }
895 }
896 BITMAP_FREE (touched_switch_bbs);
897 }
898
899 /* If we are inside a {start,end}_recording_cases block, then return
900 a chain of CASE_LABEL_EXPRs from T which reference E.
901
902 Otherwise return NULL. */
903
904 static tree
905 get_cases_for_edge (edge e, gimple t)
906 {
907 void **slot;
908 size_t i, n;
909
910 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
911 chains available. Return NULL so the caller can detect this case. */
912 if (!recording_case_labels_p ())
913 return NULL;
914
915 slot = pointer_map_contains (edge_to_cases, e);
916 if (slot)
917 return (tree) *slot;
918
919 /* If we did not find E in the hash table, then this must be the first
920 time we have been queried for information about E & T. Add all the
921 elements from T to the hash table then perform the query again. */
922
923 n = gimple_switch_num_labels (t);
924 for (i = 0; i < n; i++)
925 {
926 tree elt = gimple_switch_label (t, i);
927 tree lab = CASE_LABEL (elt);
928 basic_block label_bb = label_to_block (lab);
929 edge this_edge = find_edge (e->src, label_bb);
930
931 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
932 a new chain. */
933 slot = pointer_map_insert (edge_to_cases, this_edge);
934 CASE_CHAIN (elt) = (tree) *slot;
935 *slot = elt;
936 }
937
938 return (tree) *pointer_map_contains (edge_to_cases, e);
939 }
940
941 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
942
943 static void
944 make_gimple_switch_edges (basic_block bb)
945 {
946 gimple entry = last_stmt (bb);
947 location_t entry_locus;
948 size_t i, n;
949
950 entry_locus = gimple_location (entry);
951
952 n = gimple_switch_num_labels (entry);
953
954 for (i = 0; i < n; ++i)
955 {
956 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
957 basic_block label_bb = label_to_block (lab);
958 make_edge (bb, label_bb, 0);
959 assign_discriminator (entry_locus, label_bb);
960 }
961 }
962
963
964 /* Return the basic block holding label DEST. */
965
966 basic_block
967 label_to_block_fn (struct function *ifun, tree dest)
968 {
969 int uid = LABEL_DECL_UID (dest);
970
971 /* We would die hard when faced by an undefined label. Emit a label to
972 the very first basic block. This will hopefully make even the dataflow
973 and undefined variable warnings quite right. */
974 if (seen_error () && uid < 0)
975 {
976 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
977 gimple stmt;
978
979 stmt = gimple_build_label (dest);
980 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
981 uid = LABEL_DECL_UID (dest);
982 }
983 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
984 <= (unsigned int) uid)
985 return NULL;
986 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
987 }
988
989 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
990 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
991
992 void
993 make_abnormal_goto_edges (basic_block bb, bool for_call)
994 {
995 basic_block target_bb;
996 gimple_stmt_iterator gsi;
997
998 FOR_EACH_BB (target_bb)
999 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1000 {
1001 gimple label_stmt = gsi_stmt (gsi);
1002 tree target;
1003
1004 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1005 break;
1006
1007 target = gimple_label_label (label_stmt);
1008
1009 /* Make an edge to every label block that has been marked as a
1010 potential target for a computed goto or a non-local goto. */
1011 if ((FORCED_LABEL (target) && !for_call)
1012 || (DECL_NONLOCAL (target) && for_call))
1013 {
1014 make_edge (bb, target_bb, EDGE_ABNORMAL);
1015 break;
1016 }
1017 }
1018 }
1019
1020 /* Create edges for a goto statement at block BB. */
1021
1022 static void
1023 make_goto_expr_edges (basic_block bb)
1024 {
1025 gimple_stmt_iterator last = gsi_last_bb (bb);
1026 gimple goto_t = gsi_stmt (last);
1027
1028 /* A simple GOTO creates normal edges. */
1029 if (simple_goto_p (goto_t))
1030 {
1031 tree dest = gimple_goto_dest (goto_t);
1032 basic_block label_bb = label_to_block (dest);
1033 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1034 e->goto_locus = gimple_location (goto_t);
1035 assign_discriminator (e->goto_locus, label_bb);
1036 if (e->goto_locus)
1037 e->goto_block = gimple_block (goto_t);
1038 gsi_remove (&last, true);
1039 return;
1040 }
1041
1042 /* A computed GOTO creates abnormal edges. */
1043 make_abnormal_goto_edges (bb, false);
1044 }
1045
1046 /* Create edges for an asm statement with labels at block BB. */
1047
1048 static void
1049 make_gimple_asm_edges (basic_block bb)
1050 {
1051 gimple stmt = last_stmt (bb);
1052 location_t stmt_loc = gimple_location (stmt);
1053 int i, n = gimple_asm_nlabels (stmt);
1054
1055 for (i = 0; i < n; ++i)
1056 {
1057 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1058 basic_block label_bb = label_to_block (label);
1059 make_edge (bb, label_bb, 0);
1060 assign_discriminator (stmt_loc, label_bb);
1061 }
1062 }
1063
1064 /*---------------------------------------------------------------------------
1065 Flowgraph analysis
1066 ---------------------------------------------------------------------------*/
1067
1068 /* Cleanup useless labels in basic blocks. This is something we wish
1069 to do early because it allows us to group case labels before creating
1070 the edges for the CFG, and it speeds up block statement iterators in
1071 all passes later on.
1072 We rerun this pass after CFG is created, to get rid of the labels that
1073 are no longer referenced. After then we do not run it any more, since
1074 (almost) no new labels should be created. */
1075
1076 /* A map from basic block index to the leading label of that block. */
1077 static struct label_record
1078 {
1079 /* The label. */
1080 tree label;
1081
1082 /* True if the label is referenced from somewhere. */
1083 bool used;
1084 } *label_for_bb;
1085
1086 /* Given LABEL return the first label in the same basic block. */
1087
1088 static tree
1089 main_block_label (tree label)
1090 {
1091 basic_block bb = label_to_block (label);
1092 tree main_label = label_for_bb[bb->index].label;
1093
1094 /* label_to_block possibly inserted undefined label into the chain. */
1095 if (!main_label)
1096 {
1097 label_for_bb[bb->index].label = label;
1098 main_label = label;
1099 }
1100
1101 label_for_bb[bb->index].used = true;
1102 return main_label;
1103 }
1104
1105 /* Clean up redundant labels within the exception tree. */
1106
1107 static void
1108 cleanup_dead_labels_eh (void)
1109 {
1110 eh_landing_pad lp;
1111 eh_region r;
1112 tree lab;
1113 int i;
1114
1115 if (cfun->eh == NULL)
1116 return;
1117
1118 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1119 if (lp && lp->post_landing_pad)
1120 {
1121 lab = main_block_label (lp->post_landing_pad);
1122 if (lab != lp->post_landing_pad)
1123 {
1124 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1125 EH_LANDING_PAD_NR (lab) = lp->index;
1126 }
1127 }
1128
1129 FOR_ALL_EH_REGION (r)
1130 switch (r->type)
1131 {
1132 case ERT_CLEANUP:
1133 case ERT_MUST_NOT_THROW:
1134 break;
1135
1136 case ERT_TRY:
1137 {
1138 eh_catch c;
1139 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1140 {
1141 lab = c->label;
1142 if (lab)
1143 c->label = main_block_label (lab);
1144 }
1145 }
1146 break;
1147
1148 case ERT_ALLOWED_EXCEPTIONS:
1149 lab = r->u.allowed.label;
1150 if (lab)
1151 r->u.allowed.label = main_block_label (lab);
1152 break;
1153 }
1154 }
1155
1156
1157 /* Cleanup redundant labels. This is a three-step process:
1158 1) Find the leading label for each block.
1159 2) Redirect all references to labels to the leading labels.
1160 3) Cleanup all useless labels. */
1161
1162 void
1163 cleanup_dead_labels (void)
1164 {
1165 basic_block bb;
1166 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1167
1168 /* Find a suitable label for each block. We use the first user-defined
1169 label if there is one, or otherwise just the first label we see. */
1170 FOR_EACH_BB (bb)
1171 {
1172 gimple_stmt_iterator i;
1173
1174 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1175 {
1176 tree label;
1177 gimple stmt = gsi_stmt (i);
1178
1179 if (gimple_code (stmt) != GIMPLE_LABEL)
1180 break;
1181
1182 label = gimple_label_label (stmt);
1183
1184 /* If we have not yet seen a label for the current block,
1185 remember this one and see if there are more labels. */
1186 if (!label_for_bb[bb->index].label)
1187 {
1188 label_for_bb[bb->index].label = label;
1189 continue;
1190 }
1191
1192 /* If we did see a label for the current block already, but it
1193 is an artificially created label, replace it if the current
1194 label is a user defined label. */
1195 if (!DECL_ARTIFICIAL (label)
1196 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1197 {
1198 label_for_bb[bb->index].label = label;
1199 break;
1200 }
1201 }
1202 }
1203
1204 /* Now redirect all jumps/branches to the selected label.
1205 First do so for each block ending in a control statement. */
1206 FOR_EACH_BB (bb)
1207 {
1208 gimple stmt = last_stmt (bb);
1209 tree label, new_label;
1210
1211 if (!stmt)
1212 continue;
1213
1214 switch (gimple_code (stmt))
1215 {
1216 case GIMPLE_COND:
1217 label = gimple_cond_true_label (stmt);
1218 if (label)
1219 {
1220 new_label = main_block_label (label);
1221 if (new_label != label)
1222 gimple_cond_set_true_label (stmt, new_label);
1223 }
1224
1225 label = gimple_cond_false_label (stmt);
1226 if (label)
1227 {
1228 new_label = main_block_label (label);
1229 if (new_label != label)
1230 gimple_cond_set_false_label (stmt, new_label);
1231 }
1232 break;
1233
1234 case GIMPLE_SWITCH:
1235 {
1236 size_t i, n = gimple_switch_num_labels (stmt);
1237
1238 /* Replace all destination labels. */
1239 for (i = 0; i < n; ++i)
1240 {
1241 tree case_label = gimple_switch_label (stmt, i);
1242 label = CASE_LABEL (case_label);
1243 new_label = main_block_label (label);
1244 if (new_label != label)
1245 CASE_LABEL (case_label) = new_label;
1246 }
1247 break;
1248 }
1249
1250 case GIMPLE_ASM:
1251 {
1252 int i, n = gimple_asm_nlabels (stmt);
1253
1254 for (i = 0; i < n; ++i)
1255 {
1256 tree cons = gimple_asm_label_op (stmt, i);
1257 tree label = main_block_label (TREE_VALUE (cons));
1258 TREE_VALUE (cons) = label;
1259 }
1260 break;
1261 }
1262
1263 /* We have to handle gotos until they're removed, and we don't
1264 remove them until after we've created the CFG edges. */
1265 case GIMPLE_GOTO:
1266 if (!computed_goto_p (stmt))
1267 {
1268 label = gimple_goto_dest (stmt);
1269 new_label = main_block_label (label);
1270 if (new_label != label)
1271 gimple_goto_set_dest (stmt, new_label);
1272 }
1273 break;
1274
1275 case GIMPLE_TRANSACTION:
1276 {
1277 tree label = gimple_transaction_label (stmt);
1278 if (label)
1279 {
1280 tree new_label = main_block_label (label);
1281 if (new_label != label)
1282 gimple_transaction_set_label (stmt, new_label);
1283 }
1284 }
1285 break;
1286
1287 default:
1288 break;
1289 }
1290 }
1291
1292 /* Do the same for the exception region tree labels. */
1293 cleanup_dead_labels_eh ();
1294
1295 /* Finally, purge dead labels. All user-defined labels and labels that
1296 can be the target of non-local gotos and labels which have their
1297 address taken are preserved. */
1298 FOR_EACH_BB (bb)
1299 {
1300 gimple_stmt_iterator i;
1301 tree label_for_this_bb = label_for_bb[bb->index].label;
1302
1303 if (!label_for_this_bb)
1304 continue;
1305
1306 /* If the main label of the block is unused, we may still remove it. */
1307 if (!label_for_bb[bb->index].used)
1308 label_for_this_bb = NULL;
1309
1310 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1311 {
1312 tree label;
1313 gimple stmt = gsi_stmt (i);
1314
1315 if (gimple_code (stmt) != GIMPLE_LABEL)
1316 break;
1317
1318 label = gimple_label_label (stmt);
1319
1320 if (label == label_for_this_bb
1321 || !DECL_ARTIFICIAL (label)
1322 || DECL_NONLOCAL (label)
1323 || FORCED_LABEL (label))
1324 gsi_next (&i);
1325 else
1326 gsi_remove (&i, true);
1327 }
1328 }
1329
1330 free (label_for_bb);
1331 }
1332
1333 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1334 the ones jumping to the same label.
1335 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1336
1337 static void
1338 group_case_labels_stmt (gimple stmt)
1339 {
1340 int old_size = gimple_switch_num_labels (stmt);
1341 int i, j, new_size = old_size;
1342 tree default_case = NULL_TREE;
1343 tree default_label = NULL_TREE;
1344 bool has_default;
1345
1346 /* The default label is always the first case in a switch
1347 statement after gimplification if it was not optimized
1348 away */
1349 if (!CASE_LOW (gimple_switch_default_label (stmt))
1350 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1351 {
1352 default_case = gimple_switch_default_label (stmt);
1353 default_label = CASE_LABEL (default_case);
1354 has_default = true;
1355 }
1356 else
1357 has_default = false;
1358
1359 /* Look for possible opportunities to merge cases. */
1360 if (has_default)
1361 i = 1;
1362 else
1363 i = 0;
1364 while (i < old_size)
1365 {
1366 tree base_case, base_label, base_high;
1367 base_case = gimple_switch_label (stmt, i);
1368
1369 gcc_assert (base_case);
1370 base_label = CASE_LABEL (base_case);
1371
1372 /* Discard cases that have the same destination as the
1373 default case. */
1374 if (base_label == default_label)
1375 {
1376 gimple_switch_set_label (stmt, i, NULL_TREE);
1377 i++;
1378 new_size--;
1379 continue;
1380 }
1381
1382 base_high = CASE_HIGH (base_case)
1383 ? CASE_HIGH (base_case)
1384 : CASE_LOW (base_case);
1385 i++;
1386
1387 /* Try to merge case labels. Break out when we reach the end
1388 of the label vector or when we cannot merge the next case
1389 label with the current one. */
1390 while (i < old_size)
1391 {
1392 tree merge_case = gimple_switch_label (stmt, i);
1393 tree merge_label = CASE_LABEL (merge_case);
1394 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1395 double_int_one);
1396
1397 /* Merge the cases if they jump to the same place,
1398 and their ranges are consecutive. */
1399 if (merge_label == base_label
1400 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1401 bhp1))
1402 {
1403 base_high = CASE_HIGH (merge_case) ?
1404 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1405 CASE_HIGH (base_case) = base_high;
1406 gimple_switch_set_label (stmt, i, NULL_TREE);
1407 new_size--;
1408 i++;
1409 }
1410 else
1411 break;
1412 }
1413 }
1414
1415 /* Compress the case labels in the label vector, and adjust the
1416 length of the vector. */
1417 for (i = 0, j = 0; i < new_size; i++)
1418 {
1419 while (! gimple_switch_label (stmt, j))
1420 j++;
1421 gimple_switch_set_label (stmt, i,
1422 gimple_switch_label (stmt, j++));
1423 }
1424
1425 gcc_assert (new_size <= old_size);
1426 gimple_switch_set_num_labels (stmt, new_size);
1427 }
1428
1429 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1430 and scan the sorted vector of cases. Combine the ones jumping to the
1431 same label. */
1432
1433 void
1434 group_case_labels (void)
1435 {
1436 basic_block bb;
1437
1438 FOR_EACH_BB (bb)
1439 {
1440 gimple stmt = last_stmt (bb);
1441 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1442 group_case_labels_stmt (stmt);
1443 }
1444 }
1445
1446 /* Checks whether we can merge block B into block A. */
1447
1448 static bool
1449 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1450 {
1451 gimple stmt;
1452 gimple_stmt_iterator gsi;
1453 gimple_seq phis;
1454
1455 if (!single_succ_p (a))
1456 return false;
1457
1458 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
1459 return false;
1460
1461 if (single_succ (a) != b)
1462 return false;
1463
1464 if (!single_pred_p (b))
1465 return false;
1466
1467 if (b == EXIT_BLOCK_PTR)
1468 return false;
1469
1470 /* If A ends by a statement causing exceptions or something similar, we
1471 cannot merge the blocks. */
1472 stmt = last_stmt (a);
1473 if (stmt && stmt_ends_bb_p (stmt))
1474 return false;
1475
1476 /* Do not allow a block with only a non-local label to be merged. */
1477 if (stmt
1478 && gimple_code (stmt) == GIMPLE_LABEL
1479 && DECL_NONLOCAL (gimple_label_label (stmt)))
1480 return false;
1481
1482 /* Examine the labels at the beginning of B. */
1483 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1484 {
1485 tree lab;
1486 stmt = gsi_stmt (gsi);
1487 if (gimple_code (stmt) != GIMPLE_LABEL)
1488 break;
1489 lab = gimple_label_label (stmt);
1490
1491 /* Do not remove user forced labels or for -O0 any user labels. */
1492 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1493 return false;
1494 }
1495
1496 /* Protect the loop latches. */
1497 if (current_loops && b->loop_father->latch == b)
1498 return false;
1499
1500 /* It must be possible to eliminate all phi nodes in B. If ssa form
1501 is not up-to-date and a name-mapping is registered, we cannot eliminate
1502 any phis. Symbols marked for renaming are never a problem though. */
1503 phis = phi_nodes (b);
1504 if (!gimple_seq_empty_p (phis)
1505 && name_mappings_registered_p ())
1506 return false;
1507
1508 /* When not optimizing, don't merge if we'd lose goto_locus. */
1509 if (!optimize
1510 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1511 {
1512 location_t goto_locus = single_succ_edge (a)->goto_locus;
1513 gimple_stmt_iterator prev, next;
1514 prev = gsi_last_nondebug_bb (a);
1515 next = gsi_after_labels (b);
1516 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1517 gsi_next_nondebug (&next);
1518 if ((gsi_end_p (prev)
1519 || gimple_location (gsi_stmt (prev)) != goto_locus)
1520 && (gsi_end_p (next)
1521 || gimple_location (gsi_stmt (next)) != goto_locus))
1522 return false;
1523 }
1524
1525 return true;
1526 }
1527
1528 /* Return true if the var whose chain of uses starts at PTR has no
1529 nondebug uses. */
1530 bool
1531 has_zero_uses_1 (const ssa_use_operand_t *head)
1532 {
1533 const ssa_use_operand_t *ptr;
1534
1535 for (ptr = head->next; ptr != head; ptr = ptr->next)
1536 if (!is_gimple_debug (USE_STMT (ptr)))
1537 return false;
1538
1539 return true;
1540 }
1541
1542 /* Return true if the var whose chain of uses starts at PTR has a
1543 single nondebug use. Set USE_P and STMT to that single nondebug
1544 use, if so, or to NULL otherwise. */
1545 bool
1546 single_imm_use_1 (const ssa_use_operand_t *head,
1547 use_operand_p *use_p, gimple *stmt)
1548 {
1549 ssa_use_operand_t *ptr, *single_use = 0;
1550
1551 for (ptr = head->next; ptr != head; ptr = ptr->next)
1552 if (!is_gimple_debug (USE_STMT (ptr)))
1553 {
1554 if (single_use)
1555 {
1556 single_use = NULL;
1557 break;
1558 }
1559 single_use = ptr;
1560 }
1561
1562 if (use_p)
1563 *use_p = single_use;
1564
1565 if (stmt)
1566 *stmt = single_use ? single_use->loc.stmt : NULL;
1567
1568 return !!single_use;
1569 }
1570
1571 /* Replaces all uses of NAME by VAL. */
1572
1573 void
1574 replace_uses_by (tree name, tree val)
1575 {
1576 imm_use_iterator imm_iter;
1577 use_operand_p use;
1578 gimple stmt;
1579 edge e;
1580
1581 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1582 {
1583 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1584 {
1585 replace_exp (use, val);
1586
1587 if (gimple_code (stmt) == GIMPLE_PHI)
1588 {
1589 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1590 if (e->flags & EDGE_ABNORMAL)
1591 {
1592 /* This can only occur for virtual operands, since
1593 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1594 would prevent replacement. */
1595 gcc_checking_assert (!is_gimple_reg (name));
1596 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1597 }
1598 }
1599 }
1600
1601 if (gimple_code (stmt) != GIMPLE_PHI)
1602 {
1603 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1604 gimple orig_stmt = stmt;
1605 size_t i;
1606
1607 /* Mark the block if we changed the last stmt in it. */
1608 if (cfgcleanup_altered_bbs
1609 && stmt_ends_bb_p (stmt))
1610 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1611
1612 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1613 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1614 only change sth from non-invariant to invariant, and only
1615 when propagating constants. */
1616 if (is_gimple_min_invariant (val))
1617 for (i = 0; i < gimple_num_ops (stmt); i++)
1618 {
1619 tree op = gimple_op (stmt, i);
1620 /* Operands may be empty here. For example, the labels
1621 of a GIMPLE_COND are nulled out following the creation
1622 of the corresponding CFG edges. */
1623 if (op && TREE_CODE (op) == ADDR_EXPR)
1624 recompute_tree_invariant_for_addr_expr (op);
1625 }
1626
1627 if (fold_stmt (&gsi))
1628 stmt = gsi_stmt (gsi);
1629
1630 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1631 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1632
1633 update_stmt (stmt);
1634 }
1635 }
1636
1637 gcc_checking_assert (has_zero_uses (name));
1638
1639 /* Also update the trees stored in loop structures. */
1640 if (current_loops)
1641 {
1642 struct loop *loop;
1643 loop_iterator li;
1644
1645 FOR_EACH_LOOP (li, loop, 0)
1646 {
1647 substitute_in_loop_info (loop, name, val);
1648 }
1649 }
1650 }
1651
1652 /* Merge block B into block A. */
1653
1654 static void
1655 gimple_merge_blocks (basic_block a, basic_block b)
1656 {
1657 gimple_stmt_iterator last, gsi, psi;
1658 gimple_seq phis = phi_nodes (b);
1659
1660 if (dump_file)
1661 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1662
1663 /* Remove all single-valued PHI nodes from block B of the form
1664 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1665 gsi = gsi_last_bb (a);
1666 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1667 {
1668 gimple phi = gsi_stmt (psi);
1669 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1670 gimple copy;
1671 bool may_replace_uses = !is_gimple_reg (def)
1672 || may_propagate_copy (def, use);
1673
1674 /* In case we maintain loop closed ssa form, do not propagate arguments
1675 of loop exit phi nodes. */
1676 if (current_loops
1677 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1678 && is_gimple_reg (def)
1679 && TREE_CODE (use) == SSA_NAME
1680 && a->loop_father != b->loop_father)
1681 may_replace_uses = false;
1682
1683 if (!may_replace_uses)
1684 {
1685 gcc_assert (is_gimple_reg (def));
1686
1687 /* Note that just emitting the copies is fine -- there is no problem
1688 with ordering of phi nodes. This is because A is the single
1689 predecessor of B, therefore results of the phi nodes cannot
1690 appear as arguments of the phi nodes. */
1691 copy = gimple_build_assign (def, use);
1692 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1693 remove_phi_node (&psi, false);
1694 }
1695 else
1696 {
1697 /* If we deal with a PHI for virtual operands, we can simply
1698 propagate these without fussing with folding or updating
1699 the stmt. */
1700 if (!is_gimple_reg (def))
1701 {
1702 imm_use_iterator iter;
1703 use_operand_p use_p;
1704 gimple stmt;
1705
1706 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1707 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1708 SET_USE (use_p, use);
1709
1710 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1711 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1712 }
1713 else
1714 replace_uses_by (def, use);
1715
1716 remove_phi_node (&psi, true);
1717 }
1718 }
1719
1720 /* Ensure that B follows A. */
1721 move_block_after (b, a);
1722
1723 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1724 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1725
1726 /* Remove labels from B and set gimple_bb to A for other statements. */
1727 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1728 {
1729 gimple stmt = gsi_stmt (gsi);
1730 if (gimple_code (stmt) == GIMPLE_LABEL)
1731 {
1732 tree label = gimple_label_label (stmt);
1733 int lp_nr;
1734
1735 gsi_remove (&gsi, false);
1736
1737 /* Now that we can thread computed gotos, we might have
1738 a situation where we have a forced label in block B
1739 However, the label at the start of block B might still be
1740 used in other ways (think about the runtime checking for
1741 Fortran assigned gotos). So we can not just delete the
1742 label. Instead we move the label to the start of block A. */
1743 if (FORCED_LABEL (label))
1744 {
1745 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1746 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1747 }
1748 /* Other user labels keep around in a form of a debug stmt. */
1749 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1750 {
1751 gimple dbg = gimple_build_debug_bind (label,
1752 integer_zero_node,
1753 stmt);
1754 gimple_debug_bind_reset_value (dbg);
1755 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1756 }
1757
1758 lp_nr = EH_LANDING_PAD_NR (label);
1759 if (lp_nr)
1760 {
1761 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1762 lp->post_landing_pad = NULL;
1763 }
1764 }
1765 else
1766 {
1767 gimple_set_bb (stmt, a);
1768 gsi_next (&gsi);
1769 }
1770 }
1771
1772 /* Merge the sequences. */
1773 last = gsi_last_bb (a);
1774 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1775 set_bb_seq (b, NULL);
1776
1777 if (cfgcleanup_altered_bbs)
1778 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1779 }
1780
1781
1782 /* Return the one of two successors of BB that is not reachable by a
1783 complex edge, if there is one. Else, return BB. We use
1784 this in optimizations that use post-dominators for their heuristics,
1785 to catch the cases in C++ where function calls are involved. */
1786
1787 basic_block
1788 single_noncomplex_succ (basic_block bb)
1789 {
1790 edge e0, e1;
1791 if (EDGE_COUNT (bb->succs) != 2)
1792 return bb;
1793
1794 e0 = EDGE_SUCC (bb, 0);
1795 e1 = EDGE_SUCC (bb, 1);
1796 if (e0->flags & EDGE_COMPLEX)
1797 return e1->dest;
1798 if (e1->flags & EDGE_COMPLEX)
1799 return e0->dest;
1800
1801 return bb;
1802 }
1803
1804 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1805
1806 void
1807 notice_special_calls (gimple call)
1808 {
1809 int flags = gimple_call_flags (call);
1810
1811 if (flags & ECF_MAY_BE_ALLOCA)
1812 cfun->calls_alloca = true;
1813 if (flags & ECF_RETURNS_TWICE)
1814 cfun->calls_setjmp = true;
1815 }
1816
1817
1818 /* Clear flags set by notice_special_calls. Used by dead code removal
1819 to update the flags. */
1820
1821 void
1822 clear_special_calls (void)
1823 {
1824 cfun->calls_alloca = false;
1825 cfun->calls_setjmp = false;
1826 }
1827
1828 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1829
1830 static void
1831 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1832 {
1833 /* Since this block is no longer reachable, we can just delete all
1834 of its PHI nodes. */
1835 remove_phi_nodes (bb);
1836
1837 /* Remove edges to BB's successors. */
1838 while (EDGE_COUNT (bb->succs) > 0)
1839 remove_edge (EDGE_SUCC (bb, 0));
1840 }
1841
1842
1843 /* Remove statements of basic block BB. */
1844
1845 static void
1846 remove_bb (basic_block bb)
1847 {
1848 gimple_stmt_iterator i;
1849
1850 if (dump_file)
1851 {
1852 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1853 if (dump_flags & TDF_DETAILS)
1854 {
1855 dump_bb (bb, dump_file, 0);
1856 fprintf (dump_file, "\n");
1857 }
1858 }
1859
1860 if (current_loops)
1861 {
1862 struct loop *loop = bb->loop_father;
1863
1864 /* If a loop gets removed, clean up the information associated
1865 with it. */
1866 if (loop->latch == bb
1867 || loop->header == bb)
1868 free_numbers_of_iterations_estimates_loop (loop);
1869 }
1870
1871 /* Remove all the instructions in the block. */
1872 if (bb_seq (bb) != NULL)
1873 {
1874 /* Walk backwards so as to get a chance to substitute all
1875 released DEFs into debug stmts. See
1876 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1877 details. */
1878 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1879 {
1880 gimple stmt = gsi_stmt (i);
1881 if (gimple_code (stmt) == GIMPLE_LABEL
1882 && (FORCED_LABEL (gimple_label_label (stmt))
1883 || DECL_NONLOCAL (gimple_label_label (stmt))))
1884 {
1885 basic_block new_bb;
1886 gimple_stmt_iterator new_gsi;
1887
1888 /* A non-reachable non-local label may still be referenced.
1889 But it no longer needs to carry the extra semantics of
1890 non-locality. */
1891 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1892 {
1893 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1894 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1895 }
1896
1897 new_bb = bb->prev_bb;
1898 new_gsi = gsi_start_bb (new_bb);
1899 gsi_remove (&i, false);
1900 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1901 }
1902 else
1903 {
1904 /* Release SSA definitions if we are in SSA. Note that we
1905 may be called when not in SSA. For example,
1906 final_cleanup calls this function via
1907 cleanup_tree_cfg. */
1908 if (gimple_in_ssa_p (cfun))
1909 release_defs (stmt);
1910
1911 gsi_remove (&i, true);
1912 }
1913
1914 if (gsi_end_p (i))
1915 i = gsi_last_bb (bb);
1916 else
1917 gsi_prev (&i);
1918 }
1919 }
1920
1921 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1922 bb->il.gimple = NULL;
1923 }
1924
1925
1926 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1927 predicate VAL, return the edge that will be taken out of the block.
1928 If VAL does not match a unique edge, NULL is returned. */
1929
1930 edge
1931 find_taken_edge (basic_block bb, tree val)
1932 {
1933 gimple stmt;
1934
1935 stmt = last_stmt (bb);
1936
1937 gcc_assert (stmt);
1938 gcc_assert (is_ctrl_stmt (stmt));
1939
1940 if (val == NULL)
1941 return NULL;
1942
1943 if (!is_gimple_min_invariant (val))
1944 return NULL;
1945
1946 if (gimple_code (stmt) == GIMPLE_COND)
1947 return find_taken_edge_cond_expr (bb, val);
1948
1949 if (gimple_code (stmt) == GIMPLE_SWITCH)
1950 return find_taken_edge_switch_expr (bb, val);
1951
1952 if (computed_goto_p (stmt))
1953 {
1954 /* Only optimize if the argument is a label, if the argument is
1955 not a label then we can not construct a proper CFG.
1956
1957 It may be the case that we only need to allow the LABEL_REF to
1958 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1959 appear inside a LABEL_EXPR just to be safe. */
1960 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1961 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1962 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1963 return NULL;
1964 }
1965
1966 gcc_unreachable ();
1967 }
1968
1969 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1970 statement, determine which of the outgoing edges will be taken out of the
1971 block. Return NULL if either edge may be taken. */
1972
1973 static edge
1974 find_taken_edge_computed_goto (basic_block bb, tree val)
1975 {
1976 basic_block dest;
1977 edge e = NULL;
1978
1979 dest = label_to_block (val);
1980 if (dest)
1981 {
1982 e = find_edge (bb, dest);
1983 gcc_assert (e != NULL);
1984 }
1985
1986 return e;
1987 }
1988
1989 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1990 statement, determine which of the two edges will be taken out of the
1991 block. Return NULL if either edge may be taken. */
1992
1993 static edge
1994 find_taken_edge_cond_expr (basic_block bb, tree val)
1995 {
1996 edge true_edge, false_edge;
1997
1998 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1999
2000 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2001 return (integer_zerop (val) ? false_edge : true_edge);
2002 }
2003
2004 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2005 statement, determine which edge will be taken out of the block. Return
2006 NULL if any edge may be taken. */
2007
2008 static edge
2009 find_taken_edge_switch_expr (basic_block bb, tree val)
2010 {
2011 basic_block dest_bb;
2012 edge e;
2013 gimple switch_stmt;
2014 tree taken_case;
2015
2016 switch_stmt = last_stmt (bb);
2017 taken_case = find_case_label_for_value (switch_stmt, val);
2018 dest_bb = label_to_block (CASE_LABEL (taken_case));
2019
2020 e = find_edge (bb, dest_bb);
2021 gcc_assert (e);
2022 return e;
2023 }
2024
2025
2026 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2027 We can make optimal use here of the fact that the case labels are
2028 sorted: We can do a binary search for a case matching VAL. */
2029
2030 static tree
2031 find_case_label_for_value (gimple switch_stmt, tree val)
2032 {
2033 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2034 tree default_case = gimple_switch_default_label (switch_stmt);
2035
2036 for (low = 0, high = n; high - low > 1; )
2037 {
2038 size_t i = (high + low) / 2;
2039 tree t = gimple_switch_label (switch_stmt, i);
2040 int cmp;
2041
2042 /* Cache the result of comparing CASE_LOW and val. */
2043 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2044
2045 if (cmp > 0)
2046 high = i;
2047 else
2048 low = i;
2049
2050 if (CASE_HIGH (t) == NULL)
2051 {
2052 /* A singe-valued case label. */
2053 if (cmp == 0)
2054 return t;
2055 }
2056 else
2057 {
2058 /* A case range. We can only handle integer ranges. */
2059 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2060 return t;
2061 }
2062 }
2063
2064 return default_case;
2065 }
2066
2067
2068 /* Dump a basic block on stderr. */
2069
2070 void
2071 gimple_debug_bb (basic_block bb)
2072 {
2073 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2074 }
2075
2076
2077 /* Dump basic block with index N on stderr. */
2078
2079 basic_block
2080 gimple_debug_bb_n (int n)
2081 {
2082 gimple_debug_bb (BASIC_BLOCK (n));
2083 return BASIC_BLOCK (n);
2084 }
2085
2086
2087 /* Dump the CFG on stderr.
2088
2089 FLAGS are the same used by the tree dumping functions
2090 (see TDF_* in tree-pass.h). */
2091
2092 void
2093 gimple_debug_cfg (int flags)
2094 {
2095 gimple_dump_cfg (stderr, flags);
2096 }
2097
2098
2099 /* Dump the program showing basic block boundaries on the given FILE.
2100
2101 FLAGS are the same used by the tree dumping functions (see TDF_* in
2102 tree.h). */
2103
2104 void
2105 gimple_dump_cfg (FILE *file, int flags)
2106 {
2107 if (flags & TDF_DETAILS)
2108 {
2109 dump_function_header (file, current_function_decl, flags);
2110 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2111 n_basic_blocks, n_edges, last_basic_block);
2112
2113 brief_dump_cfg (file);
2114 fprintf (file, "\n");
2115 }
2116
2117 if (flags & TDF_STATS)
2118 dump_cfg_stats (file);
2119
2120 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2121 }
2122
2123
2124 /* Dump CFG statistics on FILE. */
2125
2126 void
2127 dump_cfg_stats (FILE *file)
2128 {
2129 static long max_num_merged_labels = 0;
2130 unsigned long size, total = 0;
2131 long num_edges;
2132 basic_block bb;
2133 const char * const fmt_str = "%-30s%-13s%12s\n";
2134 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2135 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2136 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2137 const char *funcname
2138 = lang_hooks.decl_printable_name (current_function_decl, 2);
2139
2140
2141 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2142
2143 fprintf (file, "---------------------------------------------------------\n");
2144 fprintf (file, fmt_str, "", " Number of ", "Memory");
2145 fprintf (file, fmt_str, "", " instances ", "used ");
2146 fprintf (file, "---------------------------------------------------------\n");
2147
2148 size = n_basic_blocks * sizeof (struct basic_block_def);
2149 total += size;
2150 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2151 SCALE (size), LABEL (size));
2152
2153 num_edges = 0;
2154 FOR_EACH_BB (bb)
2155 num_edges += EDGE_COUNT (bb->succs);
2156 size = num_edges * sizeof (struct edge_def);
2157 total += size;
2158 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2159
2160 fprintf (file, "---------------------------------------------------------\n");
2161 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2162 LABEL (total));
2163 fprintf (file, "---------------------------------------------------------\n");
2164 fprintf (file, "\n");
2165
2166 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2167 max_num_merged_labels = cfg_stats.num_merged_labels;
2168
2169 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2170 cfg_stats.num_merged_labels, max_num_merged_labels);
2171
2172 fprintf (file, "\n");
2173 }
2174
2175
2176 /* Dump CFG statistics on stderr. Keep extern so that it's always
2177 linked in the final executable. */
2178
2179 DEBUG_FUNCTION void
2180 debug_cfg_stats (void)
2181 {
2182 dump_cfg_stats (stderr);
2183 }
2184
2185
2186 /* Dump the flowgraph to a .vcg FILE. */
2187
2188 static void
2189 gimple_cfg2vcg (FILE *file)
2190 {
2191 edge e;
2192 edge_iterator ei;
2193 basic_block bb;
2194 const char *funcname
2195 = lang_hooks.decl_printable_name (current_function_decl, 2);
2196
2197 /* Write the file header. */
2198 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2199 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2200 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2201
2202 /* Write blocks and edges. */
2203 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2204 {
2205 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2206 e->dest->index);
2207
2208 if (e->flags & EDGE_FAKE)
2209 fprintf (file, " linestyle: dotted priority: 10");
2210 else
2211 fprintf (file, " linestyle: solid priority: 100");
2212
2213 fprintf (file, " }\n");
2214 }
2215 fputc ('\n', file);
2216
2217 FOR_EACH_BB (bb)
2218 {
2219 enum gimple_code head_code, end_code;
2220 const char *head_name, *end_name;
2221 int head_line = 0;
2222 int end_line = 0;
2223 gimple first = first_stmt (bb);
2224 gimple last = last_stmt (bb);
2225
2226 if (first)
2227 {
2228 head_code = gimple_code (first);
2229 head_name = gimple_code_name[head_code];
2230 head_line = get_lineno (first);
2231 }
2232 else
2233 head_name = "no-statement";
2234
2235 if (last)
2236 {
2237 end_code = gimple_code (last);
2238 end_name = gimple_code_name[end_code];
2239 end_line = get_lineno (last);
2240 }
2241 else
2242 end_name = "no-statement";
2243
2244 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2245 bb->index, bb->index, head_name, head_line, end_name,
2246 end_line);
2247
2248 FOR_EACH_EDGE (e, ei, bb->succs)
2249 {
2250 if (e->dest == EXIT_BLOCK_PTR)
2251 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2252 else
2253 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2254
2255 if (e->flags & EDGE_FAKE)
2256 fprintf (file, " priority: 10 linestyle: dotted");
2257 else
2258 fprintf (file, " priority: 100 linestyle: solid");
2259
2260 fprintf (file, " }\n");
2261 }
2262
2263 if (bb->next_bb != EXIT_BLOCK_PTR)
2264 fputc ('\n', file);
2265 }
2266
2267 fputs ("}\n\n", file);
2268 }
2269
2270
2271
2272 /*---------------------------------------------------------------------------
2273 Miscellaneous helpers
2274 ---------------------------------------------------------------------------*/
2275
2276 /* Return true if T represents a stmt that always transfers control. */
2277
2278 bool
2279 is_ctrl_stmt (gimple t)
2280 {
2281 switch (gimple_code (t))
2282 {
2283 case GIMPLE_COND:
2284 case GIMPLE_SWITCH:
2285 case GIMPLE_GOTO:
2286 case GIMPLE_RETURN:
2287 case GIMPLE_RESX:
2288 return true;
2289 default:
2290 return false;
2291 }
2292 }
2293
2294
2295 /* Return true if T is a statement that may alter the flow of control
2296 (e.g., a call to a non-returning function). */
2297
2298 bool
2299 is_ctrl_altering_stmt (gimple t)
2300 {
2301 gcc_assert (t);
2302
2303 switch (gimple_code (t))
2304 {
2305 case GIMPLE_CALL:
2306 {
2307 int flags = gimple_call_flags (t);
2308
2309 /* A non-pure/const call alters flow control if the current
2310 function has nonlocal labels. */
2311 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2312 && cfun->has_nonlocal_label)
2313 return true;
2314
2315 /* A call also alters control flow if it does not return. */
2316 if (flags & ECF_NORETURN)
2317 return true;
2318
2319 /* TM ending statements have backedges out of the transaction.
2320 Return true so we split the basic block containing them.
2321 Note that the TM_BUILTIN test is merely an optimization. */
2322 if ((flags & ECF_TM_BUILTIN)
2323 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2324 return true;
2325
2326 /* BUILT_IN_RETURN call is same as return statement. */
2327 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2328 return true;
2329 }
2330 break;
2331
2332 case GIMPLE_EH_DISPATCH:
2333 /* EH_DISPATCH branches to the individual catch handlers at
2334 this level of a try or allowed-exceptions region. It can
2335 fallthru to the next statement as well. */
2336 return true;
2337
2338 case GIMPLE_ASM:
2339 if (gimple_asm_nlabels (t) > 0)
2340 return true;
2341 break;
2342
2343 CASE_GIMPLE_OMP:
2344 /* OpenMP directives alter control flow. */
2345 return true;
2346
2347 case GIMPLE_TRANSACTION:
2348 /* A transaction start alters control flow. */
2349 return true;
2350
2351 default:
2352 break;
2353 }
2354
2355 /* If a statement can throw, it alters control flow. */
2356 return stmt_can_throw_internal (t);
2357 }
2358
2359
2360 /* Return true if T is a simple local goto. */
2361
2362 bool
2363 simple_goto_p (gimple t)
2364 {
2365 return (gimple_code (t) == GIMPLE_GOTO
2366 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2367 }
2368
2369
2370 /* Return true if T can make an abnormal transfer of control flow.
2371 Transfers of control flow associated with EH are excluded. */
2372
2373 bool
2374 stmt_can_make_abnormal_goto (gimple t)
2375 {
2376 if (computed_goto_p (t))
2377 return true;
2378 if (is_gimple_call (t))
2379 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2380 && !(gimple_call_flags (t) & ECF_LEAF));
2381 return false;
2382 }
2383
2384
2385 /* Return true if STMT should start a new basic block. PREV_STMT is
2386 the statement preceding STMT. It is used when STMT is a label or a
2387 case label. Labels should only start a new basic block if their
2388 previous statement wasn't a label. Otherwise, sequence of labels
2389 would generate unnecessary basic blocks that only contain a single
2390 label. */
2391
2392 static inline bool
2393 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2394 {
2395 if (stmt == NULL)
2396 return false;
2397
2398 /* Labels start a new basic block only if the preceding statement
2399 wasn't a label of the same type. This prevents the creation of
2400 consecutive blocks that have nothing but a single label. */
2401 if (gimple_code (stmt) == GIMPLE_LABEL)
2402 {
2403 /* Nonlocal and computed GOTO targets always start a new block. */
2404 if (DECL_NONLOCAL (gimple_label_label (stmt))
2405 || FORCED_LABEL (gimple_label_label (stmt)))
2406 return true;
2407
2408 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2409 {
2410 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2411 return true;
2412
2413 cfg_stats.num_merged_labels++;
2414 return false;
2415 }
2416 else
2417 return true;
2418 }
2419
2420 return false;
2421 }
2422
2423
2424 /* Return true if T should end a basic block. */
2425
2426 bool
2427 stmt_ends_bb_p (gimple t)
2428 {
2429 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2430 }
2431
2432 /* Remove block annotations and other data structures. */
2433
2434 void
2435 delete_tree_cfg_annotations (void)
2436 {
2437 label_to_block_map = NULL;
2438 }
2439
2440
2441 /* Return the first statement in basic block BB. */
2442
2443 gimple
2444 first_stmt (basic_block bb)
2445 {
2446 gimple_stmt_iterator i = gsi_start_bb (bb);
2447 gimple stmt = NULL;
2448
2449 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2450 {
2451 gsi_next (&i);
2452 stmt = NULL;
2453 }
2454 return stmt;
2455 }
2456
2457 /* Return the first non-label statement in basic block BB. */
2458
2459 static gimple
2460 first_non_label_stmt (basic_block bb)
2461 {
2462 gimple_stmt_iterator i = gsi_start_bb (bb);
2463 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2464 gsi_next (&i);
2465 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2466 }
2467
2468 /* Return the last statement in basic block BB. */
2469
2470 gimple
2471 last_stmt (basic_block bb)
2472 {
2473 gimple_stmt_iterator i = gsi_last_bb (bb);
2474 gimple stmt = NULL;
2475
2476 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2477 {
2478 gsi_prev (&i);
2479 stmt = NULL;
2480 }
2481 return stmt;
2482 }
2483
2484 /* Return the last statement of an otherwise empty block. Return NULL
2485 if the block is totally empty, or if it contains more than one
2486 statement. */
2487
2488 gimple
2489 last_and_only_stmt (basic_block bb)
2490 {
2491 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2492 gimple last, prev;
2493
2494 if (gsi_end_p (i))
2495 return NULL;
2496
2497 last = gsi_stmt (i);
2498 gsi_prev_nondebug (&i);
2499 if (gsi_end_p (i))
2500 return last;
2501
2502 /* Empty statements should no longer appear in the instruction stream.
2503 Everything that might have appeared before should be deleted by
2504 remove_useless_stmts, and the optimizers should just gsi_remove
2505 instead of smashing with build_empty_stmt.
2506
2507 Thus the only thing that should appear here in a block containing
2508 one executable statement is a label. */
2509 prev = gsi_stmt (i);
2510 if (gimple_code (prev) == GIMPLE_LABEL)
2511 return last;
2512 else
2513 return NULL;
2514 }
2515
2516 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2517
2518 static void
2519 reinstall_phi_args (edge new_edge, edge old_edge)
2520 {
2521 edge_var_map_vector v;
2522 edge_var_map *vm;
2523 int i;
2524 gimple_stmt_iterator phis;
2525
2526 v = redirect_edge_var_map_vector (old_edge);
2527 if (!v)
2528 return;
2529
2530 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2531 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2532 i++, gsi_next (&phis))
2533 {
2534 gimple phi = gsi_stmt (phis);
2535 tree result = redirect_edge_var_map_result (vm);
2536 tree arg = redirect_edge_var_map_def (vm);
2537
2538 gcc_assert (result == gimple_phi_result (phi));
2539
2540 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2541 }
2542
2543 redirect_edge_var_map_clear (old_edge);
2544 }
2545
2546 /* Returns the basic block after which the new basic block created
2547 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2548 near its "logical" location. This is of most help to humans looking
2549 at debugging dumps. */
2550
2551 static basic_block
2552 split_edge_bb_loc (edge edge_in)
2553 {
2554 basic_block dest = edge_in->dest;
2555 basic_block dest_prev = dest->prev_bb;
2556
2557 if (dest_prev)
2558 {
2559 edge e = find_edge (dest_prev, dest);
2560 if (e && !(e->flags & EDGE_COMPLEX))
2561 return edge_in->src;
2562 }
2563 return dest_prev;
2564 }
2565
2566 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2567 Abort on abnormal edges. */
2568
2569 static basic_block
2570 gimple_split_edge (edge edge_in)
2571 {
2572 basic_block new_bb, after_bb, dest;
2573 edge new_edge, e;
2574
2575 /* Abnormal edges cannot be split. */
2576 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2577
2578 dest = edge_in->dest;
2579
2580 after_bb = split_edge_bb_loc (edge_in);
2581
2582 new_bb = create_empty_bb (after_bb);
2583 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2584 new_bb->count = edge_in->count;
2585 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2586 new_edge->probability = REG_BR_PROB_BASE;
2587 new_edge->count = edge_in->count;
2588
2589 e = redirect_edge_and_branch (edge_in, new_bb);
2590 gcc_assert (e == edge_in);
2591 reinstall_phi_args (new_edge, e);
2592
2593 return new_bb;
2594 }
2595
2596
2597 /* Verify properties of the address expression T with base object BASE. */
2598
2599 static tree
2600 verify_address (tree t, tree base)
2601 {
2602 bool old_constant;
2603 bool old_side_effects;
2604 bool new_constant;
2605 bool new_side_effects;
2606
2607 old_constant = TREE_CONSTANT (t);
2608 old_side_effects = TREE_SIDE_EFFECTS (t);
2609
2610 recompute_tree_invariant_for_addr_expr (t);
2611 new_side_effects = TREE_SIDE_EFFECTS (t);
2612 new_constant = TREE_CONSTANT (t);
2613
2614 if (old_constant != new_constant)
2615 {
2616 error ("constant not recomputed when ADDR_EXPR changed");
2617 return t;
2618 }
2619 if (old_side_effects != new_side_effects)
2620 {
2621 error ("side effects not recomputed when ADDR_EXPR changed");
2622 return t;
2623 }
2624
2625 if (!(TREE_CODE (base) == VAR_DECL
2626 || TREE_CODE (base) == PARM_DECL
2627 || TREE_CODE (base) == RESULT_DECL))
2628 return NULL_TREE;
2629
2630 if (DECL_GIMPLE_REG_P (base))
2631 {
2632 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2633 return base;
2634 }
2635
2636 return NULL_TREE;
2637 }
2638
2639 /* Callback for walk_tree, check that all elements with address taken are
2640 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2641 inside a PHI node. */
2642
2643 static tree
2644 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2645 {
2646 tree t = *tp, x;
2647
2648 if (TYPE_P (t))
2649 *walk_subtrees = 0;
2650
2651 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2652 #define CHECK_OP(N, MSG) \
2653 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2654 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2655
2656 switch (TREE_CODE (t))
2657 {
2658 case SSA_NAME:
2659 if (SSA_NAME_IN_FREE_LIST (t))
2660 {
2661 error ("SSA name in freelist but still referenced");
2662 return *tp;
2663 }
2664 break;
2665
2666 case INDIRECT_REF:
2667 error ("INDIRECT_REF in gimple IL");
2668 return t;
2669
2670 case MEM_REF:
2671 x = TREE_OPERAND (t, 0);
2672 if (!POINTER_TYPE_P (TREE_TYPE (x))
2673 || !is_gimple_mem_ref_addr (x))
2674 {
2675 error ("invalid first operand of MEM_REF");
2676 return x;
2677 }
2678 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2679 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2680 {
2681 error ("invalid offset operand of MEM_REF");
2682 return TREE_OPERAND (t, 1);
2683 }
2684 if (TREE_CODE (x) == ADDR_EXPR
2685 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2686 return x;
2687 *walk_subtrees = 0;
2688 break;
2689
2690 case ASSERT_EXPR:
2691 x = fold (ASSERT_EXPR_COND (t));
2692 if (x == boolean_false_node)
2693 {
2694 error ("ASSERT_EXPR with an always-false condition");
2695 return *tp;
2696 }
2697 break;
2698
2699 case MODIFY_EXPR:
2700 error ("MODIFY_EXPR not expected while having tuples");
2701 return *tp;
2702
2703 case ADDR_EXPR:
2704 {
2705 tree tem;
2706
2707 gcc_assert (is_gimple_address (t));
2708
2709 /* Skip any references (they will be checked when we recurse down the
2710 tree) and ensure that any variable used as a prefix is marked
2711 addressable. */
2712 for (x = TREE_OPERAND (t, 0);
2713 handled_component_p (x);
2714 x = TREE_OPERAND (x, 0))
2715 ;
2716
2717 if ((tem = verify_address (t, x)))
2718 return tem;
2719
2720 if (!(TREE_CODE (x) == VAR_DECL
2721 || TREE_CODE (x) == PARM_DECL
2722 || TREE_CODE (x) == RESULT_DECL))
2723 return NULL;
2724
2725 if (!TREE_ADDRESSABLE (x))
2726 {
2727 error ("address taken, but ADDRESSABLE bit not set");
2728 return x;
2729 }
2730
2731 break;
2732 }
2733
2734 case COND_EXPR:
2735 x = COND_EXPR_COND (t);
2736 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2737 {
2738 error ("non-integral used in condition");
2739 return x;
2740 }
2741 if (!is_gimple_condexpr (x))
2742 {
2743 error ("invalid conditional operand");
2744 return x;
2745 }
2746 break;
2747
2748 case NON_LVALUE_EXPR:
2749 case TRUTH_NOT_EXPR:
2750 gcc_unreachable ();
2751
2752 CASE_CONVERT:
2753 case FIX_TRUNC_EXPR:
2754 case FLOAT_EXPR:
2755 case NEGATE_EXPR:
2756 case ABS_EXPR:
2757 case BIT_NOT_EXPR:
2758 CHECK_OP (0, "invalid operand to unary operator");
2759 break;
2760
2761 case REALPART_EXPR:
2762 case IMAGPART_EXPR:
2763 case COMPONENT_REF:
2764 case ARRAY_REF:
2765 case ARRAY_RANGE_REF:
2766 case BIT_FIELD_REF:
2767 case VIEW_CONVERT_EXPR:
2768 /* We have a nest of references. Verify that each of the operands
2769 that determine where to reference is either a constant or a variable,
2770 verify that the base is valid, and then show we've already checked
2771 the subtrees. */
2772 while (handled_component_p (t))
2773 {
2774 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2775 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2776 else if (TREE_CODE (t) == ARRAY_REF
2777 || TREE_CODE (t) == ARRAY_RANGE_REF)
2778 {
2779 CHECK_OP (1, "invalid array index");
2780 if (TREE_OPERAND (t, 2))
2781 CHECK_OP (2, "invalid array lower bound");
2782 if (TREE_OPERAND (t, 3))
2783 CHECK_OP (3, "invalid array stride");
2784 }
2785 else if (TREE_CODE (t) == BIT_FIELD_REF)
2786 {
2787 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2788 || !host_integerp (TREE_OPERAND (t, 2), 1))
2789 {
2790 error ("invalid position or size operand to BIT_FIELD_REF");
2791 return t;
2792 }
2793 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2794 && (TYPE_PRECISION (TREE_TYPE (t))
2795 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2796 {
2797 error ("integral result type precision does not match "
2798 "field size of BIT_FIELD_REF");
2799 return t;
2800 }
2801 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2802 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2803 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2804 {
2805 error ("mode precision of non-integral result does not "
2806 "match field size of BIT_FIELD_REF");
2807 return t;
2808 }
2809 }
2810
2811 t = TREE_OPERAND (t, 0);
2812 }
2813
2814 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2815 {
2816 error ("invalid reference prefix");
2817 return t;
2818 }
2819 *walk_subtrees = 0;
2820 break;
2821 case PLUS_EXPR:
2822 case MINUS_EXPR:
2823 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2824 POINTER_PLUS_EXPR. */
2825 if (POINTER_TYPE_P (TREE_TYPE (t)))
2826 {
2827 error ("invalid operand to plus/minus, type is a pointer");
2828 return t;
2829 }
2830 CHECK_OP (0, "invalid operand to binary operator");
2831 CHECK_OP (1, "invalid operand to binary operator");
2832 break;
2833
2834 case POINTER_PLUS_EXPR:
2835 /* Check to make sure the first operand is a pointer or reference type. */
2836 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2837 {
2838 error ("invalid operand to pointer plus, first operand is not a pointer");
2839 return t;
2840 }
2841 /* Check to make sure the second operand is a ptrofftype. */
2842 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2843 {
2844 error ("invalid operand to pointer plus, second operand is not an "
2845 "integer type of appropriate width");
2846 return t;
2847 }
2848 /* FALLTHROUGH */
2849 case LT_EXPR:
2850 case LE_EXPR:
2851 case GT_EXPR:
2852 case GE_EXPR:
2853 case EQ_EXPR:
2854 case NE_EXPR:
2855 case UNORDERED_EXPR:
2856 case ORDERED_EXPR:
2857 case UNLT_EXPR:
2858 case UNLE_EXPR:
2859 case UNGT_EXPR:
2860 case UNGE_EXPR:
2861 case UNEQ_EXPR:
2862 case LTGT_EXPR:
2863 case MULT_EXPR:
2864 case TRUNC_DIV_EXPR:
2865 case CEIL_DIV_EXPR:
2866 case FLOOR_DIV_EXPR:
2867 case ROUND_DIV_EXPR:
2868 case TRUNC_MOD_EXPR:
2869 case CEIL_MOD_EXPR:
2870 case FLOOR_MOD_EXPR:
2871 case ROUND_MOD_EXPR:
2872 case RDIV_EXPR:
2873 case EXACT_DIV_EXPR:
2874 case MIN_EXPR:
2875 case MAX_EXPR:
2876 case LSHIFT_EXPR:
2877 case RSHIFT_EXPR:
2878 case LROTATE_EXPR:
2879 case RROTATE_EXPR:
2880 case BIT_IOR_EXPR:
2881 case BIT_XOR_EXPR:
2882 case BIT_AND_EXPR:
2883 CHECK_OP (0, "invalid operand to binary operator");
2884 CHECK_OP (1, "invalid operand to binary operator");
2885 break;
2886
2887 case CONSTRUCTOR:
2888 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2889 *walk_subtrees = 0;
2890 break;
2891
2892 case CASE_LABEL_EXPR:
2893 if (CASE_CHAIN (t))
2894 {
2895 error ("invalid CASE_CHAIN");
2896 return t;
2897 }
2898 break;
2899
2900 default:
2901 break;
2902 }
2903 return NULL;
2904
2905 #undef CHECK_OP
2906 }
2907
2908
2909 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2910 Returns true if there is an error, otherwise false. */
2911
2912 static bool
2913 verify_types_in_gimple_min_lval (tree expr)
2914 {
2915 tree op;
2916
2917 if (is_gimple_id (expr))
2918 return false;
2919
2920 if (TREE_CODE (expr) != TARGET_MEM_REF
2921 && TREE_CODE (expr) != MEM_REF)
2922 {
2923 error ("invalid expression for min lvalue");
2924 return true;
2925 }
2926
2927 /* TARGET_MEM_REFs are strange beasts. */
2928 if (TREE_CODE (expr) == TARGET_MEM_REF)
2929 return false;
2930
2931 op = TREE_OPERAND (expr, 0);
2932 if (!is_gimple_val (op))
2933 {
2934 error ("invalid operand in indirect reference");
2935 debug_generic_stmt (op);
2936 return true;
2937 }
2938 /* Memory references now generally can involve a value conversion. */
2939
2940 return false;
2941 }
2942
2943 /* Verify if EXPR is a valid GIMPLE reference expression. If
2944 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2945 if there is an error, otherwise false. */
2946
2947 static bool
2948 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2949 {
2950 while (handled_component_p (expr))
2951 {
2952 tree op = TREE_OPERAND (expr, 0);
2953
2954 if (TREE_CODE (expr) == ARRAY_REF
2955 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2956 {
2957 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2958 || (TREE_OPERAND (expr, 2)
2959 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2960 || (TREE_OPERAND (expr, 3)
2961 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2962 {
2963 error ("invalid operands to array reference");
2964 debug_generic_stmt (expr);
2965 return true;
2966 }
2967 }
2968
2969 /* Verify if the reference array element types are compatible. */
2970 if (TREE_CODE (expr) == ARRAY_REF
2971 && !useless_type_conversion_p (TREE_TYPE (expr),
2972 TREE_TYPE (TREE_TYPE (op))))
2973 {
2974 error ("type mismatch in array reference");
2975 debug_generic_stmt (TREE_TYPE (expr));
2976 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2977 return true;
2978 }
2979 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2980 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2981 TREE_TYPE (TREE_TYPE (op))))
2982 {
2983 error ("type mismatch in array range reference");
2984 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2985 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2986 return true;
2987 }
2988
2989 if ((TREE_CODE (expr) == REALPART_EXPR
2990 || TREE_CODE (expr) == IMAGPART_EXPR)
2991 && !useless_type_conversion_p (TREE_TYPE (expr),
2992 TREE_TYPE (TREE_TYPE (op))))
2993 {
2994 error ("type mismatch in real/imagpart reference");
2995 debug_generic_stmt (TREE_TYPE (expr));
2996 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2997 return true;
2998 }
2999
3000 if (TREE_CODE (expr) == COMPONENT_REF
3001 && !useless_type_conversion_p (TREE_TYPE (expr),
3002 TREE_TYPE (TREE_OPERAND (expr, 1))))
3003 {
3004 error ("type mismatch in component reference");
3005 debug_generic_stmt (TREE_TYPE (expr));
3006 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3007 return true;
3008 }
3009
3010 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3011 {
3012 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3013 that their operand is not an SSA name or an invariant when
3014 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3015 bug). Otherwise there is nothing to verify, gross mismatches at
3016 most invoke undefined behavior. */
3017 if (require_lvalue
3018 && (TREE_CODE (op) == SSA_NAME
3019 || is_gimple_min_invariant (op)))
3020 {
3021 error ("conversion of an SSA_NAME on the left hand side");
3022 debug_generic_stmt (expr);
3023 return true;
3024 }
3025 else if (TREE_CODE (op) == SSA_NAME
3026 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3027 {
3028 error ("conversion of register to a different size");
3029 debug_generic_stmt (expr);
3030 return true;
3031 }
3032 else if (!handled_component_p (op))
3033 return false;
3034 }
3035
3036 expr = op;
3037 }
3038
3039 if (TREE_CODE (expr) == MEM_REF)
3040 {
3041 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3042 {
3043 error ("invalid address operand in MEM_REF");
3044 debug_generic_stmt (expr);
3045 return true;
3046 }
3047 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3048 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3049 {
3050 error ("invalid offset operand in MEM_REF");
3051 debug_generic_stmt (expr);
3052 return true;
3053 }
3054 }
3055 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3056 {
3057 if (!TMR_BASE (expr)
3058 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3059 {
3060 error ("invalid address operand in TARGET_MEM_REF");
3061 return true;
3062 }
3063 if (!TMR_OFFSET (expr)
3064 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3065 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3066 {
3067 error ("invalid offset operand in TARGET_MEM_REF");
3068 debug_generic_stmt (expr);
3069 return true;
3070 }
3071 }
3072
3073 return ((require_lvalue || !is_gimple_min_invariant (expr))
3074 && verify_types_in_gimple_min_lval (expr));
3075 }
3076
3077 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3078 list of pointer-to types that is trivially convertible to DEST. */
3079
3080 static bool
3081 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3082 {
3083 tree src;
3084
3085 if (!TYPE_POINTER_TO (src_obj))
3086 return true;
3087
3088 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3089 if (useless_type_conversion_p (dest, src))
3090 return true;
3091
3092 return false;
3093 }
3094
3095 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3096 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3097
3098 static bool
3099 valid_fixed_convert_types_p (tree type1, tree type2)
3100 {
3101 return (FIXED_POINT_TYPE_P (type1)
3102 && (INTEGRAL_TYPE_P (type2)
3103 || SCALAR_FLOAT_TYPE_P (type2)
3104 || FIXED_POINT_TYPE_P (type2)));
3105 }
3106
3107 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3108 is a problem, otherwise false. */
3109
3110 static bool
3111 verify_gimple_call (gimple stmt)
3112 {
3113 tree fn = gimple_call_fn (stmt);
3114 tree fntype, fndecl;
3115 unsigned i;
3116
3117 if (gimple_call_internal_p (stmt))
3118 {
3119 if (fn)
3120 {
3121 error ("gimple call has two targets");
3122 debug_generic_stmt (fn);
3123 return true;
3124 }
3125 }
3126 else
3127 {
3128 if (!fn)
3129 {
3130 error ("gimple call has no target");
3131 return true;
3132 }
3133 }
3134
3135 if (fn && !is_gimple_call_addr (fn))
3136 {
3137 error ("invalid function in gimple call");
3138 debug_generic_stmt (fn);
3139 return true;
3140 }
3141
3142 if (fn
3143 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3144 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3145 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3146 {
3147 error ("non-function in gimple call");
3148 return true;
3149 }
3150
3151 fndecl = gimple_call_fndecl (stmt);
3152 if (fndecl
3153 && TREE_CODE (fndecl) == FUNCTION_DECL
3154 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3155 && !DECL_PURE_P (fndecl)
3156 && !TREE_READONLY (fndecl))
3157 {
3158 error ("invalid pure const state for function");
3159 return true;
3160 }
3161
3162 if (gimple_call_lhs (stmt)
3163 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3164 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3165 {
3166 error ("invalid LHS in gimple call");
3167 return true;
3168 }
3169
3170 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3171 {
3172 error ("LHS in noreturn call");
3173 return true;
3174 }
3175
3176 fntype = gimple_call_fntype (stmt);
3177 if (fntype
3178 && gimple_call_lhs (stmt)
3179 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3180 TREE_TYPE (fntype))
3181 /* ??? At least C++ misses conversions at assignments from
3182 void * call results.
3183 ??? Java is completely off. Especially with functions
3184 returning java.lang.Object.
3185 For now simply allow arbitrary pointer type conversions. */
3186 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3187 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3188 {
3189 error ("invalid conversion in gimple call");
3190 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3191 debug_generic_stmt (TREE_TYPE (fntype));
3192 return true;
3193 }
3194
3195 if (gimple_call_chain (stmt)
3196 && !is_gimple_val (gimple_call_chain (stmt)))
3197 {
3198 error ("invalid static chain in gimple call");
3199 debug_generic_stmt (gimple_call_chain (stmt));
3200 return true;
3201 }
3202
3203 /* If there is a static chain argument, this should not be an indirect
3204 call, and the decl should have DECL_STATIC_CHAIN set. */
3205 if (gimple_call_chain (stmt))
3206 {
3207 if (!gimple_call_fndecl (stmt))
3208 {
3209 error ("static chain in indirect gimple call");
3210 return true;
3211 }
3212 fn = TREE_OPERAND (fn, 0);
3213
3214 if (!DECL_STATIC_CHAIN (fn))
3215 {
3216 error ("static chain with function that doesn%'t use one");
3217 return true;
3218 }
3219 }
3220
3221 /* ??? The C frontend passes unpromoted arguments in case it
3222 didn't see a function declaration before the call. So for now
3223 leave the call arguments mostly unverified. Once we gimplify
3224 unit-at-a-time we have a chance to fix this. */
3225
3226 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3227 {
3228 tree arg = gimple_call_arg (stmt, i);
3229 if ((is_gimple_reg_type (TREE_TYPE (arg))
3230 && !is_gimple_val (arg))
3231 || (!is_gimple_reg_type (TREE_TYPE (arg))
3232 && !is_gimple_lvalue (arg)))
3233 {
3234 error ("invalid argument to gimple call");
3235 debug_generic_expr (arg);
3236 return true;
3237 }
3238 }
3239
3240 return false;
3241 }
3242
3243 /* Verifies the gimple comparison with the result type TYPE and
3244 the operands OP0 and OP1. */
3245
3246 static bool
3247 verify_gimple_comparison (tree type, tree op0, tree op1)
3248 {
3249 tree op0_type = TREE_TYPE (op0);
3250 tree op1_type = TREE_TYPE (op1);
3251
3252 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3253 {
3254 error ("invalid operands in gimple comparison");
3255 return true;
3256 }
3257
3258 /* For comparisons we do not have the operations type as the
3259 effective type the comparison is carried out in. Instead
3260 we require that either the first operand is trivially
3261 convertible into the second, or the other way around.
3262 Because we special-case pointers to void we allow
3263 comparisons of pointers with the same mode as well. */
3264 if (!useless_type_conversion_p (op0_type, op1_type)
3265 && !useless_type_conversion_p (op1_type, op0_type)
3266 && (!POINTER_TYPE_P (op0_type)
3267 || !POINTER_TYPE_P (op1_type)
3268 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3269 {
3270 error ("mismatching comparison operand types");
3271 debug_generic_expr (op0_type);
3272 debug_generic_expr (op1_type);
3273 return true;
3274 }
3275
3276 /* The resulting type of a comparison may be an effective boolean type. */
3277 if (INTEGRAL_TYPE_P (type)
3278 && (TREE_CODE (type) == BOOLEAN_TYPE
3279 || TYPE_PRECISION (type) == 1))
3280 ;
3281 /* Or an integer vector type with the same size and element count
3282 as the comparison operand types. */
3283 else if (TREE_CODE (type) == VECTOR_TYPE
3284 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3285 {
3286 if (TREE_CODE (op0_type) != VECTOR_TYPE
3287 || TREE_CODE (op1_type) != VECTOR_TYPE)
3288 {
3289 error ("non-vector operands in vector comparison");
3290 debug_generic_expr (op0_type);
3291 debug_generic_expr (op1_type);
3292 return true;
3293 }
3294
3295 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3296 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3297 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3298 {
3299 error ("invalid vector comparison resulting type");
3300 debug_generic_expr (type);
3301 return true;
3302 }
3303 }
3304 else
3305 {
3306 error ("bogus comparison result type");
3307 debug_generic_expr (type);
3308 return true;
3309 }
3310
3311 return false;
3312 }
3313
3314 /* Verify a gimple assignment statement STMT with an unary rhs.
3315 Returns true if anything is wrong. */
3316
3317 static bool
3318 verify_gimple_assign_unary (gimple stmt)
3319 {
3320 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3321 tree lhs = gimple_assign_lhs (stmt);
3322 tree lhs_type = TREE_TYPE (lhs);
3323 tree rhs1 = gimple_assign_rhs1 (stmt);
3324 tree rhs1_type = TREE_TYPE (rhs1);
3325
3326 if (!is_gimple_reg (lhs))
3327 {
3328 error ("non-register as LHS of unary operation");
3329 return true;
3330 }
3331
3332 if (!is_gimple_val (rhs1))
3333 {
3334 error ("invalid operand in unary operation");
3335 return true;
3336 }
3337
3338 /* First handle conversions. */
3339 switch (rhs_code)
3340 {
3341 CASE_CONVERT:
3342 {
3343 /* Allow conversions from pointer type to integral type only if
3344 there is no sign or zero extension involved.
3345 For targets were the precision of ptrofftype doesn't match that
3346 of pointers we need to allow arbitrary conversions to ptrofftype. */
3347 if ((POINTER_TYPE_P (lhs_type)
3348 && INTEGRAL_TYPE_P (rhs1_type))
3349 || (POINTER_TYPE_P (rhs1_type)
3350 && INTEGRAL_TYPE_P (lhs_type)
3351 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3352 || ptrofftype_p (sizetype))))
3353 return false;
3354
3355 /* Allow conversion from integer to offset type and vice versa. */
3356 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3357 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3358 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3359 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3360 return false;
3361
3362 /* Otherwise assert we are converting between types of the
3363 same kind. */
3364 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3365 {
3366 error ("invalid types in nop conversion");
3367 debug_generic_expr (lhs_type);
3368 debug_generic_expr (rhs1_type);
3369 return true;
3370 }
3371
3372 return false;
3373 }
3374
3375 case ADDR_SPACE_CONVERT_EXPR:
3376 {
3377 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3378 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3379 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3380 {
3381 error ("invalid types in address space conversion");
3382 debug_generic_expr (lhs_type);
3383 debug_generic_expr (rhs1_type);
3384 return true;
3385 }
3386
3387 return false;
3388 }
3389
3390 case FIXED_CONVERT_EXPR:
3391 {
3392 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3393 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3394 {
3395 error ("invalid types in fixed-point conversion");
3396 debug_generic_expr (lhs_type);
3397 debug_generic_expr (rhs1_type);
3398 return true;
3399 }
3400
3401 return false;
3402 }
3403
3404 case FLOAT_EXPR:
3405 {
3406 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3407 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3408 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3409 {
3410 error ("invalid types in conversion to floating point");
3411 debug_generic_expr (lhs_type);
3412 debug_generic_expr (rhs1_type);
3413 return true;
3414 }
3415
3416 return false;
3417 }
3418
3419 case FIX_TRUNC_EXPR:
3420 {
3421 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3422 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3423 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3424 {
3425 error ("invalid types in conversion to integer");
3426 debug_generic_expr (lhs_type);
3427 debug_generic_expr (rhs1_type);
3428 return true;
3429 }
3430
3431 return false;
3432 }
3433
3434 case VEC_UNPACK_HI_EXPR:
3435 case VEC_UNPACK_LO_EXPR:
3436 case REDUC_MAX_EXPR:
3437 case REDUC_MIN_EXPR:
3438 case REDUC_PLUS_EXPR:
3439 case VEC_UNPACK_FLOAT_HI_EXPR:
3440 case VEC_UNPACK_FLOAT_LO_EXPR:
3441 /* FIXME. */
3442 return false;
3443
3444 case NEGATE_EXPR:
3445 case ABS_EXPR:
3446 case BIT_NOT_EXPR:
3447 case PAREN_EXPR:
3448 case NON_LVALUE_EXPR:
3449 case CONJ_EXPR:
3450 break;
3451
3452 default:
3453 gcc_unreachable ();
3454 }
3455
3456 /* For the remaining codes assert there is no conversion involved. */
3457 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3458 {
3459 error ("non-trivial conversion in unary operation");
3460 debug_generic_expr (lhs_type);
3461 debug_generic_expr (rhs1_type);
3462 return true;
3463 }
3464
3465 return false;
3466 }
3467
3468 /* Verify a gimple assignment statement STMT with a binary rhs.
3469 Returns true if anything is wrong. */
3470
3471 static bool
3472 verify_gimple_assign_binary (gimple stmt)
3473 {
3474 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3475 tree lhs = gimple_assign_lhs (stmt);
3476 tree lhs_type = TREE_TYPE (lhs);
3477 tree rhs1 = gimple_assign_rhs1 (stmt);
3478 tree rhs1_type = TREE_TYPE (rhs1);
3479 tree rhs2 = gimple_assign_rhs2 (stmt);
3480 tree rhs2_type = TREE_TYPE (rhs2);
3481
3482 if (!is_gimple_reg (lhs))
3483 {
3484 error ("non-register as LHS of binary operation");
3485 return true;
3486 }
3487
3488 if (!is_gimple_val (rhs1)
3489 || !is_gimple_val (rhs2))
3490 {
3491 error ("invalid operands in binary operation");
3492 return true;
3493 }
3494
3495 /* First handle operations that involve different types. */
3496 switch (rhs_code)
3497 {
3498 case COMPLEX_EXPR:
3499 {
3500 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3501 || !(INTEGRAL_TYPE_P (rhs1_type)
3502 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3503 || !(INTEGRAL_TYPE_P (rhs2_type)
3504 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3505 {
3506 error ("type mismatch in complex expression");
3507 debug_generic_expr (lhs_type);
3508 debug_generic_expr (rhs1_type);
3509 debug_generic_expr (rhs2_type);
3510 return true;
3511 }
3512
3513 return false;
3514 }
3515
3516 case LSHIFT_EXPR:
3517 case RSHIFT_EXPR:
3518 case LROTATE_EXPR:
3519 case RROTATE_EXPR:
3520 {
3521 /* Shifts and rotates are ok on integral types, fixed point
3522 types and integer vector types. */
3523 if ((!INTEGRAL_TYPE_P (rhs1_type)
3524 && !FIXED_POINT_TYPE_P (rhs1_type)
3525 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3526 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3527 || (!INTEGRAL_TYPE_P (rhs2_type)
3528 /* Vector shifts of vectors are also ok. */
3529 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3530 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3531 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3532 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3533 || !useless_type_conversion_p (lhs_type, rhs1_type))
3534 {
3535 error ("type mismatch in shift expression");
3536 debug_generic_expr (lhs_type);
3537 debug_generic_expr (rhs1_type);
3538 debug_generic_expr (rhs2_type);
3539 return true;
3540 }
3541
3542 return false;
3543 }
3544
3545 case VEC_LSHIFT_EXPR:
3546 case VEC_RSHIFT_EXPR:
3547 {
3548 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3549 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3550 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3551 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3552 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3553 || (!INTEGRAL_TYPE_P (rhs2_type)
3554 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3555 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3556 || !useless_type_conversion_p (lhs_type, rhs1_type))
3557 {
3558 error ("type mismatch in vector shift expression");
3559 debug_generic_expr (lhs_type);
3560 debug_generic_expr (rhs1_type);
3561 debug_generic_expr (rhs2_type);
3562 return true;
3563 }
3564 /* For shifting a vector of non-integral components we
3565 only allow shifting by a constant multiple of the element size. */
3566 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3567 && (TREE_CODE (rhs2) != INTEGER_CST
3568 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3569 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3570 {
3571 error ("non-element sized vector shift of floating point vector");
3572 return true;
3573 }
3574
3575 return false;
3576 }
3577
3578 case WIDEN_LSHIFT_EXPR:
3579 {
3580 if (!INTEGRAL_TYPE_P (lhs_type)
3581 || !INTEGRAL_TYPE_P (rhs1_type)
3582 || TREE_CODE (rhs2) != INTEGER_CST
3583 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3584 {
3585 error ("type mismatch in widening vector shift expression");
3586 debug_generic_expr (lhs_type);
3587 debug_generic_expr (rhs1_type);
3588 debug_generic_expr (rhs2_type);
3589 return true;
3590 }
3591
3592 return false;
3593 }
3594
3595 case VEC_WIDEN_LSHIFT_HI_EXPR:
3596 case VEC_WIDEN_LSHIFT_LO_EXPR:
3597 {
3598 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3599 || TREE_CODE (lhs_type) != VECTOR_TYPE
3600 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3601 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3602 || TREE_CODE (rhs2) != INTEGER_CST
3603 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3604 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3605 {
3606 error ("type mismatch in widening vector shift expression");
3607 debug_generic_expr (lhs_type);
3608 debug_generic_expr (rhs1_type);
3609 debug_generic_expr (rhs2_type);
3610 return true;
3611 }
3612
3613 return false;
3614 }
3615
3616 case PLUS_EXPR:
3617 case MINUS_EXPR:
3618 {
3619 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3620 ??? This just makes the checker happy and may not be what is
3621 intended. */
3622 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3623 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3624 {
3625 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3626 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3627 {
3628 error ("invalid non-vector operands to vector valued plus");
3629 return true;
3630 }
3631 lhs_type = TREE_TYPE (lhs_type);
3632 rhs1_type = TREE_TYPE (rhs1_type);
3633 rhs2_type = TREE_TYPE (rhs2_type);
3634 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3635 the pointer to 2nd place. */
3636 if (POINTER_TYPE_P (rhs2_type))
3637 {
3638 tree tem = rhs1_type;
3639 rhs1_type = rhs2_type;
3640 rhs2_type = tem;
3641 }
3642 goto do_pointer_plus_expr_check;
3643 }
3644 if (POINTER_TYPE_P (lhs_type)
3645 || POINTER_TYPE_P (rhs1_type)
3646 || POINTER_TYPE_P (rhs2_type))
3647 {
3648 error ("invalid (pointer) operands to plus/minus");
3649 return true;
3650 }
3651
3652 /* Continue with generic binary expression handling. */
3653 break;
3654 }
3655
3656 case POINTER_PLUS_EXPR:
3657 {
3658 do_pointer_plus_expr_check:
3659 if (!POINTER_TYPE_P (rhs1_type)
3660 || !useless_type_conversion_p (lhs_type, rhs1_type)
3661 || !ptrofftype_p (rhs2_type))
3662 {
3663 error ("type mismatch in pointer plus expression");
3664 debug_generic_stmt (lhs_type);
3665 debug_generic_stmt (rhs1_type);
3666 debug_generic_stmt (rhs2_type);
3667 return true;
3668 }
3669
3670 return false;
3671 }
3672
3673 case TRUTH_ANDIF_EXPR:
3674 case TRUTH_ORIF_EXPR:
3675 case TRUTH_AND_EXPR:
3676 case TRUTH_OR_EXPR:
3677 case TRUTH_XOR_EXPR:
3678
3679 gcc_unreachable ();
3680
3681 case LT_EXPR:
3682 case LE_EXPR:
3683 case GT_EXPR:
3684 case GE_EXPR:
3685 case EQ_EXPR:
3686 case NE_EXPR:
3687 case UNORDERED_EXPR:
3688 case ORDERED_EXPR:
3689 case UNLT_EXPR:
3690 case UNLE_EXPR:
3691 case UNGT_EXPR:
3692 case UNGE_EXPR:
3693 case UNEQ_EXPR:
3694 case LTGT_EXPR:
3695 /* Comparisons are also binary, but the result type is not
3696 connected to the operand types. */
3697 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3698
3699 case WIDEN_MULT_EXPR:
3700 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3701 return true;
3702 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3703 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3704
3705 case WIDEN_SUM_EXPR:
3706 case VEC_WIDEN_MULT_HI_EXPR:
3707 case VEC_WIDEN_MULT_LO_EXPR:
3708 case VEC_PACK_TRUNC_EXPR:
3709 case VEC_PACK_SAT_EXPR:
3710 case VEC_PACK_FIX_TRUNC_EXPR:
3711 /* FIXME. */
3712 return false;
3713
3714 case MULT_EXPR:
3715 case TRUNC_DIV_EXPR:
3716 case CEIL_DIV_EXPR:
3717 case FLOOR_DIV_EXPR:
3718 case ROUND_DIV_EXPR:
3719 case TRUNC_MOD_EXPR:
3720 case CEIL_MOD_EXPR:
3721 case FLOOR_MOD_EXPR:
3722 case ROUND_MOD_EXPR:
3723 case RDIV_EXPR:
3724 case EXACT_DIV_EXPR:
3725 case MIN_EXPR:
3726 case MAX_EXPR:
3727 case BIT_IOR_EXPR:
3728 case BIT_XOR_EXPR:
3729 case BIT_AND_EXPR:
3730 /* Continue with generic binary expression handling. */
3731 break;
3732
3733 default:
3734 gcc_unreachable ();
3735 }
3736
3737 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3738 || !useless_type_conversion_p (lhs_type, rhs2_type))
3739 {
3740 error ("type mismatch in binary expression");
3741 debug_generic_stmt (lhs_type);
3742 debug_generic_stmt (rhs1_type);
3743 debug_generic_stmt (rhs2_type);
3744 return true;
3745 }
3746
3747 return false;
3748 }
3749
3750 /* Verify a gimple assignment statement STMT with a ternary rhs.
3751 Returns true if anything is wrong. */
3752
3753 static bool
3754 verify_gimple_assign_ternary (gimple stmt)
3755 {
3756 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3757 tree lhs = gimple_assign_lhs (stmt);
3758 tree lhs_type = TREE_TYPE (lhs);
3759 tree rhs1 = gimple_assign_rhs1 (stmt);
3760 tree rhs1_type = TREE_TYPE (rhs1);
3761 tree rhs2 = gimple_assign_rhs2 (stmt);
3762 tree rhs2_type = TREE_TYPE (rhs2);
3763 tree rhs3 = gimple_assign_rhs3 (stmt);
3764 tree rhs3_type = TREE_TYPE (rhs3);
3765
3766 if (!is_gimple_reg (lhs))
3767 {
3768 error ("non-register as LHS of ternary operation");
3769 return true;
3770 }
3771
3772 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3773 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3774 || !is_gimple_val (rhs2)
3775 || !is_gimple_val (rhs3))
3776 {
3777 error ("invalid operands in ternary operation");
3778 return true;
3779 }
3780
3781 /* First handle operations that involve different types. */
3782 switch (rhs_code)
3783 {
3784 case WIDEN_MULT_PLUS_EXPR:
3785 case WIDEN_MULT_MINUS_EXPR:
3786 if ((!INTEGRAL_TYPE_P (rhs1_type)
3787 && !FIXED_POINT_TYPE_P (rhs1_type))
3788 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3789 || !useless_type_conversion_p (lhs_type, rhs3_type)
3790 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3791 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3792 {
3793 error ("type mismatch in widening multiply-accumulate expression");
3794 debug_generic_expr (lhs_type);
3795 debug_generic_expr (rhs1_type);
3796 debug_generic_expr (rhs2_type);
3797 debug_generic_expr (rhs3_type);
3798 return true;
3799 }
3800 break;
3801
3802 case FMA_EXPR:
3803 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3804 || !useless_type_conversion_p (lhs_type, rhs2_type)
3805 || !useless_type_conversion_p (lhs_type, rhs3_type))
3806 {
3807 error ("type mismatch in fused multiply-add expression");
3808 debug_generic_expr (lhs_type);
3809 debug_generic_expr (rhs1_type);
3810 debug_generic_expr (rhs2_type);
3811 debug_generic_expr (rhs3_type);
3812 return true;
3813 }
3814 break;
3815
3816 case COND_EXPR:
3817 case VEC_COND_EXPR:
3818 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3819 || !useless_type_conversion_p (lhs_type, rhs3_type))
3820 {
3821 error ("type mismatch in conditional expression");
3822 debug_generic_expr (lhs_type);
3823 debug_generic_expr (rhs2_type);
3824 debug_generic_expr (rhs3_type);
3825 return true;
3826 }
3827 break;
3828
3829 case VEC_PERM_EXPR:
3830 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3831 || !useless_type_conversion_p (lhs_type, rhs2_type))
3832 {
3833 error ("type mismatch in vector permute expression");
3834 debug_generic_expr (lhs_type);
3835 debug_generic_expr (rhs1_type);
3836 debug_generic_expr (rhs2_type);
3837 debug_generic_expr (rhs3_type);
3838 return true;
3839 }
3840
3841 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3842 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3843 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3844 {
3845 error ("vector types expected in vector permute expression");
3846 debug_generic_expr (lhs_type);
3847 debug_generic_expr (rhs1_type);
3848 debug_generic_expr (rhs2_type);
3849 debug_generic_expr (rhs3_type);
3850 return true;
3851 }
3852
3853 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3854 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3855 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3856 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3857 != TYPE_VECTOR_SUBPARTS (lhs_type))
3858 {
3859 error ("vectors with different element number found "
3860 "in vector permute expression");
3861 debug_generic_expr (lhs_type);
3862 debug_generic_expr (rhs1_type);
3863 debug_generic_expr (rhs2_type);
3864 debug_generic_expr (rhs3_type);
3865 return true;
3866 }
3867
3868 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3869 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3870 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3871 {
3872 error ("invalid mask type in vector permute expression");
3873 debug_generic_expr (lhs_type);
3874 debug_generic_expr (rhs1_type);
3875 debug_generic_expr (rhs2_type);
3876 debug_generic_expr (rhs3_type);
3877 return true;
3878 }
3879
3880 return false;
3881
3882 case DOT_PROD_EXPR:
3883 case REALIGN_LOAD_EXPR:
3884 /* FIXME. */
3885 return false;
3886
3887 default:
3888 gcc_unreachable ();
3889 }
3890 return false;
3891 }
3892
3893 /* Verify a gimple assignment statement STMT with a single rhs.
3894 Returns true if anything is wrong. */
3895
3896 static bool
3897 verify_gimple_assign_single (gimple stmt)
3898 {
3899 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3900 tree lhs = gimple_assign_lhs (stmt);
3901 tree lhs_type = TREE_TYPE (lhs);
3902 tree rhs1 = gimple_assign_rhs1 (stmt);
3903 tree rhs1_type = TREE_TYPE (rhs1);
3904 bool res = false;
3905
3906 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3907 {
3908 error ("non-trivial conversion at assignment");
3909 debug_generic_expr (lhs_type);
3910 debug_generic_expr (rhs1_type);
3911 return true;
3912 }
3913
3914 if (handled_component_p (lhs))
3915 res |= verify_types_in_gimple_reference (lhs, true);
3916
3917 /* Special codes we cannot handle via their class. */
3918 switch (rhs_code)
3919 {
3920 case ADDR_EXPR:
3921 {
3922 tree op = TREE_OPERAND (rhs1, 0);
3923 if (!is_gimple_addressable (op))
3924 {
3925 error ("invalid operand in unary expression");
3926 return true;
3927 }
3928
3929 /* Technically there is no longer a need for matching types, but
3930 gimple hygiene asks for this check. In LTO we can end up
3931 combining incompatible units and thus end up with addresses
3932 of globals that change their type to a common one. */
3933 if (!in_lto_p
3934 && !types_compatible_p (TREE_TYPE (op),
3935 TREE_TYPE (TREE_TYPE (rhs1)))
3936 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3937 TREE_TYPE (op)))
3938 {
3939 error ("type mismatch in address expression");
3940 debug_generic_stmt (TREE_TYPE (rhs1));
3941 debug_generic_stmt (TREE_TYPE (op));
3942 return true;
3943 }
3944
3945 return verify_types_in_gimple_reference (op, true);
3946 }
3947
3948 /* tcc_reference */
3949 case INDIRECT_REF:
3950 error ("INDIRECT_REF in gimple IL");
3951 return true;
3952
3953 case COMPONENT_REF:
3954 case BIT_FIELD_REF:
3955 case ARRAY_REF:
3956 case ARRAY_RANGE_REF:
3957 case VIEW_CONVERT_EXPR:
3958 case REALPART_EXPR:
3959 case IMAGPART_EXPR:
3960 case TARGET_MEM_REF:
3961 case MEM_REF:
3962 if (!is_gimple_reg (lhs)
3963 && is_gimple_reg_type (TREE_TYPE (lhs)))
3964 {
3965 error ("invalid rhs for gimple memory store");
3966 debug_generic_stmt (lhs);
3967 debug_generic_stmt (rhs1);
3968 return true;
3969 }
3970 return res || verify_types_in_gimple_reference (rhs1, false);
3971
3972 /* tcc_constant */
3973 case SSA_NAME:
3974 case INTEGER_CST:
3975 case REAL_CST:
3976 case FIXED_CST:
3977 case COMPLEX_CST:
3978 case VECTOR_CST:
3979 case STRING_CST:
3980 return res;
3981
3982 /* tcc_declaration */
3983 case CONST_DECL:
3984 return res;
3985 case VAR_DECL:
3986 case PARM_DECL:
3987 if (!is_gimple_reg (lhs)
3988 && !is_gimple_reg (rhs1)
3989 && is_gimple_reg_type (TREE_TYPE (lhs)))
3990 {
3991 error ("invalid rhs for gimple memory store");
3992 debug_generic_stmt (lhs);
3993 debug_generic_stmt (rhs1);
3994 return true;
3995 }
3996 return res;
3997
3998 case CONSTRUCTOR:
3999 case OBJ_TYPE_REF:
4000 case ASSERT_EXPR:
4001 case WITH_SIZE_EXPR:
4002 /* FIXME. */
4003 return res;
4004
4005 default:;
4006 }
4007
4008 return res;
4009 }
4010
4011 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4012 is a problem, otherwise false. */
4013
4014 static bool
4015 verify_gimple_assign (gimple stmt)
4016 {
4017 switch (gimple_assign_rhs_class (stmt))
4018 {
4019 case GIMPLE_SINGLE_RHS:
4020 return verify_gimple_assign_single (stmt);
4021
4022 case GIMPLE_UNARY_RHS:
4023 return verify_gimple_assign_unary (stmt);
4024
4025 case GIMPLE_BINARY_RHS:
4026 return verify_gimple_assign_binary (stmt);
4027
4028 case GIMPLE_TERNARY_RHS:
4029 return verify_gimple_assign_ternary (stmt);
4030
4031 default:
4032 gcc_unreachable ();
4033 }
4034 }
4035
4036 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4037 is a problem, otherwise false. */
4038
4039 static bool
4040 verify_gimple_return (gimple stmt)
4041 {
4042 tree op = gimple_return_retval (stmt);
4043 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4044
4045 /* We cannot test for present return values as we do not fix up missing
4046 return values from the original source. */
4047 if (op == NULL)
4048 return false;
4049
4050 if (!is_gimple_val (op)
4051 && TREE_CODE (op) != RESULT_DECL)
4052 {
4053 error ("invalid operand in return statement");
4054 debug_generic_stmt (op);
4055 return true;
4056 }
4057
4058 if ((TREE_CODE (op) == RESULT_DECL
4059 && DECL_BY_REFERENCE (op))
4060 || (TREE_CODE (op) == SSA_NAME
4061 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4062 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4063 op = TREE_TYPE (op);
4064
4065 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4066 {
4067 error ("invalid conversion in return statement");
4068 debug_generic_stmt (restype);
4069 debug_generic_stmt (TREE_TYPE (op));
4070 return true;
4071 }
4072
4073 return false;
4074 }
4075
4076
4077 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4078 is a problem, otherwise false. */
4079
4080 static bool
4081 verify_gimple_goto (gimple stmt)
4082 {
4083 tree dest = gimple_goto_dest (stmt);
4084
4085 /* ??? We have two canonical forms of direct goto destinations, a
4086 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4087 if (TREE_CODE (dest) != LABEL_DECL
4088 && (!is_gimple_val (dest)
4089 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4090 {
4091 error ("goto destination is neither a label nor a pointer");
4092 return true;
4093 }
4094
4095 return false;
4096 }
4097
4098 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4099 is a problem, otherwise false. */
4100
4101 static bool
4102 verify_gimple_switch (gimple stmt)
4103 {
4104 if (!is_gimple_val (gimple_switch_index (stmt)))
4105 {
4106 error ("invalid operand to switch statement");
4107 debug_generic_stmt (gimple_switch_index (stmt));
4108 return true;
4109 }
4110
4111 return false;
4112 }
4113
4114 /* Verify a gimple debug statement STMT.
4115 Returns true if anything is wrong. */
4116
4117 static bool
4118 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4119 {
4120 /* There isn't much that could be wrong in a gimple debug stmt. A
4121 gimple debug bind stmt, for example, maps a tree, that's usually
4122 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4123 component or member of an aggregate type, to another tree, that
4124 can be an arbitrary expression. These stmts expand into debug
4125 insns, and are converted to debug notes by var-tracking.c. */
4126 return false;
4127 }
4128
4129 /* Verify a gimple label statement STMT.
4130 Returns true if anything is wrong. */
4131
4132 static bool
4133 verify_gimple_label (gimple stmt)
4134 {
4135 tree decl = gimple_label_label (stmt);
4136 int uid;
4137 bool err = false;
4138
4139 if (TREE_CODE (decl) != LABEL_DECL)
4140 return true;
4141
4142 uid = LABEL_DECL_UID (decl);
4143 if (cfun->cfg
4144 && (uid == -1
4145 || VEC_index (basic_block,
4146 label_to_block_map, uid) != gimple_bb (stmt)))
4147 {
4148 error ("incorrect entry in label_to_block_map");
4149 err |= true;
4150 }
4151
4152 uid = EH_LANDING_PAD_NR (decl);
4153 if (uid)
4154 {
4155 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4156 if (decl != lp->post_landing_pad)
4157 {
4158 error ("incorrect setting of landing pad number");
4159 err |= true;
4160 }
4161 }
4162
4163 return err;
4164 }
4165
4166 /* Verify the GIMPLE statement STMT. Returns true if there is an
4167 error, otherwise false. */
4168
4169 static bool
4170 verify_gimple_stmt (gimple stmt)
4171 {
4172 switch (gimple_code (stmt))
4173 {
4174 case GIMPLE_ASSIGN:
4175 return verify_gimple_assign (stmt);
4176
4177 case GIMPLE_LABEL:
4178 return verify_gimple_label (stmt);
4179
4180 case GIMPLE_CALL:
4181 return verify_gimple_call (stmt);
4182
4183 case GIMPLE_COND:
4184 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4185 {
4186 error ("invalid comparison code in gimple cond");
4187 return true;
4188 }
4189 if (!(!gimple_cond_true_label (stmt)
4190 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4191 || !(!gimple_cond_false_label (stmt)
4192 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4193 {
4194 error ("invalid labels in gimple cond");
4195 return true;
4196 }
4197
4198 return verify_gimple_comparison (boolean_type_node,
4199 gimple_cond_lhs (stmt),
4200 gimple_cond_rhs (stmt));
4201
4202 case GIMPLE_GOTO:
4203 return verify_gimple_goto (stmt);
4204
4205 case GIMPLE_SWITCH:
4206 return verify_gimple_switch (stmt);
4207
4208 case GIMPLE_RETURN:
4209 return verify_gimple_return (stmt);
4210
4211 case GIMPLE_ASM:
4212 return false;
4213
4214 case GIMPLE_TRANSACTION:
4215 return verify_gimple_transaction (stmt);
4216
4217 /* Tuples that do not have tree operands. */
4218 case GIMPLE_NOP:
4219 case GIMPLE_PREDICT:
4220 case GIMPLE_RESX:
4221 case GIMPLE_EH_DISPATCH:
4222 case GIMPLE_EH_MUST_NOT_THROW:
4223 return false;
4224
4225 CASE_GIMPLE_OMP:
4226 /* OpenMP directives are validated by the FE and never operated
4227 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4228 non-gimple expressions when the main index variable has had
4229 its address taken. This does not affect the loop itself
4230 because the header of an GIMPLE_OMP_FOR is merely used to determine
4231 how to setup the parallel iteration. */
4232 return false;
4233
4234 case GIMPLE_DEBUG:
4235 return verify_gimple_debug (stmt);
4236
4237 default:
4238 gcc_unreachable ();
4239 }
4240 }
4241
4242 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4243 and false otherwise. */
4244
4245 static bool
4246 verify_gimple_phi (gimple phi)
4247 {
4248 bool err = false;
4249 unsigned i;
4250 tree phi_result = gimple_phi_result (phi);
4251 bool virtual_p;
4252
4253 if (!phi_result)
4254 {
4255 error ("invalid PHI result");
4256 return true;
4257 }
4258
4259 virtual_p = !is_gimple_reg (phi_result);
4260 if (TREE_CODE (phi_result) != SSA_NAME
4261 || (virtual_p
4262 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4263 {
4264 error ("invalid PHI result");
4265 err = true;
4266 }
4267
4268 for (i = 0; i < gimple_phi_num_args (phi); i++)
4269 {
4270 tree t = gimple_phi_arg_def (phi, i);
4271
4272 if (!t)
4273 {
4274 error ("missing PHI def");
4275 err |= true;
4276 continue;
4277 }
4278 /* Addressable variables do have SSA_NAMEs but they
4279 are not considered gimple values. */
4280 else if ((TREE_CODE (t) == SSA_NAME
4281 && virtual_p != !is_gimple_reg (t))
4282 || (virtual_p
4283 && (TREE_CODE (t) != SSA_NAME
4284 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4285 || (!virtual_p
4286 && !is_gimple_val (t)))
4287 {
4288 error ("invalid PHI argument");
4289 debug_generic_expr (t);
4290 err |= true;
4291 }
4292 #ifdef ENABLE_TYPES_CHECKING
4293 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4294 {
4295 error ("incompatible types in PHI argument %u", i);
4296 debug_generic_stmt (TREE_TYPE (phi_result));
4297 debug_generic_stmt (TREE_TYPE (t));
4298 err |= true;
4299 }
4300 #endif
4301 }
4302
4303 return err;
4304 }
4305
4306 /* Verify the GIMPLE statements inside the sequence STMTS. */
4307
4308 static bool
4309 verify_gimple_in_seq_2 (gimple_seq stmts)
4310 {
4311 gimple_stmt_iterator ittr;
4312 bool err = false;
4313
4314 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4315 {
4316 gimple stmt = gsi_stmt (ittr);
4317
4318 switch (gimple_code (stmt))
4319 {
4320 case GIMPLE_BIND:
4321 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4322 break;
4323
4324 case GIMPLE_TRY:
4325 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4326 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4327 break;
4328
4329 case GIMPLE_EH_FILTER:
4330 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4331 break;
4332
4333 case GIMPLE_EH_ELSE:
4334 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4335 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4336 break;
4337
4338 case GIMPLE_CATCH:
4339 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4340 break;
4341
4342 case GIMPLE_TRANSACTION:
4343 err |= verify_gimple_transaction (stmt);
4344 break;
4345
4346 default:
4347 {
4348 bool err2 = verify_gimple_stmt (stmt);
4349 if (err2)
4350 debug_gimple_stmt (stmt);
4351 err |= err2;
4352 }
4353 }
4354 }
4355
4356 return err;
4357 }
4358
4359 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4360 is a problem, otherwise false. */
4361
4362 static bool
4363 verify_gimple_transaction (gimple stmt)
4364 {
4365 tree lab = gimple_transaction_label (stmt);
4366 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4367 return true;
4368 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4369 }
4370
4371
4372 /* Verify the GIMPLE statements inside the statement list STMTS. */
4373
4374 DEBUG_FUNCTION void
4375 verify_gimple_in_seq (gimple_seq stmts)
4376 {
4377 timevar_push (TV_TREE_STMT_VERIFY);
4378 if (verify_gimple_in_seq_2 (stmts))
4379 internal_error ("verify_gimple failed");
4380 timevar_pop (TV_TREE_STMT_VERIFY);
4381 }
4382
4383 /* Return true when the T can be shared. */
4384
4385 bool
4386 tree_node_can_be_shared (tree t)
4387 {
4388 if (IS_TYPE_OR_DECL_P (t)
4389 || is_gimple_min_invariant (t)
4390 || TREE_CODE (t) == SSA_NAME
4391 || t == error_mark_node
4392 || TREE_CODE (t) == IDENTIFIER_NODE)
4393 return true;
4394
4395 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4396 return true;
4397
4398 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4399 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4400 || TREE_CODE (t) == COMPONENT_REF
4401 || TREE_CODE (t) == REALPART_EXPR
4402 || TREE_CODE (t) == IMAGPART_EXPR)
4403 t = TREE_OPERAND (t, 0);
4404
4405 if (DECL_P (t))
4406 return true;
4407
4408 return false;
4409 }
4410
4411 /* Called via walk_gimple_stmt. Verify tree sharing. */
4412
4413 static tree
4414 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4415 {
4416 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4417 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4418
4419 if (tree_node_can_be_shared (*tp))
4420 {
4421 *walk_subtrees = false;
4422 return NULL;
4423 }
4424
4425 if (pointer_set_insert (visited, *tp))
4426 return *tp;
4427
4428 return NULL;
4429 }
4430
4431 static bool eh_error_found;
4432 static int
4433 verify_eh_throw_stmt_node (void **slot, void *data)
4434 {
4435 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4436 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4437
4438 if (!pointer_set_contains (visited, node->stmt))
4439 {
4440 error ("dead STMT in EH table");
4441 debug_gimple_stmt (node->stmt);
4442 eh_error_found = true;
4443 }
4444 return 1;
4445 }
4446
4447 /* Verify the GIMPLE statements in the CFG of FN. */
4448
4449 DEBUG_FUNCTION void
4450 verify_gimple_in_cfg (struct function *fn)
4451 {
4452 basic_block bb;
4453 bool err = false;
4454 struct pointer_set_t *visited, *visited_stmts;
4455
4456 timevar_push (TV_TREE_STMT_VERIFY);
4457 visited = pointer_set_create ();
4458 visited_stmts = pointer_set_create ();
4459
4460 FOR_EACH_BB_FN (bb, fn)
4461 {
4462 gimple_stmt_iterator gsi;
4463
4464 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4465 {
4466 gimple phi = gsi_stmt (gsi);
4467 bool err2 = false;
4468 unsigned i;
4469
4470 pointer_set_insert (visited_stmts, phi);
4471
4472 if (gimple_bb (phi) != bb)
4473 {
4474 error ("gimple_bb (phi) is set to a wrong basic block");
4475 err2 = true;
4476 }
4477
4478 err2 |= verify_gimple_phi (phi);
4479
4480 for (i = 0; i < gimple_phi_num_args (phi); i++)
4481 {
4482 tree arg = gimple_phi_arg_def (phi, i);
4483 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4484 if (addr)
4485 {
4486 error ("incorrect sharing of tree nodes");
4487 debug_generic_expr (addr);
4488 err2 |= true;
4489 }
4490 }
4491
4492 if (err2)
4493 debug_gimple_stmt (phi);
4494 err |= err2;
4495 }
4496
4497 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4498 {
4499 gimple stmt = gsi_stmt (gsi);
4500 bool err2 = false;
4501 struct walk_stmt_info wi;
4502 tree addr;
4503 int lp_nr;
4504
4505 pointer_set_insert (visited_stmts, stmt);
4506
4507 if (gimple_bb (stmt) != bb)
4508 {
4509 error ("gimple_bb (stmt) is set to a wrong basic block");
4510 err2 = true;
4511 }
4512
4513 err2 |= verify_gimple_stmt (stmt);
4514
4515 memset (&wi, 0, sizeof (wi));
4516 wi.info = (void *) visited;
4517 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4518 if (addr)
4519 {
4520 error ("incorrect sharing of tree nodes");
4521 debug_generic_expr (addr);
4522 err2 |= true;
4523 }
4524
4525 /* ??? Instead of not checking these stmts at all the walker
4526 should know its context via wi. */
4527 if (!is_gimple_debug (stmt)
4528 && !is_gimple_omp (stmt))
4529 {
4530 memset (&wi, 0, sizeof (wi));
4531 addr = walk_gimple_op (stmt, verify_expr, &wi);
4532 if (addr)
4533 {
4534 debug_generic_expr (addr);
4535 inform (gimple_location (stmt), "in statement");
4536 err2 |= true;
4537 }
4538 }
4539
4540 /* If the statement is marked as part of an EH region, then it is
4541 expected that the statement could throw. Verify that when we
4542 have optimizations that simplify statements such that we prove
4543 that they cannot throw, that we update other data structures
4544 to match. */
4545 lp_nr = lookup_stmt_eh_lp (stmt);
4546 if (lp_nr != 0)
4547 {
4548 if (!stmt_could_throw_p (stmt))
4549 {
4550 error ("statement marked for throw, but doesn%'t");
4551 err2 |= true;
4552 }
4553 else if (lp_nr > 0
4554 && !gsi_one_before_end_p (gsi)
4555 && stmt_can_throw_internal (stmt))
4556 {
4557 error ("statement marked for throw in middle of block");
4558 err2 |= true;
4559 }
4560 }
4561
4562 if (err2)
4563 debug_gimple_stmt (stmt);
4564 err |= err2;
4565 }
4566 }
4567
4568 eh_error_found = false;
4569 if (get_eh_throw_stmt_table (cfun))
4570 htab_traverse (get_eh_throw_stmt_table (cfun),
4571 verify_eh_throw_stmt_node,
4572 visited_stmts);
4573
4574 if (err || eh_error_found)
4575 internal_error ("verify_gimple failed");
4576
4577 pointer_set_destroy (visited);
4578 pointer_set_destroy (visited_stmts);
4579 verify_histograms ();
4580 timevar_pop (TV_TREE_STMT_VERIFY);
4581 }
4582
4583
4584 /* Verifies that the flow information is OK. */
4585
4586 static int
4587 gimple_verify_flow_info (void)
4588 {
4589 int err = 0;
4590 basic_block bb;
4591 gimple_stmt_iterator gsi;
4592 gimple stmt;
4593 edge e;
4594 edge_iterator ei;
4595
4596 if (ENTRY_BLOCK_PTR->il.gimple)
4597 {
4598 error ("ENTRY_BLOCK has IL associated with it");
4599 err = 1;
4600 }
4601
4602 if (EXIT_BLOCK_PTR->il.gimple)
4603 {
4604 error ("EXIT_BLOCK has IL associated with it");
4605 err = 1;
4606 }
4607
4608 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4609 if (e->flags & EDGE_FALLTHRU)
4610 {
4611 error ("fallthru to exit from bb %d", e->src->index);
4612 err = 1;
4613 }
4614
4615 FOR_EACH_BB (bb)
4616 {
4617 bool found_ctrl_stmt = false;
4618
4619 stmt = NULL;
4620
4621 /* Skip labels on the start of basic block. */
4622 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4623 {
4624 tree label;
4625 gimple prev_stmt = stmt;
4626
4627 stmt = gsi_stmt (gsi);
4628
4629 if (gimple_code (stmt) != GIMPLE_LABEL)
4630 break;
4631
4632 label = gimple_label_label (stmt);
4633 if (prev_stmt && DECL_NONLOCAL (label))
4634 {
4635 error ("nonlocal label ");
4636 print_generic_expr (stderr, label, 0);
4637 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4638 bb->index);
4639 err = 1;
4640 }
4641
4642 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4643 {
4644 error ("EH landing pad label ");
4645 print_generic_expr (stderr, label, 0);
4646 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4647 bb->index);
4648 err = 1;
4649 }
4650
4651 if (label_to_block (label) != bb)
4652 {
4653 error ("label ");
4654 print_generic_expr (stderr, label, 0);
4655 fprintf (stderr, " to block does not match in bb %d",
4656 bb->index);
4657 err = 1;
4658 }
4659
4660 if (decl_function_context (label) != current_function_decl)
4661 {
4662 error ("label ");
4663 print_generic_expr (stderr, label, 0);
4664 fprintf (stderr, " has incorrect context in bb %d",
4665 bb->index);
4666 err = 1;
4667 }
4668 }
4669
4670 /* Verify that body of basic block BB is free of control flow. */
4671 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4672 {
4673 gimple stmt = gsi_stmt (gsi);
4674
4675 if (found_ctrl_stmt)
4676 {
4677 error ("control flow in the middle of basic block %d",
4678 bb->index);
4679 err = 1;
4680 }
4681
4682 if (stmt_ends_bb_p (stmt))
4683 found_ctrl_stmt = true;
4684
4685 if (gimple_code (stmt) == GIMPLE_LABEL)
4686 {
4687 error ("label ");
4688 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4689 fprintf (stderr, " in the middle of basic block %d", bb->index);
4690 err = 1;
4691 }
4692 }
4693
4694 gsi = gsi_last_bb (bb);
4695 if (gsi_end_p (gsi))
4696 continue;
4697
4698 stmt = gsi_stmt (gsi);
4699
4700 if (gimple_code (stmt) == GIMPLE_LABEL)
4701 continue;
4702
4703 err |= verify_eh_edges (stmt);
4704
4705 if (is_ctrl_stmt (stmt))
4706 {
4707 FOR_EACH_EDGE (e, ei, bb->succs)
4708 if (e->flags & EDGE_FALLTHRU)
4709 {
4710 error ("fallthru edge after a control statement in bb %d",
4711 bb->index);
4712 err = 1;
4713 }
4714 }
4715
4716 if (gimple_code (stmt) != GIMPLE_COND)
4717 {
4718 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4719 after anything else but if statement. */
4720 FOR_EACH_EDGE (e, ei, bb->succs)
4721 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4722 {
4723 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4724 bb->index);
4725 err = 1;
4726 }
4727 }
4728
4729 switch (gimple_code (stmt))
4730 {
4731 case GIMPLE_COND:
4732 {
4733 edge true_edge;
4734 edge false_edge;
4735
4736 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4737
4738 if (!true_edge
4739 || !false_edge
4740 || !(true_edge->flags & EDGE_TRUE_VALUE)
4741 || !(false_edge->flags & EDGE_FALSE_VALUE)
4742 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4743 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4744 || EDGE_COUNT (bb->succs) >= 3)
4745 {
4746 error ("wrong outgoing edge flags at end of bb %d",
4747 bb->index);
4748 err = 1;
4749 }
4750 }
4751 break;
4752
4753 case GIMPLE_GOTO:
4754 if (simple_goto_p (stmt))
4755 {
4756 error ("explicit goto at end of bb %d", bb->index);
4757 err = 1;
4758 }
4759 else
4760 {
4761 /* FIXME. We should double check that the labels in the
4762 destination blocks have their address taken. */
4763 FOR_EACH_EDGE (e, ei, bb->succs)
4764 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4765 | EDGE_FALSE_VALUE))
4766 || !(e->flags & EDGE_ABNORMAL))
4767 {
4768 error ("wrong outgoing edge flags at end of bb %d",
4769 bb->index);
4770 err = 1;
4771 }
4772 }
4773 break;
4774
4775 case GIMPLE_CALL:
4776 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4777 break;
4778 /* ... fallthru ... */
4779 case GIMPLE_RETURN:
4780 if (!single_succ_p (bb)
4781 || (single_succ_edge (bb)->flags
4782 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4783 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4784 {
4785 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4786 err = 1;
4787 }
4788 if (single_succ (bb) != EXIT_BLOCK_PTR)
4789 {
4790 error ("return edge does not point to exit in bb %d",
4791 bb->index);
4792 err = 1;
4793 }
4794 break;
4795
4796 case GIMPLE_SWITCH:
4797 {
4798 tree prev;
4799 edge e;
4800 size_t i, n;
4801
4802 n = gimple_switch_num_labels (stmt);
4803
4804 /* Mark all the destination basic blocks. */
4805 for (i = 0; i < n; ++i)
4806 {
4807 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4808 basic_block label_bb = label_to_block (lab);
4809 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4810 label_bb->aux = (void *)1;
4811 }
4812
4813 /* Verify that the case labels are sorted. */
4814 prev = gimple_switch_label (stmt, 0);
4815 for (i = 1; i < n; ++i)
4816 {
4817 tree c = gimple_switch_label (stmt, i);
4818 if (!CASE_LOW (c))
4819 {
4820 error ("found default case not at the start of "
4821 "case vector");
4822 err = 1;
4823 continue;
4824 }
4825 if (CASE_LOW (prev)
4826 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4827 {
4828 error ("case labels not sorted: ");
4829 print_generic_expr (stderr, prev, 0);
4830 fprintf (stderr," is greater than ");
4831 print_generic_expr (stderr, c, 0);
4832 fprintf (stderr," but comes before it.\n");
4833 err = 1;
4834 }
4835 prev = c;
4836 }
4837 /* VRP will remove the default case if it can prove it will
4838 never be executed. So do not verify there always exists
4839 a default case here. */
4840
4841 FOR_EACH_EDGE (e, ei, bb->succs)
4842 {
4843 if (!e->dest->aux)
4844 {
4845 error ("extra outgoing edge %d->%d",
4846 bb->index, e->dest->index);
4847 err = 1;
4848 }
4849
4850 e->dest->aux = (void *)2;
4851 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4852 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4853 {
4854 error ("wrong outgoing edge flags at end of bb %d",
4855 bb->index);
4856 err = 1;
4857 }
4858 }
4859
4860 /* Check that we have all of them. */
4861 for (i = 0; i < n; ++i)
4862 {
4863 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4864 basic_block label_bb = label_to_block (lab);
4865
4866 if (label_bb->aux != (void *)2)
4867 {
4868 error ("missing edge %i->%i", bb->index, label_bb->index);
4869 err = 1;
4870 }
4871 }
4872
4873 FOR_EACH_EDGE (e, ei, bb->succs)
4874 e->dest->aux = (void *)0;
4875 }
4876 break;
4877
4878 case GIMPLE_EH_DISPATCH:
4879 err |= verify_eh_dispatch_edge (stmt);
4880 break;
4881
4882 default:
4883 break;
4884 }
4885 }
4886
4887 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4888 verify_dominators (CDI_DOMINATORS);
4889
4890 return err;
4891 }
4892
4893
4894 /* Updates phi nodes after creating a forwarder block joined
4895 by edge FALLTHRU. */
4896
4897 static void
4898 gimple_make_forwarder_block (edge fallthru)
4899 {
4900 edge e;
4901 edge_iterator ei;
4902 basic_block dummy, bb;
4903 tree var;
4904 gimple_stmt_iterator gsi;
4905
4906 dummy = fallthru->src;
4907 bb = fallthru->dest;
4908
4909 if (single_pred_p (bb))
4910 return;
4911
4912 /* If we redirected a branch we must create new PHI nodes at the
4913 start of BB. */
4914 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4915 {
4916 gimple phi, new_phi;
4917
4918 phi = gsi_stmt (gsi);
4919 var = gimple_phi_result (phi);
4920 new_phi = create_phi_node (var, bb);
4921 SSA_NAME_DEF_STMT (var) = new_phi;
4922 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4923 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4924 UNKNOWN_LOCATION);
4925 }
4926
4927 /* Add the arguments we have stored on edges. */
4928 FOR_EACH_EDGE (e, ei, bb->preds)
4929 {
4930 if (e == fallthru)
4931 continue;
4932
4933 flush_pending_stmts (e);
4934 }
4935 }
4936
4937
4938 /* Return a non-special label in the head of basic block BLOCK.
4939 Create one if it doesn't exist. */
4940
4941 tree
4942 gimple_block_label (basic_block bb)
4943 {
4944 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4945 bool first = true;
4946 tree label;
4947 gimple stmt;
4948
4949 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4950 {
4951 stmt = gsi_stmt (i);
4952 if (gimple_code (stmt) != GIMPLE_LABEL)
4953 break;
4954 label = gimple_label_label (stmt);
4955 if (!DECL_NONLOCAL (label))
4956 {
4957 if (!first)
4958 gsi_move_before (&i, &s);
4959 return label;
4960 }
4961 }
4962
4963 label = create_artificial_label (UNKNOWN_LOCATION);
4964 stmt = gimple_build_label (label);
4965 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4966 return label;
4967 }
4968
4969
4970 /* Attempt to perform edge redirection by replacing a possibly complex
4971 jump instruction by a goto or by removing the jump completely.
4972 This can apply only if all edges now point to the same block. The
4973 parameters and return values are equivalent to
4974 redirect_edge_and_branch. */
4975
4976 static edge
4977 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4978 {
4979 basic_block src = e->src;
4980 gimple_stmt_iterator i;
4981 gimple stmt;
4982
4983 /* We can replace or remove a complex jump only when we have exactly
4984 two edges. */
4985 if (EDGE_COUNT (src->succs) != 2
4986 /* Verify that all targets will be TARGET. Specifically, the
4987 edge that is not E must also go to TARGET. */
4988 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4989 return NULL;
4990
4991 i = gsi_last_bb (src);
4992 if (gsi_end_p (i))
4993 return NULL;
4994
4995 stmt = gsi_stmt (i);
4996
4997 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4998 {
4999 gsi_remove (&i, true);
5000 e = ssa_redirect_edge (e, target);
5001 e->flags = EDGE_FALLTHRU;
5002 return e;
5003 }
5004
5005 return NULL;
5006 }
5007
5008
5009 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5010 edge representing the redirected branch. */
5011
5012 static edge
5013 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5014 {
5015 basic_block bb = e->src;
5016 gimple_stmt_iterator gsi;
5017 edge ret;
5018 gimple stmt;
5019
5020 if (e->flags & EDGE_ABNORMAL)
5021 return NULL;
5022
5023 if (e->dest == dest)
5024 return NULL;
5025
5026 if (e->flags & EDGE_EH)
5027 return redirect_eh_edge (e, dest);
5028
5029 if (e->src != ENTRY_BLOCK_PTR)
5030 {
5031 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5032 if (ret)
5033 return ret;
5034 }
5035
5036 gsi = gsi_last_bb (bb);
5037 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5038
5039 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5040 {
5041 case GIMPLE_COND:
5042 /* For COND_EXPR, we only need to redirect the edge. */
5043 break;
5044
5045 case GIMPLE_GOTO:
5046 /* No non-abnormal edges should lead from a non-simple goto, and
5047 simple ones should be represented implicitly. */
5048 gcc_unreachable ();
5049
5050 case GIMPLE_SWITCH:
5051 {
5052 tree label = gimple_block_label (dest);
5053 tree cases = get_cases_for_edge (e, stmt);
5054
5055 /* If we have a list of cases associated with E, then use it
5056 as it's a lot faster than walking the entire case vector. */
5057 if (cases)
5058 {
5059 edge e2 = find_edge (e->src, dest);
5060 tree last, first;
5061
5062 first = cases;
5063 while (cases)
5064 {
5065 last = cases;
5066 CASE_LABEL (cases) = label;
5067 cases = CASE_CHAIN (cases);
5068 }
5069
5070 /* If there was already an edge in the CFG, then we need
5071 to move all the cases associated with E to E2. */
5072 if (e2)
5073 {
5074 tree cases2 = get_cases_for_edge (e2, stmt);
5075
5076 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5077 CASE_CHAIN (cases2) = first;
5078 }
5079 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5080 }
5081 else
5082 {
5083 size_t i, n = gimple_switch_num_labels (stmt);
5084
5085 for (i = 0; i < n; i++)
5086 {
5087 tree elt = gimple_switch_label (stmt, i);
5088 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5089 CASE_LABEL (elt) = label;
5090 }
5091 }
5092 }
5093 break;
5094
5095 case GIMPLE_ASM:
5096 {
5097 int i, n = gimple_asm_nlabels (stmt);
5098 tree label = NULL;
5099
5100 for (i = 0; i < n; ++i)
5101 {
5102 tree cons = gimple_asm_label_op (stmt, i);
5103 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5104 {
5105 if (!label)
5106 label = gimple_block_label (dest);
5107 TREE_VALUE (cons) = label;
5108 }
5109 }
5110
5111 /* If we didn't find any label matching the former edge in the
5112 asm labels, we must be redirecting the fallthrough
5113 edge. */
5114 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5115 }
5116 break;
5117
5118 case GIMPLE_RETURN:
5119 gsi_remove (&gsi, true);
5120 e->flags |= EDGE_FALLTHRU;
5121 break;
5122
5123 case GIMPLE_OMP_RETURN:
5124 case GIMPLE_OMP_CONTINUE:
5125 case GIMPLE_OMP_SECTIONS_SWITCH:
5126 case GIMPLE_OMP_FOR:
5127 /* The edges from OMP constructs can be simply redirected. */
5128 break;
5129
5130 case GIMPLE_EH_DISPATCH:
5131 if (!(e->flags & EDGE_FALLTHRU))
5132 redirect_eh_dispatch_edge (stmt, e, dest);
5133 break;
5134
5135 case GIMPLE_TRANSACTION:
5136 /* The ABORT edge has a stored label associated with it, otherwise
5137 the edges are simply redirectable. */
5138 if (e->flags == 0)
5139 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5140 break;
5141
5142 default:
5143 /* Otherwise it must be a fallthru edge, and we don't need to
5144 do anything besides redirecting it. */
5145 gcc_assert (e->flags & EDGE_FALLTHRU);
5146 break;
5147 }
5148
5149 /* Update/insert PHI nodes as necessary. */
5150
5151 /* Now update the edges in the CFG. */
5152 e = ssa_redirect_edge (e, dest);
5153
5154 return e;
5155 }
5156
5157 /* Returns true if it is possible to remove edge E by redirecting
5158 it to the destination of the other edge from E->src. */
5159
5160 static bool
5161 gimple_can_remove_branch_p (const_edge e)
5162 {
5163 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5164 return false;
5165
5166 return true;
5167 }
5168
5169 /* Simple wrapper, as we can always redirect fallthru edges. */
5170
5171 static basic_block
5172 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5173 {
5174 e = gimple_redirect_edge_and_branch (e, dest);
5175 gcc_assert (e);
5176
5177 return NULL;
5178 }
5179
5180
5181 /* Splits basic block BB after statement STMT (but at least after the
5182 labels). If STMT is NULL, BB is split just after the labels. */
5183
5184 static basic_block
5185 gimple_split_block (basic_block bb, void *stmt)
5186 {
5187 gimple_stmt_iterator gsi;
5188 gimple_stmt_iterator gsi_tgt;
5189 gimple act;
5190 gimple_seq list;
5191 basic_block new_bb;
5192 edge e;
5193 edge_iterator ei;
5194
5195 new_bb = create_empty_bb (bb);
5196
5197 /* Redirect the outgoing edges. */
5198 new_bb->succs = bb->succs;
5199 bb->succs = NULL;
5200 FOR_EACH_EDGE (e, ei, new_bb->succs)
5201 e->src = new_bb;
5202
5203 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5204 stmt = NULL;
5205
5206 /* Move everything from GSI to the new basic block. */
5207 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5208 {
5209 act = gsi_stmt (gsi);
5210 if (gimple_code (act) == GIMPLE_LABEL)
5211 continue;
5212
5213 if (!stmt)
5214 break;
5215
5216 if (stmt == act)
5217 {
5218 gsi_next (&gsi);
5219 break;
5220 }
5221 }
5222
5223 if (gsi_end_p (gsi))
5224 return new_bb;
5225
5226 /* Split the statement list - avoid re-creating new containers as this
5227 brings ugly quadratic memory consumption in the inliner.
5228 (We are still quadratic since we need to update stmt BB pointers,
5229 sadly.) */
5230 list = gsi_split_seq_before (&gsi);
5231 set_bb_seq (new_bb, list);
5232 for (gsi_tgt = gsi_start (list);
5233 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5234 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5235
5236 return new_bb;
5237 }
5238
5239
5240 /* Moves basic block BB after block AFTER. */
5241
5242 static bool
5243 gimple_move_block_after (basic_block bb, basic_block after)
5244 {
5245 if (bb->prev_bb == after)
5246 return true;
5247
5248 unlink_block (bb);
5249 link_block (bb, after);
5250
5251 return true;
5252 }
5253
5254
5255 /* Return true if basic_block can be duplicated. */
5256
5257 static bool
5258 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5259 {
5260 return true;
5261 }
5262
5263 /* Create a duplicate of the basic block BB. NOTE: This does not
5264 preserve SSA form. */
5265
5266 static basic_block
5267 gimple_duplicate_bb (basic_block bb)
5268 {
5269 basic_block new_bb;
5270 gimple_stmt_iterator gsi, gsi_tgt;
5271 gimple_seq phis = phi_nodes (bb);
5272 gimple phi, stmt, copy;
5273
5274 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5275
5276 /* Copy the PHI nodes. We ignore PHI node arguments here because
5277 the incoming edges have not been setup yet. */
5278 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5279 {
5280 phi = gsi_stmt (gsi);
5281 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5282 create_new_def_for (gimple_phi_result (copy), copy,
5283 gimple_phi_result_ptr (copy));
5284 }
5285
5286 gsi_tgt = gsi_start_bb (new_bb);
5287 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5288 {
5289 def_operand_p def_p;
5290 ssa_op_iter op_iter;
5291 tree lhs;
5292
5293 stmt = gsi_stmt (gsi);
5294 if (gimple_code (stmt) == GIMPLE_LABEL)
5295 continue;
5296
5297 /* Don't duplicate label debug stmts. */
5298 if (gimple_debug_bind_p (stmt)
5299 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5300 == LABEL_DECL)
5301 continue;
5302
5303 /* Create a new copy of STMT and duplicate STMT's virtual
5304 operands. */
5305 copy = gimple_copy (stmt);
5306 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5307
5308 maybe_duplicate_eh_stmt (copy, stmt);
5309 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5310
5311 /* When copying around a stmt writing into a local non-user
5312 aggregate, make sure it won't share stack slot with other
5313 vars. */
5314 lhs = gimple_get_lhs (stmt);
5315 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5316 {
5317 tree base = get_base_address (lhs);
5318 if (base
5319 && (TREE_CODE (base) == VAR_DECL
5320 || TREE_CODE (base) == RESULT_DECL)
5321 && DECL_IGNORED_P (base)
5322 && !TREE_STATIC (base)
5323 && !DECL_EXTERNAL (base)
5324 && (TREE_CODE (base) != VAR_DECL
5325 || !DECL_HAS_VALUE_EXPR_P (base)))
5326 DECL_NONSHAREABLE (base) = 1;
5327 }
5328
5329 /* Create new names for all the definitions created by COPY and
5330 add replacement mappings for each new name. */
5331 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5332 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5333 }
5334
5335 return new_bb;
5336 }
5337
5338 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5339
5340 static void
5341 add_phi_args_after_copy_edge (edge e_copy)
5342 {
5343 basic_block bb, bb_copy = e_copy->src, dest;
5344 edge e;
5345 edge_iterator ei;
5346 gimple phi, phi_copy;
5347 tree def;
5348 gimple_stmt_iterator psi, psi_copy;
5349
5350 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5351 return;
5352
5353 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5354
5355 if (e_copy->dest->flags & BB_DUPLICATED)
5356 dest = get_bb_original (e_copy->dest);
5357 else
5358 dest = e_copy->dest;
5359
5360 e = find_edge (bb, dest);
5361 if (!e)
5362 {
5363 /* During loop unrolling the target of the latch edge is copied.
5364 In this case we are not looking for edge to dest, but to
5365 duplicated block whose original was dest. */
5366 FOR_EACH_EDGE (e, ei, bb->succs)
5367 {
5368 if ((e->dest->flags & BB_DUPLICATED)
5369 && get_bb_original (e->dest) == dest)
5370 break;
5371 }
5372
5373 gcc_assert (e != NULL);
5374 }
5375
5376 for (psi = gsi_start_phis (e->dest),
5377 psi_copy = gsi_start_phis (e_copy->dest);
5378 !gsi_end_p (psi);
5379 gsi_next (&psi), gsi_next (&psi_copy))
5380 {
5381 phi = gsi_stmt (psi);
5382 phi_copy = gsi_stmt (psi_copy);
5383 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5384 add_phi_arg (phi_copy, def, e_copy,
5385 gimple_phi_arg_location_from_edge (phi, e));
5386 }
5387 }
5388
5389
5390 /* Basic block BB_COPY was created by code duplication. Add phi node
5391 arguments for edges going out of BB_COPY. The blocks that were
5392 duplicated have BB_DUPLICATED set. */
5393
5394 void
5395 add_phi_args_after_copy_bb (basic_block bb_copy)
5396 {
5397 edge e_copy;
5398 edge_iterator ei;
5399
5400 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5401 {
5402 add_phi_args_after_copy_edge (e_copy);
5403 }
5404 }
5405
5406 /* Blocks in REGION_COPY array of length N_REGION were created by
5407 duplication of basic blocks. Add phi node arguments for edges
5408 going from these blocks. If E_COPY is not NULL, also add
5409 phi node arguments for its destination.*/
5410
5411 void
5412 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5413 edge e_copy)
5414 {
5415 unsigned i;
5416
5417 for (i = 0; i < n_region; i++)
5418 region_copy[i]->flags |= BB_DUPLICATED;
5419
5420 for (i = 0; i < n_region; i++)
5421 add_phi_args_after_copy_bb (region_copy[i]);
5422 if (e_copy)
5423 add_phi_args_after_copy_edge (e_copy);
5424
5425 for (i = 0; i < n_region; i++)
5426 region_copy[i]->flags &= ~BB_DUPLICATED;
5427 }
5428
5429 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5430 important exit edge EXIT. By important we mean that no SSA name defined
5431 inside region is live over the other exit edges of the region. All entry
5432 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5433 to the duplicate of the region. SSA form, dominance and loop information
5434 is updated. The new basic blocks are stored to REGION_COPY in the same
5435 order as they had in REGION, provided that REGION_COPY is not NULL.
5436 The function returns false if it is unable to copy the region,
5437 true otherwise. */
5438
5439 bool
5440 gimple_duplicate_sese_region (edge entry, edge exit,
5441 basic_block *region, unsigned n_region,
5442 basic_block *region_copy)
5443 {
5444 unsigned i;
5445 bool free_region_copy = false, copying_header = false;
5446 struct loop *loop = entry->dest->loop_father;
5447 edge exit_copy;
5448 VEC (basic_block, heap) *doms;
5449 edge redirected;
5450 int total_freq = 0, entry_freq = 0;
5451 gcov_type total_count = 0, entry_count = 0;
5452
5453 if (!can_copy_bbs_p (region, n_region))
5454 return false;
5455
5456 /* Some sanity checking. Note that we do not check for all possible
5457 missuses of the functions. I.e. if you ask to copy something weird,
5458 it will work, but the state of structures probably will not be
5459 correct. */
5460 for (i = 0; i < n_region; i++)
5461 {
5462 /* We do not handle subloops, i.e. all the blocks must belong to the
5463 same loop. */
5464 if (region[i]->loop_father != loop)
5465 return false;
5466
5467 if (region[i] != entry->dest
5468 && region[i] == loop->header)
5469 return false;
5470 }
5471
5472 set_loop_copy (loop, loop);
5473
5474 /* In case the function is used for loop header copying (which is the primary
5475 use), ensure that EXIT and its copy will be new latch and entry edges. */
5476 if (loop->header == entry->dest)
5477 {
5478 copying_header = true;
5479 set_loop_copy (loop, loop_outer (loop));
5480
5481 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5482 return false;
5483
5484 for (i = 0; i < n_region; i++)
5485 if (region[i] != exit->src
5486 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5487 return false;
5488 }
5489
5490 if (!region_copy)
5491 {
5492 region_copy = XNEWVEC (basic_block, n_region);
5493 free_region_copy = true;
5494 }
5495
5496 gcc_assert (!need_ssa_update_p (cfun));
5497
5498 /* Record blocks outside the region that are dominated by something
5499 inside. */
5500 doms = NULL;
5501 initialize_original_copy_tables ();
5502
5503 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5504
5505 if (entry->dest->count)
5506 {
5507 total_count = entry->dest->count;
5508 entry_count = entry->count;
5509 /* Fix up corner cases, to avoid division by zero or creation of negative
5510 frequencies. */
5511 if (entry_count > total_count)
5512 entry_count = total_count;
5513 }
5514 else
5515 {
5516 total_freq = entry->dest->frequency;
5517 entry_freq = EDGE_FREQUENCY (entry);
5518 /* Fix up corner cases, to avoid division by zero or creation of negative
5519 frequencies. */
5520 if (total_freq == 0)
5521 total_freq = 1;
5522 else if (entry_freq > total_freq)
5523 entry_freq = total_freq;
5524 }
5525
5526 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5527 split_edge_bb_loc (entry));
5528 if (total_count)
5529 {
5530 scale_bbs_frequencies_gcov_type (region, n_region,
5531 total_count - entry_count,
5532 total_count);
5533 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5534 total_count);
5535 }
5536 else
5537 {
5538 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5539 total_freq);
5540 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5541 }
5542
5543 if (copying_header)
5544 {
5545 loop->header = exit->dest;
5546 loop->latch = exit->src;
5547 }
5548
5549 /* Redirect the entry and add the phi node arguments. */
5550 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5551 gcc_assert (redirected != NULL);
5552 flush_pending_stmts (entry);
5553
5554 /* Concerning updating of dominators: We must recount dominators
5555 for entry block and its copy. Anything that is outside of the
5556 region, but was dominated by something inside needs recounting as
5557 well. */
5558 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5559 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5560 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5561 VEC_free (basic_block, heap, doms);
5562
5563 /* Add the other PHI node arguments. */
5564 add_phi_args_after_copy (region_copy, n_region, NULL);
5565
5566 /* Update the SSA web. */
5567 update_ssa (TODO_update_ssa);
5568
5569 if (free_region_copy)
5570 free (region_copy);
5571
5572 free_original_copy_tables ();
5573 return true;
5574 }
5575
5576 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5577 are stored to REGION_COPY in the same order in that they appear
5578 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5579 the region, EXIT an exit from it. The condition guarding EXIT
5580 is moved to ENTRY. Returns true if duplication succeeds, false
5581 otherwise.
5582
5583 For example,
5584
5585 some_code;
5586 if (cond)
5587 A;
5588 else
5589 B;
5590
5591 is transformed to
5592
5593 if (cond)
5594 {
5595 some_code;
5596 A;
5597 }
5598 else
5599 {
5600 some_code;
5601 B;
5602 }
5603 */
5604
5605 bool
5606 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5607 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5608 basic_block *region_copy ATTRIBUTE_UNUSED)
5609 {
5610 unsigned i;
5611 bool free_region_copy = false;
5612 struct loop *loop = exit->dest->loop_father;
5613 struct loop *orig_loop = entry->dest->loop_father;
5614 basic_block switch_bb, entry_bb, nentry_bb;
5615 VEC (basic_block, heap) *doms;
5616 int total_freq = 0, exit_freq = 0;
5617 gcov_type total_count = 0, exit_count = 0;
5618 edge exits[2], nexits[2], e;
5619 gimple_stmt_iterator gsi;
5620 gimple cond_stmt;
5621 edge sorig, snew;
5622 basic_block exit_bb;
5623 gimple_stmt_iterator psi;
5624 gimple phi;
5625 tree def;
5626
5627 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5628 exits[0] = exit;
5629 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5630
5631 if (!can_copy_bbs_p (region, n_region))
5632 return false;
5633
5634 initialize_original_copy_tables ();
5635 set_loop_copy (orig_loop, loop);
5636 duplicate_subloops (orig_loop, loop);
5637
5638 if (!region_copy)
5639 {
5640 region_copy = XNEWVEC (basic_block, n_region);
5641 free_region_copy = true;
5642 }
5643
5644 gcc_assert (!need_ssa_update_p (cfun));
5645
5646 /* Record blocks outside the region that are dominated by something
5647 inside. */
5648 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5649
5650 if (exit->src->count)
5651 {
5652 total_count = exit->src->count;
5653 exit_count = exit->count;
5654 /* Fix up corner cases, to avoid division by zero or creation of negative
5655 frequencies. */
5656 if (exit_count > total_count)
5657 exit_count = total_count;
5658 }
5659 else
5660 {
5661 total_freq = exit->src->frequency;
5662 exit_freq = EDGE_FREQUENCY (exit);
5663 /* Fix up corner cases, to avoid division by zero or creation of negative
5664 frequencies. */
5665 if (total_freq == 0)
5666 total_freq = 1;
5667 if (exit_freq > total_freq)
5668 exit_freq = total_freq;
5669 }
5670
5671 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5672 split_edge_bb_loc (exit));
5673 if (total_count)
5674 {
5675 scale_bbs_frequencies_gcov_type (region, n_region,
5676 total_count - exit_count,
5677 total_count);
5678 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5679 total_count);
5680 }
5681 else
5682 {
5683 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5684 total_freq);
5685 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5686 }
5687
5688 /* Create the switch block, and put the exit condition to it. */
5689 entry_bb = entry->dest;
5690 nentry_bb = get_bb_copy (entry_bb);
5691 if (!last_stmt (entry->src)
5692 || !stmt_ends_bb_p (last_stmt (entry->src)))
5693 switch_bb = entry->src;
5694 else
5695 switch_bb = split_edge (entry);
5696 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5697
5698 gsi = gsi_last_bb (switch_bb);
5699 cond_stmt = last_stmt (exit->src);
5700 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5701 cond_stmt = gimple_copy (cond_stmt);
5702
5703 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5704
5705 sorig = single_succ_edge (switch_bb);
5706 sorig->flags = exits[1]->flags;
5707 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5708
5709 /* Register the new edge from SWITCH_BB in loop exit lists. */
5710 rescan_loop_exit (snew, true, false);
5711
5712 /* Add the PHI node arguments. */
5713 add_phi_args_after_copy (region_copy, n_region, snew);
5714
5715 /* Get rid of now superfluous conditions and associated edges (and phi node
5716 arguments). */
5717 exit_bb = exit->dest;
5718
5719 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5720 PENDING_STMT (e) = NULL;
5721
5722 /* The latch of ORIG_LOOP was copied, and so was the backedge
5723 to the original header. We redirect this backedge to EXIT_BB. */
5724 for (i = 0; i < n_region; i++)
5725 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5726 {
5727 gcc_assert (single_succ_edge (region_copy[i]));
5728 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5729 PENDING_STMT (e) = NULL;
5730 for (psi = gsi_start_phis (exit_bb);
5731 !gsi_end_p (psi);
5732 gsi_next (&psi))
5733 {
5734 phi = gsi_stmt (psi);
5735 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5736 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5737 }
5738 }
5739 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5740 PENDING_STMT (e) = NULL;
5741
5742 /* Anything that is outside of the region, but was dominated by something
5743 inside needs to update dominance info. */
5744 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5745 VEC_free (basic_block, heap, doms);
5746 /* Update the SSA web. */
5747 update_ssa (TODO_update_ssa);
5748
5749 if (free_region_copy)
5750 free (region_copy);
5751
5752 free_original_copy_tables ();
5753 return true;
5754 }
5755
5756 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5757 adding blocks when the dominator traversal reaches EXIT. This
5758 function silently assumes that ENTRY strictly dominates EXIT. */
5759
5760 void
5761 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5762 VEC(basic_block,heap) **bbs_p)
5763 {
5764 basic_block son;
5765
5766 for (son = first_dom_son (CDI_DOMINATORS, entry);
5767 son;
5768 son = next_dom_son (CDI_DOMINATORS, son))
5769 {
5770 VEC_safe_push (basic_block, heap, *bbs_p, son);
5771 if (son != exit)
5772 gather_blocks_in_sese_region (son, exit, bbs_p);
5773 }
5774 }
5775
5776 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5777 The duplicates are recorded in VARS_MAP. */
5778
5779 static void
5780 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5781 tree to_context)
5782 {
5783 tree t = *tp, new_t;
5784 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5785 void **loc;
5786
5787 if (DECL_CONTEXT (t) == to_context)
5788 return;
5789
5790 loc = pointer_map_contains (vars_map, t);
5791
5792 if (!loc)
5793 {
5794 loc = pointer_map_insert (vars_map, t);
5795
5796 if (SSA_VAR_P (t))
5797 {
5798 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5799 add_local_decl (f, new_t);
5800 }
5801 else
5802 {
5803 gcc_assert (TREE_CODE (t) == CONST_DECL);
5804 new_t = copy_node (t);
5805 }
5806 DECL_CONTEXT (new_t) = to_context;
5807
5808 *loc = new_t;
5809 }
5810 else
5811 new_t = (tree) *loc;
5812
5813 *tp = new_t;
5814 }
5815
5816
5817 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5818 VARS_MAP maps old ssa names and var_decls to the new ones. */
5819
5820 static tree
5821 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5822 tree to_context)
5823 {
5824 void **loc;
5825 tree new_name, decl = SSA_NAME_VAR (name);
5826
5827 gcc_assert (is_gimple_reg (name));
5828
5829 loc = pointer_map_contains (vars_map, name);
5830
5831 if (!loc)
5832 {
5833 replace_by_duplicate_decl (&decl, vars_map, to_context);
5834
5835 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5836 if (gimple_in_ssa_p (cfun))
5837 add_referenced_var (decl);
5838
5839 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5840 if (SSA_NAME_IS_DEFAULT_DEF (name))
5841 set_default_def (decl, new_name);
5842 pop_cfun ();
5843
5844 loc = pointer_map_insert (vars_map, name);
5845 *loc = new_name;
5846 }
5847 else
5848 new_name = (tree) *loc;
5849
5850 return new_name;
5851 }
5852
5853 struct move_stmt_d
5854 {
5855 tree orig_block;
5856 tree new_block;
5857 tree from_context;
5858 tree to_context;
5859 struct pointer_map_t *vars_map;
5860 htab_t new_label_map;
5861 struct pointer_map_t *eh_map;
5862 bool remap_decls_p;
5863 };
5864
5865 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5866 contained in *TP if it has been ORIG_BLOCK previously and change the
5867 DECL_CONTEXT of every local variable referenced in *TP. */
5868
5869 static tree
5870 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5871 {
5872 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5873 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5874 tree t = *tp;
5875
5876 if (EXPR_P (t))
5877 /* We should never have TREE_BLOCK set on non-statements. */
5878 gcc_assert (!TREE_BLOCK (t));
5879
5880 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5881 {
5882 if (TREE_CODE (t) == SSA_NAME)
5883 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5884 else if (TREE_CODE (t) == LABEL_DECL)
5885 {
5886 if (p->new_label_map)
5887 {
5888 struct tree_map in, *out;
5889 in.base.from = t;
5890 out = (struct tree_map *)
5891 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5892 if (out)
5893 *tp = t = out->to;
5894 }
5895
5896 DECL_CONTEXT (t) = p->to_context;
5897 }
5898 else if (p->remap_decls_p)
5899 {
5900 /* Replace T with its duplicate. T should no longer appear in the
5901 parent function, so this looks wasteful; however, it may appear
5902 in referenced_vars, and more importantly, as virtual operands of
5903 statements, and in alias lists of other variables. It would be
5904 quite difficult to expunge it from all those places. ??? It might
5905 suffice to do this for addressable variables. */
5906 if ((TREE_CODE (t) == VAR_DECL
5907 && !is_global_var (t))
5908 || TREE_CODE (t) == CONST_DECL)
5909 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5910
5911 if (SSA_VAR_P (t)
5912 && gimple_in_ssa_p (cfun))
5913 {
5914 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5915 add_referenced_var (*tp);
5916 pop_cfun ();
5917 }
5918 }
5919 *walk_subtrees = 0;
5920 }
5921 else if (TYPE_P (t))
5922 *walk_subtrees = 0;
5923
5924 return NULL_TREE;
5925 }
5926
5927 /* Helper for move_stmt_r. Given an EH region number for the source
5928 function, map that to the duplicate EH regio number in the dest. */
5929
5930 static int
5931 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5932 {
5933 eh_region old_r, new_r;
5934 void **slot;
5935
5936 old_r = get_eh_region_from_number (old_nr);
5937 slot = pointer_map_contains (p->eh_map, old_r);
5938 new_r = (eh_region) *slot;
5939
5940 return new_r->index;
5941 }
5942
5943 /* Similar, but operate on INTEGER_CSTs. */
5944
5945 static tree
5946 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5947 {
5948 int old_nr, new_nr;
5949
5950 old_nr = tree_low_cst (old_t_nr, 0);
5951 new_nr = move_stmt_eh_region_nr (old_nr, p);
5952
5953 return build_int_cst (integer_type_node, new_nr);
5954 }
5955
5956 /* Like move_stmt_op, but for gimple statements.
5957
5958 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5959 contained in the current statement in *GSI_P and change the
5960 DECL_CONTEXT of every local variable referenced in the current
5961 statement. */
5962
5963 static tree
5964 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5965 struct walk_stmt_info *wi)
5966 {
5967 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5968 gimple stmt = gsi_stmt (*gsi_p);
5969 tree block = gimple_block (stmt);
5970
5971 if (p->orig_block == NULL_TREE
5972 || block == p->orig_block
5973 || block == NULL_TREE)
5974 gimple_set_block (stmt, p->new_block);
5975 #ifdef ENABLE_CHECKING
5976 else if (block != p->new_block)
5977 {
5978 while (block && block != p->orig_block)
5979 block = BLOCK_SUPERCONTEXT (block);
5980 gcc_assert (block);
5981 }
5982 #endif
5983
5984 switch (gimple_code (stmt))
5985 {
5986 case GIMPLE_CALL:
5987 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5988 {
5989 tree r, fndecl = gimple_call_fndecl (stmt);
5990 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5991 switch (DECL_FUNCTION_CODE (fndecl))
5992 {
5993 case BUILT_IN_EH_COPY_VALUES:
5994 r = gimple_call_arg (stmt, 1);
5995 r = move_stmt_eh_region_tree_nr (r, p);
5996 gimple_call_set_arg (stmt, 1, r);
5997 /* FALLTHRU */
5998
5999 case BUILT_IN_EH_POINTER:
6000 case BUILT_IN_EH_FILTER:
6001 r = gimple_call_arg (stmt, 0);
6002 r = move_stmt_eh_region_tree_nr (r, p);
6003 gimple_call_set_arg (stmt, 0, r);
6004 break;
6005
6006 default:
6007 break;
6008 }
6009 }
6010 break;
6011
6012 case GIMPLE_RESX:
6013 {
6014 int r = gimple_resx_region (stmt);
6015 r = move_stmt_eh_region_nr (r, p);
6016 gimple_resx_set_region (stmt, r);
6017 }
6018 break;
6019
6020 case GIMPLE_EH_DISPATCH:
6021 {
6022 int r = gimple_eh_dispatch_region (stmt);
6023 r = move_stmt_eh_region_nr (r, p);
6024 gimple_eh_dispatch_set_region (stmt, r);
6025 }
6026 break;
6027
6028 case GIMPLE_OMP_RETURN:
6029 case GIMPLE_OMP_CONTINUE:
6030 break;
6031 default:
6032 if (is_gimple_omp (stmt))
6033 {
6034 /* Do not remap variables inside OMP directives. Variables
6035 referenced in clauses and directive header belong to the
6036 parent function and should not be moved into the child
6037 function. */
6038 bool save_remap_decls_p = p->remap_decls_p;
6039 p->remap_decls_p = false;
6040 *handled_ops_p = true;
6041
6042 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
6043 move_stmt_op, wi);
6044
6045 p->remap_decls_p = save_remap_decls_p;
6046 }
6047 break;
6048 }
6049
6050 return NULL_TREE;
6051 }
6052
6053 /* Move basic block BB from function CFUN to function DEST_FN. The
6054 block is moved out of the original linked list and placed after
6055 block AFTER in the new list. Also, the block is removed from the
6056 original array of blocks and placed in DEST_FN's array of blocks.
6057 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6058 updated to reflect the moved edges.
6059
6060 The local variables are remapped to new instances, VARS_MAP is used
6061 to record the mapping. */
6062
6063 static void
6064 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6065 basic_block after, bool update_edge_count_p,
6066 struct move_stmt_d *d)
6067 {
6068 struct control_flow_graph *cfg;
6069 edge_iterator ei;
6070 edge e;
6071 gimple_stmt_iterator si;
6072 unsigned old_len, new_len;
6073
6074 /* Remove BB from dominance structures. */
6075 delete_from_dominance_info (CDI_DOMINATORS, bb);
6076 if (current_loops)
6077 remove_bb_from_loops (bb);
6078
6079 /* Link BB to the new linked list. */
6080 move_block_after (bb, after);
6081
6082 /* Update the edge count in the corresponding flowgraphs. */
6083 if (update_edge_count_p)
6084 FOR_EACH_EDGE (e, ei, bb->succs)
6085 {
6086 cfun->cfg->x_n_edges--;
6087 dest_cfun->cfg->x_n_edges++;
6088 }
6089
6090 /* Remove BB from the original basic block array. */
6091 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
6092 cfun->cfg->x_n_basic_blocks--;
6093
6094 /* Grow DEST_CFUN's basic block array if needed. */
6095 cfg = dest_cfun->cfg;
6096 cfg->x_n_basic_blocks++;
6097 if (bb->index >= cfg->x_last_basic_block)
6098 cfg->x_last_basic_block = bb->index + 1;
6099
6100 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
6101 if ((unsigned) cfg->x_last_basic_block >= old_len)
6102 {
6103 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6104 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
6105 new_len);
6106 }
6107
6108 VEC_replace (basic_block, cfg->x_basic_block_info,
6109 bb->index, bb);
6110
6111 /* Remap the variables in phi nodes. */
6112 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6113 {
6114 gimple phi = gsi_stmt (si);
6115 use_operand_p use;
6116 tree op = PHI_RESULT (phi);
6117 ssa_op_iter oi;
6118
6119 if (!is_gimple_reg (op))
6120 {
6121 /* Remove the phi nodes for virtual operands (alias analysis will be
6122 run for the new function, anyway). */
6123 remove_phi_node (&si, true);
6124 continue;
6125 }
6126
6127 SET_PHI_RESULT (phi,
6128 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6129 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6130 {
6131 op = USE_FROM_PTR (use);
6132 if (TREE_CODE (op) == SSA_NAME)
6133 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6134 }
6135
6136 gsi_next (&si);
6137 }
6138
6139 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6140 {
6141 gimple stmt = gsi_stmt (si);
6142 struct walk_stmt_info wi;
6143
6144 memset (&wi, 0, sizeof (wi));
6145 wi.info = d;
6146 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6147
6148 if (gimple_code (stmt) == GIMPLE_LABEL)
6149 {
6150 tree label = gimple_label_label (stmt);
6151 int uid = LABEL_DECL_UID (label);
6152
6153 gcc_assert (uid > -1);
6154
6155 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
6156 if (old_len <= (unsigned) uid)
6157 {
6158 new_len = 3 * uid / 2 + 1;
6159 VEC_safe_grow_cleared (basic_block, gc,
6160 cfg->x_label_to_block_map, new_len);
6161 }
6162
6163 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
6164 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
6165
6166 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6167
6168 if (uid >= dest_cfun->cfg->last_label_uid)
6169 dest_cfun->cfg->last_label_uid = uid + 1;
6170 }
6171
6172 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6173 remove_stmt_from_eh_lp_fn (cfun, stmt);
6174
6175 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6176 gimple_remove_stmt_histograms (cfun, stmt);
6177
6178 /* We cannot leave any operands allocated from the operand caches of
6179 the current function. */
6180 free_stmt_operands (stmt);
6181 push_cfun (dest_cfun);
6182 update_stmt (stmt);
6183 pop_cfun ();
6184 }
6185
6186 FOR_EACH_EDGE (e, ei, bb->succs)
6187 if (e->goto_locus)
6188 {
6189 tree block = e->goto_block;
6190 if (d->orig_block == NULL_TREE
6191 || block == d->orig_block)
6192 e->goto_block = d->new_block;
6193 #ifdef ENABLE_CHECKING
6194 else if (block != d->new_block)
6195 {
6196 while (block && block != d->orig_block)
6197 block = BLOCK_SUPERCONTEXT (block);
6198 gcc_assert (block);
6199 }
6200 #endif
6201 }
6202 }
6203
6204 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6205 the outermost EH region. Use REGION as the incoming base EH region. */
6206
6207 static eh_region
6208 find_outermost_region_in_block (struct function *src_cfun,
6209 basic_block bb, eh_region region)
6210 {
6211 gimple_stmt_iterator si;
6212
6213 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6214 {
6215 gimple stmt = gsi_stmt (si);
6216 eh_region stmt_region;
6217 int lp_nr;
6218
6219 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6220 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6221 if (stmt_region)
6222 {
6223 if (region == NULL)
6224 region = stmt_region;
6225 else if (stmt_region != region)
6226 {
6227 region = eh_region_outermost (src_cfun, stmt_region, region);
6228 gcc_assert (region != NULL);
6229 }
6230 }
6231 }
6232
6233 return region;
6234 }
6235
6236 static tree
6237 new_label_mapper (tree decl, void *data)
6238 {
6239 htab_t hash = (htab_t) data;
6240 struct tree_map *m;
6241 void **slot;
6242
6243 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6244
6245 m = XNEW (struct tree_map);
6246 m->hash = DECL_UID (decl);
6247 m->base.from = decl;
6248 m->to = create_artificial_label (UNKNOWN_LOCATION);
6249 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6250 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6251 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6252
6253 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6254 gcc_assert (*slot == NULL);
6255
6256 *slot = m;
6257
6258 return m->to;
6259 }
6260
6261 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6262 subblocks. */
6263
6264 static void
6265 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6266 tree to_context)
6267 {
6268 tree *tp, t;
6269
6270 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6271 {
6272 t = *tp;
6273 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6274 continue;
6275 replace_by_duplicate_decl (&t, vars_map, to_context);
6276 if (t != *tp)
6277 {
6278 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6279 {
6280 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6281 DECL_HAS_VALUE_EXPR_P (t) = 1;
6282 }
6283 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6284 *tp = t;
6285 }
6286 }
6287
6288 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6289 replace_block_vars_by_duplicates (block, vars_map, to_context);
6290 }
6291
6292 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6293 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6294 single basic block in the original CFG and the new basic block is
6295 returned. DEST_CFUN must not have a CFG yet.
6296
6297 Note that the region need not be a pure SESE region. Blocks inside
6298 the region may contain calls to abort/exit. The only restriction
6299 is that ENTRY_BB should be the only entry point and it must
6300 dominate EXIT_BB.
6301
6302 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6303 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6304 to the new function.
6305
6306 All local variables referenced in the region are assumed to be in
6307 the corresponding BLOCK_VARS and unexpanded variable lists
6308 associated with DEST_CFUN. */
6309
6310 basic_block
6311 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6312 basic_block exit_bb, tree orig_block)
6313 {
6314 VEC(basic_block,heap) *bbs, *dom_bbs;
6315 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6316 basic_block after, bb, *entry_pred, *exit_succ, abb;
6317 struct function *saved_cfun = cfun;
6318 int *entry_flag, *exit_flag;
6319 unsigned *entry_prob, *exit_prob;
6320 unsigned i, num_entry_edges, num_exit_edges;
6321 edge e;
6322 edge_iterator ei;
6323 htab_t new_label_map;
6324 struct pointer_map_t *vars_map, *eh_map;
6325 struct loop *loop = entry_bb->loop_father;
6326 struct move_stmt_d d;
6327
6328 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6329 region. */
6330 gcc_assert (entry_bb != exit_bb
6331 && (!exit_bb
6332 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6333
6334 /* Collect all the blocks in the region. Manually add ENTRY_BB
6335 because it won't be added by dfs_enumerate_from. */
6336 bbs = NULL;
6337 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6338 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6339
6340 /* The blocks that used to be dominated by something in BBS will now be
6341 dominated by the new block. */
6342 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6343 VEC_address (basic_block, bbs),
6344 VEC_length (basic_block, bbs));
6345
6346 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6347 the predecessor edges to ENTRY_BB and the successor edges to
6348 EXIT_BB so that we can re-attach them to the new basic block that
6349 will replace the region. */
6350 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6351 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6352 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6353 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6354 i = 0;
6355 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6356 {
6357 entry_prob[i] = e->probability;
6358 entry_flag[i] = e->flags;
6359 entry_pred[i++] = e->src;
6360 remove_edge (e);
6361 }
6362
6363 if (exit_bb)
6364 {
6365 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6366 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6367 sizeof (basic_block));
6368 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6369 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6370 i = 0;
6371 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6372 {
6373 exit_prob[i] = e->probability;
6374 exit_flag[i] = e->flags;
6375 exit_succ[i++] = e->dest;
6376 remove_edge (e);
6377 }
6378 }
6379 else
6380 {
6381 num_exit_edges = 0;
6382 exit_succ = NULL;
6383 exit_flag = NULL;
6384 exit_prob = NULL;
6385 }
6386
6387 /* Switch context to the child function to initialize DEST_FN's CFG. */
6388 gcc_assert (dest_cfun->cfg == NULL);
6389 push_cfun (dest_cfun);
6390
6391 init_empty_tree_cfg ();
6392
6393 /* Initialize EH information for the new function. */
6394 eh_map = NULL;
6395 new_label_map = NULL;
6396 if (saved_cfun->eh)
6397 {
6398 eh_region region = NULL;
6399
6400 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6401 region = find_outermost_region_in_block (saved_cfun, bb, region);
6402
6403 init_eh_for_function ();
6404 if (region != NULL)
6405 {
6406 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6407 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6408 new_label_mapper, new_label_map);
6409 }
6410 }
6411
6412 pop_cfun ();
6413
6414 /* Move blocks from BBS into DEST_CFUN. */
6415 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6416 after = dest_cfun->cfg->x_entry_block_ptr;
6417 vars_map = pointer_map_create ();
6418
6419 memset (&d, 0, sizeof (d));
6420 d.orig_block = orig_block;
6421 d.new_block = DECL_INITIAL (dest_cfun->decl);
6422 d.from_context = cfun->decl;
6423 d.to_context = dest_cfun->decl;
6424 d.vars_map = vars_map;
6425 d.new_label_map = new_label_map;
6426 d.eh_map = eh_map;
6427 d.remap_decls_p = true;
6428
6429 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6430 {
6431 /* No need to update edge counts on the last block. It has
6432 already been updated earlier when we detached the region from
6433 the original CFG. */
6434 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6435 after = bb;
6436 }
6437
6438 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6439 if (orig_block)
6440 {
6441 tree block;
6442 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6443 == NULL_TREE);
6444 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6445 = BLOCK_SUBBLOCKS (orig_block);
6446 for (block = BLOCK_SUBBLOCKS (orig_block);
6447 block; block = BLOCK_CHAIN (block))
6448 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6449 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6450 }
6451
6452 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6453 vars_map, dest_cfun->decl);
6454
6455 if (new_label_map)
6456 htab_delete (new_label_map);
6457 if (eh_map)
6458 pointer_map_destroy (eh_map);
6459 pointer_map_destroy (vars_map);
6460
6461 /* Rewire the entry and exit blocks. The successor to the entry
6462 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6463 the child function. Similarly, the predecessor of DEST_FN's
6464 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6465 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6466 various CFG manipulation function get to the right CFG.
6467
6468 FIXME, this is silly. The CFG ought to become a parameter to
6469 these helpers. */
6470 push_cfun (dest_cfun);
6471 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6472 if (exit_bb)
6473 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6474 pop_cfun ();
6475
6476 /* Back in the original function, the SESE region has disappeared,
6477 create a new basic block in its place. */
6478 bb = create_empty_bb (entry_pred[0]);
6479 if (current_loops)
6480 add_bb_to_loop (bb, loop);
6481 for (i = 0; i < num_entry_edges; i++)
6482 {
6483 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6484 e->probability = entry_prob[i];
6485 }
6486
6487 for (i = 0; i < num_exit_edges; i++)
6488 {
6489 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6490 e->probability = exit_prob[i];
6491 }
6492
6493 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6494 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6495 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6496 VEC_free (basic_block, heap, dom_bbs);
6497
6498 if (exit_bb)
6499 {
6500 free (exit_prob);
6501 free (exit_flag);
6502 free (exit_succ);
6503 }
6504 free (entry_prob);
6505 free (entry_flag);
6506 free (entry_pred);
6507 VEC_free (basic_block, heap, bbs);
6508
6509 return bb;
6510 }
6511
6512
6513 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6514 */
6515
6516 void
6517 dump_function_to_file (tree fn, FILE *file, int flags)
6518 {
6519 tree arg, var;
6520 struct function *dsf;
6521 bool ignore_topmost_bind = false, any_var = false;
6522 basic_block bb;
6523 tree chain;
6524 bool tmclone = TREE_CODE (fn) == FUNCTION_DECL && decl_is_tm_clone (fn);
6525
6526 fprintf (file, "%s %s(", lang_hooks.decl_printable_name (fn, 2),
6527 tmclone ? "[tm-clone] " : "");
6528
6529 arg = DECL_ARGUMENTS (fn);
6530 while (arg)
6531 {
6532 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6533 fprintf (file, " ");
6534 print_generic_expr (file, arg, dump_flags);
6535 if (flags & TDF_VERBOSE)
6536 print_node (file, "", arg, 4);
6537 if (DECL_CHAIN (arg))
6538 fprintf (file, ", ");
6539 arg = DECL_CHAIN (arg);
6540 }
6541 fprintf (file, ")\n");
6542
6543 if (flags & TDF_VERBOSE)
6544 print_node (file, "", fn, 2);
6545
6546 dsf = DECL_STRUCT_FUNCTION (fn);
6547 if (dsf && (flags & TDF_EH))
6548 dump_eh_tree (file, dsf);
6549
6550 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6551 {
6552 dump_node (fn, TDF_SLIM | flags, file);
6553 return;
6554 }
6555
6556 /* Switch CFUN to point to FN. */
6557 push_cfun (DECL_STRUCT_FUNCTION (fn));
6558
6559 /* When GIMPLE is lowered, the variables are no longer available in
6560 BIND_EXPRs, so display them separately. */
6561 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6562 {
6563 unsigned ix;
6564 ignore_topmost_bind = true;
6565
6566 fprintf (file, "{\n");
6567 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6568 {
6569 print_generic_decl (file, var, flags);
6570 if (flags & TDF_VERBOSE)
6571 print_node (file, "", var, 4);
6572 fprintf (file, "\n");
6573
6574 any_var = true;
6575 }
6576 }
6577
6578 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6579 {
6580 /* If the CFG has been built, emit a CFG-based dump. */
6581 check_bb_profile (ENTRY_BLOCK_PTR, file);
6582 if (!ignore_topmost_bind)
6583 fprintf (file, "{\n");
6584
6585 if (any_var && n_basic_blocks)
6586 fprintf (file, "\n");
6587
6588 FOR_EACH_BB (bb)
6589 gimple_dump_bb (bb, file, 2, flags);
6590
6591 fprintf (file, "}\n");
6592 check_bb_profile (EXIT_BLOCK_PTR, file);
6593 }
6594 else if (DECL_SAVED_TREE (fn) == NULL)
6595 {
6596 /* The function is now in GIMPLE form but the CFG has not been
6597 built yet. Emit the single sequence of GIMPLE statements
6598 that make up its body. */
6599 gimple_seq body = gimple_body (fn);
6600
6601 if (gimple_seq_first_stmt (body)
6602 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6603 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6604 print_gimple_seq (file, body, 0, flags);
6605 else
6606 {
6607 if (!ignore_topmost_bind)
6608 fprintf (file, "{\n");
6609
6610 if (any_var)
6611 fprintf (file, "\n");
6612
6613 print_gimple_seq (file, body, 2, flags);
6614 fprintf (file, "}\n");
6615 }
6616 }
6617 else
6618 {
6619 int indent;
6620
6621 /* Make a tree based dump. */
6622 chain = DECL_SAVED_TREE (fn);
6623
6624 if (chain && TREE_CODE (chain) == BIND_EXPR)
6625 {
6626 if (ignore_topmost_bind)
6627 {
6628 chain = BIND_EXPR_BODY (chain);
6629 indent = 2;
6630 }
6631 else
6632 indent = 0;
6633 }
6634 else
6635 {
6636 if (!ignore_topmost_bind)
6637 fprintf (file, "{\n");
6638 indent = 2;
6639 }
6640
6641 if (any_var)
6642 fprintf (file, "\n");
6643
6644 print_generic_stmt_indented (file, chain, flags, indent);
6645 if (ignore_topmost_bind)
6646 fprintf (file, "}\n");
6647 }
6648
6649 if (flags & TDF_ENUMERATE_LOCALS)
6650 dump_enumerated_decls (file, flags);
6651 fprintf (file, "\n\n");
6652
6653 /* Restore CFUN. */
6654 pop_cfun ();
6655 }
6656
6657
6658 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6659
6660 DEBUG_FUNCTION void
6661 debug_function (tree fn, int flags)
6662 {
6663 dump_function_to_file (fn, stderr, flags);
6664 }
6665
6666
6667 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6668
6669 static void
6670 print_pred_bbs (FILE *file, basic_block bb)
6671 {
6672 edge e;
6673 edge_iterator ei;
6674
6675 FOR_EACH_EDGE (e, ei, bb->preds)
6676 fprintf (file, "bb_%d ", e->src->index);
6677 }
6678
6679
6680 /* Print on FILE the indexes for the successors of basic_block BB. */
6681
6682 static void
6683 print_succ_bbs (FILE *file, basic_block bb)
6684 {
6685 edge e;
6686 edge_iterator ei;
6687
6688 FOR_EACH_EDGE (e, ei, bb->succs)
6689 fprintf (file, "bb_%d ", e->dest->index);
6690 }
6691
6692 /* Print to FILE the basic block BB following the VERBOSITY level. */
6693
6694 void
6695 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6696 {
6697 char *s_indent = (char *) alloca ((size_t) indent + 1);
6698 memset ((void *) s_indent, ' ', (size_t) indent);
6699 s_indent[indent] = '\0';
6700
6701 /* Print basic_block's header. */
6702 if (verbosity >= 2)
6703 {
6704 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6705 print_pred_bbs (file, bb);
6706 fprintf (file, "}, succs = {");
6707 print_succ_bbs (file, bb);
6708 fprintf (file, "})\n");
6709 }
6710
6711 /* Print basic_block's body. */
6712 if (verbosity >= 3)
6713 {
6714 fprintf (file, "%s {\n", s_indent);
6715 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6716 fprintf (file, "%s }\n", s_indent);
6717 }
6718 }
6719
6720 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6721
6722 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6723 VERBOSITY level this outputs the contents of the loop, or just its
6724 structure. */
6725
6726 static void
6727 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6728 {
6729 char *s_indent;
6730 basic_block bb;
6731
6732 if (loop == NULL)
6733 return;
6734
6735 s_indent = (char *) alloca ((size_t) indent + 1);
6736 memset ((void *) s_indent, ' ', (size_t) indent);
6737 s_indent[indent] = '\0';
6738
6739 /* Print loop's header. */
6740 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6741 loop->num, loop->header->index, loop->latch->index);
6742 fprintf (file, ", niter = ");
6743 print_generic_expr (file, loop->nb_iterations, 0);
6744
6745 if (loop->any_upper_bound)
6746 {
6747 fprintf (file, ", upper_bound = ");
6748 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6749 }
6750
6751 if (loop->any_estimate)
6752 {
6753 fprintf (file, ", estimate = ");
6754 dump_double_int (file, loop->nb_iterations_estimate, true);
6755 }
6756 fprintf (file, ")\n");
6757
6758 /* Print loop's body. */
6759 if (verbosity >= 1)
6760 {
6761 fprintf (file, "%s{\n", s_indent);
6762 FOR_EACH_BB (bb)
6763 if (bb->loop_father == loop)
6764 print_loops_bb (file, bb, indent, verbosity);
6765
6766 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6767 fprintf (file, "%s}\n", s_indent);
6768 }
6769 }
6770
6771 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6772 spaces. Following VERBOSITY level this outputs the contents of the
6773 loop, or just its structure. */
6774
6775 static void
6776 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6777 {
6778 if (loop == NULL)
6779 return;
6780
6781 print_loop (file, loop, indent, verbosity);
6782 print_loop_and_siblings (file, loop->next, indent, verbosity);
6783 }
6784
6785 /* Follow a CFG edge from the entry point of the program, and on entry
6786 of a loop, pretty print the loop structure on FILE. */
6787
6788 void
6789 print_loops (FILE *file, int verbosity)
6790 {
6791 basic_block bb;
6792
6793 bb = ENTRY_BLOCK_PTR;
6794 if (bb && bb->loop_father)
6795 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6796 }
6797
6798
6799 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6800
6801 DEBUG_FUNCTION void
6802 debug_loops (int verbosity)
6803 {
6804 print_loops (stderr, verbosity);
6805 }
6806
6807 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6808
6809 DEBUG_FUNCTION void
6810 debug_loop (struct loop *loop, int verbosity)
6811 {
6812 print_loop (stderr, loop, 0, verbosity);
6813 }
6814
6815 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6816 level. */
6817
6818 DEBUG_FUNCTION void
6819 debug_loop_num (unsigned num, int verbosity)
6820 {
6821 debug_loop (get_loop (num), verbosity);
6822 }
6823
6824 /* Return true if BB ends with a call, possibly followed by some
6825 instructions that must stay with the call. Return false,
6826 otherwise. */
6827
6828 static bool
6829 gimple_block_ends_with_call_p (basic_block bb)
6830 {
6831 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6832 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6833 }
6834
6835
6836 /* Return true if BB ends with a conditional branch. Return false,
6837 otherwise. */
6838
6839 static bool
6840 gimple_block_ends_with_condjump_p (const_basic_block bb)
6841 {
6842 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6843 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6844 }
6845
6846
6847 /* Return true if we need to add fake edge to exit at statement T.
6848 Helper function for gimple_flow_call_edges_add. */
6849
6850 static bool
6851 need_fake_edge_p (gimple t)
6852 {
6853 tree fndecl = NULL_TREE;
6854 int call_flags = 0;
6855
6856 /* NORETURN and LONGJMP calls already have an edge to exit.
6857 CONST and PURE calls do not need one.
6858 We don't currently check for CONST and PURE here, although
6859 it would be a good idea, because those attributes are
6860 figured out from the RTL in mark_constant_function, and
6861 the counter incrementation code from -fprofile-arcs
6862 leads to different results from -fbranch-probabilities. */
6863 if (is_gimple_call (t))
6864 {
6865 fndecl = gimple_call_fndecl (t);
6866 call_flags = gimple_call_flags (t);
6867 }
6868
6869 if (is_gimple_call (t)
6870 && fndecl
6871 && DECL_BUILT_IN (fndecl)
6872 && (call_flags & ECF_NOTHROW)
6873 && !(call_flags & ECF_RETURNS_TWICE)
6874 /* fork() doesn't really return twice, but the effect of
6875 wrapping it in __gcov_fork() which calls __gcov_flush()
6876 and clears the counters before forking has the same
6877 effect as returning twice. Force a fake edge. */
6878 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6879 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6880 return false;
6881
6882 if (is_gimple_call (t))
6883 {
6884 edge_iterator ei;
6885 edge e;
6886 basic_block bb;
6887
6888 if (!(call_flags & ECF_NORETURN))
6889 return true;
6890
6891 bb = gimple_bb (t);
6892 FOR_EACH_EDGE (e, ei, bb->succs)
6893 if ((e->flags & EDGE_FAKE) == 0)
6894 return true;
6895 }
6896
6897 if (gimple_code (t) == GIMPLE_ASM
6898 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6899 return true;
6900
6901 return false;
6902 }
6903
6904
6905 /* Add fake edges to the function exit for any non constant and non
6906 noreturn calls (or noreturn calls with EH/abnormal edges),
6907 volatile inline assembly in the bitmap of blocks specified by BLOCKS
6908 or to the whole CFG if BLOCKS is zero. Return the number of blocks
6909 that were split.
6910
6911 The goal is to expose cases in which entering a basic block does
6912 not imply that all subsequent instructions must be executed. */
6913
6914 static int
6915 gimple_flow_call_edges_add (sbitmap blocks)
6916 {
6917 int i;
6918 int blocks_split = 0;
6919 int last_bb = last_basic_block;
6920 bool check_last_block = false;
6921
6922 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6923 return 0;
6924
6925 if (! blocks)
6926 check_last_block = true;
6927 else
6928 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6929
6930 /* In the last basic block, before epilogue generation, there will be
6931 a fallthru edge to EXIT. Special care is required if the last insn
6932 of the last basic block is a call because make_edge folds duplicate
6933 edges, which would result in the fallthru edge also being marked
6934 fake, which would result in the fallthru edge being removed by
6935 remove_fake_edges, which would result in an invalid CFG.
6936
6937 Moreover, we can't elide the outgoing fake edge, since the block
6938 profiler needs to take this into account in order to solve the minimal
6939 spanning tree in the case that the call doesn't return.
6940
6941 Handle this by adding a dummy instruction in a new last basic block. */
6942 if (check_last_block)
6943 {
6944 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6945 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6946 gimple t = NULL;
6947
6948 if (!gsi_end_p (gsi))
6949 t = gsi_stmt (gsi);
6950
6951 if (t && need_fake_edge_p (t))
6952 {
6953 edge e;
6954
6955 e = find_edge (bb, EXIT_BLOCK_PTR);
6956 if (e)
6957 {
6958 gsi_insert_on_edge (e, gimple_build_nop ());
6959 gsi_commit_edge_inserts ();
6960 }
6961 }
6962 }
6963
6964 /* Now add fake edges to the function exit for any non constant
6965 calls since there is no way that we can determine if they will
6966 return or not... */
6967 for (i = 0; i < last_bb; i++)
6968 {
6969 basic_block bb = BASIC_BLOCK (i);
6970 gimple_stmt_iterator gsi;
6971 gimple stmt, last_stmt;
6972
6973 if (!bb)
6974 continue;
6975
6976 if (blocks && !TEST_BIT (blocks, i))
6977 continue;
6978
6979 gsi = gsi_last_nondebug_bb (bb);
6980 if (!gsi_end_p (gsi))
6981 {
6982 last_stmt = gsi_stmt (gsi);
6983 do
6984 {
6985 stmt = gsi_stmt (gsi);
6986 if (need_fake_edge_p (stmt))
6987 {
6988 edge e;
6989
6990 /* The handling above of the final block before the
6991 epilogue should be enough to verify that there is
6992 no edge to the exit block in CFG already.
6993 Calling make_edge in such case would cause us to
6994 mark that edge as fake and remove it later. */
6995 #ifdef ENABLE_CHECKING
6996 if (stmt == last_stmt)
6997 {
6998 e = find_edge (bb, EXIT_BLOCK_PTR);
6999 gcc_assert (e == NULL);
7000 }
7001 #endif
7002
7003 /* Note that the following may create a new basic block
7004 and renumber the existing basic blocks. */
7005 if (stmt != last_stmt)
7006 {
7007 e = split_block (bb, stmt);
7008 if (e)
7009 blocks_split++;
7010 }
7011 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7012 }
7013 gsi_prev (&gsi);
7014 }
7015 while (!gsi_end_p (gsi));
7016 }
7017 }
7018
7019 if (blocks_split)
7020 verify_flow_info ();
7021
7022 return blocks_split;
7023 }
7024
7025 /* Removes edge E and all the blocks dominated by it, and updates dominance
7026 information. The IL in E->src needs to be updated separately.
7027 If dominance info is not available, only the edge E is removed.*/
7028
7029 void
7030 remove_edge_and_dominated_blocks (edge e)
7031 {
7032 VEC (basic_block, heap) *bbs_to_remove = NULL;
7033 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
7034 bitmap df, df_idom;
7035 edge f;
7036 edge_iterator ei;
7037 bool none_removed = false;
7038 unsigned i;
7039 basic_block bb, dbb;
7040 bitmap_iterator bi;
7041
7042 if (!dom_info_available_p (CDI_DOMINATORS))
7043 {
7044 remove_edge (e);
7045 return;
7046 }
7047
7048 /* No updating is needed for edges to exit. */
7049 if (e->dest == EXIT_BLOCK_PTR)
7050 {
7051 if (cfgcleanup_altered_bbs)
7052 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7053 remove_edge (e);
7054 return;
7055 }
7056
7057 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7058 that is not dominated by E->dest, then this set is empty. Otherwise,
7059 all the basic blocks dominated by E->dest are removed.
7060
7061 Also, to DF_IDOM we store the immediate dominators of the blocks in
7062 the dominance frontier of E (i.e., of the successors of the
7063 removed blocks, if there are any, and of E->dest otherwise). */
7064 FOR_EACH_EDGE (f, ei, e->dest->preds)
7065 {
7066 if (f == e)
7067 continue;
7068
7069 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7070 {
7071 none_removed = true;
7072 break;
7073 }
7074 }
7075
7076 df = BITMAP_ALLOC (NULL);
7077 df_idom = BITMAP_ALLOC (NULL);
7078
7079 if (none_removed)
7080 bitmap_set_bit (df_idom,
7081 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7082 else
7083 {
7084 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7085 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7086 {
7087 FOR_EACH_EDGE (f, ei, bb->succs)
7088 {
7089 if (f->dest != EXIT_BLOCK_PTR)
7090 bitmap_set_bit (df, f->dest->index);
7091 }
7092 }
7093 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7094 bitmap_clear_bit (df, bb->index);
7095
7096 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7097 {
7098 bb = BASIC_BLOCK (i);
7099 bitmap_set_bit (df_idom,
7100 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7101 }
7102 }
7103
7104 if (cfgcleanup_altered_bbs)
7105 {
7106 /* Record the set of the altered basic blocks. */
7107 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7108 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7109 }
7110
7111 /* Remove E and the cancelled blocks. */
7112 if (none_removed)
7113 remove_edge (e);
7114 else
7115 {
7116 /* Walk backwards so as to get a chance to substitute all
7117 released DEFs into debug stmts. See
7118 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7119 details. */
7120 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
7121 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
7122 }
7123
7124 /* Update the dominance information. The immediate dominator may change only
7125 for blocks whose immediate dominator belongs to DF_IDOM:
7126
7127 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7128 removal. Let Z the arbitrary block such that idom(Z) = Y and
7129 Z dominates X after the removal. Before removal, there exists a path P
7130 from Y to X that avoids Z. Let F be the last edge on P that is
7131 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7132 dominates W, and because of P, Z does not dominate W), and W belongs to
7133 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7134 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7135 {
7136 bb = BASIC_BLOCK (i);
7137 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7138 dbb;
7139 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7140 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
7141 }
7142
7143 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7144
7145 BITMAP_FREE (df);
7146 BITMAP_FREE (df_idom);
7147 VEC_free (basic_block, heap, bbs_to_remove);
7148 VEC_free (basic_block, heap, bbs_to_fix_dom);
7149 }
7150
7151 /* Purge dead EH edges from basic block BB. */
7152
7153 bool
7154 gimple_purge_dead_eh_edges (basic_block bb)
7155 {
7156 bool changed = false;
7157 edge e;
7158 edge_iterator ei;
7159 gimple stmt = last_stmt (bb);
7160
7161 if (stmt && stmt_can_throw_internal (stmt))
7162 return false;
7163
7164 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7165 {
7166 if (e->flags & EDGE_EH)
7167 {
7168 remove_edge_and_dominated_blocks (e);
7169 changed = true;
7170 }
7171 else
7172 ei_next (&ei);
7173 }
7174
7175 return changed;
7176 }
7177
7178 /* Purge dead EH edges from basic block listed in BLOCKS. */
7179
7180 bool
7181 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7182 {
7183 bool changed = false;
7184 unsigned i;
7185 bitmap_iterator bi;
7186
7187 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7188 {
7189 basic_block bb = BASIC_BLOCK (i);
7190
7191 /* Earlier gimple_purge_dead_eh_edges could have removed
7192 this basic block already. */
7193 gcc_assert (bb || changed);
7194 if (bb != NULL)
7195 changed |= gimple_purge_dead_eh_edges (bb);
7196 }
7197
7198 return changed;
7199 }
7200
7201 /* Purge dead abnormal call edges from basic block BB. */
7202
7203 bool
7204 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7205 {
7206 bool changed = false;
7207 edge e;
7208 edge_iterator ei;
7209 gimple stmt = last_stmt (bb);
7210
7211 if (!cfun->has_nonlocal_label)
7212 return false;
7213
7214 if (stmt && stmt_can_make_abnormal_goto (stmt))
7215 return false;
7216
7217 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7218 {
7219 if (e->flags & EDGE_ABNORMAL)
7220 {
7221 remove_edge_and_dominated_blocks (e);
7222 changed = true;
7223 }
7224 else
7225 ei_next (&ei);
7226 }
7227
7228 return changed;
7229 }
7230
7231 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7232
7233 bool
7234 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7235 {
7236 bool changed = false;
7237 unsigned i;
7238 bitmap_iterator bi;
7239
7240 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7241 {
7242 basic_block bb = BASIC_BLOCK (i);
7243
7244 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7245 this basic block already. */
7246 gcc_assert (bb || changed);
7247 if (bb != NULL)
7248 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7249 }
7250
7251 return changed;
7252 }
7253
7254 /* This function is called whenever a new edge is created or
7255 redirected. */
7256
7257 static void
7258 gimple_execute_on_growing_pred (edge e)
7259 {
7260 basic_block bb = e->dest;
7261
7262 if (!gimple_seq_empty_p (phi_nodes (bb)))
7263 reserve_phi_args_for_new_edge (bb);
7264 }
7265
7266 /* This function is called immediately before edge E is removed from
7267 the edge vector E->dest->preds. */
7268
7269 static void
7270 gimple_execute_on_shrinking_pred (edge e)
7271 {
7272 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7273 remove_phi_args (e);
7274 }
7275
7276 /*---------------------------------------------------------------------------
7277 Helper functions for Loop versioning
7278 ---------------------------------------------------------------------------*/
7279
7280 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7281 of 'first'. Both of them are dominated by 'new_head' basic block. When
7282 'new_head' was created by 'second's incoming edge it received phi arguments
7283 on the edge by split_edge(). Later, additional edge 'e' was created to
7284 connect 'new_head' and 'first'. Now this routine adds phi args on this
7285 additional edge 'e' that new_head to second edge received as part of edge
7286 splitting. */
7287
7288 static void
7289 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7290 basic_block new_head, edge e)
7291 {
7292 gimple phi1, phi2;
7293 gimple_stmt_iterator psi1, psi2;
7294 tree def;
7295 edge e2 = find_edge (new_head, second);
7296
7297 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7298 edge, we should always have an edge from NEW_HEAD to SECOND. */
7299 gcc_assert (e2 != NULL);
7300
7301 /* Browse all 'second' basic block phi nodes and add phi args to
7302 edge 'e' for 'first' head. PHI args are always in correct order. */
7303
7304 for (psi2 = gsi_start_phis (second),
7305 psi1 = gsi_start_phis (first);
7306 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7307 gsi_next (&psi2), gsi_next (&psi1))
7308 {
7309 phi1 = gsi_stmt (psi1);
7310 phi2 = gsi_stmt (psi2);
7311 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7312 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7313 }
7314 }
7315
7316
7317 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7318 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7319 the destination of the ELSE part. */
7320
7321 static void
7322 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7323 basic_block second_head ATTRIBUTE_UNUSED,
7324 basic_block cond_bb, void *cond_e)
7325 {
7326 gimple_stmt_iterator gsi;
7327 gimple new_cond_expr;
7328 tree cond_expr = (tree) cond_e;
7329 edge e0;
7330
7331 /* Build new conditional expr */
7332 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7333 NULL_TREE, NULL_TREE);
7334
7335 /* Add new cond in cond_bb. */
7336 gsi = gsi_last_bb (cond_bb);
7337 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7338
7339 /* Adjust edges appropriately to connect new head with first head
7340 as well as second head. */
7341 e0 = single_succ_edge (cond_bb);
7342 e0->flags &= ~EDGE_FALLTHRU;
7343 e0->flags |= EDGE_FALSE_VALUE;
7344 }
7345
7346 struct cfg_hooks gimple_cfg_hooks = {
7347 "gimple",
7348 gimple_verify_flow_info,
7349 gimple_dump_bb, /* dump_bb */
7350 create_bb, /* create_basic_block */
7351 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7352 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7353 gimple_can_remove_branch_p, /* can_remove_branch_p */
7354 remove_bb, /* delete_basic_block */
7355 gimple_split_block, /* split_block */
7356 gimple_move_block_after, /* move_block_after */
7357 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7358 gimple_merge_blocks, /* merge_blocks */
7359 gimple_predict_edge, /* predict_edge */
7360 gimple_predicted_by_p, /* predicted_by_p */
7361 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7362 gimple_duplicate_bb, /* duplicate_block */
7363 gimple_split_edge, /* split_edge */
7364 gimple_make_forwarder_block, /* make_forward_block */
7365 NULL, /* tidy_fallthru_edge */
7366 NULL, /* force_nonfallthru */
7367 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7368 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7369 gimple_flow_call_edges_add, /* flow_call_edges_add */
7370 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7371 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7372 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7373 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7374 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7375 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7376 flush_pending_stmts /* flush_pending_stmts */
7377 };
7378
7379
7380 /* Split all critical edges. */
7381
7382 static unsigned int
7383 split_critical_edges (void)
7384 {
7385 basic_block bb;
7386 edge e;
7387 edge_iterator ei;
7388
7389 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7390 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7391 mappings around the calls to split_edge. */
7392 start_recording_case_labels ();
7393 FOR_ALL_BB (bb)
7394 {
7395 FOR_EACH_EDGE (e, ei, bb->succs)
7396 {
7397 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7398 split_edge (e);
7399 /* PRE inserts statements to edges and expects that
7400 since split_critical_edges was done beforehand, committing edge
7401 insertions will not split more edges. In addition to critical
7402 edges we must split edges that have multiple successors and
7403 end by control flow statements, such as RESX.
7404 Go ahead and split them too. This matches the logic in
7405 gimple_find_edge_insert_loc. */
7406 else if ((!single_pred_p (e->dest)
7407 || !gimple_seq_empty_p (phi_nodes (e->dest))
7408 || e->dest == EXIT_BLOCK_PTR)
7409 && e->src != ENTRY_BLOCK_PTR
7410 && !(e->flags & EDGE_ABNORMAL))
7411 {
7412 gimple_stmt_iterator gsi;
7413
7414 gsi = gsi_last_bb (e->src);
7415 if (!gsi_end_p (gsi)
7416 && stmt_ends_bb_p (gsi_stmt (gsi))
7417 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7418 && !gimple_call_builtin_p (gsi_stmt (gsi),
7419 BUILT_IN_RETURN)))
7420 split_edge (e);
7421 }
7422 }
7423 }
7424 end_recording_case_labels ();
7425 return 0;
7426 }
7427
7428 struct gimple_opt_pass pass_split_crit_edges =
7429 {
7430 {
7431 GIMPLE_PASS,
7432 "crited", /* name */
7433 NULL, /* gate */
7434 split_critical_edges, /* execute */
7435 NULL, /* sub */
7436 NULL, /* next */
7437 0, /* static_pass_number */
7438 TV_TREE_SPLIT_EDGES, /* tv_id */
7439 PROP_cfg, /* properties required */
7440 PROP_no_crit_edges, /* properties_provided */
7441 0, /* properties_destroyed */
7442 0, /* todo_flags_start */
7443 TODO_verify_flow /* todo_flags_finish */
7444 }
7445 };
7446
7447
7448 /* Build a ternary operation and gimplify it. Emit code before GSI.
7449 Return the gimple_val holding the result. */
7450
7451 tree
7452 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7453 tree type, tree a, tree b, tree c)
7454 {
7455 tree ret;
7456 location_t loc = gimple_location (gsi_stmt (*gsi));
7457
7458 ret = fold_build3_loc (loc, code, type, a, b, c);
7459 STRIP_NOPS (ret);
7460
7461 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7462 GSI_SAME_STMT);
7463 }
7464
7465 /* Build a binary operation and gimplify it. Emit code before GSI.
7466 Return the gimple_val holding the result. */
7467
7468 tree
7469 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7470 tree type, tree a, tree b)
7471 {
7472 tree ret;
7473
7474 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7475 STRIP_NOPS (ret);
7476
7477 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7478 GSI_SAME_STMT);
7479 }
7480
7481 /* Build a unary operation and gimplify it. Emit code before GSI.
7482 Return the gimple_val holding the result. */
7483
7484 tree
7485 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7486 tree a)
7487 {
7488 tree ret;
7489
7490 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7491 STRIP_NOPS (ret);
7492
7493 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7494 GSI_SAME_STMT);
7495 }
7496
7497
7498 \f
7499 /* Emit return warnings. */
7500
7501 static unsigned int
7502 execute_warn_function_return (void)
7503 {
7504 source_location location;
7505 gimple last;
7506 edge e;
7507 edge_iterator ei;
7508
7509 /* If we have a path to EXIT, then we do return. */
7510 if (TREE_THIS_VOLATILE (cfun->decl)
7511 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7512 {
7513 location = UNKNOWN_LOCATION;
7514 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7515 {
7516 last = last_stmt (e->src);
7517 if ((gimple_code (last) == GIMPLE_RETURN
7518 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7519 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7520 break;
7521 }
7522 if (location == UNKNOWN_LOCATION)
7523 location = cfun->function_end_locus;
7524 warning_at (location, 0, "%<noreturn%> function does return");
7525 }
7526
7527 /* If we see "return;" in some basic block, then we do reach the end
7528 without returning a value. */
7529 else if (warn_return_type
7530 && !TREE_NO_WARNING (cfun->decl)
7531 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7532 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7533 {
7534 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7535 {
7536 gimple last = last_stmt (e->src);
7537 if (gimple_code (last) == GIMPLE_RETURN
7538 && gimple_return_retval (last) == NULL
7539 && !gimple_no_warning_p (last))
7540 {
7541 location = gimple_location (last);
7542 if (location == UNKNOWN_LOCATION)
7543 location = cfun->function_end_locus;
7544 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7545 TREE_NO_WARNING (cfun->decl) = 1;
7546 break;
7547 }
7548 }
7549 }
7550 return 0;
7551 }
7552
7553
7554 /* Given a basic block B which ends with a conditional and has
7555 precisely two successors, determine which of the edges is taken if
7556 the conditional is true and which is taken if the conditional is
7557 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7558
7559 void
7560 extract_true_false_edges_from_block (basic_block b,
7561 edge *true_edge,
7562 edge *false_edge)
7563 {
7564 edge e = EDGE_SUCC (b, 0);
7565
7566 if (e->flags & EDGE_TRUE_VALUE)
7567 {
7568 *true_edge = e;
7569 *false_edge = EDGE_SUCC (b, 1);
7570 }
7571 else
7572 {
7573 *false_edge = e;
7574 *true_edge = EDGE_SUCC (b, 1);
7575 }
7576 }
7577
7578 struct gimple_opt_pass pass_warn_function_return =
7579 {
7580 {
7581 GIMPLE_PASS,
7582 "*warn_function_return", /* name */
7583 NULL, /* gate */
7584 execute_warn_function_return, /* execute */
7585 NULL, /* sub */
7586 NULL, /* next */
7587 0, /* static_pass_number */
7588 TV_NONE, /* tv_id */
7589 PROP_cfg, /* properties_required */
7590 0, /* properties_provided */
7591 0, /* properties_destroyed */
7592 0, /* todo_flags_start */
7593 0 /* todo_flags_finish */
7594 }
7595 };
7596
7597 /* Emit noreturn warnings. */
7598
7599 static unsigned int
7600 execute_warn_function_noreturn (void)
7601 {
7602 if (!TREE_THIS_VOLATILE (current_function_decl)
7603 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7604 warn_function_noreturn (current_function_decl);
7605 return 0;
7606 }
7607
7608 static bool
7609 gate_warn_function_noreturn (void)
7610 {
7611 return warn_suggest_attribute_noreturn;
7612 }
7613
7614 struct gimple_opt_pass pass_warn_function_noreturn =
7615 {
7616 {
7617 GIMPLE_PASS,
7618 "*warn_function_noreturn", /* name */
7619 gate_warn_function_noreturn, /* gate */
7620 execute_warn_function_noreturn, /* execute */
7621 NULL, /* sub */
7622 NULL, /* next */
7623 0, /* static_pass_number */
7624 TV_NONE, /* tv_id */
7625 PROP_cfg, /* properties_required */
7626 0, /* properties_provided */
7627 0, /* properties_destroyed */
7628 0, /* todo_flags_start */
7629 0 /* todo_flags_finish */
7630 }
7631 };
7632
7633
7634 /* Walk a gimplified function and warn for functions whose return value is
7635 ignored and attribute((warn_unused_result)) is set. This is done before
7636 inlining, so we don't have to worry about that. */
7637
7638 static void
7639 do_warn_unused_result (gimple_seq seq)
7640 {
7641 tree fdecl, ftype;
7642 gimple_stmt_iterator i;
7643
7644 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7645 {
7646 gimple g = gsi_stmt (i);
7647
7648 switch (gimple_code (g))
7649 {
7650 case GIMPLE_BIND:
7651 do_warn_unused_result (gimple_bind_body (g));
7652 break;
7653 case GIMPLE_TRY:
7654 do_warn_unused_result (gimple_try_eval (g));
7655 do_warn_unused_result (gimple_try_cleanup (g));
7656 break;
7657 case GIMPLE_CATCH:
7658 do_warn_unused_result (gimple_catch_handler (g));
7659 break;
7660 case GIMPLE_EH_FILTER:
7661 do_warn_unused_result (gimple_eh_filter_failure (g));
7662 break;
7663
7664 case GIMPLE_CALL:
7665 if (gimple_call_lhs (g))
7666 break;
7667 if (gimple_call_internal_p (g))
7668 break;
7669
7670 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7671 LHS. All calls whose value is ignored should be
7672 represented like this. Look for the attribute. */
7673 fdecl = gimple_call_fndecl (g);
7674 ftype = gimple_call_fntype (g);
7675
7676 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7677 {
7678 location_t loc = gimple_location (g);
7679
7680 if (fdecl)
7681 warning_at (loc, OPT_Wunused_result,
7682 "ignoring return value of %qD, "
7683 "declared with attribute warn_unused_result",
7684 fdecl);
7685 else
7686 warning_at (loc, OPT_Wunused_result,
7687 "ignoring return value of function "
7688 "declared with attribute warn_unused_result");
7689 }
7690 break;
7691
7692 default:
7693 /* Not a container, not a call, or a call whose value is used. */
7694 break;
7695 }
7696 }
7697 }
7698
7699 static unsigned int
7700 run_warn_unused_result (void)
7701 {
7702 do_warn_unused_result (gimple_body (current_function_decl));
7703 return 0;
7704 }
7705
7706 static bool
7707 gate_warn_unused_result (void)
7708 {
7709 return flag_warn_unused_result;
7710 }
7711
7712 struct gimple_opt_pass pass_warn_unused_result =
7713 {
7714 {
7715 GIMPLE_PASS,
7716 "*warn_unused_result", /* name */
7717 gate_warn_unused_result, /* gate */
7718 run_warn_unused_result, /* execute */
7719 NULL, /* sub */
7720 NULL, /* next */
7721 0, /* static_pass_number */
7722 TV_NONE, /* tv_id */
7723 PROP_gimple_any, /* properties_required */
7724 0, /* properties_provided */
7725 0, /* properties_destroyed */
7726 0, /* todo_flags_start */
7727 0, /* todo_flags_finish */
7728 }
7729 };