ipa-icf.c (sem_item_optimizer::merge_classes): Do not ICE on VAR_DECL w/o DECL_NAME.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-low.h"
58 #include "tree-cfgcleanup.h"
59 #include "gimplify.h"
60 #include "attribs.h"
61
62 /* This file contains functions for building the Control Flow Graph (CFG)
63 for a function tree. */
64
65 /* Local declarations. */
66
67 /* Initial capacity for the basic block array. */
68 static const int initial_cfg_capacity = 20;
69
70 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
71 which use a particular edge. The CASE_LABEL_EXPRs are chained together
72 via their CASE_CHAIN field, which we clear after we're done with the
73 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
74
75 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
76 update the case vector in response to edge redirections.
77
78 Right now this table is set up and torn down at key points in the
79 compilation process. It would be nice if we could make the table
80 more persistent. The key is getting notification of changes to
81 the CFG (particularly edge removal, creation and redirection). */
82
83 static hash_map<edge, tree> *edge_to_cases;
84
85 /* If we record edge_to_cases, this bitmap will hold indexes
86 of basic blocks that end in a GIMPLE_SWITCH which we touched
87 due to edge manipulations. */
88
89 static bitmap touched_switch_bbs;
90
91 /* CFG statistics. */
92 struct cfg_stats_d
93 {
94 long num_merged_labels;
95 };
96
97 static struct cfg_stats_d cfg_stats;
98
99 /* Data to pass to replace_block_vars_by_duplicates_1. */
100 struct replace_decls_d
101 {
102 hash_map<tree, tree> *vars_map;
103 tree to_context;
104 };
105
106 /* Hash table to store last discriminator assigned for each locus. */
107 struct locus_discrim_map
108 {
109 location_t locus;
110 int discriminator;
111 };
112
113 /* Hashtable helpers. */
114
115 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
116 {
117 static inline hashval_t hash (const locus_discrim_map *);
118 static inline bool equal (const locus_discrim_map *,
119 const locus_discrim_map *);
120 };
121
122 /* Trivial hash function for a location_t. ITEM is a pointer to
123 a hash table entry that maps a location_t to a discriminator. */
124
125 inline hashval_t
126 locus_discrim_hasher::hash (const locus_discrim_map *item)
127 {
128 return LOCATION_LINE (item->locus);
129 }
130
131 /* Equality function for the locus-to-discriminator map. A and B
132 point to the two hash table entries to compare. */
133
134 inline bool
135 locus_discrim_hasher::equal (const locus_discrim_map *a,
136 const locus_discrim_map *b)
137 {
138 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
139 }
140
141 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
142
143 /* Basic blocks and flowgraphs. */
144 static void make_blocks (gimple_seq);
145
146 /* Edges. */
147 static void make_edges (void);
148 static void assign_discriminators (void);
149 static void make_cond_expr_edges (basic_block);
150 static void make_gimple_switch_edges (gswitch *, basic_block);
151 static bool make_goto_expr_edges (basic_block);
152 static void make_gimple_asm_edges (basic_block);
153 static edge gimple_redirect_edge_and_branch (edge, basic_block);
154 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
155
156 /* Various helpers. */
157 static inline bool stmt_starts_bb_p (gimple *, gimple *);
158 static int gimple_verify_flow_info (void);
159 static void gimple_make_forwarder_block (edge);
160 static gimple *first_non_label_stmt (basic_block);
161 static bool verify_gimple_transaction (gtransaction *);
162 static bool call_can_make_abnormal_goto (gimple *);
163
164 /* Flowgraph optimization and cleanup. */
165 static void gimple_merge_blocks (basic_block, basic_block);
166 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
167 static void remove_bb (basic_block);
168 static edge find_taken_edge_computed_goto (basic_block, tree);
169 static edge find_taken_edge_cond_expr (basic_block, tree);
170 static edge find_taken_edge_switch_expr (gswitch *, basic_block, tree);
171 static tree find_case_label_for_value (gswitch *, tree);
172
173 void
174 init_empty_tree_cfg_for_function (struct function *fn)
175 {
176 /* Initialize the basic block array. */
177 init_flow (fn);
178 profile_status_for_fn (fn) = PROFILE_ABSENT;
179 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
180 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
181 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
182 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
183 initial_cfg_capacity);
184
185 /* Build a mapping of labels to their associated blocks. */
186 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
188 initial_cfg_capacity);
189
190 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
191 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
192
193 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
194 = EXIT_BLOCK_PTR_FOR_FN (fn);
195 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
196 = ENTRY_BLOCK_PTR_FOR_FN (fn);
197 }
198
199 void
200 init_empty_tree_cfg (void)
201 {
202 init_empty_tree_cfg_for_function (cfun);
203 }
204
205 /*---------------------------------------------------------------------------
206 Create basic blocks
207 ---------------------------------------------------------------------------*/
208
209 /* Entry point to the CFG builder for trees. SEQ is the sequence of
210 statements to be added to the flowgraph. */
211
212 static void
213 build_gimple_cfg (gimple_seq seq)
214 {
215 /* Register specific gimple functions. */
216 gimple_register_cfg_hooks ();
217
218 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
219
220 init_empty_tree_cfg ();
221
222 make_blocks (seq);
223
224 /* Make sure there is always at least one block, even if it's empty. */
225 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
226 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
227
228 /* Adjust the size of the array. */
229 if (basic_block_info_for_fn (cfun)->length ()
230 < (size_t) n_basic_blocks_for_fn (cfun))
231 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
232 n_basic_blocks_for_fn (cfun));
233
234 /* To speed up statement iterator walks, we first purge dead labels. */
235 cleanup_dead_labels ();
236
237 /* Group case nodes to reduce the number of edges.
238 We do this after cleaning up dead labels because otherwise we miss
239 a lot of obvious case merging opportunities. */
240 group_case_labels ();
241
242 /* Create the edges of the flowgraph. */
243 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
244 make_edges ();
245 assign_discriminators ();
246 cleanup_dead_labels ();
247 delete discriminator_per_locus;
248 discriminator_per_locus = NULL;
249 }
250
251 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
252 them and propagate the information to LOOP. We assume that the annotations
253 come immediately before the condition in BB, if any. */
254
255 static void
256 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
257 {
258 gimple_stmt_iterator gsi = gsi_last_bb (bb);
259 gimple *stmt = gsi_stmt (gsi);
260
261 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
262 return;
263
264 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
265 {
266 stmt = gsi_stmt (gsi);
267 if (gimple_code (stmt) != GIMPLE_CALL)
268 break;
269 if (!gimple_call_internal_p (stmt)
270 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
271 break;
272
273 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
274 {
275 case annot_expr_ivdep_kind:
276 loop->safelen = INT_MAX;
277 break;
278 case annot_expr_no_vector_kind:
279 loop->dont_vectorize = true;
280 break;
281 case annot_expr_vector_kind:
282 loop->force_vectorize = true;
283 cfun->has_force_vectorize_loops = true;
284 break;
285 default:
286 gcc_unreachable ();
287 }
288
289 stmt = gimple_build_assign (gimple_call_lhs (stmt),
290 gimple_call_arg (stmt, 0));
291 gsi_replace (&gsi, stmt, true);
292 }
293 }
294
295 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
296 them and propagate the information to the loop. We assume that the
297 annotations come immediately before the condition of the loop. */
298
299 static void
300 replace_loop_annotate (void)
301 {
302 struct loop *loop;
303 basic_block bb;
304 gimple_stmt_iterator gsi;
305 gimple *stmt;
306
307 FOR_EACH_LOOP (loop, 0)
308 {
309 /* First look into the header. */
310 replace_loop_annotate_in_block (loop->header, loop);
311
312 /* Then look into the latch, if any. */
313 if (loop->latch)
314 replace_loop_annotate_in_block (loop->latch, loop);
315 }
316
317 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
318 FOR_EACH_BB_FN (bb, cfun)
319 {
320 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
321 {
322 stmt = gsi_stmt (gsi);
323 if (gimple_code (stmt) != GIMPLE_CALL)
324 continue;
325 if (!gimple_call_internal_p (stmt)
326 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
327 continue;
328
329 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
330 {
331 case annot_expr_ivdep_kind:
332 case annot_expr_no_vector_kind:
333 case annot_expr_vector_kind:
334 break;
335 default:
336 gcc_unreachable ();
337 }
338
339 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
340 stmt = gimple_build_assign (gimple_call_lhs (stmt),
341 gimple_call_arg (stmt, 0));
342 gsi_replace (&gsi, stmt, true);
343 }
344 }
345 }
346
347
348 static unsigned int
349 execute_build_cfg (void)
350 {
351 gimple_seq body = gimple_body (current_function_decl);
352
353 build_gimple_cfg (body);
354 gimple_set_body (current_function_decl, NULL);
355 if (dump_file && (dump_flags & TDF_DETAILS))
356 {
357 fprintf (dump_file, "Scope blocks:\n");
358 dump_scope_blocks (dump_file, dump_flags);
359 }
360 cleanup_tree_cfg ();
361 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
362 replace_loop_annotate ();
363 return 0;
364 }
365
366 namespace {
367
368 const pass_data pass_data_build_cfg =
369 {
370 GIMPLE_PASS, /* type */
371 "cfg", /* name */
372 OPTGROUP_NONE, /* optinfo_flags */
373 TV_TREE_CFG, /* tv_id */
374 PROP_gimple_leh, /* properties_required */
375 ( PROP_cfg | PROP_loops ), /* properties_provided */
376 0, /* properties_destroyed */
377 0, /* todo_flags_start */
378 0, /* todo_flags_finish */
379 };
380
381 class pass_build_cfg : public gimple_opt_pass
382 {
383 public:
384 pass_build_cfg (gcc::context *ctxt)
385 : gimple_opt_pass (pass_data_build_cfg, ctxt)
386 {}
387
388 /* opt_pass methods: */
389 virtual unsigned int execute (function *) { return execute_build_cfg (); }
390
391 }; // class pass_build_cfg
392
393 } // anon namespace
394
395 gimple_opt_pass *
396 make_pass_build_cfg (gcc::context *ctxt)
397 {
398 return new pass_build_cfg (ctxt);
399 }
400
401
402 /* Return true if T is a computed goto. */
403
404 bool
405 computed_goto_p (gimple *t)
406 {
407 return (gimple_code (t) == GIMPLE_GOTO
408 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
409 }
410
411 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
412 the other edge points to a bb with just __builtin_unreachable ().
413 I.e. return true for C->M edge in:
414 <bb C>:
415 ...
416 if (something)
417 goto <bb N>;
418 else
419 goto <bb M>;
420 <bb N>:
421 __builtin_unreachable ();
422 <bb M>: */
423
424 bool
425 assert_unreachable_fallthru_edge_p (edge e)
426 {
427 basic_block pred_bb = e->src;
428 gimple *last = last_stmt (pred_bb);
429 if (last && gimple_code (last) == GIMPLE_COND)
430 {
431 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
432 if (other_bb == e->dest)
433 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
434 if (EDGE_COUNT (other_bb->succs) == 0)
435 {
436 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
437 gimple *stmt;
438
439 if (gsi_end_p (gsi))
440 return false;
441 stmt = gsi_stmt (gsi);
442 while (is_gimple_debug (stmt) || gimple_clobber_p (stmt))
443 {
444 gsi_next (&gsi);
445 if (gsi_end_p (gsi))
446 return false;
447 stmt = gsi_stmt (gsi);
448 }
449 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
450 }
451 }
452 return false;
453 }
454
455
456 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
457 could alter control flow except via eh. We initialize the flag at
458 CFG build time and only ever clear it later. */
459
460 static void
461 gimple_call_initialize_ctrl_altering (gimple *stmt)
462 {
463 int flags = gimple_call_flags (stmt);
464
465 /* A call alters control flow if it can make an abnormal goto. */
466 if (call_can_make_abnormal_goto (stmt)
467 /* A call also alters control flow if it does not return. */
468 || flags & ECF_NORETURN
469 /* TM ending statements have backedges out of the transaction.
470 Return true so we split the basic block containing them.
471 Note that the TM_BUILTIN test is merely an optimization. */
472 || ((flags & ECF_TM_BUILTIN)
473 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
474 /* BUILT_IN_RETURN call is same as return statement. */
475 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
476 /* IFN_UNIQUE should be the last insn, to make checking for it
477 as cheap as possible. */
478 || (gimple_call_internal_p (stmt)
479 && gimple_call_internal_unique_p (stmt)))
480 gimple_call_set_ctrl_altering (stmt, true);
481 else
482 gimple_call_set_ctrl_altering (stmt, false);
483 }
484
485
486 /* Insert SEQ after BB and build a flowgraph. */
487
488 static basic_block
489 make_blocks_1 (gimple_seq seq, basic_block bb)
490 {
491 gimple_stmt_iterator i = gsi_start (seq);
492 gimple *stmt = NULL;
493 bool start_new_block = true;
494 bool first_stmt_of_seq = true;
495
496 while (!gsi_end_p (i))
497 {
498 gimple *prev_stmt;
499
500 prev_stmt = stmt;
501 stmt = gsi_stmt (i);
502
503 if (stmt && is_gimple_call (stmt))
504 gimple_call_initialize_ctrl_altering (stmt);
505
506 /* If the statement starts a new basic block or if we have determined
507 in a previous pass that we need to create a new block for STMT, do
508 so now. */
509 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
510 {
511 if (!first_stmt_of_seq)
512 gsi_split_seq_before (&i, &seq);
513 bb = create_basic_block (seq, bb);
514 start_new_block = false;
515 }
516
517 /* Now add STMT to BB and create the subgraphs for special statement
518 codes. */
519 gimple_set_bb (stmt, bb);
520
521 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
522 next iteration. */
523 if (stmt_ends_bb_p (stmt))
524 {
525 /* If the stmt can make abnormal goto use a new temporary
526 for the assignment to the LHS. This makes sure the old value
527 of the LHS is available on the abnormal edge. Otherwise
528 we will end up with overlapping life-ranges for abnormal
529 SSA names. */
530 if (gimple_has_lhs (stmt)
531 && stmt_can_make_abnormal_goto (stmt)
532 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
533 {
534 tree lhs = gimple_get_lhs (stmt);
535 tree tmp = create_tmp_var (TREE_TYPE (lhs));
536 gimple *s = gimple_build_assign (lhs, tmp);
537 gimple_set_location (s, gimple_location (stmt));
538 gimple_set_block (s, gimple_block (stmt));
539 gimple_set_lhs (stmt, tmp);
540 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
541 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
542 DECL_GIMPLE_REG_P (tmp) = 1;
543 gsi_insert_after (&i, s, GSI_SAME_STMT);
544 }
545 start_new_block = true;
546 }
547
548 gsi_next (&i);
549 first_stmt_of_seq = false;
550 }
551 return bb;
552 }
553
554 /* Build a flowgraph for the sequence of stmts SEQ. */
555
556 static void
557 make_blocks (gimple_seq seq)
558 {
559 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
560 }
561
562 /* Create and return a new empty basic block after bb AFTER. */
563
564 static basic_block
565 create_bb (void *h, void *e, basic_block after)
566 {
567 basic_block bb;
568
569 gcc_assert (!e);
570
571 /* Create and initialize a new basic block. Since alloc_block uses
572 GC allocation that clears memory to allocate a basic block, we do
573 not have to clear the newly allocated basic block here. */
574 bb = alloc_block ();
575
576 bb->index = last_basic_block_for_fn (cfun);
577 bb->flags = BB_NEW;
578 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
579
580 /* Add the new block to the linked list of blocks. */
581 link_block (bb, after);
582
583 /* Grow the basic block array if needed. */
584 if ((size_t) last_basic_block_for_fn (cfun)
585 == basic_block_info_for_fn (cfun)->length ())
586 {
587 size_t new_size =
588 (last_basic_block_for_fn (cfun)
589 + (last_basic_block_for_fn (cfun) + 3) / 4);
590 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
591 }
592
593 /* Add the newly created block to the array. */
594 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
595
596 n_basic_blocks_for_fn (cfun)++;
597 last_basic_block_for_fn (cfun)++;
598
599 return bb;
600 }
601
602
603 /*---------------------------------------------------------------------------
604 Edge creation
605 ---------------------------------------------------------------------------*/
606
607 /* If basic block BB has an abnormal edge to a basic block
608 containing IFN_ABNORMAL_DISPATCHER internal call, return
609 that the dispatcher's basic block, otherwise return NULL. */
610
611 basic_block
612 get_abnormal_succ_dispatcher (basic_block bb)
613 {
614 edge e;
615 edge_iterator ei;
616
617 FOR_EACH_EDGE (e, ei, bb->succs)
618 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
619 {
620 gimple_stmt_iterator gsi
621 = gsi_start_nondebug_after_labels_bb (e->dest);
622 gimple *g = gsi_stmt (gsi);
623 if (g
624 && is_gimple_call (g)
625 && gimple_call_internal_p (g)
626 && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
627 return e->dest;
628 }
629 return NULL;
630 }
631
632 /* Helper function for make_edges. Create a basic block with
633 with ABNORMAL_DISPATCHER internal call in it if needed, and
634 create abnormal edges from BBS to it and from it to FOR_BB
635 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
636
637 static void
638 handle_abnormal_edges (basic_block *dispatcher_bbs,
639 basic_block for_bb, int *bb_to_omp_idx,
640 auto_vec<basic_block> *bbs, bool computed_goto)
641 {
642 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
643 unsigned int idx = 0;
644 basic_block bb;
645 bool inner = false;
646
647 if (bb_to_omp_idx)
648 {
649 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
650 if (bb_to_omp_idx[for_bb->index] != 0)
651 inner = true;
652 }
653
654 /* If the dispatcher has been created already, then there are basic
655 blocks with abnormal edges to it, so just make a new edge to
656 for_bb. */
657 if (*dispatcher == NULL)
658 {
659 /* Check if there are any basic blocks that need to have
660 abnormal edges to this dispatcher. If there are none, return
661 early. */
662 if (bb_to_omp_idx == NULL)
663 {
664 if (bbs->is_empty ())
665 return;
666 }
667 else
668 {
669 FOR_EACH_VEC_ELT (*bbs, idx, bb)
670 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
671 break;
672 if (bb == NULL)
673 return;
674 }
675
676 /* Create the dispatcher bb. */
677 *dispatcher = create_basic_block (NULL, for_bb);
678 if (computed_goto)
679 {
680 /* Factor computed gotos into a common computed goto site. Also
681 record the location of that site so that we can un-factor the
682 gotos after we have converted back to normal form. */
683 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
684
685 /* Create the destination of the factored goto. Each original
686 computed goto will put its desired destination into this
687 variable and jump to the label we create immediately below. */
688 tree var = create_tmp_var (ptr_type_node, "gotovar");
689
690 /* Build a label for the new block which will contain the
691 factored computed goto. */
692 tree factored_label_decl
693 = create_artificial_label (UNKNOWN_LOCATION);
694 gimple *factored_computed_goto_label
695 = gimple_build_label (factored_label_decl);
696 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
697
698 /* Build our new computed goto. */
699 gimple *factored_computed_goto = gimple_build_goto (var);
700 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
701
702 FOR_EACH_VEC_ELT (*bbs, idx, bb)
703 {
704 if (bb_to_omp_idx
705 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
706 continue;
707
708 gsi = gsi_last_bb (bb);
709 gimple *last = gsi_stmt (gsi);
710
711 gcc_assert (computed_goto_p (last));
712
713 /* Copy the original computed goto's destination into VAR. */
714 gimple *assignment
715 = gimple_build_assign (var, gimple_goto_dest (last));
716 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
717
718 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
719 e->goto_locus = gimple_location (last);
720 gsi_remove (&gsi, true);
721 }
722 }
723 else
724 {
725 tree arg = inner ? boolean_true_node : boolean_false_node;
726 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
727 1, arg);
728 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
729 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
730
731 /* Create predecessor edges of the dispatcher. */
732 FOR_EACH_VEC_ELT (*bbs, idx, bb)
733 {
734 if (bb_to_omp_idx
735 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
736 continue;
737 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
738 }
739 }
740 }
741
742 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
743 }
744
745 /* Creates outgoing edges for BB. Returns 1 when it ends with an
746 computed goto, returns 2 when it ends with a statement that
747 might return to this function via an nonlocal goto, otherwise
748 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
749
750 static int
751 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
752 {
753 gimple *last = last_stmt (bb);
754 bool fallthru = false;
755 int ret = 0;
756
757 if (!last)
758 return ret;
759
760 switch (gimple_code (last))
761 {
762 case GIMPLE_GOTO:
763 if (make_goto_expr_edges (bb))
764 ret = 1;
765 fallthru = false;
766 break;
767 case GIMPLE_RETURN:
768 {
769 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
770 e->goto_locus = gimple_location (last);
771 fallthru = false;
772 }
773 break;
774 case GIMPLE_COND:
775 make_cond_expr_edges (bb);
776 fallthru = false;
777 break;
778 case GIMPLE_SWITCH:
779 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
780 fallthru = false;
781 break;
782 case GIMPLE_RESX:
783 make_eh_edges (last);
784 fallthru = false;
785 break;
786 case GIMPLE_EH_DISPATCH:
787 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
788 break;
789
790 case GIMPLE_CALL:
791 /* If this function receives a nonlocal goto, then we need to
792 make edges from this call site to all the nonlocal goto
793 handlers. */
794 if (stmt_can_make_abnormal_goto (last))
795 ret = 2;
796
797 /* If this statement has reachable exception handlers, then
798 create abnormal edges to them. */
799 make_eh_edges (last);
800
801 /* BUILTIN_RETURN is really a return statement. */
802 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
803 {
804 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
805 fallthru = false;
806 }
807 /* Some calls are known not to return. */
808 else
809 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
810 break;
811
812 case GIMPLE_ASSIGN:
813 /* A GIMPLE_ASSIGN may throw internally and thus be considered
814 control-altering. */
815 if (is_ctrl_altering_stmt (last))
816 make_eh_edges (last);
817 fallthru = true;
818 break;
819
820 case GIMPLE_ASM:
821 make_gimple_asm_edges (bb);
822 fallthru = true;
823 break;
824
825 CASE_GIMPLE_OMP:
826 fallthru = make_gimple_omp_edges (bb, pcur_region, pomp_index);
827 break;
828
829 case GIMPLE_TRANSACTION:
830 {
831 gtransaction *txn = as_a <gtransaction *> (last);
832 tree label1 = gimple_transaction_label_norm (txn);
833 tree label2 = gimple_transaction_label_uninst (txn);
834
835 if (label1)
836 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
837 if (label2)
838 make_edge (bb, label_to_block (label2),
839 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
840
841 tree label3 = gimple_transaction_label_over (txn);
842 if (gimple_transaction_subcode (txn)
843 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
844 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
845
846 fallthru = false;
847 }
848 break;
849
850 default:
851 gcc_assert (!stmt_ends_bb_p (last));
852 fallthru = true;
853 break;
854 }
855
856 if (fallthru)
857 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
858
859 return ret;
860 }
861
862 /* Join all the blocks in the flowgraph. */
863
864 static void
865 make_edges (void)
866 {
867 basic_block bb;
868 struct omp_region *cur_region = NULL;
869 auto_vec<basic_block> ab_edge_goto;
870 auto_vec<basic_block> ab_edge_call;
871 int *bb_to_omp_idx = NULL;
872 int cur_omp_region_idx = 0;
873
874 /* Create an edge from entry to the first block with executable
875 statements in it. */
876 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
877 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
878 EDGE_FALLTHRU);
879
880 /* Traverse the basic block array placing edges. */
881 FOR_EACH_BB_FN (bb, cfun)
882 {
883 int mer;
884
885 if (bb_to_omp_idx)
886 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
887
888 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
889 if (mer == 1)
890 ab_edge_goto.safe_push (bb);
891 else if (mer == 2)
892 ab_edge_call.safe_push (bb);
893
894 if (cur_region && bb_to_omp_idx == NULL)
895 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
896 }
897
898 /* Computed gotos are hell to deal with, especially if there are
899 lots of them with a large number of destinations. So we factor
900 them to a common computed goto location before we build the
901 edge list. After we convert back to normal form, we will un-factor
902 the computed gotos since factoring introduces an unwanted jump.
903 For non-local gotos and abnormal edges from calls to calls that return
904 twice or forced labels, factor the abnormal edges too, by having all
905 abnormal edges from the calls go to a common artificial basic block
906 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
907 basic block to all forced labels and calls returning twice.
908 We do this per-OpenMP structured block, because those regions
909 are guaranteed to be single entry single exit by the standard,
910 so it is not allowed to enter or exit such regions abnormally this way,
911 thus all computed gotos, non-local gotos and setjmp/longjmp calls
912 must not transfer control across SESE region boundaries. */
913 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
914 {
915 gimple_stmt_iterator gsi;
916 basic_block dispatcher_bb_array[2] = { NULL, NULL };
917 basic_block *dispatcher_bbs = dispatcher_bb_array;
918 int count = n_basic_blocks_for_fn (cfun);
919
920 if (bb_to_omp_idx)
921 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
922
923 FOR_EACH_BB_FN (bb, cfun)
924 {
925 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
926 {
927 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
928 tree target;
929
930 if (!label_stmt)
931 break;
932
933 target = gimple_label_label (label_stmt);
934
935 /* Make an edge to every label block that has been marked as a
936 potential target for a computed goto or a non-local goto. */
937 if (FORCED_LABEL (target))
938 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
939 &ab_edge_goto, true);
940 if (DECL_NONLOCAL (target))
941 {
942 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
943 &ab_edge_call, false);
944 break;
945 }
946 }
947
948 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
949 gsi_next_nondebug (&gsi);
950 if (!gsi_end_p (gsi))
951 {
952 /* Make an edge to every setjmp-like call. */
953 gimple *call_stmt = gsi_stmt (gsi);
954 if (is_gimple_call (call_stmt)
955 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
956 || gimple_call_builtin_p (call_stmt,
957 BUILT_IN_SETJMP_RECEIVER)))
958 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
959 &ab_edge_call, false);
960 }
961 }
962
963 if (bb_to_omp_idx)
964 XDELETE (dispatcher_bbs);
965 }
966
967 XDELETE (bb_to_omp_idx);
968
969 free_omp_regions ();
970 }
971
972 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
973 needed. Returns true if new bbs were created.
974 Note: This is transitional code, and should not be used for new code. We
975 should be able to get rid of this by rewriting all target va-arg
976 gimplification hooks to use an interface gimple_build_cond_value as described
977 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
978
979 bool
980 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
981 {
982 gimple *stmt = gsi_stmt (*gsi);
983 basic_block bb = gimple_bb (stmt);
984 basic_block lastbb, afterbb;
985 int old_num_bbs = n_basic_blocks_for_fn (cfun);
986 edge e;
987 lastbb = make_blocks_1 (seq, bb);
988 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
989 return false;
990 e = split_block (bb, stmt);
991 /* Move e->dest to come after the new basic blocks. */
992 afterbb = e->dest;
993 unlink_block (afterbb);
994 link_block (afterbb, lastbb);
995 redirect_edge_succ (e, bb->next_bb);
996 bb = bb->next_bb;
997 while (bb != afterbb)
998 {
999 struct omp_region *cur_region = NULL;
1000 int cur_omp_region_idx = 0;
1001 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1002 gcc_assert (!mer && !cur_region);
1003 add_bb_to_loop (bb, afterbb->loop_father);
1004 bb = bb->next_bb;
1005 }
1006 return true;
1007 }
1008
1009 /* Find the next available discriminator value for LOCUS. The
1010 discriminator distinguishes among several basic blocks that
1011 share a common locus, allowing for more accurate sample-based
1012 profiling. */
1013
1014 static int
1015 next_discriminator_for_locus (location_t locus)
1016 {
1017 struct locus_discrim_map item;
1018 struct locus_discrim_map **slot;
1019
1020 item.locus = locus;
1021 item.discriminator = 0;
1022 slot = discriminator_per_locus->find_slot_with_hash (
1023 &item, LOCATION_LINE (locus), INSERT);
1024 gcc_assert (slot);
1025 if (*slot == HTAB_EMPTY_ENTRY)
1026 {
1027 *slot = XNEW (struct locus_discrim_map);
1028 gcc_assert (*slot);
1029 (*slot)->locus = locus;
1030 (*slot)->discriminator = 0;
1031 }
1032 (*slot)->discriminator++;
1033 return (*slot)->discriminator;
1034 }
1035
1036 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1037
1038 static bool
1039 same_line_p (location_t locus1, location_t locus2)
1040 {
1041 expanded_location from, to;
1042
1043 if (locus1 == locus2)
1044 return true;
1045
1046 from = expand_location (locus1);
1047 to = expand_location (locus2);
1048
1049 if (from.line != to.line)
1050 return false;
1051 if (from.file == to.file)
1052 return true;
1053 return (from.file != NULL
1054 && to.file != NULL
1055 && filename_cmp (from.file, to.file) == 0);
1056 }
1057
1058 /* Assign discriminators to each basic block. */
1059
1060 static void
1061 assign_discriminators (void)
1062 {
1063 basic_block bb;
1064
1065 FOR_EACH_BB_FN (bb, cfun)
1066 {
1067 edge e;
1068 edge_iterator ei;
1069 gimple *last = last_stmt (bb);
1070 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1071
1072 if (locus == UNKNOWN_LOCATION)
1073 continue;
1074
1075 FOR_EACH_EDGE (e, ei, bb->succs)
1076 {
1077 gimple *first = first_non_label_stmt (e->dest);
1078 gimple *last = last_stmt (e->dest);
1079 if ((first && same_line_p (locus, gimple_location (first)))
1080 || (last && same_line_p (locus, gimple_location (last))))
1081 {
1082 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1083 bb->discriminator = next_discriminator_for_locus (locus);
1084 else
1085 e->dest->discriminator = next_discriminator_for_locus (locus);
1086 }
1087 }
1088 }
1089 }
1090
1091 /* Create the edges for a GIMPLE_COND starting at block BB. */
1092
1093 static void
1094 make_cond_expr_edges (basic_block bb)
1095 {
1096 gcond *entry = as_a <gcond *> (last_stmt (bb));
1097 gimple *then_stmt, *else_stmt;
1098 basic_block then_bb, else_bb;
1099 tree then_label, else_label;
1100 edge e;
1101
1102 gcc_assert (entry);
1103 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1104
1105 /* Entry basic blocks for each component. */
1106 then_label = gimple_cond_true_label (entry);
1107 else_label = gimple_cond_false_label (entry);
1108 then_bb = label_to_block (then_label);
1109 else_bb = label_to_block (else_label);
1110 then_stmt = first_stmt (then_bb);
1111 else_stmt = first_stmt (else_bb);
1112
1113 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1114 e->goto_locus = gimple_location (then_stmt);
1115 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1116 if (e)
1117 e->goto_locus = gimple_location (else_stmt);
1118
1119 /* We do not need the labels anymore. */
1120 gimple_cond_set_true_label (entry, NULL_TREE);
1121 gimple_cond_set_false_label (entry, NULL_TREE);
1122 }
1123
1124
1125 /* Called for each element in the hash table (P) as we delete the
1126 edge to cases hash table.
1127
1128 Clear all the TREE_CHAINs to prevent problems with copying of
1129 SWITCH_EXPRs and structure sharing rules, then free the hash table
1130 element. */
1131
1132 bool
1133 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1134 {
1135 tree t, next;
1136
1137 for (t = value; t; t = next)
1138 {
1139 next = CASE_CHAIN (t);
1140 CASE_CHAIN (t) = NULL;
1141 }
1142
1143 return true;
1144 }
1145
1146 /* Start recording information mapping edges to case labels. */
1147
1148 void
1149 start_recording_case_labels (void)
1150 {
1151 gcc_assert (edge_to_cases == NULL);
1152 edge_to_cases = new hash_map<edge, tree>;
1153 touched_switch_bbs = BITMAP_ALLOC (NULL);
1154 }
1155
1156 /* Return nonzero if we are recording information for case labels. */
1157
1158 static bool
1159 recording_case_labels_p (void)
1160 {
1161 return (edge_to_cases != NULL);
1162 }
1163
1164 /* Stop recording information mapping edges to case labels and
1165 remove any information we have recorded. */
1166 void
1167 end_recording_case_labels (void)
1168 {
1169 bitmap_iterator bi;
1170 unsigned i;
1171 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1172 delete edge_to_cases;
1173 edge_to_cases = NULL;
1174 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1175 {
1176 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1177 if (bb)
1178 {
1179 gimple *stmt = last_stmt (bb);
1180 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1181 group_case_labels_stmt (as_a <gswitch *> (stmt));
1182 }
1183 }
1184 BITMAP_FREE (touched_switch_bbs);
1185 }
1186
1187 /* If we are inside a {start,end}_recording_cases block, then return
1188 a chain of CASE_LABEL_EXPRs from T which reference E.
1189
1190 Otherwise return NULL. */
1191
1192 static tree
1193 get_cases_for_edge (edge e, gswitch *t)
1194 {
1195 tree *slot;
1196 size_t i, n;
1197
1198 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1199 chains available. Return NULL so the caller can detect this case. */
1200 if (!recording_case_labels_p ())
1201 return NULL;
1202
1203 slot = edge_to_cases->get (e);
1204 if (slot)
1205 return *slot;
1206
1207 /* If we did not find E in the hash table, then this must be the first
1208 time we have been queried for information about E & T. Add all the
1209 elements from T to the hash table then perform the query again. */
1210
1211 n = gimple_switch_num_labels (t);
1212 for (i = 0; i < n; i++)
1213 {
1214 tree elt = gimple_switch_label (t, i);
1215 tree lab = CASE_LABEL (elt);
1216 basic_block label_bb = label_to_block (lab);
1217 edge this_edge = find_edge (e->src, label_bb);
1218
1219 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1220 a new chain. */
1221 tree &s = edge_to_cases->get_or_insert (this_edge);
1222 CASE_CHAIN (elt) = s;
1223 s = elt;
1224 }
1225
1226 return *edge_to_cases->get (e);
1227 }
1228
1229 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1230
1231 static void
1232 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1233 {
1234 size_t i, n;
1235
1236 n = gimple_switch_num_labels (entry);
1237
1238 for (i = 0; i < n; ++i)
1239 {
1240 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1241 basic_block label_bb = label_to_block (lab);
1242 make_edge (bb, label_bb, 0);
1243 }
1244 }
1245
1246
1247 /* Return the basic block holding label DEST. */
1248
1249 basic_block
1250 label_to_block_fn (struct function *ifun, tree dest)
1251 {
1252 int uid = LABEL_DECL_UID (dest);
1253
1254 /* We would die hard when faced by an undefined label. Emit a label to
1255 the very first basic block. This will hopefully make even the dataflow
1256 and undefined variable warnings quite right. */
1257 if (seen_error () && uid < 0)
1258 {
1259 gimple_stmt_iterator gsi =
1260 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1261 gimple *stmt;
1262
1263 stmt = gimple_build_label (dest);
1264 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1265 uid = LABEL_DECL_UID (dest);
1266 }
1267 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1268 return NULL;
1269 return (*ifun->cfg->x_label_to_block_map)[uid];
1270 }
1271
1272 /* Create edges for a goto statement at block BB. Returns true
1273 if abnormal edges should be created. */
1274
1275 static bool
1276 make_goto_expr_edges (basic_block bb)
1277 {
1278 gimple_stmt_iterator last = gsi_last_bb (bb);
1279 gimple *goto_t = gsi_stmt (last);
1280
1281 /* A simple GOTO creates normal edges. */
1282 if (simple_goto_p (goto_t))
1283 {
1284 tree dest = gimple_goto_dest (goto_t);
1285 basic_block label_bb = label_to_block (dest);
1286 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1287 e->goto_locus = gimple_location (goto_t);
1288 gsi_remove (&last, true);
1289 return false;
1290 }
1291
1292 /* A computed GOTO creates abnormal edges. */
1293 return true;
1294 }
1295
1296 /* Create edges for an asm statement with labels at block BB. */
1297
1298 static void
1299 make_gimple_asm_edges (basic_block bb)
1300 {
1301 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1302 int i, n = gimple_asm_nlabels (stmt);
1303
1304 for (i = 0; i < n; ++i)
1305 {
1306 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1307 basic_block label_bb = label_to_block (label);
1308 make_edge (bb, label_bb, 0);
1309 }
1310 }
1311
1312 /*---------------------------------------------------------------------------
1313 Flowgraph analysis
1314 ---------------------------------------------------------------------------*/
1315
1316 /* Cleanup useless labels in basic blocks. This is something we wish
1317 to do early because it allows us to group case labels before creating
1318 the edges for the CFG, and it speeds up block statement iterators in
1319 all passes later on.
1320 We rerun this pass after CFG is created, to get rid of the labels that
1321 are no longer referenced. After then we do not run it any more, since
1322 (almost) no new labels should be created. */
1323
1324 /* A map from basic block index to the leading label of that block. */
1325 static struct label_record
1326 {
1327 /* The label. */
1328 tree label;
1329
1330 /* True if the label is referenced from somewhere. */
1331 bool used;
1332 } *label_for_bb;
1333
1334 /* Given LABEL return the first label in the same basic block. */
1335
1336 static tree
1337 main_block_label (tree label)
1338 {
1339 basic_block bb = label_to_block (label);
1340 tree main_label = label_for_bb[bb->index].label;
1341
1342 /* label_to_block possibly inserted undefined label into the chain. */
1343 if (!main_label)
1344 {
1345 label_for_bb[bb->index].label = label;
1346 main_label = label;
1347 }
1348
1349 label_for_bb[bb->index].used = true;
1350 return main_label;
1351 }
1352
1353 /* Clean up redundant labels within the exception tree. */
1354
1355 static void
1356 cleanup_dead_labels_eh (void)
1357 {
1358 eh_landing_pad lp;
1359 eh_region r;
1360 tree lab;
1361 int i;
1362
1363 if (cfun->eh == NULL)
1364 return;
1365
1366 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1367 if (lp && lp->post_landing_pad)
1368 {
1369 lab = main_block_label (lp->post_landing_pad);
1370 if (lab != lp->post_landing_pad)
1371 {
1372 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1373 EH_LANDING_PAD_NR (lab) = lp->index;
1374 }
1375 }
1376
1377 FOR_ALL_EH_REGION (r)
1378 switch (r->type)
1379 {
1380 case ERT_CLEANUP:
1381 case ERT_MUST_NOT_THROW:
1382 break;
1383
1384 case ERT_TRY:
1385 {
1386 eh_catch c;
1387 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1388 {
1389 lab = c->label;
1390 if (lab)
1391 c->label = main_block_label (lab);
1392 }
1393 }
1394 break;
1395
1396 case ERT_ALLOWED_EXCEPTIONS:
1397 lab = r->u.allowed.label;
1398 if (lab)
1399 r->u.allowed.label = main_block_label (lab);
1400 break;
1401 }
1402 }
1403
1404
1405 /* Cleanup redundant labels. This is a three-step process:
1406 1) Find the leading label for each block.
1407 2) Redirect all references to labels to the leading labels.
1408 3) Cleanup all useless labels. */
1409
1410 void
1411 cleanup_dead_labels (void)
1412 {
1413 basic_block bb;
1414 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1415
1416 /* Find a suitable label for each block. We use the first user-defined
1417 label if there is one, or otherwise just the first label we see. */
1418 FOR_EACH_BB_FN (bb, cfun)
1419 {
1420 gimple_stmt_iterator i;
1421
1422 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1423 {
1424 tree label;
1425 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1426
1427 if (!label_stmt)
1428 break;
1429
1430 label = gimple_label_label (label_stmt);
1431
1432 /* If we have not yet seen a label for the current block,
1433 remember this one and see if there are more labels. */
1434 if (!label_for_bb[bb->index].label)
1435 {
1436 label_for_bb[bb->index].label = label;
1437 continue;
1438 }
1439
1440 /* If we did see a label for the current block already, but it
1441 is an artificially created label, replace it if the current
1442 label is a user defined label. */
1443 if (!DECL_ARTIFICIAL (label)
1444 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1445 {
1446 label_for_bb[bb->index].label = label;
1447 break;
1448 }
1449 }
1450 }
1451
1452 /* Now redirect all jumps/branches to the selected label.
1453 First do so for each block ending in a control statement. */
1454 FOR_EACH_BB_FN (bb, cfun)
1455 {
1456 gimple *stmt = last_stmt (bb);
1457 tree label, new_label;
1458
1459 if (!stmt)
1460 continue;
1461
1462 switch (gimple_code (stmt))
1463 {
1464 case GIMPLE_COND:
1465 {
1466 gcond *cond_stmt = as_a <gcond *> (stmt);
1467 label = gimple_cond_true_label (cond_stmt);
1468 if (label)
1469 {
1470 new_label = main_block_label (label);
1471 if (new_label != label)
1472 gimple_cond_set_true_label (cond_stmt, new_label);
1473 }
1474
1475 label = gimple_cond_false_label (cond_stmt);
1476 if (label)
1477 {
1478 new_label = main_block_label (label);
1479 if (new_label != label)
1480 gimple_cond_set_false_label (cond_stmt, new_label);
1481 }
1482 }
1483 break;
1484
1485 case GIMPLE_SWITCH:
1486 {
1487 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1488 size_t i, n = gimple_switch_num_labels (switch_stmt);
1489
1490 /* Replace all destination labels. */
1491 for (i = 0; i < n; ++i)
1492 {
1493 tree case_label = gimple_switch_label (switch_stmt, i);
1494 label = CASE_LABEL (case_label);
1495 new_label = main_block_label (label);
1496 if (new_label != label)
1497 CASE_LABEL (case_label) = new_label;
1498 }
1499 break;
1500 }
1501
1502 case GIMPLE_ASM:
1503 {
1504 gasm *asm_stmt = as_a <gasm *> (stmt);
1505 int i, n = gimple_asm_nlabels (asm_stmt);
1506
1507 for (i = 0; i < n; ++i)
1508 {
1509 tree cons = gimple_asm_label_op (asm_stmt, i);
1510 tree label = main_block_label (TREE_VALUE (cons));
1511 TREE_VALUE (cons) = label;
1512 }
1513 break;
1514 }
1515
1516 /* We have to handle gotos until they're removed, and we don't
1517 remove them until after we've created the CFG edges. */
1518 case GIMPLE_GOTO:
1519 if (!computed_goto_p (stmt))
1520 {
1521 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1522 label = gimple_goto_dest (goto_stmt);
1523 new_label = main_block_label (label);
1524 if (new_label != label)
1525 gimple_goto_set_dest (goto_stmt, new_label);
1526 }
1527 break;
1528
1529 case GIMPLE_TRANSACTION:
1530 {
1531 gtransaction *txn = as_a <gtransaction *> (stmt);
1532
1533 label = gimple_transaction_label_norm (txn);
1534 if (label)
1535 {
1536 new_label = main_block_label (label);
1537 if (new_label != label)
1538 gimple_transaction_set_label_norm (txn, new_label);
1539 }
1540
1541 label = gimple_transaction_label_uninst (txn);
1542 if (label)
1543 {
1544 new_label = main_block_label (label);
1545 if (new_label != label)
1546 gimple_transaction_set_label_uninst (txn, new_label);
1547 }
1548
1549 label = gimple_transaction_label_over (txn);
1550 if (label)
1551 {
1552 new_label = main_block_label (label);
1553 if (new_label != label)
1554 gimple_transaction_set_label_over (txn, new_label);
1555 }
1556 }
1557 break;
1558
1559 default:
1560 break;
1561 }
1562 }
1563
1564 /* Do the same for the exception region tree labels. */
1565 cleanup_dead_labels_eh ();
1566
1567 /* Finally, purge dead labels. All user-defined labels and labels that
1568 can be the target of non-local gotos and labels which have their
1569 address taken are preserved. */
1570 FOR_EACH_BB_FN (bb, cfun)
1571 {
1572 gimple_stmt_iterator i;
1573 tree label_for_this_bb = label_for_bb[bb->index].label;
1574
1575 if (!label_for_this_bb)
1576 continue;
1577
1578 /* If the main label of the block is unused, we may still remove it. */
1579 if (!label_for_bb[bb->index].used)
1580 label_for_this_bb = NULL;
1581
1582 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1583 {
1584 tree label;
1585 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1586
1587 if (!label_stmt)
1588 break;
1589
1590 label = gimple_label_label (label_stmt);
1591
1592 if (label == label_for_this_bb
1593 || !DECL_ARTIFICIAL (label)
1594 || DECL_NONLOCAL (label)
1595 || FORCED_LABEL (label))
1596 gsi_next (&i);
1597 else
1598 gsi_remove (&i, true);
1599 }
1600 }
1601
1602 free (label_for_bb);
1603 }
1604
1605 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1606 the ones jumping to the same label.
1607 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1608
1609 void
1610 group_case_labels_stmt (gswitch *stmt)
1611 {
1612 int old_size = gimple_switch_num_labels (stmt);
1613 int i, j, new_size = old_size;
1614 basic_block default_bb = NULL;
1615
1616 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1617
1618 /* Look for possible opportunities to merge cases. */
1619 i = 1;
1620 while (i < old_size)
1621 {
1622 tree base_case, base_high;
1623 basic_block base_bb;
1624
1625 base_case = gimple_switch_label (stmt, i);
1626
1627 gcc_assert (base_case);
1628 base_bb = label_to_block (CASE_LABEL (base_case));
1629
1630 /* Discard cases that have the same destination as the
1631 default case. */
1632 if (base_bb == default_bb)
1633 {
1634 gimple_switch_set_label (stmt, i, NULL_TREE);
1635 i++;
1636 new_size--;
1637 continue;
1638 }
1639
1640 base_high = CASE_HIGH (base_case)
1641 ? CASE_HIGH (base_case)
1642 : CASE_LOW (base_case);
1643 i++;
1644
1645 /* Try to merge case labels. Break out when we reach the end
1646 of the label vector or when we cannot merge the next case
1647 label with the current one. */
1648 while (i < old_size)
1649 {
1650 tree merge_case = gimple_switch_label (stmt, i);
1651 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1652 wide_int bhp1 = wi::add (base_high, 1);
1653
1654 /* Merge the cases if they jump to the same place,
1655 and their ranges are consecutive. */
1656 if (merge_bb == base_bb
1657 && wi::eq_p (CASE_LOW (merge_case), bhp1))
1658 {
1659 base_high = CASE_HIGH (merge_case) ?
1660 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1661 CASE_HIGH (base_case) = base_high;
1662 gimple_switch_set_label (stmt, i, NULL_TREE);
1663 new_size--;
1664 i++;
1665 }
1666 else
1667 break;
1668 }
1669 }
1670
1671 /* Compress the case labels in the label vector, and adjust the
1672 length of the vector. */
1673 for (i = 0, j = 0; i < new_size; i++)
1674 {
1675 while (! gimple_switch_label (stmt, j))
1676 j++;
1677 gimple_switch_set_label (stmt, i,
1678 gimple_switch_label (stmt, j++));
1679 }
1680
1681 gcc_assert (new_size <= old_size);
1682 gimple_switch_set_num_labels (stmt, new_size);
1683 }
1684
1685 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1686 and scan the sorted vector of cases. Combine the ones jumping to the
1687 same label. */
1688
1689 void
1690 group_case_labels (void)
1691 {
1692 basic_block bb;
1693
1694 FOR_EACH_BB_FN (bb, cfun)
1695 {
1696 gimple *stmt = last_stmt (bb);
1697 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1698 group_case_labels_stmt (as_a <gswitch *> (stmt));
1699 }
1700 }
1701
1702 /* Checks whether we can merge block B into block A. */
1703
1704 static bool
1705 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1706 {
1707 gimple *stmt;
1708
1709 if (!single_succ_p (a))
1710 return false;
1711
1712 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1713 return false;
1714
1715 if (single_succ (a) != b)
1716 return false;
1717
1718 if (!single_pred_p (b))
1719 return false;
1720
1721 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1722 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1723 return false;
1724
1725 /* If A ends by a statement causing exceptions or something similar, we
1726 cannot merge the blocks. */
1727 stmt = last_stmt (a);
1728 if (stmt && stmt_ends_bb_p (stmt))
1729 return false;
1730
1731 /* Do not allow a block with only a non-local label to be merged. */
1732 if (stmt)
1733 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1734 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1735 return false;
1736
1737 /* Examine the labels at the beginning of B. */
1738 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1739 gsi_next (&gsi))
1740 {
1741 tree lab;
1742 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1743 if (!label_stmt)
1744 break;
1745 lab = gimple_label_label (label_stmt);
1746
1747 /* Do not remove user forced labels or for -O0 any user labels. */
1748 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1749 return false;
1750 }
1751
1752 /* Protect simple loop latches. We only want to avoid merging
1753 the latch with the loop header or with a block in another
1754 loop in this case. */
1755 if (current_loops
1756 && b->loop_father->latch == b
1757 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1758 && (b->loop_father->header == a
1759 || b->loop_father != a->loop_father))
1760 return false;
1761
1762 /* It must be possible to eliminate all phi nodes in B. If ssa form
1763 is not up-to-date and a name-mapping is registered, we cannot eliminate
1764 any phis. Symbols marked for renaming are never a problem though. */
1765 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1766 gsi_next (&gsi))
1767 {
1768 gphi *phi = gsi.phi ();
1769 /* Technically only new names matter. */
1770 if (name_registered_for_update_p (PHI_RESULT (phi)))
1771 return false;
1772 }
1773
1774 /* When not optimizing, don't merge if we'd lose goto_locus. */
1775 if (!optimize
1776 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1777 {
1778 location_t goto_locus = single_succ_edge (a)->goto_locus;
1779 gimple_stmt_iterator prev, next;
1780 prev = gsi_last_nondebug_bb (a);
1781 next = gsi_after_labels (b);
1782 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1783 gsi_next_nondebug (&next);
1784 if ((gsi_end_p (prev)
1785 || gimple_location (gsi_stmt (prev)) != goto_locus)
1786 && (gsi_end_p (next)
1787 || gimple_location (gsi_stmt (next)) != goto_locus))
1788 return false;
1789 }
1790
1791 return true;
1792 }
1793
1794 /* Replaces all uses of NAME by VAL. */
1795
1796 void
1797 replace_uses_by (tree name, tree val)
1798 {
1799 imm_use_iterator imm_iter;
1800 use_operand_p use;
1801 gimple *stmt;
1802 edge e;
1803
1804 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1805 {
1806 /* Mark the block if we change the last stmt in it. */
1807 if (cfgcleanup_altered_bbs
1808 && stmt_ends_bb_p (stmt))
1809 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1810
1811 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1812 {
1813 replace_exp (use, val);
1814
1815 if (gimple_code (stmt) == GIMPLE_PHI)
1816 {
1817 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1818 PHI_ARG_INDEX_FROM_USE (use));
1819 if (e->flags & EDGE_ABNORMAL
1820 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1821 {
1822 /* This can only occur for virtual operands, since
1823 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1824 would prevent replacement. */
1825 gcc_checking_assert (virtual_operand_p (name));
1826 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1827 }
1828 }
1829 }
1830
1831 if (gimple_code (stmt) != GIMPLE_PHI)
1832 {
1833 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1834 gimple *orig_stmt = stmt;
1835 size_t i;
1836
1837 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1838 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1839 only change sth from non-invariant to invariant, and only
1840 when propagating constants. */
1841 if (is_gimple_min_invariant (val))
1842 for (i = 0; i < gimple_num_ops (stmt); i++)
1843 {
1844 tree op = gimple_op (stmt, i);
1845 /* Operands may be empty here. For example, the labels
1846 of a GIMPLE_COND are nulled out following the creation
1847 of the corresponding CFG edges. */
1848 if (op && TREE_CODE (op) == ADDR_EXPR)
1849 recompute_tree_invariant_for_addr_expr (op);
1850 }
1851
1852 if (fold_stmt (&gsi))
1853 stmt = gsi_stmt (gsi);
1854
1855 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1856 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1857
1858 update_stmt (stmt);
1859 }
1860 }
1861
1862 gcc_checking_assert (has_zero_uses (name));
1863
1864 /* Also update the trees stored in loop structures. */
1865 if (current_loops)
1866 {
1867 struct loop *loop;
1868
1869 FOR_EACH_LOOP (loop, 0)
1870 {
1871 substitute_in_loop_info (loop, name, val);
1872 }
1873 }
1874 }
1875
1876 /* Merge block B into block A. */
1877
1878 static void
1879 gimple_merge_blocks (basic_block a, basic_block b)
1880 {
1881 gimple_stmt_iterator last, gsi;
1882 gphi_iterator psi;
1883
1884 if (dump_file)
1885 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1886
1887 /* Remove all single-valued PHI nodes from block B of the form
1888 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1889 gsi = gsi_last_bb (a);
1890 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1891 {
1892 gimple *phi = gsi_stmt (psi);
1893 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1894 gimple *copy;
1895 bool may_replace_uses = (virtual_operand_p (def)
1896 || may_propagate_copy (def, use));
1897
1898 /* In case we maintain loop closed ssa form, do not propagate arguments
1899 of loop exit phi nodes. */
1900 if (current_loops
1901 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1902 && !virtual_operand_p (def)
1903 && TREE_CODE (use) == SSA_NAME
1904 && a->loop_father != b->loop_father)
1905 may_replace_uses = false;
1906
1907 if (!may_replace_uses)
1908 {
1909 gcc_assert (!virtual_operand_p (def));
1910
1911 /* Note that just emitting the copies is fine -- there is no problem
1912 with ordering of phi nodes. This is because A is the single
1913 predecessor of B, therefore results of the phi nodes cannot
1914 appear as arguments of the phi nodes. */
1915 copy = gimple_build_assign (def, use);
1916 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1917 remove_phi_node (&psi, false);
1918 }
1919 else
1920 {
1921 /* If we deal with a PHI for virtual operands, we can simply
1922 propagate these without fussing with folding or updating
1923 the stmt. */
1924 if (virtual_operand_p (def))
1925 {
1926 imm_use_iterator iter;
1927 use_operand_p use_p;
1928 gimple *stmt;
1929
1930 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1931 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1932 SET_USE (use_p, use);
1933
1934 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1935 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1936 }
1937 else
1938 replace_uses_by (def, use);
1939
1940 remove_phi_node (&psi, true);
1941 }
1942 }
1943
1944 /* Ensure that B follows A. */
1945 move_block_after (b, a);
1946
1947 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1948 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1949
1950 /* Remove labels from B and set gimple_bb to A for other statements. */
1951 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1952 {
1953 gimple *stmt = gsi_stmt (gsi);
1954 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1955 {
1956 tree label = gimple_label_label (label_stmt);
1957 int lp_nr;
1958
1959 gsi_remove (&gsi, false);
1960
1961 /* Now that we can thread computed gotos, we might have
1962 a situation where we have a forced label in block B
1963 However, the label at the start of block B might still be
1964 used in other ways (think about the runtime checking for
1965 Fortran assigned gotos). So we can not just delete the
1966 label. Instead we move the label to the start of block A. */
1967 if (FORCED_LABEL (label))
1968 {
1969 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1970 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1971 }
1972 /* Other user labels keep around in a form of a debug stmt. */
1973 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1974 {
1975 gimple *dbg = gimple_build_debug_bind (label,
1976 integer_zero_node,
1977 stmt);
1978 gimple_debug_bind_reset_value (dbg);
1979 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1980 }
1981
1982 lp_nr = EH_LANDING_PAD_NR (label);
1983 if (lp_nr)
1984 {
1985 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1986 lp->post_landing_pad = NULL;
1987 }
1988 }
1989 else
1990 {
1991 gimple_set_bb (stmt, a);
1992 gsi_next (&gsi);
1993 }
1994 }
1995
1996 /* When merging two BBs, if their counts are different, the larger count
1997 is selected as the new bb count. This is to handle inconsistent
1998 profiles. */
1999 if (a->loop_father == b->loop_father)
2000 {
2001 a->count = MAX (a->count, b->count);
2002 a->frequency = MAX (a->frequency, b->frequency);
2003 }
2004
2005 /* Merge the sequences. */
2006 last = gsi_last_bb (a);
2007 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2008 set_bb_seq (b, NULL);
2009
2010 if (cfgcleanup_altered_bbs)
2011 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2012 }
2013
2014
2015 /* Return the one of two successors of BB that is not reachable by a
2016 complex edge, if there is one. Else, return BB. We use
2017 this in optimizations that use post-dominators for their heuristics,
2018 to catch the cases in C++ where function calls are involved. */
2019
2020 basic_block
2021 single_noncomplex_succ (basic_block bb)
2022 {
2023 edge e0, e1;
2024 if (EDGE_COUNT (bb->succs) != 2)
2025 return bb;
2026
2027 e0 = EDGE_SUCC (bb, 0);
2028 e1 = EDGE_SUCC (bb, 1);
2029 if (e0->flags & EDGE_COMPLEX)
2030 return e1->dest;
2031 if (e1->flags & EDGE_COMPLEX)
2032 return e0->dest;
2033
2034 return bb;
2035 }
2036
2037 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2038
2039 void
2040 notice_special_calls (gcall *call)
2041 {
2042 int flags = gimple_call_flags (call);
2043
2044 if (flags & ECF_MAY_BE_ALLOCA)
2045 cfun->calls_alloca = true;
2046 if (flags & ECF_RETURNS_TWICE)
2047 cfun->calls_setjmp = true;
2048 }
2049
2050
2051 /* Clear flags set by notice_special_calls. Used by dead code removal
2052 to update the flags. */
2053
2054 void
2055 clear_special_calls (void)
2056 {
2057 cfun->calls_alloca = false;
2058 cfun->calls_setjmp = false;
2059 }
2060
2061 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2062
2063 static void
2064 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2065 {
2066 /* Since this block is no longer reachable, we can just delete all
2067 of its PHI nodes. */
2068 remove_phi_nodes (bb);
2069
2070 /* Remove edges to BB's successors. */
2071 while (EDGE_COUNT (bb->succs) > 0)
2072 remove_edge (EDGE_SUCC (bb, 0));
2073 }
2074
2075
2076 /* Remove statements of basic block BB. */
2077
2078 static void
2079 remove_bb (basic_block bb)
2080 {
2081 gimple_stmt_iterator i;
2082
2083 if (dump_file)
2084 {
2085 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2086 if (dump_flags & TDF_DETAILS)
2087 {
2088 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2089 fprintf (dump_file, "\n");
2090 }
2091 }
2092
2093 if (current_loops)
2094 {
2095 struct loop *loop = bb->loop_father;
2096
2097 /* If a loop gets removed, clean up the information associated
2098 with it. */
2099 if (loop->latch == bb
2100 || loop->header == bb)
2101 free_numbers_of_iterations_estimates_loop (loop);
2102 }
2103
2104 /* Remove all the instructions in the block. */
2105 if (bb_seq (bb) != NULL)
2106 {
2107 /* Walk backwards so as to get a chance to substitute all
2108 released DEFs into debug stmts. See
2109 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2110 details. */
2111 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2112 {
2113 gimple *stmt = gsi_stmt (i);
2114 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2115 if (label_stmt
2116 && (FORCED_LABEL (gimple_label_label (label_stmt))
2117 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2118 {
2119 basic_block new_bb;
2120 gimple_stmt_iterator new_gsi;
2121
2122 /* A non-reachable non-local label may still be referenced.
2123 But it no longer needs to carry the extra semantics of
2124 non-locality. */
2125 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2126 {
2127 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2128 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2129 }
2130
2131 new_bb = bb->prev_bb;
2132 new_gsi = gsi_start_bb (new_bb);
2133 gsi_remove (&i, false);
2134 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2135 }
2136 else
2137 {
2138 /* Release SSA definitions if we are in SSA. Note that we
2139 may be called when not in SSA. For example,
2140 final_cleanup calls this function via
2141 cleanup_tree_cfg. */
2142 if (gimple_in_ssa_p (cfun))
2143 release_defs (stmt);
2144
2145 gsi_remove (&i, true);
2146 }
2147
2148 if (gsi_end_p (i))
2149 i = gsi_last_bb (bb);
2150 else
2151 gsi_prev (&i);
2152 }
2153 }
2154
2155 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2156 bb->il.gimple.seq = NULL;
2157 bb->il.gimple.phi_nodes = NULL;
2158 }
2159
2160
2161 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2162 predicate VAL, return the edge that will be taken out of the block.
2163 If VAL does not match a unique edge, NULL is returned. */
2164
2165 edge
2166 find_taken_edge (basic_block bb, tree val)
2167 {
2168 gimple *stmt;
2169
2170 stmt = last_stmt (bb);
2171
2172 gcc_assert (stmt);
2173 gcc_assert (is_ctrl_stmt (stmt));
2174
2175 if (val == NULL)
2176 return NULL;
2177
2178 if (!is_gimple_min_invariant (val))
2179 return NULL;
2180
2181 if (gimple_code (stmt) == GIMPLE_COND)
2182 return find_taken_edge_cond_expr (bb, val);
2183
2184 if (gimple_code (stmt) == GIMPLE_SWITCH)
2185 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), bb, val);
2186
2187 if (computed_goto_p (stmt))
2188 {
2189 /* Only optimize if the argument is a label, if the argument is
2190 not a label then we can not construct a proper CFG.
2191
2192 It may be the case that we only need to allow the LABEL_REF to
2193 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2194 appear inside a LABEL_EXPR just to be safe. */
2195 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2196 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2197 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2198 return NULL;
2199 }
2200
2201 gcc_unreachable ();
2202 }
2203
2204 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2205 statement, determine which of the outgoing edges will be taken out of the
2206 block. Return NULL if either edge may be taken. */
2207
2208 static edge
2209 find_taken_edge_computed_goto (basic_block bb, tree val)
2210 {
2211 basic_block dest;
2212 edge e = NULL;
2213
2214 dest = label_to_block (val);
2215 if (dest)
2216 {
2217 e = find_edge (bb, dest);
2218 gcc_assert (e != NULL);
2219 }
2220
2221 return e;
2222 }
2223
2224 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2225 statement, determine which of the two edges will be taken out of the
2226 block. Return NULL if either edge may be taken. */
2227
2228 static edge
2229 find_taken_edge_cond_expr (basic_block bb, tree val)
2230 {
2231 edge true_edge, false_edge;
2232
2233 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2234
2235 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2236 return (integer_zerop (val) ? false_edge : true_edge);
2237 }
2238
2239 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2240 statement, determine which edge will be taken out of the block. Return
2241 NULL if any edge may be taken. */
2242
2243 static edge
2244 find_taken_edge_switch_expr (gswitch *switch_stmt, basic_block bb,
2245 tree val)
2246 {
2247 basic_block dest_bb;
2248 edge e;
2249 tree taken_case;
2250
2251 taken_case = find_case_label_for_value (switch_stmt, val);
2252 dest_bb = label_to_block (CASE_LABEL (taken_case));
2253
2254 e = find_edge (bb, dest_bb);
2255 gcc_assert (e);
2256 return e;
2257 }
2258
2259
2260 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2261 We can make optimal use here of the fact that the case labels are
2262 sorted: We can do a binary search for a case matching VAL. */
2263
2264 static tree
2265 find_case_label_for_value (gswitch *switch_stmt, tree val)
2266 {
2267 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2268 tree default_case = gimple_switch_default_label (switch_stmt);
2269
2270 for (low = 0, high = n; high - low > 1; )
2271 {
2272 size_t i = (high + low) / 2;
2273 tree t = gimple_switch_label (switch_stmt, i);
2274 int cmp;
2275
2276 /* Cache the result of comparing CASE_LOW and val. */
2277 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2278
2279 if (cmp > 0)
2280 high = i;
2281 else
2282 low = i;
2283
2284 if (CASE_HIGH (t) == NULL)
2285 {
2286 /* A singe-valued case label. */
2287 if (cmp == 0)
2288 return t;
2289 }
2290 else
2291 {
2292 /* A case range. We can only handle integer ranges. */
2293 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2294 return t;
2295 }
2296 }
2297
2298 return default_case;
2299 }
2300
2301
2302 /* Dump a basic block on stderr. */
2303
2304 void
2305 gimple_debug_bb (basic_block bb)
2306 {
2307 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2308 }
2309
2310
2311 /* Dump basic block with index N on stderr. */
2312
2313 basic_block
2314 gimple_debug_bb_n (int n)
2315 {
2316 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2317 return BASIC_BLOCK_FOR_FN (cfun, n);
2318 }
2319
2320
2321 /* Dump the CFG on stderr.
2322
2323 FLAGS are the same used by the tree dumping functions
2324 (see TDF_* in dumpfile.h). */
2325
2326 void
2327 gimple_debug_cfg (int flags)
2328 {
2329 gimple_dump_cfg (stderr, flags);
2330 }
2331
2332
2333 /* Dump the program showing basic block boundaries on the given FILE.
2334
2335 FLAGS are the same used by the tree dumping functions (see TDF_* in
2336 tree.h). */
2337
2338 void
2339 gimple_dump_cfg (FILE *file, int flags)
2340 {
2341 if (flags & TDF_DETAILS)
2342 {
2343 dump_function_header (file, current_function_decl, flags);
2344 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2345 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2346 last_basic_block_for_fn (cfun));
2347
2348 brief_dump_cfg (file, flags | TDF_COMMENT);
2349 fprintf (file, "\n");
2350 }
2351
2352 if (flags & TDF_STATS)
2353 dump_cfg_stats (file);
2354
2355 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2356 }
2357
2358
2359 /* Dump CFG statistics on FILE. */
2360
2361 void
2362 dump_cfg_stats (FILE *file)
2363 {
2364 static long max_num_merged_labels = 0;
2365 unsigned long size, total = 0;
2366 long num_edges;
2367 basic_block bb;
2368 const char * const fmt_str = "%-30s%-13s%12s\n";
2369 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2370 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2371 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2372 const char *funcname = current_function_name ();
2373
2374 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2375
2376 fprintf (file, "---------------------------------------------------------\n");
2377 fprintf (file, fmt_str, "", " Number of ", "Memory");
2378 fprintf (file, fmt_str, "", " instances ", "used ");
2379 fprintf (file, "---------------------------------------------------------\n");
2380
2381 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2382 total += size;
2383 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2384 SCALE (size), LABEL (size));
2385
2386 num_edges = 0;
2387 FOR_EACH_BB_FN (bb, cfun)
2388 num_edges += EDGE_COUNT (bb->succs);
2389 size = num_edges * sizeof (struct edge_def);
2390 total += size;
2391 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2392
2393 fprintf (file, "---------------------------------------------------------\n");
2394 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2395 LABEL (total));
2396 fprintf (file, "---------------------------------------------------------\n");
2397 fprintf (file, "\n");
2398
2399 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2400 max_num_merged_labels = cfg_stats.num_merged_labels;
2401
2402 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2403 cfg_stats.num_merged_labels, max_num_merged_labels);
2404
2405 fprintf (file, "\n");
2406 }
2407
2408
2409 /* Dump CFG statistics on stderr. Keep extern so that it's always
2410 linked in the final executable. */
2411
2412 DEBUG_FUNCTION void
2413 debug_cfg_stats (void)
2414 {
2415 dump_cfg_stats (stderr);
2416 }
2417
2418 /*---------------------------------------------------------------------------
2419 Miscellaneous helpers
2420 ---------------------------------------------------------------------------*/
2421
2422 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2423 flow. Transfers of control flow associated with EH are excluded. */
2424
2425 static bool
2426 call_can_make_abnormal_goto (gimple *t)
2427 {
2428 /* If the function has no non-local labels, then a call cannot make an
2429 abnormal transfer of control. */
2430 if (!cfun->has_nonlocal_label
2431 && !cfun->calls_setjmp)
2432 return false;
2433
2434 /* Likewise if the call has no side effects. */
2435 if (!gimple_has_side_effects (t))
2436 return false;
2437
2438 /* Likewise if the called function is leaf. */
2439 if (gimple_call_flags (t) & ECF_LEAF)
2440 return false;
2441
2442 return true;
2443 }
2444
2445
2446 /* Return true if T can make an abnormal transfer of control flow.
2447 Transfers of control flow associated with EH are excluded. */
2448
2449 bool
2450 stmt_can_make_abnormal_goto (gimple *t)
2451 {
2452 if (computed_goto_p (t))
2453 return true;
2454 if (is_gimple_call (t))
2455 return call_can_make_abnormal_goto (t);
2456 return false;
2457 }
2458
2459
2460 /* Return true if T represents a stmt that always transfers control. */
2461
2462 bool
2463 is_ctrl_stmt (gimple *t)
2464 {
2465 switch (gimple_code (t))
2466 {
2467 case GIMPLE_COND:
2468 case GIMPLE_SWITCH:
2469 case GIMPLE_GOTO:
2470 case GIMPLE_RETURN:
2471 case GIMPLE_RESX:
2472 return true;
2473 default:
2474 return false;
2475 }
2476 }
2477
2478
2479 /* Return true if T is a statement that may alter the flow of control
2480 (e.g., a call to a non-returning function). */
2481
2482 bool
2483 is_ctrl_altering_stmt (gimple *t)
2484 {
2485 gcc_assert (t);
2486
2487 switch (gimple_code (t))
2488 {
2489 case GIMPLE_CALL:
2490 /* Per stmt call flag indicates whether the call could alter
2491 controlflow. */
2492 if (gimple_call_ctrl_altering_p (t))
2493 return true;
2494 break;
2495
2496 case GIMPLE_EH_DISPATCH:
2497 /* EH_DISPATCH branches to the individual catch handlers at
2498 this level of a try or allowed-exceptions region. It can
2499 fallthru to the next statement as well. */
2500 return true;
2501
2502 case GIMPLE_ASM:
2503 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2504 return true;
2505 break;
2506
2507 CASE_GIMPLE_OMP:
2508 /* OpenMP directives alter control flow. */
2509 return true;
2510
2511 case GIMPLE_TRANSACTION:
2512 /* A transaction start alters control flow. */
2513 return true;
2514
2515 default:
2516 break;
2517 }
2518
2519 /* If a statement can throw, it alters control flow. */
2520 return stmt_can_throw_internal (t);
2521 }
2522
2523
2524 /* Return true if T is a simple local goto. */
2525
2526 bool
2527 simple_goto_p (gimple *t)
2528 {
2529 return (gimple_code (t) == GIMPLE_GOTO
2530 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2531 }
2532
2533
2534 /* Return true if STMT should start a new basic block. PREV_STMT is
2535 the statement preceding STMT. It is used when STMT is a label or a
2536 case label. Labels should only start a new basic block if their
2537 previous statement wasn't a label. Otherwise, sequence of labels
2538 would generate unnecessary basic blocks that only contain a single
2539 label. */
2540
2541 static inline bool
2542 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2543 {
2544 if (stmt == NULL)
2545 return false;
2546
2547 /* Labels start a new basic block only if the preceding statement
2548 wasn't a label of the same type. This prevents the creation of
2549 consecutive blocks that have nothing but a single label. */
2550 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2551 {
2552 /* Nonlocal and computed GOTO targets always start a new block. */
2553 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2554 || FORCED_LABEL (gimple_label_label (label_stmt)))
2555 return true;
2556
2557 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2558 {
2559 if (DECL_NONLOCAL (gimple_label_label (
2560 as_a <glabel *> (prev_stmt))))
2561 return true;
2562
2563 cfg_stats.num_merged_labels++;
2564 return false;
2565 }
2566 else
2567 return true;
2568 }
2569 else if (gimple_code (stmt) == GIMPLE_CALL
2570 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2571 /* setjmp acts similar to a nonlocal GOTO target and thus should
2572 start a new block. */
2573 return true;
2574
2575 return false;
2576 }
2577
2578
2579 /* Return true if T should end a basic block. */
2580
2581 bool
2582 stmt_ends_bb_p (gimple *t)
2583 {
2584 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2585 }
2586
2587 /* Remove block annotations and other data structures. */
2588
2589 void
2590 delete_tree_cfg_annotations (struct function *fn)
2591 {
2592 vec_free (label_to_block_map_for_fn (fn));
2593 }
2594
2595 /* Return the virtual phi in BB. */
2596
2597 gphi *
2598 get_virtual_phi (basic_block bb)
2599 {
2600 for (gphi_iterator gsi = gsi_start_phis (bb);
2601 !gsi_end_p (gsi);
2602 gsi_next (&gsi))
2603 {
2604 gphi *phi = gsi.phi ();
2605
2606 if (virtual_operand_p (PHI_RESULT (phi)))
2607 return phi;
2608 }
2609
2610 return NULL;
2611 }
2612
2613 /* Return the first statement in basic block BB. */
2614
2615 gimple *
2616 first_stmt (basic_block bb)
2617 {
2618 gimple_stmt_iterator i = gsi_start_bb (bb);
2619 gimple *stmt = NULL;
2620
2621 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2622 {
2623 gsi_next (&i);
2624 stmt = NULL;
2625 }
2626 return stmt;
2627 }
2628
2629 /* Return the first non-label statement in basic block BB. */
2630
2631 static gimple *
2632 first_non_label_stmt (basic_block bb)
2633 {
2634 gimple_stmt_iterator i = gsi_start_bb (bb);
2635 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2636 gsi_next (&i);
2637 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2638 }
2639
2640 /* Return the last statement in basic block BB. */
2641
2642 gimple *
2643 last_stmt (basic_block bb)
2644 {
2645 gimple_stmt_iterator i = gsi_last_bb (bb);
2646 gimple *stmt = NULL;
2647
2648 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2649 {
2650 gsi_prev (&i);
2651 stmt = NULL;
2652 }
2653 return stmt;
2654 }
2655
2656 /* Return the last statement of an otherwise empty block. Return NULL
2657 if the block is totally empty, or if it contains more than one
2658 statement. */
2659
2660 gimple *
2661 last_and_only_stmt (basic_block bb)
2662 {
2663 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2664 gimple *last, *prev;
2665
2666 if (gsi_end_p (i))
2667 return NULL;
2668
2669 last = gsi_stmt (i);
2670 gsi_prev_nondebug (&i);
2671 if (gsi_end_p (i))
2672 return last;
2673
2674 /* Empty statements should no longer appear in the instruction stream.
2675 Everything that might have appeared before should be deleted by
2676 remove_useless_stmts, and the optimizers should just gsi_remove
2677 instead of smashing with build_empty_stmt.
2678
2679 Thus the only thing that should appear here in a block containing
2680 one executable statement is a label. */
2681 prev = gsi_stmt (i);
2682 if (gimple_code (prev) == GIMPLE_LABEL)
2683 return last;
2684 else
2685 return NULL;
2686 }
2687
2688 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2689
2690 static void
2691 reinstall_phi_args (edge new_edge, edge old_edge)
2692 {
2693 edge_var_map *vm;
2694 int i;
2695 gphi_iterator phis;
2696
2697 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2698 if (!v)
2699 return;
2700
2701 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2702 v->iterate (i, &vm) && !gsi_end_p (phis);
2703 i++, gsi_next (&phis))
2704 {
2705 gphi *phi = phis.phi ();
2706 tree result = redirect_edge_var_map_result (vm);
2707 tree arg = redirect_edge_var_map_def (vm);
2708
2709 gcc_assert (result == gimple_phi_result (phi));
2710
2711 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2712 }
2713
2714 redirect_edge_var_map_clear (old_edge);
2715 }
2716
2717 /* Returns the basic block after which the new basic block created
2718 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2719 near its "logical" location. This is of most help to humans looking
2720 at debugging dumps. */
2721
2722 basic_block
2723 split_edge_bb_loc (edge edge_in)
2724 {
2725 basic_block dest = edge_in->dest;
2726 basic_block dest_prev = dest->prev_bb;
2727
2728 if (dest_prev)
2729 {
2730 edge e = find_edge (dest_prev, dest);
2731 if (e && !(e->flags & EDGE_COMPLEX))
2732 return edge_in->src;
2733 }
2734 return dest_prev;
2735 }
2736
2737 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2738 Abort on abnormal edges. */
2739
2740 static basic_block
2741 gimple_split_edge (edge edge_in)
2742 {
2743 basic_block new_bb, after_bb, dest;
2744 edge new_edge, e;
2745
2746 /* Abnormal edges cannot be split. */
2747 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2748
2749 dest = edge_in->dest;
2750
2751 after_bb = split_edge_bb_loc (edge_in);
2752
2753 new_bb = create_empty_bb (after_bb);
2754 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2755 new_bb->count = edge_in->count;
2756 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2757 new_edge->probability = REG_BR_PROB_BASE;
2758 new_edge->count = edge_in->count;
2759
2760 e = redirect_edge_and_branch (edge_in, new_bb);
2761 gcc_assert (e == edge_in);
2762 reinstall_phi_args (new_edge, e);
2763
2764 return new_bb;
2765 }
2766
2767
2768 /* Verify properties of the address expression T with base object BASE. */
2769
2770 static tree
2771 verify_address (tree t, tree base)
2772 {
2773 bool old_constant;
2774 bool old_side_effects;
2775 bool new_constant;
2776 bool new_side_effects;
2777
2778 old_constant = TREE_CONSTANT (t);
2779 old_side_effects = TREE_SIDE_EFFECTS (t);
2780
2781 recompute_tree_invariant_for_addr_expr (t);
2782 new_side_effects = TREE_SIDE_EFFECTS (t);
2783 new_constant = TREE_CONSTANT (t);
2784
2785 if (old_constant != new_constant)
2786 {
2787 error ("constant not recomputed when ADDR_EXPR changed");
2788 return t;
2789 }
2790 if (old_side_effects != new_side_effects)
2791 {
2792 error ("side effects not recomputed when ADDR_EXPR changed");
2793 return t;
2794 }
2795
2796 if (!(TREE_CODE (base) == VAR_DECL
2797 || TREE_CODE (base) == PARM_DECL
2798 || TREE_CODE (base) == RESULT_DECL))
2799 return NULL_TREE;
2800
2801 if (DECL_GIMPLE_REG_P (base))
2802 {
2803 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2804 return base;
2805 }
2806
2807 return NULL_TREE;
2808 }
2809
2810 /* Callback for walk_tree, check that all elements with address taken are
2811 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2812 inside a PHI node. */
2813
2814 static tree
2815 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2816 {
2817 tree t = *tp, x;
2818
2819 if (TYPE_P (t))
2820 *walk_subtrees = 0;
2821
2822 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2823 #define CHECK_OP(N, MSG) \
2824 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2825 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2826
2827 switch (TREE_CODE (t))
2828 {
2829 case SSA_NAME:
2830 if (SSA_NAME_IN_FREE_LIST (t))
2831 {
2832 error ("SSA name in freelist but still referenced");
2833 return *tp;
2834 }
2835 break;
2836
2837 case INDIRECT_REF:
2838 error ("INDIRECT_REF in gimple IL");
2839 return t;
2840
2841 case MEM_REF:
2842 x = TREE_OPERAND (t, 0);
2843 if (!POINTER_TYPE_P (TREE_TYPE (x))
2844 || !is_gimple_mem_ref_addr (x))
2845 {
2846 error ("invalid first operand of MEM_REF");
2847 return x;
2848 }
2849 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2850 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2851 {
2852 error ("invalid offset operand of MEM_REF");
2853 return TREE_OPERAND (t, 1);
2854 }
2855 if (TREE_CODE (x) == ADDR_EXPR
2856 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2857 return x;
2858 *walk_subtrees = 0;
2859 break;
2860
2861 case ASSERT_EXPR:
2862 x = fold (ASSERT_EXPR_COND (t));
2863 if (x == boolean_false_node)
2864 {
2865 error ("ASSERT_EXPR with an always-false condition");
2866 return *tp;
2867 }
2868 break;
2869
2870 case MODIFY_EXPR:
2871 error ("MODIFY_EXPR not expected while having tuples");
2872 return *tp;
2873
2874 case ADDR_EXPR:
2875 {
2876 tree tem;
2877
2878 gcc_assert (is_gimple_address (t));
2879
2880 /* Skip any references (they will be checked when we recurse down the
2881 tree) and ensure that any variable used as a prefix is marked
2882 addressable. */
2883 for (x = TREE_OPERAND (t, 0);
2884 handled_component_p (x);
2885 x = TREE_OPERAND (x, 0))
2886 ;
2887
2888 if ((tem = verify_address (t, x)))
2889 return tem;
2890
2891 if (!(TREE_CODE (x) == VAR_DECL
2892 || TREE_CODE (x) == PARM_DECL
2893 || TREE_CODE (x) == RESULT_DECL))
2894 return NULL;
2895
2896 if (!TREE_ADDRESSABLE (x))
2897 {
2898 error ("address taken, but ADDRESSABLE bit not set");
2899 return x;
2900 }
2901
2902 break;
2903 }
2904
2905 case COND_EXPR:
2906 x = COND_EXPR_COND (t);
2907 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2908 {
2909 error ("non-integral used in condition");
2910 return x;
2911 }
2912 if (!is_gimple_condexpr (x))
2913 {
2914 error ("invalid conditional operand");
2915 return x;
2916 }
2917 break;
2918
2919 case NON_LVALUE_EXPR:
2920 case TRUTH_NOT_EXPR:
2921 gcc_unreachable ();
2922
2923 CASE_CONVERT:
2924 case FIX_TRUNC_EXPR:
2925 case FLOAT_EXPR:
2926 case NEGATE_EXPR:
2927 case ABS_EXPR:
2928 case BIT_NOT_EXPR:
2929 CHECK_OP (0, "invalid operand to unary operator");
2930 break;
2931
2932 case REALPART_EXPR:
2933 case IMAGPART_EXPR:
2934 case BIT_FIELD_REF:
2935 if (!is_gimple_reg_type (TREE_TYPE (t)))
2936 {
2937 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2938 return t;
2939 }
2940
2941 if (TREE_CODE (t) == BIT_FIELD_REF)
2942 {
2943 tree t0 = TREE_OPERAND (t, 0);
2944 tree t1 = TREE_OPERAND (t, 1);
2945 tree t2 = TREE_OPERAND (t, 2);
2946 if (!tree_fits_uhwi_p (t1)
2947 || !tree_fits_uhwi_p (t2))
2948 {
2949 error ("invalid position or size operand to BIT_FIELD_REF");
2950 return t;
2951 }
2952 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2953 && (TYPE_PRECISION (TREE_TYPE (t))
2954 != tree_to_uhwi (t1)))
2955 {
2956 error ("integral result type precision does not match "
2957 "field size of BIT_FIELD_REF");
2958 return t;
2959 }
2960 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2961 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2962 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2963 != tree_to_uhwi (t1)))
2964 {
2965 error ("mode precision of non-integral result does not "
2966 "match field size of BIT_FIELD_REF");
2967 return t;
2968 }
2969 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2970 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2971 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2972 {
2973 error ("position plus size exceeds size of referenced object in "
2974 "BIT_FIELD_REF");
2975 return t;
2976 }
2977 }
2978 t = TREE_OPERAND (t, 0);
2979
2980 /* Fall-through. */
2981 case COMPONENT_REF:
2982 case ARRAY_REF:
2983 case ARRAY_RANGE_REF:
2984 case VIEW_CONVERT_EXPR:
2985 /* We have a nest of references. Verify that each of the operands
2986 that determine where to reference is either a constant or a variable,
2987 verify that the base is valid, and then show we've already checked
2988 the subtrees. */
2989 while (handled_component_p (t))
2990 {
2991 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2992 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2993 else if (TREE_CODE (t) == ARRAY_REF
2994 || TREE_CODE (t) == ARRAY_RANGE_REF)
2995 {
2996 CHECK_OP (1, "invalid array index");
2997 if (TREE_OPERAND (t, 2))
2998 CHECK_OP (2, "invalid array lower bound");
2999 if (TREE_OPERAND (t, 3))
3000 CHECK_OP (3, "invalid array stride");
3001 }
3002 else if (TREE_CODE (t) == BIT_FIELD_REF
3003 || TREE_CODE (t) == REALPART_EXPR
3004 || TREE_CODE (t) == IMAGPART_EXPR)
3005 {
3006 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3007 "REALPART_EXPR");
3008 return t;
3009 }
3010
3011 t = TREE_OPERAND (t, 0);
3012 }
3013
3014 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
3015 {
3016 error ("invalid reference prefix");
3017 return t;
3018 }
3019 *walk_subtrees = 0;
3020 break;
3021 case PLUS_EXPR:
3022 case MINUS_EXPR:
3023 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3024 POINTER_PLUS_EXPR. */
3025 if (POINTER_TYPE_P (TREE_TYPE (t)))
3026 {
3027 error ("invalid operand to plus/minus, type is a pointer");
3028 return t;
3029 }
3030 CHECK_OP (0, "invalid operand to binary operator");
3031 CHECK_OP (1, "invalid operand to binary operator");
3032 break;
3033
3034 case POINTER_PLUS_EXPR:
3035 /* Check to make sure the first operand is a pointer or reference type. */
3036 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
3037 {
3038 error ("invalid operand to pointer plus, first operand is not a pointer");
3039 return t;
3040 }
3041 /* Check to make sure the second operand is a ptrofftype. */
3042 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
3043 {
3044 error ("invalid operand to pointer plus, second operand is not an "
3045 "integer type of appropriate width");
3046 return t;
3047 }
3048 /* FALLTHROUGH */
3049 case LT_EXPR:
3050 case LE_EXPR:
3051 case GT_EXPR:
3052 case GE_EXPR:
3053 case EQ_EXPR:
3054 case NE_EXPR:
3055 case UNORDERED_EXPR:
3056 case ORDERED_EXPR:
3057 case UNLT_EXPR:
3058 case UNLE_EXPR:
3059 case UNGT_EXPR:
3060 case UNGE_EXPR:
3061 case UNEQ_EXPR:
3062 case LTGT_EXPR:
3063 case MULT_EXPR:
3064 case TRUNC_DIV_EXPR:
3065 case CEIL_DIV_EXPR:
3066 case FLOOR_DIV_EXPR:
3067 case ROUND_DIV_EXPR:
3068 case TRUNC_MOD_EXPR:
3069 case CEIL_MOD_EXPR:
3070 case FLOOR_MOD_EXPR:
3071 case ROUND_MOD_EXPR:
3072 case RDIV_EXPR:
3073 case EXACT_DIV_EXPR:
3074 case MIN_EXPR:
3075 case MAX_EXPR:
3076 case LSHIFT_EXPR:
3077 case RSHIFT_EXPR:
3078 case LROTATE_EXPR:
3079 case RROTATE_EXPR:
3080 case BIT_IOR_EXPR:
3081 case BIT_XOR_EXPR:
3082 case BIT_AND_EXPR:
3083 CHECK_OP (0, "invalid operand to binary operator");
3084 CHECK_OP (1, "invalid operand to binary operator");
3085 break;
3086
3087 case CONSTRUCTOR:
3088 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3089 *walk_subtrees = 0;
3090 break;
3091
3092 case CASE_LABEL_EXPR:
3093 if (CASE_CHAIN (t))
3094 {
3095 error ("invalid CASE_CHAIN");
3096 return t;
3097 }
3098 break;
3099
3100 default:
3101 break;
3102 }
3103 return NULL;
3104
3105 #undef CHECK_OP
3106 }
3107
3108
3109 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3110 Returns true if there is an error, otherwise false. */
3111
3112 static bool
3113 verify_types_in_gimple_min_lval (tree expr)
3114 {
3115 tree op;
3116
3117 if (is_gimple_id (expr))
3118 return false;
3119
3120 if (TREE_CODE (expr) != TARGET_MEM_REF
3121 && TREE_CODE (expr) != MEM_REF)
3122 {
3123 error ("invalid expression for min lvalue");
3124 return true;
3125 }
3126
3127 /* TARGET_MEM_REFs are strange beasts. */
3128 if (TREE_CODE (expr) == TARGET_MEM_REF)
3129 return false;
3130
3131 op = TREE_OPERAND (expr, 0);
3132 if (!is_gimple_val (op))
3133 {
3134 error ("invalid operand in indirect reference");
3135 debug_generic_stmt (op);
3136 return true;
3137 }
3138 /* Memory references now generally can involve a value conversion. */
3139
3140 return false;
3141 }
3142
3143 /* Verify if EXPR is a valid GIMPLE reference expression. If
3144 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3145 if there is an error, otherwise false. */
3146
3147 static bool
3148 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3149 {
3150 while (handled_component_p (expr))
3151 {
3152 tree op = TREE_OPERAND (expr, 0);
3153
3154 if (TREE_CODE (expr) == ARRAY_REF
3155 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3156 {
3157 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3158 || (TREE_OPERAND (expr, 2)
3159 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3160 || (TREE_OPERAND (expr, 3)
3161 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3162 {
3163 error ("invalid operands to array reference");
3164 debug_generic_stmt (expr);
3165 return true;
3166 }
3167 }
3168
3169 /* Verify if the reference array element types are compatible. */
3170 if (TREE_CODE (expr) == ARRAY_REF
3171 && !useless_type_conversion_p (TREE_TYPE (expr),
3172 TREE_TYPE (TREE_TYPE (op))))
3173 {
3174 error ("type mismatch in array reference");
3175 debug_generic_stmt (TREE_TYPE (expr));
3176 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3177 return true;
3178 }
3179 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3180 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3181 TREE_TYPE (TREE_TYPE (op))))
3182 {
3183 error ("type mismatch in array range reference");
3184 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3185 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3186 return true;
3187 }
3188
3189 if ((TREE_CODE (expr) == REALPART_EXPR
3190 || TREE_CODE (expr) == IMAGPART_EXPR)
3191 && !useless_type_conversion_p (TREE_TYPE (expr),
3192 TREE_TYPE (TREE_TYPE (op))))
3193 {
3194 error ("type mismatch in real/imagpart reference");
3195 debug_generic_stmt (TREE_TYPE (expr));
3196 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3197 return true;
3198 }
3199
3200 if (TREE_CODE (expr) == COMPONENT_REF
3201 && !useless_type_conversion_p (TREE_TYPE (expr),
3202 TREE_TYPE (TREE_OPERAND (expr, 1))))
3203 {
3204 error ("type mismatch in component reference");
3205 debug_generic_stmt (TREE_TYPE (expr));
3206 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3207 return true;
3208 }
3209
3210 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3211 {
3212 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3213 that their operand is not an SSA name or an invariant when
3214 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3215 bug). Otherwise there is nothing to verify, gross mismatches at
3216 most invoke undefined behavior. */
3217 if (require_lvalue
3218 && (TREE_CODE (op) == SSA_NAME
3219 || is_gimple_min_invariant (op)))
3220 {
3221 error ("conversion of an SSA_NAME on the left hand side");
3222 debug_generic_stmt (expr);
3223 return true;
3224 }
3225 else if (TREE_CODE (op) == SSA_NAME
3226 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3227 {
3228 error ("conversion of register to a different size");
3229 debug_generic_stmt (expr);
3230 return true;
3231 }
3232 else if (!handled_component_p (op))
3233 return false;
3234 }
3235
3236 expr = op;
3237 }
3238
3239 if (TREE_CODE (expr) == MEM_REF)
3240 {
3241 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3242 {
3243 error ("invalid address operand in MEM_REF");
3244 debug_generic_stmt (expr);
3245 return true;
3246 }
3247 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3248 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3249 {
3250 error ("invalid offset operand in MEM_REF");
3251 debug_generic_stmt (expr);
3252 return true;
3253 }
3254 }
3255 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3256 {
3257 if (!TMR_BASE (expr)
3258 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3259 {
3260 error ("invalid address operand in TARGET_MEM_REF");
3261 return true;
3262 }
3263 if (!TMR_OFFSET (expr)
3264 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3265 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3266 {
3267 error ("invalid offset operand in TARGET_MEM_REF");
3268 debug_generic_stmt (expr);
3269 return true;
3270 }
3271 }
3272
3273 return ((require_lvalue || !is_gimple_min_invariant (expr))
3274 && verify_types_in_gimple_min_lval (expr));
3275 }
3276
3277 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3278 list of pointer-to types that is trivially convertible to DEST. */
3279
3280 static bool
3281 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3282 {
3283 tree src;
3284
3285 if (!TYPE_POINTER_TO (src_obj))
3286 return true;
3287
3288 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3289 if (useless_type_conversion_p (dest, src))
3290 return true;
3291
3292 return false;
3293 }
3294
3295 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3296 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3297
3298 static bool
3299 valid_fixed_convert_types_p (tree type1, tree type2)
3300 {
3301 return (FIXED_POINT_TYPE_P (type1)
3302 && (INTEGRAL_TYPE_P (type2)
3303 || SCALAR_FLOAT_TYPE_P (type2)
3304 || FIXED_POINT_TYPE_P (type2)));
3305 }
3306
3307 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3308 is a problem, otherwise false. */
3309
3310 static bool
3311 verify_gimple_call (gcall *stmt)
3312 {
3313 tree fn = gimple_call_fn (stmt);
3314 tree fntype, fndecl;
3315 unsigned i;
3316
3317 if (gimple_call_internal_p (stmt))
3318 {
3319 if (fn)
3320 {
3321 error ("gimple call has two targets");
3322 debug_generic_stmt (fn);
3323 return true;
3324 }
3325 }
3326 else
3327 {
3328 if (!fn)
3329 {
3330 error ("gimple call has no target");
3331 return true;
3332 }
3333 }
3334
3335 if (fn && !is_gimple_call_addr (fn))
3336 {
3337 error ("invalid function in gimple call");
3338 debug_generic_stmt (fn);
3339 return true;
3340 }
3341
3342 if (fn
3343 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3344 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3345 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3346 {
3347 error ("non-function in gimple call");
3348 return true;
3349 }
3350
3351 fndecl = gimple_call_fndecl (stmt);
3352 if (fndecl
3353 && TREE_CODE (fndecl) == FUNCTION_DECL
3354 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3355 && !DECL_PURE_P (fndecl)
3356 && !TREE_READONLY (fndecl))
3357 {
3358 error ("invalid pure const state for function");
3359 return true;
3360 }
3361
3362 tree lhs = gimple_call_lhs (stmt);
3363 if (lhs
3364 && (!is_gimple_lvalue (lhs)
3365 || verify_types_in_gimple_reference (lhs, true)))
3366 {
3367 error ("invalid LHS in gimple call");
3368 return true;
3369 }
3370
3371 if (lhs
3372 && gimple_call_ctrl_altering_p (stmt)
3373 && gimple_call_noreturn_p (stmt)
3374 && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (lhs))) == INTEGER_CST
3375 && !TREE_ADDRESSABLE (TREE_TYPE (lhs)))
3376 {
3377 error ("LHS in noreturn call");
3378 return true;
3379 }
3380
3381 fntype = gimple_call_fntype (stmt);
3382 if (fntype
3383 && lhs
3384 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3385 /* ??? At least C++ misses conversions at assignments from
3386 void * call results.
3387 ??? Java is completely off. Especially with functions
3388 returning java.lang.Object.
3389 For now simply allow arbitrary pointer type conversions. */
3390 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3391 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3392 {
3393 error ("invalid conversion in gimple call");
3394 debug_generic_stmt (TREE_TYPE (lhs));
3395 debug_generic_stmt (TREE_TYPE (fntype));
3396 return true;
3397 }
3398
3399 if (gimple_call_chain (stmt)
3400 && !is_gimple_val (gimple_call_chain (stmt)))
3401 {
3402 error ("invalid static chain in gimple call");
3403 debug_generic_stmt (gimple_call_chain (stmt));
3404 return true;
3405 }
3406
3407 /* If there is a static chain argument, the call should either be
3408 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3409 if (gimple_call_chain (stmt)
3410 && fndecl
3411 && !DECL_STATIC_CHAIN (fndecl))
3412 {
3413 error ("static chain with function that doesn%'t use one");
3414 return true;
3415 }
3416
3417 /* ??? The C frontend passes unpromoted arguments in case it
3418 didn't see a function declaration before the call. So for now
3419 leave the call arguments mostly unverified. Once we gimplify
3420 unit-at-a-time we have a chance to fix this. */
3421
3422 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3423 {
3424 tree arg = gimple_call_arg (stmt, i);
3425 if ((is_gimple_reg_type (TREE_TYPE (arg))
3426 && !is_gimple_val (arg))
3427 || (!is_gimple_reg_type (TREE_TYPE (arg))
3428 && !is_gimple_lvalue (arg)))
3429 {
3430 error ("invalid argument to gimple call");
3431 debug_generic_expr (arg);
3432 return true;
3433 }
3434 }
3435
3436 return false;
3437 }
3438
3439 /* Verifies the gimple comparison with the result type TYPE and
3440 the operands OP0 and OP1. */
3441
3442 static bool
3443 verify_gimple_comparison (tree type, tree op0, tree op1)
3444 {
3445 tree op0_type = TREE_TYPE (op0);
3446 tree op1_type = TREE_TYPE (op1);
3447
3448 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3449 {
3450 error ("invalid operands in gimple comparison");
3451 return true;
3452 }
3453
3454 /* For comparisons we do not have the operations type as the
3455 effective type the comparison is carried out in. Instead
3456 we require that either the first operand is trivially
3457 convertible into the second, or the other way around.
3458 Because we special-case pointers to void we allow
3459 comparisons of pointers with the same mode as well. */
3460 if (!useless_type_conversion_p (op0_type, op1_type)
3461 && !useless_type_conversion_p (op1_type, op0_type)
3462 && (!POINTER_TYPE_P (op0_type)
3463 || !POINTER_TYPE_P (op1_type)
3464 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3465 {
3466 error ("mismatching comparison operand types");
3467 debug_generic_expr (op0_type);
3468 debug_generic_expr (op1_type);
3469 return true;
3470 }
3471
3472 /* The resulting type of a comparison may be an effective boolean type. */
3473 if (INTEGRAL_TYPE_P (type)
3474 && (TREE_CODE (type) == BOOLEAN_TYPE
3475 || TYPE_PRECISION (type) == 1))
3476 {
3477 if (TREE_CODE (op0_type) == VECTOR_TYPE
3478 || TREE_CODE (op1_type) == VECTOR_TYPE)
3479 {
3480 error ("vector comparison returning a boolean");
3481 debug_generic_expr (op0_type);
3482 debug_generic_expr (op1_type);
3483 return true;
3484 }
3485 }
3486 /* Or a boolean vector type with the same element count
3487 as the comparison operand types. */
3488 else if (TREE_CODE (type) == VECTOR_TYPE
3489 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3490 {
3491 if (TREE_CODE (op0_type) != VECTOR_TYPE
3492 || TREE_CODE (op1_type) != VECTOR_TYPE)
3493 {
3494 error ("non-vector operands in vector comparison");
3495 debug_generic_expr (op0_type);
3496 debug_generic_expr (op1_type);
3497 return true;
3498 }
3499
3500 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type))
3501 {
3502 error ("invalid vector comparison resulting type");
3503 debug_generic_expr (type);
3504 return true;
3505 }
3506 }
3507 else
3508 {
3509 error ("bogus comparison result type");
3510 debug_generic_expr (type);
3511 return true;
3512 }
3513
3514 return false;
3515 }
3516
3517 /* Verify a gimple assignment statement STMT with an unary rhs.
3518 Returns true if anything is wrong. */
3519
3520 static bool
3521 verify_gimple_assign_unary (gassign *stmt)
3522 {
3523 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3524 tree lhs = gimple_assign_lhs (stmt);
3525 tree lhs_type = TREE_TYPE (lhs);
3526 tree rhs1 = gimple_assign_rhs1 (stmt);
3527 tree rhs1_type = TREE_TYPE (rhs1);
3528
3529 if (!is_gimple_reg (lhs))
3530 {
3531 error ("non-register as LHS of unary operation");
3532 return true;
3533 }
3534
3535 if (!is_gimple_val (rhs1))
3536 {
3537 error ("invalid operand in unary operation");
3538 return true;
3539 }
3540
3541 /* First handle conversions. */
3542 switch (rhs_code)
3543 {
3544 CASE_CONVERT:
3545 {
3546 /* Allow conversions from pointer type to integral type only if
3547 there is no sign or zero extension involved.
3548 For targets were the precision of ptrofftype doesn't match that
3549 of pointers we need to allow arbitrary conversions to ptrofftype. */
3550 if ((POINTER_TYPE_P (lhs_type)
3551 && INTEGRAL_TYPE_P (rhs1_type))
3552 || (POINTER_TYPE_P (rhs1_type)
3553 && INTEGRAL_TYPE_P (lhs_type)
3554 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3555 || ptrofftype_p (sizetype))))
3556 return false;
3557
3558 /* Allow conversion from integral to offset type and vice versa. */
3559 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3560 && INTEGRAL_TYPE_P (rhs1_type))
3561 || (INTEGRAL_TYPE_P (lhs_type)
3562 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3563 return false;
3564
3565 /* Otherwise assert we are converting between types of the
3566 same kind. */
3567 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3568 {
3569 error ("invalid types in nop conversion");
3570 debug_generic_expr (lhs_type);
3571 debug_generic_expr (rhs1_type);
3572 return true;
3573 }
3574
3575 return false;
3576 }
3577
3578 case ADDR_SPACE_CONVERT_EXPR:
3579 {
3580 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3581 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3582 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3583 {
3584 error ("invalid types in address space conversion");
3585 debug_generic_expr (lhs_type);
3586 debug_generic_expr (rhs1_type);
3587 return true;
3588 }
3589
3590 return false;
3591 }
3592
3593 case FIXED_CONVERT_EXPR:
3594 {
3595 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3596 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3597 {
3598 error ("invalid types in fixed-point conversion");
3599 debug_generic_expr (lhs_type);
3600 debug_generic_expr (rhs1_type);
3601 return true;
3602 }
3603
3604 return false;
3605 }
3606
3607 case FLOAT_EXPR:
3608 {
3609 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3610 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3611 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3612 {
3613 error ("invalid types in conversion to floating point");
3614 debug_generic_expr (lhs_type);
3615 debug_generic_expr (rhs1_type);
3616 return true;
3617 }
3618
3619 return false;
3620 }
3621
3622 case FIX_TRUNC_EXPR:
3623 {
3624 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3625 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3626 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3627 {
3628 error ("invalid types in conversion to integer");
3629 debug_generic_expr (lhs_type);
3630 debug_generic_expr (rhs1_type);
3631 return true;
3632 }
3633
3634 return false;
3635 }
3636 case REDUC_MAX_EXPR:
3637 case REDUC_MIN_EXPR:
3638 case REDUC_PLUS_EXPR:
3639 if (!VECTOR_TYPE_P (rhs1_type)
3640 || !useless_type_conversion_p (lhs_type, TREE_TYPE (rhs1_type)))
3641 {
3642 error ("reduction should convert from vector to element type");
3643 debug_generic_expr (lhs_type);
3644 debug_generic_expr (rhs1_type);
3645 return true;
3646 }
3647 return false;
3648
3649 case VEC_UNPACK_HI_EXPR:
3650 case VEC_UNPACK_LO_EXPR:
3651 case VEC_UNPACK_FLOAT_HI_EXPR:
3652 case VEC_UNPACK_FLOAT_LO_EXPR:
3653 /* FIXME. */
3654 return false;
3655
3656 case NEGATE_EXPR:
3657 case ABS_EXPR:
3658 case BIT_NOT_EXPR:
3659 case PAREN_EXPR:
3660 case CONJ_EXPR:
3661 break;
3662
3663 default:
3664 gcc_unreachable ();
3665 }
3666
3667 /* For the remaining codes assert there is no conversion involved. */
3668 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3669 {
3670 error ("non-trivial conversion in unary operation");
3671 debug_generic_expr (lhs_type);
3672 debug_generic_expr (rhs1_type);
3673 return true;
3674 }
3675
3676 return false;
3677 }
3678
3679 /* Verify a gimple assignment statement STMT with a binary rhs.
3680 Returns true if anything is wrong. */
3681
3682 static bool
3683 verify_gimple_assign_binary (gassign *stmt)
3684 {
3685 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3686 tree lhs = gimple_assign_lhs (stmt);
3687 tree lhs_type = TREE_TYPE (lhs);
3688 tree rhs1 = gimple_assign_rhs1 (stmt);
3689 tree rhs1_type = TREE_TYPE (rhs1);
3690 tree rhs2 = gimple_assign_rhs2 (stmt);
3691 tree rhs2_type = TREE_TYPE (rhs2);
3692
3693 if (!is_gimple_reg (lhs))
3694 {
3695 error ("non-register as LHS of binary operation");
3696 return true;
3697 }
3698
3699 if (!is_gimple_val (rhs1)
3700 || !is_gimple_val (rhs2))
3701 {
3702 error ("invalid operands in binary operation");
3703 return true;
3704 }
3705
3706 /* First handle operations that involve different types. */
3707 switch (rhs_code)
3708 {
3709 case COMPLEX_EXPR:
3710 {
3711 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3712 || !(INTEGRAL_TYPE_P (rhs1_type)
3713 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3714 || !(INTEGRAL_TYPE_P (rhs2_type)
3715 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3716 {
3717 error ("type mismatch in complex expression");
3718 debug_generic_expr (lhs_type);
3719 debug_generic_expr (rhs1_type);
3720 debug_generic_expr (rhs2_type);
3721 return true;
3722 }
3723
3724 return false;
3725 }
3726
3727 case LSHIFT_EXPR:
3728 case RSHIFT_EXPR:
3729 case LROTATE_EXPR:
3730 case RROTATE_EXPR:
3731 {
3732 /* Shifts and rotates are ok on integral types, fixed point
3733 types and integer vector types. */
3734 if ((!INTEGRAL_TYPE_P (rhs1_type)
3735 && !FIXED_POINT_TYPE_P (rhs1_type)
3736 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3737 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3738 || (!INTEGRAL_TYPE_P (rhs2_type)
3739 /* Vector shifts of vectors are also ok. */
3740 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3741 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3742 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3743 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3744 || !useless_type_conversion_p (lhs_type, rhs1_type))
3745 {
3746 error ("type mismatch in shift expression");
3747 debug_generic_expr (lhs_type);
3748 debug_generic_expr (rhs1_type);
3749 debug_generic_expr (rhs2_type);
3750 return true;
3751 }
3752
3753 return false;
3754 }
3755
3756 case WIDEN_LSHIFT_EXPR:
3757 {
3758 if (!INTEGRAL_TYPE_P (lhs_type)
3759 || !INTEGRAL_TYPE_P (rhs1_type)
3760 || TREE_CODE (rhs2) != INTEGER_CST
3761 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3762 {
3763 error ("type mismatch in widening vector shift expression");
3764 debug_generic_expr (lhs_type);
3765 debug_generic_expr (rhs1_type);
3766 debug_generic_expr (rhs2_type);
3767 return true;
3768 }
3769
3770 return false;
3771 }
3772
3773 case VEC_WIDEN_LSHIFT_HI_EXPR:
3774 case VEC_WIDEN_LSHIFT_LO_EXPR:
3775 {
3776 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3777 || TREE_CODE (lhs_type) != VECTOR_TYPE
3778 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3779 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3780 || TREE_CODE (rhs2) != INTEGER_CST
3781 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3782 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3783 {
3784 error ("type mismatch in widening vector shift expression");
3785 debug_generic_expr (lhs_type);
3786 debug_generic_expr (rhs1_type);
3787 debug_generic_expr (rhs2_type);
3788 return true;
3789 }
3790
3791 return false;
3792 }
3793
3794 case PLUS_EXPR:
3795 case MINUS_EXPR:
3796 {
3797 tree lhs_etype = lhs_type;
3798 tree rhs1_etype = rhs1_type;
3799 tree rhs2_etype = rhs2_type;
3800 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3801 {
3802 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3803 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3804 {
3805 error ("invalid non-vector operands to vector valued plus");
3806 return true;
3807 }
3808 lhs_etype = TREE_TYPE (lhs_type);
3809 rhs1_etype = TREE_TYPE (rhs1_type);
3810 rhs2_etype = TREE_TYPE (rhs2_type);
3811 }
3812 if (POINTER_TYPE_P (lhs_etype)
3813 || POINTER_TYPE_P (rhs1_etype)
3814 || POINTER_TYPE_P (rhs2_etype))
3815 {
3816 error ("invalid (pointer) operands to plus/minus");
3817 return true;
3818 }
3819
3820 /* Continue with generic binary expression handling. */
3821 break;
3822 }
3823
3824 case POINTER_PLUS_EXPR:
3825 {
3826 if (!POINTER_TYPE_P (rhs1_type)
3827 || !useless_type_conversion_p (lhs_type, rhs1_type)
3828 || !ptrofftype_p (rhs2_type))
3829 {
3830 error ("type mismatch in pointer plus expression");
3831 debug_generic_stmt (lhs_type);
3832 debug_generic_stmt (rhs1_type);
3833 debug_generic_stmt (rhs2_type);
3834 return true;
3835 }
3836
3837 return false;
3838 }
3839
3840 case TRUTH_ANDIF_EXPR:
3841 case TRUTH_ORIF_EXPR:
3842 case TRUTH_AND_EXPR:
3843 case TRUTH_OR_EXPR:
3844 case TRUTH_XOR_EXPR:
3845
3846 gcc_unreachable ();
3847
3848 case LT_EXPR:
3849 case LE_EXPR:
3850 case GT_EXPR:
3851 case GE_EXPR:
3852 case EQ_EXPR:
3853 case NE_EXPR:
3854 case UNORDERED_EXPR:
3855 case ORDERED_EXPR:
3856 case UNLT_EXPR:
3857 case UNLE_EXPR:
3858 case UNGT_EXPR:
3859 case UNGE_EXPR:
3860 case UNEQ_EXPR:
3861 case LTGT_EXPR:
3862 /* Comparisons are also binary, but the result type is not
3863 connected to the operand types. */
3864 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3865
3866 case WIDEN_MULT_EXPR:
3867 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3868 return true;
3869 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3870 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3871
3872 case WIDEN_SUM_EXPR:
3873 case VEC_WIDEN_MULT_HI_EXPR:
3874 case VEC_WIDEN_MULT_LO_EXPR:
3875 case VEC_WIDEN_MULT_EVEN_EXPR:
3876 case VEC_WIDEN_MULT_ODD_EXPR:
3877 case VEC_PACK_TRUNC_EXPR:
3878 case VEC_PACK_SAT_EXPR:
3879 case VEC_PACK_FIX_TRUNC_EXPR:
3880 /* FIXME. */
3881 return false;
3882
3883 case MULT_EXPR:
3884 case MULT_HIGHPART_EXPR:
3885 case TRUNC_DIV_EXPR:
3886 case CEIL_DIV_EXPR:
3887 case FLOOR_DIV_EXPR:
3888 case ROUND_DIV_EXPR:
3889 case TRUNC_MOD_EXPR:
3890 case CEIL_MOD_EXPR:
3891 case FLOOR_MOD_EXPR:
3892 case ROUND_MOD_EXPR:
3893 case RDIV_EXPR:
3894 case EXACT_DIV_EXPR:
3895 case MIN_EXPR:
3896 case MAX_EXPR:
3897 case BIT_IOR_EXPR:
3898 case BIT_XOR_EXPR:
3899 case BIT_AND_EXPR:
3900 /* Continue with generic binary expression handling. */
3901 break;
3902
3903 default:
3904 gcc_unreachable ();
3905 }
3906
3907 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3908 || !useless_type_conversion_p (lhs_type, rhs2_type))
3909 {
3910 error ("type mismatch in binary expression");
3911 debug_generic_stmt (lhs_type);
3912 debug_generic_stmt (rhs1_type);
3913 debug_generic_stmt (rhs2_type);
3914 return true;
3915 }
3916
3917 return false;
3918 }
3919
3920 /* Verify a gimple assignment statement STMT with a ternary rhs.
3921 Returns true if anything is wrong. */
3922
3923 static bool
3924 verify_gimple_assign_ternary (gassign *stmt)
3925 {
3926 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3927 tree lhs = gimple_assign_lhs (stmt);
3928 tree lhs_type = TREE_TYPE (lhs);
3929 tree rhs1 = gimple_assign_rhs1 (stmt);
3930 tree rhs1_type = TREE_TYPE (rhs1);
3931 tree rhs2 = gimple_assign_rhs2 (stmt);
3932 tree rhs2_type = TREE_TYPE (rhs2);
3933 tree rhs3 = gimple_assign_rhs3 (stmt);
3934 tree rhs3_type = TREE_TYPE (rhs3);
3935
3936 if (!is_gimple_reg (lhs))
3937 {
3938 error ("non-register as LHS of ternary operation");
3939 return true;
3940 }
3941
3942 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3943 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3944 || !is_gimple_val (rhs2)
3945 || !is_gimple_val (rhs3))
3946 {
3947 error ("invalid operands in ternary operation");
3948 return true;
3949 }
3950
3951 /* First handle operations that involve different types. */
3952 switch (rhs_code)
3953 {
3954 case WIDEN_MULT_PLUS_EXPR:
3955 case WIDEN_MULT_MINUS_EXPR:
3956 if ((!INTEGRAL_TYPE_P (rhs1_type)
3957 && !FIXED_POINT_TYPE_P (rhs1_type))
3958 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3959 || !useless_type_conversion_p (lhs_type, rhs3_type)
3960 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3961 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3962 {
3963 error ("type mismatch in widening multiply-accumulate expression");
3964 debug_generic_expr (lhs_type);
3965 debug_generic_expr (rhs1_type);
3966 debug_generic_expr (rhs2_type);
3967 debug_generic_expr (rhs3_type);
3968 return true;
3969 }
3970 break;
3971
3972 case FMA_EXPR:
3973 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3974 || !useless_type_conversion_p (lhs_type, rhs2_type)
3975 || !useless_type_conversion_p (lhs_type, rhs3_type))
3976 {
3977 error ("type mismatch in fused multiply-add expression");
3978 debug_generic_expr (lhs_type);
3979 debug_generic_expr (rhs1_type);
3980 debug_generic_expr (rhs2_type);
3981 debug_generic_expr (rhs3_type);
3982 return true;
3983 }
3984 break;
3985
3986 case VEC_COND_EXPR:
3987 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
3988 || TYPE_VECTOR_SUBPARTS (rhs1_type)
3989 != TYPE_VECTOR_SUBPARTS (lhs_type))
3990 {
3991 error ("the first argument of a VEC_COND_EXPR must be of a "
3992 "boolean vector type of the same number of elements "
3993 "as the result");
3994 debug_generic_expr (lhs_type);
3995 debug_generic_expr (rhs1_type);
3996 return true;
3997 }
3998 /* Fallthrough. */
3999 case COND_EXPR:
4000 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4001 || !useless_type_conversion_p (lhs_type, rhs3_type))
4002 {
4003 error ("type mismatch in conditional expression");
4004 debug_generic_expr (lhs_type);
4005 debug_generic_expr (rhs2_type);
4006 debug_generic_expr (rhs3_type);
4007 return true;
4008 }
4009 break;
4010
4011 case VEC_PERM_EXPR:
4012 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4013 || !useless_type_conversion_p (lhs_type, rhs2_type))
4014 {
4015 error ("type mismatch in vector permute expression");
4016 debug_generic_expr (lhs_type);
4017 debug_generic_expr (rhs1_type);
4018 debug_generic_expr (rhs2_type);
4019 debug_generic_expr (rhs3_type);
4020 return true;
4021 }
4022
4023 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4024 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4025 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4026 {
4027 error ("vector types expected in vector permute expression");
4028 debug_generic_expr (lhs_type);
4029 debug_generic_expr (rhs1_type);
4030 debug_generic_expr (rhs2_type);
4031 debug_generic_expr (rhs3_type);
4032 return true;
4033 }
4034
4035 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
4036 || TYPE_VECTOR_SUBPARTS (rhs2_type)
4037 != TYPE_VECTOR_SUBPARTS (rhs3_type)
4038 || TYPE_VECTOR_SUBPARTS (rhs3_type)
4039 != TYPE_VECTOR_SUBPARTS (lhs_type))
4040 {
4041 error ("vectors with different element number found "
4042 "in vector permute expression");
4043 debug_generic_expr (lhs_type);
4044 debug_generic_expr (rhs1_type);
4045 debug_generic_expr (rhs2_type);
4046 debug_generic_expr (rhs3_type);
4047 return true;
4048 }
4049
4050 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4051 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
4052 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
4053 {
4054 error ("invalid mask type in vector permute expression");
4055 debug_generic_expr (lhs_type);
4056 debug_generic_expr (rhs1_type);
4057 debug_generic_expr (rhs2_type);
4058 debug_generic_expr (rhs3_type);
4059 return true;
4060 }
4061
4062 return false;
4063
4064 case SAD_EXPR:
4065 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4066 || !useless_type_conversion_p (lhs_type, rhs3_type)
4067 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4068 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4069 {
4070 error ("type mismatch in sad expression");
4071 debug_generic_expr (lhs_type);
4072 debug_generic_expr (rhs1_type);
4073 debug_generic_expr (rhs2_type);
4074 debug_generic_expr (rhs3_type);
4075 return true;
4076 }
4077
4078 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4079 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4080 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4081 {
4082 error ("vector types expected in sad expression");
4083 debug_generic_expr (lhs_type);
4084 debug_generic_expr (rhs1_type);
4085 debug_generic_expr (rhs2_type);
4086 debug_generic_expr (rhs3_type);
4087 return true;
4088 }
4089
4090 return false;
4091
4092 case DOT_PROD_EXPR:
4093 case REALIGN_LOAD_EXPR:
4094 /* FIXME. */
4095 return false;
4096
4097 default:
4098 gcc_unreachable ();
4099 }
4100 return false;
4101 }
4102
4103 /* Verify a gimple assignment statement STMT with a single rhs.
4104 Returns true if anything is wrong. */
4105
4106 static bool
4107 verify_gimple_assign_single (gassign *stmt)
4108 {
4109 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4110 tree lhs = gimple_assign_lhs (stmt);
4111 tree lhs_type = TREE_TYPE (lhs);
4112 tree rhs1 = gimple_assign_rhs1 (stmt);
4113 tree rhs1_type = TREE_TYPE (rhs1);
4114 bool res = false;
4115
4116 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4117 {
4118 error ("non-trivial conversion at assignment");
4119 debug_generic_expr (lhs_type);
4120 debug_generic_expr (rhs1_type);
4121 return true;
4122 }
4123
4124 if (gimple_clobber_p (stmt)
4125 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4126 {
4127 error ("non-decl/MEM_REF LHS in clobber statement");
4128 debug_generic_expr (lhs);
4129 return true;
4130 }
4131
4132 if (handled_component_p (lhs)
4133 || TREE_CODE (lhs) == MEM_REF
4134 || TREE_CODE (lhs) == TARGET_MEM_REF)
4135 res |= verify_types_in_gimple_reference (lhs, true);
4136
4137 /* Special codes we cannot handle via their class. */
4138 switch (rhs_code)
4139 {
4140 case ADDR_EXPR:
4141 {
4142 tree op = TREE_OPERAND (rhs1, 0);
4143 if (!is_gimple_addressable (op))
4144 {
4145 error ("invalid operand in unary expression");
4146 return true;
4147 }
4148
4149 /* Technically there is no longer a need for matching types, but
4150 gimple hygiene asks for this check. In LTO we can end up
4151 combining incompatible units and thus end up with addresses
4152 of globals that change their type to a common one. */
4153 if (!in_lto_p
4154 && !types_compatible_p (TREE_TYPE (op),
4155 TREE_TYPE (TREE_TYPE (rhs1)))
4156 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4157 TREE_TYPE (op)))
4158 {
4159 error ("type mismatch in address expression");
4160 debug_generic_stmt (TREE_TYPE (rhs1));
4161 debug_generic_stmt (TREE_TYPE (op));
4162 return true;
4163 }
4164
4165 return verify_types_in_gimple_reference (op, true);
4166 }
4167
4168 /* tcc_reference */
4169 case INDIRECT_REF:
4170 error ("INDIRECT_REF in gimple IL");
4171 return true;
4172
4173 case COMPONENT_REF:
4174 case BIT_FIELD_REF:
4175 case ARRAY_REF:
4176 case ARRAY_RANGE_REF:
4177 case VIEW_CONVERT_EXPR:
4178 case REALPART_EXPR:
4179 case IMAGPART_EXPR:
4180 case TARGET_MEM_REF:
4181 case MEM_REF:
4182 if (!is_gimple_reg (lhs)
4183 && is_gimple_reg_type (TREE_TYPE (lhs)))
4184 {
4185 error ("invalid rhs for gimple memory store");
4186 debug_generic_stmt (lhs);
4187 debug_generic_stmt (rhs1);
4188 return true;
4189 }
4190 return res || verify_types_in_gimple_reference (rhs1, false);
4191
4192 /* tcc_constant */
4193 case SSA_NAME:
4194 case INTEGER_CST:
4195 case REAL_CST:
4196 case FIXED_CST:
4197 case COMPLEX_CST:
4198 case VECTOR_CST:
4199 case STRING_CST:
4200 return res;
4201
4202 /* tcc_declaration */
4203 case CONST_DECL:
4204 return res;
4205 case VAR_DECL:
4206 case PARM_DECL:
4207 if (!is_gimple_reg (lhs)
4208 && !is_gimple_reg (rhs1)
4209 && is_gimple_reg_type (TREE_TYPE (lhs)))
4210 {
4211 error ("invalid rhs for gimple memory store");
4212 debug_generic_stmt (lhs);
4213 debug_generic_stmt (rhs1);
4214 return true;
4215 }
4216 return res;
4217
4218 case CONSTRUCTOR:
4219 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4220 {
4221 unsigned int i;
4222 tree elt_i, elt_v, elt_t = NULL_TREE;
4223
4224 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4225 return res;
4226 /* For vector CONSTRUCTORs we require that either it is empty
4227 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4228 (then the element count must be correct to cover the whole
4229 outer vector and index must be NULL on all elements, or it is
4230 a CONSTRUCTOR of scalar elements, where we as an exception allow
4231 smaller number of elements (assuming zero filling) and
4232 consecutive indexes as compared to NULL indexes (such
4233 CONSTRUCTORs can appear in the IL from FEs). */
4234 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4235 {
4236 if (elt_t == NULL_TREE)
4237 {
4238 elt_t = TREE_TYPE (elt_v);
4239 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4240 {
4241 tree elt_t = TREE_TYPE (elt_v);
4242 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4243 TREE_TYPE (elt_t)))
4244 {
4245 error ("incorrect type of vector CONSTRUCTOR"
4246 " elements");
4247 debug_generic_stmt (rhs1);
4248 return true;
4249 }
4250 else if (CONSTRUCTOR_NELTS (rhs1)
4251 * TYPE_VECTOR_SUBPARTS (elt_t)
4252 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4253 {
4254 error ("incorrect number of vector CONSTRUCTOR"
4255 " elements");
4256 debug_generic_stmt (rhs1);
4257 return true;
4258 }
4259 }
4260 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4261 elt_t))
4262 {
4263 error ("incorrect type of vector CONSTRUCTOR elements");
4264 debug_generic_stmt (rhs1);
4265 return true;
4266 }
4267 else if (CONSTRUCTOR_NELTS (rhs1)
4268 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4269 {
4270 error ("incorrect number of vector CONSTRUCTOR elements");
4271 debug_generic_stmt (rhs1);
4272 return true;
4273 }
4274 }
4275 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4276 {
4277 error ("incorrect type of vector CONSTRUCTOR elements");
4278 debug_generic_stmt (rhs1);
4279 return true;
4280 }
4281 if (elt_i != NULL_TREE
4282 && (TREE_CODE (elt_t) == VECTOR_TYPE
4283 || TREE_CODE (elt_i) != INTEGER_CST
4284 || compare_tree_int (elt_i, i) != 0))
4285 {
4286 error ("vector CONSTRUCTOR with non-NULL element index");
4287 debug_generic_stmt (rhs1);
4288 return true;
4289 }
4290 if (!is_gimple_val (elt_v))
4291 {
4292 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4293 debug_generic_stmt (rhs1);
4294 return true;
4295 }
4296 }
4297 }
4298 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4299 {
4300 error ("non-vector CONSTRUCTOR with elements");
4301 debug_generic_stmt (rhs1);
4302 return true;
4303 }
4304 return res;
4305 case OBJ_TYPE_REF:
4306 case ASSERT_EXPR:
4307 case WITH_SIZE_EXPR:
4308 /* FIXME. */
4309 return res;
4310
4311 default:;
4312 }
4313
4314 return res;
4315 }
4316
4317 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4318 is a problem, otherwise false. */
4319
4320 static bool
4321 verify_gimple_assign (gassign *stmt)
4322 {
4323 switch (gimple_assign_rhs_class (stmt))
4324 {
4325 case GIMPLE_SINGLE_RHS:
4326 return verify_gimple_assign_single (stmt);
4327
4328 case GIMPLE_UNARY_RHS:
4329 return verify_gimple_assign_unary (stmt);
4330
4331 case GIMPLE_BINARY_RHS:
4332 return verify_gimple_assign_binary (stmt);
4333
4334 case GIMPLE_TERNARY_RHS:
4335 return verify_gimple_assign_ternary (stmt);
4336
4337 default:
4338 gcc_unreachable ();
4339 }
4340 }
4341
4342 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4343 is a problem, otherwise false. */
4344
4345 static bool
4346 verify_gimple_return (greturn *stmt)
4347 {
4348 tree op = gimple_return_retval (stmt);
4349 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4350
4351 /* We cannot test for present return values as we do not fix up missing
4352 return values from the original source. */
4353 if (op == NULL)
4354 return false;
4355
4356 if (!is_gimple_val (op)
4357 && TREE_CODE (op) != RESULT_DECL)
4358 {
4359 error ("invalid operand in return statement");
4360 debug_generic_stmt (op);
4361 return true;
4362 }
4363
4364 if ((TREE_CODE (op) == RESULT_DECL
4365 && DECL_BY_REFERENCE (op))
4366 || (TREE_CODE (op) == SSA_NAME
4367 && SSA_NAME_VAR (op)
4368 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4369 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4370 op = TREE_TYPE (op);
4371
4372 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4373 {
4374 error ("invalid conversion in return statement");
4375 debug_generic_stmt (restype);
4376 debug_generic_stmt (TREE_TYPE (op));
4377 return true;
4378 }
4379
4380 return false;
4381 }
4382
4383
4384 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4385 is a problem, otherwise false. */
4386
4387 static bool
4388 verify_gimple_goto (ggoto *stmt)
4389 {
4390 tree dest = gimple_goto_dest (stmt);
4391
4392 /* ??? We have two canonical forms of direct goto destinations, a
4393 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4394 if (TREE_CODE (dest) != LABEL_DECL
4395 && (!is_gimple_val (dest)
4396 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4397 {
4398 error ("goto destination is neither a label nor a pointer");
4399 return true;
4400 }
4401
4402 return false;
4403 }
4404
4405 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4406 is a problem, otherwise false. */
4407
4408 static bool
4409 verify_gimple_switch (gswitch *stmt)
4410 {
4411 unsigned int i, n;
4412 tree elt, prev_upper_bound = NULL_TREE;
4413 tree index_type, elt_type = NULL_TREE;
4414
4415 if (!is_gimple_val (gimple_switch_index (stmt)))
4416 {
4417 error ("invalid operand to switch statement");
4418 debug_generic_stmt (gimple_switch_index (stmt));
4419 return true;
4420 }
4421
4422 index_type = TREE_TYPE (gimple_switch_index (stmt));
4423 if (! INTEGRAL_TYPE_P (index_type))
4424 {
4425 error ("non-integral type switch statement");
4426 debug_generic_expr (index_type);
4427 return true;
4428 }
4429
4430 elt = gimple_switch_label (stmt, 0);
4431 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4432 {
4433 error ("invalid default case label in switch statement");
4434 debug_generic_expr (elt);
4435 return true;
4436 }
4437
4438 n = gimple_switch_num_labels (stmt);
4439 for (i = 1; i < n; i++)
4440 {
4441 elt = gimple_switch_label (stmt, i);
4442
4443 if (! CASE_LOW (elt))
4444 {
4445 error ("invalid case label in switch statement");
4446 debug_generic_expr (elt);
4447 return true;
4448 }
4449 if (CASE_HIGH (elt)
4450 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4451 {
4452 error ("invalid case range in switch statement");
4453 debug_generic_expr (elt);
4454 return true;
4455 }
4456
4457 if (elt_type)
4458 {
4459 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4460 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4461 {
4462 error ("type mismatch for case label in switch statement");
4463 debug_generic_expr (elt);
4464 return true;
4465 }
4466 }
4467 else
4468 {
4469 elt_type = TREE_TYPE (CASE_LOW (elt));
4470 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4471 {
4472 error ("type precision mismatch in switch statement");
4473 return true;
4474 }
4475 }
4476
4477 if (prev_upper_bound)
4478 {
4479 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4480 {
4481 error ("case labels not sorted in switch statement");
4482 return true;
4483 }
4484 }
4485
4486 prev_upper_bound = CASE_HIGH (elt);
4487 if (! prev_upper_bound)
4488 prev_upper_bound = CASE_LOW (elt);
4489 }
4490
4491 return false;
4492 }
4493
4494 /* Verify a gimple debug statement STMT.
4495 Returns true if anything is wrong. */
4496
4497 static bool
4498 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4499 {
4500 /* There isn't much that could be wrong in a gimple debug stmt. A
4501 gimple debug bind stmt, for example, maps a tree, that's usually
4502 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4503 component or member of an aggregate type, to another tree, that
4504 can be an arbitrary expression. These stmts expand into debug
4505 insns, and are converted to debug notes by var-tracking.c. */
4506 return false;
4507 }
4508
4509 /* Verify a gimple label statement STMT.
4510 Returns true if anything is wrong. */
4511
4512 static bool
4513 verify_gimple_label (glabel *stmt)
4514 {
4515 tree decl = gimple_label_label (stmt);
4516 int uid;
4517 bool err = false;
4518
4519 if (TREE_CODE (decl) != LABEL_DECL)
4520 return true;
4521 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4522 && DECL_CONTEXT (decl) != current_function_decl)
4523 {
4524 error ("label's context is not the current function decl");
4525 err |= true;
4526 }
4527
4528 uid = LABEL_DECL_UID (decl);
4529 if (cfun->cfg
4530 && (uid == -1
4531 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4532 {
4533 error ("incorrect entry in label_to_block_map");
4534 err |= true;
4535 }
4536
4537 uid = EH_LANDING_PAD_NR (decl);
4538 if (uid)
4539 {
4540 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4541 if (decl != lp->post_landing_pad)
4542 {
4543 error ("incorrect setting of landing pad number");
4544 err |= true;
4545 }
4546 }
4547
4548 return err;
4549 }
4550
4551 /* Verify a gimple cond statement STMT.
4552 Returns true if anything is wrong. */
4553
4554 static bool
4555 verify_gimple_cond (gcond *stmt)
4556 {
4557 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4558 {
4559 error ("invalid comparison code in gimple cond");
4560 return true;
4561 }
4562 if (!(!gimple_cond_true_label (stmt)
4563 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4564 || !(!gimple_cond_false_label (stmt)
4565 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4566 {
4567 error ("invalid labels in gimple cond");
4568 return true;
4569 }
4570
4571 return verify_gimple_comparison (boolean_type_node,
4572 gimple_cond_lhs (stmt),
4573 gimple_cond_rhs (stmt));
4574 }
4575
4576 /* Verify the GIMPLE statement STMT. Returns true if there is an
4577 error, otherwise false. */
4578
4579 static bool
4580 verify_gimple_stmt (gimple *stmt)
4581 {
4582 switch (gimple_code (stmt))
4583 {
4584 case GIMPLE_ASSIGN:
4585 return verify_gimple_assign (as_a <gassign *> (stmt));
4586
4587 case GIMPLE_LABEL:
4588 return verify_gimple_label (as_a <glabel *> (stmt));
4589
4590 case GIMPLE_CALL:
4591 return verify_gimple_call (as_a <gcall *> (stmt));
4592
4593 case GIMPLE_COND:
4594 return verify_gimple_cond (as_a <gcond *> (stmt));
4595
4596 case GIMPLE_GOTO:
4597 return verify_gimple_goto (as_a <ggoto *> (stmt));
4598
4599 case GIMPLE_SWITCH:
4600 return verify_gimple_switch (as_a <gswitch *> (stmt));
4601
4602 case GIMPLE_RETURN:
4603 return verify_gimple_return (as_a <greturn *> (stmt));
4604
4605 case GIMPLE_ASM:
4606 return false;
4607
4608 case GIMPLE_TRANSACTION:
4609 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
4610
4611 /* Tuples that do not have tree operands. */
4612 case GIMPLE_NOP:
4613 case GIMPLE_PREDICT:
4614 case GIMPLE_RESX:
4615 case GIMPLE_EH_DISPATCH:
4616 case GIMPLE_EH_MUST_NOT_THROW:
4617 return false;
4618
4619 CASE_GIMPLE_OMP:
4620 /* OpenMP directives are validated by the FE and never operated
4621 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4622 non-gimple expressions when the main index variable has had
4623 its address taken. This does not affect the loop itself
4624 because the header of an GIMPLE_OMP_FOR is merely used to determine
4625 how to setup the parallel iteration. */
4626 return false;
4627
4628 case GIMPLE_DEBUG:
4629 return verify_gimple_debug (stmt);
4630
4631 default:
4632 gcc_unreachable ();
4633 }
4634 }
4635
4636 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4637 and false otherwise. */
4638
4639 static bool
4640 verify_gimple_phi (gimple *phi)
4641 {
4642 bool err = false;
4643 unsigned i;
4644 tree phi_result = gimple_phi_result (phi);
4645 bool virtual_p;
4646
4647 if (!phi_result)
4648 {
4649 error ("invalid PHI result");
4650 return true;
4651 }
4652
4653 virtual_p = virtual_operand_p (phi_result);
4654 if (TREE_CODE (phi_result) != SSA_NAME
4655 || (virtual_p
4656 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4657 {
4658 error ("invalid PHI result");
4659 err = true;
4660 }
4661
4662 for (i = 0; i < gimple_phi_num_args (phi); i++)
4663 {
4664 tree t = gimple_phi_arg_def (phi, i);
4665
4666 if (!t)
4667 {
4668 error ("missing PHI def");
4669 err |= true;
4670 continue;
4671 }
4672 /* Addressable variables do have SSA_NAMEs but they
4673 are not considered gimple values. */
4674 else if ((TREE_CODE (t) == SSA_NAME
4675 && virtual_p != virtual_operand_p (t))
4676 || (virtual_p
4677 && (TREE_CODE (t) != SSA_NAME
4678 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4679 || (!virtual_p
4680 && !is_gimple_val (t)))
4681 {
4682 error ("invalid PHI argument");
4683 debug_generic_expr (t);
4684 err |= true;
4685 }
4686 #ifdef ENABLE_TYPES_CHECKING
4687 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4688 {
4689 error ("incompatible types in PHI argument %u", i);
4690 debug_generic_stmt (TREE_TYPE (phi_result));
4691 debug_generic_stmt (TREE_TYPE (t));
4692 err |= true;
4693 }
4694 #endif
4695 }
4696
4697 return err;
4698 }
4699
4700 /* Verify the GIMPLE statements inside the sequence STMTS. */
4701
4702 static bool
4703 verify_gimple_in_seq_2 (gimple_seq stmts)
4704 {
4705 gimple_stmt_iterator ittr;
4706 bool err = false;
4707
4708 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4709 {
4710 gimple *stmt = gsi_stmt (ittr);
4711
4712 switch (gimple_code (stmt))
4713 {
4714 case GIMPLE_BIND:
4715 err |= verify_gimple_in_seq_2 (
4716 gimple_bind_body (as_a <gbind *> (stmt)));
4717 break;
4718
4719 case GIMPLE_TRY:
4720 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4721 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4722 break;
4723
4724 case GIMPLE_EH_FILTER:
4725 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4726 break;
4727
4728 case GIMPLE_EH_ELSE:
4729 {
4730 geh_else *eh_else = as_a <geh_else *> (stmt);
4731 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
4732 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
4733 }
4734 break;
4735
4736 case GIMPLE_CATCH:
4737 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
4738 as_a <gcatch *> (stmt)));
4739 break;
4740
4741 case GIMPLE_TRANSACTION:
4742 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
4743 break;
4744
4745 default:
4746 {
4747 bool err2 = verify_gimple_stmt (stmt);
4748 if (err2)
4749 debug_gimple_stmt (stmt);
4750 err |= err2;
4751 }
4752 }
4753 }
4754
4755 return err;
4756 }
4757
4758 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4759 is a problem, otherwise false. */
4760
4761 static bool
4762 verify_gimple_transaction (gtransaction *stmt)
4763 {
4764 tree lab;
4765
4766 lab = gimple_transaction_label_norm (stmt);
4767 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4768 return true;
4769 lab = gimple_transaction_label_uninst (stmt);
4770 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4771 return true;
4772 lab = gimple_transaction_label_over (stmt);
4773 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4774 return true;
4775
4776 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4777 }
4778
4779
4780 /* Verify the GIMPLE statements inside the statement list STMTS. */
4781
4782 DEBUG_FUNCTION void
4783 verify_gimple_in_seq (gimple_seq stmts)
4784 {
4785 timevar_push (TV_TREE_STMT_VERIFY);
4786 if (verify_gimple_in_seq_2 (stmts))
4787 internal_error ("verify_gimple failed");
4788 timevar_pop (TV_TREE_STMT_VERIFY);
4789 }
4790
4791 /* Return true when the T can be shared. */
4792
4793 static bool
4794 tree_node_can_be_shared (tree t)
4795 {
4796 if (IS_TYPE_OR_DECL_P (t)
4797 || is_gimple_min_invariant (t)
4798 || TREE_CODE (t) == SSA_NAME
4799 || t == error_mark_node
4800 || TREE_CODE (t) == IDENTIFIER_NODE)
4801 return true;
4802
4803 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4804 return true;
4805
4806 if (DECL_P (t))
4807 return true;
4808
4809 return false;
4810 }
4811
4812 /* Called via walk_tree. Verify tree sharing. */
4813
4814 static tree
4815 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4816 {
4817 hash_set<void *> *visited = (hash_set<void *> *) data;
4818
4819 if (tree_node_can_be_shared (*tp))
4820 {
4821 *walk_subtrees = false;
4822 return NULL;
4823 }
4824
4825 if (visited->add (*tp))
4826 return *tp;
4827
4828 return NULL;
4829 }
4830
4831 /* Called via walk_gimple_stmt. Verify tree sharing. */
4832
4833 static tree
4834 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4835 {
4836 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4837 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4838 }
4839
4840 static bool eh_error_found;
4841 bool
4842 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
4843 hash_set<gimple *> *visited)
4844 {
4845 if (!visited->contains (stmt))
4846 {
4847 error ("dead STMT in EH table");
4848 debug_gimple_stmt (stmt);
4849 eh_error_found = true;
4850 }
4851 return true;
4852 }
4853
4854 /* Verify if the location LOCs block is in BLOCKS. */
4855
4856 static bool
4857 verify_location (hash_set<tree> *blocks, location_t loc)
4858 {
4859 tree block = LOCATION_BLOCK (loc);
4860 if (block != NULL_TREE
4861 && !blocks->contains (block))
4862 {
4863 error ("location references block not in block tree");
4864 return true;
4865 }
4866 if (block != NULL_TREE)
4867 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4868 return false;
4869 }
4870
4871 /* Called via walk_tree. Verify that expressions have no blocks. */
4872
4873 static tree
4874 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4875 {
4876 if (!EXPR_P (*tp))
4877 {
4878 *walk_subtrees = false;
4879 return NULL;
4880 }
4881
4882 location_t loc = EXPR_LOCATION (*tp);
4883 if (LOCATION_BLOCK (loc) != NULL)
4884 return *tp;
4885
4886 return NULL;
4887 }
4888
4889 /* Called via walk_tree. Verify locations of expressions. */
4890
4891 static tree
4892 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4893 {
4894 hash_set<tree> *blocks = (hash_set<tree> *) data;
4895
4896 if (TREE_CODE (*tp) == VAR_DECL
4897 && DECL_HAS_DEBUG_EXPR_P (*tp))
4898 {
4899 tree t = DECL_DEBUG_EXPR (*tp);
4900 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4901 if (addr)
4902 return addr;
4903 }
4904 if ((TREE_CODE (*tp) == VAR_DECL
4905 || TREE_CODE (*tp) == PARM_DECL
4906 || TREE_CODE (*tp) == RESULT_DECL)
4907 && DECL_HAS_VALUE_EXPR_P (*tp))
4908 {
4909 tree t = DECL_VALUE_EXPR (*tp);
4910 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4911 if (addr)
4912 return addr;
4913 }
4914
4915 if (!EXPR_P (*tp))
4916 {
4917 *walk_subtrees = false;
4918 return NULL;
4919 }
4920
4921 location_t loc = EXPR_LOCATION (*tp);
4922 if (verify_location (blocks, loc))
4923 return *tp;
4924
4925 return NULL;
4926 }
4927
4928 /* Called via walk_gimple_op. Verify locations of expressions. */
4929
4930 static tree
4931 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4932 {
4933 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4934 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4935 }
4936
4937 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4938
4939 static void
4940 collect_subblocks (hash_set<tree> *blocks, tree block)
4941 {
4942 tree t;
4943 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4944 {
4945 blocks->add (t);
4946 collect_subblocks (blocks, t);
4947 }
4948 }
4949
4950 /* Verify the GIMPLE statements in the CFG of FN. */
4951
4952 DEBUG_FUNCTION void
4953 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
4954 {
4955 basic_block bb;
4956 bool err = false;
4957
4958 timevar_push (TV_TREE_STMT_VERIFY);
4959 hash_set<void *> visited;
4960 hash_set<gimple *> visited_stmts;
4961
4962 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4963 hash_set<tree> blocks;
4964 if (DECL_INITIAL (fn->decl))
4965 {
4966 blocks.add (DECL_INITIAL (fn->decl));
4967 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
4968 }
4969
4970 FOR_EACH_BB_FN (bb, fn)
4971 {
4972 gimple_stmt_iterator gsi;
4973
4974 for (gphi_iterator gpi = gsi_start_phis (bb);
4975 !gsi_end_p (gpi);
4976 gsi_next (&gpi))
4977 {
4978 gphi *phi = gpi.phi ();
4979 bool err2 = false;
4980 unsigned i;
4981
4982 visited_stmts.add (phi);
4983
4984 if (gimple_bb (phi) != bb)
4985 {
4986 error ("gimple_bb (phi) is set to a wrong basic block");
4987 err2 = true;
4988 }
4989
4990 err2 |= verify_gimple_phi (phi);
4991
4992 /* Only PHI arguments have locations. */
4993 if (gimple_location (phi) != UNKNOWN_LOCATION)
4994 {
4995 error ("PHI node with location");
4996 err2 = true;
4997 }
4998
4999 for (i = 0; i < gimple_phi_num_args (phi); i++)
5000 {
5001 tree arg = gimple_phi_arg_def (phi, i);
5002 tree addr = walk_tree (&arg, verify_node_sharing_1,
5003 &visited, NULL);
5004 if (addr)
5005 {
5006 error ("incorrect sharing of tree nodes");
5007 debug_generic_expr (addr);
5008 err2 |= true;
5009 }
5010 location_t loc = gimple_phi_arg_location (phi, i);
5011 if (virtual_operand_p (gimple_phi_result (phi))
5012 && loc != UNKNOWN_LOCATION)
5013 {
5014 error ("virtual PHI with argument locations");
5015 err2 = true;
5016 }
5017 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5018 if (addr)
5019 {
5020 debug_generic_expr (addr);
5021 err2 = true;
5022 }
5023 err2 |= verify_location (&blocks, loc);
5024 }
5025
5026 if (err2)
5027 debug_gimple_stmt (phi);
5028 err |= err2;
5029 }
5030
5031 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5032 {
5033 gimple *stmt = gsi_stmt (gsi);
5034 bool err2 = false;
5035 struct walk_stmt_info wi;
5036 tree addr;
5037 int lp_nr;
5038
5039 visited_stmts.add (stmt);
5040
5041 if (gimple_bb (stmt) != bb)
5042 {
5043 error ("gimple_bb (stmt) is set to a wrong basic block");
5044 err2 = true;
5045 }
5046
5047 err2 |= verify_gimple_stmt (stmt);
5048 err2 |= verify_location (&blocks, gimple_location (stmt));
5049
5050 memset (&wi, 0, sizeof (wi));
5051 wi.info = (void *) &visited;
5052 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5053 if (addr)
5054 {
5055 error ("incorrect sharing of tree nodes");
5056 debug_generic_expr (addr);
5057 err2 |= true;
5058 }
5059
5060 memset (&wi, 0, sizeof (wi));
5061 wi.info = (void *) &blocks;
5062 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5063 if (addr)
5064 {
5065 debug_generic_expr (addr);
5066 err2 |= true;
5067 }
5068
5069 /* ??? Instead of not checking these stmts at all the walker
5070 should know its context via wi. */
5071 if (!is_gimple_debug (stmt)
5072 && !is_gimple_omp (stmt))
5073 {
5074 memset (&wi, 0, sizeof (wi));
5075 addr = walk_gimple_op (stmt, verify_expr, &wi);
5076 if (addr)
5077 {
5078 debug_generic_expr (addr);
5079 inform (gimple_location (stmt), "in statement");
5080 err2 |= true;
5081 }
5082 }
5083
5084 /* If the statement is marked as part of an EH region, then it is
5085 expected that the statement could throw. Verify that when we
5086 have optimizations that simplify statements such that we prove
5087 that they cannot throw, that we update other data structures
5088 to match. */
5089 lp_nr = lookup_stmt_eh_lp (stmt);
5090 if (lp_nr > 0)
5091 {
5092 if (!stmt_could_throw_p (stmt))
5093 {
5094 if (verify_nothrow)
5095 {
5096 error ("statement marked for throw, but doesn%'t");
5097 err2 |= true;
5098 }
5099 }
5100 else if (!gsi_one_before_end_p (gsi))
5101 {
5102 error ("statement marked for throw in middle of block");
5103 err2 |= true;
5104 }
5105 }
5106
5107 if (err2)
5108 debug_gimple_stmt (stmt);
5109 err |= err2;
5110 }
5111 }
5112
5113 eh_error_found = false;
5114 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5115 if (eh_table)
5116 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5117 (&visited_stmts);
5118
5119 if (err || eh_error_found)
5120 internal_error ("verify_gimple failed");
5121
5122 verify_histograms ();
5123 timevar_pop (TV_TREE_STMT_VERIFY);
5124 }
5125
5126
5127 /* Verifies that the flow information is OK. */
5128
5129 static int
5130 gimple_verify_flow_info (void)
5131 {
5132 int err = 0;
5133 basic_block bb;
5134 gimple_stmt_iterator gsi;
5135 gimple *stmt;
5136 edge e;
5137 edge_iterator ei;
5138
5139 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5140 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5141 {
5142 error ("ENTRY_BLOCK has IL associated with it");
5143 err = 1;
5144 }
5145
5146 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5147 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5148 {
5149 error ("EXIT_BLOCK has IL associated with it");
5150 err = 1;
5151 }
5152
5153 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5154 if (e->flags & EDGE_FALLTHRU)
5155 {
5156 error ("fallthru to exit from bb %d", e->src->index);
5157 err = 1;
5158 }
5159
5160 FOR_EACH_BB_FN (bb, cfun)
5161 {
5162 bool found_ctrl_stmt = false;
5163
5164 stmt = NULL;
5165
5166 /* Skip labels on the start of basic block. */
5167 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5168 {
5169 tree label;
5170 gimple *prev_stmt = stmt;
5171
5172 stmt = gsi_stmt (gsi);
5173
5174 if (gimple_code (stmt) != GIMPLE_LABEL)
5175 break;
5176
5177 label = gimple_label_label (as_a <glabel *> (stmt));
5178 if (prev_stmt && DECL_NONLOCAL (label))
5179 {
5180 error ("nonlocal label ");
5181 print_generic_expr (stderr, label, 0);
5182 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5183 bb->index);
5184 err = 1;
5185 }
5186
5187 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5188 {
5189 error ("EH landing pad label ");
5190 print_generic_expr (stderr, label, 0);
5191 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5192 bb->index);
5193 err = 1;
5194 }
5195
5196 if (label_to_block (label) != bb)
5197 {
5198 error ("label ");
5199 print_generic_expr (stderr, label, 0);
5200 fprintf (stderr, " to block does not match in bb %d",
5201 bb->index);
5202 err = 1;
5203 }
5204
5205 if (decl_function_context (label) != current_function_decl)
5206 {
5207 error ("label ");
5208 print_generic_expr (stderr, label, 0);
5209 fprintf (stderr, " has incorrect context in bb %d",
5210 bb->index);
5211 err = 1;
5212 }
5213 }
5214
5215 /* Verify that body of basic block BB is free of control flow. */
5216 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5217 {
5218 gimple *stmt = gsi_stmt (gsi);
5219
5220 if (found_ctrl_stmt)
5221 {
5222 error ("control flow in the middle of basic block %d",
5223 bb->index);
5224 err = 1;
5225 }
5226
5227 if (stmt_ends_bb_p (stmt))
5228 found_ctrl_stmt = true;
5229
5230 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5231 {
5232 error ("label ");
5233 print_generic_expr (stderr, gimple_label_label (label_stmt), 0);
5234 fprintf (stderr, " in the middle of basic block %d", bb->index);
5235 err = 1;
5236 }
5237 }
5238
5239 gsi = gsi_last_bb (bb);
5240 if (gsi_end_p (gsi))
5241 continue;
5242
5243 stmt = gsi_stmt (gsi);
5244
5245 if (gimple_code (stmt) == GIMPLE_LABEL)
5246 continue;
5247
5248 err |= verify_eh_edges (stmt);
5249
5250 if (is_ctrl_stmt (stmt))
5251 {
5252 FOR_EACH_EDGE (e, ei, bb->succs)
5253 if (e->flags & EDGE_FALLTHRU)
5254 {
5255 error ("fallthru edge after a control statement in bb %d",
5256 bb->index);
5257 err = 1;
5258 }
5259 }
5260
5261 if (gimple_code (stmt) != GIMPLE_COND)
5262 {
5263 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5264 after anything else but if statement. */
5265 FOR_EACH_EDGE (e, ei, bb->succs)
5266 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5267 {
5268 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5269 bb->index);
5270 err = 1;
5271 }
5272 }
5273
5274 switch (gimple_code (stmt))
5275 {
5276 case GIMPLE_COND:
5277 {
5278 edge true_edge;
5279 edge false_edge;
5280
5281 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5282
5283 if (!true_edge
5284 || !false_edge
5285 || !(true_edge->flags & EDGE_TRUE_VALUE)
5286 || !(false_edge->flags & EDGE_FALSE_VALUE)
5287 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5288 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5289 || EDGE_COUNT (bb->succs) >= 3)
5290 {
5291 error ("wrong outgoing edge flags at end of bb %d",
5292 bb->index);
5293 err = 1;
5294 }
5295 }
5296 break;
5297
5298 case GIMPLE_GOTO:
5299 if (simple_goto_p (stmt))
5300 {
5301 error ("explicit goto at end of bb %d", bb->index);
5302 err = 1;
5303 }
5304 else
5305 {
5306 /* FIXME. We should double check that the labels in the
5307 destination blocks have their address taken. */
5308 FOR_EACH_EDGE (e, ei, bb->succs)
5309 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5310 | EDGE_FALSE_VALUE))
5311 || !(e->flags & EDGE_ABNORMAL))
5312 {
5313 error ("wrong outgoing edge flags at end of bb %d",
5314 bb->index);
5315 err = 1;
5316 }
5317 }
5318 break;
5319
5320 case GIMPLE_CALL:
5321 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5322 break;
5323 /* ... fallthru ... */
5324 case GIMPLE_RETURN:
5325 if (!single_succ_p (bb)
5326 || (single_succ_edge (bb)->flags
5327 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5328 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5329 {
5330 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5331 err = 1;
5332 }
5333 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5334 {
5335 error ("return edge does not point to exit in bb %d",
5336 bb->index);
5337 err = 1;
5338 }
5339 break;
5340
5341 case GIMPLE_SWITCH:
5342 {
5343 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5344 tree prev;
5345 edge e;
5346 size_t i, n;
5347
5348 n = gimple_switch_num_labels (switch_stmt);
5349
5350 /* Mark all the destination basic blocks. */
5351 for (i = 0; i < n; ++i)
5352 {
5353 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5354 basic_block label_bb = label_to_block (lab);
5355 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5356 label_bb->aux = (void *)1;
5357 }
5358
5359 /* Verify that the case labels are sorted. */
5360 prev = gimple_switch_label (switch_stmt, 0);
5361 for (i = 1; i < n; ++i)
5362 {
5363 tree c = gimple_switch_label (switch_stmt, i);
5364 if (!CASE_LOW (c))
5365 {
5366 error ("found default case not at the start of "
5367 "case vector");
5368 err = 1;
5369 continue;
5370 }
5371 if (CASE_LOW (prev)
5372 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5373 {
5374 error ("case labels not sorted: ");
5375 print_generic_expr (stderr, prev, 0);
5376 fprintf (stderr," is greater than ");
5377 print_generic_expr (stderr, c, 0);
5378 fprintf (stderr," but comes before it.\n");
5379 err = 1;
5380 }
5381 prev = c;
5382 }
5383 /* VRP will remove the default case if it can prove it will
5384 never be executed. So do not verify there always exists
5385 a default case here. */
5386
5387 FOR_EACH_EDGE (e, ei, bb->succs)
5388 {
5389 if (!e->dest->aux)
5390 {
5391 error ("extra outgoing edge %d->%d",
5392 bb->index, e->dest->index);
5393 err = 1;
5394 }
5395
5396 e->dest->aux = (void *)2;
5397 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5398 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5399 {
5400 error ("wrong outgoing edge flags at end of bb %d",
5401 bb->index);
5402 err = 1;
5403 }
5404 }
5405
5406 /* Check that we have all of them. */
5407 for (i = 0; i < n; ++i)
5408 {
5409 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5410 basic_block label_bb = label_to_block (lab);
5411
5412 if (label_bb->aux != (void *)2)
5413 {
5414 error ("missing edge %i->%i", bb->index, label_bb->index);
5415 err = 1;
5416 }
5417 }
5418
5419 FOR_EACH_EDGE (e, ei, bb->succs)
5420 e->dest->aux = (void *)0;
5421 }
5422 break;
5423
5424 case GIMPLE_EH_DISPATCH:
5425 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5426 break;
5427
5428 default:
5429 break;
5430 }
5431 }
5432
5433 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5434 verify_dominators (CDI_DOMINATORS);
5435
5436 return err;
5437 }
5438
5439
5440 /* Updates phi nodes after creating a forwarder block joined
5441 by edge FALLTHRU. */
5442
5443 static void
5444 gimple_make_forwarder_block (edge fallthru)
5445 {
5446 edge e;
5447 edge_iterator ei;
5448 basic_block dummy, bb;
5449 tree var;
5450 gphi_iterator gsi;
5451
5452 dummy = fallthru->src;
5453 bb = fallthru->dest;
5454
5455 if (single_pred_p (bb))
5456 return;
5457
5458 /* If we redirected a branch we must create new PHI nodes at the
5459 start of BB. */
5460 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5461 {
5462 gphi *phi, *new_phi;
5463
5464 phi = gsi.phi ();
5465 var = gimple_phi_result (phi);
5466 new_phi = create_phi_node (var, bb);
5467 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5468 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5469 UNKNOWN_LOCATION);
5470 }
5471
5472 /* Add the arguments we have stored on edges. */
5473 FOR_EACH_EDGE (e, ei, bb->preds)
5474 {
5475 if (e == fallthru)
5476 continue;
5477
5478 flush_pending_stmts (e);
5479 }
5480 }
5481
5482
5483 /* Return a non-special label in the head of basic block BLOCK.
5484 Create one if it doesn't exist. */
5485
5486 tree
5487 gimple_block_label (basic_block bb)
5488 {
5489 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5490 bool first = true;
5491 tree label;
5492 glabel *stmt;
5493
5494 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5495 {
5496 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5497 if (!stmt)
5498 break;
5499 label = gimple_label_label (stmt);
5500 if (!DECL_NONLOCAL (label))
5501 {
5502 if (!first)
5503 gsi_move_before (&i, &s);
5504 return label;
5505 }
5506 }
5507
5508 label = create_artificial_label (UNKNOWN_LOCATION);
5509 stmt = gimple_build_label (label);
5510 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5511 return label;
5512 }
5513
5514
5515 /* Attempt to perform edge redirection by replacing a possibly complex
5516 jump instruction by a goto or by removing the jump completely.
5517 This can apply only if all edges now point to the same block. The
5518 parameters and return values are equivalent to
5519 redirect_edge_and_branch. */
5520
5521 static edge
5522 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5523 {
5524 basic_block src = e->src;
5525 gimple_stmt_iterator i;
5526 gimple *stmt;
5527
5528 /* We can replace or remove a complex jump only when we have exactly
5529 two edges. */
5530 if (EDGE_COUNT (src->succs) != 2
5531 /* Verify that all targets will be TARGET. Specifically, the
5532 edge that is not E must also go to TARGET. */
5533 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5534 return NULL;
5535
5536 i = gsi_last_bb (src);
5537 if (gsi_end_p (i))
5538 return NULL;
5539
5540 stmt = gsi_stmt (i);
5541
5542 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5543 {
5544 gsi_remove (&i, true);
5545 e = ssa_redirect_edge (e, target);
5546 e->flags = EDGE_FALLTHRU;
5547 return e;
5548 }
5549
5550 return NULL;
5551 }
5552
5553
5554 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5555 edge representing the redirected branch. */
5556
5557 static edge
5558 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5559 {
5560 basic_block bb = e->src;
5561 gimple_stmt_iterator gsi;
5562 edge ret;
5563 gimple *stmt;
5564
5565 if (e->flags & EDGE_ABNORMAL)
5566 return NULL;
5567
5568 if (e->dest == dest)
5569 return NULL;
5570
5571 if (e->flags & EDGE_EH)
5572 return redirect_eh_edge (e, dest);
5573
5574 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5575 {
5576 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5577 if (ret)
5578 return ret;
5579 }
5580
5581 gsi = gsi_last_bb (bb);
5582 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5583
5584 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5585 {
5586 case GIMPLE_COND:
5587 /* For COND_EXPR, we only need to redirect the edge. */
5588 break;
5589
5590 case GIMPLE_GOTO:
5591 /* No non-abnormal edges should lead from a non-simple goto, and
5592 simple ones should be represented implicitly. */
5593 gcc_unreachable ();
5594
5595 case GIMPLE_SWITCH:
5596 {
5597 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5598 tree label = gimple_block_label (dest);
5599 tree cases = get_cases_for_edge (e, switch_stmt);
5600
5601 /* If we have a list of cases associated with E, then use it
5602 as it's a lot faster than walking the entire case vector. */
5603 if (cases)
5604 {
5605 edge e2 = find_edge (e->src, dest);
5606 tree last, first;
5607
5608 first = cases;
5609 while (cases)
5610 {
5611 last = cases;
5612 CASE_LABEL (cases) = label;
5613 cases = CASE_CHAIN (cases);
5614 }
5615
5616 /* If there was already an edge in the CFG, then we need
5617 to move all the cases associated with E to E2. */
5618 if (e2)
5619 {
5620 tree cases2 = get_cases_for_edge (e2, switch_stmt);
5621
5622 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5623 CASE_CHAIN (cases2) = first;
5624 }
5625 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5626 }
5627 else
5628 {
5629 size_t i, n = gimple_switch_num_labels (switch_stmt);
5630
5631 for (i = 0; i < n; i++)
5632 {
5633 tree elt = gimple_switch_label (switch_stmt, i);
5634 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5635 CASE_LABEL (elt) = label;
5636 }
5637 }
5638 }
5639 break;
5640
5641 case GIMPLE_ASM:
5642 {
5643 gasm *asm_stmt = as_a <gasm *> (stmt);
5644 int i, n = gimple_asm_nlabels (asm_stmt);
5645 tree label = NULL;
5646
5647 for (i = 0; i < n; ++i)
5648 {
5649 tree cons = gimple_asm_label_op (asm_stmt, i);
5650 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5651 {
5652 if (!label)
5653 label = gimple_block_label (dest);
5654 TREE_VALUE (cons) = label;
5655 }
5656 }
5657
5658 /* If we didn't find any label matching the former edge in the
5659 asm labels, we must be redirecting the fallthrough
5660 edge. */
5661 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5662 }
5663 break;
5664
5665 case GIMPLE_RETURN:
5666 gsi_remove (&gsi, true);
5667 e->flags |= EDGE_FALLTHRU;
5668 break;
5669
5670 case GIMPLE_OMP_RETURN:
5671 case GIMPLE_OMP_CONTINUE:
5672 case GIMPLE_OMP_SECTIONS_SWITCH:
5673 case GIMPLE_OMP_FOR:
5674 /* The edges from OMP constructs can be simply redirected. */
5675 break;
5676
5677 case GIMPLE_EH_DISPATCH:
5678 if (!(e->flags & EDGE_FALLTHRU))
5679 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
5680 break;
5681
5682 case GIMPLE_TRANSACTION:
5683 if (e->flags & EDGE_TM_ABORT)
5684 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
5685 gimple_block_label (dest));
5686 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
5687 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
5688 gimple_block_label (dest));
5689 else
5690 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
5691 gimple_block_label (dest));
5692 break;
5693
5694 default:
5695 /* Otherwise it must be a fallthru edge, and we don't need to
5696 do anything besides redirecting it. */
5697 gcc_assert (e->flags & EDGE_FALLTHRU);
5698 break;
5699 }
5700
5701 /* Update/insert PHI nodes as necessary. */
5702
5703 /* Now update the edges in the CFG. */
5704 e = ssa_redirect_edge (e, dest);
5705
5706 return e;
5707 }
5708
5709 /* Returns true if it is possible to remove edge E by redirecting
5710 it to the destination of the other edge from E->src. */
5711
5712 static bool
5713 gimple_can_remove_branch_p (const_edge e)
5714 {
5715 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5716 return false;
5717
5718 return true;
5719 }
5720
5721 /* Simple wrapper, as we can always redirect fallthru edges. */
5722
5723 static basic_block
5724 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5725 {
5726 e = gimple_redirect_edge_and_branch (e, dest);
5727 gcc_assert (e);
5728
5729 return NULL;
5730 }
5731
5732
5733 /* Splits basic block BB after statement STMT (but at least after the
5734 labels). If STMT is NULL, BB is split just after the labels. */
5735
5736 static basic_block
5737 gimple_split_block (basic_block bb, void *stmt)
5738 {
5739 gimple_stmt_iterator gsi;
5740 gimple_stmt_iterator gsi_tgt;
5741 gimple_seq list;
5742 basic_block new_bb;
5743 edge e;
5744 edge_iterator ei;
5745
5746 new_bb = create_empty_bb (bb);
5747
5748 /* Redirect the outgoing edges. */
5749 new_bb->succs = bb->succs;
5750 bb->succs = NULL;
5751 FOR_EACH_EDGE (e, ei, new_bb->succs)
5752 e->src = new_bb;
5753
5754 /* Get a stmt iterator pointing to the first stmt to move. */
5755 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
5756 gsi = gsi_after_labels (bb);
5757 else
5758 {
5759 gsi = gsi_for_stmt ((gimple *) stmt);
5760 gsi_next (&gsi);
5761 }
5762
5763 /* Move everything from GSI to the new basic block. */
5764 if (gsi_end_p (gsi))
5765 return new_bb;
5766
5767 /* Split the statement list - avoid re-creating new containers as this
5768 brings ugly quadratic memory consumption in the inliner.
5769 (We are still quadratic since we need to update stmt BB pointers,
5770 sadly.) */
5771 gsi_split_seq_before (&gsi, &list);
5772 set_bb_seq (new_bb, list);
5773 for (gsi_tgt = gsi_start (list);
5774 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5775 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5776
5777 return new_bb;
5778 }
5779
5780
5781 /* Moves basic block BB after block AFTER. */
5782
5783 static bool
5784 gimple_move_block_after (basic_block bb, basic_block after)
5785 {
5786 if (bb->prev_bb == after)
5787 return true;
5788
5789 unlink_block (bb);
5790 link_block (bb, after);
5791
5792 return true;
5793 }
5794
5795
5796 /* Return TRUE if block BB has no executable statements, otherwise return
5797 FALSE. */
5798
5799 static bool
5800 gimple_empty_block_p (basic_block bb)
5801 {
5802 /* BB must have no executable statements. */
5803 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5804 if (phi_nodes (bb))
5805 return false;
5806 if (gsi_end_p (gsi))
5807 return true;
5808 if (is_gimple_debug (gsi_stmt (gsi)))
5809 gsi_next_nondebug (&gsi);
5810 return gsi_end_p (gsi);
5811 }
5812
5813
5814 /* Split a basic block if it ends with a conditional branch and if the
5815 other part of the block is not empty. */
5816
5817 static basic_block
5818 gimple_split_block_before_cond_jump (basic_block bb)
5819 {
5820 gimple *last, *split_point;
5821 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5822 if (gsi_end_p (gsi))
5823 return NULL;
5824 last = gsi_stmt (gsi);
5825 if (gimple_code (last) != GIMPLE_COND
5826 && gimple_code (last) != GIMPLE_SWITCH)
5827 return NULL;
5828 gsi_prev (&gsi);
5829 split_point = gsi_stmt (gsi);
5830 return split_block (bb, split_point)->dest;
5831 }
5832
5833
5834 /* Return true if basic_block can be duplicated. */
5835
5836 static bool
5837 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5838 {
5839 return true;
5840 }
5841
5842 /* Create a duplicate of the basic block BB. NOTE: This does not
5843 preserve SSA form. */
5844
5845 static basic_block
5846 gimple_duplicate_bb (basic_block bb)
5847 {
5848 basic_block new_bb;
5849 gimple_stmt_iterator gsi_tgt;
5850
5851 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5852
5853 /* Copy the PHI nodes. We ignore PHI node arguments here because
5854 the incoming edges have not been setup yet. */
5855 for (gphi_iterator gpi = gsi_start_phis (bb);
5856 !gsi_end_p (gpi);
5857 gsi_next (&gpi))
5858 {
5859 gphi *phi, *copy;
5860 phi = gpi.phi ();
5861 copy = create_phi_node (NULL_TREE, new_bb);
5862 create_new_def_for (gimple_phi_result (phi), copy,
5863 gimple_phi_result_ptr (copy));
5864 gimple_set_uid (copy, gimple_uid (phi));
5865 }
5866
5867 gsi_tgt = gsi_start_bb (new_bb);
5868 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
5869 !gsi_end_p (gsi);
5870 gsi_next (&gsi))
5871 {
5872 def_operand_p def_p;
5873 ssa_op_iter op_iter;
5874 tree lhs;
5875 gimple *stmt, *copy;
5876
5877 stmt = gsi_stmt (gsi);
5878 if (gimple_code (stmt) == GIMPLE_LABEL)
5879 continue;
5880
5881 /* Don't duplicate label debug stmts. */
5882 if (gimple_debug_bind_p (stmt)
5883 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5884 == LABEL_DECL)
5885 continue;
5886
5887 /* Create a new copy of STMT and duplicate STMT's virtual
5888 operands. */
5889 copy = gimple_copy (stmt);
5890 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5891
5892 maybe_duplicate_eh_stmt (copy, stmt);
5893 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5894
5895 /* When copying around a stmt writing into a local non-user
5896 aggregate, make sure it won't share stack slot with other
5897 vars. */
5898 lhs = gimple_get_lhs (stmt);
5899 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5900 {
5901 tree base = get_base_address (lhs);
5902 if (base
5903 && (TREE_CODE (base) == VAR_DECL
5904 || TREE_CODE (base) == RESULT_DECL)
5905 && DECL_IGNORED_P (base)
5906 && !TREE_STATIC (base)
5907 && !DECL_EXTERNAL (base)
5908 && (TREE_CODE (base) != VAR_DECL
5909 || !DECL_HAS_VALUE_EXPR_P (base)))
5910 DECL_NONSHAREABLE (base) = 1;
5911 }
5912
5913 /* Create new names for all the definitions created by COPY and
5914 add replacement mappings for each new name. */
5915 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5916 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5917 }
5918
5919 return new_bb;
5920 }
5921
5922 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5923
5924 static void
5925 add_phi_args_after_copy_edge (edge e_copy)
5926 {
5927 basic_block bb, bb_copy = e_copy->src, dest;
5928 edge e;
5929 edge_iterator ei;
5930 gphi *phi, *phi_copy;
5931 tree def;
5932 gphi_iterator psi, psi_copy;
5933
5934 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5935 return;
5936
5937 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5938
5939 if (e_copy->dest->flags & BB_DUPLICATED)
5940 dest = get_bb_original (e_copy->dest);
5941 else
5942 dest = e_copy->dest;
5943
5944 e = find_edge (bb, dest);
5945 if (!e)
5946 {
5947 /* During loop unrolling the target of the latch edge is copied.
5948 In this case we are not looking for edge to dest, but to
5949 duplicated block whose original was dest. */
5950 FOR_EACH_EDGE (e, ei, bb->succs)
5951 {
5952 if ((e->dest->flags & BB_DUPLICATED)
5953 && get_bb_original (e->dest) == dest)
5954 break;
5955 }
5956
5957 gcc_assert (e != NULL);
5958 }
5959
5960 for (psi = gsi_start_phis (e->dest),
5961 psi_copy = gsi_start_phis (e_copy->dest);
5962 !gsi_end_p (psi);
5963 gsi_next (&psi), gsi_next (&psi_copy))
5964 {
5965 phi = psi.phi ();
5966 phi_copy = psi_copy.phi ();
5967 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5968 add_phi_arg (phi_copy, def, e_copy,
5969 gimple_phi_arg_location_from_edge (phi, e));
5970 }
5971 }
5972
5973
5974 /* Basic block BB_COPY was created by code duplication. Add phi node
5975 arguments for edges going out of BB_COPY. The blocks that were
5976 duplicated have BB_DUPLICATED set. */
5977
5978 void
5979 add_phi_args_after_copy_bb (basic_block bb_copy)
5980 {
5981 edge e_copy;
5982 edge_iterator ei;
5983
5984 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5985 {
5986 add_phi_args_after_copy_edge (e_copy);
5987 }
5988 }
5989
5990 /* Blocks in REGION_COPY array of length N_REGION were created by
5991 duplication of basic blocks. Add phi node arguments for edges
5992 going from these blocks. If E_COPY is not NULL, also add
5993 phi node arguments for its destination.*/
5994
5995 void
5996 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5997 edge e_copy)
5998 {
5999 unsigned i;
6000
6001 for (i = 0; i < n_region; i++)
6002 region_copy[i]->flags |= BB_DUPLICATED;
6003
6004 for (i = 0; i < n_region; i++)
6005 add_phi_args_after_copy_bb (region_copy[i]);
6006 if (e_copy)
6007 add_phi_args_after_copy_edge (e_copy);
6008
6009 for (i = 0; i < n_region; i++)
6010 region_copy[i]->flags &= ~BB_DUPLICATED;
6011 }
6012
6013 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6014 important exit edge EXIT. By important we mean that no SSA name defined
6015 inside region is live over the other exit edges of the region. All entry
6016 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6017 to the duplicate of the region. Dominance and loop information is
6018 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6019 UPDATE_DOMINANCE is false then we assume that the caller will update the
6020 dominance information after calling this function. The new basic
6021 blocks are stored to REGION_COPY in the same order as they had in REGION,
6022 provided that REGION_COPY is not NULL.
6023 The function returns false if it is unable to copy the region,
6024 true otherwise. */
6025
6026 bool
6027 gimple_duplicate_sese_region (edge entry, edge exit,
6028 basic_block *region, unsigned n_region,
6029 basic_block *region_copy,
6030 bool update_dominance)
6031 {
6032 unsigned i;
6033 bool free_region_copy = false, copying_header = false;
6034 struct loop *loop = entry->dest->loop_father;
6035 edge exit_copy;
6036 vec<basic_block> doms;
6037 edge redirected;
6038 int total_freq = 0, entry_freq = 0;
6039 gcov_type total_count = 0, entry_count = 0;
6040
6041 if (!can_copy_bbs_p (region, n_region))
6042 return false;
6043
6044 /* Some sanity checking. Note that we do not check for all possible
6045 missuses of the functions. I.e. if you ask to copy something weird,
6046 it will work, but the state of structures probably will not be
6047 correct. */
6048 for (i = 0; i < n_region; i++)
6049 {
6050 /* We do not handle subloops, i.e. all the blocks must belong to the
6051 same loop. */
6052 if (region[i]->loop_father != loop)
6053 return false;
6054
6055 if (region[i] != entry->dest
6056 && region[i] == loop->header)
6057 return false;
6058 }
6059
6060 /* In case the function is used for loop header copying (which is the primary
6061 use), ensure that EXIT and its copy will be new latch and entry edges. */
6062 if (loop->header == entry->dest)
6063 {
6064 copying_header = true;
6065
6066 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6067 return false;
6068
6069 for (i = 0; i < n_region; i++)
6070 if (region[i] != exit->src
6071 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6072 return false;
6073 }
6074
6075 initialize_original_copy_tables ();
6076
6077 if (copying_header)
6078 set_loop_copy (loop, loop_outer (loop));
6079 else
6080 set_loop_copy (loop, loop);
6081
6082 if (!region_copy)
6083 {
6084 region_copy = XNEWVEC (basic_block, n_region);
6085 free_region_copy = true;
6086 }
6087
6088 /* Record blocks outside the region that are dominated by something
6089 inside. */
6090 if (update_dominance)
6091 {
6092 doms.create (0);
6093 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6094 }
6095
6096 if (entry->dest->count)
6097 {
6098 total_count = entry->dest->count;
6099 entry_count = entry->count;
6100 /* Fix up corner cases, to avoid division by zero or creation of negative
6101 frequencies. */
6102 if (entry_count > total_count)
6103 entry_count = total_count;
6104 }
6105 else
6106 {
6107 total_freq = entry->dest->frequency;
6108 entry_freq = EDGE_FREQUENCY (entry);
6109 /* Fix up corner cases, to avoid division by zero or creation of negative
6110 frequencies. */
6111 if (total_freq == 0)
6112 total_freq = 1;
6113 else if (entry_freq > total_freq)
6114 entry_freq = total_freq;
6115 }
6116
6117 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6118 split_edge_bb_loc (entry), update_dominance);
6119 if (total_count)
6120 {
6121 scale_bbs_frequencies_gcov_type (region, n_region,
6122 total_count - entry_count,
6123 total_count);
6124 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
6125 total_count);
6126 }
6127 else
6128 {
6129 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
6130 total_freq);
6131 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
6132 }
6133
6134 if (copying_header)
6135 {
6136 loop->header = exit->dest;
6137 loop->latch = exit->src;
6138 }
6139
6140 /* Redirect the entry and add the phi node arguments. */
6141 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6142 gcc_assert (redirected != NULL);
6143 flush_pending_stmts (entry);
6144
6145 /* Concerning updating of dominators: We must recount dominators
6146 for entry block and its copy. Anything that is outside of the
6147 region, but was dominated by something inside needs recounting as
6148 well. */
6149 if (update_dominance)
6150 {
6151 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6152 doms.safe_push (get_bb_original (entry->dest));
6153 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6154 doms.release ();
6155 }
6156
6157 /* Add the other PHI node arguments. */
6158 add_phi_args_after_copy (region_copy, n_region, NULL);
6159
6160 if (free_region_copy)
6161 free (region_copy);
6162
6163 free_original_copy_tables ();
6164 return true;
6165 }
6166
6167 /* Checks if BB is part of the region defined by N_REGION BBS. */
6168 static bool
6169 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6170 {
6171 unsigned int n;
6172
6173 for (n = 0; n < n_region; n++)
6174 {
6175 if (bb == bbs[n])
6176 return true;
6177 }
6178 return false;
6179 }
6180
6181 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6182 are stored to REGION_COPY in the same order in that they appear
6183 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6184 the region, EXIT an exit from it. The condition guarding EXIT
6185 is moved to ENTRY. Returns true if duplication succeeds, false
6186 otherwise.
6187
6188 For example,
6189
6190 some_code;
6191 if (cond)
6192 A;
6193 else
6194 B;
6195
6196 is transformed to
6197
6198 if (cond)
6199 {
6200 some_code;
6201 A;
6202 }
6203 else
6204 {
6205 some_code;
6206 B;
6207 }
6208 */
6209
6210 bool
6211 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
6212 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
6213 basic_block *region_copy ATTRIBUTE_UNUSED)
6214 {
6215 unsigned i;
6216 bool free_region_copy = false;
6217 struct loop *loop = exit->dest->loop_father;
6218 struct loop *orig_loop = entry->dest->loop_father;
6219 basic_block switch_bb, entry_bb, nentry_bb;
6220 vec<basic_block> doms;
6221 int total_freq = 0, exit_freq = 0;
6222 gcov_type total_count = 0, exit_count = 0;
6223 edge exits[2], nexits[2], e;
6224 gimple_stmt_iterator gsi;
6225 gimple *cond_stmt;
6226 edge sorig, snew;
6227 basic_block exit_bb;
6228 gphi_iterator psi;
6229 gphi *phi;
6230 tree def;
6231 struct loop *target, *aloop, *cloop;
6232
6233 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6234 exits[0] = exit;
6235 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6236
6237 if (!can_copy_bbs_p (region, n_region))
6238 return false;
6239
6240 initialize_original_copy_tables ();
6241 set_loop_copy (orig_loop, loop);
6242
6243 target= loop;
6244 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6245 {
6246 if (bb_part_of_region_p (aloop->header, region, n_region))
6247 {
6248 cloop = duplicate_loop (aloop, target);
6249 duplicate_subloops (aloop, cloop);
6250 }
6251 }
6252
6253 if (!region_copy)
6254 {
6255 region_copy = XNEWVEC (basic_block, n_region);
6256 free_region_copy = true;
6257 }
6258
6259 gcc_assert (!need_ssa_update_p (cfun));
6260
6261 /* Record blocks outside the region that are dominated by something
6262 inside. */
6263 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6264
6265 if (exit->src->count)
6266 {
6267 total_count = exit->src->count;
6268 exit_count = exit->count;
6269 /* Fix up corner cases, to avoid division by zero or creation of negative
6270 frequencies. */
6271 if (exit_count > total_count)
6272 exit_count = total_count;
6273 }
6274 else
6275 {
6276 total_freq = exit->src->frequency;
6277 exit_freq = EDGE_FREQUENCY (exit);
6278 /* Fix up corner cases, to avoid division by zero or creation of negative
6279 frequencies. */
6280 if (total_freq == 0)
6281 total_freq = 1;
6282 if (exit_freq > total_freq)
6283 exit_freq = total_freq;
6284 }
6285
6286 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6287 split_edge_bb_loc (exit), true);
6288 if (total_count)
6289 {
6290 scale_bbs_frequencies_gcov_type (region, n_region,
6291 total_count - exit_count,
6292 total_count);
6293 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6294 total_count);
6295 }
6296 else
6297 {
6298 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6299 total_freq);
6300 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6301 }
6302
6303 /* Create the switch block, and put the exit condition to it. */
6304 entry_bb = entry->dest;
6305 nentry_bb = get_bb_copy (entry_bb);
6306 if (!last_stmt (entry->src)
6307 || !stmt_ends_bb_p (last_stmt (entry->src)))
6308 switch_bb = entry->src;
6309 else
6310 switch_bb = split_edge (entry);
6311 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6312
6313 gsi = gsi_last_bb (switch_bb);
6314 cond_stmt = last_stmt (exit->src);
6315 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6316 cond_stmt = gimple_copy (cond_stmt);
6317
6318 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6319
6320 sorig = single_succ_edge (switch_bb);
6321 sorig->flags = exits[1]->flags;
6322 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6323
6324 /* Register the new edge from SWITCH_BB in loop exit lists. */
6325 rescan_loop_exit (snew, true, false);
6326
6327 /* Add the PHI node arguments. */
6328 add_phi_args_after_copy (region_copy, n_region, snew);
6329
6330 /* Get rid of now superfluous conditions and associated edges (and phi node
6331 arguments). */
6332 exit_bb = exit->dest;
6333
6334 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6335 PENDING_STMT (e) = NULL;
6336
6337 /* The latch of ORIG_LOOP was copied, and so was the backedge
6338 to the original header. We redirect this backedge to EXIT_BB. */
6339 for (i = 0; i < n_region; i++)
6340 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6341 {
6342 gcc_assert (single_succ_edge (region_copy[i]));
6343 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6344 PENDING_STMT (e) = NULL;
6345 for (psi = gsi_start_phis (exit_bb);
6346 !gsi_end_p (psi);
6347 gsi_next (&psi))
6348 {
6349 phi = psi.phi ();
6350 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6351 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6352 }
6353 }
6354 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6355 PENDING_STMT (e) = NULL;
6356
6357 /* Anything that is outside of the region, but was dominated by something
6358 inside needs to update dominance info. */
6359 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6360 doms.release ();
6361 /* Update the SSA web. */
6362 update_ssa (TODO_update_ssa);
6363
6364 if (free_region_copy)
6365 free (region_copy);
6366
6367 free_original_copy_tables ();
6368 return true;
6369 }
6370
6371 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6372 adding blocks when the dominator traversal reaches EXIT. This
6373 function silently assumes that ENTRY strictly dominates EXIT. */
6374
6375 void
6376 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6377 vec<basic_block> *bbs_p)
6378 {
6379 basic_block son;
6380
6381 for (son = first_dom_son (CDI_DOMINATORS, entry);
6382 son;
6383 son = next_dom_son (CDI_DOMINATORS, son))
6384 {
6385 bbs_p->safe_push (son);
6386 if (son != exit)
6387 gather_blocks_in_sese_region (son, exit, bbs_p);
6388 }
6389 }
6390
6391 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6392 The duplicates are recorded in VARS_MAP. */
6393
6394 static void
6395 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6396 tree to_context)
6397 {
6398 tree t = *tp, new_t;
6399 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6400
6401 if (DECL_CONTEXT (t) == to_context)
6402 return;
6403
6404 bool existed;
6405 tree &loc = vars_map->get_or_insert (t, &existed);
6406
6407 if (!existed)
6408 {
6409 if (SSA_VAR_P (t))
6410 {
6411 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6412 add_local_decl (f, new_t);
6413 }
6414 else
6415 {
6416 gcc_assert (TREE_CODE (t) == CONST_DECL);
6417 new_t = copy_node (t);
6418 }
6419 DECL_CONTEXT (new_t) = to_context;
6420
6421 loc = new_t;
6422 }
6423 else
6424 new_t = loc;
6425
6426 *tp = new_t;
6427 }
6428
6429
6430 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6431 VARS_MAP maps old ssa names and var_decls to the new ones. */
6432
6433 static tree
6434 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6435 tree to_context)
6436 {
6437 tree new_name;
6438
6439 gcc_assert (!virtual_operand_p (name));
6440
6441 tree *loc = vars_map->get (name);
6442
6443 if (!loc)
6444 {
6445 tree decl = SSA_NAME_VAR (name);
6446 if (decl)
6447 {
6448 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6449 replace_by_duplicate_decl (&decl, vars_map, to_context);
6450 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6451 decl, SSA_NAME_DEF_STMT (name));
6452 }
6453 else
6454 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6455 name, SSA_NAME_DEF_STMT (name));
6456
6457 /* Now that we've used the def stmt to define new_name, make sure it
6458 doesn't define name anymore. */
6459 SSA_NAME_DEF_STMT (name) = NULL;
6460
6461 vars_map->put (name, new_name);
6462 }
6463 else
6464 new_name = *loc;
6465
6466 return new_name;
6467 }
6468
6469 struct move_stmt_d
6470 {
6471 tree orig_block;
6472 tree new_block;
6473 tree from_context;
6474 tree to_context;
6475 hash_map<tree, tree> *vars_map;
6476 htab_t new_label_map;
6477 hash_map<void *, void *> *eh_map;
6478 bool remap_decls_p;
6479 };
6480
6481 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6482 contained in *TP if it has been ORIG_BLOCK previously and change the
6483 DECL_CONTEXT of every local variable referenced in *TP. */
6484
6485 static tree
6486 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6487 {
6488 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6489 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6490 tree t = *tp;
6491
6492 if (EXPR_P (t))
6493 {
6494 tree block = TREE_BLOCK (t);
6495 if (block == p->orig_block
6496 || (p->orig_block == NULL_TREE
6497 && block != NULL_TREE))
6498 TREE_SET_BLOCK (t, p->new_block);
6499 else if (flag_checking && block != NULL_TREE)
6500 {
6501 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6502 block = BLOCK_SUPERCONTEXT (block);
6503 gcc_assert (block == p->orig_block);
6504 }
6505 }
6506 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6507 {
6508 if (TREE_CODE (t) == SSA_NAME)
6509 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6510 else if (TREE_CODE (t) == PARM_DECL
6511 && gimple_in_ssa_p (cfun))
6512 *tp = *(p->vars_map->get (t));
6513 else if (TREE_CODE (t) == LABEL_DECL)
6514 {
6515 if (p->new_label_map)
6516 {
6517 struct tree_map in, *out;
6518 in.base.from = t;
6519 out = (struct tree_map *)
6520 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6521 if (out)
6522 *tp = t = out->to;
6523 }
6524
6525 DECL_CONTEXT (t) = p->to_context;
6526 }
6527 else if (p->remap_decls_p)
6528 {
6529 /* Replace T with its duplicate. T should no longer appear in the
6530 parent function, so this looks wasteful; however, it may appear
6531 in referenced_vars, and more importantly, as virtual operands of
6532 statements, and in alias lists of other variables. It would be
6533 quite difficult to expunge it from all those places. ??? It might
6534 suffice to do this for addressable variables. */
6535 if ((TREE_CODE (t) == VAR_DECL
6536 && !is_global_var (t))
6537 || TREE_CODE (t) == CONST_DECL)
6538 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6539 }
6540 *walk_subtrees = 0;
6541 }
6542 else if (TYPE_P (t))
6543 *walk_subtrees = 0;
6544
6545 return NULL_TREE;
6546 }
6547
6548 /* Helper for move_stmt_r. Given an EH region number for the source
6549 function, map that to the duplicate EH regio number in the dest. */
6550
6551 static int
6552 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6553 {
6554 eh_region old_r, new_r;
6555
6556 old_r = get_eh_region_from_number (old_nr);
6557 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6558
6559 return new_r->index;
6560 }
6561
6562 /* Similar, but operate on INTEGER_CSTs. */
6563
6564 static tree
6565 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6566 {
6567 int old_nr, new_nr;
6568
6569 old_nr = tree_to_shwi (old_t_nr);
6570 new_nr = move_stmt_eh_region_nr (old_nr, p);
6571
6572 return build_int_cst (integer_type_node, new_nr);
6573 }
6574
6575 /* Like move_stmt_op, but for gimple statements.
6576
6577 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6578 contained in the current statement in *GSI_P and change the
6579 DECL_CONTEXT of every local variable referenced in the current
6580 statement. */
6581
6582 static tree
6583 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6584 struct walk_stmt_info *wi)
6585 {
6586 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6587 gimple *stmt = gsi_stmt (*gsi_p);
6588 tree block = gimple_block (stmt);
6589
6590 if (block == p->orig_block
6591 || (p->orig_block == NULL_TREE
6592 && block != NULL_TREE))
6593 gimple_set_block (stmt, p->new_block);
6594
6595 switch (gimple_code (stmt))
6596 {
6597 case GIMPLE_CALL:
6598 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6599 {
6600 tree r, fndecl = gimple_call_fndecl (stmt);
6601 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6602 switch (DECL_FUNCTION_CODE (fndecl))
6603 {
6604 case BUILT_IN_EH_COPY_VALUES:
6605 r = gimple_call_arg (stmt, 1);
6606 r = move_stmt_eh_region_tree_nr (r, p);
6607 gimple_call_set_arg (stmt, 1, r);
6608 /* FALLTHRU */
6609
6610 case BUILT_IN_EH_POINTER:
6611 case BUILT_IN_EH_FILTER:
6612 r = gimple_call_arg (stmt, 0);
6613 r = move_stmt_eh_region_tree_nr (r, p);
6614 gimple_call_set_arg (stmt, 0, r);
6615 break;
6616
6617 default:
6618 break;
6619 }
6620 }
6621 break;
6622
6623 case GIMPLE_RESX:
6624 {
6625 gresx *resx_stmt = as_a <gresx *> (stmt);
6626 int r = gimple_resx_region (resx_stmt);
6627 r = move_stmt_eh_region_nr (r, p);
6628 gimple_resx_set_region (resx_stmt, r);
6629 }
6630 break;
6631
6632 case GIMPLE_EH_DISPATCH:
6633 {
6634 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
6635 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
6636 r = move_stmt_eh_region_nr (r, p);
6637 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
6638 }
6639 break;
6640
6641 case GIMPLE_OMP_RETURN:
6642 case GIMPLE_OMP_CONTINUE:
6643 break;
6644 default:
6645 if (is_gimple_omp (stmt))
6646 {
6647 /* Do not remap variables inside OMP directives. Variables
6648 referenced in clauses and directive header belong to the
6649 parent function and should not be moved into the child
6650 function. */
6651 bool save_remap_decls_p = p->remap_decls_p;
6652 p->remap_decls_p = false;
6653 *handled_ops_p = true;
6654
6655 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6656 move_stmt_op, wi);
6657
6658 p->remap_decls_p = save_remap_decls_p;
6659 }
6660 break;
6661 }
6662
6663 return NULL_TREE;
6664 }
6665
6666 /* Move basic block BB from function CFUN to function DEST_FN. The
6667 block is moved out of the original linked list and placed after
6668 block AFTER in the new list. Also, the block is removed from the
6669 original array of blocks and placed in DEST_FN's array of blocks.
6670 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6671 updated to reflect the moved edges.
6672
6673 The local variables are remapped to new instances, VARS_MAP is used
6674 to record the mapping. */
6675
6676 static void
6677 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6678 basic_block after, bool update_edge_count_p,
6679 struct move_stmt_d *d)
6680 {
6681 struct control_flow_graph *cfg;
6682 edge_iterator ei;
6683 edge e;
6684 gimple_stmt_iterator si;
6685 unsigned old_len, new_len;
6686
6687 /* Remove BB from dominance structures. */
6688 delete_from_dominance_info (CDI_DOMINATORS, bb);
6689
6690 /* Move BB from its current loop to the copy in the new function. */
6691 if (current_loops)
6692 {
6693 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6694 if (new_loop)
6695 bb->loop_father = new_loop;
6696 }
6697
6698 /* Link BB to the new linked list. */
6699 move_block_after (bb, after);
6700
6701 /* Update the edge count in the corresponding flowgraphs. */
6702 if (update_edge_count_p)
6703 FOR_EACH_EDGE (e, ei, bb->succs)
6704 {
6705 cfun->cfg->x_n_edges--;
6706 dest_cfun->cfg->x_n_edges++;
6707 }
6708
6709 /* Remove BB from the original basic block array. */
6710 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6711 cfun->cfg->x_n_basic_blocks--;
6712
6713 /* Grow DEST_CFUN's basic block array if needed. */
6714 cfg = dest_cfun->cfg;
6715 cfg->x_n_basic_blocks++;
6716 if (bb->index >= cfg->x_last_basic_block)
6717 cfg->x_last_basic_block = bb->index + 1;
6718
6719 old_len = vec_safe_length (cfg->x_basic_block_info);
6720 if ((unsigned) cfg->x_last_basic_block >= old_len)
6721 {
6722 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6723 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6724 }
6725
6726 (*cfg->x_basic_block_info)[bb->index] = bb;
6727
6728 /* Remap the variables in phi nodes. */
6729 for (gphi_iterator psi = gsi_start_phis (bb);
6730 !gsi_end_p (psi); )
6731 {
6732 gphi *phi = psi.phi ();
6733 use_operand_p use;
6734 tree op = PHI_RESULT (phi);
6735 ssa_op_iter oi;
6736 unsigned i;
6737
6738 if (virtual_operand_p (op))
6739 {
6740 /* Remove the phi nodes for virtual operands (alias analysis will be
6741 run for the new function, anyway). */
6742 remove_phi_node (&psi, true);
6743 continue;
6744 }
6745
6746 SET_PHI_RESULT (phi,
6747 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6748 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6749 {
6750 op = USE_FROM_PTR (use);
6751 if (TREE_CODE (op) == SSA_NAME)
6752 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6753 }
6754
6755 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6756 {
6757 location_t locus = gimple_phi_arg_location (phi, i);
6758 tree block = LOCATION_BLOCK (locus);
6759
6760 if (locus == UNKNOWN_LOCATION)
6761 continue;
6762 if (d->orig_block == NULL_TREE || block == d->orig_block)
6763 {
6764 locus = set_block (locus, d->new_block);
6765 gimple_phi_arg_set_location (phi, i, locus);
6766 }
6767 }
6768
6769 gsi_next (&psi);
6770 }
6771
6772 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6773 {
6774 gimple *stmt = gsi_stmt (si);
6775 struct walk_stmt_info wi;
6776
6777 memset (&wi, 0, sizeof (wi));
6778 wi.info = d;
6779 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6780
6781 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
6782 {
6783 tree label = gimple_label_label (label_stmt);
6784 int uid = LABEL_DECL_UID (label);
6785
6786 gcc_assert (uid > -1);
6787
6788 old_len = vec_safe_length (cfg->x_label_to_block_map);
6789 if (old_len <= (unsigned) uid)
6790 {
6791 new_len = 3 * uid / 2 + 1;
6792 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6793 }
6794
6795 (*cfg->x_label_to_block_map)[uid] = bb;
6796 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6797
6798 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6799
6800 if (uid >= dest_cfun->cfg->last_label_uid)
6801 dest_cfun->cfg->last_label_uid = uid + 1;
6802 }
6803
6804 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6805 remove_stmt_from_eh_lp_fn (cfun, stmt);
6806
6807 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6808 gimple_remove_stmt_histograms (cfun, stmt);
6809
6810 /* We cannot leave any operands allocated from the operand caches of
6811 the current function. */
6812 free_stmt_operands (cfun, stmt);
6813 push_cfun (dest_cfun);
6814 update_stmt (stmt);
6815 pop_cfun ();
6816 }
6817
6818 FOR_EACH_EDGE (e, ei, bb->succs)
6819 if (e->goto_locus != UNKNOWN_LOCATION)
6820 {
6821 tree block = LOCATION_BLOCK (e->goto_locus);
6822 if (d->orig_block == NULL_TREE
6823 || block == d->orig_block)
6824 e->goto_locus = set_block (e->goto_locus, d->new_block);
6825 }
6826 }
6827
6828 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6829 the outermost EH region. Use REGION as the incoming base EH region. */
6830
6831 static eh_region
6832 find_outermost_region_in_block (struct function *src_cfun,
6833 basic_block bb, eh_region region)
6834 {
6835 gimple_stmt_iterator si;
6836
6837 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6838 {
6839 gimple *stmt = gsi_stmt (si);
6840 eh_region stmt_region;
6841 int lp_nr;
6842
6843 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6844 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6845 if (stmt_region)
6846 {
6847 if (region == NULL)
6848 region = stmt_region;
6849 else if (stmt_region != region)
6850 {
6851 region = eh_region_outermost (src_cfun, stmt_region, region);
6852 gcc_assert (region != NULL);
6853 }
6854 }
6855 }
6856
6857 return region;
6858 }
6859
6860 static tree
6861 new_label_mapper (tree decl, void *data)
6862 {
6863 htab_t hash = (htab_t) data;
6864 struct tree_map *m;
6865 void **slot;
6866
6867 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6868
6869 m = XNEW (struct tree_map);
6870 m->hash = DECL_UID (decl);
6871 m->base.from = decl;
6872 m->to = create_artificial_label (UNKNOWN_LOCATION);
6873 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6874 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6875 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6876
6877 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6878 gcc_assert (*slot == NULL);
6879
6880 *slot = m;
6881
6882 return m->to;
6883 }
6884
6885 /* Tree walker to replace the decls used inside value expressions by
6886 duplicates. */
6887
6888 static tree
6889 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
6890 {
6891 struct replace_decls_d *rd = (struct replace_decls_d *)data;
6892
6893 switch (TREE_CODE (*tp))
6894 {
6895 case VAR_DECL:
6896 case PARM_DECL:
6897 case RESULT_DECL:
6898 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
6899 break;
6900 default:
6901 break;
6902 }
6903
6904 if (IS_TYPE_OR_DECL_P (*tp))
6905 *walk_subtrees = false;
6906
6907 return NULL;
6908 }
6909
6910 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6911 subblocks. */
6912
6913 static void
6914 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
6915 tree to_context)
6916 {
6917 tree *tp, t;
6918
6919 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6920 {
6921 t = *tp;
6922 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6923 continue;
6924 replace_by_duplicate_decl (&t, vars_map, to_context);
6925 if (t != *tp)
6926 {
6927 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6928 {
6929 tree x = DECL_VALUE_EXPR (*tp);
6930 struct replace_decls_d rd = { vars_map, to_context };
6931 unshare_expr (x);
6932 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
6933 SET_DECL_VALUE_EXPR (t, x);
6934 DECL_HAS_VALUE_EXPR_P (t) = 1;
6935 }
6936 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6937 *tp = t;
6938 }
6939 }
6940
6941 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6942 replace_block_vars_by_duplicates (block, vars_map, to_context);
6943 }
6944
6945 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6946 from FN1 to FN2. */
6947
6948 static void
6949 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6950 struct loop *loop)
6951 {
6952 /* Discard it from the old loop array. */
6953 (*get_loops (fn1))[loop->num] = NULL;
6954
6955 /* Place it in the new loop array, assigning it a new number. */
6956 loop->num = number_of_loops (fn2);
6957 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6958
6959 /* Recurse to children. */
6960 for (loop = loop->inner; loop; loop = loop->next)
6961 fixup_loop_arrays_after_move (fn1, fn2, loop);
6962 }
6963
6964 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
6965 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
6966
6967 DEBUG_FUNCTION void
6968 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
6969 {
6970 basic_block bb;
6971 edge_iterator ei;
6972 edge e;
6973 bitmap bbs = BITMAP_ALLOC (NULL);
6974 int i;
6975
6976 gcc_assert (entry != NULL);
6977 gcc_assert (entry != exit);
6978 gcc_assert (bbs_p != NULL);
6979
6980 gcc_assert (bbs_p->length () > 0);
6981
6982 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
6983 bitmap_set_bit (bbs, bb->index);
6984
6985 gcc_assert (bitmap_bit_p (bbs, entry->index));
6986 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
6987
6988 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
6989 {
6990 if (bb == entry)
6991 {
6992 gcc_assert (single_pred_p (entry));
6993 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
6994 }
6995 else
6996 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
6997 {
6998 e = ei_edge (ei);
6999 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7000 }
7001
7002 if (bb == exit)
7003 {
7004 gcc_assert (single_succ_p (exit));
7005 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7006 }
7007 else
7008 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7009 {
7010 e = ei_edge (ei);
7011 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7012 }
7013 }
7014
7015 BITMAP_FREE (bbs);
7016 }
7017
7018 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7019
7020 bool
7021 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7022 {
7023 bitmap release_names = (bitmap)data;
7024
7025 if (TREE_CODE (from) != SSA_NAME)
7026 return true;
7027
7028 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7029 return true;
7030 }
7031
7032 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7033 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7034 single basic block in the original CFG and the new basic block is
7035 returned. DEST_CFUN must not have a CFG yet.
7036
7037 Note that the region need not be a pure SESE region. Blocks inside
7038 the region may contain calls to abort/exit. The only restriction
7039 is that ENTRY_BB should be the only entry point and it must
7040 dominate EXIT_BB.
7041
7042 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7043 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7044 to the new function.
7045
7046 All local variables referenced in the region are assumed to be in
7047 the corresponding BLOCK_VARS and unexpanded variable lists
7048 associated with DEST_CFUN.
7049
7050 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7051 reimplement move_sese_region_to_fn by duplicating the region rather than
7052 moving it. */
7053
7054 basic_block
7055 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7056 basic_block exit_bb, tree orig_block)
7057 {
7058 vec<basic_block> bbs, dom_bbs;
7059 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7060 basic_block after, bb, *entry_pred, *exit_succ, abb;
7061 struct function *saved_cfun = cfun;
7062 int *entry_flag, *exit_flag;
7063 unsigned *entry_prob, *exit_prob;
7064 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7065 edge e;
7066 edge_iterator ei;
7067 htab_t new_label_map;
7068 hash_map<void *, void *> *eh_map;
7069 struct loop *loop = entry_bb->loop_father;
7070 struct loop *loop0 = get_loop (saved_cfun, 0);
7071 struct move_stmt_d d;
7072
7073 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7074 region. */
7075 gcc_assert (entry_bb != exit_bb
7076 && (!exit_bb
7077 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7078
7079 /* Collect all the blocks in the region. Manually add ENTRY_BB
7080 because it won't be added by dfs_enumerate_from. */
7081 bbs.create (0);
7082 bbs.safe_push (entry_bb);
7083 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7084
7085 if (flag_checking)
7086 verify_sese (entry_bb, exit_bb, &bbs);
7087
7088 /* The blocks that used to be dominated by something in BBS will now be
7089 dominated by the new block. */
7090 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7091 bbs.address (),
7092 bbs.length ());
7093
7094 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7095 the predecessor edges to ENTRY_BB and the successor edges to
7096 EXIT_BB so that we can re-attach them to the new basic block that
7097 will replace the region. */
7098 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7099 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7100 entry_flag = XNEWVEC (int, num_entry_edges);
7101 entry_prob = XNEWVEC (unsigned, num_entry_edges);
7102 i = 0;
7103 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7104 {
7105 entry_prob[i] = e->probability;
7106 entry_flag[i] = e->flags;
7107 entry_pred[i++] = e->src;
7108 remove_edge (e);
7109 }
7110
7111 if (exit_bb)
7112 {
7113 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7114 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7115 exit_flag = XNEWVEC (int, num_exit_edges);
7116 exit_prob = XNEWVEC (unsigned, num_exit_edges);
7117 i = 0;
7118 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7119 {
7120 exit_prob[i] = e->probability;
7121 exit_flag[i] = e->flags;
7122 exit_succ[i++] = e->dest;
7123 remove_edge (e);
7124 }
7125 }
7126 else
7127 {
7128 num_exit_edges = 0;
7129 exit_succ = NULL;
7130 exit_flag = NULL;
7131 exit_prob = NULL;
7132 }
7133
7134 /* Switch context to the child function to initialize DEST_FN's CFG. */
7135 gcc_assert (dest_cfun->cfg == NULL);
7136 push_cfun (dest_cfun);
7137
7138 init_empty_tree_cfg ();
7139
7140 /* Initialize EH information for the new function. */
7141 eh_map = NULL;
7142 new_label_map = NULL;
7143 if (saved_cfun->eh)
7144 {
7145 eh_region region = NULL;
7146
7147 FOR_EACH_VEC_ELT (bbs, i, bb)
7148 region = find_outermost_region_in_block (saved_cfun, bb, region);
7149
7150 init_eh_for_function ();
7151 if (region != NULL)
7152 {
7153 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7154 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7155 new_label_mapper, new_label_map);
7156 }
7157 }
7158
7159 /* Initialize an empty loop tree. */
7160 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7161 init_loops_structure (dest_cfun, loops, 1);
7162 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7163 set_loops_for_fn (dest_cfun, loops);
7164
7165 /* Move the outlined loop tree part. */
7166 num_nodes = bbs.length ();
7167 FOR_EACH_VEC_ELT (bbs, i, bb)
7168 {
7169 if (bb->loop_father->header == bb)
7170 {
7171 struct loop *this_loop = bb->loop_father;
7172 struct loop *outer = loop_outer (this_loop);
7173 if (outer == loop
7174 /* If the SESE region contains some bbs ending with
7175 a noreturn call, those are considered to belong
7176 to the outermost loop in saved_cfun, rather than
7177 the entry_bb's loop_father. */
7178 || outer == loop0)
7179 {
7180 if (outer != loop)
7181 num_nodes -= this_loop->num_nodes;
7182 flow_loop_tree_node_remove (bb->loop_father);
7183 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7184 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7185 }
7186 }
7187 else if (bb->loop_father == loop0 && loop0 != loop)
7188 num_nodes--;
7189
7190 /* Remove loop exits from the outlined region. */
7191 if (loops_for_fn (saved_cfun)->exits)
7192 FOR_EACH_EDGE (e, ei, bb->succs)
7193 {
7194 struct loops *l = loops_for_fn (saved_cfun);
7195 loop_exit **slot
7196 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7197 NO_INSERT);
7198 if (slot)
7199 l->exits->clear_slot (slot);
7200 }
7201 }
7202
7203
7204 /* Adjust the number of blocks in the tree root of the outlined part. */
7205 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7206
7207 /* Setup a mapping to be used by move_block_to_fn. */
7208 loop->aux = current_loops->tree_root;
7209 loop0->aux = current_loops->tree_root;
7210
7211 pop_cfun ();
7212
7213 /* Move blocks from BBS into DEST_CFUN. */
7214 gcc_assert (bbs.length () >= 2);
7215 after = dest_cfun->cfg->x_entry_block_ptr;
7216 hash_map<tree, tree> vars_map;
7217
7218 memset (&d, 0, sizeof (d));
7219 d.orig_block = orig_block;
7220 d.new_block = DECL_INITIAL (dest_cfun->decl);
7221 d.from_context = cfun->decl;
7222 d.to_context = dest_cfun->decl;
7223 d.vars_map = &vars_map;
7224 d.new_label_map = new_label_map;
7225 d.eh_map = eh_map;
7226 d.remap_decls_p = true;
7227
7228 if (gimple_in_ssa_p (cfun))
7229 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7230 {
7231 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7232 set_ssa_default_def (dest_cfun, arg, narg);
7233 vars_map.put (arg, narg);
7234 }
7235
7236 FOR_EACH_VEC_ELT (bbs, i, bb)
7237 {
7238 /* No need to update edge counts on the last block. It has
7239 already been updated earlier when we detached the region from
7240 the original CFG. */
7241 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7242 after = bb;
7243 }
7244
7245 loop->aux = NULL;
7246 loop0->aux = NULL;
7247 /* Loop sizes are no longer correct, fix them up. */
7248 loop->num_nodes -= num_nodes;
7249 for (struct loop *outer = loop_outer (loop);
7250 outer; outer = loop_outer (outer))
7251 outer->num_nodes -= num_nodes;
7252 loop0->num_nodes -= bbs.length () - num_nodes;
7253
7254 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7255 {
7256 struct loop *aloop;
7257 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7258 if (aloop != NULL)
7259 {
7260 if (aloop->simduid)
7261 {
7262 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7263 d.to_context);
7264 dest_cfun->has_simduid_loops = true;
7265 }
7266 if (aloop->force_vectorize)
7267 dest_cfun->has_force_vectorize_loops = true;
7268 }
7269 }
7270
7271 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7272 if (orig_block)
7273 {
7274 tree block;
7275 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7276 == NULL_TREE);
7277 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7278 = BLOCK_SUBBLOCKS (orig_block);
7279 for (block = BLOCK_SUBBLOCKS (orig_block);
7280 block; block = BLOCK_CHAIN (block))
7281 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7282 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7283 }
7284
7285 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7286 &vars_map, dest_cfun->decl);
7287
7288 if (new_label_map)
7289 htab_delete (new_label_map);
7290 if (eh_map)
7291 delete eh_map;
7292
7293 if (gimple_in_ssa_p (cfun))
7294 {
7295 /* We need to release ssa-names in a defined order, so first find them,
7296 and then iterate in ascending version order. */
7297 bitmap release_names = BITMAP_ALLOC (NULL);
7298 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7299 bitmap_iterator bi;
7300 unsigned i;
7301 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7302 release_ssa_name (ssa_name (i));
7303 BITMAP_FREE (release_names);
7304 }
7305
7306 /* Rewire the entry and exit blocks. The successor to the entry
7307 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7308 the child function. Similarly, the predecessor of DEST_FN's
7309 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7310 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7311 various CFG manipulation function get to the right CFG.
7312
7313 FIXME, this is silly. The CFG ought to become a parameter to
7314 these helpers. */
7315 push_cfun (dest_cfun);
7316 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7317 if (exit_bb)
7318 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7319 pop_cfun ();
7320
7321 /* Back in the original function, the SESE region has disappeared,
7322 create a new basic block in its place. */
7323 bb = create_empty_bb (entry_pred[0]);
7324 if (current_loops)
7325 add_bb_to_loop (bb, loop);
7326 for (i = 0; i < num_entry_edges; i++)
7327 {
7328 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7329 e->probability = entry_prob[i];
7330 }
7331
7332 for (i = 0; i < num_exit_edges; i++)
7333 {
7334 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7335 e->probability = exit_prob[i];
7336 }
7337
7338 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7339 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7340 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7341 dom_bbs.release ();
7342
7343 if (exit_bb)
7344 {
7345 free (exit_prob);
7346 free (exit_flag);
7347 free (exit_succ);
7348 }
7349 free (entry_prob);
7350 free (entry_flag);
7351 free (entry_pred);
7352 bbs.release ();
7353
7354 return bb;
7355 }
7356
7357 /* Dump default def DEF to file FILE using FLAGS and indentation
7358 SPC. */
7359
7360 static void
7361 dump_default_def (FILE *file, tree def, int spc, int flags)
7362 {
7363 for (int i = 0; i < spc; ++i)
7364 fprintf (file, " ");
7365 dump_ssaname_info_to_file (file, def, spc);
7366
7367 print_generic_expr (file, TREE_TYPE (def), flags);
7368 fprintf (file, " ");
7369 print_generic_expr (file, def, flags);
7370 fprintf (file, " = ");
7371 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7372 fprintf (file, ";\n");
7373 }
7374
7375 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7376 */
7377
7378 void
7379 dump_function_to_file (tree fndecl, FILE *file, int flags)
7380 {
7381 tree arg, var, old_current_fndecl = current_function_decl;
7382 struct function *dsf;
7383 bool ignore_topmost_bind = false, any_var = false;
7384 basic_block bb;
7385 tree chain;
7386 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7387 && decl_is_tm_clone (fndecl));
7388 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7389
7390 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7391 {
7392 fprintf (file, "__attribute__((");
7393
7394 bool first = true;
7395 tree chain;
7396 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7397 first = false, chain = TREE_CHAIN (chain))
7398 {
7399 if (!first)
7400 fprintf (file, ", ");
7401
7402 print_generic_expr (file, get_attribute_name (chain), dump_flags);
7403 if (TREE_VALUE (chain) != NULL_TREE)
7404 {
7405 fprintf (file, " (");
7406 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7407 fprintf (file, ")");
7408 }
7409 }
7410
7411 fprintf (file, "))\n");
7412 }
7413
7414 current_function_decl = fndecl;
7415 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7416
7417 arg = DECL_ARGUMENTS (fndecl);
7418 while (arg)
7419 {
7420 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7421 fprintf (file, " ");
7422 print_generic_expr (file, arg, dump_flags);
7423 if (flags & TDF_VERBOSE)
7424 print_node (file, "", arg, 4);
7425 if (DECL_CHAIN (arg))
7426 fprintf (file, ", ");
7427 arg = DECL_CHAIN (arg);
7428 }
7429 fprintf (file, ")\n");
7430
7431 if (flags & TDF_VERBOSE)
7432 print_node (file, "", fndecl, 2);
7433
7434 dsf = DECL_STRUCT_FUNCTION (fndecl);
7435 if (dsf && (flags & TDF_EH))
7436 dump_eh_tree (file, dsf);
7437
7438 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7439 {
7440 dump_node (fndecl, TDF_SLIM | flags, file);
7441 current_function_decl = old_current_fndecl;
7442 return;
7443 }
7444
7445 /* When GIMPLE is lowered, the variables are no longer available in
7446 BIND_EXPRs, so display them separately. */
7447 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7448 {
7449 unsigned ix;
7450 ignore_topmost_bind = true;
7451
7452 fprintf (file, "{\n");
7453 if (gimple_in_ssa_p (fun)
7454 && (flags & TDF_ALIAS))
7455 {
7456 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
7457 arg = DECL_CHAIN (arg))
7458 {
7459 tree def = ssa_default_def (fun, arg);
7460 if (def)
7461 dump_default_def (file, def, 2, flags);
7462 }
7463
7464 tree res = DECL_RESULT (fun->decl);
7465 if (res != NULL_TREE
7466 && DECL_BY_REFERENCE (res))
7467 {
7468 tree def = ssa_default_def (fun, res);
7469 if (def)
7470 dump_default_def (file, def, 2, flags);
7471 }
7472
7473 tree static_chain = fun->static_chain_decl;
7474 if (static_chain != NULL_TREE)
7475 {
7476 tree def = ssa_default_def (fun, static_chain);
7477 if (def)
7478 dump_default_def (file, def, 2, flags);
7479 }
7480 }
7481
7482 if (!vec_safe_is_empty (fun->local_decls))
7483 FOR_EACH_LOCAL_DECL (fun, ix, var)
7484 {
7485 print_generic_decl (file, var, flags);
7486 if (flags & TDF_VERBOSE)
7487 print_node (file, "", var, 4);
7488 fprintf (file, "\n");
7489
7490 any_var = true;
7491 }
7492 if (gimple_in_ssa_p (cfun))
7493 for (ix = 1; ix < num_ssa_names; ++ix)
7494 {
7495 tree name = ssa_name (ix);
7496 if (name && !SSA_NAME_VAR (name))
7497 {
7498 fprintf (file, " ");
7499 print_generic_expr (file, TREE_TYPE (name), flags);
7500 fprintf (file, " ");
7501 print_generic_expr (file, name, flags);
7502 fprintf (file, ";\n");
7503
7504 any_var = true;
7505 }
7506 }
7507 }
7508
7509 if (fun && fun->decl == fndecl
7510 && fun->cfg
7511 && basic_block_info_for_fn (fun))
7512 {
7513 /* If the CFG has been built, emit a CFG-based dump. */
7514 if (!ignore_topmost_bind)
7515 fprintf (file, "{\n");
7516
7517 if (any_var && n_basic_blocks_for_fn (fun))
7518 fprintf (file, "\n");
7519
7520 FOR_EACH_BB_FN (bb, fun)
7521 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7522
7523 fprintf (file, "}\n");
7524 }
7525 else if (DECL_SAVED_TREE (fndecl) == NULL)
7526 {
7527 /* The function is now in GIMPLE form but the CFG has not been
7528 built yet. Emit the single sequence of GIMPLE statements
7529 that make up its body. */
7530 gimple_seq body = gimple_body (fndecl);
7531
7532 if (gimple_seq_first_stmt (body)
7533 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7534 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7535 print_gimple_seq (file, body, 0, flags);
7536 else
7537 {
7538 if (!ignore_topmost_bind)
7539 fprintf (file, "{\n");
7540
7541 if (any_var)
7542 fprintf (file, "\n");
7543
7544 print_gimple_seq (file, body, 2, flags);
7545 fprintf (file, "}\n");
7546 }
7547 }
7548 else
7549 {
7550 int indent;
7551
7552 /* Make a tree based dump. */
7553 chain = DECL_SAVED_TREE (fndecl);
7554 if (chain && TREE_CODE (chain) == BIND_EXPR)
7555 {
7556 if (ignore_topmost_bind)
7557 {
7558 chain = BIND_EXPR_BODY (chain);
7559 indent = 2;
7560 }
7561 else
7562 indent = 0;
7563 }
7564 else
7565 {
7566 if (!ignore_topmost_bind)
7567 {
7568 fprintf (file, "{\n");
7569 /* No topmost bind, pretend it's ignored for later. */
7570 ignore_topmost_bind = true;
7571 }
7572 indent = 2;
7573 }
7574
7575 if (any_var)
7576 fprintf (file, "\n");
7577
7578 print_generic_stmt_indented (file, chain, flags, indent);
7579 if (ignore_topmost_bind)
7580 fprintf (file, "}\n");
7581 }
7582
7583 if (flags & TDF_ENUMERATE_LOCALS)
7584 dump_enumerated_decls (file, flags);
7585 fprintf (file, "\n\n");
7586
7587 current_function_decl = old_current_fndecl;
7588 }
7589
7590 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7591
7592 DEBUG_FUNCTION void
7593 debug_function (tree fn, int flags)
7594 {
7595 dump_function_to_file (fn, stderr, flags);
7596 }
7597
7598
7599 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7600
7601 static void
7602 print_pred_bbs (FILE *file, basic_block bb)
7603 {
7604 edge e;
7605 edge_iterator ei;
7606
7607 FOR_EACH_EDGE (e, ei, bb->preds)
7608 fprintf (file, "bb_%d ", e->src->index);
7609 }
7610
7611
7612 /* Print on FILE the indexes for the successors of basic_block BB. */
7613
7614 static void
7615 print_succ_bbs (FILE *file, basic_block bb)
7616 {
7617 edge e;
7618 edge_iterator ei;
7619
7620 FOR_EACH_EDGE (e, ei, bb->succs)
7621 fprintf (file, "bb_%d ", e->dest->index);
7622 }
7623
7624 /* Print to FILE the basic block BB following the VERBOSITY level. */
7625
7626 void
7627 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7628 {
7629 char *s_indent = (char *) alloca ((size_t) indent + 1);
7630 memset ((void *) s_indent, ' ', (size_t) indent);
7631 s_indent[indent] = '\0';
7632
7633 /* Print basic_block's header. */
7634 if (verbosity >= 2)
7635 {
7636 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7637 print_pred_bbs (file, bb);
7638 fprintf (file, "}, succs = {");
7639 print_succ_bbs (file, bb);
7640 fprintf (file, "})\n");
7641 }
7642
7643 /* Print basic_block's body. */
7644 if (verbosity >= 3)
7645 {
7646 fprintf (file, "%s {\n", s_indent);
7647 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7648 fprintf (file, "%s }\n", s_indent);
7649 }
7650 }
7651
7652 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7653
7654 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7655 VERBOSITY level this outputs the contents of the loop, or just its
7656 structure. */
7657
7658 static void
7659 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7660 {
7661 char *s_indent;
7662 basic_block bb;
7663
7664 if (loop == NULL)
7665 return;
7666
7667 s_indent = (char *) alloca ((size_t) indent + 1);
7668 memset ((void *) s_indent, ' ', (size_t) indent);
7669 s_indent[indent] = '\0';
7670
7671 /* Print loop's header. */
7672 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7673 if (loop->header)
7674 fprintf (file, "header = %d", loop->header->index);
7675 else
7676 {
7677 fprintf (file, "deleted)\n");
7678 return;
7679 }
7680 if (loop->latch)
7681 fprintf (file, ", latch = %d", loop->latch->index);
7682 else
7683 fprintf (file, ", multiple latches");
7684 fprintf (file, ", niter = ");
7685 print_generic_expr (file, loop->nb_iterations, 0);
7686
7687 if (loop->any_upper_bound)
7688 {
7689 fprintf (file, ", upper_bound = ");
7690 print_decu (loop->nb_iterations_upper_bound, file);
7691 }
7692
7693 if (loop->any_estimate)
7694 {
7695 fprintf (file, ", estimate = ");
7696 print_decu (loop->nb_iterations_estimate, file);
7697 }
7698 fprintf (file, ")\n");
7699
7700 /* Print loop's body. */
7701 if (verbosity >= 1)
7702 {
7703 fprintf (file, "%s{\n", s_indent);
7704 FOR_EACH_BB_FN (bb, cfun)
7705 if (bb->loop_father == loop)
7706 print_loops_bb (file, bb, indent, verbosity);
7707
7708 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7709 fprintf (file, "%s}\n", s_indent);
7710 }
7711 }
7712
7713 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7714 spaces. Following VERBOSITY level this outputs the contents of the
7715 loop, or just its structure. */
7716
7717 static void
7718 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7719 int verbosity)
7720 {
7721 if (loop == NULL)
7722 return;
7723
7724 print_loop (file, loop, indent, verbosity);
7725 print_loop_and_siblings (file, loop->next, indent, verbosity);
7726 }
7727
7728 /* Follow a CFG edge from the entry point of the program, and on entry
7729 of a loop, pretty print the loop structure on FILE. */
7730
7731 void
7732 print_loops (FILE *file, int verbosity)
7733 {
7734 basic_block bb;
7735
7736 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7737 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
7738 if (bb && bb->loop_father)
7739 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7740 }
7741
7742 /* Dump a loop. */
7743
7744 DEBUG_FUNCTION void
7745 debug (struct loop &ref)
7746 {
7747 print_loop (stderr, &ref, 0, /*verbosity*/0);
7748 }
7749
7750 DEBUG_FUNCTION void
7751 debug (struct loop *ptr)
7752 {
7753 if (ptr)
7754 debug (*ptr);
7755 else
7756 fprintf (stderr, "<nil>\n");
7757 }
7758
7759 /* Dump a loop verbosely. */
7760
7761 DEBUG_FUNCTION void
7762 debug_verbose (struct loop &ref)
7763 {
7764 print_loop (stderr, &ref, 0, /*verbosity*/3);
7765 }
7766
7767 DEBUG_FUNCTION void
7768 debug_verbose (struct loop *ptr)
7769 {
7770 if (ptr)
7771 debug (*ptr);
7772 else
7773 fprintf (stderr, "<nil>\n");
7774 }
7775
7776
7777 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7778
7779 DEBUG_FUNCTION void
7780 debug_loops (int verbosity)
7781 {
7782 print_loops (stderr, verbosity);
7783 }
7784
7785 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7786
7787 DEBUG_FUNCTION void
7788 debug_loop (struct loop *loop, int verbosity)
7789 {
7790 print_loop (stderr, loop, 0, verbosity);
7791 }
7792
7793 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7794 level. */
7795
7796 DEBUG_FUNCTION void
7797 debug_loop_num (unsigned num, int verbosity)
7798 {
7799 debug_loop (get_loop (cfun, num), verbosity);
7800 }
7801
7802 /* Return true if BB ends with a call, possibly followed by some
7803 instructions that must stay with the call. Return false,
7804 otherwise. */
7805
7806 static bool
7807 gimple_block_ends_with_call_p (basic_block bb)
7808 {
7809 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7810 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7811 }
7812
7813
7814 /* Return true if BB ends with a conditional branch. Return false,
7815 otherwise. */
7816
7817 static bool
7818 gimple_block_ends_with_condjump_p (const_basic_block bb)
7819 {
7820 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
7821 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7822 }
7823
7824
7825 /* Return true if we need to add fake edge to exit at statement T.
7826 Helper function for gimple_flow_call_edges_add. */
7827
7828 static bool
7829 need_fake_edge_p (gimple *t)
7830 {
7831 tree fndecl = NULL_TREE;
7832 int call_flags = 0;
7833
7834 /* NORETURN and LONGJMP calls already have an edge to exit.
7835 CONST and PURE calls do not need one.
7836 We don't currently check for CONST and PURE here, although
7837 it would be a good idea, because those attributes are
7838 figured out from the RTL in mark_constant_function, and
7839 the counter incrementation code from -fprofile-arcs
7840 leads to different results from -fbranch-probabilities. */
7841 if (is_gimple_call (t))
7842 {
7843 fndecl = gimple_call_fndecl (t);
7844 call_flags = gimple_call_flags (t);
7845 }
7846
7847 if (is_gimple_call (t)
7848 && fndecl
7849 && DECL_BUILT_IN (fndecl)
7850 && (call_flags & ECF_NOTHROW)
7851 && !(call_flags & ECF_RETURNS_TWICE)
7852 /* fork() doesn't really return twice, but the effect of
7853 wrapping it in __gcov_fork() which calls __gcov_flush()
7854 and clears the counters before forking has the same
7855 effect as returning twice. Force a fake edge. */
7856 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7857 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7858 return false;
7859
7860 if (is_gimple_call (t))
7861 {
7862 edge_iterator ei;
7863 edge e;
7864 basic_block bb;
7865
7866 if (!(call_flags & ECF_NORETURN))
7867 return true;
7868
7869 bb = gimple_bb (t);
7870 FOR_EACH_EDGE (e, ei, bb->succs)
7871 if ((e->flags & EDGE_FAKE) == 0)
7872 return true;
7873 }
7874
7875 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
7876 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
7877 return true;
7878
7879 return false;
7880 }
7881
7882
7883 /* Add fake edges to the function exit for any non constant and non
7884 noreturn calls (or noreturn calls with EH/abnormal edges),
7885 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7886 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7887 that were split.
7888
7889 The goal is to expose cases in which entering a basic block does
7890 not imply that all subsequent instructions must be executed. */
7891
7892 static int
7893 gimple_flow_call_edges_add (sbitmap blocks)
7894 {
7895 int i;
7896 int blocks_split = 0;
7897 int last_bb = last_basic_block_for_fn (cfun);
7898 bool check_last_block = false;
7899
7900 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7901 return 0;
7902
7903 if (! blocks)
7904 check_last_block = true;
7905 else
7906 check_last_block = bitmap_bit_p (blocks,
7907 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
7908
7909 /* In the last basic block, before epilogue generation, there will be
7910 a fallthru edge to EXIT. Special care is required if the last insn
7911 of the last basic block is a call because make_edge folds duplicate
7912 edges, which would result in the fallthru edge also being marked
7913 fake, which would result in the fallthru edge being removed by
7914 remove_fake_edges, which would result in an invalid CFG.
7915
7916 Moreover, we can't elide the outgoing fake edge, since the block
7917 profiler needs to take this into account in order to solve the minimal
7918 spanning tree in the case that the call doesn't return.
7919
7920 Handle this by adding a dummy instruction in a new last basic block. */
7921 if (check_last_block)
7922 {
7923 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7924 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7925 gimple *t = NULL;
7926
7927 if (!gsi_end_p (gsi))
7928 t = gsi_stmt (gsi);
7929
7930 if (t && need_fake_edge_p (t))
7931 {
7932 edge e;
7933
7934 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7935 if (e)
7936 {
7937 gsi_insert_on_edge (e, gimple_build_nop ());
7938 gsi_commit_edge_inserts ();
7939 }
7940 }
7941 }
7942
7943 /* Now add fake edges to the function exit for any non constant
7944 calls since there is no way that we can determine if they will
7945 return or not... */
7946 for (i = 0; i < last_bb; i++)
7947 {
7948 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7949 gimple_stmt_iterator gsi;
7950 gimple *stmt, *last_stmt;
7951
7952 if (!bb)
7953 continue;
7954
7955 if (blocks && !bitmap_bit_p (blocks, i))
7956 continue;
7957
7958 gsi = gsi_last_nondebug_bb (bb);
7959 if (!gsi_end_p (gsi))
7960 {
7961 last_stmt = gsi_stmt (gsi);
7962 do
7963 {
7964 stmt = gsi_stmt (gsi);
7965 if (need_fake_edge_p (stmt))
7966 {
7967 edge e;
7968
7969 /* The handling above of the final block before the
7970 epilogue should be enough to verify that there is
7971 no edge to the exit block in CFG already.
7972 Calling make_edge in such case would cause us to
7973 mark that edge as fake and remove it later. */
7974 if (flag_checking && stmt == last_stmt)
7975 {
7976 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7977 gcc_assert (e == NULL);
7978 }
7979
7980 /* Note that the following may create a new basic block
7981 and renumber the existing basic blocks. */
7982 if (stmt != last_stmt)
7983 {
7984 e = split_block (bb, stmt);
7985 if (e)
7986 blocks_split++;
7987 }
7988 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
7989 }
7990 gsi_prev (&gsi);
7991 }
7992 while (!gsi_end_p (gsi));
7993 }
7994 }
7995
7996 if (blocks_split)
7997 verify_flow_info ();
7998
7999 return blocks_split;
8000 }
8001
8002 /* Removes edge E and all the blocks dominated by it, and updates dominance
8003 information. The IL in E->src needs to be updated separately.
8004 If dominance info is not available, only the edge E is removed.*/
8005
8006 void
8007 remove_edge_and_dominated_blocks (edge e)
8008 {
8009 vec<basic_block> bbs_to_remove = vNULL;
8010 vec<basic_block> bbs_to_fix_dom = vNULL;
8011 bitmap df, df_idom;
8012 edge f;
8013 edge_iterator ei;
8014 bool none_removed = false;
8015 unsigned i;
8016 basic_block bb, dbb;
8017 bitmap_iterator bi;
8018
8019 /* If we are removing a path inside a non-root loop that may change
8020 loop ownership of blocks or remove loops. Mark loops for fixup. */
8021 if (current_loops
8022 && loop_outer (e->src->loop_father) != NULL
8023 && e->src->loop_father == e->dest->loop_father)
8024 loops_state_set (LOOPS_NEED_FIXUP);
8025
8026 if (!dom_info_available_p (CDI_DOMINATORS))
8027 {
8028 remove_edge (e);
8029 return;
8030 }
8031
8032 /* No updating is needed for edges to exit. */
8033 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8034 {
8035 if (cfgcleanup_altered_bbs)
8036 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8037 remove_edge (e);
8038 return;
8039 }
8040
8041 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8042 that is not dominated by E->dest, then this set is empty. Otherwise,
8043 all the basic blocks dominated by E->dest are removed.
8044
8045 Also, to DF_IDOM we store the immediate dominators of the blocks in
8046 the dominance frontier of E (i.e., of the successors of the
8047 removed blocks, if there are any, and of E->dest otherwise). */
8048 FOR_EACH_EDGE (f, ei, e->dest->preds)
8049 {
8050 if (f == e)
8051 continue;
8052
8053 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8054 {
8055 none_removed = true;
8056 break;
8057 }
8058 }
8059
8060 df = BITMAP_ALLOC (NULL);
8061 df_idom = BITMAP_ALLOC (NULL);
8062
8063 if (none_removed)
8064 bitmap_set_bit (df_idom,
8065 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8066 else
8067 {
8068 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8069 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8070 {
8071 FOR_EACH_EDGE (f, ei, bb->succs)
8072 {
8073 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8074 bitmap_set_bit (df, f->dest->index);
8075 }
8076 }
8077 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8078 bitmap_clear_bit (df, bb->index);
8079
8080 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8081 {
8082 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8083 bitmap_set_bit (df_idom,
8084 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8085 }
8086 }
8087
8088 if (cfgcleanup_altered_bbs)
8089 {
8090 /* Record the set of the altered basic blocks. */
8091 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8092 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8093 }
8094
8095 /* Remove E and the cancelled blocks. */
8096 if (none_removed)
8097 remove_edge (e);
8098 else
8099 {
8100 /* Walk backwards so as to get a chance to substitute all
8101 released DEFs into debug stmts. See
8102 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8103 details. */
8104 for (i = bbs_to_remove.length (); i-- > 0; )
8105 delete_basic_block (bbs_to_remove[i]);
8106 }
8107
8108 /* Update the dominance information. The immediate dominator may change only
8109 for blocks whose immediate dominator belongs to DF_IDOM:
8110
8111 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8112 removal. Let Z the arbitrary block such that idom(Z) = Y and
8113 Z dominates X after the removal. Before removal, there exists a path P
8114 from Y to X that avoids Z. Let F be the last edge on P that is
8115 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8116 dominates W, and because of P, Z does not dominate W), and W belongs to
8117 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8118 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8119 {
8120 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8121 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8122 dbb;
8123 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8124 bbs_to_fix_dom.safe_push (dbb);
8125 }
8126
8127 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8128
8129 BITMAP_FREE (df);
8130 BITMAP_FREE (df_idom);
8131 bbs_to_remove.release ();
8132 bbs_to_fix_dom.release ();
8133 }
8134
8135 /* Purge dead EH edges from basic block BB. */
8136
8137 bool
8138 gimple_purge_dead_eh_edges (basic_block bb)
8139 {
8140 bool changed = false;
8141 edge e;
8142 edge_iterator ei;
8143 gimple *stmt = last_stmt (bb);
8144
8145 if (stmt && stmt_can_throw_internal (stmt))
8146 return false;
8147
8148 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8149 {
8150 if (e->flags & EDGE_EH)
8151 {
8152 remove_edge_and_dominated_blocks (e);
8153 changed = true;
8154 }
8155 else
8156 ei_next (&ei);
8157 }
8158
8159 return changed;
8160 }
8161
8162 /* Purge dead EH edges from basic block listed in BLOCKS. */
8163
8164 bool
8165 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8166 {
8167 bool changed = false;
8168 unsigned i;
8169 bitmap_iterator bi;
8170
8171 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8172 {
8173 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8174
8175 /* Earlier gimple_purge_dead_eh_edges could have removed
8176 this basic block already. */
8177 gcc_assert (bb || changed);
8178 if (bb != NULL)
8179 changed |= gimple_purge_dead_eh_edges (bb);
8180 }
8181
8182 return changed;
8183 }
8184
8185 /* Purge dead abnormal call edges from basic block BB. */
8186
8187 bool
8188 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8189 {
8190 bool changed = false;
8191 edge e;
8192 edge_iterator ei;
8193 gimple *stmt = last_stmt (bb);
8194
8195 if (!cfun->has_nonlocal_label
8196 && !cfun->calls_setjmp)
8197 return false;
8198
8199 if (stmt && stmt_can_make_abnormal_goto (stmt))
8200 return false;
8201
8202 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8203 {
8204 if (e->flags & EDGE_ABNORMAL)
8205 {
8206 if (e->flags & EDGE_FALLTHRU)
8207 e->flags &= ~EDGE_ABNORMAL;
8208 else
8209 remove_edge_and_dominated_blocks (e);
8210 changed = true;
8211 }
8212 else
8213 ei_next (&ei);
8214 }
8215
8216 return changed;
8217 }
8218
8219 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8220
8221 bool
8222 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8223 {
8224 bool changed = false;
8225 unsigned i;
8226 bitmap_iterator bi;
8227
8228 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8229 {
8230 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8231
8232 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8233 this basic block already. */
8234 gcc_assert (bb || changed);
8235 if (bb != NULL)
8236 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8237 }
8238
8239 return changed;
8240 }
8241
8242 /* This function is called whenever a new edge is created or
8243 redirected. */
8244
8245 static void
8246 gimple_execute_on_growing_pred (edge e)
8247 {
8248 basic_block bb = e->dest;
8249
8250 if (!gimple_seq_empty_p (phi_nodes (bb)))
8251 reserve_phi_args_for_new_edge (bb);
8252 }
8253
8254 /* This function is called immediately before edge E is removed from
8255 the edge vector E->dest->preds. */
8256
8257 static void
8258 gimple_execute_on_shrinking_pred (edge e)
8259 {
8260 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8261 remove_phi_args (e);
8262 }
8263
8264 /*---------------------------------------------------------------------------
8265 Helper functions for Loop versioning
8266 ---------------------------------------------------------------------------*/
8267
8268 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8269 of 'first'. Both of them are dominated by 'new_head' basic block. When
8270 'new_head' was created by 'second's incoming edge it received phi arguments
8271 on the edge by split_edge(). Later, additional edge 'e' was created to
8272 connect 'new_head' and 'first'. Now this routine adds phi args on this
8273 additional edge 'e' that new_head to second edge received as part of edge
8274 splitting. */
8275
8276 static void
8277 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8278 basic_block new_head, edge e)
8279 {
8280 gphi *phi1, *phi2;
8281 gphi_iterator psi1, psi2;
8282 tree def;
8283 edge e2 = find_edge (new_head, second);
8284
8285 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8286 edge, we should always have an edge from NEW_HEAD to SECOND. */
8287 gcc_assert (e2 != NULL);
8288
8289 /* Browse all 'second' basic block phi nodes and add phi args to
8290 edge 'e' for 'first' head. PHI args are always in correct order. */
8291
8292 for (psi2 = gsi_start_phis (second),
8293 psi1 = gsi_start_phis (first);
8294 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8295 gsi_next (&psi2), gsi_next (&psi1))
8296 {
8297 phi1 = psi1.phi ();
8298 phi2 = psi2.phi ();
8299 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8300 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8301 }
8302 }
8303
8304
8305 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8306 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8307 the destination of the ELSE part. */
8308
8309 static void
8310 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8311 basic_block second_head ATTRIBUTE_UNUSED,
8312 basic_block cond_bb, void *cond_e)
8313 {
8314 gimple_stmt_iterator gsi;
8315 gimple *new_cond_expr;
8316 tree cond_expr = (tree) cond_e;
8317 edge e0;
8318
8319 /* Build new conditional expr */
8320 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8321 NULL_TREE, NULL_TREE);
8322
8323 /* Add new cond in cond_bb. */
8324 gsi = gsi_last_bb (cond_bb);
8325 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8326
8327 /* Adjust edges appropriately to connect new head with first head
8328 as well as second head. */
8329 e0 = single_succ_edge (cond_bb);
8330 e0->flags &= ~EDGE_FALLTHRU;
8331 e0->flags |= EDGE_FALSE_VALUE;
8332 }
8333
8334
8335 /* Do book-keeping of basic block BB for the profile consistency checker.
8336 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8337 then do post-pass accounting. Store the counting in RECORD. */
8338 static void
8339 gimple_account_profile_record (basic_block bb, int after_pass,
8340 struct profile_record *record)
8341 {
8342 gimple_stmt_iterator i;
8343 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8344 {
8345 record->size[after_pass]
8346 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8347 if (profile_status_for_fn (cfun) == PROFILE_READ)
8348 record->time[after_pass]
8349 += estimate_num_insns (gsi_stmt (i),
8350 &eni_time_weights) * bb->count;
8351 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8352 record->time[after_pass]
8353 += estimate_num_insns (gsi_stmt (i),
8354 &eni_time_weights) * bb->frequency;
8355 }
8356 }
8357
8358 struct cfg_hooks gimple_cfg_hooks = {
8359 "gimple",
8360 gimple_verify_flow_info,
8361 gimple_dump_bb, /* dump_bb */
8362 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8363 create_bb, /* create_basic_block */
8364 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8365 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8366 gimple_can_remove_branch_p, /* can_remove_branch_p */
8367 remove_bb, /* delete_basic_block */
8368 gimple_split_block, /* split_block */
8369 gimple_move_block_after, /* move_block_after */
8370 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8371 gimple_merge_blocks, /* merge_blocks */
8372 gimple_predict_edge, /* predict_edge */
8373 gimple_predicted_by_p, /* predicted_by_p */
8374 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8375 gimple_duplicate_bb, /* duplicate_block */
8376 gimple_split_edge, /* split_edge */
8377 gimple_make_forwarder_block, /* make_forward_block */
8378 NULL, /* tidy_fallthru_edge */
8379 NULL, /* force_nonfallthru */
8380 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8381 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8382 gimple_flow_call_edges_add, /* flow_call_edges_add */
8383 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8384 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8385 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8386 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8387 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8388 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8389 flush_pending_stmts, /* flush_pending_stmts */
8390 gimple_empty_block_p, /* block_empty_p */
8391 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8392 gimple_account_profile_record,
8393 };
8394
8395
8396 /* Split all critical edges. */
8397
8398 unsigned int
8399 split_critical_edges (void)
8400 {
8401 basic_block bb;
8402 edge e;
8403 edge_iterator ei;
8404
8405 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8406 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8407 mappings around the calls to split_edge. */
8408 start_recording_case_labels ();
8409 FOR_ALL_BB_FN (bb, cfun)
8410 {
8411 FOR_EACH_EDGE (e, ei, bb->succs)
8412 {
8413 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8414 split_edge (e);
8415 /* PRE inserts statements to edges and expects that
8416 since split_critical_edges was done beforehand, committing edge
8417 insertions will not split more edges. In addition to critical
8418 edges we must split edges that have multiple successors and
8419 end by control flow statements, such as RESX.
8420 Go ahead and split them too. This matches the logic in
8421 gimple_find_edge_insert_loc. */
8422 else if ((!single_pred_p (e->dest)
8423 || !gimple_seq_empty_p (phi_nodes (e->dest))
8424 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8425 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8426 && !(e->flags & EDGE_ABNORMAL))
8427 {
8428 gimple_stmt_iterator gsi;
8429
8430 gsi = gsi_last_bb (e->src);
8431 if (!gsi_end_p (gsi)
8432 && stmt_ends_bb_p (gsi_stmt (gsi))
8433 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8434 && !gimple_call_builtin_p (gsi_stmt (gsi),
8435 BUILT_IN_RETURN)))
8436 split_edge (e);
8437 }
8438 }
8439 }
8440 end_recording_case_labels ();
8441 return 0;
8442 }
8443
8444 namespace {
8445
8446 const pass_data pass_data_split_crit_edges =
8447 {
8448 GIMPLE_PASS, /* type */
8449 "crited", /* name */
8450 OPTGROUP_NONE, /* optinfo_flags */
8451 TV_TREE_SPLIT_EDGES, /* tv_id */
8452 PROP_cfg, /* properties_required */
8453 PROP_no_crit_edges, /* properties_provided */
8454 0, /* properties_destroyed */
8455 0, /* todo_flags_start */
8456 0, /* todo_flags_finish */
8457 };
8458
8459 class pass_split_crit_edges : public gimple_opt_pass
8460 {
8461 public:
8462 pass_split_crit_edges (gcc::context *ctxt)
8463 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8464 {}
8465
8466 /* opt_pass methods: */
8467 virtual unsigned int execute (function *) { return split_critical_edges (); }
8468
8469 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8470 }; // class pass_split_crit_edges
8471
8472 } // anon namespace
8473
8474 gimple_opt_pass *
8475 make_pass_split_crit_edges (gcc::context *ctxt)
8476 {
8477 return new pass_split_crit_edges (ctxt);
8478 }
8479
8480
8481 /* Insert COND expression which is GIMPLE_COND after STMT
8482 in basic block BB with appropriate basic block split
8483 and creation of a new conditionally executed basic block.
8484 Return created basic block. */
8485 basic_block
8486 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond)
8487 {
8488 edge fall = split_block (bb, stmt);
8489 gimple_stmt_iterator iter = gsi_last_bb (bb);
8490 basic_block new_bb;
8491
8492 /* Insert cond statement. */
8493 gcc_assert (gimple_code (cond) == GIMPLE_COND);
8494 if (gsi_end_p (iter))
8495 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
8496 else
8497 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
8498
8499 /* Create conditionally executed block. */
8500 new_bb = create_empty_bb (bb);
8501 make_edge (bb, new_bb, EDGE_TRUE_VALUE);
8502 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
8503
8504 /* Fix edge for split bb. */
8505 fall->flags = EDGE_FALSE_VALUE;
8506
8507 /* Update dominance info. */
8508 if (dom_info_available_p (CDI_DOMINATORS))
8509 {
8510 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
8511 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
8512 }
8513
8514 /* Update loop info. */
8515 if (current_loops)
8516 add_bb_to_loop (new_bb, bb->loop_father);
8517
8518 return new_bb;
8519 }
8520
8521 /* Build a ternary operation and gimplify it. Emit code before GSI.
8522 Return the gimple_val holding the result. */
8523
8524 tree
8525 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8526 tree type, tree a, tree b, tree c)
8527 {
8528 tree ret;
8529 location_t loc = gimple_location (gsi_stmt (*gsi));
8530
8531 ret = fold_build3_loc (loc, code, type, a, b, c);
8532 STRIP_NOPS (ret);
8533
8534 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8535 GSI_SAME_STMT);
8536 }
8537
8538 /* Build a binary operation and gimplify it. Emit code before GSI.
8539 Return the gimple_val holding the result. */
8540
8541 tree
8542 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8543 tree type, tree a, tree b)
8544 {
8545 tree ret;
8546
8547 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8548 STRIP_NOPS (ret);
8549
8550 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8551 GSI_SAME_STMT);
8552 }
8553
8554 /* Build a unary operation and gimplify it. Emit code before GSI.
8555 Return the gimple_val holding the result. */
8556
8557 tree
8558 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8559 tree a)
8560 {
8561 tree ret;
8562
8563 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8564 STRIP_NOPS (ret);
8565
8566 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8567 GSI_SAME_STMT);
8568 }
8569
8570
8571 \f
8572 /* Given a basic block B which ends with a conditional and has
8573 precisely two successors, determine which of the edges is taken if
8574 the conditional is true and which is taken if the conditional is
8575 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8576
8577 void
8578 extract_true_false_edges_from_block (basic_block b,
8579 edge *true_edge,
8580 edge *false_edge)
8581 {
8582 edge e = EDGE_SUCC (b, 0);
8583
8584 if (e->flags & EDGE_TRUE_VALUE)
8585 {
8586 *true_edge = e;
8587 *false_edge = EDGE_SUCC (b, 1);
8588 }
8589 else
8590 {
8591 *false_edge = e;
8592 *true_edge = EDGE_SUCC (b, 1);
8593 }
8594 }
8595
8596
8597 /* From a controlling predicate in the immediate dominator DOM of
8598 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
8599 predicate evaluates to true and false and store them to
8600 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
8601 they are non-NULL. Returns true if the edges can be determined,
8602 else return false. */
8603
8604 bool
8605 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
8606 edge *true_controlled_edge,
8607 edge *false_controlled_edge)
8608 {
8609 basic_block bb = phiblock;
8610 edge true_edge, false_edge, tem;
8611 edge e0 = NULL, e1 = NULL;
8612
8613 /* We have to verify that one edge into the PHI node is dominated
8614 by the true edge of the predicate block and the other edge
8615 dominated by the false edge. This ensures that the PHI argument
8616 we are going to take is completely determined by the path we
8617 take from the predicate block.
8618 We can only use BB dominance checks below if the destination of
8619 the true/false edges are dominated by their edge, thus only
8620 have a single predecessor. */
8621 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
8622 tem = EDGE_PRED (bb, 0);
8623 if (tem == true_edge
8624 || (single_pred_p (true_edge->dest)
8625 && (tem->src == true_edge->dest
8626 || dominated_by_p (CDI_DOMINATORS,
8627 tem->src, true_edge->dest))))
8628 e0 = tem;
8629 else if (tem == false_edge
8630 || (single_pred_p (false_edge->dest)
8631 && (tem->src == false_edge->dest
8632 || dominated_by_p (CDI_DOMINATORS,
8633 tem->src, false_edge->dest))))
8634 e1 = tem;
8635 else
8636 return false;
8637 tem = EDGE_PRED (bb, 1);
8638 if (tem == true_edge
8639 || (single_pred_p (true_edge->dest)
8640 && (tem->src == true_edge->dest
8641 || dominated_by_p (CDI_DOMINATORS,
8642 tem->src, true_edge->dest))))
8643 e0 = tem;
8644 else if (tem == false_edge
8645 || (single_pred_p (false_edge->dest)
8646 && (tem->src == false_edge->dest
8647 || dominated_by_p (CDI_DOMINATORS,
8648 tem->src, false_edge->dest))))
8649 e1 = tem;
8650 else
8651 return false;
8652 if (!e0 || !e1)
8653 return false;
8654
8655 if (true_controlled_edge)
8656 *true_controlled_edge = e0;
8657 if (false_controlled_edge)
8658 *false_controlled_edge = e1;
8659
8660 return true;
8661 }
8662
8663
8664
8665 /* Emit return warnings. */
8666
8667 namespace {
8668
8669 const pass_data pass_data_warn_function_return =
8670 {
8671 GIMPLE_PASS, /* type */
8672 "*warn_function_return", /* name */
8673 OPTGROUP_NONE, /* optinfo_flags */
8674 TV_NONE, /* tv_id */
8675 PROP_cfg, /* properties_required */
8676 0, /* properties_provided */
8677 0, /* properties_destroyed */
8678 0, /* todo_flags_start */
8679 0, /* todo_flags_finish */
8680 };
8681
8682 class pass_warn_function_return : public gimple_opt_pass
8683 {
8684 public:
8685 pass_warn_function_return (gcc::context *ctxt)
8686 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8687 {}
8688
8689 /* opt_pass methods: */
8690 virtual unsigned int execute (function *);
8691
8692 }; // class pass_warn_function_return
8693
8694 unsigned int
8695 pass_warn_function_return::execute (function *fun)
8696 {
8697 source_location location;
8698 gimple *last;
8699 edge e;
8700 edge_iterator ei;
8701
8702 if (!targetm.warn_func_return (fun->decl))
8703 return 0;
8704
8705 /* If we have a path to EXIT, then we do return. */
8706 if (TREE_THIS_VOLATILE (fun->decl)
8707 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
8708 {
8709 location = UNKNOWN_LOCATION;
8710 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8711 {
8712 last = last_stmt (e->src);
8713 if ((gimple_code (last) == GIMPLE_RETURN
8714 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8715 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8716 break;
8717 }
8718 if (location == UNKNOWN_LOCATION)
8719 location = cfun->function_end_locus;
8720 warning_at (location, 0, "%<noreturn%> function does return");
8721 }
8722
8723 /* If we see "return;" in some basic block, then we do reach the end
8724 without returning a value. */
8725 else if (warn_return_type
8726 && !TREE_NO_WARNING (fun->decl)
8727 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0
8728 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
8729 {
8730 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8731 {
8732 gimple *last = last_stmt (e->src);
8733 greturn *return_stmt = dyn_cast <greturn *> (last);
8734 if (return_stmt
8735 && gimple_return_retval (return_stmt) == NULL
8736 && !gimple_no_warning_p (last))
8737 {
8738 location = gimple_location (last);
8739 if (location == UNKNOWN_LOCATION)
8740 location = fun->function_end_locus;
8741 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8742 TREE_NO_WARNING (fun->decl) = 1;
8743 break;
8744 }
8745 }
8746 }
8747 return 0;
8748 }
8749
8750 } // anon namespace
8751
8752 gimple_opt_pass *
8753 make_pass_warn_function_return (gcc::context *ctxt)
8754 {
8755 return new pass_warn_function_return (ctxt);
8756 }
8757
8758 /* Walk a gimplified function and warn for functions whose return value is
8759 ignored and attribute((warn_unused_result)) is set. This is done before
8760 inlining, so we don't have to worry about that. */
8761
8762 static void
8763 do_warn_unused_result (gimple_seq seq)
8764 {
8765 tree fdecl, ftype;
8766 gimple_stmt_iterator i;
8767
8768 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8769 {
8770 gimple *g = gsi_stmt (i);
8771
8772 switch (gimple_code (g))
8773 {
8774 case GIMPLE_BIND:
8775 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
8776 break;
8777 case GIMPLE_TRY:
8778 do_warn_unused_result (gimple_try_eval (g));
8779 do_warn_unused_result (gimple_try_cleanup (g));
8780 break;
8781 case GIMPLE_CATCH:
8782 do_warn_unused_result (gimple_catch_handler (
8783 as_a <gcatch *> (g)));
8784 break;
8785 case GIMPLE_EH_FILTER:
8786 do_warn_unused_result (gimple_eh_filter_failure (g));
8787 break;
8788
8789 case GIMPLE_CALL:
8790 if (gimple_call_lhs (g))
8791 break;
8792 if (gimple_call_internal_p (g))
8793 break;
8794
8795 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8796 LHS. All calls whose value is ignored should be
8797 represented like this. Look for the attribute. */
8798 fdecl = gimple_call_fndecl (g);
8799 ftype = gimple_call_fntype (g);
8800
8801 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8802 {
8803 location_t loc = gimple_location (g);
8804
8805 if (fdecl)
8806 warning_at (loc, OPT_Wunused_result,
8807 "ignoring return value of %qD, "
8808 "declared with attribute warn_unused_result",
8809 fdecl);
8810 else
8811 warning_at (loc, OPT_Wunused_result,
8812 "ignoring return value of function "
8813 "declared with attribute warn_unused_result");
8814 }
8815 break;
8816
8817 default:
8818 /* Not a container, not a call, or a call whose value is used. */
8819 break;
8820 }
8821 }
8822 }
8823
8824 namespace {
8825
8826 const pass_data pass_data_warn_unused_result =
8827 {
8828 GIMPLE_PASS, /* type */
8829 "*warn_unused_result", /* name */
8830 OPTGROUP_NONE, /* optinfo_flags */
8831 TV_NONE, /* tv_id */
8832 PROP_gimple_any, /* properties_required */
8833 0, /* properties_provided */
8834 0, /* properties_destroyed */
8835 0, /* todo_flags_start */
8836 0, /* todo_flags_finish */
8837 };
8838
8839 class pass_warn_unused_result : public gimple_opt_pass
8840 {
8841 public:
8842 pass_warn_unused_result (gcc::context *ctxt)
8843 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8844 {}
8845
8846 /* opt_pass methods: */
8847 virtual bool gate (function *) { return flag_warn_unused_result; }
8848 virtual unsigned int execute (function *)
8849 {
8850 do_warn_unused_result (gimple_body (current_function_decl));
8851 return 0;
8852 }
8853
8854 }; // class pass_warn_unused_result
8855
8856 } // anon namespace
8857
8858 gimple_opt_pass *
8859 make_pass_warn_unused_result (gcc::context *ctxt)
8860 {
8861 return new pass_warn_unused_result (ctxt);
8862 }
8863
8864 /* IPA passes, compilation of earlier functions or inlining
8865 might have changed some properties, such as marked functions nothrow,
8866 pure, const or noreturn.
8867 Remove redundant edges and basic blocks, and create new ones if necessary.
8868
8869 This pass can't be executed as stand alone pass from pass manager, because
8870 in between inlining and this fixup the verify_flow_info would fail. */
8871
8872 unsigned int
8873 execute_fixup_cfg (void)
8874 {
8875 basic_block bb;
8876 gimple_stmt_iterator gsi;
8877 int todo = 0;
8878 gcov_type count_scale;
8879 edge e;
8880 edge_iterator ei;
8881
8882 count_scale
8883 = GCOV_COMPUTE_SCALE (cgraph_node::get (current_function_decl)->count,
8884 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8885
8886 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8887 cgraph_node::get (current_function_decl)->count;
8888 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8889 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8890 count_scale);
8891
8892 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8893 e->count = apply_scale (e->count, count_scale);
8894
8895 FOR_EACH_BB_FN (bb, cfun)
8896 {
8897 bb->count = apply_scale (bb->count, count_scale);
8898 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
8899 {
8900 gimple *stmt = gsi_stmt (gsi);
8901 tree decl = is_gimple_call (stmt)
8902 ? gimple_call_fndecl (stmt)
8903 : NULL;
8904 if (decl)
8905 {
8906 int flags = gimple_call_flags (stmt);
8907 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8908 {
8909 if (gimple_purge_dead_abnormal_call_edges (bb))
8910 todo |= TODO_cleanup_cfg;
8911
8912 if (gimple_in_ssa_p (cfun))
8913 {
8914 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8915 update_stmt (stmt);
8916 }
8917 }
8918
8919 if (flags & ECF_NORETURN
8920 && fixup_noreturn_call (stmt))
8921 todo |= TODO_cleanup_cfg;
8922 }
8923
8924 /* Remove stores to variables we marked write-only.
8925 Keep access when store has side effect, i.e. in case when source
8926 is volatile. */
8927 if (gimple_store_p (stmt)
8928 && !gimple_has_side_effects (stmt))
8929 {
8930 tree lhs = get_base_address (gimple_get_lhs (stmt));
8931
8932 if (TREE_CODE (lhs) == VAR_DECL
8933 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
8934 && varpool_node::get (lhs)->writeonly)
8935 {
8936 unlink_stmt_vdef (stmt);
8937 gsi_remove (&gsi, true);
8938 release_defs (stmt);
8939 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8940 continue;
8941 }
8942 }
8943 /* For calls we can simply remove LHS when it is known
8944 to be write-only. */
8945 if (is_gimple_call (stmt)
8946 && gimple_get_lhs (stmt))
8947 {
8948 tree lhs = get_base_address (gimple_get_lhs (stmt));
8949
8950 if (TREE_CODE (lhs) == VAR_DECL
8951 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
8952 && varpool_node::get (lhs)->writeonly)
8953 {
8954 gimple_call_set_lhs (stmt, NULL);
8955 update_stmt (stmt);
8956 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8957 }
8958 }
8959
8960 if (maybe_clean_eh_stmt (stmt)
8961 && gimple_purge_dead_eh_edges (bb))
8962 todo |= TODO_cleanup_cfg;
8963 gsi_next (&gsi);
8964 }
8965
8966 FOR_EACH_EDGE (e, ei, bb->succs)
8967 e->count = apply_scale (e->count, count_scale);
8968
8969 /* If we have a basic block with no successors that does not
8970 end with a control statement or a noreturn call end it with
8971 a call to __builtin_unreachable. This situation can occur
8972 when inlining a noreturn call that does in fact return. */
8973 if (EDGE_COUNT (bb->succs) == 0)
8974 {
8975 gimple *stmt = last_stmt (bb);
8976 if (!stmt
8977 || (!is_ctrl_stmt (stmt)
8978 && (!is_gimple_call (stmt)
8979 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
8980 {
8981 if (stmt && is_gimple_call (stmt))
8982 gimple_call_set_ctrl_altering (stmt, false);
8983 stmt = gimple_build_call
8984 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
8985 gimple_stmt_iterator gsi = gsi_last_bb (bb);
8986 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
8987 }
8988 }
8989 }
8990 if (count_scale != REG_BR_PROB_BASE)
8991 compute_function_frequency ();
8992
8993 if (current_loops
8994 && (todo & TODO_cleanup_cfg))
8995 loops_state_set (LOOPS_NEED_FIXUP);
8996
8997 return todo;
8998 }
8999
9000 namespace {
9001
9002 const pass_data pass_data_fixup_cfg =
9003 {
9004 GIMPLE_PASS, /* type */
9005 "fixup_cfg", /* name */
9006 OPTGROUP_NONE, /* optinfo_flags */
9007 TV_NONE, /* tv_id */
9008 PROP_cfg, /* properties_required */
9009 0, /* properties_provided */
9010 0, /* properties_destroyed */
9011 0, /* todo_flags_start */
9012 0, /* todo_flags_finish */
9013 };
9014
9015 class pass_fixup_cfg : public gimple_opt_pass
9016 {
9017 public:
9018 pass_fixup_cfg (gcc::context *ctxt)
9019 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9020 {}
9021
9022 /* opt_pass methods: */
9023 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9024 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9025
9026 }; // class pass_fixup_cfg
9027
9028 } // anon namespace
9029
9030 gimple_opt_pass *
9031 make_pass_fixup_cfg (gcc::context *ctxt)
9032 {
9033 return new pass_fixup_cfg (ctxt);
9034 }
9035
9036 /* Garbage collection support for edge_def. */
9037
9038 extern void gt_ggc_mx (tree&);
9039 extern void gt_ggc_mx (gimple *&);
9040 extern void gt_ggc_mx (rtx&);
9041 extern void gt_ggc_mx (basic_block&);
9042
9043 static void
9044 gt_ggc_mx (rtx_insn *& x)
9045 {
9046 if (x)
9047 gt_ggc_mx_rtx_def ((void *) x);
9048 }
9049
9050 void
9051 gt_ggc_mx (edge_def *e)
9052 {
9053 tree block = LOCATION_BLOCK (e->goto_locus);
9054 gt_ggc_mx (e->src);
9055 gt_ggc_mx (e->dest);
9056 if (current_ir_type () == IR_GIMPLE)
9057 gt_ggc_mx (e->insns.g);
9058 else
9059 gt_ggc_mx (e->insns.r);
9060 gt_ggc_mx (block);
9061 }
9062
9063 /* PCH support for edge_def. */
9064
9065 extern void gt_pch_nx (tree&);
9066 extern void gt_pch_nx (gimple *&);
9067 extern void gt_pch_nx (rtx&);
9068 extern void gt_pch_nx (basic_block&);
9069
9070 static void
9071 gt_pch_nx (rtx_insn *& x)
9072 {
9073 if (x)
9074 gt_pch_nx_rtx_def ((void *) x);
9075 }
9076
9077 void
9078 gt_pch_nx (edge_def *e)
9079 {
9080 tree block = LOCATION_BLOCK (e->goto_locus);
9081 gt_pch_nx (e->src);
9082 gt_pch_nx (e->dest);
9083 if (current_ir_type () == IR_GIMPLE)
9084 gt_pch_nx (e->insns.g);
9085 else
9086 gt_pch_nx (e->insns.r);
9087 gt_pch_nx (block);
9088 }
9089
9090 void
9091 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9092 {
9093 tree block = LOCATION_BLOCK (e->goto_locus);
9094 op (&(e->src), cookie);
9095 op (&(e->dest), cookie);
9096 if (current_ir_type () == IR_GIMPLE)
9097 op (&(e->insns.g), cookie);
9098 else
9099 op (&(e->insns.r), cookie);
9100 op (&(block), cookie);
9101 }