arm.h (FUNCTION_ARG_ADVANCE): Only adjust iwmmxt_nregs if TARGET_IWMMXT_ABI.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "ggc.h"
37 #include "langhooks.h"
38 #include "diagnostic.h"
39 #include "tree-flow.h"
40 #include "timevar.h"
41 #include "tree-dump.h"
42 #include "tree-pass.h"
43 #include "toplev.h"
44 #include "except.h"
45 #include "cfgloop.h"
46 #include "cfglayout.h"
47 #include "hashtab.h"
48 #include "tree-ssa-propagate.h"
49
50 /* This file contains functions for building the Control Flow Graph (CFG)
51 for a function tree. */
52
53 /* Local declarations. */
54
55 /* Initial capacity for the basic block array. */
56 static const int initial_cfg_capacity = 20;
57
58 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
59 which use a particular edge. The CASE_LABEL_EXPRs are chained together
60 via their TREE_CHAIN field, which we clear after we're done with the
61 hash table to prevent problems with duplication of SWITCH_EXPRs.
62
63 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
64 update the case vector in response to edge redirections.
65
66 Right now this table is set up and torn down at key points in the
67 compilation process. It would be nice if we could make the table
68 more persistent. The key is getting notification of changes to
69 the CFG (particularly edge removal, creation and redirection). */
70
71 struct edge_to_cases_elt
72 {
73 /* The edge itself. Necessary for hashing and equality tests. */
74 edge e;
75
76 /* The case labels associated with this edge. We link these up via
77 their TREE_CHAIN field, then we wipe out the TREE_CHAIN fields
78 when we destroy the hash table. This prevents problems when copying
79 SWITCH_EXPRs. */
80 tree case_labels;
81 };
82
83 static htab_t edge_to_cases;
84
85 /* CFG statistics. */
86 struct cfg_stats_d
87 {
88 long num_merged_labels;
89 };
90
91 static struct cfg_stats_d cfg_stats;
92
93 /* Nonzero if we found a computed goto while building basic blocks. */
94 static bool found_computed_goto;
95
96 /* Basic blocks and flowgraphs. */
97 static basic_block create_bb (void *, void *, basic_block);
98 static void make_blocks (tree);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_switch_expr_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static edge tree_redirect_edge_and_branch (edge, basic_block);
107 static edge tree_try_redirect_by_replacing_jump (edge, basic_block);
108 static unsigned int split_critical_edges (void);
109
110 /* Various helpers. */
111 static inline bool stmt_starts_bb_p (tree, tree);
112 static int tree_verify_flow_info (void);
113 static void tree_make_forwarder_block (edge);
114 static void tree_cfg2vcg (FILE *);
115 static inline void change_bb_for_stmt (tree t, basic_block bb);
116
117 /* Flowgraph optimization and cleanup. */
118 static void tree_merge_blocks (basic_block, basic_block);
119 static bool tree_can_merge_blocks_p (basic_block, basic_block);
120 static void remove_bb (basic_block);
121 static edge find_taken_edge_computed_goto (basic_block, tree);
122 static edge find_taken_edge_cond_expr (basic_block, tree);
123 static edge find_taken_edge_switch_expr (basic_block, tree);
124 static tree find_case_label_for_value (tree, tree);
125
126 void
127 init_empty_tree_cfg (void)
128 {
129 /* Initialize the basic block array. */
130 init_flow ();
131 profile_status = PROFILE_ABSENT;
132 n_basic_blocks = NUM_FIXED_BLOCKS;
133 last_basic_block = NUM_FIXED_BLOCKS;
134 basic_block_info = VEC_alloc (basic_block, gc, initial_cfg_capacity);
135 VEC_safe_grow (basic_block, gc, basic_block_info, initial_cfg_capacity);
136 memset (VEC_address (basic_block, basic_block_info), 0,
137 sizeof (basic_block) * initial_cfg_capacity);
138
139 /* Build a mapping of labels to their associated blocks. */
140 label_to_block_map = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow (basic_block, gc, label_to_block_map, initial_cfg_capacity);
142 memset (VEC_address (basic_block, label_to_block_map),
143 0, sizeof (basic_block) * initial_cfg_capacity);
144
145 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
146 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
147 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
148 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
149 }
150
151 /*---------------------------------------------------------------------------
152 Create basic blocks
153 ---------------------------------------------------------------------------*/
154
155 /* Entry point to the CFG builder for trees. TP points to the list of
156 statements to be added to the flowgraph. */
157
158 static void
159 build_tree_cfg (tree *tp)
160 {
161 /* Register specific tree functions. */
162 tree_register_cfg_hooks ();
163
164 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
165
166 init_empty_tree_cfg ();
167
168 found_computed_goto = 0;
169 make_blocks (*tp);
170
171 /* Computed gotos are hell to deal with, especially if there are
172 lots of them with a large number of destinations. So we factor
173 them to a common computed goto location before we build the
174 edge list. After we convert back to normal form, we will un-factor
175 the computed gotos since factoring introduces an unwanted jump. */
176 if (found_computed_goto)
177 factor_computed_gotos ();
178
179 /* Make sure there is always at least one block, even if it's empty. */
180 if (n_basic_blocks == NUM_FIXED_BLOCKS)
181 create_empty_bb (ENTRY_BLOCK_PTR);
182
183 /* Adjust the size of the array. */
184 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
185 {
186 size_t old_size = VEC_length (basic_block, basic_block_info);
187 basic_block *p;
188 VEC_safe_grow (basic_block, gc, basic_block_info, n_basic_blocks);
189 p = VEC_address (basic_block, basic_block_info);
190 memset (&p[old_size], 0,
191 sizeof (basic_block) * (n_basic_blocks - old_size));
192 }
193
194 /* To speed up statement iterator walks, we first purge dead labels. */
195 cleanup_dead_labels ();
196
197 /* Group case nodes to reduce the number of edges.
198 We do this after cleaning up dead labels because otherwise we miss
199 a lot of obvious case merging opportunities. */
200 group_case_labels ();
201
202 /* Create the edges of the flowgraph. */
203 make_edges ();
204
205 /* Debugging dumps. */
206
207 /* Write the flowgraph to a VCG file. */
208 {
209 int local_dump_flags;
210 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
211 if (vcg_file)
212 {
213 tree_cfg2vcg (vcg_file);
214 dump_end (TDI_vcg, vcg_file);
215 }
216 }
217
218 #ifdef ENABLE_CHECKING
219 verify_stmts ();
220 #endif
221
222 /* Dump a textual representation of the flowgraph. */
223 if (dump_file)
224 dump_tree_cfg (dump_file, dump_flags);
225 }
226
227 static unsigned int
228 execute_build_cfg (void)
229 {
230 build_tree_cfg (&DECL_SAVED_TREE (current_function_decl));
231 return 0;
232 }
233
234 struct tree_opt_pass pass_build_cfg =
235 {
236 "cfg", /* name */
237 NULL, /* gate */
238 execute_build_cfg, /* execute */
239 NULL, /* sub */
240 NULL, /* next */
241 0, /* static_pass_number */
242 TV_TREE_CFG, /* tv_id */
243 PROP_gimple_leh, /* properties_required */
244 PROP_cfg, /* properties_provided */
245 0, /* properties_destroyed */
246 0, /* todo_flags_start */
247 TODO_verify_stmts, /* todo_flags_finish */
248 0 /* letter */
249 };
250
251 /* Search the CFG for any computed gotos. If found, factor them to a
252 common computed goto site. Also record the location of that site so
253 that we can un-factor the gotos after we have converted back to
254 normal form. */
255
256 static void
257 factor_computed_gotos (void)
258 {
259 basic_block bb;
260 tree factored_label_decl = NULL;
261 tree var = NULL;
262 tree factored_computed_goto_label = NULL;
263 tree factored_computed_goto = NULL;
264
265 /* We know there are one or more computed gotos in this function.
266 Examine the last statement in each basic block to see if the block
267 ends with a computed goto. */
268
269 FOR_EACH_BB (bb)
270 {
271 block_stmt_iterator bsi = bsi_last (bb);
272 tree last;
273
274 if (bsi_end_p (bsi))
275 continue;
276 last = bsi_stmt (bsi);
277
278 /* Ignore the computed goto we create when we factor the original
279 computed gotos. */
280 if (last == factored_computed_goto)
281 continue;
282
283 /* If the last statement is a computed goto, factor it. */
284 if (computed_goto_p (last))
285 {
286 tree assignment;
287
288 /* The first time we find a computed goto we need to create
289 the factored goto block and the variable each original
290 computed goto will use for their goto destination. */
291 if (! factored_computed_goto)
292 {
293 basic_block new_bb = create_empty_bb (bb);
294 block_stmt_iterator new_bsi = bsi_start (new_bb);
295
296 /* Create the destination of the factored goto. Each original
297 computed goto will put its desired destination into this
298 variable and jump to the label we create immediately
299 below. */
300 var = create_tmp_var (ptr_type_node, "gotovar");
301
302 /* Build a label for the new block which will contain the
303 factored computed goto. */
304 factored_label_decl = create_artificial_label ();
305 factored_computed_goto_label
306 = build1 (LABEL_EXPR, void_type_node, factored_label_decl);
307 bsi_insert_after (&new_bsi, factored_computed_goto_label,
308 BSI_NEW_STMT);
309
310 /* Build our new computed goto. */
311 factored_computed_goto = build1 (GOTO_EXPR, void_type_node, var);
312 bsi_insert_after (&new_bsi, factored_computed_goto,
313 BSI_NEW_STMT);
314 }
315
316 /* Copy the original computed goto's destination into VAR. */
317 assignment = build2 (MODIFY_EXPR, ptr_type_node,
318 var, GOTO_DESTINATION (last));
319 bsi_insert_before (&bsi, assignment, BSI_SAME_STMT);
320
321 /* And re-vector the computed goto to the new destination. */
322 GOTO_DESTINATION (last) = factored_label_decl;
323 }
324 }
325 }
326
327
328 /* Build a flowgraph for the statement_list STMT_LIST. */
329
330 static void
331 make_blocks (tree stmt_list)
332 {
333 tree_stmt_iterator i = tsi_start (stmt_list);
334 tree stmt = NULL;
335 bool start_new_block = true;
336 bool first_stmt_of_list = true;
337 basic_block bb = ENTRY_BLOCK_PTR;
338
339 while (!tsi_end_p (i))
340 {
341 tree prev_stmt;
342
343 prev_stmt = stmt;
344 stmt = tsi_stmt (i);
345
346 /* If the statement starts a new basic block or if we have determined
347 in a previous pass that we need to create a new block for STMT, do
348 so now. */
349 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
350 {
351 if (!first_stmt_of_list)
352 stmt_list = tsi_split_statement_list_before (&i);
353 bb = create_basic_block (stmt_list, NULL, bb);
354 start_new_block = false;
355 }
356
357 /* Now add STMT to BB and create the subgraphs for special statement
358 codes. */
359 set_bb_for_stmt (stmt, bb);
360
361 if (computed_goto_p (stmt))
362 found_computed_goto = true;
363
364 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
365 next iteration. */
366 if (stmt_ends_bb_p (stmt))
367 start_new_block = true;
368
369 tsi_next (&i);
370 first_stmt_of_list = false;
371 }
372 }
373
374
375 /* Create and return a new empty basic block after bb AFTER. */
376
377 static basic_block
378 create_bb (void *h, void *e, basic_block after)
379 {
380 basic_block bb;
381
382 gcc_assert (!e);
383
384 /* Create and initialize a new basic block. Since alloc_block uses
385 ggc_alloc_cleared to allocate a basic block, we do not have to
386 clear the newly allocated basic block here. */
387 bb = alloc_block ();
388
389 bb->index = last_basic_block;
390 bb->flags = BB_NEW;
391 bb->stmt_list = h ? (tree) h : alloc_stmt_list ();
392
393 /* Add the new block to the linked list of blocks. */
394 link_block (bb, after);
395
396 /* Grow the basic block array if needed. */
397 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
398 {
399 size_t old_size = VEC_length (basic_block, basic_block_info);
400 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
401 basic_block *p;
402 VEC_safe_grow (basic_block, gc, basic_block_info, new_size);
403 p = VEC_address (basic_block, basic_block_info);
404 memset (&p[old_size], 0, sizeof (basic_block) * (new_size - old_size));
405 }
406
407 /* Add the newly created block to the array. */
408 SET_BASIC_BLOCK (last_basic_block, bb);
409
410 n_basic_blocks++;
411 last_basic_block++;
412
413 return bb;
414 }
415
416
417 /*---------------------------------------------------------------------------
418 Edge creation
419 ---------------------------------------------------------------------------*/
420
421 /* Fold COND_EXPR_COND of each COND_EXPR. */
422
423 void
424 fold_cond_expr_cond (void)
425 {
426 basic_block bb;
427
428 FOR_EACH_BB (bb)
429 {
430 tree stmt = last_stmt (bb);
431
432 if (stmt
433 && TREE_CODE (stmt) == COND_EXPR)
434 {
435 tree cond = fold (COND_EXPR_COND (stmt));
436 if (integer_zerop (cond))
437 COND_EXPR_COND (stmt) = boolean_false_node;
438 else if (integer_onep (cond))
439 COND_EXPR_COND (stmt) = boolean_true_node;
440 }
441 }
442 }
443
444 /* Join all the blocks in the flowgraph. */
445
446 static void
447 make_edges (void)
448 {
449 basic_block bb;
450 struct omp_region *cur_region = NULL;
451
452 /* Create an edge from entry to the first block with executable
453 statements in it. */
454 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
455
456 /* Traverse the basic block array placing edges. */
457 FOR_EACH_BB (bb)
458 {
459 tree last = last_stmt (bb);
460 bool fallthru;
461
462 if (last)
463 {
464 enum tree_code code = TREE_CODE (last);
465 switch (code)
466 {
467 case GOTO_EXPR:
468 make_goto_expr_edges (bb);
469 fallthru = false;
470 break;
471 case RETURN_EXPR:
472 make_edge (bb, EXIT_BLOCK_PTR, 0);
473 fallthru = false;
474 break;
475 case COND_EXPR:
476 make_cond_expr_edges (bb);
477 fallthru = false;
478 break;
479 case SWITCH_EXPR:
480 make_switch_expr_edges (bb);
481 fallthru = false;
482 break;
483 case RESX_EXPR:
484 make_eh_edges (last);
485 fallthru = false;
486 break;
487
488 case CALL_EXPR:
489 /* If this function receives a nonlocal goto, then we need to
490 make edges from this call site to all the nonlocal goto
491 handlers. */
492 if (tree_can_make_abnormal_goto (last))
493 make_abnormal_goto_edges (bb, true);
494
495 /* If this statement has reachable exception handlers, then
496 create abnormal edges to them. */
497 make_eh_edges (last);
498
499 /* Some calls are known not to return. */
500 fallthru = !(call_expr_flags (last) & ECF_NORETURN);
501 break;
502
503 case MODIFY_EXPR:
504 if (is_ctrl_altering_stmt (last))
505 {
506 /* A MODIFY_EXPR may have a CALL_EXPR on its RHS and the
507 CALL_EXPR may have an abnormal edge. Search the RHS for
508 this case and create any required edges. */
509 if (tree_can_make_abnormal_goto (last))
510 make_abnormal_goto_edges (bb, true);
511
512 make_eh_edges (last);
513 }
514 fallthru = true;
515 break;
516
517 case OMP_PARALLEL:
518 case OMP_FOR:
519 case OMP_SINGLE:
520 case OMP_MASTER:
521 case OMP_ORDERED:
522 case OMP_CRITICAL:
523 case OMP_SECTION:
524 cur_region = new_omp_region (bb, code, cur_region);
525 fallthru = true;
526 break;
527
528 case OMP_SECTIONS:
529 cur_region = new_omp_region (bb, code, cur_region);
530 fallthru = false;
531 break;
532
533 case OMP_RETURN:
534 /* In the case of an OMP_SECTION, the edge will go somewhere
535 other than the next block. This will be created later. */
536 cur_region->exit = bb;
537 fallthru = cur_region->type != OMP_SECTION;
538 cur_region = cur_region->outer;
539 break;
540
541 case OMP_CONTINUE:
542 cur_region->cont = bb;
543 switch (cur_region->type)
544 {
545 case OMP_FOR:
546 /* ??? Technically there should be a some sort of loopback
547 edge here, but it goes to a block that doesn't exist yet,
548 and without it, updating the ssa form would be a real
549 bear. Fortunately, we don't yet do ssa before expanding
550 these nodes. */
551 break;
552
553 case OMP_SECTIONS:
554 /* Wire up the edges into and out of the nested sections. */
555 /* ??? Similarly wrt loopback. */
556 {
557 struct omp_region *i;
558 for (i = cur_region->inner; i ; i = i->next)
559 {
560 gcc_assert (i->type == OMP_SECTION);
561 make_edge (cur_region->entry, i->entry, 0);
562 make_edge (i->exit, bb, EDGE_FALLTHRU);
563 }
564 }
565 break;
566
567 default:
568 gcc_unreachable ();
569 }
570 fallthru = true;
571 break;
572
573 default:
574 gcc_assert (!stmt_ends_bb_p (last));
575 fallthru = true;
576 }
577 }
578 else
579 fallthru = true;
580
581 if (fallthru)
582 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
583 }
584
585 if (root_omp_region)
586 free_omp_regions ();
587
588 /* Fold COND_EXPR_COND of each COND_EXPR. */
589 fold_cond_expr_cond ();
590
591 /* Clean up the graph and warn for unreachable code. */
592 cleanup_tree_cfg ();
593 }
594
595
596 /* Create the edges for a COND_EXPR starting at block BB.
597 At this point, both clauses must contain only simple gotos. */
598
599 static void
600 make_cond_expr_edges (basic_block bb)
601 {
602 tree entry = last_stmt (bb);
603 basic_block then_bb, else_bb;
604 tree then_label, else_label;
605 edge e;
606
607 gcc_assert (entry);
608 gcc_assert (TREE_CODE (entry) == COND_EXPR);
609
610 /* Entry basic blocks for each component. */
611 then_label = GOTO_DESTINATION (COND_EXPR_THEN (entry));
612 else_label = GOTO_DESTINATION (COND_EXPR_ELSE (entry));
613 then_bb = label_to_block (then_label);
614 else_bb = label_to_block (else_label);
615
616 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
617 #ifdef USE_MAPPED_LOCATION
618 e->goto_locus = EXPR_LOCATION (COND_EXPR_THEN (entry));
619 #else
620 e->goto_locus = EXPR_LOCUS (COND_EXPR_THEN (entry));
621 #endif
622 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
623 if (e)
624 {
625 #ifdef USE_MAPPED_LOCATION
626 e->goto_locus = EXPR_LOCATION (COND_EXPR_ELSE (entry));
627 #else
628 e->goto_locus = EXPR_LOCUS (COND_EXPR_ELSE (entry));
629 #endif
630 }
631 }
632
633 /* Hashing routine for EDGE_TO_CASES. */
634
635 static hashval_t
636 edge_to_cases_hash (const void *p)
637 {
638 edge e = ((struct edge_to_cases_elt *)p)->e;
639
640 /* Hash on the edge itself (which is a pointer). */
641 return htab_hash_pointer (e);
642 }
643
644 /* Equality routine for EDGE_TO_CASES, edges are unique, so testing
645 for equality is just a pointer comparison. */
646
647 static int
648 edge_to_cases_eq (const void *p1, const void *p2)
649 {
650 edge e1 = ((struct edge_to_cases_elt *)p1)->e;
651 edge e2 = ((struct edge_to_cases_elt *)p2)->e;
652
653 return e1 == e2;
654 }
655
656 /* Called for each element in the hash table (P) as we delete the
657 edge to cases hash table.
658
659 Clear all the TREE_CHAINs to prevent problems with copying of
660 SWITCH_EXPRs and structure sharing rules, then free the hash table
661 element. */
662
663 static void
664 edge_to_cases_cleanup (void *p)
665 {
666 struct edge_to_cases_elt *elt = (struct edge_to_cases_elt *) p;
667 tree t, next;
668
669 for (t = elt->case_labels; t; t = next)
670 {
671 next = TREE_CHAIN (t);
672 TREE_CHAIN (t) = NULL;
673 }
674 free (p);
675 }
676
677 /* Start recording information mapping edges to case labels. */
678
679 void
680 start_recording_case_labels (void)
681 {
682 gcc_assert (edge_to_cases == NULL);
683
684 edge_to_cases = htab_create (37,
685 edge_to_cases_hash,
686 edge_to_cases_eq,
687 edge_to_cases_cleanup);
688 }
689
690 /* Return nonzero if we are recording information for case labels. */
691
692 static bool
693 recording_case_labels_p (void)
694 {
695 return (edge_to_cases != NULL);
696 }
697
698 /* Stop recording information mapping edges to case labels and
699 remove any information we have recorded. */
700 void
701 end_recording_case_labels (void)
702 {
703 htab_delete (edge_to_cases);
704 edge_to_cases = NULL;
705 }
706
707 /* Record that CASE_LABEL (a CASE_LABEL_EXPR) references edge E. */
708
709 static void
710 record_switch_edge (edge e, tree case_label)
711 {
712 struct edge_to_cases_elt *elt;
713 void **slot;
714
715 /* Build a hash table element so we can see if E is already
716 in the table. */
717 elt = XNEW (struct edge_to_cases_elt);
718 elt->e = e;
719 elt->case_labels = case_label;
720
721 slot = htab_find_slot (edge_to_cases, elt, INSERT);
722
723 if (*slot == NULL)
724 {
725 /* E was not in the hash table. Install E into the hash table. */
726 *slot = (void *)elt;
727 }
728 else
729 {
730 /* E was already in the hash table. Free ELT as we do not need it
731 anymore. */
732 free (elt);
733
734 /* Get the entry stored in the hash table. */
735 elt = (struct edge_to_cases_elt *) *slot;
736
737 /* Add it to the chain of CASE_LABEL_EXPRs referencing E. */
738 TREE_CHAIN (case_label) = elt->case_labels;
739 elt->case_labels = case_label;
740 }
741 }
742
743 /* If we are inside a {start,end}_recording_cases block, then return
744 a chain of CASE_LABEL_EXPRs from T which reference E.
745
746 Otherwise return NULL. */
747
748 static tree
749 get_cases_for_edge (edge e, tree t)
750 {
751 struct edge_to_cases_elt elt, *elt_p;
752 void **slot;
753 size_t i, n;
754 tree vec;
755
756 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
757 chains available. Return NULL so the caller can detect this case. */
758 if (!recording_case_labels_p ())
759 return NULL;
760
761 restart:
762 elt.e = e;
763 elt.case_labels = NULL;
764 slot = htab_find_slot (edge_to_cases, &elt, NO_INSERT);
765
766 if (slot)
767 {
768 elt_p = (struct edge_to_cases_elt *)*slot;
769 return elt_p->case_labels;
770 }
771
772 /* If we did not find E in the hash table, then this must be the first
773 time we have been queried for information about E & T. Add all the
774 elements from T to the hash table then perform the query again. */
775
776 vec = SWITCH_LABELS (t);
777 n = TREE_VEC_LENGTH (vec);
778 for (i = 0; i < n; i++)
779 {
780 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
781 basic_block label_bb = label_to_block (lab);
782 record_switch_edge (find_edge (e->src, label_bb), TREE_VEC_ELT (vec, i));
783 }
784 goto restart;
785 }
786
787 /* Create the edges for a SWITCH_EXPR starting at block BB.
788 At this point, the switch body has been lowered and the
789 SWITCH_LABELS filled in, so this is in effect a multi-way branch. */
790
791 static void
792 make_switch_expr_edges (basic_block bb)
793 {
794 tree entry = last_stmt (bb);
795 size_t i, n;
796 tree vec;
797
798 vec = SWITCH_LABELS (entry);
799 n = TREE_VEC_LENGTH (vec);
800
801 for (i = 0; i < n; ++i)
802 {
803 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
804 basic_block label_bb = label_to_block (lab);
805 make_edge (bb, label_bb, 0);
806 }
807 }
808
809
810 /* Return the basic block holding label DEST. */
811
812 basic_block
813 label_to_block_fn (struct function *ifun, tree dest)
814 {
815 int uid = LABEL_DECL_UID (dest);
816
817 /* We would die hard when faced by an undefined label. Emit a label to
818 the very first basic block. This will hopefully make even the dataflow
819 and undefined variable warnings quite right. */
820 if ((errorcount || sorrycount) && uid < 0)
821 {
822 block_stmt_iterator bsi =
823 bsi_start (BASIC_BLOCK (NUM_FIXED_BLOCKS));
824 tree stmt;
825
826 stmt = build1 (LABEL_EXPR, void_type_node, dest);
827 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
828 uid = LABEL_DECL_UID (dest);
829 }
830 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
831 <= (unsigned int) uid)
832 return NULL;
833 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
834 }
835
836 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
837 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
838
839 void
840 make_abnormal_goto_edges (basic_block bb, bool for_call)
841 {
842 basic_block target_bb;
843 block_stmt_iterator bsi;
844
845 FOR_EACH_BB (target_bb)
846 for (bsi = bsi_start (target_bb); !bsi_end_p (bsi); bsi_next (&bsi))
847 {
848 tree target = bsi_stmt (bsi);
849
850 if (TREE_CODE (target) != LABEL_EXPR)
851 break;
852
853 target = LABEL_EXPR_LABEL (target);
854
855 /* Make an edge to every label block that has been marked as a
856 potential target for a computed goto or a non-local goto. */
857 if ((FORCED_LABEL (target) && !for_call)
858 || (DECL_NONLOCAL (target) && for_call))
859 {
860 make_edge (bb, target_bb, EDGE_ABNORMAL);
861 break;
862 }
863 }
864 }
865
866 /* Create edges for a goto statement at block BB. */
867
868 static void
869 make_goto_expr_edges (basic_block bb)
870 {
871 block_stmt_iterator last = bsi_last (bb);
872 tree goto_t = bsi_stmt (last);
873
874 /* A simple GOTO creates normal edges. */
875 if (simple_goto_p (goto_t))
876 {
877 tree dest = GOTO_DESTINATION (goto_t);
878 edge e = make_edge (bb, label_to_block (dest), EDGE_FALLTHRU);
879 #ifdef USE_MAPPED_LOCATION
880 e->goto_locus = EXPR_LOCATION (goto_t);
881 #else
882 e->goto_locus = EXPR_LOCUS (goto_t);
883 #endif
884 bsi_remove (&last, true);
885 return;
886 }
887
888 /* A computed GOTO creates abnormal edges. */
889 make_abnormal_goto_edges (bb, false);
890 }
891
892
893 /*---------------------------------------------------------------------------
894 Flowgraph analysis
895 ---------------------------------------------------------------------------*/
896
897 /* Cleanup useless labels in basic blocks. This is something we wish
898 to do early because it allows us to group case labels before creating
899 the edges for the CFG, and it speeds up block statement iterators in
900 all passes later on.
901 We only run this pass once, running it more than once is probably not
902 profitable. */
903
904 /* A map from basic block index to the leading label of that block. */
905 static tree *label_for_bb;
906
907 /* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
908 static void
909 update_eh_label (struct eh_region *region)
910 {
911 tree old_label = get_eh_region_tree_label (region);
912 if (old_label)
913 {
914 tree new_label;
915 basic_block bb = label_to_block (old_label);
916
917 /* ??? After optimizing, there may be EH regions with labels
918 that have already been removed from the function body, so
919 there is no basic block for them. */
920 if (! bb)
921 return;
922
923 new_label = label_for_bb[bb->index];
924 set_eh_region_tree_label (region, new_label);
925 }
926 }
927
928 /* Given LABEL return the first label in the same basic block. */
929 static tree
930 main_block_label (tree label)
931 {
932 basic_block bb = label_to_block (label);
933
934 /* label_to_block possibly inserted undefined label into the chain. */
935 if (!label_for_bb[bb->index])
936 label_for_bb[bb->index] = label;
937 return label_for_bb[bb->index];
938 }
939
940 /* Cleanup redundant labels. This is a three-step process:
941 1) Find the leading label for each block.
942 2) Redirect all references to labels to the leading labels.
943 3) Cleanup all useless labels. */
944
945 void
946 cleanup_dead_labels (void)
947 {
948 basic_block bb;
949 label_for_bb = XCNEWVEC (tree, last_basic_block);
950
951 /* Find a suitable label for each block. We use the first user-defined
952 label if there is one, or otherwise just the first label we see. */
953 FOR_EACH_BB (bb)
954 {
955 block_stmt_iterator i;
956
957 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
958 {
959 tree label, stmt = bsi_stmt (i);
960
961 if (TREE_CODE (stmt) != LABEL_EXPR)
962 break;
963
964 label = LABEL_EXPR_LABEL (stmt);
965
966 /* If we have not yet seen a label for the current block,
967 remember this one and see if there are more labels. */
968 if (! label_for_bb[bb->index])
969 {
970 label_for_bb[bb->index] = label;
971 continue;
972 }
973
974 /* If we did see a label for the current block already, but it
975 is an artificially created label, replace it if the current
976 label is a user defined label. */
977 if (! DECL_ARTIFICIAL (label)
978 && DECL_ARTIFICIAL (label_for_bb[bb->index]))
979 {
980 label_for_bb[bb->index] = label;
981 break;
982 }
983 }
984 }
985
986 /* Now redirect all jumps/branches to the selected label.
987 First do so for each block ending in a control statement. */
988 FOR_EACH_BB (bb)
989 {
990 tree stmt = last_stmt (bb);
991 if (!stmt)
992 continue;
993
994 switch (TREE_CODE (stmt))
995 {
996 case COND_EXPR:
997 {
998 tree true_branch, false_branch;
999
1000 true_branch = COND_EXPR_THEN (stmt);
1001 false_branch = COND_EXPR_ELSE (stmt);
1002
1003 GOTO_DESTINATION (true_branch)
1004 = main_block_label (GOTO_DESTINATION (true_branch));
1005 GOTO_DESTINATION (false_branch)
1006 = main_block_label (GOTO_DESTINATION (false_branch));
1007
1008 break;
1009 }
1010
1011 case SWITCH_EXPR:
1012 {
1013 size_t i;
1014 tree vec = SWITCH_LABELS (stmt);
1015 size_t n = TREE_VEC_LENGTH (vec);
1016
1017 /* Replace all destination labels. */
1018 for (i = 0; i < n; ++i)
1019 {
1020 tree elt = TREE_VEC_ELT (vec, i);
1021 tree label = main_block_label (CASE_LABEL (elt));
1022 CASE_LABEL (elt) = label;
1023 }
1024 break;
1025 }
1026
1027 /* We have to handle GOTO_EXPRs until they're removed, and we don't
1028 remove them until after we've created the CFG edges. */
1029 case GOTO_EXPR:
1030 if (! computed_goto_p (stmt))
1031 {
1032 GOTO_DESTINATION (stmt)
1033 = main_block_label (GOTO_DESTINATION (stmt));
1034 break;
1035 }
1036
1037 default:
1038 break;
1039 }
1040 }
1041
1042 for_each_eh_region (update_eh_label);
1043
1044 /* Finally, purge dead labels. All user-defined labels and labels that
1045 can be the target of non-local gotos and labels which have their
1046 address taken are preserved. */
1047 FOR_EACH_BB (bb)
1048 {
1049 block_stmt_iterator i;
1050 tree label_for_this_bb = label_for_bb[bb->index];
1051
1052 if (! label_for_this_bb)
1053 continue;
1054
1055 for (i = bsi_start (bb); !bsi_end_p (i); )
1056 {
1057 tree label, stmt = bsi_stmt (i);
1058
1059 if (TREE_CODE (stmt) != LABEL_EXPR)
1060 break;
1061
1062 label = LABEL_EXPR_LABEL (stmt);
1063
1064 if (label == label_for_this_bb
1065 || ! DECL_ARTIFICIAL (label)
1066 || DECL_NONLOCAL (label)
1067 || FORCED_LABEL (label))
1068 bsi_next (&i);
1069 else
1070 bsi_remove (&i, true);
1071 }
1072 }
1073
1074 free (label_for_bb);
1075 }
1076
1077 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1078 and scan the sorted vector of cases. Combine the ones jumping to the
1079 same label.
1080 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1081
1082 void
1083 group_case_labels (void)
1084 {
1085 basic_block bb;
1086
1087 FOR_EACH_BB (bb)
1088 {
1089 tree stmt = last_stmt (bb);
1090 if (stmt && TREE_CODE (stmt) == SWITCH_EXPR)
1091 {
1092 tree labels = SWITCH_LABELS (stmt);
1093 int old_size = TREE_VEC_LENGTH (labels);
1094 int i, j, new_size = old_size;
1095 tree default_case = TREE_VEC_ELT (labels, old_size - 1);
1096 tree default_label;
1097
1098 /* The default label is always the last case in a switch
1099 statement after gimplification. */
1100 default_label = CASE_LABEL (default_case);
1101
1102 /* Look for possible opportunities to merge cases.
1103 Ignore the last element of the label vector because it
1104 must be the default case. */
1105 i = 0;
1106 while (i < old_size - 1)
1107 {
1108 tree base_case, base_label, base_high;
1109 base_case = TREE_VEC_ELT (labels, i);
1110
1111 gcc_assert (base_case);
1112 base_label = CASE_LABEL (base_case);
1113
1114 /* Discard cases that have the same destination as the
1115 default case. */
1116 if (base_label == default_label)
1117 {
1118 TREE_VEC_ELT (labels, i) = NULL_TREE;
1119 i++;
1120 new_size--;
1121 continue;
1122 }
1123
1124 base_high = CASE_HIGH (base_case) ?
1125 CASE_HIGH (base_case) : CASE_LOW (base_case);
1126 i++;
1127 /* Try to merge case labels. Break out when we reach the end
1128 of the label vector or when we cannot merge the next case
1129 label with the current one. */
1130 while (i < old_size - 1)
1131 {
1132 tree merge_case = TREE_VEC_ELT (labels, i);
1133 tree merge_label = CASE_LABEL (merge_case);
1134 tree t = int_const_binop (PLUS_EXPR, base_high,
1135 integer_one_node, 1);
1136
1137 /* Merge the cases if they jump to the same place,
1138 and their ranges are consecutive. */
1139 if (merge_label == base_label
1140 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1141 {
1142 base_high = CASE_HIGH (merge_case) ?
1143 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1144 CASE_HIGH (base_case) = base_high;
1145 TREE_VEC_ELT (labels, i) = NULL_TREE;
1146 new_size--;
1147 i++;
1148 }
1149 else
1150 break;
1151 }
1152 }
1153
1154 /* Compress the case labels in the label vector, and adjust the
1155 length of the vector. */
1156 for (i = 0, j = 0; i < new_size; i++)
1157 {
1158 while (! TREE_VEC_ELT (labels, j))
1159 j++;
1160 TREE_VEC_ELT (labels, i) = TREE_VEC_ELT (labels, j++);
1161 }
1162 TREE_VEC_LENGTH (labels) = new_size;
1163 }
1164 }
1165 }
1166
1167 /* Checks whether we can merge block B into block A. */
1168
1169 static bool
1170 tree_can_merge_blocks_p (basic_block a, basic_block b)
1171 {
1172 tree stmt;
1173 block_stmt_iterator bsi;
1174 tree phi;
1175
1176 if (!single_succ_p (a))
1177 return false;
1178
1179 if (single_succ_edge (a)->flags & EDGE_ABNORMAL)
1180 return false;
1181
1182 if (single_succ (a) != b)
1183 return false;
1184
1185 if (!single_pred_p (b))
1186 return false;
1187
1188 if (b == EXIT_BLOCK_PTR)
1189 return false;
1190
1191 /* If A ends by a statement causing exceptions or something similar, we
1192 cannot merge the blocks. */
1193 stmt = last_stmt (a);
1194 if (stmt && stmt_ends_bb_p (stmt))
1195 return false;
1196
1197 /* Do not allow a block with only a non-local label to be merged. */
1198 if (stmt && TREE_CODE (stmt) == LABEL_EXPR
1199 && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
1200 return false;
1201
1202 /* It must be possible to eliminate all phi nodes in B. If ssa form
1203 is not up-to-date, we cannot eliminate any phis; however, if only
1204 some symbols as whole are marked for renaming, this is not a problem,
1205 as phi nodes for those symbols are irrelevant in updating anyway. */
1206 phi = phi_nodes (b);
1207 if (phi)
1208 {
1209 if (name_mappings_registered_p ())
1210 return false;
1211
1212 for (; phi; phi = PHI_CHAIN (phi))
1213 if (!is_gimple_reg (PHI_RESULT (phi))
1214 && !may_propagate_copy (PHI_RESULT (phi), PHI_ARG_DEF (phi, 0)))
1215 return false;
1216 }
1217
1218 /* Do not remove user labels. */
1219 for (bsi = bsi_start (b); !bsi_end_p (bsi); bsi_next (&bsi))
1220 {
1221 stmt = bsi_stmt (bsi);
1222 if (TREE_CODE (stmt) != LABEL_EXPR)
1223 break;
1224 if (!DECL_ARTIFICIAL (LABEL_EXPR_LABEL (stmt)))
1225 return false;
1226 }
1227
1228 /* Protect the loop latches. */
1229 if (current_loops
1230 && b->loop_father->latch == b)
1231 return false;
1232
1233 return true;
1234 }
1235
1236 /* Replaces all uses of NAME by VAL. */
1237
1238 void
1239 replace_uses_by (tree name, tree val)
1240 {
1241 imm_use_iterator imm_iter;
1242 use_operand_p use;
1243 tree stmt;
1244 edge e;
1245 unsigned i;
1246
1247 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1248 {
1249 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1250 {
1251 replace_exp (use, val);
1252
1253 if (TREE_CODE (stmt) == PHI_NODE)
1254 {
1255 e = PHI_ARG_EDGE (stmt, PHI_ARG_INDEX_FROM_USE (use));
1256 if (e->flags & EDGE_ABNORMAL)
1257 {
1258 /* This can only occur for virtual operands, since
1259 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1260 would prevent replacement. */
1261 gcc_assert (!is_gimple_reg (name));
1262 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1263 }
1264 }
1265 }
1266 if (TREE_CODE (stmt) != PHI_NODE)
1267 {
1268 tree rhs;
1269
1270 fold_stmt_inplace (stmt);
1271 rhs = get_rhs (stmt);
1272 if (TREE_CODE (rhs) == ADDR_EXPR)
1273 recompute_tree_invariant_for_addr_expr (rhs);
1274
1275 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1276 mark_new_vars_to_rename (stmt);
1277 }
1278 }
1279
1280 gcc_assert (num_imm_uses (name) == 0);
1281
1282 /* Also update the trees stored in loop structures. */
1283 if (current_loops)
1284 {
1285 struct loop *loop;
1286
1287 for (i = 0; i < current_loops->num; i++)
1288 {
1289 loop = current_loops->parray[i];
1290 if (loop)
1291 substitute_in_loop_info (loop, name, val);
1292 }
1293 }
1294 }
1295
1296 /* Merge block B into block A. */
1297
1298 static void
1299 tree_merge_blocks (basic_block a, basic_block b)
1300 {
1301 block_stmt_iterator bsi;
1302 tree_stmt_iterator last;
1303 tree phi;
1304
1305 if (dump_file)
1306 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1307
1308 /* Remove all single-valued PHI nodes from block B of the form
1309 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1310 bsi = bsi_last (a);
1311 for (phi = phi_nodes (b); phi; phi = phi_nodes (b))
1312 {
1313 tree def = PHI_RESULT (phi), use = PHI_ARG_DEF (phi, 0);
1314 tree copy;
1315 bool may_replace_uses = may_propagate_copy (def, use);
1316
1317 /* In case we have loops to care about, do not propagate arguments of
1318 loop closed ssa phi nodes. */
1319 if (current_loops
1320 && is_gimple_reg (def)
1321 && TREE_CODE (use) == SSA_NAME
1322 && a->loop_father != b->loop_father)
1323 may_replace_uses = false;
1324
1325 if (!may_replace_uses)
1326 {
1327 gcc_assert (is_gimple_reg (def));
1328
1329 /* Note that just emitting the copies is fine -- there is no problem
1330 with ordering of phi nodes. This is because A is the single
1331 predecessor of B, therefore results of the phi nodes cannot
1332 appear as arguments of the phi nodes. */
1333 copy = build2 (MODIFY_EXPR, void_type_node, def, use);
1334 bsi_insert_after (&bsi, copy, BSI_NEW_STMT);
1335 SET_PHI_RESULT (phi, NULL_TREE);
1336 SSA_NAME_DEF_STMT (def) = copy;
1337 }
1338 else
1339 replace_uses_by (def, use);
1340
1341 remove_phi_node (phi, NULL);
1342 }
1343
1344 /* Ensure that B follows A. */
1345 move_block_after (b, a);
1346
1347 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1348 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1349
1350 /* Remove labels from B and set bb_for_stmt to A for other statements. */
1351 for (bsi = bsi_start (b); !bsi_end_p (bsi);)
1352 {
1353 if (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
1354 {
1355 tree label = bsi_stmt (bsi);
1356
1357 bsi_remove (&bsi, false);
1358 /* Now that we can thread computed gotos, we might have
1359 a situation where we have a forced label in block B
1360 However, the label at the start of block B might still be
1361 used in other ways (think about the runtime checking for
1362 Fortran assigned gotos). So we can not just delete the
1363 label. Instead we move the label to the start of block A. */
1364 if (FORCED_LABEL (LABEL_EXPR_LABEL (label)))
1365 {
1366 block_stmt_iterator dest_bsi = bsi_start (a);
1367 bsi_insert_before (&dest_bsi, label, BSI_NEW_STMT);
1368 }
1369 }
1370 else
1371 {
1372 change_bb_for_stmt (bsi_stmt (bsi), a);
1373 bsi_next (&bsi);
1374 }
1375 }
1376
1377 /* Merge the chains. */
1378 last = tsi_last (a->stmt_list);
1379 tsi_link_after (&last, b->stmt_list, TSI_NEW_STMT);
1380 b->stmt_list = NULL;
1381 }
1382
1383
1384 /* Return the one of two successors of BB that is not reachable by a
1385 reached by a complex edge, if there is one. Else, return BB. We use
1386 this in optimizations that use post-dominators for their heuristics,
1387 to catch the cases in C++ where function calls are involved. */
1388
1389 basic_block
1390 single_noncomplex_succ (basic_block bb)
1391 {
1392 edge e0, e1;
1393 if (EDGE_COUNT (bb->succs) != 2)
1394 return bb;
1395
1396 e0 = EDGE_SUCC (bb, 0);
1397 e1 = EDGE_SUCC (bb, 1);
1398 if (e0->flags & EDGE_COMPLEX)
1399 return e1->dest;
1400 if (e1->flags & EDGE_COMPLEX)
1401 return e0->dest;
1402
1403 return bb;
1404 }
1405
1406
1407 /* Walk the function tree removing unnecessary statements.
1408
1409 * Empty statement nodes are removed
1410
1411 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1412
1413 * Unnecessary COND_EXPRs are removed
1414
1415 * Some unnecessary BIND_EXPRs are removed
1416
1417 Clearly more work could be done. The trick is doing the analysis
1418 and removal fast enough to be a net improvement in compile times.
1419
1420 Note that when we remove a control structure such as a COND_EXPR
1421 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1422 to ensure we eliminate all the useless code. */
1423
1424 struct rus_data
1425 {
1426 tree *last_goto;
1427 bool repeat;
1428 bool may_throw;
1429 bool may_branch;
1430 bool has_label;
1431 };
1432
1433 static void remove_useless_stmts_1 (tree *, struct rus_data *);
1434
1435 static bool
1436 remove_useless_stmts_warn_notreached (tree stmt)
1437 {
1438 if (EXPR_HAS_LOCATION (stmt))
1439 {
1440 location_t loc = EXPR_LOCATION (stmt);
1441 if (LOCATION_LINE (loc) > 0)
1442 {
1443 warning (0, "%Hwill never be executed", &loc);
1444 return true;
1445 }
1446 }
1447
1448 switch (TREE_CODE (stmt))
1449 {
1450 case STATEMENT_LIST:
1451 {
1452 tree_stmt_iterator i;
1453 for (i = tsi_start (stmt); !tsi_end_p (i); tsi_next (&i))
1454 if (remove_useless_stmts_warn_notreached (tsi_stmt (i)))
1455 return true;
1456 }
1457 break;
1458
1459 case COND_EXPR:
1460 if (remove_useless_stmts_warn_notreached (COND_EXPR_COND (stmt)))
1461 return true;
1462 if (remove_useless_stmts_warn_notreached (COND_EXPR_THEN (stmt)))
1463 return true;
1464 if (remove_useless_stmts_warn_notreached (COND_EXPR_ELSE (stmt)))
1465 return true;
1466 break;
1467
1468 case TRY_FINALLY_EXPR:
1469 case TRY_CATCH_EXPR:
1470 if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 0)))
1471 return true;
1472 if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 1)))
1473 return true;
1474 break;
1475
1476 case CATCH_EXPR:
1477 return remove_useless_stmts_warn_notreached (CATCH_BODY (stmt));
1478 case EH_FILTER_EXPR:
1479 return remove_useless_stmts_warn_notreached (EH_FILTER_FAILURE (stmt));
1480 case BIND_EXPR:
1481 return remove_useless_stmts_warn_notreached (BIND_EXPR_BLOCK (stmt));
1482
1483 default:
1484 /* Not a live container. */
1485 break;
1486 }
1487
1488 return false;
1489 }
1490
1491 static void
1492 remove_useless_stmts_cond (tree *stmt_p, struct rus_data *data)
1493 {
1494 tree then_clause, else_clause, cond;
1495 bool save_has_label, then_has_label, else_has_label;
1496
1497 save_has_label = data->has_label;
1498 data->has_label = false;
1499 data->last_goto = NULL;
1500
1501 remove_useless_stmts_1 (&COND_EXPR_THEN (*stmt_p), data);
1502
1503 then_has_label = data->has_label;
1504 data->has_label = false;
1505 data->last_goto = NULL;
1506
1507 remove_useless_stmts_1 (&COND_EXPR_ELSE (*stmt_p), data);
1508
1509 else_has_label = data->has_label;
1510 data->has_label = save_has_label | then_has_label | else_has_label;
1511
1512 then_clause = COND_EXPR_THEN (*stmt_p);
1513 else_clause = COND_EXPR_ELSE (*stmt_p);
1514 cond = fold (COND_EXPR_COND (*stmt_p));
1515
1516 /* If neither arm does anything at all, we can remove the whole IF. */
1517 if (!TREE_SIDE_EFFECTS (then_clause) && !TREE_SIDE_EFFECTS (else_clause))
1518 {
1519 *stmt_p = build_empty_stmt ();
1520 data->repeat = true;
1521 }
1522
1523 /* If there are no reachable statements in an arm, then we can
1524 zap the entire conditional. */
1525 else if (integer_nonzerop (cond) && !else_has_label)
1526 {
1527 if (warn_notreached)
1528 remove_useless_stmts_warn_notreached (else_clause);
1529 *stmt_p = then_clause;
1530 data->repeat = true;
1531 }
1532 else if (integer_zerop (cond) && !then_has_label)
1533 {
1534 if (warn_notreached)
1535 remove_useless_stmts_warn_notreached (then_clause);
1536 *stmt_p = else_clause;
1537 data->repeat = true;
1538 }
1539
1540 /* Check a couple of simple things on then/else with single stmts. */
1541 else
1542 {
1543 tree then_stmt = expr_only (then_clause);
1544 tree else_stmt = expr_only (else_clause);
1545
1546 /* Notice branches to a common destination. */
1547 if (then_stmt && else_stmt
1548 && TREE_CODE (then_stmt) == GOTO_EXPR
1549 && TREE_CODE (else_stmt) == GOTO_EXPR
1550 && (GOTO_DESTINATION (then_stmt) == GOTO_DESTINATION (else_stmt)))
1551 {
1552 *stmt_p = then_stmt;
1553 data->repeat = true;
1554 }
1555
1556 /* If the THEN/ELSE clause merely assigns a value to a variable or
1557 parameter which is already known to contain that value, then
1558 remove the useless THEN/ELSE clause. */
1559 else if (TREE_CODE (cond) == VAR_DECL || TREE_CODE (cond) == PARM_DECL)
1560 {
1561 if (else_stmt
1562 && TREE_CODE (else_stmt) == MODIFY_EXPR
1563 && TREE_OPERAND (else_stmt, 0) == cond
1564 && integer_zerop (TREE_OPERAND (else_stmt, 1)))
1565 COND_EXPR_ELSE (*stmt_p) = alloc_stmt_list ();
1566 }
1567 else if ((TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
1568 && (TREE_CODE (TREE_OPERAND (cond, 0)) == VAR_DECL
1569 || TREE_CODE (TREE_OPERAND (cond, 0)) == PARM_DECL)
1570 && TREE_CONSTANT (TREE_OPERAND (cond, 1)))
1571 {
1572 tree stmt = (TREE_CODE (cond) == EQ_EXPR
1573 ? then_stmt : else_stmt);
1574 tree *location = (TREE_CODE (cond) == EQ_EXPR
1575 ? &COND_EXPR_THEN (*stmt_p)
1576 : &COND_EXPR_ELSE (*stmt_p));
1577
1578 if (stmt
1579 && TREE_CODE (stmt) == MODIFY_EXPR
1580 && TREE_OPERAND (stmt, 0) == TREE_OPERAND (cond, 0)
1581 && TREE_OPERAND (stmt, 1) == TREE_OPERAND (cond, 1))
1582 *location = alloc_stmt_list ();
1583 }
1584 }
1585
1586 /* Protect GOTOs in the arm of COND_EXPRs from being removed. They
1587 would be re-introduced during lowering. */
1588 data->last_goto = NULL;
1589 }
1590
1591
1592 static void
1593 remove_useless_stmts_tf (tree *stmt_p, struct rus_data *data)
1594 {
1595 bool save_may_branch, save_may_throw;
1596 bool this_may_branch, this_may_throw;
1597
1598 /* Collect may_branch and may_throw information for the body only. */
1599 save_may_branch = data->may_branch;
1600 save_may_throw = data->may_throw;
1601 data->may_branch = false;
1602 data->may_throw = false;
1603 data->last_goto = NULL;
1604
1605 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
1606
1607 this_may_branch = data->may_branch;
1608 this_may_throw = data->may_throw;
1609 data->may_branch |= save_may_branch;
1610 data->may_throw |= save_may_throw;
1611 data->last_goto = NULL;
1612
1613 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
1614
1615 /* If the body is empty, then we can emit the FINALLY block without
1616 the enclosing TRY_FINALLY_EXPR. */
1617 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 0)))
1618 {
1619 *stmt_p = TREE_OPERAND (*stmt_p, 1);
1620 data->repeat = true;
1621 }
1622
1623 /* If the handler is empty, then we can emit the TRY block without
1624 the enclosing TRY_FINALLY_EXPR. */
1625 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
1626 {
1627 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1628 data->repeat = true;
1629 }
1630
1631 /* If the body neither throws, nor branches, then we can safely
1632 string the TRY and FINALLY blocks together. */
1633 else if (!this_may_branch && !this_may_throw)
1634 {
1635 tree stmt = *stmt_p;
1636 *stmt_p = TREE_OPERAND (stmt, 0);
1637 append_to_statement_list (TREE_OPERAND (stmt, 1), stmt_p);
1638 data->repeat = true;
1639 }
1640 }
1641
1642
1643 static void
1644 remove_useless_stmts_tc (tree *stmt_p, struct rus_data *data)
1645 {
1646 bool save_may_throw, this_may_throw;
1647 tree_stmt_iterator i;
1648 tree stmt;
1649
1650 /* Collect may_throw information for the body only. */
1651 save_may_throw = data->may_throw;
1652 data->may_throw = false;
1653 data->last_goto = NULL;
1654
1655 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
1656
1657 this_may_throw = data->may_throw;
1658 data->may_throw = save_may_throw;
1659
1660 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1661 if (!this_may_throw)
1662 {
1663 if (warn_notreached)
1664 remove_useless_stmts_warn_notreached (TREE_OPERAND (*stmt_p, 1));
1665 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1666 data->repeat = true;
1667 return;
1668 }
1669
1670 /* Process the catch clause specially. We may be able to tell that
1671 no exceptions propagate past this point. */
1672
1673 this_may_throw = true;
1674 i = tsi_start (TREE_OPERAND (*stmt_p, 1));
1675 stmt = tsi_stmt (i);
1676 data->last_goto = NULL;
1677
1678 switch (TREE_CODE (stmt))
1679 {
1680 case CATCH_EXPR:
1681 for (; !tsi_end_p (i); tsi_next (&i))
1682 {
1683 stmt = tsi_stmt (i);
1684 /* If we catch all exceptions, then the body does not
1685 propagate exceptions past this point. */
1686 if (CATCH_TYPES (stmt) == NULL)
1687 this_may_throw = false;
1688 data->last_goto = NULL;
1689 remove_useless_stmts_1 (&CATCH_BODY (stmt), data);
1690 }
1691 break;
1692
1693 case EH_FILTER_EXPR:
1694 if (EH_FILTER_MUST_NOT_THROW (stmt))
1695 this_may_throw = false;
1696 else if (EH_FILTER_TYPES (stmt) == NULL)
1697 this_may_throw = false;
1698 remove_useless_stmts_1 (&EH_FILTER_FAILURE (stmt), data);
1699 break;
1700
1701 default:
1702 /* Otherwise this is a cleanup. */
1703 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
1704
1705 /* If the cleanup is empty, then we can emit the TRY block without
1706 the enclosing TRY_CATCH_EXPR. */
1707 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
1708 {
1709 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1710 data->repeat = true;
1711 }
1712 break;
1713 }
1714 data->may_throw |= this_may_throw;
1715 }
1716
1717
1718 static void
1719 remove_useless_stmts_bind (tree *stmt_p, struct rus_data *data)
1720 {
1721 tree block;
1722
1723 /* First remove anything underneath the BIND_EXPR. */
1724 remove_useless_stmts_1 (&BIND_EXPR_BODY (*stmt_p), data);
1725
1726 /* If the BIND_EXPR has no variables, then we can pull everything
1727 up one level and remove the BIND_EXPR, unless this is the toplevel
1728 BIND_EXPR for the current function or an inlined function.
1729
1730 When this situation occurs we will want to apply this
1731 optimization again. */
1732 block = BIND_EXPR_BLOCK (*stmt_p);
1733 if (BIND_EXPR_VARS (*stmt_p) == NULL_TREE
1734 && *stmt_p != DECL_SAVED_TREE (current_function_decl)
1735 && (! block
1736 || ! BLOCK_ABSTRACT_ORIGIN (block)
1737 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
1738 != FUNCTION_DECL)))
1739 {
1740 *stmt_p = BIND_EXPR_BODY (*stmt_p);
1741 data->repeat = true;
1742 }
1743 }
1744
1745
1746 static void
1747 remove_useless_stmts_goto (tree *stmt_p, struct rus_data *data)
1748 {
1749 tree dest = GOTO_DESTINATION (*stmt_p);
1750
1751 data->may_branch = true;
1752 data->last_goto = NULL;
1753
1754 /* Record the last goto expr, so that we can delete it if unnecessary. */
1755 if (TREE_CODE (dest) == LABEL_DECL)
1756 data->last_goto = stmt_p;
1757 }
1758
1759
1760 static void
1761 remove_useless_stmts_label (tree *stmt_p, struct rus_data *data)
1762 {
1763 tree label = LABEL_EXPR_LABEL (*stmt_p);
1764
1765 data->has_label = true;
1766
1767 /* We do want to jump across non-local label receiver code. */
1768 if (DECL_NONLOCAL (label))
1769 data->last_goto = NULL;
1770
1771 else if (data->last_goto && GOTO_DESTINATION (*data->last_goto) == label)
1772 {
1773 *data->last_goto = build_empty_stmt ();
1774 data->repeat = true;
1775 }
1776
1777 /* ??? Add something here to delete unused labels. */
1778 }
1779
1780
1781 /* If the function is "const" or "pure", then clear TREE_SIDE_EFFECTS on its
1782 decl. This allows us to eliminate redundant or useless
1783 calls to "const" functions.
1784
1785 Gimplifier already does the same operation, but we may notice functions
1786 being const and pure once their calls has been gimplified, so we need
1787 to update the flag. */
1788
1789 static void
1790 update_call_expr_flags (tree call)
1791 {
1792 tree decl = get_callee_fndecl (call);
1793 if (!decl)
1794 return;
1795 if (call_expr_flags (call) & (ECF_CONST | ECF_PURE))
1796 TREE_SIDE_EFFECTS (call) = 0;
1797 if (TREE_NOTHROW (decl))
1798 TREE_NOTHROW (call) = 1;
1799 }
1800
1801
1802 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1803
1804 void
1805 notice_special_calls (tree t)
1806 {
1807 int flags = call_expr_flags (t);
1808
1809 if (flags & ECF_MAY_BE_ALLOCA)
1810 current_function_calls_alloca = true;
1811 if (flags & ECF_RETURNS_TWICE)
1812 current_function_calls_setjmp = true;
1813 }
1814
1815
1816 /* Clear flags set by notice_special_calls. Used by dead code removal
1817 to update the flags. */
1818
1819 void
1820 clear_special_calls (void)
1821 {
1822 current_function_calls_alloca = false;
1823 current_function_calls_setjmp = false;
1824 }
1825
1826
1827 static void
1828 remove_useless_stmts_1 (tree *tp, struct rus_data *data)
1829 {
1830 tree t = *tp, op;
1831
1832 switch (TREE_CODE (t))
1833 {
1834 case COND_EXPR:
1835 remove_useless_stmts_cond (tp, data);
1836 break;
1837
1838 case TRY_FINALLY_EXPR:
1839 remove_useless_stmts_tf (tp, data);
1840 break;
1841
1842 case TRY_CATCH_EXPR:
1843 remove_useless_stmts_tc (tp, data);
1844 break;
1845
1846 case BIND_EXPR:
1847 remove_useless_stmts_bind (tp, data);
1848 break;
1849
1850 case GOTO_EXPR:
1851 remove_useless_stmts_goto (tp, data);
1852 break;
1853
1854 case LABEL_EXPR:
1855 remove_useless_stmts_label (tp, data);
1856 break;
1857
1858 case RETURN_EXPR:
1859 fold_stmt (tp);
1860 data->last_goto = NULL;
1861 data->may_branch = true;
1862 break;
1863
1864 case CALL_EXPR:
1865 fold_stmt (tp);
1866 data->last_goto = NULL;
1867 notice_special_calls (t);
1868 update_call_expr_flags (t);
1869 if (tree_could_throw_p (t))
1870 data->may_throw = true;
1871 break;
1872
1873 case MODIFY_EXPR:
1874 data->last_goto = NULL;
1875 fold_stmt (tp);
1876 op = get_call_expr_in (t);
1877 if (op)
1878 {
1879 update_call_expr_flags (op);
1880 notice_special_calls (op);
1881 }
1882 if (tree_could_throw_p (t))
1883 data->may_throw = true;
1884 break;
1885
1886 case STATEMENT_LIST:
1887 {
1888 tree_stmt_iterator i = tsi_start (t);
1889 while (!tsi_end_p (i))
1890 {
1891 t = tsi_stmt (i);
1892 if (IS_EMPTY_STMT (t))
1893 {
1894 tsi_delink (&i);
1895 continue;
1896 }
1897
1898 remove_useless_stmts_1 (tsi_stmt_ptr (i), data);
1899
1900 t = tsi_stmt (i);
1901 if (TREE_CODE (t) == STATEMENT_LIST)
1902 {
1903 tsi_link_before (&i, t, TSI_SAME_STMT);
1904 tsi_delink (&i);
1905 }
1906 else
1907 tsi_next (&i);
1908 }
1909 }
1910 break;
1911 case ASM_EXPR:
1912 fold_stmt (tp);
1913 data->last_goto = NULL;
1914 break;
1915
1916 default:
1917 data->last_goto = NULL;
1918 break;
1919 }
1920 }
1921
1922 static unsigned int
1923 remove_useless_stmts (void)
1924 {
1925 struct rus_data data;
1926
1927 clear_special_calls ();
1928
1929 do
1930 {
1931 memset (&data, 0, sizeof (data));
1932 remove_useless_stmts_1 (&DECL_SAVED_TREE (current_function_decl), &data);
1933 }
1934 while (data.repeat);
1935 return 0;
1936 }
1937
1938
1939 struct tree_opt_pass pass_remove_useless_stmts =
1940 {
1941 "useless", /* name */
1942 NULL, /* gate */
1943 remove_useless_stmts, /* execute */
1944 NULL, /* sub */
1945 NULL, /* next */
1946 0, /* static_pass_number */
1947 0, /* tv_id */
1948 PROP_gimple_any, /* properties_required */
1949 0, /* properties_provided */
1950 0, /* properties_destroyed */
1951 0, /* todo_flags_start */
1952 TODO_dump_func, /* todo_flags_finish */
1953 0 /* letter */
1954 };
1955
1956 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1957
1958 static void
1959 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1960 {
1961 tree phi;
1962
1963 /* Since this block is no longer reachable, we can just delete all
1964 of its PHI nodes. */
1965 phi = phi_nodes (bb);
1966 while (phi)
1967 {
1968 tree next = PHI_CHAIN (phi);
1969 remove_phi_node (phi, NULL_TREE);
1970 phi = next;
1971 }
1972
1973 /* Remove edges to BB's successors. */
1974 while (EDGE_COUNT (bb->succs) > 0)
1975 remove_edge (EDGE_SUCC (bb, 0));
1976 }
1977
1978
1979 /* Remove statements of basic block BB. */
1980
1981 static void
1982 remove_bb (basic_block bb)
1983 {
1984 block_stmt_iterator i;
1985 #ifdef USE_MAPPED_LOCATION
1986 source_location loc = UNKNOWN_LOCATION;
1987 #else
1988 source_locus loc = 0;
1989 #endif
1990
1991 if (dump_file)
1992 {
1993 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1994 if (dump_flags & TDF_DETAILS)
1995 {
1996 dump_bb (bb, dump_file, 0);
1997 fprintf (dump_file, "\n");
1998 }
1999 }
2000
2001 /* If we remove the header or the latch of a loop, mark the loop for
2002 removal by setting its header and latch to NULL. */
2003 if (current_loops)
2004 {
2005 struct loop *loop = bb->loop_father;
2006
2007 if (loop->latch == bb
2008 || loop->header == bb)
2009 {
2010 loop->latch = NULL;
2011 loop->header = NULL;
2012
2013 /* Also clean up the information associated with the loop. Updating
2014 it would waste time. More importantly, it may refer to ssa
2015 names that were defined in other removed basic block -- these
2016 ssa names are now removed and invalid. */
2017 free_numbers_of_iterations_estimates_loop (loop);
2018 }
2019 }
2020
2021 /* Remove all the instructions in the block. */
2022 for (i = bsi_start (bb); !bsi_end_p (i);)
2023 {
2024 tree stmt = bsi_stmt (i);
2025 if (TREE_CODE (stmt) == LABEL_EXPR
2026 && (FORCED_LABEL (LABEL_EXPR_LABEL (stmt))
2027 || DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt))))
2028 {
2029 basic_block new_bb;
2030 block_stmt_iterator new_bsi;
2031
2032 /* A non-reachable non-local label may still be referenced.
2033 But it no longer needs to carry the extra semantics of
2034 non-locality. */
2035 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
2036 {
2037 DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)) = 0;
2038 FORCED_LABEL (LABEL_EXPR_LABEL (stmt)) = 1;
2039 }
2040
2041 new_bb = bb->prev_bb;
2042 new_bsi = bsi_start (new_bb);
2043 bsi_remove (&i, false);
2044 bsi_insert_before (&new_bsi, stmt, BSI_NEW_STMT);
2045 }
2046 else
2047 {
2048 /* Release SSA definitions if we are in SSA. Note that we
2049 may be called when not in SSA. For example,
2050 final_cleanup calls this function via
2051 cleanup_tree_cfg. */
2052 if (in_ssa_p)
2053 release_defs (stmt);
2054
2055 bsi_remove (&i, true);
2056 }
2057
2058 /* Don't warn for removed gotos. Gotos are often removed due to
2059 jump threading, thus resulting in bogus warnings. Not great,
2060 since this way we lose warnings for gotos in the original
2061 program that are indeed unreachable. */
2062 if (TREE_CODE (stmt) != GOTO_EXPR && EXPR_HAS_LOCATION (stmt) && !loc)
2063 {
2064 #ifdef USE_MAPPED_LOCATION
2065 if (EXPR_HAS_LOCATION (stmt))
2066 loc = EXPR_LOCATION (stmt);
2067 #else
2068 source_locus t;
2069 t = EXPR_LOCUS (stmt);
2070 if (t && LOCATION_LINE (*t) > 0)
2071 loc = t;
2072 #endif
2073 }
2074 }
2075
2076 /* If requested, give a warning that the first statement in the
2077 block is unreachable. We walk statements backwards in the
2078 loop above, so the last statement we process is the first statement
2079 in the block. */
2080 #ifdef USE_MAPPED_LOCATION
2081 if (loc > BUILTINS_LOCATION)
2082 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
2083 #else
2084 if (loc)
2085 warning (OPT_Wunreachable_code, "%Hwill never be executed", loc);
2086 #endif
2087
2088 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2089 }
2090
2091
2092 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2093 predicate VAL, return the edge that will be taken out of the block.
2094 If VAL does not match a unique edge, NULL is returned. */
2095
2096 edge
2097 find_taken_edge (basic_block bb, tree val)
2098 {
2099 tree stmt;
2100
2101 stmt = last_stmt (bb);
2102
2103 gcc_assert (stmt);
2104 gcc_assert (is_ctrl_stmt (stmt));
2105 gcc_assert (val);
2106
2107 if (! is_gimple_min_invariant (val))
2108 return NULL;
2109
2110 if (TREE_CODE (stmt) == COND_EXPR)
2111 return find_taken_edge_cond_expr (bb, val);
2112
2113 if (TREE_CODE (stmt) == SWITCH_EXPR)
2114 return find_taken_edge_switch_expr (bb, val);
2115
2116 if (computed_goto_p (stmt))
2117 return find_taken_edge_computed_goto (bb, TREE_OPERAND( val, 0));
2118
2119 gcc_unreachable ();
2120 }
2121
2122 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2123 statement, determine which of the outgoing edges will be taken out of the
2124 block. Return NULL if either edge may be taken. */
2125
2126 static edge
2127 find_taken_edge_computed_goto (basic_block bb, tree val)
2128 {
2129 basic_block dest;
2130 edge e = NULL;
2131
2132 dest = label_to_block (val);
2133 if (dest)
2134 {
2135 e = find_edge (bb, dest);
2136 gcc_assert (e != NULL);
2137 }
2138
2139 return e;
2140 }
2141
2142 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2143 statement, determine which of the two edges will be taken out of the
2144 block. Return NULL if either edge may be taken. */
2145
2146 static edge
2147 find_taken_edge_cond_expr (basic_block bb, tree val)
2148 {
2149 edge true_edge, false_edge;
2150
2151 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2152
2153 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2154 return (zero_p (val) ? false_edge : true_edge);
2155 }
2156
2157 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2158 statement, determine which edge will be taken out of the block. Return
2159 NULL if any edge may be taken. */
2160
2161 static edge
2162 find_taken_edge_switch_expr (basic_block bb, tree val)
2163 {
2164 tree switch_expr, taken_case;
2165 basic_block dest_bb;
2166 edge e;
2167
2168 switch_expr = last_stmt (bb);
2169 taken_case = find_case_label_for_value (switch_expr, val);
2170 dest_bb = label_to_block (CASE_LABEL (taken_case));
2171
2172 e = find_edge (bb, dest_bb);
2173 gcc_assert (e);
2174 return e;
2175 }
2176
2177
2178 /* Return the CASE_LABEL_EXPR that SWITCH_EXPR will take for VAL.
2179 We can make optimal use here of the fact that the case labels are
2180 sorted: We can do a binary search for a case matching VAL. */
2181
2182 static tree
2183 find_case_label_for_value (tree switch_expr, tree val)
2184 {
2185 tree vec = SWITCH_LABELS (switch_expr);
2186 size_t low, high, n = TREE_VEC_LENGTH (vec);
2187 tree default_case = TREE_VEC_ELT (vec, n - 1);
2188
2189 for (low = -1, high = n - 1; high - low > 1; )
2190 {
2191 size_t i = (high + low) / 2;
2192 tree t = TREE_VEC_ELT (vec, i);
2193 int cmp;
2194
2195 /* Cache the result of comparing CASE_LOW and val. */
2196 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2197
2198 if (cmp > 0)
2199 high = i;
2200 else
2201 low = i;
2202
2203 if (CASE_HIGH (t) == NULL)
2204 {
2205 /* A singe-valued case label. */
2206 if (cmp == 0)
2207 return t;
2208 }
2209 else
2210 {
2211 /* A case range. We can only handle integer ranges. */
2212 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2213 return t;
2214 }
2215 }
2216
2217 return default_case;
2218 }
2219
2220
2221
2222
2223 /*---------------------------------------------------------------------------
2224 Debugging functions
2225 ---------------------------------------------------------------------------*/
2226
2227 /* Dump tree-specific information of block BB to file OUTF. */
2228
2229 void
2230 tree_dump_bb (basic_block bb, FILE *outf, int indent)
2231 {
2232 dump_generic_bb (outf, bb, indent, TDF_VOPS);
2233 }
2234
2235
2236 /* Dump a basic block on stderr. */
2237
2238 void
2239 debug_tree_bb (basic_block bb)
2240 {
2241 dump_bb (bb, stderr, 0);
2242 }
2243
2244
2245 /* Dump basic block with index N on stderr. */
2246
2247 basic_block
2248 debug_tree_bb_n (int n)
2249 {
2250 debug_tree_bb (BASIC_BLOCK (n));
2251 return BASIC_BLOCK (n);
2252 }
2253
2254
2255 /* Dump the CFG on stderr.
2256
2257 FLAGS are the same used by the tree dumping functions
2258 (see TDF_* in tree-pass.h). */
2259
2260 void
2261 debug_tree_cfg (int flags)
2262 {
2263 dump_tree_cfg (stderr, flags);
2264 }
2265
2266
2267 /* Dump the program showing basic block boundaries on the given FILE.
2268
2269 FLAGS are the same used by the tree dumping functions (see TDF_* in
2270 tree.h). */
2271
2272 void
2273 dump_tree_cfg (FILE *file, int flags)
2274 {
2275 if (flags & TDF_DETAILS)
2276 {
2277 const char *funcname
2278 = lang_hooks.decl_printable_name (current_function_decl, 2);
2279
2280 fputc ('\n', file);
2281 fprintf (file, ";; Function %s\n\n", funcname);
2282 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2283 n_basic_blocks, n_edges, last_basic_block);
2284
2285 brief_dump_cfg (file);
2286 fprintf (file, "\n");
2287 }
2288
2289 if (flags & TDF_STATS)
2290 dump_cfg_stats (file);
2291
2292 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2293 }
2294
2295
2296 /* Dump CFG statistics on FILE. */
2297
2298 void
2299 dump_cfg_stats (FILE *file)
2300 {
2301 static long max_num_merged_labels = 0;
2302 unsigned long size, total = 0;
2303 long num_edges;
2304 basic_block bb;
2305 const char * const fmt_str = "%-30s%-13s%12s\n";
2306 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2307 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2308 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2309 const char *funcname
2310 = lang_hooks.decl_printable_name (current_function_decl, 2);
2311
2312
2313 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2314
2315 fprintf (file, "---------------------------------------------------------\n");
2316 fprintf (file, fmt_str, "", " Number of ", "Memory");
2317 fprintf (file, fmt_str, "", " instances ", "used ");
2318 fprintf (file, "---------------------------------------------------------\n");
2319
2320 size = n_basic_blocks * sizeof (struct basic_block_def);
2321 total += size;
2322 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2323 SCALE (size), LABEL (size));
2324
2325 num_edges = 0;
2326 FOR_EACH_BB (bb)
2327 num_edges += EDGE_COUNT (bb->succs);
2328 size = num_edges * sizeof (struct edge_def);
2329 total += size;
2330 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2331
2332 fprintf (file, "---------------------------------------------------------\n");
2333 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2334 LABEL (total));
2335 fprintf (file, "---------------------------------------------------------\n");
2336 fprintf (file, "\n");
2337
2338 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2339 max_num_merged_labels = cfg_stats.num_merged_labels;
2340
2341 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2342 cfg_stats.num_merged_labels, max_num_merged_labels);
2343
2344 fprintf (file, "\n");
2345 }
2346
2347
2348 /* Dump CFG statistics on stderr. Keep extern so that it's always
2349 linked in the final executable. */
2350
2351 void
2352 debug_cfg_stats (void)
2353 {
2354 dump_cfg_stats (stderr);
2355 }
2356
2357
2358 /* Dump the flowgraph to a .vcg FILE. */
2359
2360 static void
2361 tree_cfg2vcg (FILE *file)
2362 {
2363 edge e;
2364 edge_iterator ei;
2365 basic_block bb;
2366 const char *funcname
2367 = lang_hooks.decl_printable_name (current_function_decl, 2);
2368
2369 /* Write the file header. */
2370 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2371 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2372 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2373
2374 /* Write blocks and edges. */
2375 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2376 {
2377 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2378 e->dest->index);
2379
2380 if (e->flags & EDGE_FAKE)
2381 fprintf (file, " linestyle: dotted priority: 10");
2382 else
2383 fprintf (file, " linestyle: solid priority: 100");
2384
2385 fprintf (file, " }\n");
2386 }
2387 fputc ('\n', file);
2388
2389 FOR_EACH_BB (bb)
2390 {
2391 enum tree_code head_code, end_code;
2392 const char *head_name, *end_name;
2393 int head_line = 0;
2394 int end_line = 0;
2395 tree first = first_stmt (bb);
2396 tree last = last_stmt (bb);
2397
2398 if (first)
2399 {
2400 head_code = TREE_CODE (first);
2401 head_name = tree_code_name[head_code];
2402 head_line = get_lineno (first);
2403 }
2404 else
2405 head_name = "no-statement";
2406
2407 if (last)
2408 {
2409 end_code = TREE_CODE (last);
2410 end_name = tree_code_name[end_code];
2411 end_line = get_lineno (last);
2412 }
2413 else
2414 end_name = "no-statement";
2415
2416 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2417 bb->index, bb->index, head_name, head_line, end_name,
2418 end_line);
2419
2420 FOR_EACH_EDGE (e, ei, bb->succs)
2421 {
2422 if (e->dest == EXIT_BLOCK_PTR)
2423 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2424 else
2425 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2426
2427 if (e->flags & EDGE_FAKE)
2428 fprintf (file, " priority: 10 linestyle: dotted");
2429 else
2430 fprintf (file, " priority: 100 linestyle: solid");
2431
2432 fprintf (file, " }\n");
2433 }
2434
2435 if (bb->next_bb != EXIT_BLOCK_PTR)
2436 fputc ('\n', file);
2437 }
2438
2439 fputs ("}\n\n", file);
2440 }
2441
2442
2443
2444 /*---------------------------------------------------------------------------
2445 Miscellaneous helpers
2446 ---------------------------------------------------------------------------*/
2447
2448 /* Return true if T represents a stmt that always transfers control. */
2449
2450 bool
2451 is_ctrl_stmt (tree t)
2452 {
2453 return (TREE_CODE (t) == COND_EXPR
2454 || TREE_CODE (t) == SWITCH_EXPR
2455 || TREE_CODE (t) == GOTO_EXPR
2456 || TREE_CODE (t) == RETURN_EXPR
2457 || TREE_CODE (t) == RESX_EXPR);
2458 }
2459
2460
2461 /* Return true if T is a statement that may alter the flow of control
2462 (e.g., a call to a non-returning function). */
2463
2464 bool
2465 is_ctrl_altering_stmt (tree t)
2466 {
2467 tree call;
2468
2469 gcc_assert (t);
2470 call = get_call_expr_in (t);
2471 if (call)
2472 {
2473 /* A non-pure/const CALL_EXPR alters flow control if the current
2474 function has nonlocal labels. */
2475 if (TREE_SIDE_EFFECTS (call) && current_function_has_nonlocal_label)
2476 return true;
2477
2478 /* A CALL_EXPR also alters control flow if it does not return. */
2479 if (call_expr_flags (call) & ECF_NORETURN)
2480 return true;
2481 }
2482
2483 /* OpenMP directives alter control flow. */
2484 if (OMP_DIRECTIVE_P (t))
2485 return true;
2486
2487 /* If a statement can throw, it alters control flow. */
2488 return tree_can_throw_internal (t);
2489 }
2490
2491
2492 /* Return true if T is a computed goto. */
2493
2494 bool
2495 computed_goto_p (tree t)
2496 {
2497 return (TREE_CODE (t) == GOTO_EXPR
2498 && TREE_CODE (GOTO_DESTINATION (t)) != LABEL_DECL);
2499 }
2500
2501
2502 /* Return true if T is a simple local goto. */
2503
2504 bool
2505 simple_goto_p (tree t)
2506 {
2507 return (TREE_CODE (t) == GOTO_EXPR
2508 && TREE_CODE (GOTO_DESTINATION (t)) == LABEL_DECL);
2509 }
2510
2511
2512 /* Return true if T can make an abnormal transfer of control flow.
2513 Transfers of control flow associated with EH are excluded. */
2514
2515 bool
2516 tree_can_make_abnormal_goto (tree t)
2517 {
2518 if (computed_goto_p (t))
2519 return true;
2520 if (TREE_CODE (t) == MODIFY_EXPR)
2521 t = TREE_OPERAND (t, 1);
2522 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2523 t = TREE_OPERAND (t, 0);
2524 if (TREE_CODE (t) == CALL_EXPR)
2525 return TREE_SIDE_EFFECTS (t) && current_function_has_nonlocal_label;
2526 return false;
2527 }
2528
2529
2530 /* Return true if T should start a new basic block. PREV_T is the
2531 statement preceding T. It is used when T is a label or a case label.
2532 Labels should only start a new basic block if their previous statement
2533 wasn't a label. Otherwise, sequence of labels would generate
2534 unnecessary basic blocks that only contain a single label. */
2535
2536 static inline bool
2537 stmt_starts_bb_p (tree t, tree prev_t)
2538 {
2539 if (t == NULL_TREE)
2540 return false;
2541
2542 /* LABEL_EXPRs start a new basic block only if the preceding
2543 statement wasn't a label of the same type. This prevents the
2544 creation of consecutive blocks that have nothing but a single
2545 label. */
2546 if (TREE_CODE (t) == LABEL_EXPR)
2547 {
2548 /* Nonlocal and computed GOTO targets always start a new block. */
2549 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (t))
2550 || FORCED_LABEL (LABEL_EXPR_LABEL (t)))
2551 return true;
2552
2553 if (prev_t && TREE_CODE (prev_t) == LABEL_EXPR)
2554 {
2555 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (prev_t)))
2556 return true;
2557
2558 cfg_stats.num_merged_labels++;
2559 return false;
2560 }
2561 else
2562 return true;
2563 }
2564
2565 return false;
2566 }
2567
2568
2569 /* Return true if T should end a basic block. */
2570
2571 bool
2572 stmt_ends_bb_p (tree t)
2573 {
2574 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2575 }
2576
2577
2578 /* Add gotos that used to be represented implicitly in the CFG. */
2579
2580 void
2581 disband_implicit_edges (void)
2582 {
2583 basic_block bb;
2584 block_stmt_iterator last;
2585 edge e;
2586 edge_iterator ei;
2587 tree stmt, label;
2588
2589 FOR_EACH_BB (bb)
2590 {
2591 last = bsi_last (bb);
2592 stmt = last_stmt (bb);
2593
2594 if (stmt && TREE_CODE (stmt) == COND_EXPR)
2595 {
2596 /* Remove superfluous gotos from COND_EXPR branches. Moved
2597 from cfg_remove_useless_stmts here since it violates the
2598 invariants for tree--cfg correspondence and thus fits better
2599 here where we do it anyway. */
2600 e = find_edge (bb, bb->next_bb);
2601 if (e)
2602 {
2603 if (e->flags & EDGE_TRUE_VALUE)
2604 COND_EXPR_THEN (stmt) = build_empty_stmt ();
2605 else if (e->flags & EDGE_FALSE_VALUE)
2606 COND_EXPR_ELSE (stmt) = build_empty_stmt ();
2607 else
2608 gcc_unreachable ();
2609 e->flags |= EDGE_FALLTHRU;
2610 }
2611
2612 continue;
2613 }
2614
2615 if (stmt && TREE_CODE (stmt) == RETURN_EXPR)
2616 {
2617 /* Remove the RETURN_EXPR if we may fall though to the exit
2618 instead. */
2619 gcc_assert (single_succ_p (bb));
2620 gcc_assert (single_succ (bb) == EXIT_BLOCK_PTR);
2621
2622 if (bb->next_bb == EXIT_BLOCK_PTR
2623 && !TREE_OPERAND (stmt, 0))
2624 {
2625 bsi_remove (&last, true);
2626 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2627 }
2628 continue;
2629 }
2630
2631 /* There can be no fallthru edge if the last statement is a control
2632 one. */
2633 if (stmt && is_ctrl_stmt (stmt))
2634 continue;
2635
2636 /* Find a fallthru edge and emit the goto if necessary. */
2637 FOR_EACH_EDGE (e, ei, bb->succs)
2638 if (e->flags & EDGE_FALLTHRU)
2639 break;
2640
2641 if (!e || e->dest == bb->next_bb)
2642 continue;
2643
2644 gcc_assert (e->dest != EXIT_BLOCK_PTR);
2645 label = tree_block_label (e->dest);
2646
2647 stmt = build1 (GOTO_EXPR, void_type_node, label);
2648 #ifdef USE_MAPPED_LOCATION
2649 SET_EXPR_LOCATION (stmt, e->goto_locus);
2650 #else
2651 SET_EXPR_LOCUS (stmt, e->goto_locus);
2652 #endif
2653 bsi_insert_after (&last, stmt, BSI_NEW_STMT);
2654 e->flags &= ~EDGE_FALLTHRU;
2655 }
2656 }
2657
2658 /* Remove block annotations and other datastructures. */
2659
2660 void
2661 delete_tree_cfg_annotations (void)
2662 {
2663 label_to_block_map = NULL;
2664 }
2665
2666
2667 /* Return the first statement in basic block BB. */
2668
2669 tree
2670 first_stmt (basic_block bb)
2671 {
2672 block_stmt_iterator i = bsi_start (bb);
2673 return !bsi_end_p (i) ? bsi_stmt (i) : NULL_TREE;
2674 }
2675
2676
2677 /* Return the last statement in basic block BB. */
2678
2679 tree
2680 last_stmt (basic_block bb)
2681 {
2682 block_stmt_iterator b = bsi_last (bb);
2683 return !bsi_end_p (b) ? bsi_stmt (b) : NULL_TREE;
2684 }
2685
2686
2687 /* Return a pointer to the last statement in block BB. */
2688
2689 tree *
2690 last_stmt_ptr (basic_block bb)
2691 {
2692 block_stmt_iterator last = bsi_last (bb);
2693 return !bsi_end_p (last) ? bsi_stmt_ptr (last) : NULL;
2694 }
2695
2696
2697 /* Return the last statement of an otherwise empty block. Return NULL
2698 if the block is totally empty, or if it contains more than one
2699 statement. */
2700
2701 tree
2702 last_and_only_stmt (basic_block bb)
2703 {
2704 block_stmt_iterator i = bsi_last (bb);
2705 tree last, prev;
2706
2707 if (bsi_end_p (i))
2708 return NULL_TREE;
2709
2710 last = bsi_stmt (i);
2711 bsi_prev (&i);
2712 if (bsi_end_p (i))
2713 return last;
2714
2715 /* Empty statements should no longer appear in the instruction stream.
2716 Everything that might have appeared before should be deleted by
2717 remove_useless_stmts, and the optimizers should just bsi_remove
2718 instead of smashing with build_empty_stmt.
2719
2720 Thus the only thing that should appear here in a block containing
2721 one executable statement is a label. */
2722 prev = bsi_stmt (i);
2723 if (TREE_CODE (prev) == LABEL_EXPR)
2724 return last;
2725 else
2726 return NULL_TREE;
2727 }
2728
2729
2730 /* Mark BB as the basic block holding statement T. */
2731
2732 void
2733 set_bb_for_stmt (tree t, basic_block bb)
2734 {
2735 if (TREE_CODE (t) == PHI_NODE)
2736 PHI_BB (t) = bb;
2737 else if (TREE_CODE (t) == STATEMENT_LIST)
2738 {
2739 tree_stmt_iterator i;
2740 for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
2741 set_bb_for_stmt (tsi_stmt (i), bb);
2742 }
2743 else
2744 {
2745 stmt_ann_t ann = get_stmt_ann (t);
2746 ann->bb = bb;
2747
2748 /* If the statement is a label, add the label to block-to-labels map
2749 so that we can speed up edge creation for GOTO_EXPRs. */
2750 if (TREE_CODE (t) == LABEL_EXPR)
2751 {
2752 int uid;
2753
2754 t = LABEL_EXPR_LABEL (t);
2755 uid = LABEL_DECL_UID (t);
2756 if (uid == -1)
2757 {
2758 unsigned old_len = VEC_length (basic_block, label_to_block_map);
2759 LABEL_DECL_UID (t) = uid = cfun->last_label_uid++;
2760 if (old_len <= (unsigned) uid)
2761 {
2762 basic_block *addr;
2763 unsigned new_len = 3 * uid / 2;
2764
2765 VEC_safe_grow (basic_block, gc, label_to_block_map,
2766 new_len);
2767 addr = VEC_address (basic_block, label_to_block_map);
2768 memset (&addr[old_len],
2769 0, sizeof (basic_block) * (new_len - old_len));
2770 }
2771 }
2772 else
2773 /* We're moving an existing label. Make sure that we've
2774 removed it from the old block. */
2775 gcc_assert (!bb
2776 || !VEC_index (basic_block, label_to_block_map, uid));
2777 VEC_replace (basic_block, label_to_block_map, uid, bb);
2778 }
2779 }
2780 }
2781
2782 /* Faster version of set_bb_for_stmt that assume that statement is being moved
2783 from one basic block to another.
2784 For BB splitting we can run into quadratic case, so performance is quite
2785 important and knowing that the tables are big enough, change_bb_for_stmt
2786 can inline as leaf function. */
2787 static inline void
2788 change_bb_for_stmt (tree t, basic_block bb)
2789 {
2790 get_stmt_ann (t)->bb = bb;
2791 if (TREE_CODE (t) == LABEL_EXPR)
2792 VEC_replace (basic_block, label_to_block_map,
2793 LABEL_DECL_UID (LABEL_EXPR_LABEL (t)), bb);
2794 }
2795
2796 /* Finds iterator for STMT. */
2797
2798 extern block_stmt_iterator
2799 bsi_for_stmt (tree stmt)
2800 {
2801 block_stmt_iterator bsi;
2802
2803 for (bsi = bsi_start (bb_for_stmt (stmt)); !bsi_end_p (bsi); bsi_next (&bsi))
2804 if (bsi_stmt (bsi) == stmt)
2805 return bsi;
2806
2807 gcc_unreachable ();
2808 }
2809
2810 /* Mark statement T as modified, and update it. */
2811 static inline void
2812 update_modified_stmts (tree t)
2813 {
2814 if (TREE_CODE (t) == STATEMENT_LIST)
2815 {
2816 tree_stmt_iterator i;
2817 tree stmt;
2818 for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
2819 {
2820 stmt = tsi_stmt (i);
2821 update_stmt_if_modified (stmt);
2822 }
2823 }
2824 else
2825 update_stmt_if_modified (t);
2826 }
2827
2828 /* Insert statement (or statement list) T before the statement
2829 pointed-to by iterator I. M specifies how to update iterator I
2830 after insertion (see enum bsi_iterator_update). */
2831
2832 void
2833 bsi_insert_before (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
2834 {
2835 set_bb_for_stmt (t, i->bb);
2836 update_modified_stmts (t);
2837 tsi_link_before (&i->tsi, t, m);
2838 }
2839
2840
2841 /* Insert statement (or statement list) T after the statement
2842 pointed-to by iterator I. M specifies how to update iterator I
2843 after insertion (see enum bsi_iterator_update). */
2844
2845 void
2846 bsi_insert_after (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
2847 {
2848 set_bb_for_stmt (t, i->bb);
2849 update_modified_stmts (t);
2850 tsi_link_after (&i->tsi, t, m);
2851 }
2852
2853
2854 /* Remove the statement pointed to by iterator I. The iterator is updated
2855 to the next statement.
2856
2857 When REMOVE_EH_INFO is true we remove the statement pointed to by
2858 iterator I from the EH tables. Otherwise we do not modify the EH
2859 tables.
2860
2861 Generally, REMOVE_EH_INFO should be true when the statement is going to
2862 be removed from the IL and not reinserted elsewhere. */
2863
2864 void
2865 bsi_remove (block_stmt_iterator *i, bool remove_eh_info)
2866 {
2867 tree t = bsi_stmt (*i);
2868 set_bb_for_stmt (t, NULL);
2869 delink_stmt_imm_use (t);
2870 tsi_delink (&i->tsi);
2871 mark_stmt_modified (t);
2872 if (remove_eh_info)
2873 remove_stmt_from_eh_region (t);
2874 }
2875
2876
2877 /* Move the statement at FROM so it comes right after the statement at TO. */
2878
2879 void
2880 bsi_move_after (block_stmt_iterator *from, block_stmt_iterator *to)
2881 {
2882 tree stmt = bsi_stmt (*from);
2883 bsi_remove (from, false);
2884 bsi_insert_after (to, stmt, BSI_SAME_STMT);
2885 }
2886
2887
2888 /* Move the statement at FROM so it comes right before the statement at TO. */
2889
2890 void
2891 bsi_move_before (block_stmt_iterator *from, block_stmt_iterator *to)
2892 {
2893 tree stmt = bsi_stmt (*from);
2894 bsi_remove (from, false);
2895 bsi_insert_before (to, stmt, BSI_SAME_STMT);
2896 }
2897
2898
2899 /* Move the statement at FROM to the end of basic block BB. */
2900
2901 void
2902 bsi_move_to_bb_end (block_stmt_iterator *from, basic_block bb)
2903 {
2904 block_stmt_iterator last = bsi_last (bb);
2905
2906 /* Have to check bsi_end_p because it could be an empty block. */
2907 if (!bsi_end_p (last) && is_ctrl_stmt (bsi_stmt (last)))
2908 bsi_move_before (from, &last);
2909 else
2910 bsi_move_after (from, &last);
2911 }
2912
2913
2914 /* Replace the contents of the statement pointed to by iterator BSI
2915 with STMT. If UPDATE_EH_INFO is true, the exception handling
2916 information of the original statement is moved to the new statement. */
2917
2918 void
2919 bsi_replace (const block_stmt_iterator *bsi, tree stmt, bool update_eh_info)
2920 {
2921 int eh_region;
2922 tree orig_stmt = bsi_stmt (*bsi);
2923
2924 SET_EXPR_LOCUS (stmt, EXPR_LOCUS (orig_stmt));
2925 set_bb_for_stmt (stmt, bsi->bb);
2926
2927 /* Preserve EH region information from the original statement, if
2928 requested by the caller. */
2929 if (update_eh_info)
2930 {
2931 eh_region = lookup_stmt_eh_region (orig_stmt);
2932 if (eh_region >= 0)
2933 {
2934 remove_stmt_from_eh_region (orig_stmt);
2935 add_stmt_to_eh_region (stmt, eh_region);
2936 }
2937 }
2938
2939 delink_stmt_imm_use (orig_stmt);
2940 *bsi_stmt_ptr (*bsi) = stmt;
2941 mark_stmt_modified (stmt);
2942 update_modified_stmts (stmt);
2943 }
2944
2945
2946 /* Insert the statement pointed-to by BSI into edge E. Every attempt
2947 is made to place the statement in an existing basic block, but
2948 sometimes that isn't possible. When it isn't possible, the edge is
2949 split and the statement is added to the new block.
2950
2951 In all cases, the returned *BSI points to the correct location. The
2952 return value is true if insertion should be done after the location,
2953 or false if it should be done before the location. If new basic block
2954 has to be created, it is stored in *NEW_BB. */
2955
2956 static bool
2957 tree_find_edge_insert_loc (edge e, block_stmt_iterator *bsi,
2958 basic_block *new_bb)
2959 {
2960 basic_block dest, src;
2961 tree tmp;
2962
2963 dest = e->dest;
2964 restart:
2965
2966 /* If the destination has one predecessor which has no PHI nodes,
2967 insert there. Except for the exit block.
2968
2969 The requirement for no PHI nodes could be relaxed. Basically we
2970 would have to examine the PHIs to prove that none of them used
2971 the value set by the statement we want to insert on E. That
2972 hardly seems worth the effort. */
2973 if (single_pred_p (dest)
2974 && ! phi_nodes (dest)
2975 && dest != EXIT_BLOCK_PTR)
2976 {
2977 *bsi = bsi_start (dest);
2978 if (bsi_end_p (*bsi))
2979 return true;
2980
2981 /* Make sure we insert after any leading labels. */
2982 tmp = bsi_stmt (*bsi);
2983 while (TREE_CODE (tmp) == LABEL_EXPR)
2984 {
2985 bsi_next (bsi);
2986 if (bsi_end_p (*bsi))
2987 break;
2988 tmp = bsi_stmt (*bsi);
2989 }
2990
2991 if (bsi_end_p (*bsi))
2992 {
2993 *bsi = bsi_last (dest);
2994 return true;
2995 }
2996 else
2997 return false;
2998 }
2999
3000 /* If the source has one successor, the edge is not abnormal and
3001 the last statement does not end a basic block, insert there.
3002 Except for the entry block. */
3003 src = e->src;
3004 if ((e->flags & EDGE_ABNORMAL) == 0
3005 && single_succ_p (src)
3006 && src != ENTRY_BLOCK_PTR)
3007 {
3008 *bsi = bsi_last (src);
3009 if (bsi_end_p (*bsi))
3010 return true;
3011
3012 tmp = bsi_stmt (*bsi);
3013 if (!stmt_ends_bb_p (tmp))
3014 return true;
3015
3016 /* Insert code just before returning the value. We may need to decompose
3017 the return in the case it contains non-trivial operand. */
3018 if (TREE_CODE (tmp) == RETURN_EXPR)
3019 {
3020 tree op = TREE_OPERAND (tmp, 0);
3021 if (op && !is_gimple_val (op))
3022 {
3023 gcc_assert (TREE_CODE (op) == MODIFY_EXPR);
3024 bsi_insert_before (bsi, op, BSI_NEW_STMT);
3025 TREE_OPERAND (tmp, 0) = TREE_OPERAND (op, 0);
3026 }
3027 bsi_prev (bsi);
3028 return true;
3029 }
3030 }
3031
3032 /* Otherwise, create a new basic block, and split this edge. */
3033 dest = split_edge (e);
3034 if (new_bb)
3035 *new_bb = dest;
3036 e = single_pred_edge (dest);
3037 goto restart;
3038 }
3039
3040
3041 /* This routine will commit all pending edge insertions, creating any new
3042 basic blocks which are necessary. */
3043
3044 void
3045 bsi_commit_edge_inserts (void)
3046 {
3047 basic_block bb;
3048 edge e;
3049 edge_iterator ei;
3050
3051 bsi_commit_one_edge_insert (single_succ_edge (ENTRY_BLOCK_PTR), NULL);
3052
3053 FOR_EACH_BB (bb)
3054 FOR_EACH_EDGE (e, ei, bb->succs)
3055 bsi_commit_one_edge_insert (e, NULL);
3056 }
3057
3058
3059 /* Commit insertions pending at edge E. If a new block is created, set NEW_BB
3060 to this block, otherwise set it to NULL. */
3061
3062 void
3063 bsi_commit_one_edge_insert (edge e, basic_block *new_bb)
3064 {
3065 if (new_bb)
3066 *new_bb = NULL;
3067 if (PENDING_STMT (e))
3068 {
3069 block_stmt_iterator bsi;
3070 tree stmt = PENDING_STMT (e);
3071
3072 PENDING_STMT (e) = NULL_TREE;
3073
3074 if (tree_find_edge_insert_loc (e, &bsi, new_bb))
3075 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
3076 else
3077 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
3078 }
3079 }
3080
3081
3082 /* Add STMT to the pending list of edge E. No actual insertion is
3083 made until a call to bsi_commit_edge_inserts () is made. */
3084
3085 void
3086 bsi_insert_on_edge (edge e, tree stmt)
3087 {
3088 append_to_statement_list (stmt, &PENDING_STMT (e));
3089 }
3090
3091 /* Similar to bsi_insert_on_edge+bsi_commit_edge_inserts. If a new
3092 block has to be created, it is returned. */
3093
3094 basic_block
3095 bsi_insert_on_edge_immediate (edge e, tree stmt)
3096 {
3097 block_stmt_iterator bsi;
3098 basic_block new_bb = NULL;
3099
3100 gcc_assert (!PENDING_STMT (e));
3101
3102 if (tree_find_edge_insert_loc (e, &bsi, &new_bb))
3103 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
3104 else
3105 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
3106
3107 return new_bb;
3108 }
3109
3110 /*---------------------------------------------------------------------------
3111 Tree specific functions for CFG manipulation
3112 ---------------------------------------------------------------------------*/
3113
3114 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
3115
3116 static void
3117 reinstall_phi_args (edge new_edge, edge old_edge)
3118 {
3119 tree var, phi;
3120
3121 if (!PENDING_STMT (old_edge))
3122 return;
3123
3124 for (var = PENDING_STMT (old_edge), phi = phi_nodes (new_edge->dest);
3125 var && phi;
3126 var = TREE_CHAIN (var), phi = PHI_CHAIN (phi))
3127 {
3128 tree result = TREE_PURPOSE (var);
3129 tree arg = TREE_VALUE (var);
3130
3131 gcc_assert (result == PHI_RESULT (phi));
3132
3133 add_phi_arg (phi, arg, new_edge);
3134 }
3135
3136 PENDING_STMT (old_edge) = NULL;
3137 }
3138
3139 /* Returns the basic block after which the new basic block created
3140 by splitting edge EDGE_IN should be placed. Tries to keep the new block
3141 near its "logical" location. This is of most help to humans looking
3142 at debugging dumps. */
3143
3144 static basic_block
3145 split_edge_bb_loc (edge edge_in)
3146 {
3147 basic_block dest = edge_in->dest;
3148
3149 if (dest->prev_bb && find_edge (dest->prev_bb, dest))
3150 return edge_in->src;
3151 else
3152 return dest->prev_bb;
3153 }
3154
3155 /* Split a (typically critical) edge EDGE_IN. Return the new block.
3156 Abort on abnormal edges. */
3157
3158 static basic_block
3159 tree_split_edge (edge edge_in)
3160 {
3161 basic_block new_bb, after_bb, dest;
3162 edge new_edge, e;
3163
3164 /* Abnormal edges cannot be split. */
3165 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
3166
3167 dest = edge_in->dest;
3168
3169 after_bb = split_edge_bb_loc (edge_in);
3170
3171 new_bb = create_empty_bb (after_bb);
3172 new_bb->frequency = EDGE_FREQUENCY (edge_in);
3173 new_bb->count = edge_in->count;
3174 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
3175 new_edge->probability = REG_BR_PROB_BASE;
3176 new_edge->count = edge_in->count;
3177
3178 e = redirect_edge_and_branch (edge_in, new_bb);
3179 gcc_assert (e);
3180 reinstall_phi_args (new_edge, e);
3181
3182 return new_bb;
3183 }
3184
3185
3186 /* Return true when BB has label LABEL in it. */
3187
3188 static bool
3189 has_label_p (basic_block bb, tree label)
3190 {
3191 block_stmt_iterator bsi;
3192
3193 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3194 {
3195 tree stmt = bsi_stmt (bsi);
3196
3197 if (TREE_CODE (stmt) != LABEL_EXPR)
3198 return false;
3199 if (LABEL_EXPR_LABEL (stmt) == label)
3200 return true;
3201 }
3202 return false;
3203 }
3204
3205
3206 /* Callback for walk_tree, check that all elements with address taken are
3207 properly noticed as such. The DATA is an int* that is 1 if TP was seen
3208 inside a PHI node. */
3209
3210 static tree
3211 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3212 {
3213 tree t = *tp, x;
3214 bool in_phi = (data != NULL);
3215
3216 if (TYPE_P (t))
3217 *walk_subtrees = 0;
3218
3219 /* Check operand N for being valid GIMPLE and give error MSG if not. */
3220 #define CHECK_OP(N, MSG) \
3221 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
3222 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
3223
3224 switch (TREE_CODE (t))
3225 {
3226 case SSA_NAME:
3227 if (SSA_NAME_IN_FREE_LIST (t))
3228 {
3229 error ("SSA name in freelist but still referenced");
3230 return *tp;
3231 }
3232 break;
3233
3234 case ASSERT_EXPR:
3235 x = fold (ASSERT_EXPR_COND (t));
3236 if (x == boolean_false_node)
3237 {
3238 error ("ASSERT_EXPR with an always-false condition");
3239 return *tp;
3240 }
3241 break;
3242
3243 case MODIFY_EXPR:
3244 x = TREE_OPERAND (t, 0);
3245 if (TREE_CODE (x) == BIT_FIELD_REF
3246 && is_gimple_reg (TREE_OPERAND (x, 0)))
3247 {
3248 error ("GIMPLE register modified with BIT_FIELD_REF");
3249 return t;
3250 }
3251 break;
3252
3253 case ADDR_EXPR:
3254 {
3255 bool old_invariant;
3256 bool old_constant;
3257 bool old_side_effects;
3258 bool new_invariant;
3259 bool new_constant;
3260 bool new_side_effects;
3261
3262 /* ??? tree-ssa-alias.c may have overlooked dead PHI nodes, missing
3263 dead PHIs that take the address of something. But if the PHI
3264 result is dead, the fact that it takes the address of anything
3265 is irrelevant. Because we can not tell from here if a PHI result
3266 is dead, we just skip this check for PHIs altogether. This means
3267 we may be missing "valid" checks, but what can you do?
3268 This was PR19217. */
3269 if (in_phi)
3270 break;
3271
3272 old_invariant = TREE_INVARIANT (t);
3273 old_constant = TREE_CONSTANT (t);
3274 old_side_effects = TREE_SIDE_EFFECTS (t);
3275
3276 recompute_tree_invariant_for_addr_expr (t);
3277 new_invariant = TREE_INVARIANT (t);
3278 new_side_effects = TREE_SIDE_EFFECTS (t);
3279 new_constant = TREE_CONSTANT (t);
3280
3281 if (old_invariant != new_invariant)
3282 {
3283 error ("invariant not recomputed when ADDR_EXPR changed");
3284 return t;
3285 }
3286
3287 if (old_constant != new_constant)
3288 {
3289 error ("constant not recomputed when ADDR_EXPR changed");
3290 return t;
3291 }
3292 if (old_side_effects != new_side_effects)
3293 {
3294 error ("side effects not recomputed when ADDR_EXPR changed");
3295 return t;
3296 }
3297
3298 /* Skip any references (they will be checked when we recurse down the
3299 tree) and ensure that any variable used as a prefix is marked
3300 addressable. */
3301 for (x = TREE_OPERAND (t, 0);
3302 handled_component_p (x);
3303 x = TREE_OPERAND (x, 0))
3304 ;
3305
3306 if (TREE_CODE (x) != VAR_DECL && TREE_CODE (x) != PARM_DECL)
3307 return NULL;
3308 if (!TREE_ADDRESSABLE (x))
3309 {
3310 error ("address taken, but ADDRESSABLE bit not set");
3311 return x;
3312 }
3313 break;
3314 }
3315
3316 case COND_EXPR:
3317 x = COND_EXPR_COND (t);
3318 if (TREE_CODE (TREE_TYPE (x)) != BOOLEAN_TYPE)
3319 {
3320 error ("non-boolean used in condition");
3321 return x;
3322 }
3323 if (!is_gimple_condexpr (x))
3324 {
3325 error ("invalid conditional operand");
3326 return x;
3327 }
3328 break;
3329
3330 case NOP_EXPR:
3331 case CONVERT_EXPR:
3332 case FIX_TRUNC_EXPR:
3333 case FLOAT_EXPR:
3334 case NEGATE_EXPR:
3335 case ABS_EXPR:
3336 case BIT_NOT_EXPR:
3337 case NON_LVALUE_EXPR:
3338 case TRUTH_NOT_EXPR:
3339 CHECK_OP (0, "invalid operand to unary operator");
3340 break;
3341
3342 case REALPART_EXPR:
3343 case IMAGPART_EXPR:
3344 case COMPONENT_REF:
3345 case ARRAY_REF:
3346 case ARRAY_RANGE_REF:
3347 case BIT_FIELD_REF:
3348 case VIEW_CONVERT_EXPR:
3349 /* We have a nest of references. Verify that each of the operands
3350 that determine where to reference is either a constant or a variable,
3351 verify that the base is valid, and then show we've already checked
3352 the subtrees. */
3353 while (handled_component_p (t))
3354 {
3355 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3356 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3357 else if (TREE_CODE (t) == ARRAY_REF
3358 || TREE_CODE (t) == ARRAY_RANGE_REF)
3359 {
3360 CHECK_OP (1, "invalid array index");
3361 if (TREE_OPERAND (t, 2))
3362 CHECK_OP (2, "invalid array lower bound");
3363 if (TREE_OPERAND (t, 3))
3364 CHECK_OP (3, "invalid array stride");
3365 }
3366 else if (TREE_CODE (t) == BIT_FIELD_REF)
3367 {
3368 CHECK_OP (1, "invalid operand to BIT_FIELD_REF");
3369 CHECK_OP (2, "invalid operand to BIT_FIELD_REF");
3370 }
3371
3372 t = TREE_OPERAND (t, 0);
3373 }
3374
3375 if (!CONSTANT_CLASS_P (t) && !is_gimple_lvalue (t))
3376 {
3377 error ("invalid reference prefix");
3378 return t;
3379 }
3380 *walk_subtrees = 0;
3381 break;
3382
3383 case LT_EXPR:
3384 case LE_EXPR:
3385 case GT_EXPR:
3386 case GE_EXPR:
3387 case EQ_EXPR:
3388 case NE_EXPR:
3389 case UNORDERED_EXPR:
3390 case ORDERED_EXPR:
3391 case UNLT_EXPR:
3392 case UNLE_EXPR:
3393 case UNGT_EXPR:
3394 case UNGE_EXPR:
3395 case UNEQ_EXPR:
3396 case LTGT_EXPR:
3397 case PLUS_EXPR:
3398 case MINUS_EXPR:
3399 case MULT_EXPR:
3400 case TRUNC_DIV_EXPR:
3401 case CEIL_DIV_EXPR:
3402 case FLOOR_DIV_EXPR:
3403 case ROUND_DIV_EXPR:
3404 case TRUNC_MOD_EXPR:
3405 case CEIL_MOD_EXPR:
3406 case FLOOR_MOD_EXPR:
3407 case ROUND_MOD_EXPR:
3408 case RDIV_EXPR:
3409 case EXACT_DIV_EXPR:
3410 case MIN_EXPR:
3411 case MAX_EXPR:
3412 case LSHIFT_EXPR:
3413 case RSHIFT_EXPR:
3414 case LROTATE_EXPR:
3415 case RROTATE_EXPR:
3416 case BIT_IOR_EXPR:
3417 case BIT_XOR_EXPR:
3418 case BIT_AND_EXPR:
3419 CHECK_OP (0, "invalid operand to binary operator");
3420 CHECK_OP (1, "invalid operand to binary operator");
3421 break;
3422
3423 case CONSTRUCTOR:
3424 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3425 *walk_subtrees = 0;
3426 break;
3427
3428 default:
3429 break;
3430 }
3431 return NULL;
3432
3433 #undef CHECK_OP
3434 }
3435
3436
3437 /* Verify STMT, return true if STMT is not in GIMPLE form.
3438 TODO: Implement type checking. */
3439
3440 static bool
3441 verify_stmt (tree stmt, bool last_in_block)
3442 {
3443 tree addr;
3444
3445 if (OMP_DIRECTIVE_P (stmt))
3446 {
3447 /* OpenMP directives are validated by the FE and never operated
3448 on by the optimizers. Furthermore, OMP_FOR may contain
3449 non-gimple expressions when the main index variable has had
3450 its address taken. This does not affect the loop itself
3451 because the header of an OMP_FOR is merely used to determine
3452 how to setup the parallel iteration. */
3453 return false;
3454 }
3455
3456 if (!is_gimple_stmt (stmt))
3457 {
3458 error ("is not a valid GIMPLE statement");
3459 goto fail;
3460 }
3461
3462 addr = walk_tree (&stmt, verify_expr, NULL, NULL);
3463 if (addr)
3464 {
3465 debug_generic_stmt (addr);
3466 return true;
3467 }
3468
3469 /* If the statement is marked as part of an EH region, then it is
3470 expected that the statement could throw. Verify that when we
3471 have optimizations that simplify statements such that we prove
3472 that they cannot throw, that we update other data structures
3473 to match. */
3474 if (lookup_stmt_eh_region (stmt) >= 0)
3475 {
3476 if (!tree_could_throw_p (stmt))
3477 {
3478 error ("statement marked for throw, but doesn%'t");
3479 goto fail;
3480 }
3481 if (!last_in_block && tree_can_throw_internal (stmt))
3482 {
3483 error ("statement marked for throw in middle of block");
3484 goto fail;
3485 }
3486 }
3487
3488 return false;
3489
3490 fail:
3491 debug_generic_stmt (stmt);
3492 return true;
3493 }
3494
3495
3496 /* Return true when the T can be shared. */
3497
3498 static bool
3499 tree_node_can_be_shared (tree t)
3500 {
3501 if (IS_TYPE_OR_DECL_P (t)
3502 || is_gimple_min_invariant (t)
3503 || TREE_CODE (t) == SSA_NAME
3504 || t == error_mark_node
3505 || TREE_CODE (t) == IDENTIFIER_NODE)
3506 return true;
3507
3508 if (TREE_CODE (t) == CASE_LABEL_EXPR)
3509 return true;
3510
3511 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3512 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
3513 || TREE_CODE (t) == COMPONENT_REF
3514 || TREE_CODE (t) == REALPART_EXPR
3515 || TREE_CODE (t) == IMAGPART_EXPR)
3516 t = TREE_OPERAND (t, 0);
3517
3518 if (DECL_P (t))
3519 return true;
3520
3521 return false;
3522 }
3523
3524
3525 /* Called via walk_trees. Verify tree sharing. */
3526
3527 static tree
3528 verify_node_sharing (tree * tp, int *walk_subtrees, void *data)
3529 {
3530 htab_t htab = (htab_t) data;
3531 void **slot;
3532
3533 if (tree_node_can_be_shared (*tp))
3534 {
3535 *walk_subtrees = false;
3536 return NULL;
3537 }
3538
3539 slot = htab_find_slot (htab, *tp, INSERT);
3540 if (*slot)
3541 return (tree) *slot;
3542 *slot = *tp;
3543
3544 return NULL;
3545 }
3546
3547
3548 /* Verify the GIMPLE statement chain. */
3549
3550 void
3551 verify_stmts (void)
3552 {
3553 basic_block bb;
3554 block_stmt_iterator bsi;
3555 bool err = false;
3556 htab_t htab;
3557 tree addr;
3558
3559 timevar_push (TV_TREE_STMT_VERIFY);
3560 htab = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
3561
3562 FOR_EACH_BB (bb)
3563 {
3564 tree phi;
3565 int i;
3566
3567 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3568 {
3569 int phi_num_args = PHI_NUM_ARGS (phi);
3570
3571 if (bb_for_stmt (phi) != bb)
3572 {
3573 error ("bb_for_stmt (phi) is set to a wrong basic block");
3574 err |= true;
3575 }
3576
3577 for (i = 0; i < phi_num_args; i++)
3578 {
3579 tree t = PHI_ARG_DEF (phi, i);
3580 tree addr;
3581
3582 /* Addressable variables do have SSA_NAMEs but they
3583 are not considered gimple values. */
3584 if (TREE_CODE (t) != SSA_NAME
3585 && TREE_CODE (t) != FUNCTION_DECL
3586 && !is_gimple_val (t))
3587 {
3588 error ("PHI def is not a GIMPLE value");
3589 debug_generic_stmt (phi);
3590 debug_generic_stmt (t);
3591 err |= true;
3592 }
3593
3594 addr = walk_tree (&t, verify_expr, (void *) 1, NULL);
3595 if (addr)
3596 {
3597 debug_generic_stmt (addr);
3598 err |= true;
3599 }
3600
3601 addr = walk_tree (&t, verify_node_sharing, htab, NULL);
3602 if (addr)
3603 {
3604 error ("incorrect sharing of tree nodes");
3605 debug_generic_stmt (phi);
3606 debug_generic_stmt (addr);
3607 err |= true;
3608 }
3609 }
3610 }
3611
3612 for (bsi = bsi_start (bb); !bsi_end_p (bsi); )
3613 {
3614 tree stmt = bsi_stmt (bsi);
3615
3616 if (bb_for_stmt (stmt) != bb)
3617 {
3618 error ("bb_for_stmt (stmt) is set to a wrong basic block");
3619 err |= true;
3620 }
3621
3622 bsi_next (&bsi);
3623 err |= verify_stmt (stmt, bsi_end_p (bsi));
3624 addr = walk_tree (&stmt, verify_node_sharing, htab, NULL);
3625 if (addr)
3626 {
3627 error ("incorrect sharing of tree nodes");
3628 debug_generic_stmt (stmt);
3629 debug_generic_stmt (addr);
3630 err |= true;
3631 }
3632 }
3633 }
3634
3635 if (err)
3636 internal_error ("verify_stmts failed");
3637
3638 htab_delete (htab);
3639 timevar_pop (TV_TREE_STMT_VERIFY);
3640 }
3641
3642
3643 /* Verifies that the flow information is OK. */
3644
3645 static int
3646 tree_verify_flow_info (void)
3647 {
3648 int err = 0;
3649 basic_block bb;
3650 block_stmt_iterator bsi;
3651 tree stmt;
3652 edge e;
3653 edge_iterator ei;
3654
3655 if (ENTRY_BLOCK_PTR->stmt_list)
3656 {
3657 error ("ENTRY_BLOCK has a statement list associated with it");
3658 err = 1;
3659 }
3660
3661 if (EXIT_BLOCK_PTR->stmt_list)
3662 {
3663 error ("EXIT_BLOCK has a statement list associated with it");
3664 err = 1;
3665 }
3666
3667 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
3668 if (e->flags & EDGE_FALLTHRU)
3669 {
3670 error ("fallthru to exit from bb %d", e->src->index);
3671 err = 1;
3672 }
3673
3674 FOR_EACH_BB (bb)
3675 {
3676 bool found_ctrl_stmt = false;
3677
3678 stmt = NULL_TREE;
3679
3680 /* Skip labels on the start of basic block. */
3681 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3682 {
3683 tree prev_stmt = stmt;
3684
3685 stmt = bsi_stmt (bsi);
3686
3687 if (TREE_CODE (stmt) != LABEL_EXPR)
3688 break;
3689
3690 if (prev_stmt && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
3691 {
3692 error ("nonlocal label ");
3693 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3694 fprintf (stderr, " is not first in a sequence of labels in bb %d",
3695 bb->index);
3696 err = 1;
3697 }
3698
3699 if (label_to_block (LABEL_EXPR_LABEL (stmt)) != bb)
3700 {
3701 error ("label ");
3702 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3703 fprintf (stderr, " to block does not match in bb %d",
3704 bb->index);
3705 err = 1;
3706 }
3707
3708 if (decl_function_context (LABEL_EXPR_LABEL (stmt))
3709 != current_function_decl)
3710 {
3711 error ("label ");
3712 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3713 fprintf (stderr, " has incorrect context in bb %d",
3714 bb->index);
3715 err = 1;
3716 }
3717 }
3718
3719 /* Verify that body of basic block BB is free of control flow. */
3720 for (; !bsi_end_p (bsi); bsi_next (&bsi))
3721 {
3722 tree stmt = bsi_stmt (bsi);
3723
3724 if (found_ctrl_stmt)
3725 {
3726 error ("control flow in the middle of basic block %d",
3727 bb->index);
3728 err = 1;
3729 }
3730
3731 if (stmt_ends_bb_p (stmt))
3732 found_ctrl_stmt = true;
3733
3734 if (TREE_CODE (stmt) == LABEL_EXPR)
3735 {
3736 error ("label ");
3737 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3738 fprintf (stderr, " in the middle of basic block %d", bb->index);
3739 err = 1;
3740 }
3741 }
3742
3743 bsi = bsi_last (bb);
3744 if (bsi_end_p (bsi))
3745 continue;
3746
3747 stmt = bsi_stmt (bsi);
3748
3749 err |= verify_eh_edges (stmt);
3750
3751 if (is_ctrl_stmt (stmt))
3752 {
3753 FOR_EACH_EDGE (e, ei, bb->succs)
3754 if (e->flags & EDGE_FALLTHRU)
3755 {
3756 error ("fallthru edge after a control statement in bb %d",
3757 bb->index);
3758 err = 1;
3759 }
3760 }
3761
3762 if (TREE_CODE (stmt) != COND_EXPR)
3763 {
3764 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
3765 after anything else but if statement. */
3766 FOR_EACH_EDGE (e, ei, bb->succs)
3767 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
3768 {
3769 error ("true/false edge after a non-COND_EXPR in bb %d",
3770 bb->index);
3771 err = 1;
3772 }
3773 }
3774
3775 switch (TREE_CODE (stmt))
3776 {
3777 case COND_EXPR:
3778 {
3779 edge true_edge;
3780 edge false_edge;
3781 if (TREE_CODE (COND_EXPR_THEN (stmt)) != GOTO_EXPR
3782 || TREE_CODE (COND_EXPR_ELSE (stmt)) != GOTO_EXPR)
3783 {
3784 error ("structured COND_EXPR at the end of bb %d", bb->index);
3785 err = 1;
3786 }
3787
3788 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
3789
3790 if (!true_edge || !false_edge
3791 || !(true_edge->flags & EDGE_TRUE_VALUE)
3792 || !(false_edge->flags & EDGE_FALSE_VALUE)
3793 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
3794 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
3795 || EDGE_COUNT (bb->succs) >= 3)
3796 {
3797 error ("wrong outgoing edge flags at end of bb %d",
3798 bb->index);
3799 err = 1;
3800 }
3801
3802 if (!has_label_p (true_edge->dest,
3803 GOTO_DESTINATION (COND_EXPR_THEN (stmt))))
3804 {
3805 error ("%<then%> label does not match edge at end of bb %d",
3806 bb->index);
3807 err = 1;
3808 }
3809
3810 if (!has_label_p (false_edge->dest,
3811 GOTO_DESTINATION (COND_EXPR_ELSE (stmt))))
3812 {
3813 error ("%<else%> label does not match edge at end of bb %d",
3814 bb->index);
3815 err = 1;
3816 }
3817 }
3818 break;
3819
3820 case GOTO_EXPR:
3821 if (simple_goto_p (stmt))
3822 {
3823 error ("explicit goto at end of bb %d", bb->index);
3824 err = 1;
3825 }
3826 else
3827 {
3828 /* FIXME. We should double check that the labels in the
3829 destination blocks have their address taken. */
3830 FOR_EACH_EDGE (e, ei, bb->succs)
3831 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
3832 | EDGE_FALSE_VALUE))
3833 || !(e->flags & EDGE_ABNORMAL))
3834 {
3835 error ("wrong outgoing edge flags at end of bb %d",
3836 bb->index);
3837 err = 1;
3838 }
3839 }
3840 break;
3841
3842 case RETURN_EXPR:
3843 if (!single_succ_p (bb)
3844 || (single_succ_edge (bb)->flags
3845 & (EDGE_FALLTHRU | EDGE_ABNORMAL
3846 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3847 {
3848 error ("wrong outgoing edge flags at end of bb %d", bb->index);
3849 err = 1;
3850 }
3851 if (single_succ (bb) != EXIT_BLOCK_PTR)
3852 {
3853 error ("return edge does not point to exit in bb %d",
3854 bb->index);
3855 err = 1;
3856 }
3857 break;
3858
3859 case SWITCH_EXPR:
3860 {
3861 tree prev;
3862 edge e;
3863 size_t i, n;
3864 tree vec;
3865
3866 vec = SWITCH_LABELS (stmt);
3867 n = TREE_VEC_LENGTH (vec);
3868
3869 /* Mark all the destination basic blocks. */
3870 for (i = 0; i < n; ++i)
3871 {
3872 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
3873 basic_block label_bb = label_to_block (lab);
3874
3875 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
3876 label_bb->aux = (void *)1;
3877 }
3878
3879 /* Verify that the case labels are sorted. */
3880 prev = TREE_VEC_ELT (vec, 0);
3881 for (i = 1; i < n - 1; ++i)
3882 {
3883 tree c = TREE_VEC_ELT (vec, i);
3884 if (! CASE_LOW (c))
3885 {
3886 error ("found default case not at end of case vector");
3887 err = 1;
3888 continue;
3889 }
3890 if (! tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
3891 {
3892 error ("case labels not sorted: ");
3893 print_generic_expr (stderr, prev, 0);
3894 fprintf (stderr," is greater than ");
3895 print_generic_expr (stderr, c, 0);
3896 fprintf (stderr," but comes before it.\n");
3897 err = 1;
3898 }
3899 prev = c;
3900 }
3901 if (CASE_LOW (TREE_VEC_ELT (vec, n - 1)))
3902 {
3903 error ("no default case found at end of case vector");
3904 err = 1;
3905 }
3906
3907 FOR_EACH_EDGE (e, ei, bb->succs)
3908 {
3909 if (!e->dest->aux)
3910 {
3911 error ("extra outgoing edge %d->%d",
3912 bb->index, e->dest->index);
3913 err = 1;
3914 }
3915 e->dest->aux = (void *)2;
3916 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
3917 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3918 {
3919 error ("wrong outgoing edge flags at end of bb %d",
3920 bb->index);
3921 err = 1;
3922 }
3923 }
3924
3925 /* Check that we have all of them. */
3926 for (i = 0; i < n; ++i)
3927 {
3928 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
3929 basic_block label_bb = label_to_block (lab);
3930
3931 if (label_bb->aux != (void *)2)
3932 {
3933 error ("missing edge %i->%i",
3934 bb->index, label_bb->index);
3935 err = 1;
3936 }
3937 }
3938
3939 FOR_EACH_EDGE (e, ei, bb->succs)
3940 e->dest->aux = (void *)0;
3941 }
3942
3943 default: ;
3944 }
3945 }
3946
3947 if (dom_computed[CDI_DOMINATORS] >= DOM_NO_FAST_QUERY)
3948 verify_dominators (CDI_DOMINATORS);
3949
3950 return err;
3951 }
3952
3953
3954 /* Updates phi nodes after creating a forwarder block joined
3955 by edge FALLTHRU. */
3956
3957 static void
3958 tree_make_forwarder_block (edge fallthru)
3959 {
3960 edge e;
3961 edge_iterator ei;
3962 basic_block dummy, bb;
3963 tree phi, new_phi, var;
3964
3965 dummy = fallthru->src;
3966 bb = fallthru->dest;
3967
3968 if (single_pred_p (bb))
3969 return;
3970
3971 /* If we redirected a branch we must create new phi nodes at the
3972 start of BB. */
3973 for (phi = phi_nodes (dummy); phi; phi = PHI_CHAIN (phi))
3974 {
3975 var = PHI_RESULT (phi);
3976 new_phi = create_phi_node (var, bb);
3977 SSA_NAME_DEF_STMT (var) = new_phi;
3978 SET_PHI_RESULT (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
3979 add_phi_arg (new_phi, PHI_RESULT (phi), fallthru);
3980 }
3981
3982 /* Ensure that the PHI node chain is in the same order. */
3983 set_phi_nodes (bb, phi_reverse (phi_nodes (bb)));
3984
3985 /* Add the arguments we have stored on edges. */
3986 FOR_EACH_EDGE (e, ei, bb->preds)
3987 {
3988 if (e == fallthru)
3989 continue;
3990
3991 flush_pending_stmts (e);
3992 }
3993 }
3994
3995
3996 /* Return a non-special label in the head of basic block BLOCK.
3997 Create one if it doesn't exist. */
3998
3999 tree
4000 tree_block_label (basic_block bb)
4001 {
4002 block_stmt_iterator i, s = bsi_start (bb);
4003 bool first = true;
4004 tree label, stmt;
4005
4006 for (i = s; !bsi_end_p (i); first = false, bsi_next (&i))
4007 {
4008 stmt = bsi_stmt (i);
4009 if (TREE_CODE (stmt) != LABEL_EXPR)
4010 break;
4011 label = LABEL_EXPR_LABEL (stmt);
4012 if (!DECL_NONLOCAL (label))
4013 {
4014 if (!first)
4015 bsi_move_before (&i, &s);
4016 return label;
4017 }
4018 }
4019
4020 label = create_artificial_label ();
4021 stmt = build1 (LABEL_EXPR, void_type_node, label);
4022 bsi_insert_before (&s, stmt, BSI_NEW_STMT);
4023 return label;
4024 }
4025
4026
4027 /* Attempt to perform edge redirection by replacing a possibly complex
4028 jump instruction by a goto or by removing the jump completely.
4029 This can apply only if all edges now point to the same block. The
4030 parameters and return values are equivalent to
4031 redirect_edge_and_branch. */
4032
4033 static edge
4034 tree_try_redirect_by_replacing_jump (edge e, basic_block target)
4035 {
4036 basic_block src = e->src;
4037 block_stmt_iterator b;
4038 tree stmt;
4039
4040 /* We can replace or remove a complex jump only when we have exactly
4041 two edges. */
4042 if (EDGE_COUNT (src->succs) != 2
4043 /* Verify that all targets will be TARGET. Specifically, the
4044 edge that is not E must also go to TARGET. */
4045 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4046 return NULL;
4047
4048 b = bsi_last (src);
4049 if (bsi_end_p (b))
4050 return NULL;
4051 stmt = bsi_stmt (b);
4052
4053 if (TREE_CODE (stmt) == COND_EXPR
4054 || TREE_CODE (stmt) == SWITCH_EXPR)
4055 {
4056 bsi_remove (&b, true);
4057 e = ssa_redirect_edge (e, target);
4058 e->flags = EDGE_FALLTHRU;
4059 return e;
4060 }
4061
4062 return NULL;
4063 }
4064
4065
4066 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4067 edge representing the redirected branch. */
4068
4069 static edge
4070 tree_redirect_edge_and_branch (edge e, basic_block dest)
4071 {
4072 basic_block bb = e->src;
4073 block_stmt_iterator bsi;
4074 edge ret;
4075 tree label, stmt;
4076
4077 if (e->flags & EDGE_ABNORMAL)
4078 return NULL;
4079
4080 if (e->src != ENTRY_BLOCK_PTR
4081 && (ret = tree_try_redirect_by_replacing_jump (e, dest)))
4082 return ret;
4083
4084 if (e->dest == dest)
4085 return NULL;
4086
4087 label = tree_block_label (dest);
4088
4089 bsi = bsi_last (bb);
4090 stmt = bsi_end_p (bsi) ? NULL : bsi_stmt (bsi);
4091
4092 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
4093 {
4094 case COND_EXPR:
4095 stmt = (e->flags & EDGE_TRUE_VALUE
4096 ? COND_EXPR_THEN (stmt)
4097 : COND_EXPR_ELSE (stmt));
4098 GOTO_DESTINATION (stmt) = label;
4099 break;
4100
4101 case GOTO_EXPR:
4102 /* No non-abnormal edges should lead from a non-simple goto, and
4103 simple ones should be represented implicitly. */
4104 gcc_unreachable ();
4105
4106 case SWITCH_EXPR:
4107 {
4108 tree cases = get_cases_for_edge (e, stmt);
4109
4110 /* If we have a list of cases associated with E, then use it
4111 as it's a lot faster than walking the entire case vector. */
4112 if (cases)
4113 {
4114 edge e2 = find_edge (e->src, dest);
4115 tree last, first;
4116
4117 first = cases;
4118 while (cases)
4119 {
4120 last = cases;
4121 CASE_LABEL (cases) = label;
4122 cases = TREE_CHAIN (cases);
4123 }
4124
4125 /* If there was already an edge in the CFG, then we need
4126 to move all the cases associated with E to E2. */
4127 if (e2)
4128 {
4129 tree cases2 = get_cases_for_edge (e2, stmt);
4130
4131 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4132 TREE_CHAIN (cases2) = first;
4133 }
4134 }
4135 else
4136 {
4137 tree vec = SWITCH_LABELS (stmt);
4138 size_t i, n = TREE_VEC_LENGTH (vec);
4139
4140 for (i = 0; i < n; i++)
4141 {
4142 tree elt = TREE_VEC_ELT (vec, i);
4143
4144 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4145 CASE_LABEL (elt) = label;
4146 }
4147 }
4148
4149 break;
4150 }
4151
4152 case RETURN_EXPR:
4153 bsi_remove (&bsi, true);
4154 e->flags |= EDGE_FALLTHRU;
4155 break;
4156
4157 default:
4158 /* Otherwise it must be a fallthru edge, and we don't need to
4159 do anything besides redirecting it. */
4160 gcc_assert (e->flags & EDGE_FALLTHRU);
4161 break;
4162 }
4163
4164 /* Update/insert PHI nodes as necessary. */
4165
4166 /* Now update the edges in the CFG. */
4167 e = ssa_redirect_edge (e, dest);
4168
4169 return e;
4170 }
4171
4172
4173 /* Simple wrapper, as we can always redirect fallthru edges. */
4174
4175 static basic_block
4176 tree_redirect_edge_and_branch_force (edge e, basic_block dest)
4177 {
4178 e = tree_redirect_edge_and_branch (e, dest);
4179 gcc_assert (e);
4180
4181 return NULL;
4182 }
4183
4184
4185 /* Splits basic block BB after statement STMT (but at least after the
4186 labels). If STMT is NULL, BB is split just after the labels. */
4187
4188 static basic_block
4189 tree_split_block (basic_block bb, void *stmt)
4190 {
4191 block_stmt_iterator bsi;
4192 tree_stmt_iterator tsi_tgt;
4193 tree act;
4194 basic_block new_bb;
4195 edge e;
4196 edge_iterator ei;
4197
4198 new_bb = create_empty_bb (bb);
4199
4200 /* Redirect the outgoing edges. */
4201 new_bb->succs = bb->succs;
4202 bb->succs = NULL;
4203 FOR_EACH_EDGE (e, ei, new_bb->succs)
4204 e->src = new_bb;
4205
4206 if (stmt && TREE_CODE ((tree) stmt) == LABEL_EXPR)
4207 stmt = NULL;
4208
4209 /* Move everything from BSI to the new basic block. */
4210 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4211 {
4212 act = bsi_stmt (bsi);
4213 if (TREE_CODE (act) == LABEL_EXPR)
4214 continue;
4215
4216 if (!stmt)
4217 break;
4218
4219 if (stmt == act)
4220 {
4221 bsi_next (&bsi);
4222 break;
4223 }
4224 }
4225
4226 if (bsi_end_p (bsi))
4227 return new_bb;
4228
4229 /* Split the statement list - avoid re-creating new containers as this
4230 brings ugly quadratic memory consumption in the inliner.
4231 (We are still quadratic since we need to update stmt BB pointers,
4232 sadly.) */
4233 new_bb->stmt_list = tsi_split_statement_list_before (&bsi.tsi);
4234 for (tsi_tgt = tsi_start (new_bb->stmt_list);
4235 !tsi_end_p (tsi_tgt); tsi_next (&tsi_tgt))
4236 change_bb_for_stmt (tsi_stmt (tsi_tgt), new_bb);
4237
4238 return new_bb;
4239 }
4240
4241
4242 /* Moves basic block BB after block AFTER. */
4243
4244 static bool
4245 tree_move_block_after (basic_block bb, basic_block after)
4246 {
4247 if (bb->prev_bb == after)
4248 return true;
4249
4250 unlink_block (bb);
4251 link_block (bb, after);
4252
4253 return true;
4254 }
4255
4256
4257 /* Return true if basic_block can be duplicated. */
4258
4259 static bool
4260 tree_can_duplicate_bb_p (basic_block bb ATTRIBUTE_UNUSED)
4261 {
4262 return true;
4263 }
4264
4265
4266 /* Create a duplicate of the basic block BB. NOTE: This does not
4267 preserve SSA form. */
4268
4269 static basic_block
4270 tree_duplicate_bb (basic_block bb)
4271 {
4272 basic_block new_bb;
4273 block_stmt_iterator bsi, bsi_tgt;
4274 tree phi;
4275
4276 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
4277
4278 /* Copy the PHI nodes. We ignore PHI node arguments here because
4279 the incoming edges have not been setup yet. */
4280 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4281 {
4282 tree copy = create_phi_node (PHI_RESULT (phi), new_bb);
4283 create_new_def_for (PHI_RESULT (copy), copy, PHI_RESULT_PTR (copy));
4284 }
4285
4286 /* Keep the chain of PHI nodes in the same order so that they can be
4287 updated by ssa_redirect_edge. */
4288 set_phi_nodes (new_bb, phi_reverse (phi_nodes (new_bb)));
4289
4290 bsi_tgt = bsi_start (new_bb);
4291 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4292 {
4293 def_operand_p def_p;
4294 ssa_op_iter op_iter;
4295 tree stmt, copy;
4296 int region;
4297
4298 stmt = bsi_stmt (bsi);
4299 if (TREE_CODE (stmt) == LABEL_EXPR)
4300 continue;
4301
4302 /* Create a new copy of STMT and duplicate STMT's virtual
4303 operands. */
4304 copy = unshare_expr (stmt);
4305 bsi_insert_after (&bsi_tgt, copy, BSI_NEW_STMT);
4306 copy_virtual_operands (copy, stmt);
4307 region = lookup_stmt_eh_region (stmt);
4308 if (region >= 0)
4309 add_stmt_to_eh_region (copy, region);
4310
4311 /* Create new names for all the definitions created by COPY and
4312 add replacement mappings for each new name. */
4313 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
4314 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
4315 }
4316
4317 return new_bb;
4318 }
4319
4320
4321 /* Basic block BB_COPY was created by code duplication. Add phi node
4322 arguments for edges going out of BB_COPY. The blocks that were
4323 duplicated have BB_DUPLICATED set. */
4324
4325 void
4326 add_phi_args_after_copy_bb (basic_block bb_copy)
4327 {
4328 basic_block bb, dest;
4329 edge e, e_copy;
4330 edge_iterator ei;
4331 tree phi, phi_copy, phi_next, def;
4332
4333 bb = get_bb_original (bb_copy);
4334
4335 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
4336 {
4337 if (!phi_nodes (e_copy->dest))
4338 continue;
4339
4340 if (e_copy->dest->flags & BB_DUPLICATED)
4341 dest = get_bb_original (e_copy->dest);
4342 else
4343 dest = e_copy->dest;
4344
4345 e = find_edge (bb, dest);
4346 if (!e)
4347 {
4348 /* During loop unrolling the target of the latch edge is copied.
4349 In this case we are not looking for edge to dest, but to
4350 duplicated block whose original was dest. */
4351 FOR_EACH_EDGE (e, ei, bb->succs)
4352 if ((e->dest->flags & BB_DUPLICATED)
4353 && get_bb_original (e->dest) == dest)
4354 break;
4355
4356 gcc_assert (e != NULL);
4357 }
4358
4359 for (phi = phi_nodes (e->dest), phi_copy = phi_nodes (e_copy->dest);
4360 phi;
4361 phi = phi_next, phi_copy = PHI_CHAIN (phi_copy))
4362 {
4363 phi_next = PHI_CHAIN (phi);
4364 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
4365 add_phi_arg (phi_copy, def, e_copy);
4366 }
4367 }
4368 }
4369
4370 /* Blocks in REGION_COPY array of length N_REGION were created by
4371 duplication of basic blocks. Add phi node arguments for edges
4372 going from these blocks. */
4373
4374 void
4375 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region)
4376 {
4377 unsigned i;
4378
4379 for (i = 0; i < n_region; i++)
4380 region_copy[i]->flags |= BB_DUPLICATED;
4381
4382 for (i = 0; i < n_region; i++)
4383 add_phi_args_after_copy_bb (region_copy[i]);
4384
4385 for (i = 0; i < n_region; i++)
4386 region_copy[i]->flags &= ~BB_DUPLICATED;
4387 }
4388
4389 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
4390 important exit edge EXIT. By important we mean that no SSA name defined
4391 inside region is live over the other exit edges of the region. All entry
4392 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
4393 to the duplicate of the region. SSA form, dominance and loop information
4394 is updated. The new basic blocks are stored to REGION_COPY in the same
4395 order as they had in REGION, provided that REGION_COPY is not NULL.
4396 The function returns false if it is unable to copy the region,
4397 true otherwise. */
4398
4399 bool
4400 tree_duplicate_sese_region (edge entry, edge exit,
4401 basic_block *region, unsigned n_region,
4402 basic_block *region_copy)
4403 {
4404 unsigned i, n_doms;
4405 bool free_region_copy = false, copying_header = false;
4406 struct loop *loop = entry->dest->loop_father;
4407 edge exit_copy;
4408 basic_block *doms;
4409 edge redirected;
4410 int total_freq = 0, entry_freq = 0;
4411 gcov_type total_count = 0, entry_count = 0;
4412
4413 if (!can_copy_bbs_p (region, n_region))
4414 return false;
4415
4416 /* Some sanity checking. Note that we do not check for all possible
4417 missuses of the functions. I.e. if you ask to copy something weird,
4418 it will work, but the state of structures probably will not be
4419 correct. */
4420 for (i = 0; i < n_region; i++)
4421 {
4422 /* We do not handle subloops, i.e. all the blocks must belong to the
4423 same loop. */
4424 if (region[i]->loop_father != loop)
4425 return false;
4426
4427 if (region[i] != entry->dest
4428 && region[i] == loop->header)
4429 return false;
4430 }
4431
4432 loop->copy = loop;
4433
4434 /* In case the function is used for loop header copying (which is the primary
4435 use), ensure that EXIT and its copy will be new latch and entry edges. */
4436 if (loop->header == entry->dest)
4437 {
4438 copying_header = true;
4439 loop->copy = loop->outer;
4440
4441 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
4442 return false;
4443
4444 for (i = 0; i < n_region; i++)
4445 if (region[i] != exit->src
4446 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
4447 return false;
4448 }
4449
4450 if (!region_copy)
4451 {
4452 region_copy = XNEWVEC (basic_block, n_region);
4453 free_region_copy = true;
4454 }
4455
4456 gcc_assert (!need_ssa_update_p ());
4457
4458 /* Record blocks outside the region that are dominated by something
4459 inside. */
4460 doms = XNEWVEC (basic_block, n_basic_blocks);
4461 initialize_original_copy_tables ();
4462
4463 n_doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region, doms);
4464
4465 if (entry->dest->count)
4466 {
4467 total_count = entry->dest->count;
4468 entry_count = entry->count;
4469 /* Fix up corner cases, to avoid division by zero or creation of negative
4470 frequencies. */
4471 if (entry_count > total_count)
4472 entry_count = total_count;
4473 }
4474 else
4475 {
4476 total_freq = entry->dest->frequency;
4477 entry_freq = EDGE_FREQUENCY (entry);
4478 /* Fix up corner cases, to avoid division by zero or creation of negative
4479 frequencies. */
4480 if (total_freq == 0)
4481 total_freq = 1;
4482 else if (entry_freq > total_freq)
4483 entry_freq = total_freq;
4484 }
4485
4486 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
4487 split_edge_bb_loc (entry));
4488 if (total_count)
4489 {
4490 scale_bbs_frequencies_gcov_type (region, n_region,
4491 total_count - entry_count,
4492 total_count);
4493 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
4494 total_count);
4495 }
4496 else
4497 {
4498 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
4499 total_freq);
4500 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
4501 }
4502
4503 if (copying_header)
4504 {
4505 loop->header = exit->dest;
4506 loop->latch = exit->src;
4507 }
4508
4509 /* Redirect the entry and add the phi node arguments. */
4510 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
4511 gcc_assert (redirected != NULL);
4512 flush_pending_stmts (entry);
4513
4514 /* Concerning updating of dominators: We must recount dominators
4515 for entry block and its copy. Anything that is outside of the
4516 region, but was dominated by something inside needs recounting as
4517 well. */
4518 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
4519 doms[n_doms++] = get_bb_original (entry->dest);
4520 iterate_fix_dominators (CDI_DOMINATORS, doms, n_doms);
4521 free (doms);
4522
4523 /* Add the other PHI node arguments. */
4524 add_phi_args_after_copy (region_copy, n_region);
4525
4526 /* Update the SSA web. */
4527 update_ssa (TODO_update_ssa);
4528
4529 if (free_region_copy)
4530 free (region_copy);
4531
4532 free_original_copy_tables ();
4533 return true;
4534 }
4535
4536 /*
4537 DEF_VEC_P(basic_block);
4538 DEF_VEC_ALLOC_P(basic_block,heap);
4539 */
4540
4541 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
4542 adding blocks when the dominator traversal reaches EXIT. This
4543 function silently assumes that ENTRY strictly dominates EXIT. */
4544
4545 static void
4546 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
4547 VEC(basic_block,heap) **bbs_p)
4548 {
4549 basic_block son;
4550
4551 for (son = first_dom_son (CDI_DOMINATORS, entry);
4552 son;
4553 son = next_dom_son (CDI_DOMINATORS, son))
4554 {
4555 VEC_safe_push (basic_block, heap, *bbs_p, son);
4556 if (son != exit)
4557 gather_blocks_in_sese_region (son, exit, bbs_p);
4558 }
4559 }
4560
4561
4562 struct move_stmt_d
4563 {
4564 tree block;
4565 tree from_context;
4566 tree to_context;
4567 bitmap vars_to_remove;
4568 htab_t new_label_map;
4569 bool remap_decls_p;
4570 };
4571
4572 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
4573 contained in *TP and change the DECL_CONTEXT of every local
4574 variable referenced in *TP. */
4575
4576 static tree
4577 move_stmt_r (tree *tp, int *walk_subtrees, void *data)
4578 {
4579 struct move_stmt_d *p = (struct move_stmt_d *) data;
4580 tree t = *tp;
4581
4582 if (p->block && IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (t))))
4583 TREE_BLOCK (t) = p->block;
4584
4585 if (OMP_DIRECTIVE_P (t)
4586 && TREE_CODE (t) != OMP_RETURN
4587 && TREE_CODE (t) != OMP_CONTINUE)
4588 {
4589 /* Do not remap variables inside OMP directives. Variables
4590 referenced in clauses and directive header belong to the
4591 parent function and should not be moved into the child
4592 function. */
4593 bool save_remap_decls_p = p->remap_decls_p;
4594 p->remap_decls_p = false;
4595 *walk_subtrees = 0;
4596
4597 walk_tree (&OMP_BODY (t), move_stmt_r, p, NULL);
4598
4599 p->remap_decls_p = save_remap_decls_p;
4600 }
4601 else if (DECL_P (t) && DECL_CONTEXT (t) == p->from_context)
4602 {
4603 if (TREE_CODE (t) == LABEL_DECL)
4604 {
4605 if (p->new_label_map)
4606 {
4607 struct tree_map in, *out;
4608 in.from = t;
4609 out = htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
4610 if (out)
4611 *tp = t = out->to;
4612 }
4613
4614 DECL_CONTEXT (t) = p->to_context;
4615 }
4616 else if (p->remap_decls_p)
4617 {
4618 DECL_CONTEXT (t) = p->to_context;
4619
4620 if (TREE_CODE (t) == VAR_DECL)
4621 {
4622 struct function *f = DECL_STRUCT_FUNCTION (p->to_context);
4623 f->unexpanded_var_list
4624 = tree_cons (0, t, f->unexpanded_var_list);
4625
4626 /* Mark T to be removed from the original function,
4627 otherwise it will be given a DECL_RTL when the
4628 original function is expanded. */
4629 bitmap_set_bit (p->vars_to_remove, DECL_UID (t));
4630 }
4631 }
4632 }
4633 else if (TYPE_P (t))
4634 *walk_subtrees = 0;
4635
4636 return NULL_TREE;
4637 }
4638
4639
4640 /* Move basic block BB from function CFUN to function DEST_FN. The
4641 block is moved out of the original linked list and placed after
4642 block AFTER in the new list. Also, the block is removed from the
4643 original array of blocks and placed in DEST_FN's array of blocks.
4644 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
4645 updated to reflect the moved edges.
4646
4647 On exit, local variables that need to be removed from
4648 CFUN->UNEXPANDED_VAR_LIST will have been added to VARS_TO_REMOVE. */
4649
4650 static void
4651 move_block_to_fn (struct function *dest_cfun, basic_block bb,
4652 basic_block after, bool update_edge_count_p,
4653 bitmap vars_to_remove, htab_t new_label_map, int eh_offset)
4654 {
4655 struct control_flow_graph *cfg;
4656 edge_iterator ei;
4657 edge e;
4658 block_stmt_iterator si;
4659 struct move_stmt_d d;
4660 unsigned old_len, new_len;
4661 basic_block *addr;
4662
4663 /* Link BB to the new linked list. */
4664 move_block_after (bb, after);
4665
4666 /* Update the edge count in the corresponding flowgraphs. */
4667 if (update_edge_count_p)
4668 FOR_EACH_EDGE (e, ei, bb->succs)
4669 {
4670 cfun->cfg->x_n_edges--;
4671 dest_cfun->cfg->x_n_edges++;
4672 }
4673
4674 /* Remove BB from the original basic block array. */
4675 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
4676 cfun->cfg->x_n_basic_blocks--;
4677
4678 /* Grow DEST_CFUN's basic block array if needed. */
4679 cfg = dest_cfun->cfg;
4680 cfg->x_n_basic_blocks++;
4681 if (bb->index > cfg->x_last_basic_block)
4682 cfg->x_last_basic_block = bb->index;
4683
4684 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
4685 if ((unsigned) cfg->x_last_basic_block >= old_len)
4686 {
4687 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
4688 VEC_safe_grow (basic_block, gc, cfg->x_basic_block_info, new_len);
4689 addr = VEC_address (basic_block, cfg->x_basic_block_info);
4690 memset (&addr[old_len], 0, sizeof (basic_block) * (new_len - old_len));
4691 }
4692
4693 VEC_replace (basic_block, cfg->x_basic_block_info,
4694 cfg->x_last_basic_block, bb);
4695
4696 /* The statements in BB need to be associated with a new TREE_BLOCK.
4697 Labels need to be associated with a new label-to-block map. */
4698 memset (&d, 0, sizeof (d));
4699 d.vars_to_remove = vars_to_remove;
4700
4701 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4702 {
4703 tree stmt = bsi_stmt (si);
4704 int region;
4705
4706 d.from_context = cfun->decl;
4707 d.to_context = dest_cfun->decl;
4708 d.remap_decls_p = true;
4709 d.new_label_map = new_label_map;
4710 if (TREE_BLOCK (stmt))
4711 d.block = DECL_INITIAL (dest_cfun->decl);
4712
4713 walk_tree (&stmt, move_stmt_r, &d, NULL);
4714
4715 if (TREE_CODE (stmt) == LABEL_EXPR)
4716 {
4717 tree label = LABEL_EXPR_LABEL (stmt);
4718 int uid = LABEL_DECL_UID (label);
4719
4720 gcc_assert (uid > -1);
4721
4722 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
4723 if (old_len <= (unsigned) uid)
4724 {
4725 new_len = 3 * uid / 2;
4726 VEC_safe_grow (basic_block, gc, cfg->x_label_to_block_map,
4727 new_len);
4728 addr = VEC_address (basic_block, cfg->x_label_to_block_map);
4729 memset (&addr[old_len], 0,
4730 sizeof (basic_block) * (new_len - old_len));
4731 }
4732
4733 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
4734 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
4735
4736 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
4737
4738 if (uid >= dest_cfun->last_label_uid)
4739 dest_cfun->last_label_uid = uid + 1;
4740 }
4741 else if (TREE_CODE (stmt) == RESX_EXPR && eh_offset != 0)
4742 TREE_OPERAND (stmt, 0) =
4743 build_int_cst (NULL_TREE,
4744 TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0))
4745 + eh_offset);
4746
4747 region = lookup_stmt_eh_region (stmt);
4748 if (region >= 0)
4749 {
4750 add_stmt_to_eh_region_fn (dest_cfun, stmt, region + eh_offset);
4751 remove_stmt_from_eh_region (stmt);
4752 }
4753 }
4754 }
4755
4756 /* Examine the statements in BB (which is in SRC_CFUN); find and return
4757 the outermost EH region. Use REGION as the incoming base EH region. */
4758
4759 static int
4760 find_outermost_region_in_block (struct function *src_cfun,
4761 basic_block bb, int region)
4762 {
4763 block_stmt_iterator si;
4764
4765 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4766 {
4767 tree stmt = bsi_stmt (si);
4768 int stmt_region;
4769
4770 if (TREE_CODE (stmt) == RESX_EXPR)
4771 stmt_region = TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0));
4772 else
4773 stmt_region = lookup_stmt_eh_region_fn (src_cfun, stmt);
4774 if (stmt_region > 0)
4775 {
4776 if (region < 0)
4777 region = stmt_region;
4778 else if (stmt_region != region)
4779 {
4780 region = eh_region_outermost (src_cfun, stmt_region, region);
4781 gcc_assert (region != -1);
4782 }
4783 }
4784 }
4785
4786 return region;
4787 }
4788
4789 static tree
4790 new_label_mapper (tree decl, void *data)
4791 {
4792 htab_t hash = (htab_t) data;
4793 struct tree_map *m;
4794 void **slot;
4795
4796 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
4797
4798 m = xmalloc (sizeof (struct tree_map));
4799 m->hash = DECL_UID (decl);
4800 m->from = decl;
4801 m->to = create_artificial_label ();
4802 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
4803
4804 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
4805 gcc_assert (*slot == NULL);
4806
4807 *slot = m;
4808
4809 return m->to;
4810 }
4811
4812 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
4813 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
4814 single basic block in the original CFG and the new basic block is
4815 returned. DEST_CFUN must not have a CFG yet.
4816
4817 Note that the region need not be a pure SESE region. Blocks inside
4818 the region may contain calls to abort/exit. The only restriction
4819 is that ENTRY_BB should be the only entry point and it must
4820 dominate EXIT_BB.
4821
4822 All local variables referenced in the region are assumed to be in
4823 the corresponding BLOCK_VARS and unexpanded variable lists
4824 associated with DEST_CFUN. */
4825
4826 basic_block
4827 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
4828 basic_block exit_bb)
4829 {
4830 VEC(basic_block,heap) *bbs;
4831 basic_block after, bb, *entry_pred, *exit_succ;
4832 struct function *saved_cfun;
4833 int *entry_flag, *exit_flag, eh_offset;
4834 unsigned i, num_entry_edges, num_exit_edges;
4835 edge e;
4836 edge_iterator ei;
4837 bitmap vars_to_remove;
4838 htab_t new_label_map;
4839
4840 saved_cfun = cfun;
4841
4842 /* Collect all the blocks in the region. Manually add ENTRY_BB
4843 because it won't be added by dfs_enumerate_from. */
4844 calculate_dominance_info (CDI_DOMINATORS);
4845
4846 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
4847 region. */
4848 gcc_assert (entry_bb != exit_bb
4849 && (!exit_bb
4850 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
4851
4852 bbs = NULL;
4853 VEC_safe_push (basic_block, heap, bbs, entry_bb);
4854 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
4855
4856 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
4857 the predecessor edges to ENTRY_BB and the successor edges to
4858 EXIT_BB so that we can re-attach them to the new basic block that
4859 will replace the region. */
4860 num_entry_edges = EDGE_COUNT (entry_bb->preds);
4861 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
4862 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
4863 i = 0;
4864 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
4865 {
4866 entry_flag[i] = e->flags;
4867 entry_pred[i++] = e->src;
4868 remove_edge (e);
4869 }
4870
4871 if (exit_bb)
4872 {
4873 num_exit_edges = EDGE_COUNT (exit_bb->succs);
4874 exit_succ = (basic_block *) xcalloc (num_exit_edges,
4875 sizeof (basic_block));
4876 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
4877 i = 0;
4878 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
4879 {
4880 exit_flag[i] = e->flags;
4881 exit_succ[i++] = e->dest;
4882 remove_edge (e);
4883 }
4884 }
4885 else
4886 {
4887 num_exit_edges = 0;
4888 exit_succ = NULL;
4889 exit_flag = NULL;
4890 }
4891
4892 /* Switch context to the child function to initialize DEST_FN's CFG. */
4893 gcc_assert (dest_cfun->cfg == NULL);
4894 cfun = dest_cfun;
4895
4896 init_empty_tree_cfg ();
4897
4898 /* Initialize EH information for the new function. */
4899 eh_offset = 0;
4900 new_label_map = NULL;
4901 if (saved_cfun->eh)
4902 {
4903 int region = -1;
4904
4905 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
4906 region = find_outermost_region_in_block (saved_cfun, bb, region);
4907
4908 init_eh_for_function ();
4909 if (region != -1)
4910 {
4911 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
4912 eh_offset = duplicate_eh_regions (saved_cfun, new_label_mapper,
4913 new_label_map, region, 0);
4914 }
4915 }
4916
4917 cfun = saved_cfun;
4918
4919 /* Move blocks from BBS into DEST_CFUN. */
4920 gcc_assert (VEC_length (basic_block, bbs) >= 2);
4921 after = dest_cfun->cfg->x_entry_block_ptr;
4922 vars_to_remove = BITMAP_ALLOC (NULL);
4923 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
4924 {
4925 /* No need to update edge counts on the last block. It has
4926 already been updated earlier when we detached the region from
4927 the original CFG. */
4928 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, vars_to_remove,
4929 new_label_map, eh_offset);
4930 after = bb;
4931 }
4932
4933 if (new_label_map)
4934 htab_delete (new_label_map);
4935
4936 /* Remove the variables marked in VARS_TO_REMOVE from
4937 CFUN->UNEXPANDED_VAR_LIST. Otherwise, they will be given a
4938 DECL_RTL in the context of CFUN. */
4939 if (!bitmap_empty_p (vars_to_remove))
4940 {
4941 tree *p;
4942
4943 for (p = &cfun->unexpanded_var_list; *p; )
4944 {
4945 tree var = TREE_VALUE (*p);
4946 if (bitmap_bit_p (vars_to_remove, DECL_UID (var)))
4947 {
4948 *p = TREE_CHAIN (*p);
4949 continue;
4950 }
4951
4952 p = &TREE_CHAIN (*p);
4953 }
4954 }
4955
4956 BITMAP_FREE (vars_to_remove);
4957
4958 /* Rewire the entry and exit blocks. The successor to the entry
4959 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
4960 the child function. Similarly, the predecessor of DEST_FN's
4961 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
4962 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
4963 various CFG manipulation function get to the right CFG.
4964
4965 FIXME, this is silly. The CFG ought to become a parameter to
4966 these helpers. */
4967 cfun = dest_cfun;
4968 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
4969 if (exit_bb)
4970 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
4971 cfun = saved_cfun;
4972
4973 /* Back in the original function, the SESE region has disappeared,
4974 create a new basic block in its place. */
4975 bb = create_empty_bb (entry_pred[0]);
4976 for (i = 0; i < num_entry_edges; i++)
4977 make_edge (entry_pred[i], bb, entry_flag[i]);
4978
4979 for (i = 0; i < num_exit_edges; i++)
4980 make_edge (bb, exit_succ[i], exit_flag[i]);
4981
4982 if (exit_bb)
4983 {
4984 free (exit_flag);
4985 free (exit_succ);
4986 }
4987 free (entry_flag);
4988 free (entry_pred);
4989 free_dominance_info (CDI_DOMINATORS);
4990 free_dominance_info (CDI_POST_DOMINATORS);
4991 VEC_free (basic_block, heap, bbs);
4992
4993 return bb;
4994 }
4995
4996
4997 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree.h) */
4998
4999 void
5000 dump_function_to_file (tree fn, FILE *file, int flags)
5001 {
5002 tree arg, vars, var;
5003 bool ignore_topmost_bind = false, any_var = false;
5004 basic_block bb;
5005 tree chain;
5006 struct function *saved_cfun;
5007
5008 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
5009
5010 arg = DECL_ARGUMENTS (fn);
5011 while (arg)
5012 {
5013 print_generic_expr (file, arg, dump_flags);
5014 if (TREE_CHAIN (arg))
5015 fprintf (file, ", ");
5016 arg = TREE_CHAIN (arg);
5017 }
5018 fprintf (file, ")\n");
5019
5020 if (flags & TDF_DETAILS)
5021 dump_eh_tree (file, DECL_STRUCT_FUNCTION (fn));
5022 if (flags & TDF_RAW)
5023 {
5024 dump_node (fn, TDF_SLIM | flags, file);
5025 return;
5026 }
5027
5028 /* Switch CFUN to point to FN. */
5029 saved_cfun = cfun;
5030 cfun = DECL_STRUCT_FUNCTION (fn);
5031
5032 /* When GIMPLE is lowered, the variables are no longer available in
5033 BIND_EXPRs, so display them separately. */
5034 if (cfun && cfun->decl == fn && cfun->unexpanded_var_list)
5035 {
5036 ignore_topmost_bind = true;
5037
5038 fprintf (file, "{\n");
5039 for (vars = cfun->unexpanded_var_list; vars; vars = TREE_CHAIN (vars))
5040 {
5041 var = TREE_VALUE (vars);
5042
5043 print_generic_decl (file, var, flags);
5044 fprintf (file, "\n");
5045
5046 any_var = true;
5047 }
5048 }
5049
5050 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
5051 {
5052 /* Make a CFG based dump. */
5053 check_bb_profile (ENTRY_BLOCK_PTR, file);
5054 if (!ignore_topmost_bind)
5055 fprintf (file, "{\n");
5056
5057 if (any_var && n_basic_blocks)
5058 fprintf (file, "\n");
5059
5060 FOR_EACH_BB (bb)
5061 dump_generic_bb (file, bb, 2, flags);
5062
5063 fprintf (file, "}\n");
5064 check_bb_profile (EXIT_BLOCK_PTR, file);
5065 }
5066 else
5067 {
5068 int indent;
5069
5070 /* Make a tree based dump. */
5071 chain = DECL_SAVED_TREE (fn);
5072
5073 if (chain && TREE_CODE (chain) == BIND_EXPR)
5074 {
5075 if (ignore_topmost_bind)
5076 {
5077 chain = BIND_EXPR_BODY (chain);
5078 indent = 2;
5079 }
5080 else
5081 indent = 0;
5082 }
5083 else
5084 {
5085 if (!ignore_topmost_bind)
5086 fprintf (file, "{\n");
5087 indent = 2;
5088 }
5089
5090 if (any_var)
5091 fprintf (file, "\n");
5092
5093 print_generic_stmt_indented (file, chain, flags, indent);
5094 if (ignore_topmost_bind)
5095 fprintf (file, "}\n");
5096 }
5097
5098 fprintf (file, "\n\n");
5099
5100 /* Restore CFUN. */
5101 cfun = saved_cfun;
5102 }
5103
5104
5105 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
5106
5107 void
5108 debug_function (tree fn, int flags)
5109 {
5110 dump_function_to_file (fn, stderr, flags);
5111 }
5112
5113
5114 /* Pretty print of the loops intermediate representation. */
5115 static void print_loop (FILE *, struct loop *, int);
5116 static void print_pred_bbs (FILE *, basic_block bb);
5117 static void print_succ_bbs (FILE *, basic_block bb);
5118
5119
5120 /* Print on FILE the indexes for the predecessors of basic_block BB. */
5121
5122 static void
5123 print_pred_bbs (FILE *file, basic_block bb)
5124 {
5125 edge e;
5126 edge_iterator ei;
5127
5128 FOR_EACH_EDGE (e, ei, bb->preds)
5129 fprintf (file, "bb_%d ", e->src->index);
5130 }
5131
5132
5133 /* Print on FILE the indexes for the successors of basic_block BB. */
5134
5135 static void
5136 print_succ_bbs (FILE *file, basic_block bb)
5137 {
5138 edge e;
5139 edge_iterator ei;
5140
5141 FOR_EACH_EDGE (e, ei, bb->succs)
5142 fprintf (file, "bb_%d ", e->dest->index);
5143 }
5144
5145
5146 /* Pretty print LOOP on FILE, indented INDENT spaces. */
5147
5148 static void
5149 print_loop (FILE *file, struct loop *loop, int indent)
5150 {
5151 char *s_indent;
5152 basic_block bb;
5153
5154 if (loop == NULL)
5155 return;
5156
5157 s_indent = (char *) alloca ((size_t) indent + 1);
5158 memset ((void *) s_indent, ' ', (size_t) indent);
5159 s_indent[indent] = '\0';
5160
5161 /* Print the loop's header. */
5162 fprintf (file, "%sloop_%d\n", s_indent, loop->num);
5163
5164 /* Print the loop's body. */
5165 fprintf (file, "%s{\n", s_indent);
5166 FOR_EACH_BB (bb)
5167 if (bb->loop_father == loop)
5168 {
5169 /* Print the basic_block's header. */
5170 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
5171 print_pred_bbs (file, bb);
5172 fprintf (file, "}, succs = {");
5173 print_succ_bbs (file, bb);
5174 fprintf (file, "})\n");
5175
5176 /* Print the basic_block's body. */
5177 fprintf (file, "%s {\n", s_indent);
5178 tree_dump_bb (bb, file, indent + 4);
5179 fprintf (file, "%s }\n", s_indent);
5180 }
5181
5182 print_loop (file, loop->inner, indent + 2);
5183 fprintf (file, "%s}\n", s_indent);
5184 print_loop (file, loop->next, indent);
5185 }
5186
5187
5188 /* Follow a CFG edge from the entry point of the program, and on entry
5189 of a loop, pretty print the loop structure on FILE. */
5190
5191 void
5192 print_loop_ir (FILE *file)
5193 {
5194 basic_block bb;
5195
5196 bb = BASIC_BLOCK (NUM_FIXED_BLOCKS);
5197 if (bb && bb->loop_father)
5198 print_loop (file, bb->loop_father, 0);
5199 }
5200
5201
5202 /* Debugging loops structure at tree level. */
5203
5204 void
5205 debug_loop_ir (void)
5206 {
5207 print_loop_ir (stderr);
5208 }
5209
5210
5211 /* Return true if BB ends with a call, possibly followed by some
5212 instructions that must stay with the call. Return false,
5213 otherwise. */
5214
5215 static bool
5216 tree_block_ends_with_call_p (basic_block bb)
5217 {
5218 block_stmt_iterator bsi = bsi_last (bb);
5219 return get_call_expr_in (bsi_stmt (bsi)) != NULL;
5220 }
5221
5222
5223 /* Return true if BB ends with a conditional branch. Return false,
5224 otherwise. */
5225
5226 static bool
5227 tree_block_ends_with_condjump_p (basic_block bb)
5228 {
5229 tree stmt = last_stmt (bb);
5230 return (stmt && TREE_CODE (stmt) == COND_EXPR);
5231 }
5232
5233
5234 /* Return true if we need to add fake edge to exit at statement T.
5235 Helper function for tree_flow_call_edges_add. */
5236
5237 static bool
5238 need_fake_edge_p (tree t)
5239 {
5240 tree call;
5241
5242 /* NORETURN and LONGJMP calls already have an edge to exit.
5243 CONST and PURE calls do not need one.
5244 We don't currently check for CONST and PURE here, although
5245 it would be a good idea, because those attributes are
5246 figured out from the RTL in mark_constant_function, and
5247 the counter incrementation code from -fprofile-arcs
5248 leads to different results from -fbranch-probabilities. */
5249 call = get_call_expr_in (t);
5250 if (call
5251 && !(call_expr_flags (call) & ECF_NORETURN))
5252 return true;
5253
5254 if (TREE_CODE (t) == ASM_EXPR
5255 && (ASM_VOLATILE_P (t) || ASM_INPUT_P (t)))
5256 return true;
5257
5258 return false;
5259 }
5260
5261
5262 /* Add fake edges to the function exit for any non constant and non
5263 noreturn calls, volatile inline assembly in the bitmap of blocks
5264 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
5265 the number of blocks that were split.
5266
5267 The goal is to expose cases in which entering a basic block does
5268 not imply that all subsequent instructions must be executed. */
5269
5270 static int
5271 tree_flow_call_edges_add (sbitmap blocks)
5272 {
5273 int i;
5274 int blocks_split = 0;
5275 int last_bb = last_basic_block;
5276 bool check_last_block = false;
5277
5278 if (n_basic_blocks == NUM_FIXED_BLOCKS)
5279 return 0;
5280
5281 if (! blocks)
5282 check_last_block = true;
5283 else
5284 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
5285
5286 /* In the last basic block, before epilogue generation, there will be
5287 a fallthru edge to EXIT. Special care is required if the last insn
5288 of the last basic block is a call because make_edge folds duplicate
5289 edges, which would result in the fallthru edge also being marked
5290 fake, which would result in the fallthru edge being removed by
5291 remove_fake_edges, which would result in an invalid CFG.
5292
5293 Moreover, we can't elide the outgoing fake edge, since the block
5294 profiler needs to take this into account in order to solve the minimal
5295 spanning tree in the case that the call doesn't return.
5296
5297 Handle this by adding a dummy instruction in a new last basic block. */
5298 if (check_last_block)
5299 {
5300 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
5301 block_stmt_iterator bsi = bsi_last (bb);
5302 tree t = NULL_TREE;
5303 if (!bsi_end_p (bsi))
5304 t = bsi_stmt (bsi);
5305
5306 if (t && need_fake_edge_p (t))
5307 {
5308 edge e;
5309
5310 e = find_edge (bb, EXIT_BLOCK_PTR);
5311 if (e)
5312 {
5313 bsi_insert_on_edge (e, build_empty_stmt ());
5314 bsi_commit_edge_inserts ();
5315 }
5316 }
5317 }
5318
5319 /* Now add fake edges to the function exit for any non constant
5320 calls since there is no way that we can determine if they will
5321 return or not... */
5322 for (i = 0; i < last_bb; i++)
5323 {
5324 basic_block bb = BASIC_BLOCK (i);
5325 block_stmt_iterator bsi;
5326 tree stmt, last_stmt;
5327
5328 if (!bb)
5329 continue;
5330
5331 if (blocks && !TEST_BIT (blocks, i))
5332 continue;
5333
5334 bsi = bsi_last (bb);
5335 if (!bsi_end_p (bsi))
5336 {
5337 last_stmt = bsi_stmt (bsi);
5338 do
5339 {
5340 stmt = bsi_stmt (bsi);
5341 if (need_fake_edge_p (stmt))
5342 {
5343 edge e;
5344 /* The handling above of the final block before the
5345 epilogue should be enough to verify that there is
5346 no edge to the exit block in CFG already.
5347 Calling make_edge in such case would cause us to
5348 mark that edge as fake and remove it later. */
5349 #ifdef ENABLE_CHECKING
5350 if (stmt == last_stmt)
5351 {
5352 e = find_edge (bb, EXIT_BLOCK_PTR);
5353 gcc_assert (e == NULL);
5354 }
5355 #endif
5356
5357 /* Note that the following may create a new basic block
5358 and renumber the existing basic blocks. */
5359 if (stmt != last_stmt)
5360 {
5361 e = split_block (bb, stmt);
5362 if (e)
5363 blocks_split++;
5364 }
5365 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
5366 }
5367 bsi_prev (&bsi);
5368 }
5369 while (!bsi_end_p (bsi));
5370 }
5371 }
5372
5373 if (blocks_split)
5374 verify_flow_info ();
5375
5376 return blocks_split;
5377 }
5378
5379 /* Purge dead abnormal call edges from basic block BB. */
5380
5381 bool
5382 tree_purge_dead_abnormal_call_edges (basic_block bb)
5383 {
5384 bool changed = tree_purge_dead_eh_edges (bb);
5385
5386 if (current_function_has_nonlocal_label)
5387 {
5388 tree stmt = last_stmt (bb);
5389 edge_iterator ei;
5390 edge e;
5391
5392 if (!(stmt && tree_can_make_abnormal_goto (stmt)))
5393 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
5394 {
5395 if (e->flags & EDGE_ABNORMAL)
5396 {
5397 remove_edge (e);
5398 changed = true;
5399 }
5400 else
5401 ei_next (&ei);
5402 }
5403
5404 /* See tree_purge_dead_eh_edges below. */
5405 if (changed)
5406 free_dominance_info (CDI_DOMINATORS);
5407 }
5408
5409 return changed;
5410 }
5411
5412 /* Purge dead EH edges from basic block BB. */
5413
5414 bool
5415 tree_purge_dead_eh_edges (basic_block bb)
5416 {
5417 bool changed = false;
5418 edge e;
5419 edge_iterator ei;
5420 tree stmt = last_stmt (bb);
5421
5422 if (stmt && tree_can_throw_internal (stmt))
5423 return false;
5424
5425 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
5426 {
5427 if (e->flags & EDGE_EH)
5428 {
5429 remove_edge (e);
5430 changed = true;
5431 }
5432 else
5433 ei_next (&ei);
5434 }
5435
5436 /* Removal of dead EH edges might change dominators of not
5437 just immediate successors. E.g. when bb1 is changed so that
5438 it no longer can throw and bb1->bb3 and bb1->bb4 are dead
5439 eh edges purged by this function in:
5440 0
5441 / \
5442 v v
5443 1-->2
5444 / \ |
5445 v v |
5446 3-->4 |
5447 \ v
5448 --->5
5449 |
5450 -
5451 idom(bb5) must be recomputed. For now just free the dominance
5452 info. */
5453 if (changed)
5454 free_dominance_info (CDI_DOMINATORS);
5455
5456 return changed;
5457 }
5458
5459 bool
5460 tree_purge_all_dead_eh_edges (bitmap blocks)
5461 {
5462 bool changed = false;
5463 unsigned i;
5464 bitmap_iterator bi;
5465
5466 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
5467 {
5468 changed |= tree_purge_dead_eh_edges (BASIC_BLOCK (i));
5469 }
5470
5471 return changed;
5472 }
5473
5474 /* This function is called whenever a new edge is created or
5475 redirected. */
5476
5477 static void
5478 tree_execute_on_growing_pred (edge e)
5479 {
5480 basic_block bb = e->dest;
5481
5482 if (phi_nodes (bb))
5483 reserve_phi_args_for_new_edge (bb);
5484 }
5485
5486 /* This function is called immediately before edge E is removed from
5487 the edge vector E->dest->preds. */
5488
5489 static void
5490 tree_execute_on_shrinking_pred (edge e)
5491 {
5492 if (phi_nodes (e->dest))
5493 remove_phi_args (e);
5494 }
5495
5496 /*---------------------------------------------------------------------------
5497 Helper functions for Loop versioning
5498 ---------------------------------------------------------------------------*/
5499
5500 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
5501 of 'first'. Both of them are dominated by 'new_head' basic block. When
5502 'new_head' was created by 'second's incoming edge it received phi arguments
5503 on the edge by split_edge(). Later, additional edge 'e' was created to
5504 connect 'new_head' and 'first'. Now this routine adds phi args on this
5505 additional edge 'e' that new_head to second edge received as part of edge
5506 splitting.
5507 */
5508
5509 static void
5510 tree_lv_adjust_loop_header_phi (basic_block first, basic_block second,
5511 basic_block new_head, edge e)
5512 {
5513 tree phi1, phi2;
5514 edge e2 = find_edge (new_head, second);
5515
5516 /* Because NEW_HEAD has been created by splitting SECOND's incoming
5517 edge, we should always have an edge from NEW_HEAD to SECOND. */
5518 gcc_assert (e2 != NULL);
5519
5520 /* Browse all 'second' basic block phi nodes and add phi args to
5521 edge 'e' for 'first' head. PHI args are always in correct order. */
5522
5523 for (phi2 = phi_nodes (second), phi1 = phi_nodes (first);
5524 phi2 && phi1;
5525 phi2 = PHI_CHAIN (phi2), phi1 = PHI_CHAIN (phi1))
5526 {
5527 tree def = PHI_ARG_DEF (phi2, e2->dest_idx);
5528 add_phi_arg (phi1, def, e);
5529 }
5530 }
5531
5532 /* Adds a if else statement to COND_BB with condition COND_EXPR.
5533 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
5534 the destination of the ELSE part. */
5535 static void
5536 tree_lv_add_condition_to_bb (basic_block first_head, basic_block second_head,
5537 basic_block cond_bb, void *cond_e)
5538 {
5539 block_stmt_iterator bsi;
5540 tree goto1 = NULL_TREE;
5541 tree goto2 = NULL_TREE;
5542 tree new_cond_expr = NULL_TREE;
5543 tree cond_expr = (tree) cond_e;
5544 edge e0;
5545
5546 /* Build new conditional expr */
5547 goto1 = build1 (GOTO_EXPR, void_type_node, tree_block_label (first_head));
5548 goto2 = build1 (GOTO_EXPR, void_type_node, tree_block_label (second_head));
5549 new_cond_expr = build3 (COND_EXPR, void_type_node, cond_expr, goto1, goto2);
5550
5551 /* Add new cond in cond_bb. */
5552 bsi = bsi_start (cond_bb);
5553 bsi_insert_after (&bsi, new_cond_expr, BSI_NEW_STMT);
5554 /* Adjust edges appropriately to connect new head with first head
5555 as well as second head. */
5556 e0 = single_succ_edge (cond_bb);
5557 e0->flags &= ~EDGE_FALLTHRU;
5558 e0->flags |= EDGE_FALSE_VALUE;
5559 }
5560
5561 struct cfg_hooks tree_cfg_hooks = {
5562 "tree",
5563 tree_verify_flow_info,
5564 tree_dump_bb, /* dump_bb */
5565 create_bb, /* create_basic_block */
5566 tree_redirect_edge_and_branch,/* redirect_edge_and_branch */
5567 tree_redirect_edge_and_branch_force,/* redirect_edge_and_branch_force */
5568 remove_bb, /* delete_basic_block */
5569 tree_split_block, /* split_block */
5570 tree_move_block_after, /* move_block_after */
5571 tree_can_merge_blocks_p, /* can_merge_blocks_p */
5572 tree_merge_blocks, /* merge_blocks */
5573 tree_predict_edge, /* predict_edge */
5574 tree_predicted_by_p, /* predicted_by_p */
5575 tree_can_duplicate_bb_p, /* can_duplicate_block_p */
5576 tree_duplicate_bb, /* duplicate_block */
5577 tree_split_edge, /* split_edge */
5578 tree_make_forwarder_block, /* make_forward_block */
5579 NULL, /* tidy_fallthru_edge */
5580 tree_block_ends_with_call_p, /* block_ends_with_call_p */
5581 tree_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
5582 tree_flow_call_edges_add, /* flow_call_edges_add */
5583 tree_execute_on_growing_pred, /* execute_on_growing_pred */
5584 tree_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
5585 tree_duplicate_loop_to_header_edge, /* duplicate loop for trees */
5586 tree_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5587 tree_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
5588 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
5589 flush_pending_stmts /* flush_pending_stmts */
5590 };
5591
5592
5593 /* Split all critical edges. */
5594
5595 static unsigned int
5596 split_critical_edges (void)
5597 {
5598 basic_block bb;
5599 edge e;
5600 edge_iterator ei;
5601
5602 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
5603 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
5604 mappings around the calls to split_edge. */
5605 start_recording_case_labels ();
5606 FOR_ALL_BB (bb)
5607 {
5608 FOR_EACH_EDGE (e, ei, bb->succs)
5609 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
5610 {
5611 split_edge (e);
5612 }
5613 }
5614 end_recording_case_labels ();
5615 return 0;
5616 }
5617
5618 struct tree_opt_pass pass_split_crit_edges =
5619 {
5620 "crited", /* name */
5621 NULL, /* gate */
5622 split_critical_edges, /* execute */
5623 NULL, /* sub */
5624 NULL, /* next */
5625 0, /* static_pass_number */
5626 TV_TREE_SPLIT_EDGES, /* tv_id */
5627 PROP_cfg, /* properties required */
5628 PROP_no_crit_edges, /* properties_provided */
5629 0, /* properties_destroyed */
5630 0, /* todo_flags_start */
5631 TODO_dump_func, /* todo_flags_finish */
5632 0 /* letter */
5633 };
5634
5635 \f
5636 /* Return EXP if it is a valid GIMPLE rvalue, else gimplify it into
5637 a temporary, make sure and register it to be renamed if necessary,
5638 and finally return the temporary. Put the statements to compute
5639 EXP before the current statement in BSI. */
5640
5641 tree
5642 gimplify_val (block_stmt_iterator *bsi, tree type, tree exp)
5643 {
5644 tree t, new_stmt, orig_stmt;
5645
5646 if (is_gimple_val (exp))
5647 return exp;
5648
5649 t = make_rename_temp (type, NULL);
5650 new_stmt = build2 (MODIFY_EXPR, type, t, exp);
5651
5652 orig_stmt = bsi_stmt (*bsi);
5653 SET_EXPR_LOCUS (new_stmt, EXPR_LOCUS (orig_stmt));
5654 TREE_BLOCK (new_stmt) = TREE_BLOCK (orig_stmt);
5655
5656 bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT);
5657 if (in_ssa_p)
5658 mark_new_vars_to_rename (new_stmt);
5659
5660 return t;
5661 }
5662
5663 /* Build a ternary operation and gimplify it. Emit code before BSI.
5664 Return the gimple_val holding the result. */
5665
5666 tree
5667 gimplify_build3 (block_stmt_iterator *bsi, enum tree_code code,
5668 tree type, tree a, tree b, tree c)
5669 {
5670 tree ret;
5671
5672 ret = fold_build3 (code, type, a, b, c);
5673 STRIP_NOPS (ret);
5674
5675 return gimplify_val (bsi, type, ret);
5676 }
5677
5678 /* Build a binary operation and gimplify it. Emit code before BSI.
5679 Return the gimple_val holding the result. */
5680
5681 tree
5682 gimplify_build2 (block_stmt_iterator *bsi, enum tree_code code,
5683 tree type, tree a, tree b)
5684 {
5685 tree ret;
5686
5687 ret = fold_build2 (code, type, a, b);
5688 STRIP_NOPS (ret);
5689
5690 return gimplify_val (bsi, type, ret);
5691 }
5692
5693 /* Build a unary operation and gimplify it. Emit code before BSI.
5694 Return the gimple_val holding the result. */
5695
5696 tree
5697 gimplify_build1 (block_stmt_iterator *bsi, enum tree_code code, tree type,
5698 tree a)
5699 {
5700 tree ret;
5701
5702 ret = fold_build1 (code, type, a);
5703 STRIP_NOPS (ret);
5704
5705 return gimplify_val (bsi, type, ret);
5706 }
5707
5708
5709 \f
5710 /* Emit return warnings. */
5711
5712 static unsigned int
5713 execute_warn_function_return (void)
5714 {
5715 #ifdef USE_MAPPED_LOCATION
5716 source_location location;
5717 #else
5718 location_t *locus;
5719 #endif
5720 tree last;
5721 edge e;
5722 edge_iterator ei;
5723
5724 /* If we have a path to EXIT, then we do return. */
5725 if (TREE_THIS_VOLATILE (cfun->decl)
5726 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
5727 {
5728 #ifdef USE_MAPPED_LOCATION
5729 location = UNKNOWN_LOCATION;
5730 #else
5731 locus = NULL;
5732 #endif
5733 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5734 {
5735 last = last_stmt (e->src);
5736 if (TREE_CODE (last) == RETURN_EXPR
5737 #ifdef USE_MAPPED_LOCATION
5738 && (location = EXPR_LOCATION (last)) != UNKNOWN_LOCATION)
5739 #else
5740 && (locus = EXPR_LOCUS (last)) != NULL)
5741 #endif
5742 break;
5743 }
5744 #ifdef USE_MAPPED_LOCATION
5745 if (location == UNKNOWN_LOCATION)
5746 location = cfun->function_end_locus;
5747 warning (0, "%H%<noreturn%> function does return", &location);
5748 #else
5749 if (!locus)
5750 locus = &cfun->function_end_locus;
5751 warning (0, "%H%<noreturn%> function does return", locus);
5752 #endif
5753 }
5754
5755 /* If we see "return;" in some basic block, then we do reach the end
5756 without returning a value. */
5757 else if (warn_return_type
5758 && !TREE_NO_WARNING (cfun->decl)
5759 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
5760 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
5761 {
5762 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5763 {
5764 tree last = last_stmt (e->src);
5765 if (TREE_CODE (last) == RETURN_EXPR
5766 && TREE_OPERAND (last, 0) == NULL
5767 && !TREE_NO_WARNING (last))
5768 {
5769 #ifdef USE_MAPPED_LOCATION
5770 location = EXPR_LOCATION (last);
5771 if (location == UNKNOWN_LOCATION)
5772 location = cfun->function_end_locus;
5773 warning (0, "%Hcontrol reaches end of non-void function", &location);
5774 #else
5775 locus = EXPR_LOCUS (last);
5776 if (!locus)
5777 locus = &cfun->function_end_locus;
5778 warning (0, "%Hcontrol reaches end of non-void function", locus);
5779 #endif
5780 TREE_NO_WARNING (cfun->decl) = 1;
5781 break;
5782 }
5783 }
5784 }
5785 return 0;
5786 }
5787
5788
5789 /* Given a basic block B which ends with a conditional and has
5790 precisely two successors, determine which of the edges is taken if
5791 the conditional is true and which is taken if the conditional is
5792 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
5793
5794 void
5795 extract_true_false_edges_from_block (basic_block b,
5796 edge *true_edge,
5797 edge *false_edge)
5798 {
5799 edge e = EDGE_SUCC (b, 0);
5800
5801 if (e->flags & EDGE_TRUE_VALUE)
5802 {
5803 *true_edge = e;
5804 *false_edge = EDGE_SUCC (b, 1);
5805 }
5806 else
5807 {
5808 *false_edge = e;
5809 *true_edge = EDGE_SUCC (b, 1);
5810 }
5811 }
5812
5813 struct tree_opt_pass pass_warn_function_return =
5814 {
5815 NULL, /* name */
5816 NULL, /* gate */
5817 execute_warn_function_return, /* execute */
5818 NULL, /* sub */
5819 NULL, /* next */
5820 0, /* static_pass_number */
5821 0, /* tv_id */
5822 PROP_cfg, /* properties_required */
5823 0, /* properties_provided */
5824 0, /* properties_destroyed */
5825 0, /* todo_flags_start */
5826 0, /* todo_flags_finish */
5827 0 /* letter */
5828 };
5829
5830 /* Emit noreturn warnings. */
5831
5832 static unsigned int
5833 execute_warn_function_noreturn (void)
5834 {
5835 if (warn_missing_noreturn
5836 && !TREE_THIS_VOLATILE (cfun->decl)
5837 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
5838 && !lang_hooks.function.missing_noreturn_ok_p (cfun->decl))
5839 warning (OPT_Wmissing_noreturn, "%Jfunction might be possible candidate "
5840 "for attribute %<noreturn%>",
5841 cfun->decl);
5842 return 0;
5843 }
5844
5845 struct tree_opt_pass pass_warn_function_noreturn =
5846 {
5847 NULL, /* name */
5848 NULL, /* gate */
5849 execute_warn_function_noreturn, /* execute */
5850 NULL, /* sub */
5851 NULL, /* next */
5852 0, /* static_pass_number */
5853 0, /* tv_id */
5854 PROP_cfg, /* properties_required */
5855 0, /* properties_provided */
5856 0, /* properties_destroyed */
5857 0, /* todo_flags_start */
5858 0, /* todo_flags_finish */
5859 0 /* letter */
5860 };