re PR tree-optimization/51039 (ICE: in estimate_function_body_sizes, at ipa-inline...
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120 static bool verify_gimple_transaction (gimple);
121
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block, basic_block);
124 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
125 static void remove_bb (basic_block);
126 static edge find_taken_edge_computed_goto (basic_block, tree);
127 static edge find_taken_edge_cond_expr (basic_block, tree);
128 static edge find_taken_edge_switch_expr (basic_block, tree);
129 static tree find_case_label_for_value (gimple, tree);
130 static void group_case_labels_stmt (gimple);
131
132 void
133 init_empty_tree_cfg_for_function (struct function *fn)
134 {
135 /* Initialize the basic block array. */
136 init_flow (fn);
137 profile_status_for_function (fn) = PROFILE_ABSENT;
138 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
139 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
140 basic_block_info_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 basic_block_info_for_function (fn),
144 initial_cfg_capacity);
145
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn)
148 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
149 VEC_safe_grow_cleared (basic_block, gc,
150 label_to_block_map_for_function (fn),
151 initial_cfg_capacity);
152
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
157
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
162 }
163
164 void
165 init_empty_tree_cfg (void)
166 {
167 init_empty_tree_cfg_for_function (cfun);
168 }
169
170 /*---------------------------------------------------------------------------
171 Create basic blocks
172 ---------------------------------------------------------------------------*/
173
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
176
177 static void
178 build_gimple_cfg (gimple_seq seq)
179 {
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
182
183 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
184
185 init_empty_tree_cfg ();
186
187 found_computed_goto = 0;
188 make_blocks (seq);
189
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto)
196 factor_computed_gotos ();
197
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks == NUM_FIXED_BLOCKS)
200 create_empty_bb (ENTRY_BLOCK_PTR);
201
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
204 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
205
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
208
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
213
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
216 free);
217 make_edges ();
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus);
220
221 /* Debugging dumps. */
222
223 /* Write the flowgraph to a VCG file. */
224 {
225 int local_dump_flags;
226 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
227 if (vcg_file)
228 {
229 gimple_cfg2vcg (vcg_file);
230 dump_end (TDI_vcg, vcg_file);
231 }
232 }
233 }
234
235 static unsigned int
236 execute_build_cfg (void)
237 {
238 gimple_seq body = gimple_body (current_function_decl);
239
240 build_gimple_cfg (body);
241 gimple_set_body (current_function_decl, NULL);
242 if (dump_file && (dump_flags & TDF_DETAILS))
243 {
244 fprintf (dump_file, "Scope blocks:\n");
245 dump_scope_blocks (dump_file, dump_flags);
246 }
247 return 0;
248 }
249
250 struct gimple_opt_pass pass_build_cfg =
251 {
252 {
253 GIMPLE_PASS,
254 "cfg", /* name */
255 NULL, /* gate */
256 execute_build_cfg, /* execute */
257 NULL, /* sub */
258 NULL, /* next */
259 0, /* static_pass_number */
260 TV_TREE_CFG, /* tv_id */
261 PROP_gimple_leh, /* properties_required */
262 PROP_cfg, /* properties_provided */
263 0, /* properties_destroyed */
264 0, /* todo_flags_start */
265 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
266 }
267 };
268
269
270 /* Return true if T is a computed goto. */
271
272 static bool
273 computed_goto_p (gimple t)
274 {
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
277 }
278
279
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
284
285 static void
286 factor_computed_gotos (void)
287 {
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
293
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
297
298 FOR_EACH_BB (bb)
299 {
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
302
303 if (gsi_end_p (gsi))
304 continue;
305
306 last = gsi_stmt (gsi);
307
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
312
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
315 {
316 gimple assignment;
317
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
322 {
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
325
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
331
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
339
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
343 }
344
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
348
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
351 }
352 }
353 }
354
355
356 /* Build a flowgraph for the sequence of stmts SEQ. */
357
358 static void
359 make_blocks (gimple_seq seq)
360 {
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
366
367 while (!gsi_end_p (i))
368 {
369 gimple prev_stmt;
370
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
373
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
378 {
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
383 }
384
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
388
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
391
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
395 {
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
404 {
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
415 }
416 start_new_block = true;
417 }
418
419 gsi_next (&i);
420 first_stmt_of_seq = false;
421 }
422 }
423
424
425 /* Create and return a new empty basic block after bb AFTER. */
426
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
429 {
430 basic_block bb;
431
432 gcc_assert (!e);
433
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
438
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
443
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
446
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
449 {
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
452 }
453
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
456
457 n_basic_blocks++;
458 last_basic_block++;
459
460 return bb;
461 }
462
463
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
467
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
469
470 void
471 fold_cond_expr_cond (void)
472 {
473 basic_block bb;
474
475 FOR_EACH_BB (bb)
476 {
477 gimple stmt = last_stmt (bb);
478
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
480 {
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
484
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
489 {
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
492 }
493 else
494 zerop = onep = false;
495
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
503 }
504 }
505 }
506
507 /* Join all the blocks in the flowgraph. */
508
509 static void
510 make_edges (void)
511 {
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
514
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
518
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
521 {
522 gimple last = last_stmt (bb);
523 bool fallthru;
524
525 if (last)
526 {
527 enum gimple_code code = gimple_code (last);
528 switch (code)
529 {
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
553
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
560
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
564
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
572
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
580
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
585
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
597
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
602
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
606
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
611
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
620
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
624 {
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
633
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
641
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
644 {
645 basic_block switch_bb = single_succ (cur_region->entry);
646
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
649 {
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
653 }
654
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
658
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
662 }
663 break;
664
665 default:
666 gcc_unreachable ();
667 }
668 break;
669
670 case GIMPLE_TRANSACTION:
671 {
672 tree abort_label = gimple_transaction_label (last);
673 if (abort_label)
674 make_edge (bb, label_to_block (abort_label), 0);
675 fallthru = true;
676 }
677 break;
678
679 default:
680 gcc_assert (!stmt_ends_bb_p (last));
681 fallthru = true;
682 }
683 }
684 else
685 fallthru = true;
686
687 if (fallthru)
688 {
689 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
690 if (last)
691 assign_discriminator (gimple_location (last), bb->next_bb);
692 }
693 }
694
695 if (root_omp_region)
696 free_omp_regions ();
697
698 /* Fold COND_EXPR_COND of each COND_EXPR. */
699 fold_cond_expr_cond ();
700 }
701
702 /* Trivial hash function for a location_t. ITEM is a pointer to
703 a hash table entry that maps a location_t to a discriminator. */
704
705 static unsigned int
706 locus_map_hash (const void *item)
707 {
708 return ((const struct locus_discrim_map *) item)->locus;
709 }
710
711 /* Equality function for the locus-to-discriminator map. VA and VB
712 point to the two hash table entries to compare. */
713
714 static int
715 locus_map_eq (const void *va, const void *vb)
716 {
717 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
718 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
719 return a->locus == b->locus;
720 }
721
722 /* Find the next available discriminator value for LOCUS. The
723 discriminator distinguishes among several basic blocks that
724 share a common locus, allowing for more accurate sample-based
725 profiling. */
726
727 static int
728 next_discriminator_for_locus (location_t locus)
729 {
730 struct locus_discrim_map item;
731 struct locus_discrim_map **slot;
732
733 item.locus = locus;
734 item.discriminator = 0;
735 slot = (struct locus_discrim_map **)
736 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
737 (hashval_t) locus, INSERT);
738 gcc_assert (slot);
739 if (*slot == HTAB_EMPTY_ENTRY)
740 {
741 *slot = XNEW (struct locus_discrim_map);
742 gcc_assert (*slot);
743 (*slot)->locus = locus;
744 (*slot)->discriminator = 0;
745 }
746 (*slot)->discriminator++;
747 return (*slot)->discriminator;
748 }
749
750 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
751
752 static bool
753 same_line_p (location_t locus1, location_t locus2)
754 {
755 expanded_location from, to;
756
757 if (locus1 == locus2)
758 return true;
759
760 from = expand_location (locus1);
761 to = expand_location (locus2);
762
763 if (from.line != to.line)
764 return false;
765 if (from.file == to.file)
766 return true;
767 return (from.file != NULL
768 && to.file != NULL
769 && filename_cmp (from.file, to.file) == 0);
770 }
771
772 /* Assign a unique discriminator value to block BB if it begins at the same
773 LOCUS as its predecessor block. */
774
775 static void
776 assign_discriminator (location_t locus, basic_block bb)
777 {
778 gimple first_in_to_bb, last_in_to_bb;
779
780 if (locus == 0 || bb->discriminator != 0)
781 return;
782
783 first_in_to_bb = first_non_label_stmt (bb);
784 last_in_to_bb = last_stmt (bb);
785 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
786 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
787 bb->discriminator = next_discriminator_for_locus (locus);
788 }
789
790 /* Create the edges for a GIMPLE_COND starting at block BB. */
791
792 static void
793 make_cond_expr_edges (basic_block bb)
794 {
795 gimple entry = last_stmt (bb);
796 gimple then_stmt, else_stmt;
797 basic_block then_bb, else_bb;
798 tree then_label, else_label;
799 edge e;
800 location_t entry_locus;
801
802 gcc_assert (entry);
803 gcc_assert (gimple_code (entry) == GIMPLE_COND);
804
805 entry_locus = gimple_location (entry);
806
807 /* Entry basic blocks for each component. */
808 then_label = gimple_cond_true_label (entry);
809 else_label = gimple_cond_false_label (entry);
810 then_bb = label_to_block (then_label);
811 else_bb = label_to_block (else_label);
812 then_stmt = first_stmt (then_bb);
813 else_stmt = first_stmt (else_bb);
814
815 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
816 assign_discriminator (entry_locus, then_bb);
817 e->goto_locus = gimple_location (then_stmt);
818 if (e->goto_locus)
819 e->goto_block = gimple_block (then_stmt);
820 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
821 if (e)
822 {
823 assign_discriminator (entry_locus, else_bb);
824 e->goto_locus = gimple_location (else_stmt);
825 if (e->goto_locus)
826 e->goto_block = gimple_block (else_stmt);
827 }
828
829 /* We do not need the labels anymore. */
830 gimple_cond_set_true_label (entry, NULL_TREE);
831 gimple_cond_set_false_label (entry, NULL_TREE);
832 }
833
834
835 /* Called for each element in the hash table (P) as we delete the
836 edge to cases hash table.
837
838 Clear all the TREE_CHAINs to prevent problems with copying of
839 SWITCH_EXPRs and structure sharing rules, then free the hash table
840 element. */
841
842 static bool
843 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
844 void *data ATTRIBUTE_UNUSED)
845 {
846 tree t, next;
847
848 for (t = (tree) *value; t; t = next)
849 {
850 next = CASE_CHAIN (t);
851 CASE_CHAIN (t) = NULL;
852 }
853
854 *value = NULL;
855 return true;
856 }
857
858 /* Start recording information mapping edges to case labels. */
859
860 void
861 start_recording_case_labels (void)
862 {
863 gcc_assert (edge_to_cases == NULL);
864 edge_to_cases = pointer_map_create ();
865 touched_switch_bbs = BITMAP_ALLOC (NULL);
866 }
867
868 /* Return nonzero if we are recording information for case labels. */
869
870 static bool
871 recording_case_labels_p (void)
872 {
873 return (edge_to_cases != NULL);
874 }
875
876 /* Stop recording information mapping edges to case labels and
877 remove any information we have recorded. */
878 void
879 end_recording_case_labels (void)
880 {
881 bitmap_iterator bi;
882 unsigned i;
883 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
884 pointer_map_destroy (edge_to_cases);
885 edge_to_cases = NULL;
886 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
887 {
888 basic_block bb = BASIC_BLOCK (i);
889 if (bb)
890 {
891 gimple stmt = last_stmt (bb);
892 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
893 group_case_labels_stmt (stmt);
894 }
895 }
896 BITMAP_FREE (touched_switch_bbs);
897 }
898
899 /* If we are inside a {start,end}_recording_cases block, then return
900 a chain of CASE_LABEL_EXPRs from T which reference E.
901
902 Otherwise return NULL. */
903
904 static tree
905 get_cases_for_edge (edge e, gimple t)
906 {
907 void **slot;
908 size_t i, n;
909
910 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
911 chains available. Return NULL so the caller can detect this case. */
912 if (!recording_case_labels_p ())
913 return NULL;
914
915 slot = pointer_map_contains (edge_to_cases, e);
916 if (slot)
917 return (tree) *slot;
918
919 /* If we did not find E in the hash table, then this must be the first
920 time we have been queried for information about E & T. Add all the
921 elements from T to the hash table then perform the query again. */
922
923 n = gimple_switch_num_labels (t);
924 for (i = 0; i < n; i++)
925 {
926 tree elt = gimple_switch_label (t, i);
927 tree lab = CASE_LABEL (elt);
928 basic_block label_bb = label_to_block (lab);
929 edge this_edge = find_edge (e->src, label_bb);
930
931 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
932 a new chain. */
933 slot = pointer_map_insert (edge_to_cases, this_edge);
934 CASE_CHAIN (elt) = (tree) *slot;
935 *slot = elt;
936 }
937
938 return (tree) *pointer_map_contains (edge_to_cases, e);
939 }
940
941 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
942
943 static void
944 make_gimple_switch_edges (basic_block bb)
945 {
946 gimple entry = last_stmt (bb);
947 location_t entry_locus;
948 size_t i, n;
949
950 entry_locus = gimple_location (entry);
951
952 n = gimple_switch_num_labels (entry);
953
954 for (i = 0; i < n; ++i)
955 {
956 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
957 basic_block label_bb = label_to_block (lab);
958 make_edge (bb, label_bb, 0);
959 assign_discriminator (entry_locus, label_bb);
960 }
961 }
962
963
964 /* Return the basic block holding label DEST. */
965
966 basic_block
967 label_to_block_fn (struct function *ifun, tree dest)
968 {
969 int uid = LABEL_DECL_UID (dest);
970
971 /* We would die hard when faced by an undefined label. Emit a label to
972 the very first basic block. This will hopefully make even the dataflow
973 and undefined variable warnings quite right. */
974 if (seen_error () && uid < 0)
975 {
976 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
977 gimple stmt;
978
979 stmt = gimple_build_label (dest);
980 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
981 uid = LABEL_DECL_UID (dest);
982 }
983 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
984 <= (unsigned int) uid)
985 return NULL;
986 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
987 }
988
989 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
990 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
991
992 void
993 make_abnormal_goto_edges (basic_block bb, bool for_call)
994 {
995 basic_block target_bb;
996 gimple_stmt_iterator gsi;
997
998 FOR_EACH_BB (target_bb)
999 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1000 {
1001 gimple label_stmt = gsi_stmt (gsi);
1002 tree target;
1003
1004 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1005 break;
1006
1007 target = gimple_label_label (label_stmt);
1008
1009 /* Make an edge to every label block that has been marked as a
1010 potential target for a computed goto or a non-local goto. */
1011 if ((FORCED_LABEL (target) && !for_call)
1012 || (DECL_NONLOCAL (target) && for_call))
1013 {
1014 make_edge (bb, target_bb, EDGE_ABNORMAL);
1015 break;
1016 }
1017 }
1018 }
1019
1020 /* Create edges for a goto statement at block BB. */
1021
1022 static void
1023 make_goto_expr_edges (basic_block bb)
1024 {
1025 gimple_stmt_iterator last = gsi_last_bb (bb);
1026 gimple goto_t = gsi_stmt (last);
1027
1028 /* A simple GOTO creates normal edges. */
1029 if (simple_goto_p (goto_t))
1030 {
1031 tree dest = gimple_goto_dest (goto_t);
1032 basic_block label_bb = label_to_block (dest);
1033 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1034 e->goto_locus = gimple_location (goto_t);
1035 assign_discriminator (e->goto_locus, label_bb);
1036 if (e->goto_locus)
1037 e->goto_block = gimple_block (goto_t);
1038 gsi_remove (&last, true);
1039 return;
1040 }
1041
1042 /* A computed GOTO creates abnormal edges. */
1043 make_abnormal_goto_edges (bb, false);
1044 }
1045
1046 /* Create edges for an asm statement with labels at block BB. */
1047
1048 static void
1049 make_gimple_asm_edges (basic_block bb)
1050 {
1051 gimple stmt = last_stmt (bb);
1052 location_t stmt_loc = gimple_location (stmt);
1053 int i, n = gimple_asm_nlabels (stmt);
1054
1055 for (i = 0; i < n; ++i)
1056 {
1057 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1058 basic_block label_bb = label_to_block (label);
1059 make_edge (bb, label_bb, 0);
1060 assign_discriminator (stmt_loc, label_bb);
1061 }
1062 }
1063
1064 /*---------------------------------------------------------------------------
1065 Flowgraph analysis
1066 ---------------------------------------------------------------------------*/
1067
1068 /* Cleanup useless labels in basic blocks. This is something we wish
1069 to do early because it allows us to group case labels before creating
1070 the edges for the CFG, and it speeds up block statement iterators in
1071 all passes later on.
1072 We rerun this pass after CFG is created, to get rid of the labels that
1073 are no longer referenced. After then we do not run it any more, since
1074 (almost) no new labels should be created. */
1075
1076 /* A map from basic block index to the leading label of that block. */
1077 static struct label_record
1078 {
1079 /* The label. */
1080 tree label;
1081
1082 /* True if the label is referenced from somewhere. */
1083 bool used;
1084 } *label_for_bb;
1085
1086 /* Given LABEL return the first label in the same basic block. */
1087
1088 static tree
1089 main_block_label (tree label)
1090 {
1091 basic_block bb = label_to_block (label);
1092 tree main_label = label_for_bb[bb->index].label;
1093
1094 /* label_to_block possibly inserted undefined label into the chain. */
1095 if (!main_label)
1096 {
1097 label_for_bb[bb->index].label = label;
1098 main_label = label;
1099 }
1100
1101 label_for_bb[bb->index].used = true;
1102 return main_label;
1103 }
1104
1105 /* Clean up redundant labels within the exception tree. */
1106
1107 static void
1108 cleanup_dead_labels_eh (void)
1109 {
1110 eh_landing_pad lp;
1111 eh_region r;
1112 tree lab;
1113 int i;
1114
1115 if (cfun->eh == NULL)
1116 return;
1117
1118 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1119 if (lp && lp->post_landing_pad)
1120 {
1121 lab = main_block_label (lp->post_landing_pad);
1122 if (lab != lp->post_landing_pad)
1123 {
1124 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1125 EH_LANDING_PAD_NR (lab) = lp->index;
1126 }
1127 }
1128
1129 FOR_ALL_EH_REGION (r)
1130 switch (r->type)
1131 {
1132 case ERT_CLEANUP:
1133 case ERT_MUST_NOT_THROW:
1134 break;
1135
1136 case ERT_TRY:
1137 {
1138 eh_catch c;
1139 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1140 {
1141 lab = c->label;
1142 if (lab)
1143 c->label = main_block_label (lab);
1144 }
1145 }
1146 break;
1147
1148 case ERT_ALLOWED_EXCEPTIONS:
1149 lab = r->u.allowed.label;
1150 if (lab)
1151 r->u.allowed.label = main_block_label (lab);
1152 break;
1153 }
1154 }
1155
1156
1157 /* Cleanup redundant labels. This is a three-step process:
1158 1) Find the leading label for each block.
1159 2) Redirect all references to labels to the leading labels.
1160 3) Cleanup all useless labels. */
1161
1162 void
1163 cleanup_dead_labels (void)
1164 {
1165 basic_block bb;
1166 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1167
1168 /* Find a suitable label for each block. We use the first user-defined
1169 label if there is one, or otherwise just the first label we see. */
1170 FOR_EACH_BB (bb)
1171 {
1172 gimple_stmt_iterator i;
1173
1174 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1175 {
1176 tree label;
1177 gimple stmt = gsi_stmt (i);
1178
1179 if (gimple_code (stmt) != GIMPLE_LABEL)
1180 break;
1181
1182 label = gimple_label_label (stmt);
1183
1184 /* If we have not yet seen a label for the current block,
1185 remember this one and see if there are more labels. */
1186 if (!label_for_bb[bb->index].label)
1187 {
1188 label_for_bb[bb->index].label = label;
1189 continue;
1190 }
1191
1192 /* If we did see a label for the current block already, but it
1193 is an artificially created label, replace it if the current
1194 label is a user defined label. */
1195 if (!DECL_ARTIFICIAL (label)
1196 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1197 {
1198 label_for_bb[bb->index].label = label;
1199 break;
1200 }
1201 }
1202 }
1203
1204 /* Now redirect all jumps/branches to the selected label.
1205 First do so for each block ending in a control statement. */
1206 FOR_EACH_BB (bb)
1207 {
1208 gimple stmt = last_stmt (bb);
1209 tree label, new_label;
1210
1211 if (!stmt)
1212 continue;
1213
1214 switch (gimple_code (stmt))
1215 {
1216 case GIMPLE_COND:
1217 label = gimple_cond_true_label (stmt);
1218 if (label)
1219 {
1220 new_label = main_block_label (label);
1221 if (new_label != label)
1222 gimple_cond_set_true_label (stmt, new_label);
1223 }
1224
1225 label = gimple_cond_false_label (stmt);
1226 if (label)
1227 {
1228 new_label = main_block_label (label);
1229 if (new_label != label)
1230 gimple_cond_set_false_label (stmt, new_label);
1231 }
1232 break;
1233
1234 case GIMPLE_SWITCH:
1235 {
1236 size_t i, n = gimple_switch_num_labels (stmt);
1237
1238 /* Replace all destination labels. */
1239 for (i = 0; i < n; ++i)
1240 {
1241 tree case_label = gimple_switch_label (stmt, i);
1242 label = CASE_LABEL (case_label);
1243 new_label = main_block_label (label);
1244 if (new_label != label)
1245 CASE_LABEL (case_label) = new_label;
1246 }
1247 break;
1248 }
1249
1250 case GIMPLE_ASM:
1251 {
1252 int i, n = gimple_asm_nlabels (stmt);
1253
1254 for (i = 0; i < n; ++i)
1255 {
1256 tree cons = gimple_asm_label_op (stmt, i);
1257 tree label = main_block_label (TREE_VALUE (cons));
1258 TREE_VALUE (cons) = label;
1259 }
1260 break;
1261 }
1262
1263 /* We have to handle gotos until they're removed, and we don't
1264 remove them until after we've created the CFG edges. */
1265 case GIMPLE_GOTO:
1266 if (!computed_goto_p (stmt))
1267 {
1268 label = gimple_goto_dest (stmt);
1269 new_label = main_block_label (label);
1270 if (new_label != label)
1271 gimple_goto_set_dest (stmt, new_label);
1272 }
1273 break;
1274
1275 case GIMPLE_TRANSACTION:
1276 {
1277 tree label = gimple_transaction_label (stmt);
1278 if (label)
1279 {
1280 tree new_label = main_block_label (label);
1281 if (new_label != label)
1282 gimple_transaction_set_label (stmt, new_label);
1283 }
1284 }
1285 break;
1286
1287 default:
1288 break;
1289 }
1290 }
1291
1292 /* Do the same for the exception region tree labels. */
1293 cleanup_dead_labels_eh ();
1294
1295 /* Finally, purge dead labels. All user-defined labels and labels that
1296 can be the target of non-local gotos and labels which have their
1297 address taken are preserved. */
1298 FOR_EACH_BB (bb)
1299 {
1300 gimple_stmt_iterator i;
1301 tree label_for_this_bb = label_for_bb[bb->index].label;
1302
1303 if (!label_for_this_bb)
1304 continue;
1305
1306 /* If the main label of the block is unused, we may still remove it. */
1307 if (!label_for_bb[bb->index].used)
1308 label_for_this_bb = NULL;
1309
1310 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1311 {
1312 tree label;
1313 gimple stmt = gsi_stmt (i);
1314
1315 if (gimple_code (stmt) != GIMPLE_LABEL)
1316 break;
1317
1318 label = gimple_label_label (stmt);
1319
1320 if (label == label_for_this_bb
1321 || !DECL_ARTIFICIAL (label)
1322 || DECL_NONLOCAL (label)
1323 || FORCED_LABEL (label))
1324 gsi_next (&i);
1325 else
1326 gsi_remove (&i, true);
1327 }
1328 }
1329
1330 free (label_for_bb);
1331 }
1332
1333 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1334 the ones jumping to the same label.
1335 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1336
1337 static void
1338 group_case_labels_stmt (gimple stmt)
1339 {
1340 int old_size = gimple_switch_num_labels (stmt);
1341 int i, j, new_size = old_size;
1342 tree default_case = NULL_TREE;
1343 tree default_label = NULL_TREE;
1344 bool has_default;
1345
1346 /* The default label is always the first case in a switch
1347 statement after gimplification if it was not optimized
1348 away */
1349 if (!CASE_LOW (gimple_switch_default_label (stmt))
1350 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1351 {
1352 default_case = gimple_switch_default_label (stmt);
1353 default_label = CASE_LABEL (default_case);
1354 has_default = true;
1355 }
1356 else
1357 has_default = false;
1358
1359 /* Look for possible opportunities to merge cases. */
1360 if (has_default)
1361 i = 1;
1362 else
1363 i = 0;
1364 while (i < old_size)
1365 {
1366 tree base_case, base_label, base_high;
1367 base_case = gimple_switch_label (stmt, i);
1368
1369 gcc_assert (base_case);
1370 base_label = CASE_LABEL (base_case);
1371
1372 /* Discard cases that have the same destination as the
1373 default case. */
1374 if (base_label == default_label)
1375 {
1376 gimple_switch_set_label (stmt, i, NULL_TREE);
1377 i++;
1378 new_size--;
1379 continue;
1380 }
1381
1382 base_high = CASE_HIGH (base_case)
1383 ? CASE_HIGH (base_case)
1384 : CASE_LOW (base_case);
1385 i++;
1386
1387 /* Try to merge case labels. Break out when we reach the end
1388 of the label vector or when we cannot merge the next case
1389 label with the current one. */
1390 while (i < old_size)
1391 {
1392 tree merge_case = gimple_switch_label (stmt, i);
1393 tree merge_label = CASE_LABEL (merge_case);
1394 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1395 double_int_one);
1396
1397 /* Merge the cases if they jump to the same place,
1398 and their ranges are consecutive. */
1399 if (merge_label == base_label
1400 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1401 bhp1))
1402 {
1403 base_high = CASE_HIGH (merge_case) ?
1404 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1405 CASE_HIGH (base_case) = base_high;
1406 gimple_switch_set_label (stmt, i, NULL_TREE);
1407 new_size--;
1408 i++;
1409 }
1410 else
1411 break;
1412 }
1413 }
1414
1415 /* Compress the case labels in the label vector, and adjust the
1416 length of the vector. */
1417 for (i = 0, j = 0; i < new_size; i++)
1418 {
1419 while (! gimple_switch_label (stmt, j))
1420 j++;
1421 gimple_switch_set_label (stmt, i,
1422 gimple_switch_label (stmt, j++));
1423 }
1424
1425 gcc_assert (new_size <= old_size);
1426 gimple_switch_set_num_labels (stmt, new_size);
1427 }
1428
1429 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1430 and scan the sorted vector of cases. Combine the ones jumping to the
1431 same label. */
1432
1433 void
1434 group_case_labels (void)
1435 {
1436 basic_block bb;
1437
1438 FOR_EACH_BB (bb)
1439 {
1440 gimple stmt = last_stmt (bb);
1441 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1442 group_case_labels_stmt (stmt);
1443 }
1444 }
1445
1446 /* Checks whether we can merge block B into block A. */
1447
1448 static bool
1449 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1450 {
1451 gimple stmt;
1452 gimple_stmt_iterator gsi;
1453 gimple_seq phis;
1454
1455 if (!single_succ_p (a))
1456 return false;
1457
1458 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
1459 return false;
1460
1461 if (single_succ (a) != b)
1462 return false;
1463
1464 if (!single_pred_p (b))
1465 return false;
1466
1467 if (b == EXIT_BLOCK_PTR)
1468 return false;
1469
1470 /* If A ends by a statement causing exceptions or something similar, we
1471 cannot merge the blocks. */
1472 stmt = last_stmt (a);
1473 if (stmt && stmt_ends_bb_p (stmt))
1474 return false;
1475
1476 /* Do not allow a block with only a non-local label to be merged. */
1477 if (stmt
1478 && gimple_code (stmt) == GIMPLE_LABEL
1479 && DECL_NONLOCAL (gimple_label_label (stmt)))
1480 return false;
1481
1482 /* Examine the labels at the beginning of B. */
1483 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1484 {
1485 tree lab;
1486 stmt = gsi_stmt (gsi);
1487 if (gimple_code (stmt) != GIMPLE_LABEL)
1488 break;
1489 lab = gimple_label_label (stmt);
1490
1491 /* Do not remove user forced labels or for -O0 any user labels. */
1492 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1493 return false;
1494 }
1495
1496 /* Protect the loop latches. */
1497 if (current_loops && b->loop_father->latch == b)
1498 return false;
1499
1500 /* It must be possible to eliminate all phi nodes in B. If ssa form
1501 is not up-to-date and a name-mapping is registered, we cannot eliminate
1502 any phis. Symbols marked for renaming are never a problem though. */
1503 phis = phi_nodes (b);
1504 if (!gimple_seq_empty_p (phis)
1505 && name_mappings_registered_p ())
1506 return false;
1507
1508 /* When not optimizing, don't merge if we'd lose goto_locus. */
1509 if (!optimize
1510 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1511 {
1512 location_t goto_locus = single_succ_edge (a)->goto_locus;
1513 gimple_stmt_iterator prev, next;
1514 prev = gsi_last_nondebug_bb (a);
1515 next = gsi_after_labels (b);
1516 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1517 gsi_next_nondebug (&next);
1518 if ((gsi_end_p (prev)
1519 || gimple_location (gsi_stmt (prev)) != goto_locus)
1520 && (gsi_end_p (next)
1521 || gimple_location (gsi_stmt (next)) != goto_locus))
1522 return false;
1523 }
1524
1525 return true;
1526 }
1527
1528 /* Return true if the var whose chain of uses starts at PTR has no
1529 nondebug uses. */
1530 bool
1531 has_zero_uses_1 (const ssa_use_operand_t *head)
1532 {
1533 const ssa_use_operand_t *ptr;
1534
1535 for (ptr = head->next; ptr != head; ptr = ptr->next)
1536 if (!is_gimple_debug (USE_STMT (ptr)))
1537 return false;
1538
1539 return true;
1540 }
1541
1542 /* Return true if the var whose chain of uses starts at PTR has a
1543 single nondebug use. Set USE_P and STMT to that single nondebug
1544 use, if so, or to NULL otherwise. */
1545 bool
1546 single_imm_use_1 (const ssa_use_operand_t *head,
1547 use_operand_p *use_p, gimple *stmt)
1548 {
1549 ssa_use_operand_t *ptr, *single_use = 0;
1550
1551 for (ptr = head->next; ptr != head; ptr = ptr->next)
1552 if (!is_gimple_debug (USE_STMT (ptr)))
1553 {
1554 if (single_use)
1555 {
1556 single_use = NULL;
1557 break;
1558 }
1559 single_use = ptr;
1560 }
1561
1562 if (use_p)
1563 *use_p = single_use;
1564
1565 if (stmt)
1566 *stmt = single_use ? single_use->loc.stmt : NULL;
1567
1568 return !!single_use;
1569 }
1570
1571 /* Replaces all uses of NAME by VAL. */
1572
1573 void
1574 replace_uses_by (tree name, tree val)
1575 {
1576 imm_use_iterator imm_iter;
1577 use_operand_p use;
1578 gimple stmt;
1579 edge e;
1580
1581 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1582 {
1583 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1584 {
1585 replace_exp (use, val);
1586
1587 if (gimple_code (stmt) == GIMPLE_PHI)
1588 {
1589 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1590 if (e->flags & EDGE_ABNORMAL)
1591 {
1592 /* This can only occur for virtual operands, since
1593 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1594 would prevent replacement. */
1595 gcc_assert (!is_gimple_reg (name));
1596 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1597 }
1598 }
1599 }
1600
1601 if (gimple_code (stmt) != GIMPLE_PHI)
1602 {
1603 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1604 size_t i;
1605
1606 fold_stmt (&gsi);
1607 stmt = gsi_stmt (gsi);
1608 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1609 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1610
1611 /* FIXME. This should go in update_stmt. */
1612 for (i = 0; i < gimple_num_ops (stmt); i++)
1613 {
1614 tree op = gimple_op (stmt, i);
1615 /* Operands may be empty here. For example, the labels
1616 of a GIMPLE_COND are nulled out following the creation
1617 of the corresponding CFG edges. */
1618 if (op && TREE_CODE (op) == ADDR_EXPR)
1619 recompute_tree_invariant_for_addr_expr (op);
1620 }
1621
1622 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1623 update_stmt (stmt);
1624 }
1625 }
1626
1627 gcc_assert (has_zero_uses (name));
1628
1629 /* Also update the trees stored in loop structures. */
1630 if (current_loops)
1631 {
1632 struct loop *loop;
1633 loop_iterator li;
1634
1635 FOR_EACH_LOOP (li, loop, 0)
1636 {
1637 substitute_in_loop_info (loop, name, val);
1638 }
1639 }
1640 }
1641
1642 /* Merge block B into block A. */
1643
1644 static void
1645 gimple_merge_blocks (basic_block a, basic_block b)
1646 {
1647 gimple_stmt_iterator last, gsi, psi;
1648 gimple_seq phis = phi_nodes (b);
1649
1650 if (dump_file)
1651 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1652
1653 /* Remove all single-valued PHI nodes from block B of the form
1654 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1655 gsi = gsi_last_bb (a);
1656 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1657 {
1658 gimple phi = gsi_stmt (psi);
1659 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1660 gimple copy;
1661 bool may_replace_uses = !is_gimple_reg (def)
1662 || may_propagate_copy (def, use);
1663
1664 /* In case we maintain loop closed ssa form, do not propagate arguments
1665 of loop exit phi nodes. */
1666 if (current_loops
1667 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1668 && is_gimple_reg (def)
1669 && TREE_CODE (use) == SSA_NAME
1670 && a->loop_father != b->loop_father)
1671 may_replace_uses = false;
1672
1673 if (!may_replace_uses)
1674 {
1675 gcc_assert (is_gimple_reg (def));
1676
1677 /* Note that just emitting the copies is fine -- there is no problem
1678 with ordering of phi nodes. This is because A is the single
1679 predecessor of B, therefore results of the phi nodes cannot
1680 appear as arguments of the phi nodes. */
1681 copy = gimple_build_assign (def, use);
1682 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1683 remove_phi_node (&psi, false);
1684 }
1685 else
1686 {
1687 /* If we deal with a PHI for virtual operands, we can simply
1688 propagate these without fussing with folding or updating
1689 the stmt. */
1690 if (!is_gimple_reg (def))
1691 {
1692 imm_use_iterator iter;
1693 use_operand_p use_p;
1694 gimple stmt;
1695
1696 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1697 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1698 SET_USE (use_p, use);
1699
1700 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1701 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1702 }
1703 else
1704 replace_uses_by (def, use);
1705
1706 remove_phi_node (&psi, true);
1707 }
1708 }
1709
1710 /* Ensure that B follows A. */
1711 move_block_after (b, a);
1712
1713 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1714 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1715
1716 /* Remove labels from B and set gimple_bb to A for other statements. */
1717 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1718 {
1719 gimple stmt = gsi_stmt (gsi);
1720 if (gimple_code (stmt) == GIMPLE_LABEL)
1721 {
1722 tree label = gimple_label_label (stmt);
1723 int lp_nr;
1724
1725 gsi_remove (&gsi, false);
1726
1727 /* Now that we can thread computed gotos, we might have
1728 a situation where we have a forced label in block B
1729 However, the label at the start of block B might still be
1730 used in other ways (think about the runtime checking for
1731 Fortran assigned gotos). So we can not just delete the
1732 label. Instead we move the label to the start of block A. */
1733 if (FORCED_LABEL (label))
1734 {
1735 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1736 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1737 }
1738 /* Other user labels keep around in a form of a debug stmt. */
1739 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1740 {
1741 gimple dbg = gimple_build_debug_bind (label,
1742 integer_zero_node,
1743 stmt);
1744 gimple_debug_bind_reset_value (dbg);
1745 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1746 }
1747
1748 lp_nr = EH_LANDING_PAD_NR (label);
1749 if (lp_nr)
1750 {
1751 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1752 lp->post_landing_pad = NULL;
1753 }
1754 }
1755 else
1756 {
1757 gimple_set_bb (stmt, a);
1758 gsi_next (&gsi);
1759 }
1760 }
1761
1762 /* Merge the sequences. */
1763 last = gsi_last_bb (a);
1764 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1765 set_bb_seq (b, NULL);
1766
1767 if (cfgcleanup_altered_bbs)
1768 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1769 }
1770
1771
1772 /* Return the one of two successors of BB that is not reachable by a
1773 complex edge, if there is one. Else, return BB. We use
1774 this in optimizations that use post-dominators for their heuristics,
1775 to catch the cases in C++ where function calls are involved. */
1776
1777 basic_block
1778 single_noncomplex_succ (basic_block bb)
1779 {
1780 edge e0, e1;
1781 if (EDGE_COUNT (bb->succs) != 2)
1782 return bb;
1783
1784 e0 = EDGE_SUCC (bb, 0);
1785 e1 = EDGE_SUCC (bb, 1);
1786 if (e0->flags & EDGE_COMPLEX)
1787 return e1->dest;
1788 if (e1->flags & EDGE_COMPLEX)
1789 return e0->dest;
1790
1791 return bb;
1792 }
1793
1794 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1795
1796 void
1797 notice_special_calls (gimple call)
1798 {
1799 int flags = gimple_call_flags (call);
1800
1801 if (flags & ECF_MAY_BE_ALLOCA)
1802 cfun->calls_alloca = true;
1803 if (flags & ECF_RETURNS_TWICE)
1804 cfun->calls_setjmp = true;
1805 }
1806
1807
1808 /* Clear flags set by notice_special_calls. Used by dead code removal
1809 to update the flags. */
1810
1811 void
1812 clear_special_calls (void)
1813 {
1814 cfun->calls_alloca = false;
1815 cfun->calls_setjmp = false;
1816 }
1817
1818 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1819
1820 static void
1821 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1822 {
1823 /* Since this block is no longer reachable, we can just delete all
1824 of its PHI nodes. */
1825 remove_phi_nodes (bb);
1826
1827 /* Remove edges to BB's successors. */
1828 while (EDGE_COUNT (bb->succs) > 0)
1829 remove_edge (EDGE_SUCC (bb, 0));
1830 }
1831
1832
1833 /* Remove statements of basic block BB. */
1834
1835 static void
1836 remove_bb (basic_block bb)
1837 {
1838 gimple_stmt_iterator i;
1839
1840 if (dump_file)
1841 {
1842 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1843 if (dump_flags & TDF_DETAILS)
1844 {
1845 dump_bb (bb, dump_file, 0);
1846 fprintf (dump_file, "\n");
1847 }
1848 }
1849
1850 if (current_loops)
1851 {
1852 struct loop *loop = bb->loop_father;
1853
1854 /* If a loop gets removed, clean up the information associated
1855 with it. */
1856 if (loop->latch == bb
1857 || loop->header == bb)
1858 free_numbers_of_iterations_estimates_loop (loop);
1859 }
1860
1861 /* Remove all the instructions in the block. */
1862 if (bb_seq (bb) != NULL)
1863 {
1864 /* Walk backwards so as to get a chance to substitute all
1865 released DEFs into debug stmts. See
1866 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1867 details. */
1868 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1869 {
1870 gimple stmt = gsi_stmt (i);
1871 if (gimple_code (stmt) == GIMPLE_LABEL
1872 && (FORCED_LABEL (gimple_label_label (stmt))
1873 || DECL_NONLOCAL (gimple_label_label (stmt))))
1874 {
1875 basic_block new_bb;
1876 gimple_stmt_iterator new_gsi;
1877
1878 /* A non-reachable non-local label may still be referenced.
1879 But it no longer needs to carry the extra semantics of
1880 non-locality. */
1881 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1882 {
1883 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1884 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1885 }
1886
1887 new_bb = bb->prev_bb;
1888 new_gsi = gsi_start_bb (new_bb);
1889 gsi_remove (&i, false);
1890 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1891 }
1892 else
1893 {
1894 /* Release SSA definitions if we are in SSA. Note that we
1895 may be called when not in SSA. For example,
1896 final_cleanup calls this function via
1897 cleanup_tree_cfg. */
1898 if (gimple_in_ssa_p (cfun))
1899 release_defs (stmt);
1900
1901 gsi_remove (&i, true);
1902 }
1903
1904 if (gsi_end_p (i))
1905 i = gsi_last_bb (bb);
1906 else
1907 gsi_prev (&i);
1908 }
1909 }
1910
1911 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1912 bb->il.gimple = NULL;
1913 }
1914
1915
1916 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1917 predicate VAL, return the edge that will be taken out of the block.
1918 If VAL does not match a unique edge, NULL is returned. */
1919
1920 edge
1921 find_taken_edge (basic_block bb, tree val)
1922 {
1923 gimple stmt;
1924
1925 stmt = last_stmt (bb);
1926
1927 gcc_assert (stmt);
1928 gcc_assert (is_ctrl_stmt (stmt));
1929
1930 if (val == NULL)
1931 return NULL;
1932
1933 if (!is_gimple_min_invariant (val))
1934 return NULL;
1935
1936 if (gimple_code (stmt) == GIMPLE_COND)
1937 return find_taken_edge_cond_expr (bb, val);
1938
1939 if (gimple_code (stmt) == GIMPLE_SWITCH)
1940 return find_taken_edge_switch_expr (bb, val);
1941
1942 if (computed_goto_p (stmt))
1943 {
1944 /* Only optimize if the argument is a label, if the argument is
1945 not a label then we can not construct a proper CFG.
1946
1947 It may be the case that we only need to allow the LABEL_REF to
1948 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1949 appear inside a LABEL_EXPR just to be safe. */
1950 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1951 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1952 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1953 return NULL;
1954 }
1955
1956 gcc_unreachable ();
1957 }
1958
1959 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1960 statement, determine which of the outgoing edges will be taken out of the
1961 block. Return NULL if either edge may be taken. */
1962
1963 static edge
1964 find_taken_edge_computed_goto (basic_block bb, tree val)
1965 {
1966 basic_block dest;
1967 edge e = NULL;
1968
1969 dest = label_to_block (val);
1970 if (dest)
1971 {
1972 e = find_edge (bb, dest);
1973 gcc_assert (e != NULL);
1974 }
1975
1976 return e;
1977 }
1978
1979 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1980 statement, determine which of the two edges will be taken out of the
1981 block. Return NULL if either edge may be taken. */
1982
1983 static edge
1984 find_taken_edge_cond_expr (basic_block bb, tree val)
1985 {
1986 edge true_edge, false_edge;
1987
1988 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1989
1990 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1991 return (integer_zerop (val) ? false_edge : true_edge);
1992 }
1993
1994 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1995 statement, determine which edge will be taken out of the block. Return
1996 NULL if any edge may be taken. */
1997
1998 static edge
1999 find_taken_edge_switch_expr (basic_block bb, tree val)
2000 {
2001 basic_block dest_bb;
2002 edge e;
2003 gimple switch_stmt;
2004 tree taken_case;
2005
2006 switch_stmt = last_stmt (bb);
2007 taken_case = find_case_label_for_value (switch_stmt, val);
2008 dest_bb = label_to_block (CASE_LABEL (taken_case));
2009
2010 e = find_edge (bb, dest_bb);
2011 gcc_assert (e);
2012 return e;
2013 }
2014
2015
2016 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2017 We can make optimal use here of the fact that the case labels are
2018 sorted: We can do a binary search for a case matching VAL. */
2019
2020 static tree
2021 find_case_label_for_value (gimple switch_stmt, tree val)
2022 {
2023 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2024 tree default_case = gimple_switch_default_label (switch_stmt);
2025
2026 for (low = 0, high = n; high - low > 1; )
2027 {
2028 size_t i = (high + low) / 2;
2029 tree t = gimple_switch_label (switch_stmt, i);
2030 int cmp;
2031
2032 /* Cache the result of comparing CASE_LOW and val. */
2033 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2034
2035 if (cmp > 0)
2036 high = i;
2037 else
2038 low = i;
2039
2040 if (CASE_HIGH (t) == NULL)
2041 {
2042 /* A singe-valued case label. */
2043 if (cmp == 0)
2044 return t;
2045 }
2046 else
2047 {
2048 /* A case range. We can only handle integer ranges. */
2049 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2050 return t;
2051 }
2052 }
2053
2054 return default_case;
2055 }
2056
2057
2058 /* Dump a basic block on stderr. */
2059
2060 void
2061 gimple_debug_bb (basic_block bb)
2062 {
2063 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2064 }
2065
2066
2067 /* Dump basic block with index N on stderr. */
2068
2069 basic_block
2070 gimple_debug_bb_n (int n)
2071 {
2072 gimple_debug_bb (BASIC_BLOCK (n));
2073 return BASIC_BLOCK (n);
2074 }
2075
2076
2077 /* Dump the CFG on stderr.
2078
2079 FLAGS are the same used by the tree dumping functions
2080 (see TDF_* in tree-pass.h). */
2081
2082 void
2083 gimple_debug_cfg (int flags)
2084 {
2085 gimple_dump_cfg (stderr, flags);
2086 }
2087
2088
2089 /* Dump the program showing basic block boundaries on the given FILE.
2090
2091 FLAGS are the same used by the tree dumping functions (see TDF_* in
2092 tree.h). */
2093
2094 void
2095 gimple_dump_cfg (FILE *file, int flags)
2096 {
2097 if (flags & TDF_DETAILS)
2098 {
2099 dump_function_header (file, current_function_decl, flags);
2100 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2101 n_basic_blocks, n_edges, last_basic_block);
2102
2103 brief_dump_cfg (file);
2104 fprintf (file, "\n");
2105 }
2106
2107 if (flags & TDF_STATS)
2108 dump_cfg_stats (file);
2109
2110 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2111 }
2112
2113
2114 /* Dump CFG statistics on FILE. */
2115
2116 void
2117 dump_cfg_stats (FILE *file)
2118 {
2119 static long max_num_merged_labels = 0;
2120 unsigned long size, total = 0;
2121 long num_edges;
2122 basic_block bb;
2123 const char * const fmt_str = "%-30s%-13s%12s\n";
2124 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2125 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2126 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2127 const char *funcname
2128 = lang_hooks.decl_printable_name (current_function_decl, 2);
2129
2130
2131 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2132
2133 fprintf (file, "---------------------------------------------------------\n");
2134 fprintf (file, fmt_str, "", " Number of ", "Memory");
2135 fprintf (file, fmt_str, "", " instances ", "used ");
2136 fprintf (file, "---------------------------------------------------------\n");
2137
2138 size = n_basic_blocks * sizeof (struct basic_block_def);
2139 total += size;
2140 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2141 SCALE (size), LABEL (size));
2142
2143 num_edges = 0;
2144 FOR_EACH_BB (bb)
2145 num_edges += EDGE_COUNT (bb->succs);
2146 size = num_edges * sizeof (struct edge_def);
2147 total += size;
2148 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2149
2150 fprintf (file, "---------------------------------------------------------\n");
2151 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2152 LABEL (total));
2153 fprintf (file, "---------------------------------------------------------\n");
2154 fprintf (file, "\n");
2155
2156 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2157 max_num_merged_labels = cfg_stats.num_merged_labels;
2158
2159 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2160 cfg_stats.num_merged_labels, max_num_merged_labels);
2161
2162 fprintf (file, "\n");
2163 }
2164
2165
2166 /* Dump CFG statistics on stderr. Keep extern so that it's always
2167 linked in the final executable. */
2168
2169 DEBUG_FUNCTION void
2170 debug_cfg_stats (void)
2171 {
2172 dump_cfg_stats (stderr);
2173 }
2174
2175
2176 /* Dump the flowgraph to a .vcg FILE. */
2177
2178 static void
2179 gimple_cfg2vcg (FILE *file)
2180 {
2181 edge e;
2182 edge_iterator ei;
2183 basic_block bb;
2184 const char *funcname
2185 = lang_hooks.decl_printable_name (current_function_decl, 2);
2186
2187 /* Write the file header. */
2188 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2189 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2190 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2191
2192 /* Write blocks and edges. */
2193 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2194 {
2195 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2196 e->dest->index);
2197
2198 if (e->flags & EDGE_FAKE)
2199 fprintf (file, " linestyle: dotted priority: 10");
2200 else
2201 fprintf (file, " linestyle: solid priority: 100");
2202
2203 fprintf (file, " }\n");
2204 }
2205 fputc ('\n', file);
2206
2207 FOR_EACH_BB (bb)
2208 {
2209 enum gimple_code head_code, end_code;
2210 const char *head_name, *end_name;
2211 int head_line = 0;
2212 int end_line = 0;
2213 gimple first = first_stmt (bb);
2214 gimple last = last_stmt (bb);
2215
2216 if (first)
2217 {
2218 head_code = gimple_code (first);
2219 head_name = gimple_code_name[head_code];
2220 head_line = get_lineno (first);
2221 }
2222 else
2223 head_name = "no-statement";
2224
2225 if (last)
2226 {
2227 end_code = gimple_code (last);
2228 end_name = gimple_code_name[end_code];
2229 end_line = get_lineno (last);
2230 }
2231 else
2232 end_name = "no-statement";
2233
2234 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2235 bb->index, bb->index, head_name, head_line, end_name,
2236 end_line);
2237
2238 FOR_EACH_EDGE (e, ei, bb->succs)
2239 {
2240 if (e->dest == EXIT_BLOCK_PTR)
2241 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2242 else
2243 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2244
2245 if (e->flags & EDGE_FAKE)
2246 fprintf (file, " priority: 10 linestyle: dotted");
2247 else
2248 fprintf (file, " priority: 100 linestyle: solid");
2249
2250 fprintf (file, " }\n");
2251 }
2252
2253 if (bb->next_bb != EXIT_BLOCK_PTR)
2254 fputc ('\n', file);
2255 }
2256
2257 fputs ("}\n\n", file);
2258 }
2259
2260
2261
2262 /*---------------------------------------------------------------------------
2263 Miscellaneous helpers
2264 ---------------------------------------------------------------------------*/
2265
2266 /* Return true if T represents a stmt that always transfers control. */
2267
2268 bool
2269 is_ctrl_stmt (gimple t)
2270 {
2271 switch (gimple_code (t))
2272 {
2273 case GIMPLE_COND:
2274 case GIMPLE_SWITCH:
2275 case GIMPLE_GOTO:
2276 case GIMPLE_RETURN:
2277 case GIMPLE_RESX:
2278 return true;
2279 default:
2280 return false;
2281 }
2282 }
2283
2284
2285 /* Return true if T is a statement that may alter the flow of control
2286 (e.g., a call to a non-returning function). */
2287
2288 bool
2289 is_ctrl_altering_stmt (gimple t)
2290 {
2291 gcc_assert (t);
2292
2293 switch (gimple_code (t))
2294 {
2295 case GIMPLE_CALL:
2296 {
2297 int flags = gimple_call_flags (t);
2298
2299 /* A non-pure/const call alters flow control if the current
2300 function has nonlocal labels. */
2301 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2302 && cfun->has_nonlocal_label)
2303 return true;
2304
2305 /* A call also alters control flow if it does not return. */
2306 if (flags & ECF_NORETURN)
2307 return true;
2308
2309 /* TM ending statements have backedges out of the transaction.
2310 Return true so we split the basic block containing them.
2311 Note that the TM_BUILTIN test is merely an optimization. */
2312 if ((flags & ECF_TM_BUILTIN)
2313 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2314 return true;
2315
2316 /* BUILT_IN_RETURN call is same as return statement. */
2317 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2318 return true;
2319 }
2320 break;
2321
2322 case GIMPLE_EH_DISPATCH:
2323 /* EH_DISPATCH branches to the individual catch handlers at
2324 this level of a try or allowed-exceptions region. It can
2325 fallthru to the next statement as well. */
2326 return true;
2327
2328 case GIMPLE_ASM:
2329 if (gimple_asm_nlabels (t) > 0)
2330 return true;
2331 break;
2332
2333 CASE_GIMPLE_OMP:
2334 /* OpenMP directives alter control flow. */
2335 return true;
2336
2337 case GIMPLE_TRANSACTION:
2338 /* A transaction start alters control flow. */
2339 return true;
2340
2341 default:
2342 break;
2343 }
2344
2345 /* If a statement can throw, it alters control flow. */
2346 return stmt_can_throw_internal (t);
2347 }
2348
2349
2350 /* Return true if T is a simple local goto. */
2351
2352 bool
2353 simple_goto_p (gimple t)
2354 {
2355 return (gimple_code (t) == GIMPLE_GOTO
2356 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2357 }
2358
2359
2360 /* Return true if T can make an abnormal transfer of control flow.
2361 Transfers of control flow associated with EH are excluded. */
2362
2363 bool
2364 stmt_can_make_abnormal_goto (gimple t)
2365 {
2366 if (computed_goto_p (t))
2367 return true;
2368 if (is_gimple_call (t))
2369 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2370 && !(gimple_call_flags (t) & ECF_LEAF));
2371 return false;
2372 }
2373
2374
2375 /* Return true if STMT should start a new basic block. PREV_STMT is
2376 the statement preceding STMT. It is used when STMT is a label or a
2377 case label. Labels should only start a new basic block if their
2378 previous statement wasn't a label. Otherwise, sequence of labels
2379 would generate unnecessary basic blocks that only contain a single
2380 label. */
2381
2382 static inline bool
2383 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2384 {
2385 if (stmt == NULL)
2386 return false;
2387
2388 /* Labels start a new basic block only if the preceding statement
2389 wasn't a label of the same type. This prevents the creation of
2390 consecutive blocks that have nothing but a single label. */
2391 if (gimple_code (stmt) == GIMPLE_LABEL)
2392 {
2393 /* Nonlocal and computed GOTO targets always start a new block. */
2394 if (DECL_NONLOCAL (gimple_label_label (stmt))
2395 || FORCED_LABEL (gimple_label_label (stmt)))
2396 return true;
2397
2398 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2399 {
2400 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2401 return true;
2402
2403 cfg_stats.num_merged_labels++;
2404 return false;
2405 }
2406 else
2407 return true;
2408 }
2409
2410 return false;
2411 }
2412
2413
2414 /* Return true if T should end a basic block. */
2415
2416 bool
2417 stmt_ends_bb_p (gimple t)
2418 {
2419 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2420 }
2421
2422 /* Remove block annotations and other data structures. */
2423
2424 void
2425 delete_tree_cfg_annotations (void)
2426 {
2427 label_to_block_map = NULL;
2428 }
2429
2430
2431 /* Return the first statement in basic block BB. */
2432
2433 gimple
2434 first_stmt (basic_block bb)
2435 {
2436 gimple_stmt_iterator i = gsi_start_bb (bb);
2437 gimple stmt = NULL;
2438
2439 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2440 {
2441 gsi_next (&i);
2442 stmt = NULL;
2443 }
2444 return stmt;
2445 }
2446
2447 /* Return the first non-label statement in basic block BB. */
2448
2449 static gimple
2450 first_non_label_stmt (basic_block bb)
2451 {
2452 gimple_stmt_iterator i = gsi_start_bb (bb);
2453 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2454 gsi_next (&i);
2455 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2456 }
2457
2458 /* Return the last statement in basic block BB. */
2459
2460 gimple
2461 last_stmt (basic_block bb)
2462 {
2463 gimple_stmt_iterator i = gsi_last_bb (bb);
2464 gimple stmt = NULL;
2465
2466 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2467 {
2468 gsi_prev (&i);
2469 stmt = NULL;
2470 }
2471 return stmt;
2472 }
2473
2474 /* Return the last statement of an otherwise empty block. Return NULL
2475 if the block is totally empty, or if it contains more than one
2476 statement. */
2477
2478 gimple
2479 last_and_only_stmt (basic_block bb)
2480 {
2481 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2482 gimple last, prev;
2483
2484 if (gsi_end_p (i))
2485 return NULL;
2486
2487 last = gsi_stmt (i);
2488 gsi_prev_nondebug (&i);
2489 if (gsi_end_p (i))
2490 return last;
2491
2492 /* Empty statements should no longer appear in the instruction stream.
2493 Everything that might have appeared before should be deleted by
2494 remove_useless_stmts, and the optimizers should just gsi_remove
2495 instead of smashing with build_empty_stmt.
2496
2497 Thus the only thing that should appear here in a block containing
2498 one executable statement is a label. */
2499 prev = gsi_stmt (i);
2500 if (gimple_code (prev) == GIMPLE_LABEL)
2501 return last;
2502 else
2503 return NULL;
2504 }
2505
2506 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2507
2508 static void
2509 reinstall_phi_args (edge new_edge, edge old_edge)
2510 {
2511 edge_var_map_vector v;
2512 edge_var_map *vm;
2513 int i;
2514 gimple_stmt_iterator phis;
2515
2516 v = redirect_edge_var_map_vector (old_edge);
2517 if (!v)
2518 return;
2519
2520 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2521 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2522 i++, gsi_next (&phis))
2523 {
2524 gimple phi = gsi_stmt (phis);
2525 tree result = redirect_edge_var_map_result (vm);
2526 tree arg = redirect_edge_var_map_def (vm);
2527
2528 gcc_assert (result == gimple_phi_result (phi));
2529
2530 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2531 }
2532
2533 redirect_edge_var_map_clear (old_edge);
2534 }
2535
2536 /* Returns the basic block after which the new basic block created
2537 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2538 near its "logical" location. This is of most help to humans looking
2539 at debugging dumps. */
2540
2541 static basic_block
2542 split_edge_bb_loc (edge edge_in)
2543 {
2544 basic_block dest = edge_in->dest;
2545 basic_block dest_prev = dest->prev_bb;
2546
2547 if (dest_prev)
2548 {
2549 edge e = find_edge (dest_prev, dest);
2550 if (e && !(e->flags & EDGE_COMPLEX))
2551 return edge_in->src;
2552 }
2553 return dest_prev;
2554 }
2555
2556 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2557 Abort on abnormal edges. */
2558
2559 static basic_block
2560 gimple_split_edge (edge edge_in)
2561 {
2562 basic_block new_bb, after_bb, dest;
2563 edge new_edge, e;
2564
2565 /* Abnormal edges cannot be split. */
2566 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2567
2568 dest = edge_in->dest;
2569
2570 after_bb = split_edge_bb_loc (edge_in);
2571
2572 new_bb = create_empty_bb (after_bb);
2573 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2574 new_bb->count = edge_in->count;
2575 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2576 new_edge->probability = REG_BR_PROB_BASE;
2577 new_edge->count = edge_in->count;
2578
2579 e = redirect_edge_and_branch (edge_in, new_bb);
2580 gcc_assert (e == edge_in);
2581 reinstall_phi_args (new_edge, e);
2582
2583 return new_bb;
2584 }
2585
2586
2587 /* Verify properties of the address expression T with base object BASE. */
2588
2589 static tree
2590 verify_address (tree t, tree base)
2591 {
2592 bool old_constant;
2593 bool old_side_effects;
2594 bool new_constant;
2595 bool new_side_effects;
2596
2597 old_constant = TREE_CONSTANT (t);
2598 old_side_effects = TREE_SIDE_EFFECTS (t);
2599
2600 recompute_tree_invariant_for_addr_expr (t);
2601 new_side_effects = TREE_SIDE_EFFECTS (t);
2602 new_constant = TREE_CONSTANT (t);
2603
2604 if (old_constant != new_constant)
2605 {
2606 error ("constant not recomputed when ADDR_EXPR changed");
2607 return t;
2608 }
2609 if (old_side_effects != new_side_effects)
2610 {
2611 error ("side effects not recomputed when ADDR_EXPR changed");
2612 return t;
2613 }
2614
2615 if (!(TREE_CODE (base) == VAR_DECL
2616 || TREE_CODE (base) == PARM_DECL
2617 || TREE_CODE (base) == RESULT_DECL))
2618 return NULL_TREE;
2619
2620 if (DECL_GIMPLE_REG_P (base))
2621 {
2622 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2623 return base;
2624 }
2625
2626 return NULL_TREE;
2627 }
2628
2629 /* Callback for walk_tree, check that all elements with address taken are
2630 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2631 inside a PHI node. */
2632
2633 static tree
2634 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2635 {
2636 tree t = *tp, x;
2637
2638 if (TYPE_P (t))
2639 *walk_subtrees = 0;
2640
2641 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2642 #define CHECK_OP(N, MSG) \
2643 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2644 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2645
2646 switch (TREE_CODE (t))
2647 {
2648 case SSA_NAME:
2649 if (SSA_NAME_IN_FREE_LIST (t))
2650 {
2651 error ("SSA name in freelist but still referenced");
2652 return *tp;
2653 }
2654 break;
2655
2656 case INDIRECT_REF:
2657 error ("INDIRECT_REF in gimple IL");
2658 return t;
2659
2660 case MEM_REF:
2661 x = TREE_OPERAND (t, 0);
2662 if (!POINTER_TYPE_P (TREE_TYPE (x))
2663 || !is_gimple_mem_ref_addr (x))
2664 {
2665 error ("invalid first operand of MEM_REF");
2666 return x;
2667 }
2668 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2669 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2670 {
2671 error ("invalid offset operand of MEM_REF");
2672 return TREE_OPERAND (t, 1);
2673 }
2674 if (TREE_CODE (x) == ADDR_EXPR
2675 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2676 return x;
2677 *walk_subtrees = 0;
2678 break;
2679
2680 case ASSERT_EXPR:
2681 x = fold (ASSERT_EXPR_COND (t));
2682 if (x == boolean_false_node)
2683 {
2684 error ("ASSERT_EXPR with an always-false condition");
2685 return *tp;
2686 }
2687 break;
2688
2689 case MODIFY_EXPR:
2690 error ("MODIFY_EXPR not expected while having tuples");
2691 return *tp;
2692
2693 case ADDR_EXPR:
2694 {
2695 tree tem;
2696
2697 gcc_assert (is_gimple_address (t));
2698
2699 /* Skip any references (they will be checked when we recurse down the
2700 tree) and ensure that any variable used as a prefix is marked
2701 addressable. */
2702 for (x = TREE_OPERAND (t, 0);
2703 handled_component_p (x);
2704 x = TREE_OPERAND (x, 0))
2705 ;
2706
2707 if ((tem = verify_address (t, x)))
2708 return tem;
2709
2710 if (!(TREE_CODE (x) == VAR_DECL
2711 || TREE_CODE (x) == PARM_DECL
2712 || TREE_CODE (x) == RESULT_DECL))
2713 return NULL;
2714
2715 if (!TREE_ADDRESSABLE (x))
2716 {
2717 error ("address taken, but ADDRESSABLE bit not set");
2718 return x;
2719 }
2720
2721 break;
2722 }
2723
2724 case COND_EXPR:
2725 x = COND_EXPR_COND (t);
2726 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2727 {
2728 error ("non-integral used in condition");
2729 return x;
2730 }
2731 if (!is_gimple_condexpr (x))
2732 {
2733 error ("invalid conditional operand");
2734 return x;
2735 }
2736 break;
2737
2738 case NON_LVALUE_EXPR:
2739 case TRUTH_NOT_EXPR:
2740 gcc_unreachable ();
2741
2742 CASE_CONVERT:
2743 case FIX_TRUNC_EXPR:
2744 case FLOAT_EXPR:
2745 case NEGATE_EXPR:
2746 case ABS_EXPR:
2747 case BIT_NOT_EXPR:
2748 CHECK_OP (0, "invalid operand to unary operator");
2749 break;
2750
2751 case REALPART_EXPR:
2752 case IMAGPART_EXPR:
2753 case COMPONENT_REF:
2754 case ARRAY_REF:
2755 case ARRAY_RANGE_REF:
2756 case BIT_FIELD_REF:
2757 case VIEW_CONVERT_EXPR:
2758 /* We have a nest of references. Verify that each of the operands
2759 that determine where to reference is either a constant or a variable,
2760 verify that the base is valid, and then show we've already checked
2761 the subtrees. */
2762 while (handled_component_p (t))
2763 {
2764 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2765 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2766 else if (TREE_CODE (t) == ARRAY_REF
2767 || TREE_CODE (t) == ARRAY_RANGE_REF)
2768 {
2769 CHECK_OP (1, "invalid array index");
2770 if (TREE_OPERAND (t, 2))
2771 CHECK_OP (2, "invalid array lower bound");
2772 if (TREE_OPERAND (t, 3))
2773 CHECK_OP (3, "invalid array stride");
2774 }
2775 else if (TREE_CODE (t) == BIT_FIELD_REF)
2776 {
2777 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2778 || !host_integerp (TREE_OPERAND (t, 2), 1))
2779 {
2780 error ("invalid position or size operand to BIT_FIELD_REF");
2781 return t;
2782 }
2783 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2784 && (TYPE_PRECISION (TREE_TYPE (t))
2785 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2786 {
2787 error ("integral result type precision does not match "
2788 "field size of BIT_FIELD_REF");
2789 return t;
2790 }
2791 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2792 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2793 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2794 {
2795 error ("mode precision of non-integral result does not "
2796 "match field size of BIT_FIELD_REF");
2797 return t;
2798 }
2799 }
2800
2801 t = TREE_OPERAND (t, 0);
2802 }
2803
2804 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2805 {
2806 error ("invalid reference prefix");
2807 return t;
2808 }
2809 *walk_subtrees = 0;
2810 break;
2811 case PLUS_EXPR:
2812 case MINUS_EXPR:
2813 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2814 POINTER_PLUS_EXPR. */
2815 if (POINTER_TYPE_P (TREE_TYPE (t)))
2816 {
2817 error ("invalid operand to plus/minus, type is a pointer");
2818 return t;
2819 }
2820 CHECK_OP (0, "invalid operand to binary operator");
2821 CHECK_OP (1, "invalid operand to binary operator");
2822 break;
2823
2824 case POINTER_PLUS_EXPR:
2825 /* Check to make sure the first operand is a pointer or reference type. */
2826 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2827 {
2828 error ("invalid operand to pointer plus, first operand is not a pointer");
2829 return t;
2830 }
2831 /* Check to make sure the second operand is a ptrofftype. */
2832 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2833 {
2834 error ("invalid operand to pointer plus, second operand is not an "
2835 "integer type of appropriate width");
2836 return t;
2837 }
2838 /* FALLTHROUGH */
2839 case LT_EXPR:
2840 case LE_EXPR:
2841 case GT_EXPR:
2842 case GE_EXPR:
2843 case EQ_EXPR:
2844 case NE_EXPR:
2845 case UNORDERED_EXPR:
2846 case ORDERED_EXPR:
2847 case UNLT_EXPR:
2848 case UNLE_EXPR:
2849 case UNGT_EXPR:
2850 case UNGE_EXPR:
2851 case UNEQ_EXPR:
2852 case LTGT_EXPR:
2853 case MULT_EXPR:
2854 case TRUNC_DIV_EXPR:
2855 case CEIL_DIV_EXPR:
2856 case FLOOR_DIV_EXPR:
2857 case ROUND_DIV_EXPR:
2858 case TRUNC_MOD_EXPR:
2859 case CEIL_MOD_EXPR:
2860 case FLOOR_MOD_EXPR:
2861 case ROUND_MOD_EXPR:
2862 case RDIV_EXPR:
2863 case EXACT_DIV_EXPR:
2864 case MIN_EXPR:
2865 case MAX_EXPR:
2866 case LSHIFT_EXPR:
2867 case RSHIFT_EXPR:
2868 case LROTATE_EXPR:
2869 case RROTATE_EXPR:
2870 case BIT_IOR_EXPR:
2871 case BIT_XOR_EXPR:
2872 case BIT_AND_EXPR:
2873 CHECK_OP (0, "invalid operand to binary operator");
2874 CHECK_OP (1, "invalid operand to binary operator");
2875 break;
2876
2877 case CONSTRUCTOR:
2878 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2879 *walk_subtrees = 0;
2880 break;
2881
2882 case CASE_LABEL_EXPR:
2883 if (CASE_CHAIN (t))
2884 {
2885 error ("invalid CASE_CHAIN");
2886 return t;
2887 }
2888 break;
2889
2890 default:
2891 break;
2892 }
2893 return NULL;
2894
2895 #undef CHECK_OP
2896 }
2897
2898
2899 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2900 Returns true if there is an error, otherwise false. */
2901
2902 static bool
2903 verify_types_in_gimple_min_lval (tree expr)
2904 {
2905 tree op;
2906
2907 if (is_gimple_id (expr))
2908 return false;
2909
2910 if (TREE_CODE (expr) != TARGET_MEM_REF
2911 && TREE_CODE (expr) != MEM_REF)
2912 {
2913 error ("invalid expression for min lvalue");
2914 return true;
2915 }
2916
2917 /* TARGET_MEM_REFs are strange beasts. */
2918 if (TREE_CODE (expr) == TARGET_MEM_REF)
2919 return false;
2920
2921 op = TREE_OPERAND (expr, 0);
2922 if (!is_gimple_val (op))
2923 {
2924 error ("invalid operand in indirect reference");
2925 debug_generic_stmt (op);
2926 return true;
2927 }
2928 /* Memory references now generally can involve a value conversion. */
2929
2930 return false;
2931 }
2932
2933 /* Verify if EXPR is a valid GIMPLE reference expression. If
2934 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2935 if there is an error, otherwise false. */
2936
2937 static bool
2938 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2939 {
2940 while (handled_component_p (expr))
2941 {
2942 tree op = TREE_OPERAND (expr, 0);
2943
2944 if (TREE_CODE (expr) == ARRAY_REF
2945 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2946 {
2947 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2948 || (TREE_OPERAND (expr, 2)
2949 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2950 || (TREE_OPERAND (expr, 3)
2951 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2952 {
2953 error ("invalid operands to array reference");
2954 debug_generic_stmt (expr);
2955 return true;
2956 }
2957 }
2958
2959 /* Verify if the reference array element types are compatible. */
2960 if (TREE_CODE (expr) == ARRAY_REF
2961 && !useless_type_conversion_p (TREE_TYPE (expr),
2962 TREE_TYPE (TREE_TYPE (op))))
2963 {
2964 error ("type mismatch in array reference");
2965 debug_generic_stmt (TREE_TYPE (expr));
2966 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2967 return true;
2968 }
2969 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2970 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2971 TREE_TYPE (TREE_TYPE (op))))
2972 {
2973 error ("type mismatch in array range reference");
2974 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2975 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2976 return true;
2977 }
2978
2979 if ((TREE_CODE (expr) == REALPART_EXPR
2980 || TREE_CODE (expr) == IMAGPART_EXPR)
2981 && !useless_type_conversion_p (TREE_TYPE (expr),
2982 TREE_TYPE (TREE_TYPE (op))))
2983 {
2984 error ("type mismatch in real/imagpart reference");
2985 debug_generic_stmt (TREE_TYPE (expr));
2986 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2987 return true;
2988 }
2989
2990 if (TREE_CODE (expr) == COMPONENT_REF
2991 && !useless_type_conversion_p (TREE_TYPE (expr),
2992 TREE_TYPE (TREE_OPERAND (expr, 1))))
2993 {
2994 error ("type mismatch in component reference");
2995 debug_generic_stmt (TREE_TYPE (expr));
2996 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2997 return true;
2998 }
2999
3000 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3001 {
3002 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3003 that their operand is not an SSA name or an invariant when
3004 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3005 bug). Otherwise there is nothing to verify, gross mismatches at
3006 most invoke undefined behavior. */
3007 if (require_lvalue
3008 && (TREE_CODE (op) == SSA_NAME
3009 || is_gimple_min_invariant (op)))
3010 {
3011 error ("conversion of an SSA_NAME on the left hand side");
3012 debug_generic_stmt (expr);
3013 return true;
3014 }
3015 else if (TREE_CODE (op) == SSA_NAME
3016 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3017 {
3018 error ("conversion of register to a different size");
3019 debug_generic_stmt (expr);
3020 return true;
3021 }
3022 else if (!handled_component_p (op))
3023 return false;
3024 }
3025
3026 expr = op;
3027 }
3028
3029 if (TREE_CODE (expr) == MEM_REF)
3030 {
3031 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3032 {
3033 error ("invalid address operand in MEM_REF");
3034 debug_generic_stmt (expr);
3035 return true;
3036 }
3037 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3038 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3039 {
3040 error ("invalid offset operand in MEM_REF");
3041 debug_generic_stmt (expr);
3042 return true;
3043 }
3044 }
3045 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3046 {
3047 if (!TMR_BASE (expr)
3048 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3049 {
3050 error ("invalid address operand in TARGET_MEM_REF");
3051 return true;
3052 }
3053 if (!TMR_OFFSET (expr)
3054 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3055 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3056 {
3057 error ("invalid offset operand in TARGET_MEM_REF");
3058 debug_generic_stmt (expr);
3059 return true;
3060 }
3061 }
3062
3063 return ((require_lvalue || !is_gimple_min_invariant (expr))
3064 && verify_types_in_gimple_min_lval (expr));
3065 }
3066
3067 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3068 list of pointer-to types that is trivially convertible to DEST. */
3069
3070 static bool
3071 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3072 {
3073 tree src;
3074
3075 if (!TYPE_POINTER_TO (src_obj))
3076 return true;
3077
3078 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3079 if (useless_type_conversion_p (dest, src))
3080 return true;
3081
3082 return false;
3083 }
3084
3085 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3086 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3087
3088 static bool
3089 valid_fixed_convert_types_p (tree type1, tree type2)
3090 {
3091 return (FIXED_POINT_TYPE_P (type1)
3092 && (INTEGRAL_TYPE_P (type2)
3093 || SCALAR_FLOAT_TYPE_P (type2)
3094 || FIXED_POINT_TYPE_P (type2)));
3095 }
3096
3097 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3098 is a problem, otherwise false. */
3099
3100 static bool
3101 verify_gimple_call (gimple stmt)
3102 {
3103 tree fn = gimple_call_fn (stmt);
3104 tree fntype, fndecl;
3105 unsigned i;
3106
3107 if (gimple_call_internal_p (stmt))
3108 {
3109 if (fn)
3110 {
3111 error ("gimple call has two targets");
3112 debug_generic_stmt (fn);
3113 return true;
3114 }
3115 }
3116 else
3117 {
3118 if (!fn)
3119 {
3120 error ("gimple call has no target");
3121 return true;
3122 }
3123 }
3124
3125 if (fn && !is_gimple_call_addr (fn))
3126 {
3127 error ("invalid function in gimple call");
3128 debug_generic_stmt (fn);
3129 return true;
3130 }
3131
3132 if (fn
3133 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3134 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3135 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3136 {
3137 error ("non-function in gimple call");
3138 return true;
3139 }
3140
3141 fndecl = gimple_call_fndecl (stmt);
3142 if (fndecl
3143 && TREE_CODE (fndecl) == FUNCTION_DECL
3144 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3145 && !DECL_PURE_P (fndecl)
3146 && !TREE_READONLY (fndecl))
3147 {
3148 error ("invalid pure const state for function");
3149 return true;
3150 }
3151
3152 if (gimple_call_lhs (stmt)
3153 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3154 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3155 {
3156 error ("invalid LHS in gimple call");
3157 return true;
3158 }
3159
3160 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3161 {
3162 error ("LHS in noreturn call");
3163 return true;
3164 }
3165
3166 fntype = gimple_call_fntype (stmt);
3167 if (fntype
3168 && gimple_call_lhs (stmt)
3169 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3170 TREE_TYPE (fntype))
3171 /* ??? At least C++ misses conversions at assignments from
3172 void * call results.
3173 ??? Java is completely off. Especially with functions
3174 returning java.lang.Object.
3175 For now simply allow arbitrary pointer type conversions. */
3176 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3177 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3178 {
3179 error ("invalid conversion in gimple call");
3180 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3181 debug_generic_stmt (TREE_TYPE (fntype));
3182 return true;
3183 }
3184
3185 if (gimple_call_chain (stmt)
3186 && !is_gimple_val (gimple_call_chain (stmt)))
3187 {
3188 error ("invalid static chain in gimple call");
3189 debug_generic_stmt (gimple_call_chain (stmt));
3190 return true;
3191 }
3192
3193 /* If there is a static chain argument, this should not be an indirect
3194 call, and the decl should have DECL_STATIC_CHAIN set. */
3195 if (gimple_call_chain (stmt))
3196 {
3197 if (!gimple_call_fndecl (stmt))
3198 {
3199 error ("static chain in indirect gimple call");
3200 return true;
3201 }
3202 fn = TREE_OPERAND (fn, 0);
3203
3204 if (!DECL_STATIC_CHAIN (fn))
3205 {
3206 error ("static chain with function that doesn%'t use one");
3207 return true;
3208 }
3209 }
3210
3211 /* ??? The C frontend passes unpromoted arguments in case it
3212 didn't see a function declaration before the call. So for now
3213 leave the call arguments mostly unverified. Once we gimplify
3214 unit-at-a-time we have a chance to fix this. */
3215
3216 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3217 {
3218 tree arg = gimple_call_arg (stmt, i);
3219 if ((is_gimple_reg_type (TREE_TYPE (arg))
3220 && !is_gimple_val (arg))
3221 || (!is_gimple_reg_type (TREE_TYPE (arg))
3222 && !is_gimple_lvalue (arg)))
3223 {
3224 error ("invalid argument to gimple call");
3225 debug_generic_expr (arg);
3226 return true;
3227 }
3228 }
3229
3230 /* Verify that if we have a direct call and the argument/return
3231 types have mismatches the call is properly marked as noninlinable. */
3232 if (fndecl
3233 && !gimple_call_cannot_inline_p (stmt)
3234 && !gimple_check_call_matching_types (stmt, fndecl))
3235 {
3236 error ("gimple call cannot be inlined but is not marked so");
3237 return true;
3238 }
3239
3240 return false;
3241 }
3242
3243 /* Verifies the gimple comparison with the result type TYPE and
3244 the operands OP0 and OP1. */
3245
3246 static bool
3247 verify_gimple_comparison (tree type, tree op0, tree op1)
3248 {
3249 tree op0_type = TREE_TYPE (op0);
3250 tree op1_type = TREE_TYPE (op1);
3251
3252 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3253 {
3254 error ("invalid operands in gimple comparison");
3255 return true;
3256 }
3257
3258 /* For comparisons we do not have the operations type as the
3259 effective type the comparison is carried out in. Instead
3260 we require that either the first operand is trivially
3261 convertible into the second, or the other way around.
3262 Because we special-case pointers to void we allow
3263 comparisons of pointers with the same mode as well. */
3264 if (!useless_type_conversion_p (op0_type, op1_type)
3265 && !useless_type_conversion_p (op1_type, op0_type)
3266 && (!POINTER_TYPE_P (op0_type)
3267 || !POINTER_TYPE_P (op1_type)
3268 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3269 {
3270 error ("mismatching comparison operand types");
3271 debug_generic_expr (op0_type);
3272 debug_generic_expr (op1_type);
3273 return true;
3274 }
3275
3276 /* The resulting type of a comparison may be an effective boolean type. */
3277 if (INTEGRAL_TYPE_P (type)
3278 && (TREE_CODE (type) == BOOLEAN_TYPE
3279 || TYPE_PRECISION (type) == 1))
3280 ;
3281 /* Or an integer vector type with the same size and element count
3282 as the comparison operand types. */
3283 else if (TREE_CODE (type) == VECTOR_TYPE
3284 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3285 {
3286 if (TREE_CODE (op0_type) != VECTOR_TYPE
3287 || TREE_CODE (op1_type) != VECTOR_TYPE)
3288 {
3289 error ("non-vector operands in vector comparison");
3290 debug_generic_expr (op0_type);
3291 debug_generic_expr (op1_type);
3292 return true;
3293 }
3294
3295 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3296 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3297 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3298 {
3299 error ("invalid vector comparison resulting type");
3300 debug_generic_expr (type);
3301 return true;
3302 }
3303 }
3304 else
3305 {
3306 error ("bogus comparison result type");
3307 debug_generic_expr (type);
3308 return true;
3309 }
3310
3311 return false;
3312 }
3313
3314 /* Verify a gimple assignment statement STMT with an unary rhs.
3315 Returns true if anything is wrong. */
3316
3317 static bool
3318 verify_gimple_assign_unary (gimple stmt)
3319 {
3320 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3321 tree lhs = gimple_assign_lhs (stmt);
3322 tree lhs_type = TREE_TYPE (lhs);
3323 tree rhs1 = gimple_assign_rhs1 (stmt);
3324 tree rhs1_type = TREE_TYPE (rhs1);
3325
3326 if (!is_gimple_reg (lhs))
3327 {
3328 error ("non-register as LHS of unary operation");
3329 return true;
3330 }
3331
3332 if (!is_gimple_val (rhs1))
3333 {
3334 error ("invalid operand in unary operation");
3335 return true;
3336 }
3337
3338 /* First handle conversions. */
3339 switch (rhs_code)
3340 {
3341 CASE_CONVERT:
3342 {
3343 /* Allow conversions between integral types and pointers only if
3344 there is no sign or zero extension involved.
3345 For targets were the precision of ptrofftype doesn't match that
3346 of pointers we need to allow arbitrary conversions from and
3347 to ptrofftype. */
3348 if ((POINTER_TYPE_P (lhs_type)
3349 && INTEGRAL_TYPE_P (rhs1_type)
3350 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3351 || ptrofftype_p (rhs1_type)))
3352 || (POINTER_TYPE_P (rhs1_type)
3353 && INTEGRAL_TYPE_P (lhs_type)
3354 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3355 || ptrofftype_p (sizetype))))
3356 return false;
3357
3358 /* Allow conversion from integer to offset type and vice versa. */
3359 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3360 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3361 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3362 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3363 return false;
3364
3365 /* Otherwise assert we are converting between types of the
3366 same kind. */
3367 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3368 {
3369 error ("invalid types in nop conversion");
3370 debug_generic_expr (lhs_type);
3371 debug_generic_expr (rhs1_type);
3372 return true;
3373 }
3374
3375 return false;
3376 }
3377
3378 case ADDR_SPACE_CONVERT_EXPR:
3379 {
3380 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3381 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3382 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3383 {
3384 error ("invalid types in address space conversion");
3385 debug_generic_expr (lhs_type);
3386 debug_generic_expr (rhs1_type);
3387 return true;
3388 }
3389
3390 return false;
3391 }
3392
3393 case FIXED_CONVERT_EXPR:
3394 {
3395 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3396 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3397 {
3398 error ("invalid types in fixed-point conversion");
3399 debug_generic_expr (lhs_type);
3400 debug_generic_expr (rhs1_type);
3401 return true;
3402 }
3403
3404 return false;
3405 }
3406
3407 case FLOAT_EXPR:
3408 {
3409 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3410 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3411 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3412 {
3413 error ("invalid types in conversion to floating point");
3414 debug_generic_expr (lhs_type);
3415 debug_generic_expr (rhs1_type);
3416 return true;
3417 }
3418
3419 return false;
3420 }
3421
3422 case FIX_TRUNC_EXPR:
3423 {
3424 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3425 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3426 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3427 {
3428 error ("invalid types in conversion to integer");
3429 debug_generic_expr (lhs_type);
3430 debug_generic_expr (rhs1_type);
3431 return true;
3432 }
3433
3434 return false;
3435 }
3436
3437 case VEC_UNPACK_HI_EXPR:
3438 case VEC_UNPACK_LO_EXPR:
3439 case REDUC_MAX_EXPR:
3440 case REDUC_MIN_EXPR:
3441 case REDUC_PLUS_EXPR:
3442 case VEC_UNPACK_FLOAT_HI_EXPR:
3443 case VEC_UNPACK_FLOAT_LO_EXPR:
3444 /* FIXME. */
3445 return false;
3446
3447 case NEGATE_EXPR:
3448 case ABS_EXPR:
3449 case BIT_NOT_EXPR:
3450 case PAREN_EXPR:
3451 case NON_LVALUE_EXPR:
3452 case CONJ_EXPR:
3453 break;
3454
3455 default:
3456 gcc_unreachable ();
3457 }
3458
3459 /* For the remaining codes assert there is no conversion involved. */
3460 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3461 {
3462 error ("non-trivial conversion in unary operation");
3463 debug_generic_expr (lhs_type);
3464 debug_generic_expr (rhs1_type);
3465 return true;
3466 }
3467
3468 return false;
3469 }
3470
3471 /* Verify a gimple assignment statement STMT with a binary rhs.
3472 Returns true if anything is wrong. */
3473
3474 static bool
3475 verify_gimple_assign_binary (gimple stmt)
3476 {
3477 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3478 tree lhs = gimple_assign_lhs (stmt);
3479 tree lhs_type = TREE_TYPE (lhs);
3480 tree rhs1 = gimple_assign_rhs1 (stmt);
3481 tree rhs1_type = TREE_TYPE (rhs1);
3482 tree rhs2 = gimple_assign_rhs2 (stmt);
3483 tree rhs2_type = TREE_TYPE (rhs2);
3484
3485 if (!is_gimple_reg (lhs))
3486 {
3487 error ("non-register as LHS of binary operation");
3488 return true;
3489 }
3490
3491 if (!is_gimple_val (rhs1)
3492 || !is_gimple_val (rhs2))
3493 {
3494 error ("invalid operands in binary operation");
3495 return true;
3496 }
3497
3498 /* First handle operations that involve different types. */
3499 switch (rhs_code)
3500 {
3501 case COMPLEX_EXPR:
3502 {
3503 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3504 || !(INTEGRAL_TYPE_P (rhs1_type)
3505 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3506 || !(INTEGRAL_TYPE_P (rhs2_type)
3507 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3508 {
3509 error ("type mismatch in complex expression");
3510 debug_generic_expr (lhs_type);
3511 debug_generic_expr (rhs1_type);
3512 debug_generic_expr (rhs2_type);
3513 return true;
3514 }
3515
3516 return false;
3517 }
3518
3519 case LSHIFT_EXPR:
3520 case RSHIFT_EXPR:
3521 case LROTATE_EXPR:
3522 case RROTATE_EXPR:
3523 {
3524 /* Shifts and rotates are ok on integral types, fixed point
3525 types and integer vector types. */
3526 if ((!INTEGRAL_TYPE_P (rhs1_type)
3527 && !FIXED_POINT_TYPE_P (rhs1_type)
3528 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3529 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3530 || (!INTEGRAL_TYPE_P (rhs2_type)
3531 /* Vector shifts of vectors are also ok. */
3532 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3533 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3534 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3535 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3536 || !useless_type_conversion_p (lhs_type, rhs1_type))
3537 {
3538 error ("type mismatch in shift expression");
3539 debug_generic_expr (lhs_type);
3540 debug_generic_expr (rhs1_type);
3541 debug_generic_expr (rhs2_type);
3542 return true;
3543 }
3544
3545 return false;
3546 }
3547
3548 case VEC_LSHIFT_EXPR:
3549 case VEC_RSHIFT_EXPR:
3550 {
3551 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3552 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3553 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3554 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3555 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3556 || (!INTEGRAL_TYPE_P (rhs2_type)
3557 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3558 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3559 || !useless_type_conversion_p (lhs_type, rhs1_type))
3560 {
3561 error ("type mismatch in vector shift expression");
3562 debug_generic_expr (lhs_type);
3563 debug_generic_expr (rhs1_type);
3564 debug_generic_expr (rhs2_type);
3565 return true;
3566 }
3567 /* For shifting a vector of non-integral components we
3568 only allow shifting by a constant multiple of the element size. */
3569 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3570 && (TREE_CODE (rhs2) != INTEGER_CST
3571 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3572 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3573 {
3574 error ("non-element sized vector shift of floating point vector");
3575 return true;
3576 }
3577
3578 return false;
3579 }
3580
3581 case WIDEN_LSHIFT_EXPR:
3582 {
3583 if (!INTEGRAL_TYPE_P (lhs_type)
3584 || !INTEGRAL_TYPE_P (rhs1_type)
3585 || TREE_CODE (rhs2) != INTEGER_CST
3586 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3587 {
3588 error ("type mismatch in widening vector shift expression");
3589 debug_generic_expr (lhs_type);
3590 debug_generic_expr (rhs1_type);
3591 debug_generic_expr (rhs2_type);
3592 return true;
3593 }
3594
3595 return false;
3596 }
3597
3598 case VEC_WIDEN_LSHIFT_HI_EXPR:
3599 case VEC_WIDEN_LSHIFT_LO_EXPR:
3600 {
3601 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3602 || TREE_CODE (lhs_type) != VECTOR_TYPE
3603 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3604 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3605 || TREE_CODE (rhs2) != INTEGER_CST
3606 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3607 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3608 {
3609 error ("type mismatch in widening vector shift expression");
3610 debug_generic_expr (lhs_type);
3611 debug_generic_expr (rhs1_type);
3612 debug_generic_expr (rhs2_type);
3613 return true;
3614 }
3615
3616 return false;
3617 }
3618
3619 case PLUS_EXPR:
3620 case MINUS_EXPR:
3621 {
3622 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3623 ??? This just makes the checker happy and may not be what is
3624 intended. */
3625 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3626 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3627 {
3628 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3629 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3630 {
3631 error ("invalid non-vector operands to vector valued plus");
3632 return true;
3633 }
3634 lhs_type = TREE_TYPE (lhs_type);
3635 rhs1_type = TREE_TYPE (rhs1_type);
3636 rhs2_type = TREE_TYPE (rhs2_type);
3637 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3638 the pointer to 2nd place. */
3639 if (POINTER_TYPE_P (rhs2_type))
3640 {
3641 tree tem = rhs1_type;
3642 rhs1_type = rhs2_type;
3643 rhs2_type = tem;
3644 }
3645 goto do_pointer_plus_expr_check;
3646 }
3647 if (POINTER_TYPE_P (lhs_type)
3648 || POINTER_TYPE_P (rhs1_type)
3649 || POINTER_TYPE_P (rhs2_type))
3650 {
3651 error ("invalid (pointer) operands to plus/minus");
3652 return true;
3653 }
3654
3655 /* Continue with generic binary expression handling. */
3656 break;
3657 }
3658
3659 case POINTER_PLUS_EXPR:
3660 {
3661 do_pointer_plus_expr_check:
3662 if (!POINTER_TYPE_P (rhs1_type)
3663 || !useless_type_conversion_p (lhs_type, rhs1_type)
3664 || !ptrofftype_p (rhs2_type))
3665 {
3666 error ("type mismatch in pointer plus expression");
3667 debug_generic_stmt (lhs_type);
3668 debug_generic_stmt (rhs1_type);
3669 debug_generic_stmt (rhs2_type);
3670 return true;
3671 }
3672
3673 return false;
3674 }
3675
3676 case TRUTH_ANDIF_EXPR:
3677 case TRUTH_ORIF_EXPR:
3678 case TRUTH_AND_EXPR:
3679 case TRUTH_OR_EXPR:
3680 case TRUTH_XOR_EXPR:
3681
3682 gcc_unreachable ();
3683
3684 case LT_EXPR:
3685 case LE_EXPR:
3686 case GT_EXPR:
3687 case GE_EXPR:
3688 case EQ_EXPR:
3689 case NE_EXPR:
3690 case UNORDERED_EXPR:
3691 case ORDERED_EXPR:
3692 case UNLT_EXPR:
3693 case UNLE_EXPR:
3694 case UNGT_EXPR:
3695 case UNGE_EXPR:
3696 case UNEQ_EXPR:
3697 case LTGT_EXPR:
3698 /* Comparisons are also binary, but the result type is not
3699 connected to the operand types. */
3700 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3701
3702 case WIDEN_MULT_EXPR:
3703 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3704 return true;
3705 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3706 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3707
3708 case WIDEN_SUM_EXPR:
3709 case VEC_WIDEN_MULT_HI_EXPR:
3710 case VEC_WIDEN_MULT_LO_EXPR:
3711 case VEC_PACK_TRUNC_EXPR:
3712 case VEC_PACK_SAT_EXPR:
3713 case VEC_PACK_FIX_TRUNC_EXPR:
3714 case VEC_EXTRACT_EVEN_EXPR:
3715 case VEC_EXTRACT_ODD_EXPR:
3716 case VEC_INTERLEAVE_HIGH_EXPR:
3717 case VEC_INTERLEAVE_LOW_EXPR:
3718 /* FIXME. */
3719 return false;
3720
3721 case MULT_EXPR:
3722 case TRUNC_DIV_EXPR:
3723 case CEIL_DIV_EXPR:
3724 case FLOOR_DIV_EXPR:
3725 case ROUND_DIV_EXPR:
3726 case TRUNC_MOD_EXPR:
3727 case CEIL_MOD_EXPR:
3728 case FLOOR_MOD_EXPR:
3729 case ROUND_MOD_EXPR:
3730 case RDIV_EXPR:
3731 case EXACT_DIV_EXPR:
3732 case MIN_EXPR:
3733 case MAX_EXPR:
3734 case BIT_IOR_EXPR:
3735 case BIT_XOR_EXPR:
3736 case BIT_AND_EXPR:
3737 /* Continue with generic binary expression handling. */
3738 break;
3739
3740 default:
3741 gcc_unreachable ();
3742 }
3743
3744 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3745 || !useless_type_conversion_p (lhs_type, rhs2_type))
3746 {
3747 error ("type mismatch in binary expression");
3748 debug_generic_stmt (lhs_type);
3749 debug_generic_stmt (rhs1_type);
3750 debug_generic_stmt (rhs2_type);
3751 return true;
3752 }
3753
3754 return false;
3755 }
3756
3757 /* Verify a gimple assignment statement STMT with a ternary rhs.
3758 Returns true if anything is wrong. */
3759
3760 static bool
3761 verify_gimple_assign_ternary (gimple stmt)
3762 {
3763 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3764 tree lhs = gimple_assign_lhs (stmt);
3765 tree lhs_type = TREE_TYPE (lhs);
3766 tree rhs1 = gimple_assign_rhs1 (stmt);
3767 tree rhs1_type = TREE_TYPE (rhs1);
3768 tree rhs2 = gimple_assign_rhs2 (stmt);
3769 tree rhs2_type = TREE_TYPE (rhs2);
3770 tree rhs3 = gimple_assign_rhs3 (stmt);
3771 tree rhs3_type = TREE_TYPE (rhs3);
3772
3773 if (!is_gimple_reg (lhs))
3774 {
3775 error ("non-register as LHS of ternary operation");
3776 return true;
3777 }
3778
3779 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3780 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3781 || !is_gimple_val (rhs2)
3782 || !is_gimple_val (rhs3))
3783 {
3784 error ("invalid operands in ternary operation");
3785 return true;
3786 }
3787
3788 /* First handle operations that involve different types. */
3789 switch (rhs_code)
3790 {
3791 case WIDEN_MULT_PLUS_EXPR:
3792 case WIDEN_MULT_MINUS_EXPR:
3793 if ((!INTEGRAL_TYPE_P (rhs1_type)
3794 && !FIXED_POINT_TYPE_P (rhs1_type))
3795 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3796 || !useless_type_conversion_p (lhs_type, rhs3_type)
3797 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3798 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3799 {
3800 error ("type mismatch in widening multiply-accumulate expression");
3801 debug_generic_expr (lhs_type);
3802 debug_generic_expr (rhs1_type);
3803 debug_generic_expr (rhs2_type);
3804 debug_generic_expr (rhs3_type);
3805 return true;
3806 }
3807 break;
3808
3809 case FMA_EXPR:
3810 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3811 || !useless_type_conversion_p (lhs_type, rhs2_type)
3812 || !useless_type_conversion_p (lhs_type, rhs3_type))
3813 {
3814 error ("type mismatch in fused multiply-add expression");
3815 debug_generic_expr (lhs_type);
3816 debug_generic_expr (rhs1_type);
3817 debug_generic_expr (rhs2_type);
3818 debug_generic_expr (rhs3_type);
3819 return true;
3820 }
3821 break;
3822
3823 case COND_EXPR:
3824 case VEC_COND_EXPR:
3825 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3826 || !useless_type_conversion_p (lhs_type, rhs3_type))
3827 {
3828 error ("type mismatch in conditional expression");
3829 debug_generic_expr (lhs_type);
3830 debug_generic_expr (rhs2_type);
3831 debug_generic_expr (rhs3_type);
3832 return true;
3833 }
3834 break;
3835
3836 case VEC_PERM_EXPR:
3837 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3838 || !useless_type_conversion_p (lhs_type, rhs2_type))
3839 {
3840 error ("type mismatch in vector permute expression");
3841 debug_generic_expr (lhs_type);
3842 debug_generic_expr (rhs1_type);
3843 debug_generic_expr (rhs2_type);
3844 debug_generic_expr (rhs3_type);
3845 return true;
3846 }
3847
3848 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3849 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3850 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3851 {
3852 error ("vector types expected in vector permute expression");
3853 debug_generic_expr (lhs_type);
3854 debug_generic_expr (rhs1_type);
3855 debug_generic_expr (rhs2_type);
3856 debug_generic_expr (rhs3_type);
3857 return true;
3858 }
3859
3860 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3861 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3862 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3863 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3864 != TYPE_VECTOR_SUBPARTS (lhs_type))
3865 {
3866 error ("vectors with different element number found "
3867 "in vector permute expression");
3868 debug_generic_expr (lhs_type);
3869 debug_generic_expr (rhs1_type);
3870 debug_generic_expr (rhs2_type);
3871 debug_generic_expr (rhs3_type);
3872 return true;
3873 }
3874
3875 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3876 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3877 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3878 {
3879 error ("invalid mask type in vector permute expression");
3880 debug_generic_expr (lhs_type);
3881 debug_generic_expr (rhs1_type);
3882 debug_generic_expr (rhs2_type);
3883 debug_generic_expr (rhs3_type);
3884 return true;
3885 }
3886
3887 return false;
3888
3889 case DOT_PROD_EXPR:
3890 case REALIGN_LOAD_EXPR:
3891 /* FIXME. */
3892 return false;
3893
3894 default:
3895 gcc_unreachable ();
3896 }
3897 return false;
3898 }
3899
3900 /* Verify a gimple assignment statement STMT with a single rhs.
3901 Returns true if anything is wrong. */
3902
3903 static bool
3904 verify_gimple_assign_single (gimple stmt)
3905 {
3906 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3907 tree lhs = gimple_assign_lhs (stmt);
3908 tree lhs_type = TREE_TYPE (lhs);
3909 tree rhs1 = gimple_assign_rhs1 (stmt);
3910 tree rhs1_type = TREE_TYPE (rhs1);
3911 bool res = false;
3912
3913 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3914 {
3915 error ("non-trivial conversion at assignment");
3916 debug_generic_expr (lhs_type);
3917 debug_generic_expr (rhs1_type);
3918 return true;
3919 }
3920
3921 if (handled_component_p (lhs))
3922 res |= verify_types_in_gimple_reference (lhs, true);
3923
3924 /* Special codes we cannot handle via their class. */
3925 switch (rhs_code)
3926 {
3927 case ADDR_EXPR:
3928 {
3929 tree op = TREE_OPERAND (rhs1, 0);
3930 if (!is_gimple_addressable (op))
3931 {
3932 error ("invalid operand in unary expression");
3933 return true;
3934 }
3935
3936 /* Technically there is no longer a need for matching types, but
3937 gimple hygiene asks for this check. In LTO we can end up
3938 combining incompatible units and thus end up with addresses
3939 of globals that change their type to a common one. */
3940 if (!in_lto_p
3941 && !types_compatible_p (TREE_TYPE (op),
3942 TREE_TYPE (TREE_TYPE (rhs1)))
3943 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3944 TREE_TYPE (op)))
3945 {
3946 error ("type mismatch in address expression");
3947 debug_generic_stmt (TREE_TYPE (rhs1));
3948 debug_generic_stmt (TREE_TYPE (op));
3949 return true;
3950 }
3951
3952 return verify_types_in_gimple_reference (op, true);
3953 }
3954
3955 /* tcc_reference */
3956 case INDIRECT_REF:
3957 error ("INDIRECT_REF in gimple IL");
3958 return true;
3959
3960 case COMPONENT_REF:
3961 case BIT_FIELD_REF:
3962 case ARRAY_REF:
3963 case ARRAY_RANGE_REF:
3964 case VIEW_CONVERT_EXPR:
3965 case REALPART_EXPR:
3966 case IMAGPART_EXPR:
3967 case TARGET_MEM_REF:
3968 case MEM_REF:
3969 if (!is_gimple_reg (lhs)
3970 && is_gimple_reg_type (TREE_TYPE (lhs)))
3971 {
3972 error ("invalid rhs for gimple memory store");
3973 debug_generic_stmt (lhs);
3974 debug_generic_stmt (rhs1);
3975 return true;
3976 }
3977 return res || verify_types_in_gimple_reference (rhs1, false);
3978
3979 /* tcc_constant */
3980 case SSA_NAME:
3981 case INTEGER_CST:
3982 case REAL_CST:
3983 case FIXED_CST:
3984 case COMPLEX_CST:
3985 case VECTOR_CST:
3986 case STRING_CST:
3987 return res;
3988
3989 /* tcc_declaration */
3990 case CONST_DECL:
3991 return res;
3992 case VAR_DECL:
3993 case PARM_DECL:
3994 if (!is_gimple_reg (lhs)
3995 && !is_gimple_reg (rhs1)
3996 && is_gimple_reg_type (TREE_TYPE (lhs)))
3997 {
3998 error ("invalid rhs for gimple memory store");
3999 debug_generic_stmt (lhs);
4000 debug_generic_stmt (rhs1);
4001 return true;
4002 }
4003 return res;
4004
4005 case CONSTRUCTOR:
4006 case OBJ_TYPE_REF:
4007 case ASSERT_EXPR:
4008 case WITH_SIZE_EXPR:
4009 /* FIXME. */
4010 return res;
4011
4012 default:;
4013 }
4014
4015 return res;
4016 }
4017
4018 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4019 is a problem, otherwise false. */
4020
4021 static bool
4022 verify_gimple_assign (gimple stmt)
4023 {
4024 switch (gimple_assign_rhs_class (stmt))
4025 {
4026 case GIMPLE_SINGLE_RHS:
4027 return verify_gimple_assign_single (stmt);
4028
4029 case GIMPLE_UNARY_RHS:
4030 return verify_gimple_assign_unary (stmt);
4031
4032 case GIMPLE_BINARY_RHS:
4033 return verify_gimple_assign_binary (stmt);
4034
4035 case GIMPLE_TERNARY_RHS:
4036 return verify_gimple_assign_ternary (stmt);
4037
4038 default:
4039 gcc_unreachable ();
4040 }
4041 }
4042
4043 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4044 is a problem, otherwise false. */
4045
4046 static bool
4047 verify_gimple_return (gimple stmt)
4048 {
4049 tree op = gimple_return_retval (stmt);
4050 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4051
4052 /* We cannot test for present return values as we do not fix up missing
4053 return values from the original source. */
4054 if (op == NULL)
4055 return false;
4056
4057 if (!is_gimple_val (op)
4058 && TREE_CODE (op) != RESULT_DECL)
4059 {
4060 error ("invalid operand in return statement");
4061 debug_generic_stmt (op);
4062 return true;
4063 }
4064
4065 if ((TREE_CODE (op) == RESULT_DECL
4066 && DECL_BY_REFERENCE (op))
4067 || (TREE_CODE (op) == SSA_NAME
4068 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4069 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4070 op = TREE_TYPE (op);
4071
4072 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4073 {
4074 error ("invalid conversion in return statement");
4075 debug_generic_stmt (restype);
4076 debug_generic_stmt (TREE_TYPE (op));
4077 return true;
4078 }
4079
4080 return false;
4081 }
4082
4083
4084 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4085 is a problem, otherwise false. */
4086
4087 static bool
4088 verify_gimple_goto (gimple stmt)
4089 {
4090 tree dest = gimple_goto_dest (stmt);
4091
4092 /* ??? We have two canonical forms of direct goto destinations, a
4093 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4094 if (TREE_CODE (dest) != LABEL_DECL
4095 && (!is_gimple_val (dest)
4096 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4097 {
4098 error ("goto destination is neither a label nor a pointer");
4099 return true;
4100 }
4101
4102 return false;
4103 }
4104
4105 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4106 is a problem, otherwise false. */
4107
4108 static bool
4109 verify_gimple_switch (gimple stmt)
4110 {
4111 if (!is_gimple_val (gimple_switch_index (stmt)))
4112 {
4113 error ("invalid operand to switch statement");
4114 debug_generic_stmt (gimple_switch_index (stmt));
4115 return true;
4116 }
4117
4118 return false;
4119 }
4120
4121 /* Verify a gimple debug statement STMT.
4122 Returns true if anything is wrong. */
4123
4124 static bool
4125 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4126 {
4127 /* There isn't much that could be wrong in a gimple debug stmt. A
4128 gimple debug bind stmt, for example, maps a tree, that's usually
4129 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4130 component or member of an aggregate type, to another tree, that
4131 can be an arbitrary expression. These stmts expand into debug
4132 insns, and are converted to debug notes by var-tracking.c. */
4133 return false;
4134 }
4135
4136 /* Verify a gimple label statement STMT.
4137 Returns true if anything is wrong. */
4138
4139 static bool
4140 verify_gimple_label (gimple stmt)
4141 {
4142 tree decl = gimple_label_label (stmt);
4143 int uid;
4144 bool err = false;
4145
4146 if (TREE_CODE (decl) != LABEL_DECL)
4147 return true;
4148
4149 uid = LABEL_DECL_UID (decl);
4150 if (cfun->cfg
4151 && (uid == -1
4152 || VEC_index (basic_block,
4153 label_to_block_map, uid) != gimple_bb (stmt)))
4154 {
4155 error ("incorrect entry in label_to_block_map");
4156 err |= true;
4157 }
4158
4159 uid = EH_LANDING_PAD_NR (decl);
4160 if (uid)
4161 {
4162 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4163 if (decl != lp->post_landing_pad)
4164 {
4165 error ("incorrect setting of landing pad number");
4166 err |= true;
4167 }
4168 }
4169
4170 return err;
4171 }
4172
4173 /* Verify the GIMPLE statement STMT. Returns true if there is an
4174 error, otherwise false. */
4175
4176 static bool
4177 verify_gimple_stmt (gimple stmt)
4178 {
4179 switch (gimple_code (stmt))
4180 {
4181 case GIMPLE_ASSIGN:
4182 return verify_gimple_assign (stmt);
4183
4184 case GIMPLE_LABEL:
4185 return verify_gimple_label (stmt);
4186
4187 case GIMPLE_CALL:
4188 return verify_gimple_call (stmt);
4189
4190 case GIMPLE_COND:
4191 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4192 {
4193 error ("invalid comparison code in gimple cond");
4194 return true;
4195 }
4196 if (!(!gimple_cond_true_label (stmt)
4197 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4198 || !(!gimple_cond_false_label (stmt)
4199 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4200 {
4201 error ("invalid labels in gimple cond");
4202 return true;
4203 }
4204
4205 return verify_gimple_comparison (boolean_type_node,
4206 gimple_cond_lhs (stmt),
4207 gimple_cond_rhs (stmt));
4208
4209 case GIMPLE_GOTO:
4210 return verify_gimple_goto (stmt);
4211
4212 case GIMPLE_SWITCH:
4213 return verify_gimple_switch (stmt);
4214
4215 case GIMPLE_RETURN:
4216 return verify_gimple_return (stmt);
4217
4218 case GIMPLE_ASM:
4219 return false;
4220
4221 case GIMPLE_TRANSACTION:
4222 return verify_gimple_transaction (stmt);
4223
4224 /* Tuples that do not have tree operands. */
4225 case GIMPLE_NOP:
4226 case GIMPLE_PREDICT:
4227 case GIMPLE_RESX:
4228 case GIMPLE_EH_DISPATCH:
4229 case GIMPLE_EH_MUST_NOT_THROW:
4230 return false;
4231
4232 CASE_GIMPLE_OMP:
4233 /* OpenMP directives are validated by the FE and never operated
4234 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4235 non-gimple expressions when the main index variable has had
4236 its address taken. This does not affect the loop itself
4237 because the header of an GIMPLE_OMP_FOR is merely used to determine
4238 how to setup the parallel iteration. */
4239 return false;
4240
4241 case GIMPLE_DEBUG:
4242 return verify_gimple_debug (stmt);
4243
4244 default:
4245 gcc_unreachable ();
4246 }
4247 }
4248
4249 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4250 and false otherwise. */
4251
4252 static bool
4253 verify_gimple_phi (gimple phi)
4254 {
4255 bool err = false;
4256 unsigned i;
4257 tree phi_result = gimple_phi_result (phi);
4258 bool virtual_p;
4259
4260 if (!phi_result)
4261 {
4262 error ("invalid PHI result");
4263 return true;
4264 }
4265
4266 virtual_p = !is_gimple_reg (phi_result);
4267 if (TREE_CODE (phi_result) != SSA_NAME
4268 || (virtual_p
4269 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4270 {
4271 error ("invalid PHI result");
4272 err = true;
4273 }
4274
4275 for (i = 0; i < gimple_phi_num_args (phi); i++)
4276 {
4277 tree t = gimple_phi_arg_def (phi, i);
4278
4279 if (!t)
4280 {
4281 error ("missing PHI def");
4282 err |= true;
4283 continue;
4284 }
4285 /* Addressable variables do have SSA_NAMEs but they
4286 are not considered gimple values. */
4287 else if ((TREE_CODE (t) == SSA_NAME
4288 && virtual_p != !is_gimple_reg (t))
4289 || (virtual_p
4290 && (TREE_CODE (t) != SSA_NAME
4291 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4292 || (!virtual_p
4293 && !is_gimple_val (t)))
4294 {
4295 error ("invalid PHI argument");
4296 debug_generic_expr (t);
4297 err |= true;
4298 }
4299 #ifdef ENABLE_TYPES_CHECKING
4300 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4301 {
4302 error ("incompatible types in PHI argument %u", i);
4303 debug_generic_stmt (TREE_TYPE (phi_result));
4304 debug_generic_stmt (TREE_TYPE (t));
4305 err |= true;
4306 }
4307 #endif
4308 }
4309
4310 return err;
4311 }
4312
4313 /* Verify the GIMPLE statements inside the sequence STMTS. */
4314
4315 static bool
4316 verify_gimple_in_seq_2 (gimple_seq stmts)
4317 {
4318 gimple_stmt_iterator ittr;
4319 bool err = false;
4320
4321 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4322 {
4323 gimple stmt = gsi_stmt (ittr);
4324
4325 switch (gimple_code (stmt))
4326 {
4327 case GIMPLE_BIND:
4328 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4329 break;
4330
4331 case GIMPLE_TRY:
4332 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4333 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4334 break;
4335
4336 case GIMPLE_EH_FILTER:
4337 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4338 break;
4339
4340 case GIMPLE_EH_ELSE:
4341 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4342 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4343 break;
4344
4345 case GIMPLE_CATCH:
4346 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4347 break;
4348
4349 case GIMPLE_TRANSACTION:
4350 err |= verify_gimple_transaction (stmt);
4351 break;
4352
4353 default:
4354 {
4355 bool err2 = verify_gimple_stmt (stmt);
4356 if (err2)
4357 debug_gimple_stmt (stmt);
4358 err |= err2;
4359 }
4360 }
4361 }
4362
4363 return err;
4364 }
4365
4366 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4367 is a problem, otherwise false. */
4368
4369 static bool
4370 verify_gimple_transaction (gimple stmt)
4371 {
4372 tree lab = gimple_transaction_label (stmt);
4373 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4374 return true;
4375 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4376 }
4377
4378
4379 /* Verify the GIMPLE statements inside the statement list STMTS. */
4380
4381 DEBUG_FUNCTION void
4382 verify_gimple_in_seq (gimple_seq stmts)
4383 {
4384 timevar_push (TV_TREE_STMT_VERIFY);
4385 if (verify_gimple_in_seq_2 (stmts))
4386 internal_error ("verify_gimple failed");
4387 timevar_pop (TV_TREE_STMT_VERIFY);
4388 }
4389
4390 /* Return true when the T can be shared. */
4391
4392 bool
4393 tree_node_can_be_shared (tree t)
4394 {
4395 if (IS_TYPE_OR_DECL_P (t)
4396 || is_gimple_min_invariant (t)
4397 || TREE_CODE (t) == SSA_NAME
4398 || t == error_mark_node
4399 || TREE_CODE (t) == IDENTIFIER_NODE)
4400 return true;
4401
4402 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4403 return true;
4404
4405 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4406 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4407 || TREE_CODE (t) == COMPONENT_REF
4408 || TREE_CODE (t) == REALPART_EXPR
4409 || TREE_CODE (t) == IMAGPART_EXPR)
4410 t = TREE_OPERAND (t, 0);
4411
4412 if (DECL_P (t))
4413 return true;
4414
4415 return false;
4416 }
4417
4418 /* Called via walk_gimple_stmt. Verify tree sharing. */
4419
4420 static tree
4421 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4422 {
4423 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4424 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4425
4426 if (tree_node_can_be_shared (*tp))
4427 {
4428 *walk_subtrees = false;
4429 return NULL;
4430 }
4431
4432 if (pointer_set_insert (visited, *tp))
4433 return *tp;
4434
4435 return NULL;
4436 }
4437
4438 static bool eh_error_found;
4439 static int
4440 verify_eh_throw_stmt_node (void **slot, void *data)
4441 {
4442 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4443 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4444
4445 if (!pointer_set_contains (visited, node->stmt))
4446 {
4447 error ("dead STMT in EH table");
4448 debug_gimple_stmt (node->stmt);
4449 eh_error_found = true;
4450 }
4451 return 1;
4452 }
4453
4454 /* Verify the GIMPLE statements in the CFG of FN. */
4455
4456 DEBUG_FUNCTION void
4457 verify_gimple_in_cfg (struct function *fn)
4458 {
4459 basic_block bb;
4460 bool err = false;
4461 struct pointer_set_t *visited, *visited_stmts;
4462
4463 timevar_push (TV_TREE_STMT_VERIFY);
4464 visited = pointer_set_create ();
4465 visited_stmts = pointer_set_create ();
4466
4467 FOR_EACH_BB_FN (bb, fn)
4468 {
4469 gimple_stmt_iterator gsi;
4470
4471 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4472 {
4473 gimple phi = gsi_stmt (gsi);
4474 bool err2 = false;
4475 unsigned i;
4476
4477 pointer_set_insert (visited_stmts, phi);
4478
4479 if (gimple_bb (phi) != bb)
4480 {
4481 error ("gimple_bb (phi) is set to a wrong basic block");
4482 err2 = true;
4483 }
4484
4485 err2 |= verify_gimple_phi (phi);
4486
4487 for (i = 0; i < gimple_phi_num_args (phi); i++)
4488 {
4489 tree arg = gimple_phi_arg_def (phi, i);
4490 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4491 if (addr)
4492 {
4493 error ("incorrect sharing of tree nodes");
4494 debug_generic_expr (addr);
4495 err2 |= true;
4496 }
4497 }
4498
4499 if (err2)
4500 debug_gimple_stmt (phi);
4501 err |= err2;
4502 }
4503
4504 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4505 {
4506 gimple stmt = gsi_stmt (gsi);
4507 bool err2 = false;
4508 struct walk_stmt_info wi;
4509 tree addr;
4510 int lp_nr;
4511
4512 pointer_set_insert (visited_stmts, stmt);
4513
4514 if (gimple_bb (stmt) != bb)
4515 {
4516 error ("gimple_bb (stmt) is set to a wrong basic block");
4517 err2 = true;
4518 }
4519
4520 err2 |= verify_gimple_stmt (stmt);
4521
4522 memset (&wi, 0, sizeof (wi));
4523 wi.info = (void *) visited;
4524 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4525 if (addr)
4526 {
4527 error ("incorrect sharing of tree nodes");
4528 debug_generic_expr (addr);
4529 err2 |= true;
4530 }
4531
4532 /* ??? Instead of not checking these stmts at all the walker
4533 should know its context via wi. */
4534 if (!is_gimple_debug (stmt)
4535 && !is_gimple_omp (stmt))
4536 {
4537 memset (&wi, 0, sizeof (wi));
4538 addr = walk_gimple_op (stmt, verify_expr, &wi);
4539 if (addr)
4540 {
4541 debug_generic_expr (addr);
4542 inform (gimple_location (stmt), "in statement");
4543 err2 |= true;
4544 }
4545 }
4546
4547 /* If the statement is marked as part of an EH region, then it is
4548 expected that the statement could throw. Verify that when we
4549 have optimizations that simplify statements such that we prove
4550 that they cannot throw, that we update other data structures
4551 to match. */
4552 lp_nr = lookup_stmt_eh_lp (stmt);
4553 if (lp_nr != 0)
4554 {
4555 if (!stmt_could_throw_p (stmt))
4556 {
4557 error ("statement marked for throw, but doesn%'t");
4558 err2 |= true;
4559 }
4560 else if (lp_nr > 0
4561 && !gsi_one_before_end_p (gsi)
4562 && stmt_can_throw_internal (stmt))
4563 {
4564 error ("statement marked for throw in middle of block");
4565 err2 |= true;
4566 }
4567 }
4568
4569 if (err2)
4570 debug_gimple_stmt (stmt);
4571 err |= err2;
4572 }
4573 }
4574
4575 eh_error_found = false;
4576 if (get_eh_throw_stmt_table (cfun))
4577 htab_traverse (get_eh_throw_stmt_table (cfun),
4578 verify_eh_throw_stmt_node,
4579 visited_stmts);
4580
4581 if (err || eh_error_found)
4582 internal_error ("verify_gimple failed");
4583
4584 pointer_set_destroy (visited);
4585 pointer_set_destroy (visited_stmts);
4586 verify_histograms ();
4587 timevar_pop (TV_TREE_STMT_VERIFY);
4588 }
4589
4590
4591 /* Verifies that the flow information is OK. */
4592
4593 static int
4594 gimple_verify_flow_info (void)
4595 {
4596 int err = 0;
4597 basic_block bb;
4598 gimple_stmt_iterator gsi;
4599 gimple stmt;
4600 edge e;
4601 edge_iterator ei;
4602
4603 if (ENTRY_BLOCK_PTR->il.gimple)
4604 {
4605 error ("ENTRY_BLOCK has IL associated with it");
4606 err = 1;
4607 }
4608
4609 if (EXIT_BLOCK_PTR->il.gimple)
4610 {
4611 error ("EXIT_BLOCK has IL associated with it");
4612 err = 1;
4613 }
4614
4615 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4616 if (e->flags & EDGE_FALLTHRU)
4617 {
4618 error ("fallthru to exit from bb %d", e->src->index);
4619 err = 1;
4620 }
4621
4622 FOR_EACH_BB (bb)
4623 {
4624 bool found_ctrl_stmt = false;
4625
4626 stmt = NULL;
4627
4628 /* Skip labels on the start of basic block. */
4629 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4630 {
4631 tree label;
4632 gimple prev_stmt = stmt;
4633
4634 stmt = gsi_stmt (gsi);
4635
4636 if (gimple_code (stmt) != GIMPLE_LABEL)
4637 break;
4638
4639 label = gimple_label_label (stmt);
4640 if (prev_stmt && DECL_NONLOCAL (label))
4641 {
4642 error ("nonlocal label ");
4643 print_generic_expr (stderr, label, 0);
4644 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4645 bb->index);
4646 err = 1;
4647 }
4648
4649 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4650 {
4651 error ("EH landing pad label ");
4652 print_generic_expr (stderr, label, 0);
4653 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4654 bb->index);
4655 err = 1;
4656 }
4657
4658 if (label_to_block (label) != bb)
4659 {
4660 error ("label ");
4661 print_generic_expr (stderr, label, 0);
4662 fprintf (stderr, " to block does not match in bb %d",
4663 bb->index);
4664 err = 1;
4665 }
4666
4667 if (decl_function_context (label) != current_function_decl)
4668 {
4669 error ("label ");
4670 print_generic_expr (stderr, label, 0);
4671 fprintf (stderr, " has incorrect context in bb %d",
4672 bb->index);
4673 err = 1;
4674 }
4675 }
4676
4677 /* Verify that body of basic block BB is free of control flow. */
4678 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4679 {
4680 gimple stmt = gsi_stmt (gsi);
4681
4682 if (found_ctrl_stmt)
4683 {
4684 error ("control flow in the middle of basic block %d",
4685 bb->index);
4686 err = 1;
4687 }
4688
4689 if (stmt_ends_bb_p (stmt))
4690 found_ctrl_stmt = true;
4691
4692 if (gimple_code (stmt) == GIMPLE_LABEL)
4693 {
4694 error ("label ");
4695 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4696 fprintf (stderr, " in the middle of basic block %d", bb->index);
4697 err = 1;
4698 }
4699 }
4700
4701 gsi = gsi_last_bb (bb);
4702 if (gsi_end_p (gsi))
4703 continue;
4704
4705 stmt = gsi_stmt (gsi);
4706
4707 if (gimple_code (stmt) == GIMPLE_LABEL)
4708 continue;
4709
4710 err |= verify_eh_edges (stmt);
4711
4712 if (is_ctrl_stmt (stmt))
4713 {
4714 FOR_EACH_EDGE (e, ei, bb->succs)
4715 if (e->flags & EDGE_FALLTHRU)
4716 {
4717 error ("fallthru edge after a control statement in bb %d",
4718 bb->index);
4719 err = 1;
4720 }
4721 }
4722
4723 if (gimple_code (stmt) != GIMPLE_COND)
4724 {
4725 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4726 after anything else but if statement. */
4727 FOR_EACH_EDGE (e, ei, bb->succs)
4728 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4729 {
4730 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4731 bb->index);
4732 err = 1;
4733 }
4734 }
4735
4736 switch (gimple_code (stmt))
4737 {
4738 case GIMPLE_COND:
4739 {
4740 edge true_edge;
4741 edge false_edge;
4742
4743 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4744
4745 if (!true_edge
4746 || !false_edge
4747 || !(true_edge->flags & EDGE_TRUE_VALUE)
4748 || !(false_edge->flags & EDGE_FALSE_VALUE)
4749 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4750 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4751 || EDGE_COUNT (bb->succs) >= 3)
4752 {
4753 error ("wrong outgoing edge flags at end of bb %d",
4754 bb->index);
4755 err = 1;
4756 }
4757 }
4758 break;
4759
4760 case GIMPLE_GOTO:
4761 if (simple_goto_p (stmt))
4762 {
4763 error ("explicit goto at end of bb %d", bb->index);
4764 err = 1;
4765 }
4766 else
4767 {
4768 /* FIXME. We should double check that the labels in the
4769 destination blocks have their address taken. */
4770 FOR_EACH_EDGE (e, ei, bb->succs)
4771 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4772 | EDGE_FALSE_VALUE))
4773 || !(e->flags & EDGE_ABNORMAL))
4774 {
4775 error ("wrong outgoing edge flags at end of bb %d",
4776 bb->index);
4777 err = 1;
4778 }
4779 }
4780 break;
4781
4782 case GIMPLE_CALL:
4783 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4784 break;
4785 /* ... fallthru ... */
4786 case GIMPLE_RETURN:
4787 if (!single_succ_p (bb)
4788 || (single_succ_edge (bb)->flags
4789 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4790 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4791 {
4792 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4793 err = 1;
4794 }
4795 if (single_succ (bb) != EXIT_BLOCK_PTR)
4796 {
4797 error ("return edge does not point to exit in bb %d",
4798 bb->index);
4799 err = 1;
4800 }
4801 break;
4802
4803 case GIMPLE_SWITCH:
4804 {
4805 tree prev;
4806 edge e;
4807 size_t i, n;
4808
4809 n = gimple_switch_num_labels (stmt);
4810
4811 /* Mark all the destination basic blocks. */
4812 for (i = 0; i < n; ++i)
4813 {
4814 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4815 basic_block label_bb = label_to_block (lab);
4816 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4817 label_bb->aux = (void *)1;
4818 }
4819
4820 /* Verify that the case labels are sorted. */
4821 prev = gimple_switch_label (stmt, 0);
4822 for (i = 1; i < n; ++i)
4823 {
4824 tree c = gimple_switch_label (stmt, i);
4825 if (!CASE_LOW (c))
4826 {
4827 error ("found default case not at the start of "
4828 "case vector");
4829 err = 1;
4830 continue;
4831 }
4832 if (CASE_LOW (prev)
4833 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4834 {
4835 error ("case labels not sorted: ");
4836 print_generic_expr (stderr, prev, 0);
4837 fprintf (stderr," is greater than ");
4838 print_generic_expr (stderr, c, 0);
4839 fprintf (stderr," but comes before it.\n");
4840 err = 1;
4841 }
4842 prev = c;
4843 }
4844 /* VRP will remove the default case if it can prove it will
4845 never be executed. So do not verify there always exists
4846 a default case here. */
4847
4848 FOR_EACH_EDGE (e, ei, bb->succs)
4849 {
4850 if (!e->dest->aux)
4851 {
4852 error ("extra outgoing edge %d->%d",
4853 bb->index, e->dest->index);
4854 err = 1;
4855 }
4856
4857 e->dest->aux = (void *)2;
4858 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4859 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4860 {
4861 error ("wrong outgoing edge flags at end of bb %d",
4862 bb->index);
4863 err = 1;
4864 }
4865 }
4866
4867 /* Check that we have all of them. */
4868 for (i = 0; i < n; ++i)
4869 {
4870 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4871 basic_block label_bb = label_to_block (lab);
4872
4873 if (label_bb->aux != (void *)2)
4874 {
4875 error ("missing edge %i->%i", bb->index, label_bb->index);
4876 err = 1;
4877 }
4878 }
4879
4880 FOR_EACH_EDGE (e, ei, bb->succs)
4881 e->dest->aux = (void *)0;
4882 }
4883 break;
4884
4885 case GIMPLE_EH_DISPATCH:
4886 err |= verify_eh_dispatch_edge (stmt);
4887 break;
4888
4889 default:
4890 break;
4891 }
4892 }
4893
4894 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4895 verify_dominators (CDI_DOMINATORS);
4896
4897 return err;
4898 }
4899
4900
4901 /* Updates phi nodes after creating a forwarder block joined
4902 by edge FALLTHRU. */
4903
4904 static void
4905 gimple_make_forwarder_block (edge fallthru)
4906 {
4907 edge e;
4908 edge_iterator ei;
4909 basic_block dummy, bb;
4910 tree var;
4911 gimple_stmt_iterator gsi;
4912
4913 dummy = fallthru->src;
4914 bb = fallthru->dest;
4915
4916 if (single_pred_p (bb))
4917 return;
4918
4919 /* If we redirected a branch we must create new PHI nodes at the
4920 start of BB. */
4921 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4922 {
4923 gimple phi, new_phi;
4924
4925 phi = gsi_stmt (gsi);
4926 var = gimple_phi_result (phi);
4927 new_phi = create_phi_node (var, bb);
4928 SSA_NAME_DEF_STMT (var) = new_phi;
4929 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4930 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4931 UNKNOWN_LOCATION);
4932 }
4933
4934 /* Add the arguments we have stored on edges. */
4935 FOR_EACH_EDGE (e, ei, bb->preds)
4936 {
4937 if (e == fallthru)
4938 continue;
4939
4940 flush_pending_stmts (e);
4941 }
4942 }
4943
4944
4945 /* Return a non-special label in the head of basic block BLOCK.
4946 Create one if it doesn't exist. */
4947
4948 tree
4949 gimple_block_label (basic_block bb)
4950 {
4951 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4952 bool first = true;
4953 tree label;
4954 gimple stmt;
4955
4956 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4957 {
4958 stmt = gsi_stmt (i);
4959 if (gimple_code (stmt) != GIMPLE_LABEL)
4960 break;
4961 label = gimple_label_label (stmt);
4962 if (!DECL_NONLOCAL (label))
4963 {
4964 if (!first)
4965 gsi_move_before (&i, &s);
4966 return label;
4967 }
4968 }
4969
4970 label = create_artificial_label (UNKNOWN_LOCATION);
4971 stmt = gimple_build_label (label);
4972 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4973 return label;
4974 }
4975
4976
4977 /* Attempt to perform edge redirection by replacing a possibly complex
4978 jump instruction by a goto or by removing the jump completely.
4979 This can apply only if all edges now point to the same block. The
4980 parameters and return values are equivalent to
4981 redirect_edge_and_branch. */
4982
4983 static edge
4984 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4985 {
4986 basic_block src = e->src;
4987 gimple_stmt_iterator i;
4988 gimple stmt;
4989
4990 /* We can replace or remove a complex jump only when we have exactly
4991 two edges. */
4992 if (EDGE_COUNT (src->succs) != 2
4993 /* Verify that all targets will be TARGET. Specifically, the
4994 edge that is not E must also go to TARGET. */
4995 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4996 return NULL;
4997
4998 i = gsi_last_bb (src);
4999 if (gsi_end_p (i))
5000 return NULL;
5001
5002 stmt = gsi_stmt (i);
5003
5004 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5005 {
5006 gsi_remove (&i, true);
5007 e = ssa_redirect_edge (e, target);
5008 e->flags = EDGE_FALLTHRU;
5009 return e;
5010 }
5011
5012 return NULL;
5013 }
5014
5015
5016 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5017 edge representing the redirected branch. */
5018
5019 static edge
5020 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5021 {
5022 basic_block bb = e->src;
5023 gimple_stmt_iterator gsi;
5024 edge ret;
5025 gimple stmt;
5026
5027 if (e->flags & EDGE_ABNORMAL)
5028 return NULL;
5029
5030 if (e->dest == dest)
5031 return NULL;
5032
5033 if (e->flags & EDGE_EH)
5034 return redirect_eh_edge (e, dest);
5035
5036 if (e->src != ENTRY_BLOCK_PTR)
5037 {
5038 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5039 if (ret)
5040 return ret;
5041 }
5042
5043 gsi = gsi_last_bb (bb);
5044 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5045
5046 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5047 {
5048 case GIMPLE_COND:
5049 /* For COND_EXPR, we only need to redirect the edge. */
5050 break;
5051
5052 case GIMPLE_GOTO:
5053 /* No non-abnormal edges should lead from a non-simple goto, and
5054 simple ones should be represented implicitly. */
5055 gcc_unreachable ();
5056
5057 case GIMPLE_SWITCH:
5058 {
5059 tree label = gimple_block_label (dest);
5060 tree cases = get_cases_for_edge (e, stmt);
5061
5062 /* If we have a list of cases associated with E, then use it
5063 as it's a lot faster than walking the entire case vector. */
5064 if (cases)
5065 {
5066 edge e2 = find_edge (e->src, dest);
5067 tree last, first;
5068
5069 first = cases;
5070 while (cases)
5071 {
5072 last = cases;
5073 CASE_LABEL (cases) = label;
5074 cases = CASE_CHAIN (cases);
5075 }
5076
5077 /* If there was already an edge in the CFG, then we need
5078 to move all the cases associated with E to E2. */
5079 if (e2)
5080 {
5081 tree cases2 = get_cases_for_edge (e2, stmt);
5082
5083 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5084 CASE_CHAIN (cases2) = first;
5085 }
5086 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5087 }
5088 else
5089 {
5090 size_t i, n = gimple_switch_num_labels (stmt);
5091
5092 for (i = 0; i < n; i++)
5093 {
5094 tree elt = gimple_switch_label (stmt, i);
5095 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5096 CASE_LABEL (elt) = label;
5097 }
5098 }
5099 }
5100 break;
5101
5102 case GIMPLE_ASM:
5103 {
5104 int i, n = gimple_asm_nlabels (stmt);
5105 tree label = NULL;
5106
5107 for (i = 0; i < n; ++i)
5108 {
5109 tree cons = gimple_asm_label_op (stmt, i);
5110 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5111 {
5112 if (!label)
5113 label = gimple_block_label (dest);
5114 TREE_VALUE (cons) = label;
5115 }
5116 }
5117
5118 /* If we didn't find any label matching the former edge in the
5119 asm labels, we must be redirecting the fallthrough
5120 edge. */
5121 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5122 }
5123 break;
5124
5125 case GIMPLE_RETURN:
5126 gsi_remove (&gsi, true);
5127 e->flags |= EDGE_FALLTHRU;
5128 break;
5129
5130 case GIMPLE_OMP_RETURN:
5131 case GIMPLE_OMP_CONTINUE:
5132 case GIMPLE_OMP_SECTIONS_SWITCH:
5133 case GIMPLE_OMP_FOR:
5134 /* The edges from OMP constructs can be simply redirected. */
5135 break;
5136
5137 case GIMPLE_EH_DISPATCH:
5138 if (!(e->flags & EDGE_FALLTHRU))
5139 redirect_eh_dispatch_edge (stmt, e, dest);
5140 break;
5141
5142 case GIMPLE_TRANSACTION:
5143 /* The ABORT edge has a stored label associated with it, otherwise
5144 the edges are simply redirectable. */
5145 if (e->flags == 0)
5146 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5147 break;
5148
5149 default:
5150 /* Otherwise it must be a fallthru edge, and we don't need to
5151 do anything besides redirecting it. */
5152 gcc_assert (e->flags & EDGE_FALLTHRU);
5153 break;
5154 }
5155
5156 /* Update/insert PHI nodes as necessary. */
5157
5158 /* Now update the edges in the CFG. */
5159 e = ssa_redirect_edge (e, dest);
5160
5161 return e;
5162 }
5163
5164 /* Returns true if it is possible to remove edge E by redirecting
5165 it to the destination of the other edge from E->src. */
5166
5167 static bool
5168 gimple_can_remove_branch_p (const_edge e)
5169 {
5170 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5171 return false;
5172
5173 return true;
5174 }
5175
5176 /* Simple wrapper, as we can always redirect fallthru edges. */
5177
5178 static basic_block
5179 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5180 {
5181 e = gimple_redirect_edge_and_branch (e, dest);
5182 gcc_assert (e);
5183
5184 return NULL;
5185 }
5186
5187
5188 /* Splits basic block BB after statement STMT (but at least after the
5189 labels). If STMT is NULL, BB is split just after the labels. */
5190
5191 static basic_block
5192 gimple_split_block (basic_block bb, void *stmt)
5193 {
5194 gimple_stmt_iterator gsi;
5195 gimple_stmt_iterator gsi_tgt;
5196 gimple act;
5197 gimple_seq list;
5198 basic_block new_bb;
5199 edge e;
5200 edge_iterator ei;
5201
5202 new_bb = create_empty_bb (bb);
5203
5204 /* Redirect the outgoing edges. */
5205 new_bb->succs = bb->succs;
5206 bb->succs = NULL;
5207 FOR_EACH_EDGE (e, ei, new_bb->succs)
5208 e->src = new_bb;
5209
5210 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5211 stmt = NULL;
5212
5213 /* Move everything from GSI to the new basic block. */
5214 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5215 {
5216 act = gsi_stmt (gsi);
5217 if (gimple_code (act) == GIMPLE_LABEL)
5218 continue;
5219
5220 if (!stmt)
5221 break;
5222
5223 if (stmt == act)
5224 {
5225 gsi_next (&gsi);
5226 break;
5227 }
5228 }
5229
5230 if (gsi_end_p (gsi))
5231 return new_bb;
5232
5233 /* Split the statement list - avoid re-creating new containers as this
5234 brings ugly quadratic memory consumption in the inliner.
5235 (We are still quadratic since we need to update stmt BB pointers,
5236 sadly.) */
5237 list = gsi_split_seq_before (&gsi);
5238 set_bb_seq (new_bb, list);
5239 for (gsi_tgt = gsi_start (list);
5240 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5241 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5242
5243 return new_bb;
5244 }
5245
5246
5247 /* Moves basic block BB after block AFTER. */
5248
5249 static bool
5250 gimple_move_block_after (basic_block bb, basic_block after)
5251 {
5252 if (bb->prev_bb == after)
5253 return true;
5254
5255 unlink_block (bb);
5256 link_block (bb, after);
5257
5258 return true;
5259 }
5260
5261
5262 /* Return true if basic_block can be duplicated. */
5263
5264 static bool
5265 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5266 {
5267 return true;
5268 }
5269
5270 /* Create a duplicate of the basic block BB. NOTE: This does not
5271 preserve SSA form. */
5272
5273 static basic_block
5274 gimple_duplicate_bb (basic_block bb)
5275 {
5276 basic_block new_bb;
5277 gimple_stmt_iterator gsi, gsi_tgt;
5278 gimple_seq phis = phi_nodes (bb);
5279 gimple phi, stmt, copy;
5280
5281 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5282
5283 /* Copy the PHI nodes. We ignore PHI node arguments here because
5284 the incoming edges have not been setup yet. */
5285 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5286 {
5287 phi = gsi_stmt (gsi);
5288 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5289 create_new_def_for (gimple_phi_result (copy), copy,
5290 gimple_phi_result_ptr (copy));
5291 }
5292
5293 gsi_tgt = gsi_start_bb (new_bb);
5294 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5295 {
5296 def_operand_p def_p;
5297 ssa_op_iter op_iter;
5298 tree lhs;
5299
5300 stmt = gsi_stmt (gsi);
5301 if (gimple_code (stmt) == GIMPLE_LABEL)
5302 continue;
5303
5304 /* Don't duplicate label debug stmts. */
5305 if (gimple_debug_bind_p (stmt)
5306 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5307 == LABEL_DECL)
5308 continue;
5309
5310 /* Create a new copy of STMT and duplicate STMT's virtual
5311 operands. */
5312 copy = gimple_copy (stmt);
5313 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5314
5315 maybe_duplicate_eh_stmt (copy, stmt);
5316 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5317
5318 /* When copying around a stmt writing into a local non-user
5319 aggregate, make sure it won't share stack slot with other
5320 vars. */
5321 lhs = gimple_get_lhs (stmt);
5322 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5323 {
5324 tree base = get_base_address (lhs);
5325 if (base
5326 && (TREE_CODE (base) == VAR_DECL
5327 || TREE_CODE (base) == RESULT_DECL)
5328 && DECL_IGNORED_P (base)
5329 && !TREE_STATIC (base)
5330 && !DECL_EXTERNAL (base)
5331 && (TREE_CODE (base) != VAR_DECL
5332 || !DECL_HAS_VALUE_EXPR_P (base)))
5333 DECL_NONSHAREABLE (base) = 1;
5334 }
5335
5336 /* Create new names for all the definitions created by COPY and
5337 add replacement mappings for each new name. */
5338 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5339 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5340 }
5341
5342 return new_bb;
5343 }
5344
5345 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5346
5347 static void
5348 add_phi_args_after_copy_edge (edge e_copy)
5349 {
5350 basic_block bb, bb_copy = e_copy->src, dest;
5351 edge e;
5352 edge_iterator ei;
5353 gimple phi, phi_copy;
5354 tree def;
5355 gimple_stmt_iterator psi, psi_copy;
5356
5357 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5358 return;
5359
5360 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5361
5362 if (e_copy->dest->flags & BB_DUPLICATED)
5363 dest = get_bb_original (e_copy->dest);
5364 else
5365 dest = e_copy->dest;
5366
5367 e = find_edge (bb, dest);
5368 if (!e)
5369 {
5370 /* During loop unrolling the target of the latch edge is copied.
5371 In this case we are not looking for edge to dest, but to
5372 duplicated block whose original was dest. */
5373 FOR_EACH_EDGE (e, ei, bb->succs)
5374 {
5375 if ((e->dest->flags & BB_DUPLICATED)
5376 && get_bb_original (e->dest) == dest)
5377 break;
5378 }
5379
5380 gcc_assert (e != NULL);
5381 }
5382
5383 for (psi = gsi_start_phis (e->dest),
5384 psi_copy = gsi_start_phis (e_copy->dest);
5385 !gsi_end_p (psi);
5386 gsi_next (&psi), gsi_next (&psi_copy))
5387 {
5388 phi = gsi_stmt (psi);
5389 phi_copy = gsi_stmt (psi_copy);
5390 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5391 add_phi_arg (phi_copy, def, e_copy,
5392 gimple_phi_arg_location_from_edge (phi, e));
5393 }
5394 }
5395
5396
5397 /* Basic block BB_COPY was created by code duplication. Add phi node
5398 arguments for edges going out of BB_COPY. The blocks that were
5399 duplicated have BB_DUPLICATED set. */
5400
5401 void
5402 add_phi_args_after_copy_bb (basic_block bb_copy)
5403 {
5404 edge e_copy;
5405 edge_iterator ei;
5406
5407 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5408 {
5409 add_phi_args_after_copy_edge (e_copy);
5410 }
5411 }
5412
5413 /* Blocks in REGION_COPY array of length N_REGION were created by
5414 duplication of basic blocks. Add phi node arguments for edges
5415 going from these blocks. If E_COPY is not NULL, also add
5416 phi node arguments for its destination.*/
5417
5418 void
5419 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5420 edge e_copy)
5421 {
5422 unsigned i;
5423
5424 for (i = 0; i < n_region; i++)
5425 region_copy[i]->flags |= BB_DUPLICATED;
5426
5427 for (i = 0; i < n_region; i++)
5428 add_phi_args_after_copy_bb (region_copy[i]);
5429 if (e_copy)
5430 add_phi_args_after_copy_edge (e_copy);
5431
5432 for (i = 0; i < n_region; i++)
5433 region_copy[i]->flags &= ~BB_DUPLICATED;
5434 }
5435
5436 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5437 important exit edge EXIT. By important we mean that no SSA name defined
5438 inside region is live over the other exit edges of the region. All entry
5439 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5440 to the duplicate of the region. SSA form, dominance and loop information
5441 is updated. The new basic blocks are stored to REGION_COPY in the same
5442 order as they had in REGION, provided that REGION_COPY is not NULL.
5443 The function returns false if it is unable to copy the region,
5444 true otherwise. */
5445
5446 bool
5447 gimple_duplicate_sese_region (edge entry, edge exit,
5448 basic_block *region, unsigned n_region,
5449 basic_block *region_copy)
5450 {
5451 unsigned i;
5452 bool free_region_copy = false, copying_header = false;
5453 struct loop *loop = entry->dest->loop_father;
5454 edge exit_copy;
5455 VEC (basic_block, heap) *doms;
5456 edge redirected;
5457 int total_freq = 0, entry_freq = 0;
5458 gcov_type total_count = 0, entry_count = 0;
5459
5460 if (!can_copy_bbs_p (region, n_region))
5461 return false;
5462
5463 /* Some sanity checking. Note that we do not check for all possible
5464 missuses of the functions. I.e. if you ask to copy something weird,
5465 it will work, but the state of structures probably will not be
5466 correct. */
5467 for (i = 0; i < n_region; i++)
5468 {
5469 /* We do not handle subloops, i.e. all the blocks must belong to the
5470 same loop. */
5471 if (region[i]->loop_father != loop)
5472 return false;
5473
5474 if (region[i] != entry->dest
5475 && region[i] == loop->header)
5476 return false;
5477 }
5478
5479 set_loop_copy (loop, loop);
5480
5481 /* In case the function is used for loop header copying (which is the primary
5482 use), ensure that EXIT and its copy will be new latch and entry edges. */
5483 if (loop->header == entry->dest)
5484 {
5485 copying_header = true;
5486 set_loop_copy (loop, loop_outer (loop));
5487
5488 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5489 return false;
5490
5491 for (i = 0; i < n_region; i++)
5492 if (region[i] != exit->src
5493 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5494 return false;
5495 }
5496
5497 if (!region_copy)
5498 {
5499 region_copy = XNEWVEC (basic_block, n_region);
5500 free_region_copy = true;
5501 }
5502
5503 gcc_assert (!need_ssa_update_p (cfun));
5504
5505 /* Record blocks outside the region that are dominated by something
5506 inside. */
5507 doms = NULL;
5508 initialize_original_copy_tables ();
5509
5510 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5511
5512 if (entry->dest->count)
5513 {
5514 total_count = entry->dest->count;
5515 entry_count = entry->count;
5516 /* Fix up corner cases, to avoid division by zero or creation of negative
5517 frequencies. */
5518 if (entry_count > total_count)
5519 entry_count = total_count;
5520 }
5521 else
5522 {
5523 total_freq = entry->dest->frequency;
5524 entry_freq = EDGE_FREQUENCY (entry);
5525 /* Fix up corner cases, to avoid division by zero or creation of negative
5526 frequencies. */
5527 if (total_freq == 0)
5528 total_freq = 1;
5529 else if (entry_freq > total_freq)
5530 entry_freq = total_freq;
5531 }
5532
5533 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5534 split_edge_bb_loc (entry));
5535 if (total_count)
5536 {
5537 scale_bbs_frequencies_gcov_type (region, n_region,
5538 total_count - entry_count,
5539 total_count);
5540 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5541 total_count);
5542 }
5543 else
5544 {
5545 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5546 total_freq);
5547 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5548 }
5549
5550 if (copying_header)
5551 {
5552 loop->header = exit->dest;
5553 loop->latch = exit->src;
5554 }
5555
5556 /* Redirect the entry and add the phi node arguments. */
5557 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5558 gcc_assert (redirected != NULL);
5559 flush_pending_stmts (entry);
5560
5561 /* Concerning updating of dominators: We must recount dominators
5562 for entry block and its copy. Anything that is outside of the
5563 region, but was dominated by something inside needs recounting as
5564 well. */
5565 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5566 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5567 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5568 VEC_free (basic_block, heap, doms);
5569
5570 /* Add the other PHI node arguments. */
5571 add_phi_args_after_copy (region_copy, n_region, NULL);
5572
5573 /* Update the SSA web. */
5574 update_ssa (TODO_update_ssa);
5575
5576 if (free_region_copy)
5577 free (region_copy);
5578
5579 free_original_copy_tables ();
5580 return true;
5581 }
5582
5583 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5584 are stored to REGION_COPY in the same order in that they appear
5585 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5586 the region, EXIT an exit from it. The condition guarding EXIT
5587 is moved to ENTRY. Returns true if duplication succeeds, false
5588 otherwise.
5589
5590 For example,
5591
5592 some_code;
5593 if (cond)
5594 A;
5595 else
5596 B;
5597
5598 is transformed to
5599
5600 if (cond)
5601 {
5602 some_code;
5603 A;
5604 }
5605 else
5606 {
5607 some_code;
5608 B;
5609 }
5610 */
5611
5612 bool
5613 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5614 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5615 basic_block *region_copy ATTRIBUTE_UNUSED)
5616 {
5617 unsigned i;
5618 bool free_region_copy = false;
5619 struct loop *loop = exit->dest->loop_father;
5620 struct loop *orig_loop = entry->dest->loop_father;
5621 basic_block switch_bb, entry_bb, nentry_bb;
5622 VEC (basic_block, heap) *doms;
5623 int total_freq = 0, exit_freq = 0;
5624 gcov_type total_count = 0, exit_count = 0;
5625 edge exits[2], nexits[2], e;
5626 gimple_stmt_iterator gsi;
5627 gimple cond_stmt;
5628 edge sorig, snew;
5629 basic_block exit_bb;
5630 gimple_stmt_iterator psi;
5631 gimple phi;
5632 tree def;
5633
5634 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5635 exits[0] = exit;
5636 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5637
5638 if (!can_copy_bbs_p (region, n_region))
5639 return false;
5640
5641 initialize_original_copy_tables ();
5642 set_loop_copy (orig_loop, loop);
5643 duplicate_subloops (orig_loop, loop);
5644
5645 if (!region_copy)
5646 {
5647 region_copy = XNEWVEC (basic_block, n_region);
5648 free_region_copy = true;
5649 }
5650
5651 gcc_assert (!need_ssa_update_p (cfun));
5652
5653 /* Record blocks outside the region that are dominated by something
5654 inside. */
5655 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5656
5657 if (exit->src->count)
5658 {
5659 total_count = exit->src->count;
5660 exit_count = exit->count;
5661 /* Fix up corner cases, to avoid division by zero or creation of negative
5662 frequencies. */
5663 if (exit_count > total_count)
5664 exit_count = total_count;
5665 }
5666 else
5667 {
5668 total_freq = exit->src->frequency;
5669 exit_freq = EDGE_FREQUENCY (exit);
5670 /* Fix up corner cases, to avoid division by zero or creation of negative
5671 frequencies. */
5672 if (total_freq == 0)
5673 total_freq = 1;
5674 if (exit_freq > total_freq)
5675 exit_freq = total_freq;
5676 }
5677
5678 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5679 split_edge_bb_loc (exit));
5680 if (total_count)
5681 {
5682 scale_bbs_frequencies_gcov_type (region, n_region,
5683 total_count - exit_count,
5684 total_count);
5685 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5686 total_count);
5687 }
5688 else
5689 {
5690 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5691 total_freq);
5692 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5693 }
5694
5695 /* Create the switch block, and put the exit condition to it. */
5696 entry_bb = entry->dest;
5697 nentry_bb = get_bb_copy (entry_bb);
5698 if (!last_stmt (entry->src)
5699 || !stmt_ends_bb_p (last_stmt (entry->src)))
5700 switch_bb = entry->src;
5701 else
5702 switch_bb = split_edge (entry);
5703 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5704
5705 gsi = gsi_last_bb (switch_bb);
5706 cond_stmt = last_stmt (exit->src);
5707 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5708 cond_stmt = gimple_copy (cond_stmt);
5709
5710 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5711
5712 sorig = single_succ_edge (switch_bb);
5713 sorig->flags = exits[1]->flags;
5714 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5715
5716 /* Register the new edge from SWITCH_BB in loop exit lists. */
5717 rescan_loop_exit (snew, true, false);
5718
5719 /* Add the PHI node arguments. */
5720 add_phi_args_after_copy (region_copy, n_region, snew);
5721
5722 /* Get rid of now superfluous conditions and associated edges (and phi node
5723 arguments). */
5724 exit_bb = exit->dest;
5725
5726 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5727 PENDING_STMT (e) = NULL;
5728
5729 /* The latch of ORIG_LOOP was copied, and so was the backedge
5730 to the original header. We redirect this backedge to EXIT_BB. */
5731 for (i = 0; i < n_region; i++)
5732 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5733 {
5734 gcc_assert (single_succ_edge (region_copy[i]));
5735 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5736 PENDING_STMT (e) = NULL;
5737 for (psi = gsi_start_phis (exit_bb);
5738 !gsi_end_p (psi);
5739 gsi_next (&psi))
5740 {
5741 phi = gsi_stmt (psi);
5742 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5743 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5744 }
5745 }
5746 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5747 PENDING_STMT (e) = NULL;
5748
5749 /* Anything that is outside of the region, but was dominated by something
5750 inside needs to update dominance info. */
5751 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5752 VEC_free (basic_block, heap, doms);
5753 /* Update the SSA web. */
5754 update_ssa (TODO_update_ssa);
5755
5756 if (free_region_copy)
5757 free (region_copy);
5758
5759 free_original_copy_tables ();
5760 return true;
5761 }
5762
5763 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5764 adding blocks when the dominator traversal reaches EXIT. This
5765 function silently assumes that ENTRY strictly dominates EXIT. */
5766
5767 void
5768 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5769 VEC(basic_block,heap) **bbs_p)
5770 {
5771 basic_block son;
5772
5773 for (son = first_dom_son (CDI_DOMINATORS, entry);
5774 son;
5775 son = next_dom_son (CDI_DOMINATORS, son))
5776 {
5777 VEC_safe_push (basic_block, heap, *bbs_p, son);
5778 if (son != exit)
5779 gather_blocks_in_sese_region (son, exit, bbs_p);
5780 }
5781 }
5782
5783 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5784 The duplicates are recorded in VARS_MAP. */
5785
5786 static void
5787 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5788 tree to_context)
5789 {
5790 tree t = *tp, new_t;
5791 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5792 void **loc;
5793
5794 if (DECL_CONTEXT (t) == to_context)
5795 return;
5796
5797 loc = pointer_map_contains (vars_map, t);
5798
5799 if (!loc)
5800 {
5801 loc = pointer_map_insert (vars_map, t);
5802
5803 if (SSA_VAR_P (t))
5804 {
5805 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5806 add_local_decl (f, new_t);
5807 }
5808 else
5809 {
5810 gcc_assert (TREE_CODE (t) == CONST_DECL);
5811 new_t = copy_node (t);
5812 }
5813 DECL_CONTEXT (new_t) = to_context;
5814
5815 *loc = new_t;
5816 }
5817 else
5818 new_t = (tree) *loc;
5819
5820 *tp = new_t;
5821 }
5822
5823
5824 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5825 VARS_MAP maps old ssa names and var_decls to the new ones. */
5826
5827 static tree
5828 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5829 tree to_context)
5830 {
5831 void **loc;
5832 tree new_name, decl = SSA_NAME_VAR (name);
5833
5834 gcc_assert (is_gimple_reg (name));
5835
5836 loc = pointer_map_contains (vars_map, name);
5837
5838 if (!loc)
5839 {
5840 replace_by_duplicate_decl (&decl, vars_map, to_context);
5841
5842 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5843 if (gimple_in_ssa_p (cfun))
5844 add_referenced_var (decl);
5845
5846 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5847 if (SSA_NAME_IS_DEFAULT_DEF (name))
5848 set_default_def (decl, new_name);
5849 pop_cfun ();
5850
5851 loc = pointer_map_insert (vars_map, name);
5852 *loc = new_name;
5853 }
5854 else
5855 new_name = (tree) *loc;
5856
5857 return new_name;
5858 }
5859
5860 struct move_stmt_d
5861 {
5862 tree orig_block;
5863 tree new_block;
5864 tree from_context;
5865 tree to_context;
5866 struct pointer_map_t *vars_map;
5867 htab_t new_label_map;
5868 struct pointer_map_t *eh_map;
5869 bool remap_decls_p;
5870 };
5871
5872 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5873 contained in *TP if it has been ORIG_BLOCK previously and change the
5874 DECL_CONTEXT of every local variable referenced in *TP. */
5875
5876 static tree
5877 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5878 {
5879 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5880 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5881 tree t = *tp;
5882
5883 if (EXPR_P (t))
5884 /* We should never have TREE_BLOCK set on non-statements. */
5885 gcc_assert (!TREE_BLOCK (t));
5886
5887 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5888 {
5889 if (TREE_CODE (t) == SSA_NAME)
5890 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5891 else if (TREE_CODE (t) == LABEL_DECL)
5892 {
5893 if (p->new_label_map)
5894 {
5895 struct tree_map in, *out;
5896 in.base.from = t;
5897 out = (struct tree_map *)
5898 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5899 if (out)
5900 *tp = t = out->to;
5901 }
5902
5903 DECL_CONTEXT (t) = p->to_context;
5904 }
5905 else if (p->remap_decls_p)
5906 {
5907 /* Replace T with its duplicate. T should no longer appear in the
5908 parent function, so this looks wasteful; however, it may appear
5909 in referenced_vars, and more importantly, as virtual operands of
5910 statements, and in alias lists of other variables. It would be
5911 quite difficult to expunge it from all those places. ??? It might
5912 suffice to do this for addressable variables. */
5913 if ((TREE_CODE (t) == VAR_DECL
5914 && !is_global_var (t))
5915 || TREE_CODE (t) == CONST_DECL)
5916 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5917
5918 if (SSA_VAR_P (t)
5919 && gimple_in_ssa_p (cfun))
5920 {
5921 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5922 add_referenced_var (*tp);
5923 pop_cfun ();
5924 }
5925 }
5926 *walk_subtrees = 0;
5927 }
5928 else if (TYPE_P (t))
5929 *walk_subtrees = 0;
5930
5931 return NULL_TREE;
5932 }
5933
5934 /* Helper for move_stmt_r. Given an EH region number for the source
5935 function, map that to the duplicate EH regio number in the dest. */
5936
5937 static int
5938 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5939 {
5940 eh_region old_r, new_r;
5941 void **slot;
5942
5943 old_r = get_eh_region_from_number (old_nr);
5944 slot = pointer_map_contains (p->eh_map, old_r);
5945 new_r = (eh_region) *slot;
5946
5947 return new_r->index;
5948 }
5949
5950 /* Similar, but operate on INTEGER_CSTs. */
5951
5952 static tree
5953 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5954 {
5955 int old_nr, new_nr;
5956
5957 old_nr = tree_low_cst (old_t_nr, 0);
5958 new_nr = move_stmt_eh_region_nr (old_nr, p);
5959
5960 return build_int_cst (integer_type_node, new_nr);
5961 }
5962
5963 /* Like move_stmt_op, but for gimple statements.
5964
5965 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5966 contained in the current statement in *GSI_P and change the
5967 DECL_CONTEXT of every local variable referenced in the current
5968 statement. */
5969
5970 static tree
5971 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5972 struct walk_stmt_info *wi)
5973 {
5974 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5975 gimple stmt = gsi_stmt (*gsi_p);
5976 tree block = gimple_block (stmt);
5977
5978 if (p->orig_block == NULL_TREE
5979 || block == p->orig_block
5980 || block == NULL_TREE)
5981 gimple_set_block (stmt, p->new_block);
5982 #ifdef ENABLE_CHECKING
5983 else if (block != p->new_block)
5984 {
5985 while (block && block != p->orig_block)
5986 block = BLOCK_SUPERCONTEXT (block);
5987 gcc_assert (block);
5988 }
5989 #endif
5990
5991 switch (gimple_code (stmt))
5992 {
5993 case GIMPLE_CALL:
5994 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5995 {
5996 tree r, fndecl = gimple_call_fndecl (stmt);
5997 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5998 switch (DECL_FUNCTION_CODE (fndecl))
5999 {
6000 case BUILT_IN_EH_COPY_VALUES:
6001 r = gimple_call_arg (stmt, 1);
6002 r = move_stmt_eh_region_tree_nr (r, p);
6003 gimple_call_set_arg (stmt, 1, r);
6004 /* FALLTHRU */
6005
6006 case BUILT_IN_EH_POINTER:
6007 case BUILT_IN_EH_FILTER:
6008 r = gimple_call_arg (stmt, 0);
6009 r = move_stmt_eh_region_tree_nr (r, p);
6010 gimple_call_set_arg (stmt, 0, r);
6011 break;
6012
6013 default:
6014 break;
6015 }
6016 }
6017 break;
6018
6019 case GIMPLE_RESX:
6020 {
6021 int r = gimple_resx_region (stmt);
6022 r = move_stmt_eh_region_nr (r, p);
6023 gimple_resx_set_region (stmt, r);
6024 }
6025 break;
6026
6027 case GIMPLE_EH_DISPATCH:
6028 {
6029 int r = gimple_eh_dispatch_region (stmt);
6030 r = move_stmt_eh_region_nr (r, p);
6031 gimple_eh_dispatch_set_region (stmt, r);
6032 }
6033 break;
6034
6035 case GIMPLE_OMP_RETURN:
6036 case GIMPLE_OMP_CONTINUE:
6037 break;
6038 default:
6039 if (is_gimple_omp (stmt))
6040 {
6041 /* Do not remap variables inside OMP directives. Variables
6042 referenced in clauses and directive header belong to the
6043 parent function and should not be moved into the child
6044 function. */
6045 bool save_remap_decls_p = p->remap_decls_p;
6046 p->remap_decls_p = false;
6047 *handled_ops_p = true;
6048
6049 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
6050 move_stmt_op, wi);
6051
6052 p->remap_decls_p = save_remap_decls_p;
6053 }
6054 break;
6055 }
6056
6057 return NULL_TREE;
6058 }
6059
6060 /* Move basic block BB from function CFUN to function DEST_FN. The
6061 block is moved out of the original linked list and placed after
6062 block AFTER in the new list. Also, the block is removed from the
6063 original array of blocks and placed in DEST_FN's array of blocks.
6064 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6065 updated to reflect the moved edges.
6066
6067 The local variables are remapped to new instances, VARS_MAP is used
6068 to record the mapping. */
6069
6070 static void
6071 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6072 basic_block after, bool update_edge_count_p,
6073 struct move_stmt_d *d)
6074 {
6075 struct control_flow_graph *cfg;
6076 edge_iterator ei;
6077 edge e;
6078 gimple_stmt_iterator si;
6079 unsigned old_len, new_len;
6080
6081 /* Remove BB from dominance structures. */
6082 delete_from_dominance_info (CDI_DOMINATORS, bb);
6083 if (current_loops)
6084 remove_bb_from_loops (bb);
6085
6086 /* Link BB to the new linked list. */
6087 move_block_after (bb, after);
6088
6089 /* Update the edge count in the corresponding flowgraphs. */
6090 if (update_edge_count_p)
6091 FOR_EACH_EDGE (e, ei, bb->succs)
6092 {
6093 cfun->cfg->x_n_edges--;
6094 dest_cfun->cfg->x_n_edges++;
6095 }
6096
6097 /* Remove BB from the original basic block array. */
6098 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
6099 cfun->cfg->x_n_basic_blocks--;
6100
6101 /* Grow DEST_CFUN's basic block array if needed. */
6102 cfg = dest_cfun->cfg;
6103 cfg->x_n_basic_blocks++;
6104 if (bb->index >= cfg->x_last_basic_block)
6105 cfg->x_last_basic_block = bb->index + 1;
6106
6107 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
6108 if ((unsigned) cfg->x_last_basic_block >= old_len)
6109 {
6110 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6111 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
6112 new_len);
6113 }
6114
6115 VEC_replace (basic_block, cfg->x_basic_block_info,
6116 bb->index, bb);
6117
6118 /* Remap the variables in phi nodes. */
6119 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6120 {
6121 gimple phi = gsi_stmt (si);
6122 use_operand_p use;
6123 tree op = PHI_RESULT (phi);
6124 ssa_op_iter oi;
6125
6126 if (!is_gimple_reg (op))
6127 {
6128 /* Remove the phi nodes for virtual operands (alias analysis will be
6129 run for the new function, anyway). */
6130 remove_phi_node (&si, true);
6131 continue;
6132 }
6133
6134 SET_PHI_RESULT (phi,
6135 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6136 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6137 {
6138 op = USE_FROM_PTR (use);
6139 if (TREE_CODE (op) == SSA_NAME)
6140 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6141 }
6142
6143 gsi_next (&si);
6144 }
6145
6146 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6147 {
6148 gimple stmt = gsi_stmt (si);
6149 struct walk_stmt_info wi;
6150
6151 memset (&wi, 0, sizeof (wi));
6152 wi.info = d;
6153 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6154
6155 if (gimple_code (stmt) == GIMPLE_LABEL)
6156 {
6157 tree label = gimple_label_label (stmt);
6158 int uid = LABEL_DECL_UID (label);
6159
6160 gcc_assert (uid > -1);
6161
6162 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
6163 if (old_len <= (unsigned) uid)
6164 {
6165 new_len = 3 * uid / 2 + 1;
6166 VEC_safe_grow_cleared (basic_block, gc,
6167 cfg->x_label_to_block_map, new_len);
6168 }
6169
6170 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
6171 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
6172
6173 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6174
6175 if (uid >= dest_cfun->cfg->last_label_uid)
6176 dest_cfun->cfg->last_label_uid = uid + 1;
6177 }
6178
6179 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6180 remove_stmt_from_eh_lp_fn (cfun, stmt);
6181
6182 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6183 gimple_remove_stmt_histograms (cfun, stmt);
6184
6185 /* We cannot leave any operands allocated from the operand caches of
6186 the current function. */
6187 free_stmt_operands (stmt);
6188 push_cfun (dest_cfun);
6189 update_stmt (stmt);
6190 pop_cfun ();
6191 }
6192
6193 FOR_EACH_EDGE (e, ei, bb->succs)
6194 if (e->goto_locus)
6195 {
6196 tree block = e->goto_block;
6197 if (d->orig_block == NULL_TREE
6198 || block == d->orig_block)
6199 e->goto_block = d->new_block;
6200 #ifdef ENABLE_CHECKING
6201 else if (block != d->new_block)
6202 {
6203 while (block && block != d->orig_block)
6204 block = BLOCK_SUPERCONTEXT (block);
6205 gcc_assert (block);
6206 }
6207 #endif
6208 }
6209 }
6210
6211 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6212 the outermost EH region. Use REGION as the incoming base EH region. */
6213
6214 static eh_region
6215 find_outermost_region_in_block (struct function *src_cfun,
6216 basic_block bb, eh_region region)
6217 {
6218 gimple_stmt_iterator si;
6219
6220 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6221 {
6222 gimple stmt = gsi_stmt (si);
6223 eh_region stmt_region;
6224 int lp_nr;
6225
6226 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6227 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6228 if (stmt_region)
6229 {
6230 if (region == NULL)
6231 region = stmt_region;
6232 else if (stmt_region != region)
6233 {
6234 region = eh_region_outermost (src_cfun, stmt_region, region);
6235 gcc_assert (region != NULL);
6236 }
6237 }
6238 }
6239
6240 return region;
6241 }
6242
6243 static tree
6244 new_label_mapper (tree decl, void *data)
6245 {
6246 htab_t hash = (htab_t) data;
6247 struct tree_map *m;
6248 void **slot;
6249
6250 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6251
6252 m = XNEW (struct tree_map);
6253 m->hash = DECL_UID (decl);
6254 m->base.from = decl;
6255 m->to = create_artificial_label (UNKNOWN_LOCATION);
6256 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6257 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6258 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6259
6260 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6261 gcc_assert (*slot == NULL);
6262
6263 *slot = m;
6264
6265 return m->to;
6266 }
6267
6268 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6269 subblocks. */
6270
6271 static void
6272 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6273 tree to_context)
6274 {
6275 tree *tp, t;
6276
6277 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6278 {
6279 t = *tp;
6280 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6281 continue;
6282 replace_by_duplicate_decl (&t, vars_map, to_context);
6283 if (t != *tp)
6284 {
6285 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6286 {
6287 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6288 DECL_HAS_VALUE_EXPR_P (t) = 1;
6289 }
6290 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6291 *tp = t;
6292 }
6293 }
6294
6295 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6296 replace_block_vars_by_duplicates (block, vars_map, to_context);
6297 }
6298
6299 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6300 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6301 single basic block in the original CFG and the new basic block is
6302 returned. DEST_CFUN must not have a CFG yet.
6303
6304 Note that the region need not be a pure SESE region. Blocks inside
6305 the region may contain calls to abort/exit. The only restriction
6306 is that ENTRY_BB should be the only entry point and it must
6307 dominate EXIT_BB.
6308
6309 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6310 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6311 to the new function.
6312
6313 All local variables referenced in the region are assumed to be in
6314 the corresponding BLOCK_VARS and unexpanded variable lists
6315 associated with DEST_CFUN. */
6316
6317 basic_block
6318 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6319 basic_block exit_bb, tree orig_block)
6320 {
6321 VEC(basic_block,heap) *bbs, *dom_bbs;
6322 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6323 basic_block after, bb, *entry_pred, *exit_succ, abb;
6324 struct function *saved_cfun = cfun;
6325 int *entry_flag, *exit_flag;
6326 unsigned *entry_prob, *exit_prob;
6327 unsigned i, num_entry_edges, num_exit_edges;
6328 edge e;
6329 edge_iterator ei;
6330 htab_t new_label_map;
6331 struct pointer_map_t *vars_map, *eh_map;
6332 struct loop *loop = entry_bb->loop_father;
6333 struct move_stmt_d d;
6334
6335 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6336 region. */
6337 gcc_assert (entry_bb != exit_bb
6338 && (!exit_bb
6339 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6340
6341 /* Collect all the blocks in the region. Manually add ENTRY_BB
6342 because it won't be added by dfs_enumerate_from. */
6343 bbs = NULL;
6344 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6345 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6346
6347 /* The blocks that used to be dominated by something in BBS will now be
6348 dominated by the new block. */
6349 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6350 VEC_address (basic_block, bbs),
6351 VEC_length (basic_block, bbs));
6352
6353 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6354 the predecessor edges to ENTRY_BB and the successor edges to
6355 EXIT_BB so that we can re-attach them to the new basic block that
6356 will replace the region. */
6357 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6358 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6359 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6360 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6361 i = 0;
6362 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6363 {
6364 entry_prob[i] = e->probability;
6365 entry_flag[i] = e->flags;
6366 entry_pred[i++] = e->src;
6367 remove_edge (e);
6368 }
6369
6370 if (exit_bb)
6371 {
6372 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6373 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6374 sizeof (basic_block));
6375 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6376 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6377 i = 0;
6378 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6379 {
6380 exit_prob[i] = e->probability;
6381 exit_flag[i] = e->flags;
6382 exit_succ[i++] = e->dest;
6383 remove_edge (e);
6384 }
6385 }
6386 else
6387 {
6388 num_exit_edges = 0;
6389 exit_succ = NULL;
6390 exit_flag = NULL;
6391 exit_prob = NULL;
6392 }
6393
6394 /* Switch context to the child function to initialize DEST_FN's CFG. */
6395 gcc_assert (dest_cfun->cfg == NULL);
6396 push_cfun (dest_cfun);
6397
6398 init_empty_tree_cfg ();
6399
6400 /* Initialize EH information for the new function. */
6401 eh_map = NULL;
6402 new_label_map = NULL;
6403 if (saved_cfun->eh)
6404 {
6405 eh_region region = NULL;
6406
6407 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6408 region = find_outermost_region_in_block (saved_cfun, bb, region);
6409
6410 init_eh_for_function ();
6411 if (region != NULL)
6412 {
6413 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6414 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6415 new_label_mapper, new_label_map);
6416 }
6417 }
6418
6419 pop_cfun ();
6420
6421 /* Move blocks from BBS into DEST_CFUN. */
6422 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6423 after = dest_cfun->cfg->x_entry_block_ptr;
6424 vars_map = pointer_map_create ();
6425
6426 memset (&d, 0, sizeof (d));
6427 d.orig_block = orig_block;
6428 d.new_block = DECL_INITIAL (dest_cfun->decl);
6429 d.from_context = cfun->decl;
6430 d.to_context = dest_cfun->decl;
6431 d.vars_map = vars_map;
6432 d.new_label_map = new_label_map;
6433 d.eh_map = eh_map;
6434 d.remap_decls_p = true;
6435
6436 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6437 {
6438 /* No need to update edge counts on the last block. It has
6439 already been updated earlier when we detached the region from
6440 the original CFG. */
6441 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6442 after = bb;
6443 }
6444
6445 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6446 if (orig_block)
6447 {
6448 tree block;
6449 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6450 == NULL_TREE);
6451 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6452 = BLOCK_SUBBLOCKS (orig_block);
6453 for (block = BLOCK_SUBBLOCKS (orig_block);
6454 block; block = BLOCK_CHAIN (block))
6455 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6456 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6457 }
6458
6459 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6460 vars_map, dest_cfun->decl);
6461
6462 if (new_label_map)
6463 htab_delete (new_label_map);
6464 if (eh_map)
6465 pointer_map_destroy (eh_map);
6466 pointer_map_destroy (vars_map);
6467
6468 /* Rewire the entry and exit blocks. The successor to the entry
6469 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6470 the child function. Similarly, the predecessor of DEST_FN's
6471 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6472 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6473 various CFG manipulation function get to the right CFG.
6474
6475 FIXME, this is silly. The CFG ought to become a parameter to
6476 these helpers. */
6477 push_cfun (dest_cfun);
6478 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6479 if (exit_bb)
6480 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6481 pop_cfun ();
6482
6483 /* Back in the original function, the SESE region has disappeared,
6484 create a new basic block in its place. */
6485 bb = create_empty_bb (entry_pred[0]);
6486 if (current_loops)
6487 add_bb_to_loop (bb, loop);
6488 for (i = 0; i < num_entry_edges; i++)
6489 {
6490 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6491 e->probability = entry_prob[i];
6492 }
6493
6494 for (i = 0; i < num_exit_edges; i++)
6495 {
6496 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6497 e->probability = exit_prob[i];
6498 }
6499
6500 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6501 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6502 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6503 VEC_free (basic_block, heap, dom_bbs);
6504
6505 if (exit_bb)
6506 {
6507 free (exit_prob);
6508 free (exit_flag);
6509 free (exit_succ);
6510 }
6511 free (entry_prob);
6512 free (entry_flag);
6513 free (entry_pred);
6514 VEC_free (basic_block, heap, bbs);
6515
6516 return bb;
6517 }
6518
6519
6520 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6521 */
6522
6523 void
6524 dump_function_to_file (tree fn, FILE *file, int flags)
6525 {
6526 tree arg, var;
6527 struct function *dsf;
6528 bool ignore_topmost_bind = false, any_var = false;
6529 basic_block bb;
6530 tree chain;
6531 bool tmclone = TREE_CODE (fn) == FUNCTION_DECL && decl_is_tm_clone (fn);
6532
6533 fprintf (file, "%s %s(", lang_hooks.decl_printable_name (fn, 2),
6534 tmclone ? "[tm-clone] " : "");
6535
6536 arg = DECL_ARGUMENTS (fn);
6537 while (arg)
6538 {
6539 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6540 fprintf (file, " ");
6541 print_generic_expr (file, arg, dump_flags);
6542 if (flags & TDF_VERBOSE)
6543 print_node (file, "", arg, 4);
6544 if (DECL_CHAIN (arg))
6545 fprintf (file, ", ");
6546 arg = DECL_CHAIN (arg);
6547 }
6548 fprintf (file, ")\n");
6549
6550 if (flags & TDF_VERBOSE)
6551 print_node (file, "", fn, 2);
6552
6553 dsf = DECL_STRUCT_FUNCTION (fn);
6554 if (dsf && (flags & TDF_EH))
6555 dump_eh_tree (file, dsf);
6556
6557 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6558 {
6559 dump_node (fn, TDF_SLIM | flags, file);
6560 return;
6561 }
6562
6563 /* Switch CFUN to point to FN. */
6564 push_cfun (DECL_STRUCT_FUNCTION (fn));
6565
6566 /* When GIMPLE is lowered, the variables are no longer available in
6567 BIND_EXPRs, so display them separately. */
6568 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6569 {
6570 unsigned ix;
6571 ignore_topmost_bind = true;
6572
6573 fprintf (file, "{\n");
6574 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6575 {
6576 print_generic_decl (file, var, flags);
6577 if (flags & TDF_VERBOSE)
6578 print_node (file, "", var, 4);
6579 fprintf (file, "\n");
6580
6581 any_var = true;
6582 }
6583 }
6584
6585 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6586 {
6587 /* If the CFG has been built, emit a CFG-based dump. */
6588 check_bb_profile (ENTRY_BLOCK_PTR, file);
6589 if (!ignore_topmost_bind)
6590 fprintf (file, "{\n");
6591
6592 if (any_var && n_basic_blocks)
6593 fprintf (file, "\n");
6594
6595 FOR_EACH_BB (bb)
6596 gimple_dump_bb (bb, file, 2, flags);
6597
6598 fprintf (file, "}\n");
6599 check_bb_profile (EXIT_BLOCK_PTR, file);
6600 }
6601 else if (DECL_SAVED_TREE (fn) == NULL)
6602 {
6603 /* The function is now in GIMPLE form but the CFG has not been
6604 built yet. Emit the single sequence of GIMPLE statements
6605 that make up its body. */
6606 gimple_seq body = gimple_body (fn);
6607
6608 if (gimple_seq_first_stmt (body)
6609 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6610 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6611 print_gimple_seq (file, body, 0, flags);
6612 else
6613 {
6614 if (!ignore_topmost_bind)
6615 fprintf (file, "{\n");
6616
6617 if (any_var)
6618 fprintf (file, "\n");
6619
6620 print_gimple_seq (file, body, 2, flags);
6621 fprintf (file, "}\n");
6622 }
6623 }
6624 else
6625 {
6626 int indent;
6627
6628 /* Make a tree based dump. */
6629 chain = DECL_SAVED_TREE (fn);
6630
6631 if (chain && TREE_CODE (chain) == BIND_EXPR)
6632 {
6633 if (ignore_topmost_bind)
6634 {
6635 chain = BIND_EXPR_BODY (chain);
6636 indent = 2;
6637 }
6638 else
6639 indent = 0;
6640 }
6641 else
6642 {
6643 if (!ignore_topmost_bind)
6644 fprintf (file, "{\n");
6645 indent = 2;
6646 }
6647
6648 if (any_var)
6649 fprintf (file, "\n");
6650
6651 print_generic_stmt_indented (file, chain, flags, indent);
6652 if (ignore_topmost_bind)
6653 fprintf (file, "}\n");
6654 }
6655
6656 if (flags & TDF_ENUMERATE_LOCALS)
6657 dump_enumerated_decls (file, flags);
6658 fprintf (file, "\n\n");
6659
6660 /* Restore CFUN. */
6661 pop_cfun ();
6662 }
6663
6664
6665 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6666
6667 DEBUG_FUNCTION void
6668 debug_function (tree fn, int flags)
6669 {
6670 dump_function_to_file (fn, stderr, flags);
6671 }
6672
6673
6674 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6675
6676 static void
6677 print_pred_bbs (FILE *file, basic_block bb)
6678 {
6679 edge e;
6680 edge_iterator ei;
6681
6682 FOR_EACH_EDGE (e, ei, bb->preds)
6683 fprintf (file, "bb_%d ", e->src->index);
6684 }
6685
6686
6687 /* Print on FILE the indexes for the successors of basic_block BB. */
6688
6689 static void
6690 print_succ_bbs (FILE *file, basic_block bb)
6691 {
6692 edge e;
6693 edge_iterator ei;
6694
6695 FOR_EACH_EDGE (e, ei, bb->succs)
6696 fprintf (file, "bb_%d ", e->dest->index);
6697 }
6698
6699 /* Print to FILE the basic block BB following the VERBOSITY level. */
6700
6701 void
6702 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6703 {
6704 char *s_indent = (char *) alloca ((size_t) indent + 1);
6705 memset ((void *) s_indent, ' ', (size_t) indent);
6706 s_indent[indent] = '\0';
6707
6708 /* Print basic_block's header. */
6709 if (verbosity >= 2)
6710 {
6711 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6712 print_pred_bbs (file, bb);
6713 fprintf (file, "}, succs = {");
6714 print_succ_bbs (file, bb);
6715 fprintf (file, "})\n");
6716 }
6717
6718 /* Print basic_block's body. */
6719 if (verbosity >= 3)
6720 {
6721 fprintf (file, "%s {\n", s_indent);
6722 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6723 fprintf (file, "%s }\n", s_indent);
6724 }
6725 }
6726
6727 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6728
6729 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6730 VERBOSITY level this outputs the contents of the loop, or just its
6731 structure. */
6732
6733 static void
6734 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6735 {
6736 char *s_indent;
6737 basic_block bb;
6738
6739 if (loop == NULL)
6740 return;
6741
6742 s_indent = (char *) alloca ((size_t) indent + 1);
6743 memset ((void *) s_indent, ' ', (size_t) indent);
6744 s_indent[indent] = '\0';
6745
6746 /* Print loop's header. */
6747 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6748 loop->num, loop->header->index, loop->latch->index);
6749 fprintf (file, ", niter = ");
6750 print_generic_expr (file, loop->nb_iterations, 0);
6751
6752 if (loop->any_upper_bound)
6753 {
6754 fprintf (file, ", upper_bound = ");
6755 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6756 }
6757
6758 if (loop->any_estimate)
6759 {
6760 fprintf (file, ", estimate = ");
6761 dump_double_int (file, loop->nb_iterations_estimate, true);
6762 }
6763 fprintf (file, ")\n");
6764
6765 /* Print loop's body. */
6766 if (verbosity >= 1)
6767 {
6768 fprintf (file, "%s{\n", s_indent);
6769 FOR_EACH_BB (bb)
6770 if (bb->loop_father == loop)
6771 print_loops_bb (file, bb, indent, verbosity);
6772
6773 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6774 fprintf (file, "%s}\n", s_indent);
6775 }
6776 }
6777
6778 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6779 spaces. Following VERBOSITY level this outputs the contents of the
6780 loop, or just its structure. */
6781
6782 static void
6783 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6784 {
6785 if (loop == NULL)
6786 return;
6787
6788 print_loop (file, loop, indent, verbosity);
6789 print_loop_and_siblings (file, loop->next, indent, verbosity);
6790 }
6791
6792 /* Follow a CFG edge from the entry point of the program, and on entry
6793 of a loop, pretty print the loop structure on FILE. */
6794
6795 void
6796 print_loops (FILE *file, int verbosity)
6797 {
6798 basic_block bb;
6799
6800 bb = ENTRY_BLOCK_PTR;
6801 if (bb && bb->loop_father)
6802 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6803 }
6804
6805
6806 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6807
6808 DEBUG_FUNCTION void
6809 debug_loops (int verbosity)
6810 {
6811 print_loops (stderr, verbosity);
6812 }
6813
6814 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6815
6816 DEBUG_FUNCTION void
6817 debug_loop (struct loop *loop, int verbosity)
6818 {
6819 print_loop (stderr, loop, 0, verbosity);
6820 }
6821
6822 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6823 level. */
6824
6825 DEBUG_FUNCTION void
6826 debug_loop_num (unsigned num, int verbosity)
6827 {
6828 debug_loop (get_loop (num), verbosity);
6829 }
6830
6831 /* Return true if BB ends with a call, possibly followed by some
6832 instructions that must stay with the call. Return false,
6833 otherwise. */
6834
6835 static bool
6836 gimple_block_ends_with_call_p (basic_block bb)
6837 {
6838 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6839 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6840 }
6841
6842
6843 /* Return true if BB ends with a conditional branch. Return false,
6844 otherwise. */
6845
6846 static bool
6847 gimple_block_ends_with_condjump_p (const_basic_block bb)
6848 {
6849 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6850 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6851 }
6852
6853
6854 /* Return true if we need to add fake edge to exit at statement T.
6855 Helper function for gimple_flow_call_edges_add. */
6856
6857 static bool
6858 need_fake_edge_p (gimple t)
6859 {
6860 tree fndecl = NULL_TREE;
6861 int call_flags = 0;
6862
6863 /* NORETURN and LONGJMP calls already have an edge to exit.
6864 CONST and PURE calls do not need one.
6865 We don't currently check for CONST and PURE here, although
6866 it would be a good idea, because those attributes are
6867 figured out from the RTL in mark_constant_function, and
6868 the counter incrementation code from -fprofile-arcs
6869 leads to different results from -fbranch-probabilities. */
6870 if (is_gimple_call (t))
6871 {
6872 fndecl = gimple_call_fndecl (t);
6873 call_flags = gimple_call_flags (t);
6874 }
6875
6876 if (is_gimple_call (t)
6877 && fndecl
6878 && DECL_BUILT_IN (fndecl)
6879 && (call_flags & ECF_NOTHROW)
6880 && !(call_flags & ECF_RETURNS_TWICE)
6881 /* fork() doesn't really return twice, but the effect of
6882 wrapping it in __gcov_fork() which calls __gcov_flush()
6883 and clears the counters before forking has the same
6884 effect as returning twice. Force a fake edge. */
6885 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6886 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6887 return false;
6888
6889 if (is_gimple_call (t)
6890 && !(call_flags & ECF_NORETURN))
6891 return true;
6892
6893 if (gimple_code (t) == GIMPLE_ASM
6894 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6895 return true;
6896
6897 return false;
6898 }
6899
6900
6901 /* Add fake edges to the function exit for any non constant and non
6902 noreturn calls, volatile inline assembly in the bitmap of blocks
6903 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6904 the number of blocks that were split.
6905
6906 The goal is to expose cases in which entering a basic block does
6907 not imply that all subsequent instructions must be executed. */
6908
6909 static int
6910 gimple_flow_call_edges_add (sbitmap blocks)
6911 {
6912 int i;
6913 int blocks_split = 0;
6914 int last_bb = last_basic_block;
6915 bool check_last_block = false;
6916
6917 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6918 return 0;
6919
6920 if (! blocks)
6921 check_last_block = true;
6922 else
6923 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6924
6925 /* In the last basic block, before epilogue generation, there will be
6926 a fallthru edge to EXIT. Special care is required if the last insn
6927 of the last basic block is a call because make_edge folds duplicate
6928 edges, which would result in the fallthru edge also being marked
6929 fake, which would result in the fallthru edge being removed by
6930 remove_fake_edges, which would result in an invalid CFG.
6931
6932 Moreover, we can't elide the outgoing fake edge, since the block
6933 profiler needs to take this into account in order to solve the minimal
6934 spanning tree in the case that the call doesn't return.
6935
6936 Handle this by adding a dummy instruction in a new last basic block. */
6937 if (check_last_block)
6938 {
6939 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6940 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6941 gimple t = NULL;
6942
6943 if (!gsi_end_p (gsi))
6944 t = gsi_stmt (gsi);
6945
6946 if (t && need_fake_edge_p (t))
6947 {
6948 edge e;
6949
6950 e = find_edge (bb, EXIT_BLOCK_PTR);
6951 if (e)
6952 {
6953 gsi_insert_on_edge (e, gimple_build_nop ());
6954 gsi_commit_edge_inserts ();
6955 }
6956 }
6957 }
6958
6959 /* Now add fake edges to the function exit for any non constant
6960 calls since there is no way that we can determine if they will
6961 return or not... */
6962 for (i = 0; i < last_bb; i++)
6963 {
6964 basic_block bb = BASIC_BLOCK (i);
6965 gimple_stmt_iterator gsi;
6966 gimple stmt, last_stmt;
6967
6968 if (!bb)
6969 continue;
6970
6971 if (blocks && !TEST_BIT (blocks, i))
6972 continue;
6973
6974 gsi = gsi_last_nondebug_bb (bb);
6975 if (!gsi_end_p (gsi))
6976 {
6977 last_stmt = gsi_stmt (gsi);
6978 do
6979 {
6980 stmt = gsi_stmt (gsi);
6981 if (need_fake_edge_p (stmt))
6982 {
6983 edge e;
6984
6985 /* The handling above of the final block before the
6986 epilogue should be enough to verify that there is
6987 no edge to the exit block in CFG already.
6988 Calling make_edge in such case would cause us to
6989 mark that edge as fake and remove it later. */
6990 #ifdef ENABLE_CHECKING
6991 if (stmt == last_stmt)
6992 {
6993 e = find_edge (bb, EXIT_BLOCK_PTR);
6994 gcc_assert (e == NULL);
6995 }
6996 #endif
6997
6998 /* Note that the following may create a new basic block
6999 and renumber the existing basic blocks. */
7000 if (stmt != last_stmt)
7001 {
7002 e = split_block (bb, stmt);
7003 if (e)
7004 blocks_split++;
7005 }
7006 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7007 }
7008 gsi_prev (&gsi);
7009 }
7010 while (!gsi_end_p (gsi));
7011 }
7012 }
7013
7014 if (blocks_split)
7015 verify_flow_info ();
7016
7017 return blocks_split;
7018 }
7019
7020 /* Removes edge E and all the blocks dominated by it, and updates dominance
7021 information. The IL in E->src needs to be updated separately.
7022 If dominance info is not available, only the edge E is removed.*/
7023
7024 void
7025 remove_edge_and_dominated_blocks (edge e)
7026 {
7027 VEC (basic_block, heap) *bbs_to_remove = NULL;
7028 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
7029 bitmap df, df_idom;
7030 edge f;
7031 edge_iterator ei;
7032 bool none_removed = false;
7033 unsigned i;
7034 basic_block bb, dbb;
7035 bitmap_iterator bi;
7036
7037 if (!dom_info_available_p (CDI_DOMINATORS))
7038 {
7039 remove_edge (e);
7040 return;
7041 }
7042
7043 /* No updating is needed for edges to exit. */
7044 if (e->dest == EXIT_BLOCK_PTR)
7045 {
7046 if (cfgcleanup_altered_bbs)
7047 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7048 remove_edge (e);
7049 return;
7050 }
7051
7052 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7053 that is not dominated by E->dest, then this set is empty. Otherwise,
7054 all the basic blocks dominated by E->dest are removed.
7055
7056 Also, to DF_IDOM we store the immediate dominators of the blocks in
7057 the dominance frontier of E (i.e., of the successors of the
7058 removed blocks, if there are any, and of E->dest otherwise). */
7059 FOR_EACH_EDGE (f, ei, e->dest->preds)
7060 {
7061 if (f == e)
7062 continue;
7063
7064 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7065 {
7066 none_removed = true;
7067 break;
7068 }
7069 }
7070
7071 df = BITMAP_ALLOC (NULL);
7072 df_idom = BITMAP_ALLOC (NULL);
7073
7074 if (none_removed)
7075 bitmap_set_bit (df_idom,
7076 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7077 else
7078 {
7079 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7080 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7081 {
7082 FOR_EACH_EDGE (f, ei, bb->succs)
7083 {
7084 if (f->dest != EXIT_BLOCK_PTR)
7085 bitmap_set_bit (df, f->dest->index);
7086 }
7087 }
7088 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7089 bitmap_clear_bit (df, bb->index);
7090
7091 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7092 {
7093 bb = BASIC_BLOCK (i);
7094 bitmap_set_bit (df_idom,
7095 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7096 }
7097 }
7098
7099 if (cfgcleanup_altered_bbs)
7100 {
7101 /* Record the set of the altered basic blocks. */
7102 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7103 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7104 }
7105
7106 /* Remove E and the cancelled blocks. */
7107 if (none_removed)
7108 remove_edge (e);
7109 else
7110 {
7111 /* Walk backwards so as to get a chance to substitute all
7112 released DEFs into debug stmts. See
7113 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7114 details. */
7115 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
7116 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
7117 }
7118
7119 /* Update the dominance information. The immediate dominator may change only
7120 for blocks whose immediate dominator belongs to DF_IDOM:
7121
7122 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7123 removal. Let Z the arbitrary block such that idom(Z) = Y and
7124 Z dominates X after the removal. Before removal, there exists a path P
7125 from Y to X that avoids Z. Let F be the last edge on P that is
7126 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7127 dominates W, and because of P, Z does not dominate W), and W belongs to
7128 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7129 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7130 {
7131 bb = BASIC_BLOCK (i);
7132 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7133 dbb;
7134 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7135 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
7136 }
7137
7138 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7139
7140 BITMAP_FREE (df);
7141 BITMAP_FREE (df_idom);
7142 VEC_free (basic_block, heap, bbs_to_remove);
7143 VEC_free (basic_block, heap, bbs_to_fix_dom);
7144 }
7145
7146 /* Purge dead EH edges from basic block BB. */
7147
7148 bool
7149 gimple_purge_dead_eh_edges (basic_block bb)
7150 {
7151 bool changed = false;
7152 edge e;
7153 edge_iterator ei;
7154 gimple stmt = last_stmt (bb);
7155
7156 if (stmt && stmt_can_throw_internal (stmt))
7157 return false;
7158
7159 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7160 {
7161 if (e->flags & EDGE_EH)
7162 {
7163 remove_edge_and_dominated_blocks (e);
7164 changed = true;
7165 }
7166 else
7167 ei_next (&ei);
7168 }
7169
7170 return changed;
7171 }
7172
7173 /* Purge dead EH edges from basic block listed in BLOCKS. */
7174
7175 bool
7176 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7177 {
7178 bool changed = false;
7179 unsigned i;
7180 bitmap_iterator bi;
7181
7182 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7183 {
7184 basic_block bb = BASIC_BLOCK (i);
7185
7186 /* Earlier gimple_purge_dead_eh_edges could have removed
7187 this basic block already. */
7188 gcc_assert (bb || changed);
7189 if (bb != NULL)
7190 changed |= gimple_purge_dead_eh_edges (bb);
7191 }
7192
7193 return changed;
7194 }
7195
7196 /* Purge dead abnormal call edges from basic block BB. */
7197
7198 bool
7199 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7200 {
7201 bool changed = false;
7202 edge e;
7203 edge_iterator ei;
7204 gimple stmt = last_stmt (bb);
7205
7206 if (!cfun->has_nonlocal_label)
7207 return false;
7208
7209 if (stmt && stmt_can_make_abnormal_goto (stmt))
7210 return false;
7211
7212 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7213 {
7214 if (e->flags & EDGE_ABNORMAL)
7215 {
7216 remove_edge_and_dominated_blocks (e);
7217 changed = true;
7218 }
7219 else
7220 ei_next (&ei);
7221 }
7222
7223 return changed;
7224 }
7225
7226 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7227
7228 bool
7229 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7230 {
7231 bool changed = false;
7232 unsigned i;
7233 bitmap_iterator bi;
7234
7235 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7236 {
7237 basic_block bb = BASIC_BLOCK (i);
7238
7239 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7240 this basic block already. */
7241 gcc_assert (bb || changed);
7242 if (bb != NULL)
7243 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7244 }
7245
7246 return changed;
7247 }
7248
7249 /* This function is called whenever a new edge is created or
7250 redirected. */
7251
7252 static void
7253 gimple_execute_on_growing_pred (edge e)
7254 {
7255 basic_block bb = e->dest;
7256
7257 if (!gimple_seq_empty_p (phi_nodes (bb)))
7258 reserve_phi_args_for_new_edge (bb);
7259 }
7260
7261 /* This function is called immediately before edge E is removed from
7262 the edge vector E->dest->preds. */
7263
7264 static void
7265 gimple_execute_on_shrinking_pred (edge e)
7266 {
7267 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7268 remove_phi_args (e);
7269 }
7270
7271 /*---------------------------------------------------------------------------
7272 Helper functions for Loop versioning
7273 ---------------------------------------------------------------------------*/
7274
7275 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7276 of 'first'. Both of them are dominated by 'new_head' basic block. When
7277 'new_head' was created by 'second's incoming edge it received phi arguments
7278 on the edge by split_edge(). Later, additional edge 'e' was created to
7279 connect 'new_head' and 'first'. Now this routine adds phi args on this
7280 additional edge 'e' that new_head to second edge received as part of edge
7281 splitting. */
7282
7283 static void
7284 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7285 basic_block new_head, edge e)
7286 {
7287 gimple phi1, phi2;
7288 gimple_stmt_iterator psi1, psi2;
7289 tree def;
7290 edge e2 = find_edge (new_head, second);
7291
7292 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7293 edge, we should always have an edge from NEW_HEAD to SECOND. */
7294 gcc_assert (e2 != NULL);
7295
7296 /* Browse all 'second' basic block phi nodes and add phi args to
7297 edge 'e' for 'first' head. PHI args are always in correct order. */
7298
7299 for (psi2 = gsi_start_phis (second),
7300 psi1 = gsi_start_phis (first);
7301 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7302 gsi_next (&psi2), gsi_next (&psi1))
7303 {
7304 phi1 = gsi_stmt (psi1);
7305 phi2 = gsi_stmt (psi2);
7306 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7307 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7308 }
7309 }
7310
7311
7312 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7313 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7314 the destination of the ELSE part. */
7315
7316 static void
7317 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7318 basic_block second_head ATTRIBUTE_UNUSED,
7319 basic_block cond_bb, void *cond_e)
7320 {
7321 gimple_stmt_iterator gsi;
7322 gimple new_cond_expr;
7323 tree cond_expr = (tree) cond_e;
7324 edge e0;
7325
7326 /* Build new conditional expr */
7327 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7328 NULL_TREE, NULL_TREE);
7329
7330 /* Add new cond in cond_bb. */
7331 gsi = gsi_last_bb (cond_bb);
7332 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7333
7334 /* Adjust edges appropriately to connect new head with first head
7335 as well as second head. */
7336 e0 = single_succ_edge (cond_bb);
7337 e0->flags &= ~EDGE_FALLTHRU;
7338 e0->flags |= EDGE_FALSE_VALUE;
7339 }
7340
7341 struct cfg_hooks gimple_cfg_hooks = {
7342 "gimple",
7343 gimple_verify_flow_info,
7344 gimple_dump_bb, /* dump_bb */
7345 create_bb, /* create_basic_block */
7346 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7347 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7348 gimple_can_remove_branch_p, /* can_remove_branch_p */
7349 remove_bb, /* delete_basic_block */
7350 gimple_split_block, /* split_block */
7351 gimple_move_block_after, /* move_block_after */
7352 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7353 gimple_merge_blocks, /* merge_blocks */
7354 gimple_predict_edge, /* predict_edge */
7355 gimple_predicted_by_p, /* predicted_by_p */
7356 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7357 gimple_duplicate_bb, /* duplicate_block */
7358 gimple_split_edge, /* split_edge */
7359 gimple_make_forwarder_block, /* make_forward_block */
7360 NULL, /* tidy_fallthru_edge */
7361 NULL, /* force_nonfallthru */
7362 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7363 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7364 gimple_flow_call_edges_add, /* flow_call_edges_add */
7365 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7366 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7367 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7368 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7369 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7370 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7371 flush_pending_stmts /* flush_pending_stmts */
7372 };
7373
7374
7375 /* Split all critical edges. */
7376
7377 static unsigned int
7378 split_critical_edges (void)
7379 {
7380 basic_block bb;
7381 edge e;
7382 edge_iterator ei;
7383
7384 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7385 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7386 mappings around the calls to split_edge. */
7387 start_recording_case_labels ();
7388 FOR_ALL_BB (bb)
7389 {
7390 FOR_EACH_EDGE (e, ei, bb->succs)
7391 {
7392 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7393 split_edge (e);
7394 /* PRE inserts statements to edges and expects that
7395 since split_critical_edges was done beforehand, committing edge
7396 insertions will not split more edges. In addition to critical
7397 edges we must split edges that have multiple successors and
7398 end by control flow statements, such as RESX.
7399 Go ahead and split them too. This matches the logic in
7400 gimple_find_edge_insert_loc. */
7401 else if ((!single_pred_p (e->dest)
7402 || !gimple_seq_empty_p (phi_nodes (e->dest))
7403 || e->dest == EXIT_BLOCK_PTR)
7404 && e->src != ENTRY_BLOCK_PTR
7405 && !(e->flags & EDGE_ABNORMAL))
7406 {
7407 gimple_stmt_iterator gsi;
7408
7409 gsi = gsi_last_bb (e->src);
7410 if (!gsi_end_p (gsi)
7411 && stmt_ends_bb_p (gsi_stmt (gsi))
7412 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7413 && !gimple_call_builtin_p (gsi_stmt (gsi),
7414 BUILT_IN_RETURN)))
7415 split_edge (e);
7416 }
7417 }
7418 }
7419 end_recording_case_labels ();
7420 return 0;
7421 }
7422
7423 struct gimple_opt_pass pass_split_crit_edges =
7424 {
7425 {
7426 GIMPLE_PASS,
7427 "crited", /* name */
7428 NULL, /* gate */
7429 split_critical_edges, /* execute */
7430 NULL, /* sub */
7431 NULL, /* next */
7432 0, /* static_pass_number */
7433 TV_TREE_SPLIT_EDGES, /* tv_id */
7434 PROP_cfg, /* properties required */
7435 PROP_no_crit_edges, /* properties_provided */
7436 0, /* properties_destroyed */
7437 0, /* todo_flags_start */
7438 TODO_verify_flow /* todo_flags_finish */
7439 }
7440 };
7441
7442
7443 /* Build a ternary operation and gimplify it. Emit code before GSI.
7444 Return the gimple_val holding the result. */
7445
7446 tree
7447 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7448 tree type, tree a, tree b, tree c)
7449 {
7450 tree ret;
7451 location_t loc = gimple_location (gsi_stmt (*gsi));
7452
7453 ret = fold_build3_loc (loc, code, type, a, b, c);
7454 STRIP_NOPS (ret);
7455
7456 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7457 GSI_SAME_STMT);
7458 }
7459
7460 /* Build a binary operation and gimplify it. Emit code before GSI.
7461 Return the gimple_val holding the result. */
7462
7463 tree
7464 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7465 tree type, tree a, tree b)
7466 {
7467 tree ret;
7468
7469 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7470 STRIP_NOPS (ret);
7471
7472 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7473 GSI_SAME_STMT);
7474 }
7475
7476 /* Build a unary operation and gimplify it. Emit code before GSI.
7477 Return the gimple_val holding the result. */
7478
7479 tree
7480 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7481 tree a)
7482 {
7483 tree ret;
7484
7485 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7486 STRIP_NOPS (ret);
7487
7488 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7489 GSI_SAME_STMT);
7490 }
7491
7492
7493 \f
7494 /* Emit return warnings. */
7495
7496 static unsigned int
7497 execute_warn_function_return (void)
7498 {
7499 source_location location;
7500 gimple last;
7501 edge e;
7502 edge_iterator ei;
7503
7504 /* If we have a path to EXIT, then we do return. */
7505 if (TREE_THIS_VOLATILE (cfun->decl)
7506 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7507 {
7508 location = UNKNOWN_LOCATION;
7509 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7510 {
7511 last = last_stmt (e->src);
7512 if ((gimple_code (last) == GIMPLE_RETURN
7513 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7514 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7515 break;
7516 }
7517 if (location == UNKNOWN_LOCATION)
7518 location = cfun->function_end_locus;
7519 warning_at (location, 0, "%<noreturn%> function does return");
7520 }
7521
7522 /* If we see "return;" in some basic block, then we do reach the end
7523 without returning a value. */
7524 else if (warn_return_type
7525 && !TREE_NO_WARNING (cfun->decl)
7526 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7527 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7528 {
7529 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7530 {
7531 gimple last = last_stmt (e->src);
7532 if (gimple_code (last) == GIMPLE_RETURN
7533 && gimple_return_retval (last) == NULL
7534 && !gimple_no_warning_p (last))
7535 {
7536 location = gimple_location (last);
7537 if (location == UNKNOWN_LOCATION)
7538 location = cfun->function_end_locus;
7539 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7540 TREE_NO_WARNING (cfun->decl) = 1;
7541 break;
7542 }
7543 }
7544 }
7545 return 0;
7546 }
7547
7548
7549 /* Given a basic block B which ends with a conditional and has
7550 precisely two successors, determine which of the edges is taken if
7551 the conditional is true and which is taken if the conditional is
7552 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7553
7554 void
7555 extract_true_false_edges_from_block (basic_block b,
7556 edge *true_edge,
7557 edge *false_edge)
7558 {
7559 edge e = EDGE_SUCC (b, 0);
7560
7561 if (e->flags & EDGE_TRUE_VALUE)
7562 {
7563 *true_edge = e;
7564 *false_edge = EDGE_SUCC (b, 1);
7565 }
7566 else
7567 {
7568 *false_edge = e;
7569 *true_edge = EDGE_SUCC (b, 1);
7570 }
7571 }
7572
7573 struct gimple_opt_pass pass_warn_function_return =
7574 {
7575 {
7576 GIMPLE_PASS,
7577 "*warn_function_return", /* name */
7578 NULL, /* gate */
7579 execute_warn_function_return, /* execute */
7580 NULL, /* sub */
7581 NULL, /* next */
7582 0, /* static_pass_number */
7583 TV_NONE, /* tv_id */
7584 PROP_cfg, /* properties_required */
7585 0, /* properties_provided */
7586 0, /* properties_destroyed */
7587 0, /* todo_flags_start */
7588 0 /* todo_flags_finish */
7589 }
7590 };
7591
7592 /* Emit noreturn warnings. */
7593
7594 static unsigned int
7595 execute_warn_function_noreturn (void)
7596 {
7597 if (!TREE_THIS_VOLATILE (current_function_decl)
7598 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7599 warn_function_noreturn (current_function_decl);
7600 return 0;
7601 }
7602
7603 static bool
7604 gate_warn_function_noreturn (void)
7605 {
7606 return warn_suggest_attribute_noreturn;
7607 }
7608
7609 struct gimple_opt_pass pass_warn_function_noreturn =
7610 {
7611 {
7612 GIMPLE_PASS,
7613 "*warn_function_noreturn", /* name */
7614 gate_warn_function_noreturn, /* gate */
7615 execute_warn_function_noreturn, /* execute */
7616 NULL, /* sub */
7617 NULL, /* next */
7618 0, /* static_pass_number */
7619 TV_NONE, /* tv_id */
7620 PROP_cfg, /* properties_required */
7621 0, /* properties_provided */
7622 0, /* properties_destroyed */
7623 0, /* todo_flags_start */
7624 0 /* todo_flags_finish */
7625 }
7626 };
7627
7628
7629 /* Walk a gimplified function and warn for functions whose return value is
7630 ignored and attribute((warn_unused_result)) is set. This is done before
7631 inlining, so we don't have to worry about that. */
7632
7633 static void
7634 do_warn_unused_result (gimple_seq seq)
7635 {
7636 tree fdecl, ftype;
7637 gimple_stmt_iterator i;
7638
7639 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7640 {
7641 gimple g = gsi_stmt (i);
7642
7643 switch (gimple_code (g))
7644 {
7645 case GIMPLE_BIND:
7646 do_warn_unused_result (gimple_bind_body (g));
7647 break;
7648 case GIMPLE_TRY:
7649 do_warn_unused_result (gimple_try_eval (g));
7650 do_warn_unused_result (gimple_try_cleanup (g));
7651 break;
7652 case GIMPLE_CATCH:
7653 do_warn_unused_result (gimple_catch_handler (g));
7654 break;
7655 case GIMPLE_EH_FILTER:
7656 do_warn_unused_result (gimple_eh_filter_failure (g));
7657 break;
7658
7659 case GIMPLE_CALL:
7660 if (gimple_call_lhs (g))
7661 break;
7662 if (gimple_call_internal_p (g))
7663 break;
7664
7665 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7666 LHS. All calls whose value is ignored should be
7667 represented like this. Look for the attribute. */
7668 fdecl = gimple_call_fndecl (g);
7669 ftype = gimple_call_fntype (g);
7670
7671 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7672 {
7673 location_t loc = gimple_location (g);
7674
7675 if (fdecl)
7676 warning_at (loc, OPT_Wunused_result,
7677 "ignoring return value of %qD, "
7678 "declared with attribute warn_unused_result",
7679 fdecl);
7680 else
7681 warning_at (loc, OPT_Wunused_result,
7682 "ignoring return value of function "
7683 "declared with attribute warn_unused_result");
7684 }
7685 break;
7686
7687 default:
7688 /* Not a container, not a call, or a call whose value is used. */
7689 break;
7690 }
7691 }
7692 }
7693
7694 static unsigned int
7695 run_warn_unused_result (void)
7696 {
7697 do_warn_unused_result (gimple_body (current_function_decl));
7698 return 0;
7699 }
7700
7701 static bool
7702 gate_warn_unused_result (void)
7703 {
7704 return flag_warn_unused_result;
7705 }
7706
7707 struct gimple_opt_pass pass_warn_unused_result =
7708 {
7709 {
7710 GIMPLE_PASS,
7711 "*warn_unused_result", /* name */
7712 gate_warn_unused_result, /* gate */
7713 run_warn_unused_result, /* execute */
7714 NULL, /* sub */
7715 NULL, /* next */
7716 0, /* static_pass_number */
7717 TV_NONE, /* tv_id */
7718 PROP_gimple_any, /* properties_required */
7719 0, /* properties_provided */
7720 0, /* properties_destroyed */
7721 0, /* todo_flags_start */
7722 0, /* todo_flags_finish */
7723 }
7724 };