Fixup formatting.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
130
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
133 {
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
144
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
151
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
156
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
161 }
162
163 void
164 init_empty_tree_cfg (void)
165 {
166 init_empty_tree_cfg_for_function (cfun);
167 }
168
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
172
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
175
176 static void
177 build_gimple_cfg (gimple_seq seq)
178 {
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
181
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
183
184 init_empty_tree_cfg ();
185
186 found_computed_goto = 0;
187 make_blocks (seq);
188
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
196
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
200
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
204
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
207
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
212
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
219
220 /* Debugging dumps. */
221
222 /* Write the flowgraph to a VCG file. */
223 {
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
227 {
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
230 }
231 }
232 }
233
234 static unsigned int
235 execute_build_cfg (void)
236 {
237 gimple_seq body = gimple_body (current_function_decl);
238
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
242 {
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
245 }
246 return 0;
247 }
248
249 struct gimple_opt_pass pass_build_cfg =
250 {
251 {
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg
265 | TODO_dump_func /* todo_flags_finish */
266 }
267 };
268
269
270 /* Return true if T is a computed goto. */
271
272 static bool
273 computed_goto_p (gimple t)
274 {
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
277 }
278
279
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
284
285 static void
286 factor_computed_gotos (void)
287 {
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
293
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
297
298 FOR_EACH_BB (bb)
299 {
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
302
303 if (gsi_end_p (gsi))
304 continue;
305
306 last = gsi_stmt (gsi);
307
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
312
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
315 {
316 gimple assignment;
317
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
322 {
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
325
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
331
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
339
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
343 }
344
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
348
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
351 }
352 }
353 }
354
355
356 /* Build a flowgraph for the sequence of stmts SEQ. */
357
358 static void
359 make_blocks (gimple_seq seq)
360 {
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
366
367 while (!gsi_end_p (i))
368 {
369 gimple prev_stmt;
370
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
373
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
378 {
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
383 }
384
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
388
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
391
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
395 {
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
404 {
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
415 }
416 start_new_block = true;
417 }
418
419 gsi_next (&i);
420 first_stmt_of_seq = false;
421 }
422 }
423
424
425 /* Create and return a new empty basic block after bb AFTER. */
426
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
429 {
430 basic_block bb;
431
432 gcc_assert (!e);
433
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
438
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
443
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
446
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
449 {
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
452 }
453
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
456
457 n_basic_blocks++;
458 last_basic_block++;
459
460 return bb;
461 }
462
463
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
467
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
469
470 void
471 fold_cond_expr_cond (void)
472 {
473 basic_block bb;
474
475 FOR_EACH_BB (bb)
476 {
477 gimple stmt = last_stmt (bb);
478
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
480 {
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
484
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
489 {
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
492 }
493 else
494 zerop = onep = false;
495
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
503 }
504 }
505 }
506
507 /* Join all the blocks in the flowgraph. */
508
509 static void
510 make_edges (void)
511 {
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
514
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
518
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
521 {
522 gimple last = last_stmt (bb);
523 bool fallthru;
524
525 if (last)
526 {
527 enum gimple_code code = gimple_code (last);
528 switch (code)
529 {
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
553
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
560
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
564
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
572
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
580
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
585
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
597
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
602
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
606
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
611
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
620
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
624 {
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
633
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
641
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
644 {
645 basic_block switch_bb = single_succ (cur_region->entry);
646
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
649 {
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
653 }
654
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
658
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
662 }
663 break;
664
665 default:
666 gcc_unreachable ();
667 }
668 break;
669
670 default:
671 gcc_assert (!stmt_ends_bb_p (last));
672 fallthru = true;
673 }
674 }
675 else
676 fallthru = true;
677
678 if (fallthru)
679 {
680 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
681 if (last)
682 assign_discriminator (gimple_location (last), bb->next_bb);
683 }
684 }
685
686 if (root_omp_region)
687 free_omp_regions ();
688
689 /* Fold COND_EXPR_COND of each COND_EXPR. */
690 fold_cond_expr_cond ();
691 }
692
693 /* Trivial hash function for a location_t. ITEM is a pointer to
694 a hash table entry that maps a location_t to a discriminator. */
695
696 static unsigned int
697 locus_map_hash (const void *item)
698 {
699 return ((const struct locus_discrim_map *) item)->locus;
700 }
701
702 /* Equality function for the locus-to-discriminator map. VA and VB
703 point to the two hash table entries to compare. */
704
705 static int
706 locus_map_eq (const void *va, const void *vb)
707 {
708 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
709 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
710 return a->locus == b->locus;
711 }
712
713 /* Find the next available discriminator value for LOCUS. The
714 discriminator distinguishes among several basic blocks that
715 share a common locus, allowing for more accurate sample-based
716 profiling. */
717
718 static int
719 next_discriminator_for_locus (location_t locus)
720 {
721 struct locus_discrim_map item;
722 struct locus_discrim_map **slot;
723
724 item.locus = locus;
725 item.discriminator = 0;
726 slot = (struct locus_discrim_map **)
727 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
728 (hashval_t) locus, INSERT);
729 gcc_assert (slot);
730 if (*slot == HTAB_EMPTY_ENTRY)
731 {
732 *slot = XNEW (struct locus_discrim_map);
733 gcc_assert (*slot);
734 (*slot)->locus = locus;
735 (*slot)->discriminator = 0;
736 }
737 (*slot)->discriminator++;
738 return (*slot)->discriminator;
739 }
740
741 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
742
743 static bool
744 same_line_p (location_t locus1, location_t locus2)
745 {
746 expanded_location from, to;
747
748 if (locus1 == locus2)
749 return true;
750
751 from = expand_location (locus1);
752 to = expand_location (locus2);
753
754 if (from.line != to.line)
755 return false;
756 if (from.file == to.file)
757 return true;
758 return (from.file != NULL
759 && to.file != NULL
760 && strcmp (from.file, to.file) == 0);
761 }
762
763 /* Assign a unique discriminator value to block BB if it begins at the same
764 LOCUS as its predecessor block. */
765
766 static void
767 assign_discriminator (location_t locus, basic_block bb)
768 {
769 gimple first_in_to_bb, last_in_to_bb;
770
771 if (locus == 0 || bb->discriminator != 0)
772 return;
773
774 first_in_to_bb = first_non_label_stmt (bb);
775 last_in_to_bb = last_stmt (bb);
776 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
777 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
778 bb->discriminator = next_discriminator_for_locus (locus);
779 }
780
781 /* Create the edges for a GIMPLE_COND starting at block BB. */
782
783 static void
784 make_cond_expr_edges (basic_block bb)
785 {
786 gimple entry = last_stmt (bb);
787 gimple then_stmt, else_stmt;
788 basic_block then_bb, else_bb;
789 tree then_label, else_label;
790 edge e;
791 location_t entry_locus;
792
793 gcc_assert (entry);
794 gcc_assert (gimple_code (entry) == GIMPLE_COND);
795
796 entry_locus = gimple_location (entry);
797
798 /* Entry basic blocks for each component. */
799 then_label = gimple_cond_true_label (entry);
800 else_label = gimple_cond_false_label (entry);
801 then_bb = label_to_block (then_label);
802 else_bb = label_to_block (else_label);
803 then_stmt = first_stmt (then_bb);
804 else_stmt = first_stmt (else_bb);
805
806 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
807 assign_discriminator (entry_locus, then_bb);
808 e->goto_locus = gimple_location (then_stmt);
809 if (e->goto_locus)
810 e->goto_block = gimple_block (then_stmt);
811 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
812 if (e)
813 {
814 assign_discriminator (entry_locus, else_bb);
815 e->goto_locus = gimple_location (else_stmt);
816 if (e->goto_locus)
817 e->goto_block = gimple_block (else_stmt);
818 }
819
820 /* We do not need the labels anymore. */
821 gimple_cond_set_true_label (entry, NULL_TREE);
822 gimple_cond_set_false_label (entry, NULL_TREE);
823 }
824
825
826 /* Called for each element in the hash table (P) as we delete the
827 edge to cases hash table.
828
829 Clear all the TREE_CHAINs to prevent problems with copying of
830 SWITCH_EXPRs and structure sharing rules, then free the hash table
831 element. */
832
833 static bool
834 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
835 void *data ATTRIBUTE_UNUSED)
836 {
837 tree t, next;
838
839 for (t = (tree) *value; t; t = next)
840 {
841 next = TREE_CHAIN (t);
842 TREE_CHAIN (t) = NULL;
843 }
844
845 *value = NULL;
846 return false;
847 }
848
849 /* Start recording information mapping edges to case labels. */
850
851 void
852 start_recording_case_labels (void)
853 {
854 gcc_assert (edge_to_cases == NULL);
855 edge_to_cases = pointer_map_create ();
856 touched_switch_bbs = BITMAP_ALLOC (NULL);
857 }
858
859 /* Return nonzero if we are recording information for case labels. */
860
861 static bool
862 recording_case_labels_p (void)
863 {
864 return (edge_to_cases != NULL);
865 }
866
867 /* Stop recording information mapping edges to case labels and
868 remove any information we have recorded. */
869 void
870 end_recording_case_labels (void)
871 {
872 bitmap_iterator bi;
873 unsigned i;
874 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
875 pointer_map_destroy (edge_to_cases);
876 edge_to_cases = NULL;
877 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
878 {
879 basic_block bb = BASIC_BLOCK (i);
880 if (bb)
881 {
882 gimple stmt = last_stmt (bb);
883 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
884 group_case_labels_stmt (stmt);
885 }
886 }
887 BITMAP_FREE (touched_switch_bbs);
888 }
889
890 /* If we are inside a {start,end}_recording_cases block, then return
891 a chain of CASE_LABEL_EXPRs from T which reference E.
892
893 Otherwise return NULL. */
894
895 static tree
896 get_cases_for_edge (edge e, gimple t)
897 {
898 void **slot;
899 size_t i, n;
900
901 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
902 chains available. Return NULL so the caller can detect this case. */
903 if (!recording_case_labels_p ())
904 return NULL;
905
906 slot = pointer_map_contains (edge_to_cases, e);
907 if (slot)
908 return (tree) *slot;
909
910 /* If we did not find E in the hash table, then this must be the first
911 time we have been queried for information about E & T. Add all the
912 elements from T to the hash table then perform the query again. */
913
914 n = gimple_switch_num_labels (t);
915 for (i = 0; i < n; i++)
916 {
917 tree elt = gimple_switch_label (t, i);
918 tree lab = CASE_LABEL (elt);
919 basic_block label_bb = label_to_block (lab);
920 edge this_edge = find_edge (e->src, label_bb);
921
922 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
923 a new chain. */
924 slot = pointer_map_insert (edge_to_cases, this_edge);
925 TREE_CHAIN (elt) = (tree) *slot;
926 *slot = elt;
927 }
928
929 return (tree) *pointer_map_contains (edge_to_cases, e);
930 }
931
932 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
933
934 static void
935 make_gimple_switch_edges (basic_block bb)
936 {
937 gimple entry = last_stmt (bb);
938 location_t entry_locus;
939 size_t i, n;
940
941 entry_locus = gimple_location (entry);
942
943 n = gimple_switch_num_labels (entry);
944
945 for (i = 0; i < n; ++i)
946 {
947 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
948 basic_block label_bb = label_to_block (lab);
949 make_edge (bb, label_bb, 0);
950 assign_discriminator (entry_locus, label_bb);
951 }
952 }
953
954
955 /* Return the basic block holding label DEST. */
956
957 basic_block
958 label_to_block_fn (struct function *ifun, tree dest)
959 {
960 int uid = LABEL_DECL_UID (dest);
961
962 /* We would die hard when faced by an undefined label. Emit a label to
963 the very first basic block. This will hopefully make even the dataflow
964 and undefined variable warnings quite right. */
965 if (seen_error () && uid < 0)
966 {
967 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
968 gimple stmt;
969
970 stmt = gimple_build_label (dest);
971 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
972 uid = LABEL_DECL_UID (dest);
973 }
974 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
975 <= (unsigned int) uid)
976 return NULL;
977 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
978 }
979
980 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
981 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
982
983 void
984 make_abnormal_goto_edges (basic_block bb, bool for_call)
985 {
986 basic_block target_bb;
987 gimple_stmt_iterator gsi;
988
989 FOR_EACH_BB (target_bb)
990 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
991 {
992 gimple label_stmt = gsi_stmt (gsi);
993 tree target;
994
995 if (gimple_code (label_stmt) != GIMPLE_LABEL)
996 break;
997
998 target = gimple_label_label (label_stmt);
999
1000 /* Make an edge to every label block that has been marked as a
1001 potential target for a computed goto or a non-local goto. */
1002 if ((FORCED_LABEL (target) && !for_call)
1003 || (DECL_NONLOCAL (target) && for_call))
1004 {
1005 make_edge (bb, target_bb, EDGE_ABNORMAL);
1006 break;
1007 }
1008 }
1009 }
1010
1011 /* Create edges for a goto statement at block BB. */
1012
1013 static void
1014 make_goto_expr_edges (basic_block bb)
1015 {
1016 gimple_stmt_iterator last = gsi_last_bb (bb);
1017 gimple goto_t = gsi_stmt (last);
1018
1019 /* A simple GOTO creates normal edges. */
1020 if (simple_goto_p (goto_t))
1021 {
1022 tree dest = gimple_goto_dest (goto_t);
1023 basic_block label_bb = label_to_block (dest);
1024 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1025 e->goto_locus = gimple_location (goto_t);
1026 assign_discriminator (e->goto_locus, label_bb);
1027 if (e->goto_locus)
1028 e->goto_block = gimple_block (goto_t);
1029 gsi_remove (&last, true);
1030 return;
1031 }
1032
1033 /* A computed GOTO creates abnormal edges. */
1034 make_abnormal_goto_edges (bb, false);
1035 }
1036
1037 /* Create edges for an asm statement with labels at block BB. */
1038
1039 static void
1040 make_gimple_asm_edges (basic_block bb)
1041 {
1042 gimple stmt = last_stmt (bb);
1043 location_t stmt_loc = gimple_location (stmt);
1044 int i, n = gimple_asm_nlabels (stmt);
1045
1046 for (i = 0; i < n; ++i)
1047 {
1048 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1049 basic_block label_bb = label_to_block (label);
1050 make_edge (bb, label_bb, 0);
1051 assign_discriminator (stmt_loc, label_bb);
1052 }
1053 }
1054
1055 /*---------------------------------------------------------------------------
1056 Flowgraph analysis
1057 ---------------------------------------------------------------------------*/
1058
1059 /* Cleanup useless labels in basic blocks. This is something we wish
1060 to do early because it allows us to group case labels before creating
1061 the edges for the CFG, and it speeds up block statement iterators in
1062 all passes later on.
1063 We rerun this pass after CFG is created, to get rid of the labels that
1064 are no longer referenced. After then we do not run it any more, since
1065 (almost) no new labels should be created. */
1066
1067 /* A map from basic block index to the leading label of that block. */
1068 static struct label_record
1069 {
1070 /* The label. */
1071 tree label;
1072
1073 /* True if the label is referenced from somewhere. */
1074 bool used;
1075 } *label_for_bb;
1076
1077 /* Given LABEL return the first label in the same basic block. */
1078
1079 static tree
1080 main_block_label (tree label)
1081 {
1082 basic_block bb = label_to_block (label);
1083 tree main_label = label_for_bb[bb->index].label;
1084
1085 /* label_to_block possibly inserted undefined label into the chain. */
1086 if (!main_label)
1087 {
1088 label_for_bb[bb->index].label = label;
1089 main_label = label;
1090 }
1091
1092 label_for_bb[bb->index].used = true;
1093 return main_label;
1094 }
1095
1096 /* Clean up redundant labels within the exception tree. */
1097
1098 static void
1099 cleanup_dead_labels_eh (void)
1100 {
1101 eh_landing_pad lp;
1102 eh_region r;
1103 tree lab;
1104 int i;
1105
1106 if (cfun->eh == NULL)
1107 return;
1108
1109 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1110 if (lp && lp->post_landing_pad)
1111 {
1112 lab = main_block_label (lp->post_landing_pad);
1113 if (lab != lp->post_landing_pad)
1114 {
1115 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1116 EH_LANDING_PAD_NR (lab) = lp->index;
1117 }
1118 }
1119
1120 FOR_ALL_EH_REGION (r)
1121 switch (r->type)
1122 {
1123 case ERT_CLEANUP:
1124 case ERT_MUST_NOT_THROW:
1125 break;
1126
1127 case ERT_TRY:
1128 {
1129 eh_catch c;
1130 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1131 {
1132 lab = c->label;
1133 if (lab)
1134 c->label = main_block_label (lab);
1135 }
1136 }
1137 break;
1138
1139 case ERT_ALLOWED_EXCEPTIONS:
1140 lab = r->u.allowed.label;
1141 if (lab)
1142 r->u.allowed.label = main_block_label (lab);
1143 break;
1144 }
1145 }
1146
1147
1148 /* Cleanup redundant labels. This is a three-step process:
1149 1) Find the leading label for each block.
1150 2) Redirect all references to labels to the leading labels.
1151 3) Cleanup all useless labels. */
1152
1153 void
1154 cleanup_dead_labels (void)
1155 {
1156 basic_block bb;
1157 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1158
1159 /* Find a suitable label for each block. We use the first user-defined
1160 label if there is one, or otherwise just the first label we see. */
1161 FOR_EACH_BB (bb)
1162 {
1163 gimple_stmt_iterator i;
1164
1165 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1166 {
1167 tree label;
1168 gimple stmt = gsi_stmt (i);
1169
1170 if (gimple_code (stmt) != GIMPLE_LABEL)
1171 break;
1172
1173 label = gimple_label_label (stmt);
1174
1175 /* If we have not yet seen a label for the current block,
1176 remember this one and see if there are more labels. */
1177 if (!label_for_bb[bb->index].label)
1178 {
1179 label_for_bb[bb->index].label = label;
1180 continue;
1181 }
1182
1183 /* If we did see a label for the current block already, but it
1184 is an artificially created label, replace it if the current
1185 label is a user defined label. */
1186 if (!DECL_ARTIFICIAL (label)
1187 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1188 {
1189 label_for_bb[bb->index].label = label;
1190 break;
1191 }
1192 }
1193 }
1194
1195 /* Now redirect all jumps/branches to the selected label.
1196 First do so for each block ending in a control statement. */
1197 FOR_EACH_BB (bb)
1198 {
1199 gimple stmt = last_stmt (bb);
1200 if (!stmt)
1201 continue;
1202
1203 switch (gimple_code (stmt))
1204 {
1205 case GIMPLE_COND:
1206 {
1207 tree true_label = gimple_cond_true_label (stmt);
1208 tree false_label = gimple_cond_false_label (stmt);
1209
1210 if (true_label)
1211 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1212 if (false_label)
1213 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1214 break;
1215 }
1216
1217 case GIMPLE_SWITCH:
1218 {
1219 size_t i, n = gimple_switch_num_labels (stmt);
1220
1221 /* Replace all destination labels. */
1222 for (i = 0; i < n; ++i)
1223 {
1224 tree case_label = gimple_switch_label (stmt, i);
1225 tree label = main_block_label (CASE_LABEL (case_label));
1226 CASE_LABEL (case_label) = label;
1227 }
1228 break;
1229 }
1230
1231 case GIMPLE_ASM:
1232 {
1233 int i, n = gimple_asm_nlabels (stmt);
1234
1235 for (i = 0; i < n; ++i)
1236 {
1237 tree cons = gimple_asm_label_op (stmt, i);
1238 tree label = main_block_label (TREE_VALUE (cons));
1239 TREE_VALUE (cons) = label;
1240 }
1241 break;
1242 }
1243
1244 /* We have to handle gotos until they're removed, and we don't
1245 remove them until after we've created the CFG edges. */
1246 case GIMPLE_GOTO:
1247 if (!computed_goto_p (stmt))
1248 {
1249 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1250 gimple_goto_set_dest (stmt, new_dest);
1251 }
1252 break;
1253
1254 default:
1255 break;
1256 }
1257 }
1258
1259 /* Do the same for the exception region tree labels. */
1260 cleanup_dead_labels_eh ();
1261
1262 /* Finally, purge dead labels. All user-defined labels and labels that
1263 can be the target of non-local gotos and labels which have their
1264 address taken are preserved. */
1265 FOR_EACH_BB (bb)
1266 {
1267 gimple_stmt_iterator i;
1268 tree label_for_this_bb = label_for_bb[bb->index].label;
1269
1270 if (!label_for_this_bb)
1271 continue;
1272
1273 /* If the main label of the block is unused, we may still remove it. */
1274 if (!label_for_bb[bb->index].used)
1275 label_for_this_bb = NULL;
1276
1277 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1278 {
1279 tree label;
1280 gimple stmt = gsi_stmt (i);
1281
1282 if (gimple_code (stmt) != GIMPLE_LABEL)
1283 break;
1284
1285 label = gimple_label_label (stmt);
1286
1287 if (label == label_for_this_bb
1288 || !DECL_ARTIFICIAL (label)
1289 || DECL_NONLOCAL (label)
1290 || FORCED_LABEL (label))
1291 gsi_next (&i);
1292 else
1293 gsi_remove (&i, true);
1294 }
1295 }
1296
1297 free (label_for_bb);
1298 }
1299
1300 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1301 the ones jumping to the same label.
1302 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1303
1304 static void
1305 group_case_labels_stmt (gimple stmt)
1306 {
1307 int old_size = gimple_switch_num_labels (stmt);
1308 int i, j, new_size = old_size;
1309 tree default_case = NULL_TREE;
1310 tree default_label = NULL_TREE;
1311 bool has_default;
1312
1313 /* The default label is always the first case in a switch
1314 statement after gimplification if it was not optimized
1315 away */
1316 if (!CASE_LOW (gimple_switch_default_label (stmt))
1317 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1318 {
1319 default_case = gimple_switch_default_label (stmt);
1320 default_label = CASE_LABEL (default_case);
1321 has_default = true;
1322 }
1323 else
1324 has_default = false;
1325
1326 /* Look for possible opportunities to merge cases. */
1327 if (has_default)
1328 i = 1;
1329 else
1330 i = 0;
1331 while (i < old_size)
1332 {
1333 tree base_case, base_label, base_high;
1334 base_case = gimple_switch_label (stmt, i);
1335
1336 gcc_assert (base_case);
1337 base_label = CASE_LABEL (base_case);
1338
1339 /* Discard cases that have the same destination as the
1340 default case. */
1341 if (base_label == default_label)
1342 {
1343 gimple_switch_set_label (stmt, i, NULL_TREE);
1344 i++;
1345 new_size--;
1346 continue;
1347 }
1348
1349 base_high = CASE_HIGH (base_case)
1350 ? CASE_HIGH (base_case)
1351 : CASE_LOW (base_case);
1352 i++;
1353
1354 /* Try to merge case labels. Break out when we reach the end
1355 of the label vector or when we cannot merge the next case
1356 label with the current one. */
1357 while (i < old_size)
1358 {
1359 tree merge_case = gimple_switch_label (stmt, i);
1360 tree merge_label = CASE_LABEL (merge_case);
1361 tree t = int_const_binop (PLUS_EXPR, base_high,
1362 integer_one_node, 1);
1363
1364 /* Merge the cases if they jump to the same place,
1365 and their ranges are consecutive. */
1366 if (merge_label == base_label
1367 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1368 {
1369 base_high = CASE_HIGH (merge_case) ?
1370 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1371 CASE_HIGH (base_case) = base_high;
1372 gimple_switch_set_label (stmt, i, NULL_TREE);
1373 new_size--;
1374 i++;
1375 }
1376 else
1377 break;
1378 }
1379 }
1380
1381 /* Compress the case labels in the label vector, and adjust the
1382 length of the vector. */
1383 for (i = 0, j = 0; i < new_size; i++)
1384 {
1385 while (! gimple_switch_label (stmt, j))
1386 j++;
1387 gimple_switch_set_label (stmt, i,
1388 gimple_switch_label (stmt, j++));
1389 }
1390
1391 gcc_assert (new_size <= old_size);
1392 gimple_switch_set_num_labels (stmt, new_size);
1393 }
1394
1395 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1396 and scan the sorted vector of cases. Combine the ones jumping to the
1397 same label. */
1398
1399 void
1400 group_case_labels (void)
1401 {
1402 basic_block bb;
1403
1404 FOR_EACH_BB (bb)
1405 {
1406 gimple stmt = last_stmt (bb);
1407 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1408 group_case_labels_stmt (stmt);
1409 }
1410 }
1411
1412 /* Checks whether we can merge block B into block A. */
1413
1414 static bool
1415 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1416 {
1417 gimple stmt;
1418 gimple_stmt_iterator gsi;
1419 gimple_seq phis;
1420
1421 if (!single_succ_p (a))
1422 return false;
1423
1424 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1425 return false;
1426
1427 if (single_succ (a) != b)
1428 return false;
1429
1430 if (!single_pred_p (b))
1431 return false;
1432
1433 if (b == EXIT_BLOCK_PTR)
1434 return false;
1435
1436 /* If A ends by a statement causing exceptions or something similar, we
1437 cannot merge the blocks. */
1438 stmt = last_stmt (a);
1439 if (stmt && stmt_ends_bb_p (stmt))
1440 return false;
1441
1442 /* Do not allow a block with only a non-local label to be merged. */
1443 if (stmt
1444 && gimple_code (stmt) == GIMPLE_LABEL
1445 && DECL_NONLOCAL (gimple_label_label (stmt)))
1446 return false;
1447
1448 /* Examine the labels at the beginning of B. */
1449 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1450 {
1451 tree lab;
1452 stmt = gsi_stmt (gsi);
1453 if (gimple_code (stmt) != GIMPLE_LABEL)
1454 break;
1455 lab = gimple_label_label (stmt);
1456
1457 /* Do not remove user labels. */
1458 if (!DECL_ARTIFICIAL (lab))
1459 return false;
1460 }
1461
1462 /* Protect the loop latches. */
1463 if (current_loops && b->loop_father->latch == b)
1464 return false;
1465
1466 /* It must be possible to eliminate all phi nodes in B. If ssa form
1467 is not up-to-date and a name-mapping is registered, we cannot eliminate
1468 any phis. Symbols marked for renaming are never a problem though. */
1469 phis = phi_nodes (b);
1470 if (!gimple_seq_empty_p (phis)
1471 && name_mappings_registered_p ())
1472 return false;
1473
1474 /* When not optimizing, don't merge if we'd lose goto_locus. */
1475 if (!optimize
1476 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1477 {
1478 location_t goto_locus = single_succ_edge (a)->goto_locus;
1479 gimple_stmt_iterator prev, next;
1480 prev = gsi_last_nondebug_bb (a);
1481 next = gsi_after_labels (b);
1482 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1483 gsi_next_nondebug (&next);
1484 if ((gsi_end_p (prev)
1485 || gimple_location (gsi_stmt (prev)) != goto_locus)
1486 && (gsi_end_p (next)
1487 || gimple_location (gsi_stmt (next)) != goto_locus))
1488 return false;
1489 }
1490
1491 return true;
1492 }
1493
1494 /* Return true if the var whose chain of uses starts at PTR has no
1495 nondebug uses. */
1496 bool
1497 has_zero_uses_1 (const ssa_use_operand_t *head)
1498 {
1499 const ssa_use_operand_t *ptr;
1500
1501 for (ptr = head->next; ptr != head; ptr = ptr->next)
1502 if (!is_gimple_debug (USE_STMT (ptr)))
1503 return false;
1504
1505 return true;
1506 }
1507
1508 /* Return true if the var whose chain of uses starts at PTR has a
1509 single nondebug use. Set USE_P and STMT to that single nondebug
1510 use, if so, or to NULL otherwise. */
1511 bool
1512 single_imm_use_1 (const ssa_use_operand_t *head,
1513 use_operand_p *use_p, gimple *stmt)
1514 {
1515 ssa_use_operand_t *ptr, *single_use = 0;
1516
1517 for (ptr = head->next; ptr != head; ptr = ptr->next)
1518 if (!is_gimple_debug (USE_STMT (ptr)))
1519 {
1520 if (single_use)
1521 {
1522 single_use = NULL;
1523 break;
1524 }
1525 single_use = ptr;
1526 }
1527
1528 if (use_p)
1529 *use_p = single_use;
1530
1531 if (stmt)
1532 *stmt = single_use ? single_use->loc.stmt : NULL;
1533
1534 return !!single_use;
1535 }
1536
1537 /* Replaces all uses of NAME by VAL. */
1538
1539 void
1540 replace_uses_by (tree name, tree val)
1541 {
1542 imm_use_iterator imm_iter;
1543 use_operand_p use;
1544 gimple stmt;
1545 edge e;
1546
1547 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1548 {
1549 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1550 {
1551 replace_exp (use, val);
1552
1553 if (gimple_code (stmt) == GIMPLE_PHI)
1554 {
1555 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1556 if (e->flags & EDGE_ABNORMAL)
1557 {
1558 /* This can only occur for virtual operands, since
1559 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1560 would prevent replacement. */
1561 gcc_assert (!is_gimple_reg (name));
1562 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1563 }
1564 }
1565 }
1566
1567 if (gimple_code (stmt) != GIMPLE_PHI)
1568 {
1569 size_t i;
1570
1571 fold_stmt_inplace (stmt);
1572 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1573 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1574
1575 /* FIXME. This should go in update_stmt. */
1576 for (i = 0; i < gimple_num_ops (stmt); i++)
1577 {
1578 tree op = gimple_op (stmt, i);
1579 /* Operands may be empty here. For example, the labels
1580 of a GIMPLE_COND are nulled out following the creation
1581 of the corresponding CFG edges. */
1582 if (op && TREE_CODE (op) == ADDR_EXPR)
1583 recompute_tree_invariant_for_addr_expr (op);
1584 }
1585
1586 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1587 update_stmt (stmt);
1588 }
1589 }
1590
1591 gcc_assert (has_zero_uses (name));
1592
1593 /* Also update the trees stored in loop structures. */
1594 if (current_loops)
1595 {
1596 struct loop *loop;
1597 loop_iterator li;
1598
1599 FOR_EACH_LOOP (li, loop, 0)
1600 {
1601 substitute_in_loop_info (loop, name, val);
1602 }
1603 }
1604 }
1605
1606 /* Merge block B into block A. */
1607
1608 static void
1609 gimple_merge_blocks (basic_block a, basic_block b)
1610 {
1611 gimple_stmt_iterator last, gsi, psi;
1612 gimple_seq phis = phi_nodes (b);
1613
1614 if (dump_file)
1615 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1616
1617 /* Remove all single-valued PHI nodes from block B of the form
1618 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1619 gsi = gsi_last_bb (a);
1620 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1621 {
1622 gimple phi = gsi_stmt (psi);
1623 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1624 gimple copy;
1625 bool may_replace_uses = !is_gimple_reg (def)
1626 || may_propagate_copy (def, use);
1627
1628 /* In case we maintain loop closed ssa form, do not propagate arguments
1629 of loop exit phi nodes. */
1630 if (current_loops
1631 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1632 && is_gimple_reg (def)
1633 && TREE_CODE (use) == SSA_NAME
1634 && a->loop_father != b->loop_father)
1635 may_replace_uses = false;
1636
1637 if (!may_replace_uses)
1638 {
1639 gcc_assert (is_gimple_reg (def));
1640
1641 /* Note that just emitting the copies is fine -- there is no problem
1642 with ordering of phi nodes. This is because A is the single
1643 predecessor of B, therefore results of the phi nodes cannot
1644 appear as arguments of the phi nodes. */
1645 copy = gimple_build_assign (def, use);
1646 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1647 remove_phi_node (&psi, false);
1648 }
1649 else
1650 {
1651 /* If we deal with a PHI for virtual operands, we can simply
1652 propagate these without fussing with folding or updating
1653 the stmt. */
1654 if (!is_gimple_reg (def))
1655 {
1656 imm_use_iterator iter;
1657 use_operand_p use_p;
1658 gimple stmt;
1659
1660 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1661 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1662 SET_USE (use_p, use);
1663
1664 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1665 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1666 }
1667 else
1668 replace_uses_by (def, use);
1669
1670 remove_phi_node (&psi, true);
1671 }
1672 }
1673
1674 /* Ensure that B follows A. */
1675 move_block_after (b, a);
1676
1677 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1678 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1679
1680 /* Remove labels from B and set gimple_bb to A for other statements. */
1681 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1682 {
1683 gimple stmt = gsi_stmt (gsi);
1684 if (gimple_code (stmt) == GIMPLE_LABEL)
1685 {
1686 tree label = gimple_label_label (stmt);
1687 int lp_nr;
1688
1689 gsi_remove (&gsi, false);
1690
1691 /* Now that we can thread computed gotos, we might have
1692 a situation where we have a forced label in block B
1693 However, the label at the start of block B might still be
1694 used in other ways (think about the runtime checking for
1695 Fortran assigned gotos). So we can not just delete the
1696 label. Instead we move the label to the start of block A. */
1697 if (FORCED_LABEL (label))
1698 {
1699 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1700 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1701 }
1702
1703 lp_nr = EH_LANDING_PAD_NR (label);
1704 if (lp_nr)
1705 {
1706 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1707 lp->post_landing_pad = NULL;
1708 }
1709 }
1710 else
1711 {
1712 gimple_set_bb (stmt, a);
1713 gsi_next (&gsi);
1714 }
1715 }
1716
1717 /* Merge the sequences. */
1718 last = gsi_last_bb (a);
1719 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1720 set_bb_seq (b, NULL);
1721
1722 if (cfgcleanup_altered_bbs)
1723 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1724 }
1725
1726
1727 /* Return the one of two successors of BB that is not reachable by a
1728 complex edge, if there is one. Else, return BB. We use
1729 this in optimizations that use post-dominators for their heuristics,
1730 to catch the cases in C++ where function calls are involved. */
1731
1732 basic_block
1733 single_noncomplex_succ (basic_block bb)
1734 {
1735 edge e0, e1;
1736 if (EDGE_COUNT (bb->succs) != 2)
1737 return bb;
1738
1739 e0 = EDGE_SUCC (bb, 0);
1740 e1 = EDGE_SUCC (bb, 1);
1741 if (e0->flags & EDGE_COMPLEX)
1742 return e1->dest;
1743 if (e1->flags & EDGE_COMPLEX)
1744 return e0->dest;
1745
1746 return bb;
1747 }
1748
1749 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1750
1751 void
1752 notice_special_calls (gimple call)
1753 {
1754 int flags = gimple_call_flags (call);
1755
1756 if (flags & ECF_MAY_BE_ALLOCA)
1757 cfun->calls_alloca = true;
1758 if (flags & ECF_RETURNS_TWICE)
1759 cfun->calls_setjmp = true;
1760 }
1761
1762
1763 /* Clear flags set by notice_special_calls. Used by dead code removal
1764 to update the flags. */
1765
1766 void
1767 clear_special_calls (void)
1768 {
1769 cfun->calls_alloca = false;
1770 cfun->calls_setjmp = false;
1771 }
1772
1773 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1774
1775 static void
1776 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1777 {
1778 /* Since this block is no longer reachable, we can just delete all
1779 of its PHI nodes. */
1780 remove_phi_nodes (bb);
1781
1782 /* Remove edges to BB's successors. */
1783 while (EDGE_COUNT (bb->succs) > 0)
1784 remove_edge (EDGE_SUCC (bb, 0));
1785 }
1786
1787
1788 /* Remove statements of basic block BB. */
1789
1790 static void
1791 remove_bb (basic_block bb)
1792 {
1793 gimple_stmt_iterator i;
1794
1795 if (dump_file)
1796 {
1797 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1798 if (dump_flags & TDF_DETAILS)
1799 {
1800 dump_bb (bb, dump_file, 0);
1801 fprintf (dump_file, "\n");
1802 }
1803 }
1804
1805 if (current_loops)
1806 {
1807 struct loop *loop = bb->loop_father;
1808
1809 /* If a loop gets removed, clean up the information associated
1810 with it. */
1811 if (loop->latch == bb
1812 || loop->header == bb)
1813 free_numbers_of_iterations_estimates_loop (loop);
1814 }
1815
1816 /* Remove all the instructions in the block. */
1817 if (bb_seq (bb) != NULL)
1818 {
1819 /* Walk backwards so as to get a chance to substitute all
1820 released DEFs into debug stmts. See
1821 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1822 details. */
1823 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1824 {
1825 gimple stmt = gsi_stmt (i);
1826 if (gimple_code (stmt) == GIMPLE_LABEL
1827 && (FORCED_LABEL (gimple_label_label (stmt))
1828 || DECL_NONLOCAL (gimple_label_label (stmt))))
1829 {
1830 basic_block new_bb;
1831 gimple_stmt_iterator new_gsi;
1832
1833 /* A non-reachable non-local label may still be referenced.
1834 But it no longer needs to carry the extra semantics of
1835 non-locality. */
1836 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1837 {
1838 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1839 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1840 }
1841
1842 new_bb = bb->prev_bb;
1843 new_gsi = gsi_start_bb (new_bb);
1844 gsi_remove (&i, false);
1845 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1846 }
1847 else
1848 {
1849 /* Release SSA definitions if we are in SSA. Note that we
1850 may be called when not in SSA. For example,
1851 final_cleanup calls this function via
1852 cleanup_tree_cfg. */
1853 if (gimple_in_ssa_p (cfun))
1854 release_defs (stmt);
1855
1856 gsi_remove (&i, true);
1857 }
1858
1859 if (gsi_end_p (i))
1860 i = gsi_last_bb (bb);
1861 else
1862 gsi_prev (&i);
1863 }
1864 }
1865
1866 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1867 bb->il.gimple = NULL;
1868 }
1869
1870
1871 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1872 predicate VAL, return the edge that will be taken out of the block.
1873 If VAL does not match a unique edge, NULL is returned. */
1874
1875 edge
1876 find_taken_edge (basic_block bb, tree val)
1877 {
1878 gimple stmt;
1879
1880 stmt = last_stmt (bb);
1881
1882 gcc_assert (stmt);
1883 gcc_assert (is_ctrl_stmt (stmt));
1884
1885 if (val == NULL)
1886 return NULL;
1887
1888 if (!is_gimple_min_invariant (val))
1889 return NULL;
1890
1891 if (gimple_code (stmt) == GIMPLE_COND)
1892 return find_taken_edge_cond_expr (bb, val);
1893
1894 if (gimple_code (stmt) == GIMPLE_SWITCH)
1895 return find_taken_edge_switch_expr (bb, val);
1896
1897 if (computed_goto_p (stmt))
1898 {
1899 /* Only optimize if the argument is a label, if the argument is
1900 not a label then we can not construct a proper CFG.
1901
1902 It may be the case that we only need to allow the LABEL_REF to
1903 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1904 appear inside a LABEL_EXPR just to be safe. */
1905 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1906 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1907 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1908 return NULL;
1909 }
1910
1911 gcc_unreachable ();
1912 }
1913
1914 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1915 statement, determine which of the outgoing edges will be taken out of the
1916 block. Return NULL if either edge may be taken. */
1917
1918 static edge
1919 find_taken_edge_computed_goto (basic_block bb, tree val)
1920 {
1921 basic_block dest;
1922 edge e = NULL;
1923
1924 dest = label_to_block (val);
1925 if (dest)
1926 {
1927 e = find_edge (bb, dest);
1928 gcc_assert (e != NULL);
1929 }
1930
1931 return e;
1932 }
1933
1934 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1935 statement, determine which of the two edges will be taken out of the
1936 block. Return NULL if either edge may be taken. */
1937
1938 static edge
1939 find_taken_edge_cond_expr (basic_block bb, tree val)
1940 {
1941 edge true_edge, false_edge;
1942
1943 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1944
1945 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1946 return (integer_zerop (val) ? false_edge : true_edge);
1947 }
1948
1949 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1950 statement, determine which edge will be taken out of the block. Return
1951 NULL if any edge may be taken. */
1952
1953 static edge
1954 find_taken_edge_switch_expr (basic_block bb, tree val)
1955 {
1956 basic_block dest_bb;
1957 edge e;
1958 gimple switch_stmt;
1959 tree taken_case;
1960
1961 switch_stmt = last_stmt (bb);
1962 taken_case = find_case_label_for_value (switch_stmt, val);
1963 dest_bb = label_to_block (CASE_LABEL (taken_case));
1964
1965 e = find_edge (bb, dest_bb);
1966 gcc_assert (e);
1967 return e;
1968 }
1969
1970
1971 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1972 We can make optimal use here of the fact that the case labels are
1973 sorted: We can do a binary search for a case matching VAL. */
1974
1975 static tree
1976 find_case_label_for_value (gimple switch_stmt, tree val)
1977 {
1978 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1979 tree default_case = gimple_switch_default_label (switch_stmt);
1980
1981 for (low = 0, high = n; high - low > 1; )
1982 {
1983 size_t i = (high + low) / 2;
1984 tree t = gimple_switch_label (switch_stmt, i);
1985 int cmp;
1986
1987 /* Cache the result of comparing CASE_LOW and val. */
1988 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1989
1990 if (cmp > 0)
1991 high = i;
1992 else
1993 low = i;
1994
1995 if (CASE_HIGH (t) == NULL)
1996 {
1997 /* A singe-valued case label. */
1998 if (cmp == 0)
1999 return t;
2000 }
2001 else
2002 {
2003 /* A case range. We can only handle integer ranges. */
2004 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2005 return t;
2006 }
2007 }
2008
2009 return default_case;
2010 }
2011
2012
2013 /* Dump a basic block on stderr. */
2014
2015 void
2016 gimple_debug_bb (basic_block bb)
2017 {
2018 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2019 }
2020
2021
2022 /* Dump basic block with index N on stderr. */
2023
2024 basic_block
2025 gimple_debug_bb_n (int n)
2026 {
2027 gimple_debug_bb (BASIC_BLOCK (n));
2028 return BASIC_BLOCK (n);
2029 }
2030
2031
2032 /* Dump the CFG on stderr.
2033
2034 FLAGS are the same used by the tree dumping functions
2035 (see TDF_* in tree-pass.h). */
2036
2037 void
2038 gimple_debug_cfg (int flags)
2039 {
2040 gimple_dump_cfg (stderr, flags);
2041 }
2042
2043
2044 /* Dump the program showing basic block boundaries on the given FILE.
2045
2046 FLAGS are the same used by the tree dumping functions (see TDF_* in
2047 tree.h). */
2048
2049 void
2050 gimple_dump_cfg (FILE *file, int flags)
2051 {
2052 if (flags & TDF_DETAILS)
2053 {
2054 const char *funcname
2055 = lang_hooks.decl_printable_name (current_function_decl, 2);
2056
2057 fputc ('\n', file);
2058 fprintf (file, ";; Function %s\n\n", funcname);
2059 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2060 n_basic_blocks, n_edges, last_basic_block);
2061
2062 brief_dump_cfg (file);
2063 fprintf (file, "\n");
2064 }
2065
2066 if (flags & TDF_STATS)
2067 dump_cfg_stats (file);
2068
2069 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2070 }
2071
2072
2073 /* Dump CFG statistics on FILE. */
2074
2075 void
2076 dump_cfg_stats (FILE *file)
2077 {
2078 static long max_num_merged_labels = 0;
2079 unsigned long size, total = 0;
2080 long num_edges;
2081 basic_block bb;
2082 const char * const fmt_str = "%-30s%-13s%12s\n";
2083 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2084 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2085 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2086 const char *funcname
2087 = lang_hooks.decl_printable_name (current_function_decl, 2);
2088
2089
2090 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2091
2092 fprintf (file, "---------------------------------------------------------\n");
2093 fprintf (file, fmt_str, "", " Number of ", "Memory");
2094 fprintf (file, fmt_str, "", " instances ", "used ");
2095 fprintf (file, "---------------------------------------------------------\n");
2096
2097 size = n_basic_blocks * sizeof (struct basic_block_def);
2098 total += size;
2099 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2100 SCALE (size), LABEL (size));
2101
2102 num_edges = 0;
2103 FOR_EACH_BB (bb)
2104 num_edges += EDGE_COUNT (bb->succs);
2105 size = num_edges * sizeof (struct edge_def);
2106 total += size;
2107 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2108
2109 fprintf (file, "---------------------------------------------------------\n");
2110 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2111 LABEL (total));
2112 fprintf (file, "---------------------------------------------------------\n");
2113 fprintf (file, "\n");
2114
2115 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2116 max_num_merged_labels = cfg_stats.num_merged_labels;
2117
2118 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2119 cfg_stats.num_merged_labels, max_num_merged_labels);
2120
2121 fprintf (file, "\n");
2122 }
2123
2124
2125 /* Dump CFG statistics on stderr. Keep extern so that it's always
2126 linked in the final executable. */
2127
2128 DEBUG_FUNCTION void
2129 debug_cfg_stats (void)
2130 {
2131 dump_cfg_stats (stderr);
2132 }
2133
2134
2135 /* Dump the flowgraph to a .vcg FILE. */
2136
2137 static void
2138 gimple_cfg2vcg (FILE *file)
2139 {
2140 edge e;
2141 edge_iterator ei;
2142 basic_block bb;
2143 const char *funcname
2144 = lang_hooks.decl_printable_name (current_function_decl, 2);
2145
2146 /* Write the file header. */
2147 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2148 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2149 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2150
2151 /* Write blocks and edges. */
2152 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2153 {
2154 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2155 e->dest->index);
2156
2157 if (e->flags & EDGE_FAKE)
2158 fprintf (file, " linestyle: dotted priority: 10");
2159 else
2160 fprintf (file, " linestyle: solid priority: 100");
2161
2162 fprintf (file, " }\n");
2163 }
2164 fputc ('\n', file);
2165
2166 FOR_EACH_BB (bb)
2167 {
2168 enum gimple_code head_code, end_code;
2169 const char *head_name, *end_name;
2170 int head_line = 0;
2171 int end_line = 0;
2172 gimple first = first_stmt (bb);
2173 gimple last = last_stmt (bb);
2174
2175 if (first)
2176 {
2177 head_code = gimple_code (first);
2178 head_name = gimple_code_name[head_code];
2179 head_line = get_lineno (first);
2180 }
2181 else
2182 head_name = "no-statement";
2183
2184 if (last)
2185 {
2186 end_code = gimple_code (last);
2187 end_name = gimple_code_name[end_code];
2188 end_line = get_lineno (last);
2189 }
2190 else
2191 end_name = "no-statement";
2192
2193 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2194 bb->index, bb->index, head_name, head_line, end_name,
2195 end_line);
2196
2197 FOR_EACH_EDGE (e, ei, bb->succs)
2198 {
2199 if (e->dest == EXIT_BLOCK_PTR)
2200 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2201 else
2202 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2203
2204 if (e->flags & EDGE_FAKE)
2205 fprintf (file, " priority: 10 linestyle: dotted");
2206 else
2207 fprintf (file, " priority: 100 linestyle: solid");
2208
2209 fprintf (file, " }\n");
2210 }
2211
2212 if (bb->next_bb != EXIT_BLOCK_PTR)
2213 fputc ('\n', file);
2214 }
2215
2216 fputs ("}\n\n", file);
2217 }
2218
2219
2220
2221 /*---------------------------------------------------------------------------
2222 Miscellaneous helpers
2223 ---------------------------------------------------------------------------*/
2224
2225 /* Return true if T represents a stmt that always transfers control. */
2226
2227 bool
2228 is_ctrl_stmt (gimple t)
2229 {
2230 switch (gimple_code (t))
2231 {
2232 case GIMPLE_COND:
2233 case GIMPLE_SWITCH:
2234 case GIMPLE_GOTO:
2235 case GIMPLE_RETURN:
2236 case GIMPLE_RESX:
2237 return true;
2238 default:
2239 return false;
2240 }
2241 }
2242
2243
2244 /* Return true if T is a statement that may alter the flow of control
2245 (e.g., a call to a non-returning function). */
2246
2247 bool
2248 is_ctrl_altering_stmt (gimple t)
2249 {
2250 gcc_assert (t);
2251
2252 switch (gimple_code (t))
2253 {
2254 case GIMPLE_CALL:
2255 {
2256 int flags = gimple_call_flags (t);
2257
2258 /* A non-pure/const call alters flow control if the current
2259 function has nonlocal labels. */
2260 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2261 && cfun->has_nonlocal_label)
2262 return true;
2263
2264 /* A call also alters control flow if it does not return. */
2265 if (flags & ECF_NORETURN)
2266 return true;
2267
2268 /* BUILT_IN_RETURN call is same as return statement. */
2269 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2270 return true;
2271 }
2272 break;
2273
2274 case GIMPLE_EH_DISPATCH:
2275 /* EH_DISPATCH branches to the individual catch handlers at
2276 this level of a try or allowed-exceptions region. It can
2277 fallthru to the next statement as well. */
2278 return true;
2279
2280 case GIMPLE_ASM:
2281 if (gimple_asm_nlabels (t) > 0)
2282 return true;
2283 break;
2284
2285 CASE_GIMPLE_OMP:
2286 /* OpenMP directives alter control flow. */
2287 return true;
2288
2289 default:
2290 break;
2291 }
2292
2293 /* If a statement can throw, it alters control flow. */
2294 return stmt_can_throw_internal (t);
2295 }
2296
2297
2298 /* Return true if T is a simple local goto. */
2299
2300 bool
2301 simple_goto_p (gimple t)
2302 {
2303 return (gimple_code (t) == GIMPLE_GOTO
2304 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2305 }
2306
2307
2308 /* Return true if T can make an abnormal transfer of control flow.
2309 Transfers of control flow associated with EH are excluded. */
2310
2311 bool
2312 stmt_can_make_abnormal_goto (gimple t)
2313 {
2314 if (computed_goto_p (t))
2315 return true;
2316 if (is_gimple_call (t))
2317 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2318 && !(gimple_call_flags (t) & ECF_LEAF));
2319 return false;
2320 }
2321
2322
2323 /* Return true if STMT should start a new basic block. PREV_STMT is
2324 the statement preceding STMT. It is used when STMT is a label or a
2325 case label. Labels should only start a new basic block if their
2326 previous statement wasn't a label. Otherwise, sequence of labels
2327 would generate unnecessary basic blocks that only contain a single
2328 label. */
2329
2330 static inline bool
2331 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2332 {
2333 if (stmt == NULL)
2334 return false;
2335
2336 /* Labels start a new basic block only if the preceding statement
2337 wasn't a label of the same type. This prevents the creation of
2338 consecutive blocks that have nothing but a single label. */
2339 if (gimple_code (stmt) == GIMPLE_LABEL)
2340 {
2341 /* Nonlocal and computed GOTO targets always start a new block. */
2342 if (DECL_NONLOCAL (gimple_label_label (stmt))
2343 || FORCED_LABEL (gimple_label_label (stmt)))
2344 return true;
2345
2346 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2347 {
2348 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2349 return true;
2350
2351 cfg_stats.num_merged_labels++;
2352 return false;
2353 }
2354 else
2355 return true;
2356 }
2357
2358 return false;
2359 }
2360
2361
2362 /* Return true if T should end a basic block. */
2363
2364 bool
2365 stmt_ends_bb_p (gimple t)
2366 {
2367 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2368 }
2369
2370 /* Remove block annotations and other data structures. */
2371
2372 void
2373 delete_tree_cfg_annotations (void)
2374 {
2375 label_to_block_map = NULL;
2376 }
2377
2378
2379 /* Return the first statement in basic block BB. */
2380
2381 gimple
2382 first_stmt (basic_block bb)
2383 {
2384 gimple_stmt_iterator i = gsi_start_bb (bb);
2385 gimple stmt = NULL;
2386
2387 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2388 {
2389 gsi_next (&i);
2390 stmt = NULL;
2391 }
2392 return stmt;
2393 }
2394
2395 /* Return the first non-label statement in basic block BB. */
2396
2397 static gimple
2398 first_non_label_stmt (basic_block bb)
2399 {
2400 gimple_stmt_iterator i = gsi_start_bb (bb);
2401 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2402 gsi_next (&i);
2403 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2404 }
2405
2406 /* Return the last statement in basic block BB. */
2407
2408 gimple
2409 last_stmt (basic_block bb)
2410 {
2411 gimple_stmt_iterator i = gsi_last_bb (bb);
2412 gimple stmt = NULL;
2413
2414 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2415 {
2416 gsi_prev (&i);
2417 stmt = NULL;
2418 }
2419 return stmt;
2420 }
2421
2422 /* Return the last statement of an otherwise empty block. Return NULL
2423 if the block is totally empty, or if it contains more than one
2424 statement. */
2425
2426 gimple
2427 last_and_only_stmt (basic_block bb)
2428 {
2429 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2430 gimple last, prev;
2431
2432 if (gsi_end_p (i))
2433 return NULL;
2434
2435 last = gsi_stmt (i);
2436 gsi_prev_nondebug (&i);
2437 if (gsi_end_p (i))
2438 return last;
2439
2440 /* Empty statements should no longer appear in the instruction stream.
2441 Everything that might have appeared before should be deleted by
2442 remove_useless_stmts, and the optimizers should just gsi_remove
2443 instead of smashing with build_empty_stmt.
2444
2445 Thus the only thing that should appear here in a block containing
2446 one executable statement is a label. */
2447 prev = gsi_stmt (i);
2448 if (gimple_code (prev) == GIMPLE_LABEL)
2449 return last;
2450 else
2451 return NULL;
2452 }
2453
2454 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2455
2456 static void
2457 reinstall_phi_args (edge new_edge, edge old_edge)
2458 {
2459 edge_var_map_vector v;
2460 edge_var_map *vm;
2461 int i;
2462 gimple_stmt_iterator phis;
2463
2464 v = redirect_edge_var_map_vector (old_edge);
2465 if (!v)
2466 return;
2467
2468 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2469 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2470 i++, gsi_next (&phis))
2471 {
2472 gimple phi = gsi_stmt (phis);
2473 tree result = redirect_edge_var_map_result (vm);
2474 tree arg = redirect_edge_var_map_def (vm);
2475
2476 gcc_assert (result == gimple_phi_result (phi));
2477
2478 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2479 }
2480
2481 redirect_edge_var_map_clear (old_edge);
2482 }
2483
2484 /* Returns the basic block after which the new basic block created
2485 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2486 near its "logical" location. This is of most help to humans looking
2487 at debugging dumps. */
2488
2489 static basic_block
2490 split_edge_bb_loc (edge edge_in)
2491 {
2492 basic_block dest = edge_in->dest;
2493 basic_block dest_prev = dest->prev_bb;
2494
2495 if (dest_prev)
2496 {
2497 edge e = find_edge (dest_prev, dest);
2498 if (e && !(e->flags & EDGE_COMPLEX))
2499 return edge_in->src;
2500 }
2501 return dest_prev;
2502 }
2503
2504 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2505 Abort on abnormal edges. */
2506
2507 static basic_block
2508 gimple_split_edge (edge edge_in)
2509 {
2510 basic_block new_bb, after_bb, dest;
2511 edge new_edge, e;
2512
2513 /* Abnormal edges cannot be split. */
2514 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2515
2516 dest = edge_in->dest;
2517
2518 after_bb = split_edge_bb_loc (edge_in);
2519
2520 new_bb = create_empty_bb (after_bb);
2521 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2522 new_bb->count = edge_in->count;
2523 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2524 new_edge->probability = REG_BR_PROB_BASE;
2525 new_edge->count = edge_in->count;
2526
2527 e = redirect_edge_and_branch (edge_in, new_bb);
2528 gcc_assert (e == edge_in);
2529 reinstall_phi_args (new_edge, e);
2530
2531 return new_bb;
2532 }
2533
2534
2535 /* Verify properties of the address expression T with base object BASE. */
2536
2537 static tree
2538 verify_address (tree t, tree base)
2539 {
2540 bool old_constant;
2541 bool old_side_effects;
2542 bool new_constant;
2543 bool new_side_effects;
2544
2545 old_constant = TREE_CONSTANT (t);
2546 old_side_effects = TREE_SIDE_EFFECTS (t);
2547
2548 recompute_tree_invariant_for_addr_expr (t);
2549 new_side_effects = TREE_SIDE_EFFECTS (t);
2550 new_constant = TREE_CONSTANT (t);
2551
2552 if (old_constant != new_constant)
2553 {
2554 error ("constant not recomputed when ADDR_EXPR changed");
2555 return t;
2556 }
2557 if (old_side_effects != new_side_effects)
2558 {
2559 error ("side effects not recomputed when ADDR_EXPR changed");
2560 return t;
2561 }
2562
2563 if (!(TREE_CODE (base) == VAR_DECL
2564 || TREE_CODE (base) == PARM_DECL
2565 || TREE_CODE (base) == RESULT_DECL))
2566 return NULL_TREE;
2567
2568 if (DECL_GIMPLE_REG_P (base))
2569 {
2570 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2571 return base;
2572 }
2573
2574 return NULL_TREE;
2575 }
2576
2577 /* Callback for walk_tree, check that all elements with address taken are
2578 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2579 inside a PHI node. */
2580
2581 static tree
2582 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2583 {
2584 tree t = *tp, x;
2585
2586 if (TYPE_P (t))
2587 *walk_subtrees = 0;
2588
2589 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2590 #define CHECK_OP(N, MSG) \
2591 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2592 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2593
2594 switch (TREE_CODE (t))
2595 {
2596 case SSA_NAME:
2597 if (SSA_NAME_IN_FREE_LIST (t))
2598 {
2599 error ("SSA name in freelist but still referenced");
2600 return *tp;
2601 }
2602 break;
2603
2604 case INDIRECT_REF:
2605 error ("INDIRECT_REF in gimple IL");
2606 return t;
2607
2608 case MEM_REF:
2609 x = TREE_OPERAND (t, 0);
2610 if (!POINTER_TYPE_P (TREE_TYPE (x))
2611 || !is_gimple_mem_ref_addr (x))
2612 {
2613 error ("invalid first operand of MEM_REF");
2614 return x;
2615 }
2616 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2617 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2618 {
2619 error ("invalid offset operand of MEM_REF");
2620 return TREE_OPERAND (t, 1);
2621 }
2622 if (TREE_CODE (x) == ADDR_EXPR
2623 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2624 return x;
2625 *walk_subtrees = 0;
2626 break;
2627
2628 case ASSERT_EXPR:
2629 x = fold (ASSERT_EXPR_COND (t));
2630 if (x == boolean_false_node)
2631 {
2632 error ("ASSERT_EXPR with an always-false condition");
2633 return *tp;
2634 }
2635 break;
2636
2637 case MODIFY_EXPR:
2638 error ("MODIFY_EXPR not expected while having tuples");
2639 return *tp;
2640
2641 case ADDR_EXPR:
2642 {
2643 tree tem;
2644
2645 gcc_assert (is_gimple_address (t));
2646
2647 /* Skip any references (they will be checked when we recurse down the
2648 tree) and ensure that any variable used as a prefix is marked
2649 addressable. */
2650 for (x = TREE_OPERAND (t, 0);
2651 handled_component_p (x);
2652 x = TREE_OPERAND (x, 0))
2653 ;
2654
2655 if ((tem = verify_address (t, x)))
2656 return tem;
2657
2658 if (!(TREE_CODE (x) == VAR_DECL
2659 || TREE_CODE (x) == PARM_DECL
2660 || TREE_CODE (x) == RESULT_DECL))
2661 return NULL;
2662
2663 if (!TREE_ADDRESSABLE (x))
2664 {
2665 error ("address taken, but ADDRESSABLE bit not set");
2666 return x;
2667 }
2668
2669 break;
2670 }
2671
2672 case COND_EXPR:
2673 x = COND_EXPR_COND (t);
2674 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2675 {
2676 error ("non-integral used in condition");
2677 return x;
2678 }
2679 if (!is_gimple_condexpr (x))
2680 {
2681 error ("invalid conditional operand");
2682 return x;
2683 }
2684 break;
2685
2686 case NON_LVALUE_EXPR:
2687 gcc_unreachable ();
2688
2689 CASE_CONVERT:
2690 case FIX_TRUNC_EXPR:
2691 case FLOAT_EXPR:
2692 case NEGATE_EXPR:
2693 case ABS_EXPR:
2694 case BIT_NOT_EXPR:
2695 case TRUTH_NOT_EXPR:
2696 CHECK_OP (0, "invalid operand to unary operator");
2697 break;
2698
2699 case REALPART_EXPR:
2700 case IMAGPART_EXPR:
2701 case COMPONENT_REF:
2702 case ARRAY_REF:
2703 case ARRAY_RANGE_REF:
2704 case BIT_FIELD_REF:
2705 case VIEW_CONVERT_EXPR:
2706 /* We have a nest of references. Verify that each of the operands
2707 that determine where to reference is either a constant or a variable,
2708 verify that the base is valid, and then show we've already checked
2709 the subtrees. */
2710 while (handled_component_p (t))
2711 {
2712 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2713 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2714 else if (TREE_CODE (t) == ARRAY_REF
2715 || TREE_CODE (t) == ARRAY_RANGE_REF)
2716 {
2717 CHECK_OP (1, "invalid array index");
2718 if (TREE_OPERAND (t, 2))
2719 CHECK_OP (2, "invalid array lower bound");
2720 if (TREE_OPERAND (t, 3))
2721 CHECK_OP (3, "invalid array stride");
2722 }
2723 else if (TREE_CODE (t) == BIT_FIELD_REF)
2724 {
2725 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2726 || !host_integerp (TREE_OPERAND (t, 2), 1))
2727 {
2728 error ("invalid position or size operand to BIT_FIELD_REF");
2729 return t;
2730 }
2731 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2732 && (TYPE_PRECISION (TREE_TYPE (t))
2733 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2734 {
2735 error ("integral result type precision does not match "
2736 "field size of BIT_FIELD_REF");
2737 return t;
2738 }
2739 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2740 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2741 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2742 {
2743 error ("mode precision of non-integral result does not "
2744 "match field size of BIT_FIELD_REF");
2745 return t;
2746 }
2747 }
2748
2749 t = TREE_OPERAND (t, 0);
2750 }
2751
2752 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2753 {
2754 error ("invalid reference prefix");
2755 return t;
2756 }
2757 *walk_subtrees = 0;
2758 break;
2759 case PLUS_EXPR:
2760 case MINUS_EXPR:
2761 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2762 POINTER_PLUS_EXPR. */
2763 if (POINTER_TYPE_P (TREE_TYPE (t)))
2764 {
2765 error ("invalid operand to plus/minus, type is a pointer");
2766 return t;
2767 }
2768 CHECK_OP (0, "invalid operand to binary operator");
2769 CHECK_OP (1, "invalid operand to binary operator");
2770 break;
2771
2772 case POINTER_PLUS_EXPR:
2773 /* Check to make sure the first operand is a pointer or reference type. */
2774 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2775 {
2776 error ("invalid operand to pointer plus, first operand is not a pointer");
2777 return t;
2778 }
2779 /* Check to make sure the second operand is an integer with type of
2780 sizetype. */
2781 if (!useless_type_conversion_p (sizetype,
2782 TREE_TYPE (TREE_OPERAND (t, 1))))
2783 {
2784 error ("invalid operand to pointer plus, second operand is not an "
2785 "integer with type of sizetype");
2786 return t;
2787 }
2788 /* FALLTHROUGH */
2789 case LT_EXPR:
2790 case LE_EXPR:
2791 case GT_EXPR:
2792 case GE_EXPR:
2793 case EQ_EXPR:
2794 case NE_EXPR:
2795 case UNORDERED_EXPR:
2796 case ORDERED_EXPR:
2797 case UNLT_EXPR:
2798 case UNLE_EXPR:
2799 case UNGT_EXPR:
2800 case UNGE_EXPR:
2801 case UNEQ_EXPR:
2802 case LTGT_EXPR:
2803 case MULT_EXPR:
2804 case TRUNC_DIV_EXPR:
2805 case CEIL_DIV_EXPR:
2806 case FLOOR_DIV_EXPR:
2807 case ROUND_DIV_EXPR:
2808 case TRUNC_MOD_EXPR:
2809 case CEIL_MOD_EXPR:
2810 case FLOOR_MOD_EXPR:
2811 case ROUND_MOD_EXPR:
2812 case RDIV_EXPR:
2813 case EXACT_DIV_EXPR:
2814 case MIN_EXPR:
2815 case MAX_EXPR:
2816 case LSHIFT_EXPR:
2817 case RSHIFT_EXPR:
2818 case LROTATE_EXPR:
2819 case RROTATE_EXPR:
2820 case BIT_IOR_EXPR:
2821 case BIT_XOR_EXPR:
2822 case BIT_AND_EXPR:
2823 CHECK_OP (0, "invalid operand to binary operator");
2824 CHECK_OP (1, "invalid operand to binary operator");
2825 break;
2826
2827 case CONSTRUCTOR:
2828 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2829 *walk_subtrees = 0;
2830 break;
2831
2832 default:
2833 break;
2834 }
2835 return NULL;
2836
2837 #undef CHECK_OP
2838 }
2839
2840
2841 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2842 Returns true if there is an error, otherwise false. */
2843
2844 static bool
2845 verify_types_in_gimple_min_lval (tree expr)
2846 {
2847 tree op;
2848
2849 if (is_gimple_id (expr))
2850 return false;
2851
2852 if (TREE_CODE (expr) != TARGET_MEM_REF
2853 && TREE_CODE (expr) != MEM_REF)
2854 {
2855 error ("invalid expression for min lvalue");
2856 return true;
2857 }
2858
2859 /* TARGET_MEM_REFs are strange beasts. */
2860 if (TREE_CODE (expr) == TARGET_MEM_REF)
2861 return false;
2862
2863 op = TREE_OPERAND (expr, 0);
2864 if (!is_gimple_val (op))
2865 {
2866 error ("invalid operand in indirect reference");
2867 debug_generic_stmt (op);
2868 return true;
2869 }
2870 /* Memory references now generally can involve a value conversion. */
2871
2872 return false;
2873 }
2874
2875 /* Verify if EXPR is a valid GIMPLE reference expression. If
2876 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2877 if there is an error, otherwise false. */
2878
2879 static bool
2880 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2881 {
2882 while (handled_component_p (expr))
2883 {
2884 tree op = TREE_OPERAND (expr, 0);
2885
2886 if (TREE_CODE (expr) == ARRAY_REF
2887 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2888 {
2889 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2890 || (TREE_OPERAND (expr, 2)
2891 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2892 || (TREE_OPERAND (expr, 3)
2893 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2894 {
2895 error ("invalid operands to array reference");
2896 debug_generic_stmt (expr);
2897 return true;
2898 }
2899 }
2900
2901 /* Verify if the reference array element types are compatible. */
2902 if (TREE_CODE (expr) == ARRAY_REF
2903 && !useless_type_conversion_p (TREE_TYPE (expr),
2904 TREE_TYPE (TREE_TYPE (op))))
2905 {
2906 error ("type mismatch in array reference");
2907 debug_generic_stmt (TREE_TYPE (expr));
2908 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2909 return true;
2910 }
2911 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2912 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2913 TREE_TYPE (TREE_TYPE (op))))
2914 {
2915 error ("type mismatch in array range reference");
2916 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2918 return true;
2919 }
2920
2921 if ((TREE_CODE (expr) == REALPART_EXPR
2922 || TREE_CODE (expr) == IMAGPART_EXPR)
2923 && !useless_type_conversion_p (TREE_TYPE (expr),
2924 TREE_TYPE (TREE_TYPE (op))))
2925 {
2926 error ("type mismatch in real/imagpart reference");
2927 debug_generic_stmt (TREE_TYPE (expr));
2928 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2929 return true;
2930 }
2931
2932 if (TREE_CODE (expr) == COMPONENT_REF
2933 && !useless_type_conversion_p (TREE_TYPE (expr),
2934 TREE_TYPE (TREE_OPERAND (expr, 1))))
2935 {
2936 error ("type mismatch in component reference");
2937 debug_generic_stmt (TREE_TYPE (expr));
2938 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2939 return true;
2940 }
2941
2942 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2943 {
2944 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2945 that their operand is not an SSA name or an invariant when
2946 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2947 bug). Otherwise there is nothing to verify, gross mismatches at
2948 most invoke undefined behavior. */
2949 if (require_lvalue
2950 && (TREE_CODE (op) == SSA_NAME
2951 || is_gimple_min_invariant (op)))
2952 {
2953 error ("conversion of an SSA_NAME on the left hand side");
2954 debug_generic_stmt (expr);
2955 return true;
2956 }
2957 else if (TREE_CODE (op) == SSA_NAME
2958 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2959 {
2960 error ("conversion of register to a different size");
2961 debug_generic_stmt (expr);
2962 return true;
2963 }
2964 else if (!handled_component_p (op))
2965 return false;
2966 }
2967
2968 expr = op;
2969 }
2970
2971 if (TREE_CODE (expr) == MEM_REF)
2972 {
2973 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2974 {
2975 error ("invalid address operand in MEM_REF");
2976 debug_generic_stmt (expr);
2977 return true;
2978 }
2979 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2980 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2981 {
2982 error ("invalid offset operand in MEM_REF");
2983 debug_generic_stmt (expr);
2984 return true;
2985 }
2986 }
2987 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2988 {
2989 if (!TMR_BASE (expr)
2990 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2991 {
2992 error ("invalid address operand in in TARGET_MEM_REF");
2993 return true;
2994 }
2995 if (!TMR_OFFSET (expr)
2996 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2997 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
2998 {
2999 error ("invalid offset operand in TARGET_MEM_REF");
3000 debug_generic_stmt (expr);
3001 return true;
3002 }
3003 }
3004
3005 return ((require_lvalue || !is_gimple_min_invariant (expr))
3006 && verify_types_in_gimple_min_lval (expr));
3007 }
3008
3009 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3010 list of pointer-to types that is trivially convertible to DEST. */
3011
3012 static bool
3013 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3014 {
3015 tree src;
3016
3017 if (!TYPE_POINTER_TO (src_obj))
3018 return true;
3019
3020 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3021 if (useless_type_conversion_p (dest, src))
3022 return true;
3023
3024 return false;
3025 }
3026
3027 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3028 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3029
3030 static bool
3031 valid_fixed_convert_types_p (tree type1, tree type2)
3032 {
3033 return (FIXED_POINT_TYPE_P (type1)
3034 && (INTEGRAL_TYPE_P (type2)
3035 || SCALAR_FLOAT_TYPE_P (type2)
3036 || FIXED_POINT_TYPE_P (type2)));
3037 }
3038
3039 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3040 is a problem, otherwise false. */
3041
3042 static bool
3043 verify_gimple_call (gimple stmt)
3044 {
3045 tree fn = gimple_call_fn (stmt);
3046 tree fntype;
3047 unsigned i;
3048
3049 if (TREE_CODE (fn) != OBJ_TYPE_REF
3050 && !is_gimple_val (fn))
3051 {
3052 error ("invalid function in gimple call");
3053 debug_generic_stmt (fn);
3054 return true;
3055 }
3056
3057 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3058 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3059 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3060 {
3061 error ("non-function in gimple call");
3062 return true;
3063 }
3064
3065 if (gimple_call_lhs (stmt)
3066 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3067 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3068 {
3069 error ("invalid LHS in gimple call");
3070 return true;
3071 }
3072
3073 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3074 {
3075 error ("LHS in noreturn call");
3076 return true;
3077 }
3078
3079 fntype = TREE_TYPE (TREE_TYPE (fn));
3080 if (gimple_call_lhs (stmt)
3081 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3082 TREE_TYPE (fntype))
3083 /* ??? At least C++ misses conversions at assignments from
3084 void * call results.
3085 ??? Java is completely off. Especially with functions
3086 returning java.lang.Object.
3087 For now simply allow arbitrary pointer type conversions. */
3088 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3089 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3090 {
3091 error ("invalid conversion in gimple call");
3092 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3093 debug_generic_stmt (TREE_TYPE (fntype));
3094 return true;
3095 }
3096
3097 if (gimple_call_chain (stmt)
3098 && !is_gimple_val (gimple_call_chain (stmt)))
3099 {
3100 error ("invalid static chain in gimple call");
3101 debug_generic_stmt (gimple_call_chain (stmt));
3102 return true;
3103 }
3104
3105 /* If there is a static chain argument, this should not be an indirect
3106 call, and the decl should have DECL_STATIC_CHAIN set. */
3107 if (gimple_call_chain (stmt))
3108 {
3109 if (!gimple_call_fndecl (stmt))
3110 {
3111 error ("static chain in indirect gimple call");
3112 return true;
3113 }
3114 fn = TREE_OPERAND (fn, 0);
3115
3116 if (!DECL_STATIC_CHAIN (fn))
3117 {
3118 error ("static chain with function that doesn%'t use one");
3119 return true;
3120 }
3121 }
3122
3123 /* ??? The C frontend passes unpromoted arguments in case it
3124 didn't see a function declaration before the call. So for now
3125 leave the call arguments mostly unverified. Once we gimplify
3126 unit-at-a-time we have a chance to fix this. */
3127
3128 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3129 {
3130 tree arg = gimple_call_arg (stmt, i);
3131 if ((is_gimple_reg_type (TREE_TYPE (arg))
3132 && !is_gimple_val (arg))
3133 || (!is_gimple_reg_type (TREE_TYPE (arg))
3134 && !is_gimple_lvalue (arg)))
3135 {
3136 error ("invalid argument to gimple call");
3137 debug_generic_expr (arg);
3138 }
3139 }
3140
3141 return false;
3142 }
3143
3144 /* Verifies the gimple comparison with the result type TYPE and
3145 the operands OP0 and OP1. */
3146
3147 static bool
3148 verify_gimple_comparison (tree type, tree op0, tree op1)
3149 {
3150 tree op0_type = TREE_TYPE (op0);
3151 tree op1_type = TREE_TYPE (op1);
3152
3153 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3154 {
3155 error ("invalid operands in gimple comparison");
3156 return true;
3157 }
3158
3159 /* For comparisons we do not have the operations type as the
3160 effective type the comparison is carried out in. Instead
3161 we require that either the first operand is trivially
3162 convertible into the second, or the other way around.
3163 The resulting type of a comparison may be any integral type.
3164 Because we special-case pointers to void we allow
3165 comparisons of pointers with the same mode as well. */
3166 if ((!useless_type_conversion_p (op0_type, op1_type)
3167 && !useless_type_conversion_p (op1_type, op0_type)
3168 && (!POINTER_TYPE_P (op0_type)
3169 || !POINTER_TYPE_P (op1_type)
3170 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3171 || !INTEGRAL_TYPE_P (type))
3172 {
3173 error ("type mismatch in comparison expression");
3174 debug_generic_expr (type);
3175 debug_generic_expr (op0_type);
3176 debug_generic_expr (op1_type);
3177 return true;
3178 }
3179
3180 return false;
3181 }
3182
3183 /* Verify a gimple assignment statement STMT with an unary rhs.
3184 Returns true if anything is wrong. */
3185
3186 static bool
3187 verify_gimple_assign_unary (gimple stmt)
3188 {
3189 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3190 tree lhs = gimple_assign_lhs (stmt);
3191 tree lhs_type = TREE_TYPE (lhs);
3192 tree rhs1 = gimple_assign_rhs1 (stmt);
3193 tree rhs1_type = TREE_TYPE (rhs1);
3194
3195 if (!is_gimple_reg (lhs)
3196 && !(optimize == 0
3197 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3198 {
3199 error ("non-register as LHS of unary operation");
3200 return true;
3201 }
3202
3203 if (!is_gimple_val (rhs1))
3204 {
3205 error ("invalid operand in unary operation");
3206 return true;
3207 }
3208
3209 /* First handle conversions. */
3210 switch (rhs_code)
3211 {
3212 CASE_CONVERT:
3213 {
3214 /* Allow conversions between integral types and pointers only if
3215 there is no sign or zero extension involved.
3216 For targets were the precision of sizetype doesn't match that
3217 of pointers we need to allow arbitrary conversions from and
3218 to sizetype. */
3219 if ((POINTER_TYPE_P (lhs_type)
3220 && INTEGRAL_TYPE_P (rhs1_type)
3221 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3222 || rhs1_type == sizetype))
3223 || (POINTER_TYPE_P (rhs1_type)
3224 && INTEGRAL_TYPE_P (lhs_type)
3225 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3226 || lhs_type == sizetype)))
3227 return false;
3228
3229 /* Allow conversion from integer to offset type and vice versa. */
3230 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3231 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3232 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3233 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3234 return false;
3235
3236 /* Otherwise assert we are converting between types of the
3237 same kind. */
3238 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3239 {
3240 error ("invalid types in nop conversion");
3241 debug_generic_expr (lhs_type);
3242 debug_generic_expr (rhs1_type);
3243 return true;
3244 }
3245
3246 return false;
3247 }
3248
3249 case ADDR_SPACE_CONVERT_EXPR:
3250 {
3251 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3252 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3253 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3254 {
3255 error ("invalid types in address space conversion");
3256 debug_generic_expr (lhs_type);
3257 debug_generic_expr (rhs1_type);
3258 return true;
3259 }
3260
3261 return false;
3262 }
3263
3264 case FIXED_CONVERT_EXPR:
3265 {
3266 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3267 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3268 {
3269 error ("invalid types in fixed-point conversion");
3270 debug_generic_expr (lhs_type);
3271 debug_generic_expr (rhs1_type);
3272 return true;
3273 }
3274
3275 return false;
3276 }
3277
3278 case FLOAT_EXPR:
3279 {
3280 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3281 {
3282 error ("invalid types in conversion to floating point");
3283 debug_generic_expr (lhs_type);
3284 debug_generic_expr (rhs1_type);
3285 return true;
3286 }
3287
3288 return false;
3289 }
3290
3291 case FIX_TRUNC_EXPR:
3292 {
3293 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3294 {
3295 error ("invalid types in conversion to integer");
3296 debug_generic_expr (lhs_type);
3297 debug_generic_expr (rhs1_type);
3298 return true;
3299 }
3300
3301 return false;
3302 }
3303
3304 case VEC_UNPACK_HI_EXPR:
3305 case VEC_UNPACK_LO_EXPR:
3306 case REDUC_MAX_EXPR:
3307 case REDUC_MIN_EXPR:
3308 case REDUC_PLUS_EXPR:
3309 case VEC_UNPACK_FLOAT_HI_EXPR:
3310 case VEC_UNPACK_FLOAT_LO_EXPR:
3311 /* FIXME. */
3312 return false;
3313
3314 case TRUTH_NOT_EXPR:
3315 case NEGATE_EXPR:
3316 case ABS_EXPR:
3317 case BIT_NOT_EXPR:
3318 case PAREN_EXPR:
3319 case NON_LVALUE_EXPR:
3320 case CONJ_EXPR:
3321 break;
3322
3323 default:
3324 gcc_unreachable ();
3325 }
3326
3327 /* For the remaining codes assert there is no conversion involved. */
3328 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3329 {
3330 error ("non-trivial conversion in unary operation");
3331 debug_generic_expr (lhs_type);
3332 debug_generic_expr (rhs1_type);
3333 return true;
3334 }
3335
3336 return false;
3337 }
3338
3339 /* Verify a gimple assignment statement STMT with a binary rhs.
3340 Returns true if anything is wrong. */
3341
3342 static bool
3343 verify_gimple_assign_binary (gimple stmt)
3344 {
3345 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3346 tree lhs = gimple_assign_lhs (stmt);
3347 tree lhs_type = TREE_TYPE (lhs);
3348 tree rhs1 = gimple_assign_rhs1 (stmt);
3349 tree rhs1_type = TREE_TYPE (rhs1);
3350 tree rhs2 = gimple_assign_rhs2 (stmt);
3351 tree rhs2_type = TREE_TYPE (rhs2);
3352
3353 if (!is_gimple_reg (lhs)
3354 && !(optimize == 0
3355 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3356 {
3357 error ("non-register as LHS of binary operation");
3358 return true;
3359 }
3360
3361 if (!is_gimple_val (rhs1)
3362 || !is_gimple_val (rhs2))
3363 {
3364 error ("invalid operands in binary operation");
3365 return true;
3366 }
3367
3368 /* First handle operations that involve different types. */
3369 switch (rhs_code)
3370 {
3371 case COMPLEX_EXPR:
3372 {
3373 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3374 || !(INTEGRAL_TYPE_P (rhs1_type)
3375 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3376 || !(INTEGRAL_TYPE_P (rhs2_type)
3377 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3378 {
3379 error ("type mismatch in complex expression");
3380 debug_generic_expr (lhs_type);
3381 debug_generic_expr (rhs1_type);
3382 debug_generic_expr (rhs2_type);
3383 return true;
3384 }
3385
3386 return false;
3387 }
3388
3389 case LSHIFT_EXPR:
3390 case RSHIFT_EXPR:
3391 case LROTATE_EXPR:
3392 case RROTATE_EXPR:
3393 {
3394 /* Shifts and rotates are ok on integral types, fixed point
3395 types and integer vector types. */
3396 if ((!INTEGRAL_TYPE_P (rhs1_type)
3397 && !FIXED_POINT_TYPE_P (rhs1_type)
3398 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3399 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3400 || (!INTEGRAL_TYPE_P (rhs2_type)
3401 /* Vector shifts of vectors are also ok. */
3402 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3403 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3404 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3405 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3406 || !useless_type_conversion_p (lhs_type, rhs1_type))
3407 {
3408 error ("type mismatch in shift expression");
3409 debug_generic_expr (lhs_type);
3410 debug_generic_expr (rhs1_type);
3411 debug_generic_expr (rhs2_type);
3412 return true;
3413 }
3414
3415 return false;
3416 }
3417
3418 case VEC_LSHIFT_EXPR:
3419 case VEC_RSHIFT_EXPR:
3420 {
3421 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3422 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3423 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3424 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3425 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3426 || (!INTEGRAL_TYPE_P (rhs2_type)
3427 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3428 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3429 || !useless_type_conversion_p (lhs_type, rhs1_type))
3430 {
3431 error ("type mismatch in vector shift expression");
3432 debug_generic_expr (lhs_type);
3433 debug_generic_expr (rhs1_type);
3434 debug_generic_expr (rhs2_type);
3435 return true;
3436 }
3437 /* For shifting a vector of non-integral components we
3438 only allow shifting by a constant multiple of the element size. */
3439 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3440 && (TREE_CODE (rhs2) != INTEGER_CST
3441 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3442 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3443 {
3444 error ("non-element sized vector shift of floating point vector");
3445 return true;
3446 }
3447
3448 return false;
3449 }
3450
3451 case PLUS_EXPR:
3452 case MINUS_EXPR:
3453 {
3454 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3455 ??? This just makes the checker happy and may not be what is
3456 intended. */
3457 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3458 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3459 {
3460 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3461 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3462 {
3463 error ("invalid non-vector operands to vector valued plus");
3464 return true;
3465 }
3466 lhs_type = TREE_TYPE (lhs_type);
3467 rhs1_type = TREE_TYPE (rhs1_type);
3468 rhs2_type = TREE_TYPE (rhs2_type);
3469 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3470 the pointer to 2nd place. */
3471 if (POINTER_TYPE_P (rhs2_type))
3472 {
3473 tree tem = rhs1_type;
3474 rhs1_type = rhs2_type;
3475 rhs2_type = tem;
3476 }
3477 goto do_pointer_plus_expr_check;
3478 }
3479 if (POINTER_TYPE_P (lhs_type)
3480 || POINTER_TYPE_P (rhs1_type)
3481 || POINTER_TYPE_P (rhs2_type))
3482 {
3483 error ("invalid (pointer) operands to plus/minus");
3484 return true;
3485 }
3486
3487 /* Continue with generic binary expression handling. */
3488 break;
3489 }
3490
3491 case POINTER_PLUS_EXPR:
3492 {
3493 do_pointer_plus_expr_check:
3494 if (!POINTER_TYPE_P (rhs1_type)
3495 || !useless_type_conversion_p (lhs_type, rhs1_type)
3496 || !useless_type_conversion_p (sizetype, rhs2_type))
3497 {
3498 error ("type mismatch in pointer plus expression");
3499 debug_generic_stmt (lhs_type);
3500 debug_generic_stmt (rhs1_type);
3501 debug_generic_stmt (rhs2_type);
3502 return true;
3503 }
3504
3505 return false;
3506 }
3507
3508 case TRUTH_ANDIF_EXPR:
3509 case TRUTH_ORIF_EXPR:
3510 gcc_unreachable ();
3511
3512 case TRUTH_AND_EXPR:
3513 case TRUTH_OR_EXPR:
3514 case TRUTH_XOR_EXPR:
3515 {
3516 /* We allow any kind of integral typed argument and result. */
3517 if (!INTEGRAL_TYPE_P (rhs1_type)
3518 || !INTEGRAL_TYPE_P (rhs2_type)
3519 || !INTEGRAL_TYPE_P (lhs_type))
3520 {
3521 error ("type mismatch in binary truth expression");
3522 debug_generic_expr (lhs_type);
3523 debug_generic_expr (rhs1_type);
3524 debug_generic_expr (rhs2_type);
3525 return true;
3526 }
3527
3528 return false;
3529 }
3530
3531 case LT_EXPR:
3532 case LE_EXPR:
3533 case GT_EXPR:
3534 case GE_EXPR:
3535 case EQ_EXPR:
3536 case NE_EXPR:
3537 case UNORDERED_EXPR:
3538 case ORDERED_EXPR:
3539 case UNLT_EXPR:
3540 case UNLE_EXPR:
3541 case UNGT_EXPR:
3542 case UNGE_EXPR:
3543 case UNEQ_EXPR:
3544 case LTGT_EXPR:
3545 /* Comparisons are also binary, but the result type is not
3546 connected to the operand types. */
3547 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3548
3549 case WIDEN_MULT_EXPR:
3550 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3551 return true;
3552 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3553 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3554
3555 case WIDEN_SUM_EXPR:
3556 case VEC_WIDEN_MULT_HI_EXPR:
3557 case VEC_WIDEN_MULT_LO_EXPR:
3558 case VEC_PACK_TRUNC_EXPR:
3559 case VEC_PACK_SAT_EXPR:
3560 case VEC_PACK_FIX_TRUNC_EXPR:
3561 case VEC_EXTRACT_EVEN_EXPR:
3562 case VEC_EXTRACT_ODD_EXPR:
3563 case VEC_INTERLEAVE_HIGH_EXPR:
3564 case VEC_INTERLEAVE_LOW_EXPR:
3565 /* FIXME. */
3566 return false;
3567
3568 case MULT_EXPR:
3569 case TRUNC_DIV_EXPR:
3570 case CEIL_DIV_EXPR:
3571 case FLOOR_DIV_EXPR:
3572 case ROUND_DIV_EXPR:
3573 case TRUNC_MOD_EXPR:
3574 case CEIL_MOD_EXPR:
3575 case FLOOR_MOD_EXPR:
3576 case ROUND_MOD_EXPR:
3577 case RDIV_EXPR:
3578 case EXACT_DIV_EXPR:
3579 case MIN_EXPR:
3580 case MAX_EXPR:
3581 case BIT_IOR_EXPR:
3582 case BIT_XOR_EXPR:
3583 case BIT_AND_EXPR:
3584 /* Continue with generic binary expression handling. */
3585 break;
3586
3587 default:
3588 gcc_unreachable ();
3589 }
3590
3591 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3592 || !useless_type_conversion_p (lhs_type, rhs2_type))
3593 {
3594 error ("type mismatch in binary expression");
3595 debug_generic_stmt (lhs_type);
3596 debug_generic_stmt (rhs1_type);
3597 debug_generic_stmt (rhs2_type);
3598 return true;
3599 }
3600
3601 return false;
3602 }
3603
3604 /* Verify a gimple assignment statement STMT with a ternary rhs.
3605 Returns true if anything is wrong. */
3606
3607 static bool
3608 verify_gimple_assign_ternary (gimple stmt)
3609 {
3610 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3611 tree lhs = gimple_assign_lhs (stmt);
3612 tree lhs_type = TREE_TYPE (lhs);
3613 tree rhs1 = gimple_assign_rhs1 (stmt);
3614 tree rhs1_type = TREE_TYPE (rhs1);
3615 tree rhs2 = gimple_assign_rhs2 (stmt);
3616 tree rhs2_type = TREE_TYPE (rhs2);
3617 tree rhs3 = gimple_assign_rhs3 (stmt);
3618 tree rhs3_type = TREE_TYPE (rhs3);
3619
3620 if (!is_gimple_reg (lhs)
3621 && !(optimize == 0
3622 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3623 {
3624 error ("non-register as LHS of ternary operation");
3625 return true;
3626 }
3627
3628 if (!is_gimple_val (rhs1)
3629 || !is_gimple_val (rhs2)
3630 || !is_gimple_val (rhs3))
3631 {
3632 error ("invalid operands in ternary operation");
3633 return true;
3634 }
3635
3636 /* First handle operations that involve different types. */
3637 switch (rhs_code)
3638 {
3639 case WIDEN_MULT_PLUS_EXPR:
3640 case WIDEN_MULT_MINUS_EXPR:
3641 if ((!INTEGRAL_TYPE_P (rhs1_type)
3642 && !FIXED_POINT_TYPE_P (rhs1_type))
3643 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3644 || !useless_type_conversion_p (lhs_type, rhs3_type)
3645 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3646 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3647 {
3648 error ("type mismatch in widening multiply-accumulate expression");
3649 debug_generic_expr (lhs_type);
3650 debug_generic_expr (rhs1_type);
3651 debug_generic_expr (rhs2_type);
3652 debug_generic_expr (rhs3_type);
3653 return true;
3654 }
3655 break;
3656
3657 case FMA_EXPR:
3658 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3659 || !useless_type_conversion_p (lhs_type, rhs2_type)
3660 || !useless_type_conversion_p (lhs_type, rhs3_type))
3661 {
3662 error ("type mismatch in fused multiply-add expression");
3663 debug_generic_expr (lhs_type);
3664 debug_generic_expr (rhs1_type);
3665 debug_generic_expr (rhs2_type);
3666 debug_generic_expr (rhs3_type);
3667 return true;
3668 }
3669 break;
3670
3671 default:
3672 gcc_unreachable ();
3673 }
3674 return false;
3675 }
3676
3677 /* Verify a gimple assignment statement STMT with a single rhs.
3678 Returns true if anything is wrong. */
3679
3680 static bool
3681 verify_gimple_assign_single (gimple stmt)
3682 {
3683 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3684 tree lhs = gimple_assign_lhs (stmt);
3685 tree lhs_type = TREE_TYPE (lhs);
3686 tree rhs1 = gimple_assign_rhs1 (stmt);
3687 tree rhs1_type = TREE_TYPE (rhs1);
3688 bool res = false;
3689
3690 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3691 {
3692 error ("non-trivial conversion at assignment");
3693 debug_generic_expr (lhs_type);
3694 debug_generic_expr (rhs1_type);
3695 return true;
3696 }
3697
3698 if (handled_component_p (lhs))
3699 res |= verify_types_in_gimple_reference (lhs, true);
3700
3701 /* Special codes we cannot handle via their class. */
3702 switch (rhs_code)
3703 {
3704 case ADDR_EXPR:
3705 {
3706 tree op = TREE_OPERAND (rhs1, 0);
3707 if (!is_gimple_addressable (op))
3708 {
3709 error ("invalid operand in unary expression");
3710 return true;
3711 }
3712
3713 /* Technically there is no longer a need for matching types, but
3714 gimple hygiene asks for this check. In LTO we can end up
3715 combining incompatible units and thus end up with addresses
3716 of globals that change their type to a common one. */
3717 if (!in_lto_p
3718 && !types_compatible_p (TREE_TYPE (op),
3719 TREE_TYPE (TREE_TYPE (rhs1)))
3720 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3721 TREE_TYPE (op)))
3722 {
3723 error ("type mismatch in address expression");
3724 debug_generic_stmt (TREE_TYPE (rhs1));
3725 debug_generic_stmt (TREE_TYPE (op));
3726 return true;
3727 }
3728
3729 return verify_types_in_gimple_reference (op, true);
3730 }
3731
3732 /* tcc_reference */
3733 case INDIRECT_REF:
3734 error ("INDIRECT_REF in gimple IL");
3735 return true;
3736
3737 case COMPONENT_REF:
3738 case BIT_FIELD_REF:
3739 case ARRAY_REF:
3740 case ARRAY_RANGE_REF:
3741 case VIEW_CONVERT_EXPR:
3742 case REALPART_EXPR:
3743 case IMAGPART_EXPR:
3744 case TARGET_MEM_REF:
3745 case MEM_REF:
3746 if (!is_gimple_reg (lhs)
3747 && is_gimple_reg_type (TREE_TYPE (lhs)))
3748 {
3749 error ("invalid rhs for gimple memory store");
3750 debug_generic_stmt (lhs);
3751 debug_generic_stmt (rhs1);
3752 return true;
3753 }
3754 return res || verify_types_in_gimple_reference (rhs1, false);
3755
3756 /* tcc_constant */
3757 case SSA_NAME:
3758 case INTEGER_CST:
3759 case REAL_CST:
3760 case FIXED_CST:
3761 case COMPLEX_CST:
3762 case VECTOR_CST:
3763 case STRING_CST:
3764 return res;
3765
3766 /* tcc_declaration */
3767 case CONST_DECL:
3768 return res;
3769 case VAR_DECL:
3770 case PARM_DECL:
3771 if (!is_gimple_reg (lhs)
3772 && !is_gimple_reg (rhs1)
3773 && is_gimple_reg_type (TREE_TYPE (lhs)))
3774 {
3775 error ("invalid rhs for gimple memory store");
3776 debug_generic_stmt (lhs);
3777 debug_generic_stmt (rhs1);
3778 return true;
3779 }
3780 return res;
3781
3782 case COND_EXPR:
3783 if (!is_gimple_reg (lhs)
3784 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3785 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3786 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3787 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3788 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3789 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3790 {
3791 error ("invalid COND_EXPR in gimple assignment");
3792 debug_generic_stmt (rhs1);
3793 return true;
3794 }
3795 return res;
3796
3797 case CONSTRUCTOR:
3798 case OBJ_TYPE_REF:
3799 case ASSERT_EXPR:
3800 case WITH_SIZE_EXPR:
3801 case POLYNOMIAL_CHREC:
3802 case DOT_PROD_EXPR:
3803 case VEC_COND_EXPR:
3804 case REALIGN_LOAD_EXPR:
3805 /* FIXME. */
3806 return res;
3807
3808 default:;
3809 }
3810
3811 return res;
3812 }
3813
3814 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3815 is a problem, otherwise false. */
3816
3817 static bool
3818 verify_gimple_assign (gimple stmt)
3819 {
3820 switch (gimple_assign_rhs_class (stmt))
3821 {
3822 case GIMPLE_SINGLE_RHS:
3823 return verify_gimple_assign_single (stmt);
3824
3825 case GIMPLE_UNARY_RHS:
3826 return verify_gimple_assign_unary (stmt);
3827
3828 case GIMPLE_BINARY_RHS:
3829 return verify_gimple_assign_binary (stmt);
3830
3831 case GIMPLE_TERNARY_RHS:
3832 return verify_gimple_assign_ternary (stmt);
3833
3834 default:
3835 gcc_unreachable ();
3836 }
3837 }
3838
3839 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3840 is a problem, otherwise false. */
3841
3842 static bool
3843 verify_gimple_return (gimple stmt)
3844 {
3845 tree op = gimple_return_retval (stmt);
3846 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3847
3848 /* We cannot test for present return values as we do not fix up missing
3849 return values from the original source. */
3850 if (op == NULL)
3851 return false;
3852
3853 if (!is_gimple_val (op)
3854 && TREE_CODE (op) != RESULT_DECL)
3855 {
3856 error ("invalid operand in return statement");
3857 debug_generic_stmt (op);
3858 return true;
3859 }
3860
3861 if ((TREE_CODE (op) == RESULT_DECL
3862 && DECL_BY_REFERENCE (op))
3863 || (TREE_CODE (op) == SSA_NAME
3864 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3865 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3866 op = TREE_TYPE (op);
3867
3868 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3869 {
3870 error ("invalid conversion in return statement");
3871 debug_generic_stmt (restype);
3872 debug_generic_stmt (TREE_TYPE (op));
3873 return true;
3874 }
3875
3876 return false;
3877 }
3878
3879
3880 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3881 is a problem, otherwise false. */
3882
3883 static bool
3884 verify_gimple_goto (gimple stmt)
3885 {
3886 tree dest = gimple_goto_dest (stmt);
3887
3888 /* ??? We have two canonical forms of direct goto destinations, a
3889 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3890 if (TREE_CODE (dest) != LABEL_DECL
3891 && (!is_gimple_val (dest)
3892 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3893 {
3894 error ("goto destination is neither a label nor a pointer");
3895 return true;
3896 }
3897
3898 return false;
3899 }
3900
3901 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3902 is a problem, otherwise false. */
3903
3904 static bool
3905 verify_gimple_switch (gimple stmt)
3906 {
3907 if (!is_gimple_val (gimple_switch_index (stmt)))
3908 {
3909 error ("invalid operand to switch statement");
3910 debug_generic_stmt (gimple_switch_index (stmt));
3911 return true;
3912 }
3913
3914 return false;
3915 }
3916
3917
3918 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3919 and false otherwise. */
3920
3921 static bool
3922 verify_gimple_phi (gimple stmt)
3923 {
3924 tree type = TREE_TYPE (gimple_phi_result (stmt));
3925 unsigned i;
3926
3927 if (TREE_CODE (gimple_phi_result (stmt)) != SSA_NAME)
3928 {
3929 error ("invalid PHI result");
3930 return true;
3931 }
3932
3933 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3934 {
3935 tree arg = gimple_phi_arg_def (stmt, i);
3936 if ((is_gimple_reg (gimple_phi_result (stmt))
3937 && !is_gimple_val (arg))
3938 || (!is_gimple_reg (gimple_phi_result (stmt))
3939 && !is_gimple_addressable (arg)))
3940 {
3941 error ("invalid PHI argument");
3942 debug_generic_stmt (arg);
3943 return true;
3944 }
3945 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3946 {
3947 error ("incompatible types in PHI argument %u", i);
3948 debug_generic_stmt (type);
3949 debug_generic_stmt (TREE_TYPE (arg));
3950 return true;
3951 }
3952 }
3953
3954 return false;
3955 }
3956
3957
3958 /* Verify a gimple debug statement STMT.
3959 Returns true if anything is wrong. */
3960
3961 static bool
3962 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3963 {
3964 /* There isn't much that could be wrong in a gimple debug stmt. A
3965 gimple debug bind stmt, for example, maps a tree, that's usually
3966 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3967 component or member of an aggregate type, to another tree, that
3968 can be an arbitrary expression. These stmts expand into debug
3969 insns, and are converted to debug notes by var-tracking.c. */
3970 return false;
3971 }
3972
3973
3974 /* Verify the GIMPLE statement STMT. Returns true if there is an
3975 error, otherwise false. */
3976
3977 static bool
3978 verify_types_in_gimple_stmt (gimple stmt)
3979 {
3980 switch (gimple_code (stmt))
3981 {
3982 case GIMPLE_ASSIGN:
3983 return verify_gimple_assign (stmt);
3984
3985 case GIMPLE_LABEL:
3986 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3987
3988 case GIMPLE_CALL:
3989 return verify_gimple_call (stmt);
3990
3991 case GIMPLE_COND:
3992 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
3993 {
3994 error ("invalid comparison code in gimple cond");
3995 return true;
3996 }
3997 if (!(!gimple_cond_true_label (stmt)
3998 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
3999 || !(!gimple_cond_false_label (stmt)
4000 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4001 {
4002 error ("invalid labels in gimple cond");
4003 return true;
4004 }
4005
4006 return verify_gimple_comparison (boolean_type_node,
4007 gimple_cond_lhs (stmt),
4008 gimple_cond_rhs (stmt));
4009
4010 case GIMPLE_GOTO:
4011 return verify_gimple_goto (stmt);
4012
4013 case GIMPLE_SWITCH:
4014 return verify_gimple_switch (stmt);
4015
4016 case GIMPLE_RETURN:
4017 return verify_gimple_return (stmt);
4018
4019 case GIMPLE_ASM:
4020 return false;
4021
4022 case GIMPLE_PHI:
4023 return verify_gimple_phi (stmt);
4024
4025 /* Tuples that do not have tree operands. */
4026 case GIMPLE_NOP:
4027 case GIMPLE_PREDICT:
4028 case GIMPLE_RESX:
4029 case GIMPLE_EH_DISPATCH:
4030 case GIMPLE_EH_MUST_NOT_THROW:
4031 return false;
4032
4033 CASE_GIMPLE_OMP:
4034 /* OpenMP directives are validated by the FE and never operated
4035 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4036 non-gimple expressions when the main index variable has had
4037 its address taken. This does not affect the loop itself
4038 because the header of an GIMPLE_OMP_FOR is merely used to determine
4039 how to setup the parallel iteration. */
4040 return false;
4041
4042 case GIMPLE_DEBUG:
4043 return verify_gimple_debug (stmt);
4044
4045 default:
4046 gcc_unreachable ();
4047 }
4048 }
4049
4050 /* Verify the GIMPLE statements inside the sequence STMTS. */
4051
4052 static bool
4053 verify_types_in_gimple_seq_2 (gimple_seq stmts)
4054 {
4055 gimple_stmt_iterator ittr;
4056 bool err = false;
4057
4058 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4059 {
4060 gimple stmt = gsi_stmt (ittr);
4061
4062 switch (gimple_code (stmt))
4063 {
4064 case GIMPLE_BIND:
4065 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
4066 break;
4067
4068 case GIMPLE_TRY:
4069 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
4070 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
4071 break;
4072
4073 case GIMPLE_EH_FILTER:
4074 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
4075 break;
4076
4077 case GIMPLE_CATCH:
4078 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
4079 break;
4080
4081 default:
4082 {
4083 bool err2 = verify_types_in_gimple_stmt (stmt);
4084 if (err2)
4085 debug_gimple_stmt (stmt);
4086 err |= err2;
4087 }
4088 }
4089 }
4090
4091 return err;
4092 }
4093
4094
4095 /* Verify the GIMPLE statements inside the statement list STMTS. */
4096
4097 void
4098 verify_types_in_gimple_seq (gimple_seq stmts)
4099 {
4100 if (verify_types_in_gimple_seq_2 (stmts))
4101 internal_error ("verify_gimple failed");
4102 }
4103
4104
4105 /* Verify STMT, return true if STMT is not in GIMPLE form.
4106 TODO: Implement type checking. */
4107
4108 static bool
4109 verify_stmt (gimple_stmt_iterator *gsi)
4110 {
4111 tree addr;
4112 struct walk_stmt_info wi;
4113 bool last_in_block = gsi_one_before_end_p (*gsi);
4114 gimple stmt = gsi_stmt (*gsi);
4115 int lp_nr;
4116
4117 if (is_gimple_omp (stmt))
4118 {
4119 /* OpenMP directives are validated by the FE and never operated
4120 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4121 non-gimple expressions when the main index variable has had
4122 its address taken. This does not affect the loop itself
4123 because the header of an GIMPLE_OMP_FOR is merely used to determine
4124 how to setup the parallel iteration. */
4125 return false;
4126 }
4127
4128 /* FIXME. The C frontend passes unpromoted arguments in case it
4129 didn't see a function declaration before the call. */
4130 if (is_gimple_call (stmt))
4131 {
4132 tree decl;
4133
4134 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4135 {
4136 error ("invalid function in call statement");
4137 return true;
4138 }
4139
4140 decl = gimple_call_fndecl (stmt);
4141 if (decl
4142 && TREE_CODE (decl) == FUNCTION_DECL
4143 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4144 && (!DECL_PURE_P (decl))
4145 && (!TREE_READONLY (decl)))
4146 {
4147 error ("invalid pure const state for function");
4148 return true;
4149 }
4150 }
4151
4152 if (is_gimple_debug (stmt))
4153 return false;
4154
4155 memset (&wi, 0, sizeof (wi));
4156 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4157 if (addr)
4158 {
4159 debug_generic_expr (addr);
4160 inform (gimple_location (gsi_stmt (*gsi)), "in statement");
4161 debug_gimple_stmt (stmt);
4162 return true;
4163 }
4164
4165 /* If the statement is marked as part of an EH region, then it is
4166 expected that the statement could throw. Verify that when we
4167 have optimizations that simplify statements such that we prove
4168 that they cannot throw, that we update other data structures
4169 to match. */
4170 lp_nr = lookup_stmt_eh_lp (stmt);
4171 if (lp_nr != 0)
4172 {
4173 if (!stmt_could_throw_p (stmt))
4174 {
4175 error ("statement marked for throw, but doesn%'t");
4176 goto fail;
4177 }
4178 else if (lp_nr > 0 && !last_in_block && stmt_can_throw_internal (stmt))
4179 {
4180 error ("statement marked for throw in middle of block");
4181 goto fail;
4182 }
4183 }
4184
4185 return false;
4186
4187 fail:
4188 debug_gimple_stmt (stmt);
4189 return true;
4190 }
4191
4192
4193 /* Return true when the T can be shared. */
4194
4195 bool
4196 tree_node_can_be_shared (tree t)
4197 {
4198 if (IS_TYPE_OR_DECL_P (t)
4199 || is_gimple_min_invariant (t)
4200 || TREE_CODE (t) == SSA_NAME
4201 || t == error_mark_node
4202 || TREE_CODE (t) == IDENTIFIER_NODE)
4203 return true;
4204
4205 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4206 return true;
4207
4208 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4209 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4210 || TREE_CODE (t) == COMPONENT_REF
4211 || TREE_CODE (t) == REALPART_EXPR
4212 || TREE_CODE (t) == IMAGPART_EXPR)
4213 t = TREE_OPERAND (t, 0);
4214
4215 if (DECL_P (t))
4216 return true;
4217
4218 return false;
4219 }
4220
4221
4222 /* Called via walk_gimple_stmt. Verify tree sharing. */
4223
4224 static tree
4225 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4226 {
4227 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4228 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4229
4230 if (tree_node_can_be_shared (*tp))
4231 {
4232 *walk_subtrees = false;
4233 return NULL;
4234 }
4235
4236 if (pointer_set_insert (visited, *tp))
4237 return *tp;
4238
4239 return NULL;
4240 }
4241
4242
4243 static bool eh_error_found;
4244 static int
4245 verify_eh_throw_stmt_node (void **slot, void *data)
4246 {
4247 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4248 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4249
4250 if (!pointer_set_contains (visited, node->stmt))
4251 {
4252 error ("dead STMT in EH table");
4253 debug_gimple_stmt (node->stmt);
4254 eh_error_found = true;
4255 }
4256 return 1;
4257 }
4258
4259
4260 /* Verify the GIMPLE statements in every basic block. */
4261
4262 DEBUG_FUNCTION void
4263 verify_stmts (void)
4264 {
4265 basic_block bb;
4266 gimple_stmt_iterator gsi;
4267 bool err = false;
4268 struct pointer_set_t *visited, *visited_stmts;
4269 tree addr;
4270 struct walk_stmt_info wi;
4271
4272 timevar_push (TV_TREE_STMT_VERIFY);
4273 visited = pointer_set_create ();
4274 visited_stmts = pointer_set_create ();
4275
4276 memset (&wi, 0, sizeof (wi));
4277 wi.info = (void *) visited;
4278
4279 FOR_EACH_BB (bb)
4280 {
4281 gimple phi;
4282 size_t i;
4283
4284 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4285 {
4286 phi = gsi_stmt (gsi);
4287 pointer_set_insert (visited_stmts, phi);
4288 if (gimple_bb (phi) != bb)
4289 {
4290 error ("gimple_bb (phi) is set to a wrong basic block");
4291 err |= true;
4292 }
4293
4294 for (i = 0; i < gimple_phi_num_args (phi); i++)
4295 {
4296 tree t = gimple_phi_arg_def (phi, i);
4297 tree addr;
4298
4299 if (!t)
4300 {
4301 error ("missing PHI def");
4302 debug_gimple_stmt (phi);
4303 err |= true;
4304 continue;
4305 }
4306 /* Addressable variables do have SSA_NAMEs but they
4307 are not considered gimple values. */
4308 else if (TREE_CODE (t) != SSA_NAME
4309 && TREE_CODE (t) != FUNCTION_DECL
4310 && !is_gimple_min_invariant (t))
4311 {
4312 error ("PHI argument is not a GIMPLE value");
4313 debug_gimple_stmt (phi);
4314 debug_generic_expr (t);
4315 err |= true;
4316 }
4317
4318 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4319 if (addr)
4320 {
4321 error ("incorrect sharing of tree nodes");
4322 debug_gimple_stmt (phi);
4323 debug_generic_expr (addr);
4324 err |= true;
4325 }
4326 }
4327
4328 #ifdef ENABLE_TYPES_CHECKING
4329 if (verify_gimple_phi (phi))
4330 {
4331 debug_gimple_stmt (phi);
4332 err |= true;
4333 }
4334 #endif
4335 }
4336
4337 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4338 {
4339 gimple stmt = gsi_stmt (gsi);
4340
4341 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4342 || gimple_code (stmt) == GIMPLE_BIND)
4343 {
4344 error ("invalid GIMPLE statement");
4345 debug_gimple_stmt (stmt);
4346 err |= true;
4347 }
4348
4349 pointer_set_insert (visited_stmts, stmt);
4350
4351 if (gimple_bb (stmt) != bb)
4352 {
4353 error ("gimple_bb (stmt) is set to a wrong basic block");
4354 debug_gimple_stmt (stmt);
4355 err |= true;
4356 }
4357
4358 if (gimple_code (stmt) == GIMPLE_LABEL)
4359 {
4360 tree decl = gimple_label_label (stmt);
4361 int uid = LABEL_DECL_UID (decl);
4362
4363 if (uid == -1
4364 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4365 {
4366 error ("incorrect entry in label_to_block_map");
4367 err |= true;
4368 }
4369
4370 uid = EH_LANDING_PAD_NR (decl);
4371 if (uid)
4372 {
4373 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4374 if (decl != lp->post_landing_pad)
4375 {
4376 error ("incorrect setting of landing pad number");
4377 err |= true;
4378 }
4379 }
4380 }
4381
4382 err |= verify_stmt (&gsi);
4383
4384 #ifdef ENABLE_TYPES_CHECKING
4385 if (verify_types_in_gimple_stmt (gsi_stmt (gsi)))
4386 {
4387 debug_gimple_stmt (stmt);
4388 err |= true;
4389 }
4390 #endif
4391 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4392 if (addr)
4393 {
4394 error ("incorrect sharing of tree nodes");
4395 debug_gimple_stmt (stmt);
4396 debug_generic_expr (addr);
4397 err |= true;
4398 }
4399 gsi_next (&gsi);
4400 }
4401 }
4402
4403 eh_error_found = false;
4404 if (get_eh_throw_stmt_table (cfun))
4405 htab_traverse (get_eh_throw_stmt_table (cfun),
4406 verify_eh_throw_stmt_node,
4407 visited_stmts);
4408
4409 if (err | eh_error_found)
4410 internal_error ("verify_stmts failed");
4411
4412 pointer_set_destroy (visited);
4413 pointer_set_destroy (visited_stmts);
4414 verify_histograms ();
4415 timevar_pop (TV_TREE_STMT_VERIFY);
4416 }
4417
4418
4419 /* Verifies that the flow information is OK. */
4420
4421 static int
4422 gimple_verify_flow_info (void)
4423 {
4424 int err = 0;
4425 basic_block bb;
4426 gimple_stmt_iterator gsi;
4427 gimple stmt;
4428 edge e;
4429 edge_iterator ei;
4430
4431 if (ENTRY_BLOCK_PTR->il.gimple)
4432 {
4433 error ("ENTRY_BLOCK has IL associated with it");
4434 err = 1;
4435 }
4436
4437 if (EXIT_BLOCK_PTR->il.gimple)
4438 {
4439 error ("EXIT_BLOCK has IL associated with it");
4440 err = 1;
4441 }
4442
4443 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4444 if (e->flags & EDGE_FALLTHRU)
4445 {
4446 error ("fallthru to exit from bb %d", e->src->index);
4447 err = 1;
4448 }
4449
4450 FOR_EACH_BB (bb)
4451 {
4452 bool found_ctrl_stmt = false;
4453
4454 stmt = NULL;
4455
4456 /* Skip labels on the start of basic block. */
4457 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4458 {
4459 tree label;
4460 gimple prev_stmt = stmt;
4461
4462 stmt = gsi_stmt (gsi);
4463
4464 if (gimple_code (stmt) != GIMPLE_LABEL)
4465 break;
4466
4467 label = gimple_label_label (stmt);
4468 if (prev_stmt && DECL_NONLOCAL (label))
4469 {
4470 error ("nonlocal label ");
4471 print_generic_expr (stderr, label, 0);
4472 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4473 bb->index);
4474 err = 1;
4475 }
4476
4477 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4478 {
4479 error ("EH landing pad label ");
4480 print_generic_expr (stderr, label, 0);
4481 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4482 bb->index);
4483 err = 1;
4484 }
4485
4486 if (label_to_block (label) != bb)
4487 {
4488 error ("label ");
4489 print_generic_expr (stderr, label, 0);
4490 fprintf (stderr, " to block does not match in bb %d",
4491 bb->index);
4492 err = 1;
4493 }
4494
4495 if (decl_function_context (label) != current_function_decl)
4496 {
4497 error ("label ");
4498 print_generic_expr (stderr, label, 0);
4499 fprintf (stderr, " has incorrect context in bb %d",
4500 bb->index);
4501 err = 1;
4502 }
4503 }
4504
4505 /* Verify that body of basic block BB is free of control flow. */
4506 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4507 {
4508 gimple stmt = gsi_stmt (gsi);
4509
4510 if (found_ctrl_stmt)
4511 {
4512 error ("control flow in the middle of basic block %d",
4513 bb->index);
4514 err = 1;
4515 }
4516
4517 if (stmt_ends_bb_p (stmt))
4518 found_ctrl_stmt = true;
4519
4520 if (gimple_code (stmt) == GIMPLE_LABEL)
4521 {
4522 error ("label ");
4523 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4524 fprintf (stderr, " in the middle of basic block %d", bb->index);
4525 err = 1;
4526 }
4527 }
4528
4529 gsi = gsi_last_bb (bb);
4530 if (gsi_end_p (gsi))
4531 continue;
4532
4533 stmt = gsi_stmt (gsi);
4534
4535 if (gimple_code (stmt) == GIMPLE_LABEL)
4536 continue;
4537
4538 err |= verify_eh_edges (stmt);
4539
4540 if (is_ctrl_stmt (stmt))
4541 {
4542 FOR_EACH_EDGE (e, ei, bb->succs)
4543 if (e->flags & EDGE_FALLTHRU)
4544 {
4545 error ("fallthru edge after a control statement in bb %d",
4546 bb->index);
4547 err = 1;
4548 }
4549 }
4550
4551 if (gimple_code (stmt) != GIMPLE_COND)
4552 {
4553 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4554 after anything else but if statement. */
4555 FOR_EACH_EDGE (e, ei, bb->succs)
4556 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4557 {
4558 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4559 bb->index);
4560 err = 1;
4561 }
4562 }
4563
4564 switch (gimple_code (stmt))
4565 {
4566 case GIMPLE_COND:
4567 {
4568 edge true_edge;
4569 edge false_edge;
4570
4571 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4572
4573 if (!true_edge
4574 || !false_edge
4575 || !(true_edge->flags & EDGE_TRUE_VALUE)
4576 || !(false_edge->flags & EDGE_FALSE_VALUE)
4577 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4578 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4579 || EDGE_COUNT (bb->succs) >= 3)
4580 {
4581 error ("wrong outgoing edge flags at end of bb %d",
4582 bb->index);
4583 err = 1;
4584 }
4585 }
4586 break;
4587
4588 case GIMPLE_GOTO:
4589 if (simple_goto_p (stmt))
4590 {
4591 error ("explicit goto at end of bb %d", bb->index);
4592 err = 1;
4593 }
4594 else
4595 {
4596 /* FIXME. We should double check that the labels in the
4597 destination blocks have their address taken. */
4598 FOR_EACH_EDGE (e, ei, bb->succs)
4599 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4600 | EDGE_FALSE_VALUE))
4601 || !(e->flags & EDGE_ABNORMAL))
4602 {
4603 error ("wrong outgoing edge flags at end of bb %d",
4604 bb->index);
4605 err = 1;
4606 }
4607 }
4608 break;
4609
4610 case GIMPLE_CALL:
4611 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4612 break;
4613 /* ... fallthru ... */
4614 case GIMPLE_RETURN:
4615 if (!single_succ_p (bb)
4616 || (single_succ_edge (bb)->flags
4617 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4618 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4619 {
4620 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4621 err = 1;
4622 }
4623 if (single_succ (bb) != EXIT_BLOCK_PTR)
4624 {
4625 error ("return edge does not point to exit in bb %d",
4626 bb->index);
4627 err = 1;
4628 }
4629 break;
4630
4631 case GIMPLE_SWITCH:
4632 {
4633 tree prev;
4634 edge e;
4635 size_t i, n;
4636
4637 n = gimple_switch_num_labels (stmt);
4638
4639 /* Mark all the destination basic blocks. */
4640 for (i = 0; i < n; ++i)
4641 {
4642 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4643 basic_block label_bb = label_to_block (lab);
4644 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4645 label_bb->aux = (void *)1;
4646 }
4647
4648 /* Verify that the case labels are sorted. */
4649 prev = gimple_switch_label (stmt, 0);
4650 for (i = 1; i < n; ++i)
4651 {
4652 tree c = gimple_switch_label (stmt, i);
4653 if (!CASE_LOW (c))
4654 {
4655 error ("found default case not at the start of "
4656 "case vector");
4657 err = 1;
4658 continue;
4659 }
4660 if (CASE_LOW (prev)
4661 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4662 {
4663 error ("case labels not sorted: ");
4664 print_generic_expr (stderr, prev, 0);
4665 fprintf (stderr," is greater than ");
4666 print_generic_expr (stderr, c, 0);
4667 fprintf (stderr," but comes before it.\n");
4668 err = 1;
4669 }
4670 prev = c;
4671 }
4672 /* VRP will remove the default case if it can prove it will
4673 never be executed. So do not verify there always exists
4674 a default case here. */
4675
4676 FOR_EACH_EDGE (e, ei, bb->succs)
4677 {
4678 if (!e->dest->aux)
4679 {
4680 error ("extra outgoing edge %d->%d",
4681 bb->index, e->dest->index);
4682 err = 1;
4683 }
4684
4685 e->dest->aux = (void *)2;
4686 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4687 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4688 {
4689 error ("wrong outgoing edge flags at end of bb %d",
4690 bb->index);
4691 err = 1;
4692 }
4693 }
4694
4695 /* Check that we have all of them. */
4696 for (i = 0; i < n; ++i)
4697 {
4698 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4699 basic_block label_bb = label_to_block (lab);
4700
4701 if (label_bb->aux != (void *)2)
4702 {
4703 error ("missing edge %i->%i", bb->index, label_bb->index);
4704 err = 1;
4705 }
4706 }
4707
4708 FOR_EACH_EDGE (e, ei, bb->succs)
4709 e->dest->aux = (void *)0;
4710 }
4711 break;
4712
4713 case GIMPLE_EH_DISPATCH:
4714 err |= verify_eh_dispatch_edge (stmt);
4715 break;
4716
4717 default:
4718 break;
4719 }
4720 }
4721
4722 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4723 verify_dominators (CDI_DOMINATORS);
4724
4725 return err;
4726 }
4727
4728
4729 /* Updates phi nodes after creating a forwarder block joined
4730 by edge FALLTHRU. */
4731
4732 static void
4733 gimple_make_forwarder_block (edge fallthru)
4734 {
4735 edge e;
4736 edge_iterator ei;
4737 basic_block dummy, bb;
4738 tree var;
4739 gimple_stmt_iterator gsi;
4740
4741 dummy = fallthru->src;
4742 bb = fallthru->dest;
4743
4744 if (single_pred_p (bb))
4745 return;
4746
4747 /* If we redirected a branch we must create new PHI nodes at the
4748 start of BB. */
4749 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4750 {
4751 gimple phi, new_phi;
4752
4753 phi = gsi_stmt (gsi);
4754 var = gimple_phi_result (phi);
4755 new_phi = create_phi_node (var, bb);
4756 SSA_NAME_DEF_STMT (var) = new_phi;
4757 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4758 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4759 UNKNOWN_LOCATION);
4760 }
4761
4762 /* Add the arguments we have stored on edges. */
4763 FOR_EACH_EDGE (e, ei, bb->preds)
4764 {
4765 if (e == fallthru)
4766 continue;
4767
4768 flush_pending_stmts (e);
4769 }
4770 }
4771
4772
4773 /* Return a non-special label in the head of basic block BLOCK.
4774 Create one if it doesn't exist. */
4775
4776 tree
4777 gimple_block_label (basic_block bb)
4778 {
4779 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4780 bool first = true;
4781 tree label;
4782 gimple stmt;
4783
4784 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4785 {
4786 stmt = gsi_stmt (i);
4787 if (gimple_code (stmt) != GIMPLE_LABEL)
4788 break;
4789 label = gimple_label_label (stmt);
4790 if (!DECL_NONLOCAL (label))
4791 {
4792 if (!first)
4793 gsi_move_before (&i, &s);
4794 return label;
4795 }
4796 }
4797
4798 label = create_artificial_label (UNKNOWN_LOCATION);
4799 stmt = gimple_build_label (label);
4800 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4801 return label;
4802 }
4803
4804
4805 /* Attempt to perform edge redirection by replacing a possibly complex
4806 jump instruction by a goto or by removing the jump completely.
4807 This can apply only if all edges now point to the same block. The
4808 parameters and return values are equivalent to
4809 redirect_edge_and_branch. */
4810
4811 static edge
4812 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4813 {
4814 basic_block src = e->src;
4815 gimple_stmt_iterator i;
4816 gimple stmt;
4817
4818 /* We can replace or remove a complex jump only when we have exactly
4819 two edges. */
4820 if (EDGE_COUNT (src->succs) != 2
4821 /* Verify that all targets will be TARGET. Specifically, the
4822 edge that is not E must also go to TARGET. */
4823 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4824 return NULL;
4825
4826 i = gsi_last_bb (src);
4827 if (gsi_end_p (i))
4828 return NULL;
4829
4830 stmt = gsi_stmt (i);
4831
4832 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4833 {
4834 gsi_remove (&i, true);
4835 e = ssa_redirect_edge (e, target);
4836 e->flags = EDGE_FALLTHRU;
4837 return e;
4838 }
4839
4840 return NULL;
4841 }
4842
4843
4844 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4845 edge representing the redirected branch. */
4846
4847 static edge
4848 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4849 {
4850 basic_block bb = e->src;
4851 gimple_stmt_iterator gsi;
4852 edge ret;
4853 gimple stmt;
4854
4855 if (e->flags & EDGE_ABNORMAL)
4856 return NULL;
4857
4858 if (e->dest == dest)
4859 return NULL;
4860
4861 if (e->flags & EDGE_EH)
4862 return redirect_eh_edge (e, dest);
4863
4864 if (e->src != ENTRY_BLOCK_PTR)
4865 {
4866 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4867 if (ret)
4868 return ret;
4869 }
4870
4871 gsi = gsi_last_bb (bb);
4872 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4873
4874 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4875 {
4876 case GIMPLE_COND:
4877 /* For COND_EXPR, we only need to redirect the edge. */
4878 break;
4879
4880 case GIMPLE_GOTO:
4881 /* No non-abnormal edges should lead from a non-simple goto, and
4882 simple ones should be represented implicitly. */
4883 gcc_unreachable ();
4884
4885 case GIMPLE_SWITCH:
4886 {
4887 tree label = gimple_block_label (dest);
4888 tree cases = get_cases_for_edge (e, stmt);
4889
4890 /* If we have a list of cases associated with E, then use it
4891 as it's a lot faster than walking the entire case vector. */
4892 if (cases)
4893 {
4894 edge e2 = find_edge (e->src, dest);
4895 tree last, first;
4896
4897 first = cases;
4898 while (cases)
4899 {
4900 last = cases;
4901 CASE_LABEL (cases) = label;
4902 cases = TREE_CHAIN (cases);
4903 }
4904
4905 /* If there was already an edge in the CFG, then we need
4906 to move all the cases associated with E to E2. */
4907 if (e2)
4908 {
4909 tree cases2 = get_cases_for_edge (e2, stmt);
4910
4911 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4912 TREE_CHAIN (cases2) = first;
4913 }
4914 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4915 }
4916 else
4917 {
4918 size_t i, n = gimple_switch_num_labels (stmt);
4919
4920 for (i = 0; i < n; i++)
4921 {
4922 tree elt = gimple_switch_label (stmt, i);
4923 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4924 CASE_LABEL (elt) = label;
4925 }
4926 }
4927 }
4928 break;
4929
4930 case GIMPLE_ASM:
4931 {
4932 int i, n = gimple_asm_nlabels (stmt);
4933 tree label = NULL;
4934
4935 for (i = 0; i < n; ++i)
4936 {
4937 tree cons = gimple_asm_label_op (stmt, i);
4938 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4939 {
4940 if (!label)
4941 label = gimple_block_label (dest);
4942 TREE_VALUE (cons) = label;
4943 }
4944 }
4945
4946 /* If we didn't find any label matching the former edge in the
4947 asm labels, we must be redirecting the fallthrough
4948 edge. */
4949 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4950 }
4951 break;
4952
4953 case GIMPLE_RETURN:
4954 gsi_remove (&gsi, true);
4955 e->flags |= EDGE_FALLTHRU;
4956 break;
4957
4958 case GIMPLE_OMP_RETURN:
4959 case GIMPLE_OMP_CONTINUE:
4960 case GIMPLE_OMP_SECTIONS_SWITCH:
4961 case GIMPLE_OMP_FOR:
4962 /* The edges from OMP constructs can be simply redirected. */
4963 break;
4964
4965 case GIMPLE_EH_DISPATCH:
4966 if (!(e->flags & EDGE_FALLTHRU))
4967 redirect_eh_dispatch_edge (stmt, e, dest);
4968 break;
4969
4970 default:
4971 /* Otherwise it must be a fallthru edge, and we don't need to
4972 do anything besides redirecting it. */
4973 gcc_assert (e->flags & EDGE_FALLTHRU);
4974 break;
4975 }
4976
4977 /* Update/insert PHI nodes as necessary. */
4978
4979 /* Now update the edges in the CFG. */
4980 e = ssa_redirect_edge (e, dest);
4981
4982 return e;
4983 }
4984
4985 /* Returns true if it is possible to remove edge E by redirecting
4986 it to the destination of the other edge from E->src. */
4987
4988 static bool
4989 gimple_can_remove_branch_p (const_edge e)
4990 {
4991 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4992 return false;
4993
4994 return true;
4995 }
4996
4997 /* Simple wrapper, as we can always redirect fallthru edges. */
4998
4999 static basic_block
5000 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5001 {
5002 e = gimple_redirect_edge_and_branch (e, dest);
5003 gcc_assert (e);
5004
5005 return NULL;
5006 }
5007
5008
5009 /* Splits basic block BB after statement STMT (but at least after the
5010 labels). If STMT is NULL, BB is split just after the labels. */
5011
5012 static basic_block
5013 gimple_split_block (basic_block bb, void *stmt)
5014 {
5015 gimple_stmt_iterator gsi;
5016 gimple_stmt_iterator gsi_tgt;
5017 gimple act;
5018 gimple_seq list;
5019 basic_block new_bb;
5020 edge e;
5021 edge_iterator ei;
5022
5023 new_bb = create_empty_bb (bb);
5024
5025 /* Redirect the outgoing edges. */
5026 new_bb->succs = bb->succs;
5027 bb->succs = NULL;
5028 FOR_EACH_EDGE (e, ei, new_bb->succs)
5029 e->src = new_bb;
5030
5031 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5032 stmt = NULL;
5033
5034 /* Move everything from GSI to the new basic block. */
5035 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5036 {
5037 act = gsi_stmt (gsi);
5038 if (gimple_code (act) == GIMPLE_LABEL)
5039 continue;
5040
5041 if (!stmt)
5042 break;
5043
5044 if (stmt == act)
5045 {
5046 gsi_next (&gsi);
5047 break;
5048 }
5049 }
5050
5051 if (gsi_end_p (gsi))
5052 return new_bb;
5053
5054 /* Split the statement list - avoid re-creating new containers as this
5055 brings ugly quadratic memory consumption in the inliner.
5056 (We are still quadratic since we need to update stmt BB pointers,
5057 sadly.) */
5058 list = gsi_split_seq_before (&gsi);
5059 set_bb_seq (new_bb, list);
5060 for (gsi_tgt = gsi_start (list);
5061 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5062 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5063
5064 return new_bb;
5065 }
5066
5067
5068 /* Moves basic block BB after block AFTER. */
5069
5070 static bool
5071 gimple_move_block_after (basic_block bb, basic_block after)
5072 {
5073 if (bb->prev_bb == after)
5074 return true;
5075
5076 unlink_block (bb);
5077 link_block (bb, after);
5078
5079 return true;
5080 }
5081
5082
5083 /* Return true if basic_block can be duplicated. */
5084
5085 static bool
5086 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5087 {
5088 return true;
5089 }
5090
5091 /* Create a duplicate of the basic block BB. NOTE: This does not
5092 preserve SSA form. */
5093
5094 static basic_block
5095 gimple_duplicate_bb (basic_block bb)
5096 {
5097 basic_block new_bb;
5098 gimple_stmt_iterator gsi, gsi_tgt;
5099 gimple_seq phis = phi_nodes (bb);
5100 gimple phi, stmt, copy;
5101
5102 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5103
5104 /* Copy the PHI nodes. We ignore PHI node arguments here because
5105 the incoming edges have not been setup yet. */
5106 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5107 {
5108 phi = gsi_stmt (gsi);
5109 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5110 create_new_def_for (gimple_phi_result (copy), copy,
5111 gimple_phi_result_ptr (copy));
5112 }
5113
5114 gsi_tgt = gsi_start_bb (new_bb);
5115 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5116 {
5117 def_operand_p def_p;
5118 ssa_op_iter op_iter;
5119
5120 stmt = gsi_stmt (gsi);
5121 if (gimple_code (stmt) == GIMPLE_LABEL)
5122 continue;
5123
5124 /* Create a new copy of STMT and duplicate STMT's virtual
5125 operands. */
5126 copy = gimple_copy (stmt);
5127 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5128
5129 maybe_duplicate_eh_stmt (copy, stmt);
5130 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5131
5132 /* Create new names for all the definitions created by COPY and
5133 add replacement mappings for each new name. */
5134 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5135 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5136 }
5137
5138 return new_bb;
5139 }
5140
5141 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5142
5143 static void
5144 add_phi_args_after_copy_edge (edge e_copy)
5145 {
5146 basic_block bb, bb_copy = e_copy->src, dest;
5147 edge e;
5148 edge_iterator ei;
5149 gimple phi, phi_copy;
5150 tree def;
5151 gimple_stmt_iterator psi, psi_copy;
5152
5153 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5154 return;
5155
5156 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5157
5158 if (e_copy->dest->flags & BB_DUPLICATED)
5159 dest = get_bb_original (e_copy->dest);
5160 else
5161 dest = e_copy->dest;
5162
5163 e = find_edge (bb, dest);
5164 if (!e)
5165 {
5166 /* During loop unrolling the target of the latch edge is copied.
5167 In this case we are not looking for edge to dest, but to
5168 duplicated block whose original was dest. */
5169 FOR_EACH_EDGE (e, ei, bb->succs)
5170 {
5171 if ((e->dest->flags & BB_DUPLICATED)
5172 && get_bb_original (e->dest) == dest)
5173 break;
5174 }
5175
5176 gcc_assert (e != NULL);
5177 }
5178
5179 for (psi = gsi_start_phis (e->dest),
5180 psi_copy = gsi_start_phis (e_copy->dest);
5181 !gsi_end_p (psi);
5182 gsi_next (&psi), gsi_next (&psi_copy))
5183 {
5184 phi = gsi_stmt (psi);
5185 phi_copy = gsi_stmt (psi_copy);
5186 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5187 add_phi_arg (phi_copy, def, e_copy,
5188 gimple_phi_arg_location_from_edge (phi, e));
5189 }
5190 }
5191
5192
5193 /* Basic block BB_COPY was created by code duplication. Add phi node
5194 arguments for edges going out of BB_COPY. The blocks that were
5195 duplicated have BB_DUPLICATED set. */
5196
5197 void
5198 add_phi_args_after_copy_bb (basic_block bb_copy)
5199 {
5200 edge e_copy;
5201 edge_iterator ei;
5202
5203 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5204 {
5205 add_phi_args_after_copy_edge (e_copy);
5206 }
5207 }
5208
5209 /* Blocks in REGION_COPY array of length N_REGION were created by
5210 duplication of basic blocks. Add phi node arguments for edges
5211 going from these blocks. If E_COPY is not NULL, also add
5212 phi node arguments for its destination.*/
5213
5214 void
5215 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5216 edge e_copy)
5217 {
5218 unsigned i;
5219
5220 for (i = 0; i < n_region; i++)
5221 region_copy[i]->flags |= BB_DUPLICATED;
5222
5223 for (i = 0; i < n_region; i++)
5224 add_phi_args_after_copy_bb (region_copy[i]);
5225 if (e_copy)
5226 add_phi_args_after_copy_edge (e_copy);
5227
5228 for (i = 0; i < n_region; i++)
5229 region_copy[i]->flags &= ~BB_DUPLICATED;
5230 }
5231
5232 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5233 important exit edge EXIT. By important we mean that no SSA name defined
5234 inside region is live over the other exit edges of the region. All entry
5235 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5236 to the duplicate of the region. SSA form, dominance and loop information
5237 is updated. The new basic blocks are stored to REGION_COPY in the same
5238 order as they had in REGION, provided that REGION_COPY is not NULL.
5239 The function returns false if it is unable to copy the region,
5240 true otherwise. */
5241
5242 bool
5243 gimple_duplicate_sese_region (edge entry, edge exit,
5244 basic_block *region, unsigned n_region,
5245 basic_block *region_copy)
5246 {
5247 unsigned i;
5248 bool free_region_copy = false, copying_header = false;
5249 struct loop *loop = entry->dest->loop_father;
5250 edge exit_copy;
5251 VEC (basic_block, heap) *doms;
5252 edge redirected;
5253 int total_freq = 0, entry_freq = 0;
5254 gcov_type total_count = 0, entry_count = 0;
5255
5256 if (!can_copy_bbs_p (region, n_region))
5257 return false;
5258
5259 /* Some sanity checking. Note that we do not check for all possible
5260 missuses of the functions. I.e. if you ask to copy something weird,
5261 it will work, but the state of structures probably will not be
5262 correct. */
5263 for (i = 0; i < n_region; i++)
5264 {
5265 /* We do not handle subloops, i.e. all the blocks must belong to the
5266 same loop. */
5267 if (region[i]->loop_father != loop)
5268 return false;
5269
5270 if (region[i] != entry->dest
5271 && region[i] == loop->header)
5272 return false;
5273 }
5274
5275 set_loop_copy (loop, loop);
5276
5277 /* In case the function is used for loop header copying (which is the primary
5278 use), ensure that EXIT and its copy will be new latch and entry edges. */
5279 if (loop->header == entry->dest)
5280 {
5281 copying_header = true;
5282 set_loop_copy (loop, loop_outer (loop));
5283
5284 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5285 return false;
5286
5287 for (i = 0; i < n_region; i++)
5288 if (region[i] != exit->src
5289 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5290 return false;
5291 }
5292
5293 if (!region_copy)
5294 {
5295 region_copy = XNEWVEC (basic_block, n_region);
5296 free_region_copy = true;
5297 }
5298
5299 gcc_assert (!need_ssa_update_p (cfun));
5300
5301 /* Record blocks outside the region that are dominated by something
5302 inside. */
5303 doms = NULL;
5304 initialize_original_copy_tables ();
5305
5306 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5307
5308 if (entry->dest->count)
5309 {
5310 total_count = entry->dest->count;
5311 entry_count = entry->count;
5312 /* Fix up corner cases, to avoid division by zero or creation of negative
5313 frequencies. */
5314 if (entry_count > total_count)
5315 entry_count = total_count;
5316 }
5317 else
5318 {
5319 total_freq = entry->dest->frequency;
5320 entry_freq = EDGE_FREQUENCY (entry);
5321 /* Fix up corner cases, to avoid division by zero or creation of negative
5322 frequencies. */
5323 if (total_freq == 0)
5324 total_freq = 1;
5325 else if (entry_freq > total_freq)
5326 entry_freq = total_freq;
5327 }
5328
5329 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5330 split_edge_bb_loc (entry));
5331 if (total_count)
5332 {
5333 scale_bbs_frequencies_gcov_type (region, n_region,
5334 total_count - entry_count,
5335 total_count);
5336 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5337 total_count);
5338 }
5339 else
5340 {
5341 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5342 total_freq);
5343 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5344 }
5345
5346 if (copying_header)
5347 {
5348 loop->header = exit->dest;
5349 loop->latch = exit->src;
5350 }
5351
5352 /* Redirect the entry and add the phi node arguments. */
5353 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5354 gcc_assert (redirected != NULL);
5355 flush_pending_stmts (entry);
5356
5357 /* Concerning updating of dominators: We must recount dominators
5358 for entry block and its copy. Anything that is outside of the
5359 region, but was dominated by something inside needs recounting as
5360 well. */
5361 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5362 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5363 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5364 VEC_free (basic_block, heap, doms);
5365
5366 /* Add the other PHI node arguments. */
5367 add_phi_args_after_copy (region_copy, n_region, NULL);
5368
5369 /* Update the SSA web. */
5370 update_ssa (TODO_update_ssa);
5371
5372 if (free_region_copy)
5373 free (region_copy);
5374
5375 free_original_copy_tables ();
5376 return true;
5377 }
5378
5379 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5380 are stored to REGION_COPY in the same order in that they appear
5381 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5382 the region, EXIT an exit from it. The condition guarding EXIT
5383 is moved to ENTRY. Returns true if duplication succeeds, false
5384 otherwise.
5385
5386 For example,
5387
5388 some_code;
5389 if (cond)
5390 A;
5391 else
5392 B;
5393
5394 is transformed to
5395
5396 if (cond)
5397 {
5398 some_code;
5399 A;
5400 }
5401 else
5402 {
5403 some_code;
5404 B;
5405 }
5406 */
5407
5408 bool
5409 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5410 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5411 basic_block *region_copy ATTRIBUTE_UNUSED)
5412 {
5413 unsigned i;
5414 bool free_region_copy = false;
5415 struct loop *loop = exit->dest->loop_father;
5416 struct loop *orig_loop = entry->dest->loop_father;
5417 basic_block switch_bb, entry_bb, nentry_bb;
5418 VEC (basic_block, heap) *doms;
5419 int total_freq = 0, exit_freq = 0;
5420 gcov_type total_count = 0, exit_count = 0;
5421 edge exits[2], nexits[2], e;
5422 gimple_stmt_iterator gsi,gsi1;
5423 gimple cond_stmt;
5424 edge sorig, snew;
5425 basic_block exit_bb;
5426 basic_block iters_bb;
5427 tree new_rhs;
5428 gimple_stmt_iterator psi;
5429 gimple phi;
5430 tree def;
5431
5432 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5433 exits[0] = exit;
5434 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5435
5436 if (!can_copy_bbs_p (region, n_region))
5437 return false;
5438
5439 initialize_original_copy_tables ();
5440 set_loop_copy (orig_loop, loop);
5441 duplicate_subloops (orig_loop, loop);
5442
5443 if (!region_copy)
5444 {
5445 region_copy = XNEWVEC (basic_block, n_region);
5446 free_region_copy = true;
5447 }
5448
5449 gcc_assert (!need_ssa_update_p (cfun));
5450
5451 /* Record blocks outside the region that are dominated by something
5452 inside. */
5453 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5454
5455 if (exit->src->count)
5456 {
5457 total_count = exit->src->count;
5458 exit_count = exit->count;
5459 /* Fix up corner cases, to avoid division by zero or creation of negative
5460 frequencies. */
5461 if (exit_count > total_count)
5462 exit_count = total_count;
5463 }
5464 else
5465 {
5466 total_freq = exit->src->frequency;
5467 exit_freq = EDGE_FREQUENCY (exit);
5468 /* Fix up corner cases, to avoid division by zero or creation of negative
5469 frequencies. */
5470 if (total_freq == 0)
5471 total_freq = 1;
5472 if (exit_freq > total_freq)
5473 exit_freq = total_freq;
5474 }
5475
5476 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5477 split_edge_bb_loc (exit));
5478 if (total_count)
5479 {
5480 scale_bbs_frequencies_gcov_type (region, n_region,
5481 total_count - exit_count,
5482 total_count);
5483 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5484 total_count);
5485 }
5486 else
5487 {
5488 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5489 total_freq);
5490 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5491 }
5492
5493 /* Create the switch block, and put the exit condition to it. */
5494 entry_bb = entry->dest;
5495 nentry_bb = get_bb_copy (entry_bb);
5496 if (!last_stmt (entry->src)
5497 || !stmt_ends_bb_p (last_stmt (entry->src)))
5498 switch_bb = entry->src;
5499 else
5500 switch_bb = split_edge (entry);
5501 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5502
5503 gsi = gsi_last_bb (switch_bb);
5504 cond_stmt = last_stmt (exit->src);
5505 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5506 cond_stmt = gimple_copy (cond_stmt);
5507
5508 /* If the block consisting of the exit condition has the latch as
5509 successor, then the body of the loop is executed before
5510 the exit condition is tested. In such case, moving the
5511 condition to the entry, causes that the loop will iterate
5512 one less iteration (which is the wanted outcome, since we
5513 peel out the last iteration). If the body is executed after
5514 the condition, moving the condition to the entry requires
5515 decrementing one iteration. */
5516 if (exits[1]->dest == orig_loop->latch)
5517 new_rhs = gimple_cond_rhs (cond_stmt);
5518 else
5519 {
5520 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5521 gimple_cond_rhs (cond_stmt),
5522 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5523
5524 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5525 {
5526 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5527 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5528 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5529 break;
5530
5531 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5532 NULL_TREE,false,GSI_CONTINUE_LINKING);
5533 }
5534 }
5535 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5536 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5537 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5538
5539 sorig = single_succ_edge (switch_bb);
5540 sorig->flags = exits[1]->flags;
5541 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5542
5543 /* Register the new edge from SWITCH_BB in loop exit lists. */
5544 rescan_loop_exit (snew, true, false);
5545
5546 /* Add the PHI node arguments. */
5547 add_phi_args_after_copy (region_copy, n_region, snew);
5548
5549 /* Get rid of now superfluous conditions and associated edges (and phi node
5550 arguments). */
5551 exit_bb = exit->dest;
5552
5553 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5554 PENDING_STMT (e) = NULL;
5555
5556 /* The latch of ORIG_LOOP was copied, and so was the backedge
5557 to the original header. We redirect this backedge to EXIT_BB. */
5558 for (i = 0; i < n_region; i++)
5559 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5560 {
5561 gcc_assert (single_succ_edge (region_copy[i]));
5562 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5563 PENDING_STMT (e) = NULL;
5564 for (psi = gsi_start_phis (exit_bb);
5565 !gsi_end_p (psi);
5566 gsi_next (&psi))
5567 {
5568 phi = gsi_stmt (psi);
5569 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5570 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5571 }
5572 }
5573 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5574 PENDING_STMT (e) = NULL;
5575
5576 /* Anything that is outside of the region, but was dominated by something
5577 inside needs to update dominance info. */
5578 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5579 VEC_free (basic_block, heap, doms);
5580 /* Update the SSA web. */
5581 update_ssa (TODO_update_ssa);
5582
5583 if (free_region_copy)
5584 free (region_copy);
5585
5586 free_original_copy_tables ();
5587 return true;
5588 }
5589
5590 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5591 adding blocks when the dominator traversal reaches EXIT. This
5592 function silently assumes that ENTRY strictly dominates EXIT. */
5593
5594 void
5595 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5596 VEC(basic_block,heap) **bbs_p)
5597 {
5598 basic_block son;
5599
5600 for (son = first_dom_son (CDI_DOMINATORS, entry);
5601 son;
5602 son = next_dom_son (CDI_DOMINATORS, son))
5603 {
5604 VEC_safe_push (basic_block, heap, *bbs_p, son);
5605 if (son != exit)
5606 gather_blocks_in_sese_region (son, exit, bbs_p);
5607 }
5608 }
5609
5610 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5611 The duplicates are recorded in VARS_MAP. */
5612
5613 static void
5614 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5615 tree to_context)
5616 {
5617 tree t = *tp, new_t;
5618 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5619 void **loc;
5620
5621 if (DECL_CONTEXT (t) == to_context)
5622 return;
5623
5624 loc = pointer_map_contains (vars_map, t);
5625
5626 if (!loc)
5627 {
5628 loc = pointer_map_insert (vars_map, t);
5629
5630 if (SSA_VAR_P (t))
5631 {
5632 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5633 add_local_decl (f, new_t);
5634 }
5635 else
5636 {
5637 gcc_assert (TREE_CODE (t) == CONST_DECL);
5638 new_t = copy_node (t);
5639 }
5640 DECL_CONTEXT (new_t) = to_context;
5641
5642 *loc = new_t;
5643 }
5644 else
5645 new_t = (tree) *loc;
5646
5647 *tp = new_t;
5648 }
5649
5650
5651 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5652 VARS_MAP maps old ssa names and var_decls to the new ones. */
5653
5654 static tree
5655 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5656 tree to_context)
5657 {
5658 void **loc;
5659 tree new_name, decl = SSA_NAME_VAR (name);
5660
5661 gcc_assert (is_gimple_reg (name));
5662
5663 loc = pointer_map_contains (vars_map, name);
5664
5665 if (!loc)
5666 {
5667 replace_by_duplicate_decl (&decl, vars_map, to_context);
5668
5669 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5670 if (gimple_in_ssa_p (cfun))
5671 add_referenced_var (decl);
5672
5673 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5674 if (SSA_NAME_IS_DEFAULT_DEF (name))
5675 set_default_def (decl, new_name);
5676 pop_cfun ();
5677
5678 loc = pointer_map_insert (vars_map, name);
5679 *loc = new_name;
5680 }
5681 else
5682 new_name = (tree) *loc;
5683
5684 return new_name;
5685 }
5686
5687 struct move_stmt_d
5688 {
5689 tree orig_block;
5690 tree new_block;
5691 tree from_context;
5692 tree to_context;
5693 struct pointer_map_t *vars_map;
5694 htab_t new_label_map;
5695 struct pointer_map_t *eh_map;
5696 bool remap_decls_p;
5697 };
5698
5699 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5700 contained in *TP if it has been ORIG_BLOCK previously and change the
5701 DECL_CONTEXT of every local variable referenced in *TP. */
5702
5703 static tree
5704 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5705 {
5706 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5707 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5708 tree t = *tp;
5709
5710 if (EXPR_P (t))
5711 /* We should never have TREE_BLOCK set on non-statements. */
5712 gcc_assert (!TREE_BLOCK (t));
5713
5714 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5715 {
5716 if (TREE_CODE (t) == SSA_NAME)
5717 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5718 else if (TREE_CODE (t) == LABEL_DECL)
5719 {
5720 if (p->new_label_map)
5721 {
5722 struct tree_map in, *out;
5723 in.base.from = t;
5724 out = (struct tree_map *)
5725 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5726 if (out)
5727 *tp = t = out->to;
5728 }
5729
5730 DECL_CONTEXT (t) = p->to_context;
5731 }
5732 else if (p->remap_decls_p)
5733 {
5734 /* Replace T with its duplicate. T should no longer appear in the
5735 parent function, so this looks wasteful; however, it may appear
5736 in referenced_vars, and more importantly, as virtual operands of
5737 statements, and in alias lists of other variables. It would be
5738 quite difficult to expunge it from all those places. ??? It might
5739 suffice to do this for addressable variables. */
5740 if ((TREE_CODE (t) == VAR_DECL
5741 && !is_global_var (t))
5742 || TREE_CODE (t) == CONST_DECL)
5743 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5744
5745 if (SSA_VAR_P (t)
5746 && gimple_in_ssa_p (cfun))
5747 {
5748 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5749 add_referenced_var (*tp);
5750 pop_cfun ();
5751 }
5752 }
5753 *walk_subtrees = 0;
5754 }
5755 else if (TYPE_P (t))
5756 *walk_subtrees = 0;
5757
5758 return NULL_TREE;
5759 }
5760
5761 /* Helper for move_stmt_r. Given an EH region number for the source
5762 function, map that to the duplicate EH regio number in the dest. */
5763
5764 static int
5765 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5766 {
5767 eh_region old_r, new_r;
5768 void **slot;
5769
5770 old_r = get_eh_region_from_number (old_nr);
5771 slot = pointer_map_contains (p->eh_map, old_r);
5772 new_r = (eh_region) *slot;
5773
5774 return new_r->index;
5775 }
5776
5777 /* Similar, but operate on INTEGER_CSTs. */
5778
5779 static tree
5780 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5781 {
5782 int old_nr, new_nr;
5783
5784 old_nr = tree_low_cst (old_t_nr, 0);
5785 new_nr = move_stmt_eh_region_nr (old_nr, p);
5786
5787 return build_int_cst (NULL, new_nr);
5788 }
5789
5790 /* Like move_stmt_op, but for gimple statements.
5791
5792 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5793 contained in the current statement in *GSI_P and change the
5794 DECL_CONTEXT of every local variable referenced in the current
5795 statement. */
5796
5797 static tree
5798 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5799 struct walk_stmt_info *wi)
5800 {
5801 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5802 gimple stmt = gsi_stmt (*gsi_p);
5803 tree block = gimple_block (stmt);
5804
5805 if (p->orig_block == NULL_TREE
5806 || block == p->orig_block
5807 || block == NULL_TREE)
5808 gimple_set_block (stmt, p->new_block);
5809 #ifdef ENABLE_CHECKING
5810 else if (block != p->new_block)
5811 {
5812 while (block && block != p->orig_block)
5813 block = BLOCK_SUPERCONTEXT (block);
5814 gcc_assert (block);
5815 }
5816 #endif
5817
5818 switch (gimple_code (stmt))
5819 {
5820 case GIMPLE_CALL:
5821 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5822 {
5823 tree r, fndecl = gimple_call_fndecl (stmt);
5824 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5825 switch (DECL_FUNCTION_CODE (fndecl))
5826 {
5827 case BUILT_IN_EH_COPY_VALUES:
5828 r = gimple_call_arg (stmt, 1);
5829 r = move_stmt_eh_region_tree_nr (r, p);
5830 gimple_call_set_arg (stmt, 1, r);
5831 /* FALLTHRU */
5832
5833 case BUILT_IN_EH_POINTER:
5834 case BUILT_IN_EH_FILTER:
5835 r = gimple_call_arg (stmt, 0);
5836 r = move_stmt_eh_region_tree_nr (r, p);
5837 gimple_call_set_arg (stmt, 0, r);
5838 break;
5839
5840 default:
5841 break;
5842 }
5843 }
5844 break;
5845
5846 case GIMPLE_RESX:
5847 {
5848 int r = gimple_resx_region (stmt);
5849 r = move_stmt_eh_region_nr (r, p);
5850 gimple_resx_set_region (stmt, r);
5851 }
5852 break;
5853
5854 case GIMPLE_EH_DISPATCH:
5855 {
5856 int r = gimple_eh_dispatch_region (stmt);
5857 r = move_stmt_eh_region_nr (r, p);
5858 gimple_eh_dispatch_set_region (stmt, r);
5859 }
5860 break;
5861
5862 case GIMPLE_OMP_RETURN:
5863 case GIMPLE_OMP_CONTINUE:
5864 break;
5865 default:
5866 if (is_gimple_omp (stmt))
5867 {
5868 /* Do not remap variables inside OMP directives. Variables
5869 referenced in clauses and directive header belong to the
5870 parent function and should not be moved into the child
5871 function. */
5872 bool save_remap_decls_p = p->remap_decls_p;
5873 p->remap_decls_p = false;
5874 *handled_ops_p = true;
5875
5876 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5877 move_stmt_op, wi);
5878
5879 p->remap_decls_p = save_remap_decls_p;
5880 }
5881 break;
5882 }
5883
5884 return NULL_TREE;
5885 }
5886
5887 /* Move basic block BB from function CFUN to function DEST_FN. The
5888 block is moved out of the original linked list and placed after
5889 block AFTER in the new list. Also, the block is removed from the
5890 original array of blocks and placed in DEST_FN's array of blocks.
5891 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5892 updated to reflect the moved edges.
5893
5894 The local variables are remapped to new instances, VARS_MAP is used
5895 to record the mapping. */
5896
5897 static void
5898 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5899 basic_block after, bool update_edge_count_p,
5900 struct move_stmt_d *d)
5901 {
5902 struct control_flow_graph *cfg;
5903 edge_iterator ei;
5904 edge e;
5905 gimple_stmt_iterator si;
5906 unsigned old_len, new_len;
5907
5908 /* Remove BB from dominance structures. */
5909 delete_from_dominance_info (CDI_DOMINATORS, bb);
5910 if (current_loops)
5911 remove_bb_from_loops (bb);
5912
5913 /* Link BB to the new linked list. */
5914 move_block_after (bb, after);
5915
5916 /* Update the edge count in the corresponding flowgraphs. */
5917 if (update_edge_count_p)
5918 FOR_EACH_EDGE (e, ei, bb->succs)
5919 {
5920 cfun->cfg->x_n_edges--;
5921 dest_cfun->cfg->x_n_edges++;
5922 }
5923
5924 /* Remove BB from the original basic block array. */
5925 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5926 cfun->cfg->x_n_basic_blocks--;
5927
5928 /* Grow DEST_CFUN's basic block array if needed. */
5929 cfg = dest_cfun->cfg;
5930 cfg->x_n_basic_blocks++;
5931 if (bb->index >= cfg->x_last_basic_block)
5932 cfg->x_last_basic_block = bb->index + 1;
5933
5934 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5935 if ((unsigned) cfg->x_last_basic_block >= old_len)
5936 {
5937 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5938 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5939 new_len);
5940 }
5941
5942 VEC_replace (basic_block, cfg->x_basic_block_info,
5943 bb->index, bb);
5944
5945 /* Remap the variables in phi nodes. */
5946 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5947 {
5948 gimple phi = gsi_stmt (si);
5949 use_operand_p use;
5950 tree op = PHI_RESULT (phi);
5951 ssa_op_iter oi;
5952
5953 if (!is_gimple_reg (op))
5954 {
5955 /* Remove the phi nodes for virtual operands (alias analysis will be
5956 run for the new function, anyway). */
5957 remove_phi_node (&si, true);
5958 continue;
5959 }
5960
5961 SET_PHI_RESULT (phi,
5962 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5963 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5964 {
5965 op = USE_FROM_PTR (use);
5966 if (TREE_CODE (op) == SSA_NAME)
5967 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5968 }
5969
5970 gsi_next (&si);
5971 }
5972
5973 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5974 {
5975 gimple stmt = gsi_stmt (si);
5976 struct walk_stmt_info wi;
5977
5978 memset (&wi, 0, sizeof (wi));
5979 wi.info = d;
5980 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5981
5982 if (gimple_code (stmt) == GIMPLE_LABEL)
5983 {
5984 tree label = gimple_label_label (stmt);
5985 int uid = LABEL_DECL_UID (label);
5986
5987 gcc_assert (uid > -1);
5988
5989 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5990 if (old_len <= (unsigned) uid)
5991 {
5992 new_len = 3 * uid / 2 + 1;
5993 VEC_safe_grow_cleared (basic_block, gc,
5994 cfg->x_label_to_block_map, new_len);
5995 }
5996
5997 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5998 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5999
6000 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6001
6002 if (uid >= dest_cfun->cfg->last_label_uid)
6003 dest_cfun->cfg->last_label_uid = uid + 1;
6004 }
6005
6006 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6007 remove_stmt_from_eh_lp_fn (cfun, stmt);
6008
6009 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6010 gimple_remove_stmt_histograms (cfun, stmt);
6011
6012 /* We cannot leave any operands allocated from the operand caches of
6013 the current function. */
6014 free_stmt_operands (stmt);
6015 push_cfun (dest_cfun);
6016 update_stmt (stmt);
6017 pop_cfun ();
6018 }
6019
6020 FOR_EACH_EDGE (e, ei, bb->succs)
6021 if (e->goto_locus)
6022 {
6023 tree block = e->goto_block;
6024 if (d->orig_block == NULL_TREE
6025 || block == d->orig_block)
6026 e->goto_block = d->new_block;
6027 #ifdef ENABLE_CHECKING
6028 else if (block != d->new_block)
6029 {
6030 while (block && block != d->orig_block)
6031 block = BLOCK_SUPERCONTEXT (block);
6032 gcc_assert (block);
6033 }
6034 #endif
6035 }
6036 }
6037
6038 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6039 the outermost EH region. Use REGION as the incoming base EH region. */
6040
6041 static eh_region
6042 find_outermost_region_in_block (struct function *src_cfun,
6043 basic_block bb, eh_region region)
6044 {
6045 gimple_stmt_iterator si;
6046
6047 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6048 {
6049 gimple stmt = gsi_stmt (si);
6050 eh_region stmt_region;
6051 int lp_nr;
6052
6053 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6054 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6055 if (stmt_region)
6056 {
6057 if (region == NULL)
6058 region = stmt_region;
6059 else if (stmt_region != region)
6060 {
6061 region = eh_region_outermost (src_cfun, stmt_region, region);
6062 gcc_assert (region != NULL);
6063 }
6064 }
6065 }
6066
6067 return region;
6068 }
6069
6070 static tree
6071 new_label_mapper (tree decl, void *data)
6072 {
6073 htab_t hash = (htab_t) data;
6074 struct tree_map *m;
6075 void **slot;
6076
6077 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6078
6079 m = XNEW (struct tree_map);
6080 m->hash = DECL_UID (decl);
6081 m->base.from = decl;
6082 m->to = create_artificial_label (UNKNOWN_LOCATION);
6083 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6084 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6085 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6086
6087 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6088 gcc_assert (*slot == NULL);
6089
6090 *slot = m;
6091
6092 return m->to;
6093 }
6094
6095 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6096 subblocks. */
6097
6098 static void
6099 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6100 tree to_context)
6101 {
6102 tree *tp, t;
6103
6104 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6105 {
6106 t = *tp;
6107 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6108 continue;
6109 replace_by_duplicate_decl (&t, vars_map, to_context);
6110 if (t != *tp)
6111 {
6112 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6113 {
6114 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6115 DECL_HAS_VALUE_EXPR_P (t) = 1;
6116 }
6117 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6118 *tp = t;
6119 }
6120 }
6121
6122 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6123 replace_block_vars_by_duplicates (block, vars_map, to_context);
6124 }
6125
6126 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6127 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6128 single basic block in the original CFG and the new basic block is
6129 returned. DEST_CFUN must not have a CFG yet.
6130
6131 Note that the region need not be a pure SESE region. Blocks inside
6132 the region may contain calls to abort/exit. The only restriction
6133 is that ENTRY_BB should be the only entry point and it must
6134 dominate EXIT_BB.
6135
6136 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6137 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6138 to the new function.
6139
6140 All local variables referenced in the region are assumed to be in
6141 the corresponding BLOCK_VARS and unexpanded variable lists
6142 associated with DEST_CFUN. */
6143
6144 basic_block
6145 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6146 basic_block exit_bb, tree orig_block)
6147 {
6148 VEC(basic_block,heap) *bbs, *dom_bbs;
6149 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6150 basic_block after, bb, *entry_pred, *exit_succ, abb;
6151 struct function *saved_cfun = cfun;
6152 int *entry_flag, *exit_flag;
6153 unsigned *entry_prob, *exit_prob;
6154 unsigned i, num_entry_edges, num_exit_edges;
6155 edge e;
6156 edge_iterator ei;
6157 htab_t new_label_map;
6158 struct pointer_map_t *vars_map, *eh_map;
6159 struct loop *loop = entry_bb->loop_father;
6160 struct move_stmt_d d;
6161
6162 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6163 region. */
6164 gcc_assert (entry_bb != exit_bb
6165 && (!exit_bb
6166 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6167
6168 /* Collect all the blocks in the region. Manually add ENTRY_BB
6169 because it won't be added by dfs_enumerate_from. */
6170 bbs = NULL;
6171 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6172 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6173
6174 /* The blocks that used to be dominated by something in BBS will now be
6175 dominated by the new block. */
6176 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6177 VEC_address (basic_block, bbs),
6178 VEC_length (basic_block, bbs));
6179
6180 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6181 the predecessor edges to ENTRY_BB and the successor edges to
6182 EXIT_BB so that we can re-attach them to the new basic block that
6183 will replace the region. */
6184 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6185 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6186 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6187 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6188 i = 0;
6189 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6190 {
6191 entry_prob[i] = e->probability;
6192 entry_flag[i] = e->flags;
6193 entry_pred[i++] = e->src;
6194 remove_edge (e);
6195 }
6196
6197 if (exit_bb)
6198 {
6199 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6200 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6201 sizeof (basic_block));
6202 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6203 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6204 i = 0;
6205 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6206 {
6207 exit_prob[i] = e->probability;
6208 exit_flag[i] = e->flags;
6209 exit_succ[i++] = e->dest;
6210 remove_edge (e);
6211 }
6212 }
6213 else
6214 {
6215 num_exit_edges = 0;
6216 exit_succ = NULL;
6217 exit_flag = NULL;
6218 exit_prob = NULL;
6219 }
6220
6221 /* Switch context to the child function to initialize DEST_FN's CFG. */
6222 gcc_assert (dest_cfun->cfg == NULL);
6223 push_cfun (dest_cfun);
6224
6225 init_empty_tree_cfg ();
6226
6227 /* Initialize EH information for the new function. */
6228 eh_map = NULL;
6229 new_label_map = NULL;
6230 if (saved_cfun->eh)
6231 {
6232 eh_region region = NULL;
6233
6234 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6235 region = find_outermost_region_in_block (saved_cfun, bb, region);
6236
6237 init_eh_for_function ();
6238 if (region != NULL)
6239 {
6240 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6241 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6242 new_label_mapper, new_label_map);
6243 }
6244 }
6245
6246 pop_cfun ();
6247
6248 /* Move blocks from BBS into DEST_CFUN. */
6249 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6250 after = dest_cfun->cfg->x_entry_block_ptr;
6251 vars_map = pointer_map_create ();
6252
6253 memset (&d, 0, sizeof (d));
6254 d.orig_block = orig_block;
6255 d.new_block = DECL_INITIAL (dest_cfun->decl);
6256 d.from_context = cfun->decl;
6257 d.to_context = dest_cfun->decl;
6258 d.vars_map = vars_map;
6259 d.new_label_map = new_label_map;
6260 d.eh_map = eh_map;
6261 d.remap_decls_p = true;
6262
6263 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6264 {
6265 /* No need to update edge counts on the last block. It has
6266 already been updated earlier when we detached the region from
6267 the original CFG. */
6268 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6269 after = bb;
6270 }
6271
6272 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6273 if (orig_block)
6274 {
6275 tree block;
6276 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6277 == NULL_TREE);
6278 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6279 = BLOCK_SUBBLOCKS (orig_block);
6280 for (block = BLOCK_SUBBLOCKS (orig_block);
6281 block; block = BLOCK_CHAIN (block))
6282 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6283 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6284 }
6285
6286 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6287 vars_map, dest_cfun->decl);
6288
6289 if (new_label_map)
6290 htab_delete (new_label_map);
6291 if (eh_map)
6292 pointer_map_destroy (eh_map);
6293 pointer_map_destroy (vars_map);
6294
6295 /* Rewire the entry and exit blocks. The successor to the entry
6296 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6297 the child function. Similarly, the predecessor of DEST_FN's
6298 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6299 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6300 various CFG manipulation function get to the right CFG.
6301
6302 FIXME, this is silly. The CFG ought to become a parameter to
6303 these helpers. */
6304 push_cfun (dest_cfun);
6305 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6306 if (exit_bb)
6307 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6308 pop_cfun ();
6309
6310 /* Back in the original function, the SESE region has disappeared,
6311 create a new basic block in its place. */
6312 bb = create_empty_bb (entry_pred[0]);
6313 if (current_loops)
6314 add_bb_to_loop (bb, loop);
6315 for (i = 0; i < num_entry_edges; i++)
6316 {
6317 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6318 e->probability = entry_prob[i];
6319 }
6320
6321 for (i = 0; i < num_exit_edges; i++)
6322 {
6323 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6324 e->probability = exit_prob[i];
6325 }
6326
6327 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6328 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6329 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6330 VEC_free (basic_block, heap, dom_bbs);
6331
6332 if (exit_bb)
6333 {
6334 free (exit_prob);
6335 free (exit_flag);
6336 free (exit_succ);
6337 }
6338 free (entry_prob);
6339 free (entry_flag);
6340 free (entry_pred);
6341 VEC_free (basic_block, heap, bbs);
6342
6343 return bb;
6344 }
6345
6346
6347 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6348 */
6349
6350 void
6351 dump_function_to_file (tree fn, FILE *file, int flags)
6352 {
6353 tree arg, var;
6354 struct function *dsf;
6355 bool ignore_topmost_bind = false, any_var = false;
6356 basic_block bb;
6357 tree chain;
6358
6359 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6360
6361 arg = DECL_ARGUMENTS (fn);
6362 while (arg)
6363 {
6364 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6365 fprintf (file, " ");
6366 print_generic_expr (file, arg, dump_flags);
6367 if (flags & TDF_VERBOSE)
6368 print_node (file, "", arg, 4);
6369 if (DECL_CHAIN (arg))
6370 fprintf (file, ", ");
6371 arg = DECL_CHAIN (arg);
6372 }
6373 fprintf (file, ")\n");
6374
6375 if (flags & TDF_VERBOSE)
6376 print_node (file, "", fn, 2);
6377
6378 dsf = DECL_STRUCT_FUNCTION (fn);
6379 if (dsf && (flags & TDF_EH))
6380 dump_eh_tree (file, dsf);
6381
6382 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6383 {
6384 dump_node (fn, TDF_SLIM | flags, file);
6385 return;
6386 }
6387
6388 /* Switch CFUN to point to FN. */
6389 push_cfun (DECL_STRUCT_FUNCTION (fn));
6390
6391 /* When GIMPLE is lowered, the variables are no longer available in
6392 BIND_EXPRs, so display them separately. */
6393 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6394 {
6395 unsigned ix;
6396 ignore_topmost_bind = true;
6397
6398 fprintf (file, "{\n");
6399 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6400 {
6401 print_generic_decl (file, var, flags);
6402 if (flags & TDF_VERBOSE)
6403 print_node (file, "", var, 4);
6404 fprintf (file, "\n");
6405
6406 any_var = true;
6407 }
6408 }
6409
6410 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6411 {
6412 /* If the CFG has been built, emit a CFG-based dump. */
6413 check_bb_profile (ENTRY_BLOCK_PTR, file);
6414 if (!ignore_topmost_bind)
6415 fprintf (file, "{\n");
6416
6417 if (any_var && n_basic_blocks)
6418 fprintf (file, "\n");
6419
6420 FOR_EACH_BB (bb)
6421 gimple_dump_bb (bb, file, 2, flags);
6422
6423 fprintf (file, "}\n");
6424 check_bb_profile (EXIT_BLOCK_PTR, file);
6425 }
6426 else if (DECL_SAVED_TREE (fn) == NULL)
6427 {
6428 /* The function is now in GIMPLE form but the CFG has not been
6429 built yet. Emit the single sequence of GIMPLE statements
6430 that make up its body. */
6431 gimple_seq body = gimple_body (fn);
6432
6433 if (gimple_seq_first_stmt (body)
6434 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6435 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6436 print_gimple_seq (file, body, 0, flags);
6437 else
6438 {
6439 if (!ignore_topmost_bind)
6440 fprintf (file, "{\n");
6441
6442 if (any_var)
6443 fprintf (file, "\n");
6444
6445 print_gimple_seq (file, body, 2, flags);
6446 fprintf (file, "}\n");
6447 }
6448 }
6449 else
6450 {
6451 int indent;
6452
6453 /* Make a tree based dump. */
6454 chain = DECL_SAVED_TREE (fn);
6455
6456 if (chain && TREE_CODE (chain) == BIND_EXPR)
6457 {
6458 if (ignore_topmost_bind)
6459 {
6460 chain = BIND_EXPR_BODY (chain);
6461 indent = 2;
6462 }
6463 else
6464 indent = 0;
6465 }
6466 else
6467 {
6468 if (!ignore_topmost_bind)
6469 fprintf (file, "{\n");
6470 indent = 2;
6471 }
6472
6473 if (any_var)
6474 fprintf (file, "\n");
6475
6476 print_generic_stmt_indented (file, chain, flags, indent);
6477 if (ignore_topmost_bind)
6478 fprintf (file, "}\n");
6479 }
6480
6481 if (flags & TDF_ENUMERATE_LOCALS)
6482 dump_enumerated_decls (file, flags);
6483 fprintf (file, "\n\n");
6484
6485 /* Restore CFUN. */
6486 pop_cfun ();
6487 }
6488
6489
6490 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6491
6492 DEBUG_FUNCTION void
6493 debug_function (tree fn, int flags)
6494 {
6495 dump_function_to_file (fn, stderr, flags);
6496 }
6497
6498
6499 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6500
6501 static void
6502 print_pred_bbs (FILE *file, basic_block bb)
6503 {
6504 edge e;
6505 edge_iterator ei;
6506
6507 FOR_EACH_EDGE (e, ei, bb->preds)
6508 fprintf (file, "bb_%d ", e->src->index);
6509 }
6510
6511
6512 /* Print on FILE the indexes for the successors of basic_block BB. */
6513
6514 static void
6515 print_succ_bbs (FILE *file, basic_block bb)
6516 {
6517 edge e;
6518 edge_iterator ei;
6519
6520 FOR_EACH_EDGE (e, ei, bb->succs)
6521 fprintf (file, "bb_%d ", e->dest->index);
6522 }
6523
6524 /* Print to FILE the basic block BB following the VERBOSITY level. */
6525
6526 void
6527 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6528 {
6529 char *s_indent = (char *) alloca ((size_t) indent + 1);
6530 memset ((void *) s_indent, ' ', (size_t) indent);
6531 s_indent[indent] = '\0';
6532
6533 /* Print basic_block's header. */
6534 if (verbosity >= 2)
6535 {
6536 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6537 print_pred_bbs (file, bb);
6538 fprintf (file, "}, succs = {");
6539 print_succ_bbs (file, bb);
6540 fprintf (file, "})\n");
6541 }
6542
6543 /* Print basic_block's body. */
6544 if (verbosity >= 3)
6545 {
6546 fprintf (file, "%s {\n", s_indent);
6547 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6548 fprintf (file, "%s }\n", s_indent);
6549 }
6550 }
6551
6552 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6553
6554 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6555 VERBOSITY level this outputs the contents of the loop, or just its
6556 structure. */
6557
6558 static void
6559 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6560 {
6561 char *s_indent;
6562 basic_block bb;
6563
6564 if (loop == NULL)
6565 return;
6566
6567 s_indent = (char *) alloca ((size_t) indent + 1);
6568 memset ((void *) s_indent, ' ', (size_t) indent);
6569 s_indent[indent] = '\0';
6570
6571 /* Print loop's header. */
6572 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6573 loop->num, loop->header->index, loop->latch->index);
6574 fprintf (file, ", niter = ");
6575 print_generic_expr (file, loop->nb_iterations, 0);
6576
6577 if (loop->any_upper_bound)
6578 {
6579 fprintf (file, ", upper_bound = ");
6580 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6581 }
6582
6583 if (loop->any_estimate)
6584 {
6585 fprintf (file, ", estimate = ");
6586 dump_double_int (file, loop->nb_iterations_estimate, true);
6587 }
6588 fprintf (file, ")\n");
6589
6590 /* Print loop's body. */
6591 if (verbosity >= 1)
6592 {
6593 fprintf (file, "%s{\n", s_indent);
6594 FOR_EACH_BB (bb)
6595 if (bb->loop_father == loop)
6596 print_loops_bb (file, bb, indent, verbosity);
6597
6598 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6599 fprintf (file, "%s}\n", s_indent);
6600 }
6601 }
6602
6603 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6604 spaces. Following VERBOSITY level this outputs the contents of the
6605 loop, or just its structure. */
6606
6607 static void
6608 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6609 {
6610 if (loop == NULL)
6611 return;
6612
6613 print_loop (file, loop, indent, verbosity);
6614 print_loop_and_siblings (file, loop->next, indent, verbosity);
6615 }
6616
6617 /* Follow a CFG edge from the entry point of the program, and on entry
6618 of a loop, pretty print the loop structure on FILE. */
6619
6620 void
6621 print_loops (FILE *file, int verbosity)
6622 {
6623 basic_block bb;
6624
6625 bb = ENTRY_BLOCK_PTR;
6626 if (bb && bb->loop_father)
6627 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6628 }
6629
6630
6631 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6632
6633 DEBUG_FUNCTION void
6634 debug_loops (int verbosity)
6635 {
6636 print_loops (stderr, verbosity);
6637 }
6638
6639 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6640
6641 DEBUG_FUNCTION void
6642 debug_loop (struct loop *loop, int verbosity)
6643 {
6644 print_loop (stderr, loop, 0, verbosity);
6645 }
6646
6647 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6648 level. */
6649
6650 DEBUG_FUNCTION void
6651 debug_loop_num (unsigned num, int verbosity)
6652 {
6653 debug_loop (get_loop (num), verbosity);
6654 }
6655
6656 /* Return true if BB ends with a call, possibly followed by some
6657 instructions that must stay with the call. Return false,
6658 otherwise. */
6659
6660 static bool
6661 gimple_block_ends_with_call_p (basic_block bb)
6662 {
6663 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6664 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6665 }
6666
6667
6668 /* Return true if BB ends with a conditional branch. Return false,
6669 otherwise. */
6670
6671 static bool
6672 gimple_block_ends_with_condjump_p (const_basic_block bb)
6673 {
6674 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6675 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6676 }
6677
6678
6679 /* Return true if we need to add fake edge to exit at statement T.
6680 Helper function for gimple_flow_call_edges_add. */
6681
6682 static bool
6683 need_fake_edge_p (gimple t)
6684 {
6685 tree fndecl = NULL_TREE;
6686 int call_flags = 0;
6687
6688 /* NORETURN and LONGJMP calls already have an edge to exit.
6689 CONST and PURE calls do not need one.
6690 We don't currently check for CONST and PURE here, although
6691 it would be a good idea, because those attributes are
6692 figured out from the RTL in mark_constant_function, and
6693 the counter incrementation code from -fprofile-arcs
6694 leads to different results from -fbranch-probabilities. */
6695 if (is_gimple_call (t))
6696 {
6697 fndecl = gimple_call_fndecl (t);
6698 call_flags = gimple_call_flags (t);
6699 }
6700
6701 if (is_gimple_call (t)
6702 && fndecl
6703 && DECL_BUILT_IN (fndecl)
6704 && (call_flags & ECF_NOTHROW)
6705 && !(call_flags & ECF_RETURNS_TWICE)
6706 /* fork() doesn't really return twice, but the effect of
6707 wrapping it in __gcov_fork() which calls __gcov_flush()
6708 and clears the counters before forking has the same
6709 effect as returning twice. Force a fake edge. */
6710 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6711 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6712 return false;
6713
6714 if (is_gimple_call (t)
6715 && !(call_flags & ECF_NORETURN))
6716 return true;
6717
6718 if (gimple_code (t) == GIMPLE_ASM
6719 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6720 return true;
6721
6722 return false;
6723 }
6724
6725
6726 /* Add fake edges to the function exit for any non constant and non
6727 noreturn calls, volatile inline assembly in the bitmap of blocks
6728 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6729 the number of blocks that were split.
6730
6731 The goal is to expose cases in which entering a basic block does
6732 not imply that all subsequent instructions must be executed. */
6733
6734 static int
6735 gimple_flow_call_edges_add (sbitmap blocks)
6736 {
6737 int i;
6738 int blocks_split = 0;
6739 int last_bb = last_basic_block;
6740 bool check_last_block = false;
6741
6742 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6743 return 0;
6744
6745 if (! blocks)
6746 check_last_block = true;
6747 else
6748 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6749
6750 /* In the last basic block, before epilogue generation, there will be
6751 a fallthru edge to EXIT. Special care is required if the last insn
6752 of the last basic block is a call because make_edge folds duplicate
6753 edges, which would result in the fallthru edge also being marked
6754 fake, which would result in the fallthru edge being removed by
6755 remove_fake_edges, which would result in an invalid CFG.
6756
6757 Moreover, we can't elide the outgoing fake edge, since the block
6758 profiler needs to take this into account in order to solve the minimal
6759 spanning tree in the case that the call doesn't return.
6760
6761 Handle this by adding a dummy instruction in a new last basic block. */
6762 if (check_last_block)
6763 {
6764 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6765 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6766 gimple t = NULL;
6767
6768 if (!gsi_end_p (gsi))
6769 t = gsi_stmt (gsi);
6770
6771 if (t && need_fake_edge_p (t))
6772 {
6773 edge e;
6774
6775 e = find_edge (bb, EXIT_BLOCK_PTR);
6776 if (e)
6777 {
6778 gsi_insert_on_edge (e, gimple_build_nop ());
6779 gsi_commit_edge_inserts ();
6780 }
6781 }
6782 }
6783
6784 /* Now add fake edges to the function exit for any non constant
6785 calls since there is no way that we can determine if they will
6786 return or not... */
6787 for (i = 0; i < last_bb; i++)
6788 {
6789 basic_block bb = BASIC_BLOCK (i);
6790 gimple_stmt_iterator gsi;
6791 gimple stmt, last_stmt;
6792
6793 if (!bb)
6794 continue;
6795
6796 if (blocks && !TEST_BIT (blocks, i))
6797 continue;
6798
6799 gsi = gsi_last_nondebug_bb (bb);
6800 if (!gsi_end_p (gsi))
6801 {
6802 last_stmt = gsi_stmt (gsi);
6803 do
6804 {
6805 stmt = gsi_stmt (gsi);
6806 if (need_fake_edge_p (stmt))
6807 {
6808 edge e;
6809
6810 /* The handling above of the final block before the
6811 epilogue should be enough to verify that there is
6812 no edge to the exit block in CFG already.
6813 Calling make_edge in such case would cause us to
6814 mark that edge as fake and remove it later. */
6815 #ifdef ENABLE_CHECKING
6816 if (stmt == last_stmt)
6817 {
6818 e = find_edge (bb, EXIT_BLOCK_PTR);
6819 gcc_assert (e == NULL);
6820 }
6821 #endif
6822
6823 /* Note that the following may create a new basic block
6824 and renumber the existing basic blocks. */
6825 if (stmt != last_stmt)
6826 {
6827 e = split_block (bb, stmt);
6828 if (e)
6829 blocks_split++;
6830 }
6831 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6832 }
6833 gsi_prev (&gsi);
6834 }
6835 while (!gsi_end_p (gsi));
6836 }
6837 }
6838
6839 if (blocks_split)
6840 verify_flow_info ();
6841
6842 return blocks_split;
6843 }
6844
6845 /* Removes edge E and all the blocks dominated by it, and updates dominance
6846 information. The IL in E->src needs to be updated separately.
6847 If dominance info is not available, only the edge E is removed.*/
6848
6849 void
6850 remove_edge_and_dominated_blocks (edge e)
6851 {
6852 VEC (basic_block, heap) *bbs_to_remove = NULL;
6853 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6854 bitmap df, df_idom;
6855 edge f;
6856 edge_iterator ei;
6857 bool none_removed = false;
6858 unsigned i;
6859 basic_block bb, dbb;
6860 bitmap_iterator bi;
6861
6862 if (!dom_info_available_p (CDI_DOMINATORS))
6863 {
6864 remove_edge (e);
6865 return;
6866 }
6867
6868 /* No updating is needed for edges to exit. */
6869 if (e->dest == EXIT_BLOCK_PTR)
6870 {
6871 if (cfgcleanup_altered_bbs)
6872 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6873 remove_edge (e);
6874 return;
6875 }
6876
6877 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6878 that is not dominated by E->dest, then this set is empty. Otherwise,
6879 all the basic blocks dominated by E->dest are removed.
6880
6881 Also, to DF_IDOM we store the immediate dominators of the blocks in
6882 the dominance frontier of E (i.e., of the successors of the
6883 removed blocks, if there are any, and of E->dest otherwise). */
6884 FOR_EACH_EDGE (f, ei, e->dest->preds)
6885 {
6886 if (f == e)
6887 continue;
6888
6889 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6890 {
6891 none_removed = true;
6892 break;
6893 }
6894 }
6895
6896 df = BITMAP_ALLOC (NULL);
6897 df_idom = BITMAP_ALLOC (NULL);
6898
6899 if (none_removed)
6900 bitmap_set_bit (df_idom,
6901 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6902 else
6903 {
6904 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6905 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6906 {
6907 FOR_EACH_EDGE (f, ei, bb->succs)
6908 {
6909 if (f->dest != EXIT_BLOCK_PTR)
6910 bitmap_set_bit (df, f->dest->index);
6911 }
6912 }
6913 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6914 bitmap_clear_bit (df, bb->index);
6915
6916 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6917 {
6918 bb = BASIC_BLOCK (i);
6919 bitmap_set_bit (df_idom,
6920 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6921 }
6922 }
6923
6924 if (cfgcleanup_altered_bbs)
6925 {
6926 /* Record the set of the altered basic blocks. */
6927 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6928 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6929 }
6930
6931 /* Remove E and the cancelled blocks. */
6932 if (none_removed)
6933 remove_edge (e);
6934 else
6935 {
6936 /* Walk backwards so as to get a chance to substitute all
6937 released DEFs into debug stmts. See
6938 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6939 details. */
6940 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6941 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6942 }
6943
6944 /* Update the dominance information. The immediate dominator may change only
6945 for blocks whose immediate dominator belongs to DF_IDOM:
6946
6947 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6948 removal. Let Z the arbitrary block such that idom(Z) = Y and
6949 Z dominates X after the removal. Before removal, there exists a path P
6950 from Y to X that avoids Z. Let F be the last edge on P that is
6951 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6952 dominates W, and because of P, Z does not dominate W), and W belongs to
6953 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6954 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6955 {
6956 bb = BASIC_BLOCK (i);
6957 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6958 dbb;
6959 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6960 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6961 }
6962
6963 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6964
6965 BITMAP_FREE (df);
6966 BITMAP_FREE (df_idom);
6967 VEC_free (basic_block, heap, bbs_to_remove);
6968 VEC_free (basic_block, heap, bbs_to_fix_dom);
6969 }
6970
6971 /* Purge dead EH edges from basic block BB. */
6972
6973 bool
6974 gimple_purge_dead_eh_edges (basic_block bb)
6975 {
6976 bool changed = false;
6977 edge e;
6978 edge_iterator ei;
6979 gimple stmt = last_stmt (bb);
6980
6981 if (stmt && stmt_can_throw_internal (stmt))
6982 return false;
6983
6984 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6985 {
6986 if (e->flags & EDGE_EH)
6987 {
6988 remove_edge_and_dominated_blocks (e);
6989 changed = true;
6990 }
6991 else
6992 ei_next (&ei);
6993 }
6994
6995 return changed;
6996 }
6997
6998 /* Purge dead EH edges from basic block listed in BLOCKS. */
6999
7000 bool
7001 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7002 {
7003 bool changed = false;
7004 unsigned i;
7005 bitmap_iterator bi;
7006
7007 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7008 {
7009 basic_block bb = BASIC_BLOCK (i);
7010
7011 /* Earlier gimple_purge_dead_eh_edges could have removed
7012 this basic block already. */
7013 gcc_assert (bb || changed);
7014 if (bb != NULL)
7015 changed |= gimple_purge_dead_eh_edges (bb);
7016 }
7017
7018 return changed;
7019 }
7020
7021 /* Purge dead abnormal call edges from basic block BB. */
7022
7023 bool
7024 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7025 {
7026 bool changed = false;
7027 edge e;
7028 edge_iterator ei;
7029 gimple stmt = last_stmt (bb);
7030
7031 if (!cfun->has_nonlocal_label)
7032 return false;
7033
7034 if (stmt && stmt_can_make_abnormal_goto (stmt))
7035 return false;
7036
7037 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7038 {
7039 if (e->flags & EDGE_ABNORMAL)
7040 {
7041 remove_edge_and_dominated_blocks (e);
7042 changed = true;
7043 }
7044 else
7045 ei_next (&ei);
7046 }
7047
7048 return changed;
7049 }
7050
7051 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7052
7053 bool
7054 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7055 {
7056 bool changed = false;
7057 unsigned i;
7058 bitmap_iterator bi;
7059
7060 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7061 {
7062 basic_block bb = BASIC_BLOCK (i);
7063
7064 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7065 this basic block already. */
7066 gcc_assert (bb || changed);
7067 if (bb != NULL)
7068 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7069 }
7070
7071 return changed;
7072 }
7073
7074 /* This function is called whenever a new edge is created or
7075 redirected. */
7076
7077 static void
7078 gimple_execute_on_growing_pred (edge e)
7079 {
7080 basic_block bb = e->dest;
7081
7082 if (!gimple_seq_empty_p (phi_nodes (bb)))
7083 reserve_phi_args_for_new_edge (bb);
7084 }
7085
7086 /* This function is called immediately before edge E is removed from
7087 the edge vector E->dest->preds. */
7088
7089 static void
7090 gimple_execute_on_shrinking_pred (edge e)
7091 {
7092 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7093 remove_phi_args (e);
7094 }
7095
7096 /*---------------------------------------------------------------------------
7097 Helper functions for Loop versioning
7098 ---------------------------------------------------------------------------*/
7099
7100 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7101 of 'first'. Both of them are dominated by 'new_head' basic block. When
7102 'new_head' was created by 'second's incoming edge it received phi arguments
7103 on the edge by split_edge(). Later, additional edge 'e' was created to
7104 connect 'new_head' and 'first'. Now this routine adds phi args on this
7105 additional edge 'e' that new_head to second edge received as part of edge
7106 splitting. */
7107
7108 static void
7109 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7110 basic_block new_head, edge e)
7111 {
7112 gimple phi1, phi2;
7113 gimple_stmt_iterator psi1, psi2;
7114 tree def;
7115 edge e2 = find_edge (new_head, second);
7116
7117 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7118 edge, we should always have an edge from NEW_HEAD to SECOND. */
7119 gcc_assert (e2 != NULL);
7120
7121 /* Browse all 'second' basic block phi nodes and add phi args to
7122 edge 'e' for 'first' head. PHI args are always in correct order. */
7123
7124 for (psi2 = gsi_start_phis (second),
7125 psi1 = gsi_start_phis (first);
7126 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7127 gsi_next (&psi2), gsi_next (&psi1))
7128 {
7129 phi1 = gsi_stmt (psi1);
7130 phi2 = gsi_stmt (psi2);
7131 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7132 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7133 }
7134 }
7135
7136
7137 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7138 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7139 the destination of the ELSE part. */
7140
7141 static void
7142 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7143 basic_block second_head ATTRIBUTE_UNUSED,
7144 basic_block cond_bb, void *cond_e)
7145 {
7146 gimple_stmt_iterator gsi;
7147 gimple new_cond_expr;
7148 tree cond_expr = (tree) cond_e;
7149 edge e0;
7150
7151 /* Build new conditional expr */
7152 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7153 NULL_TREE, NULL_TREE);
7154
7155 /* Add new cond in cond_bb. */
7156 gsi = gsi_last_bb (cond_bb);
7157 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7158
7159 /* Adjust edges appropriately to connect new head with first head
7160 as well as second head. */
7161 e0 = single_succ_edge (cond_bb);
7162 e0->flags &= ~EDGE_FALLTHRU;
7163 e0->flags |= EDGE_FALSE_VALUE;
7164 }
7165
7166 struct cfg_hooks gimple_cfg_hooks = {
7167 "gimple",
7168 gimple_verify_flow_info,
7169 gimple_dump_bb, /* dump_bb */
7170 create_bb, /* create_basic_block */
7171 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7172 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7173 gimple_can_remove_branch_p, /* can_remove_branch_p */
7174 remove_bb, /* delete_basic_block */
7175 gimple_split_block, /* split_block */
7176 gimple_move_block_after, /* move_block_after */
7177 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7178 gimple_merge_blocks, /* merge_blocks */
7179 gimple_predict_edge, /* predict_edge */
7180 gimple_predicted_by_p, /* predicted_by_p */
7181 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7182 gimple_duplicate_bb, /* duplicate_block */
7183 gimple_split_edge, /* split_edge */
7184 gimple_make_forwarder_block, /* make_forward_block */
7185 NULL, /* tidy_fallthru_edge */
7186 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7187 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7188 gimple_flow_call_edges_add, /* flow_call_edges_add */
7189 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7190 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7191 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7192 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7193 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7194 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7195 flush_pending_stmts /* flush_pending_stmts */
7196 };
7197
7198
7199 /* Split all critical edges. */
7200
7201 static unsigned int
7202 split_critical_edges (void)
7203 {
7204 basic_block bb;
7205 edge e;
7206 edge_iterator ei;
7207
7208 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7209 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7210 mappings around the calls to split_edge. */
7211 start_recording_case_labels ();
7212 FOR_ALL_BB (bb)
7213 {
7214 FOR_EACH_EDGE (e, ei, bb->succs)
7215 {
7216 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7217 split_edge (e);
7218 /* PRE inserts statements to edges and expects that
7219 since split_critical_edges was done beforehand, committing edge
7220 insertions will not split more edges. In addition to critical
7221 edges we must split edges that have multiple successors and
7222 end by control flow statements, such as RESX.
7223 Go ahead and split them too. This matches the logic in
7224 gimple_find_edge_insert_loc. */
7225 else if ((!single_pred_p (e->dest)
7226 || !gimple_seq_empty_p (phi_nodes (e->dest))
7227 || e->dest == EXIT_BLOCK_PTR)
7228 && e->src != ENTRY_BLOCK_PTR
7229 && !(e->flags & EDGE_ABNORMAL))
7230 {
7231 gimple_stmt_iterator gsi;
7232
7233 gsi = gsi_last_bb (e->src);
7234 if (!gsi_end_p (gsi)
7235 && stmt_ends_bb_p (gsi_stmt (gsi))
7236 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7237 && !gimple_call_builtin_p (gsi_stmt (gsi),
7238 BUILT_IN_RETURN)))
7239 split_edge (e);
7240 }
7241 }
7242 }
7243 end_recording_case_labels ();
7244 return 0;
7245 }
7246
7247 struct gimple_opt_pass pass_split_crit_edges =
7248 {
7249 {
7250 GIMPLE_PASS,
7251 "crited", /* name */
7252 NULL, /* gate */
7253 split_critical_edges, /* execute */
7254 NULL, /* sub */
7255 NULL, /* next */
7256 0, /* static_pass_number */
7257 TV_TREE_SPLIT_EDGES, /* tv_id */
7258 PROP_cfg, /* properties required */
7259 PROP_no_crit_edges, /* properties_provided */
7260 0, /* properties_destroyed */
7261 0, /* todo_flags_start */
7262 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7263 }
7264 };
7265
7266
7267 /* Build a ternary operation and gimplify it. Emit code before GSI.
7268 Return the gimple_val holding the result. */
7269
7270 tree
7271 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7272 tree type, tree a, tree b, tree c)
7273 {
7274 tree ret;
7275 location_t loc = gimple_location (gsi_stmt (*gsi));
7276
7277 ret = fold_build3_loc (loc, code, type, a, b, c);
7278 STRIP_NOPS (ret);
7279
7280 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7281 GSI_SAME_STMT);
7282 }
7283
7284 /* Build a binary operation and gimplify it. Emit code before GSI.
7285 Return the gimple_val holding the result. */
7286
7287 tree
7288 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7289 tree type, tree a, tree b)
7290 {
7291 tree ret;
7292
7293 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7294 STRIP_NOPS (ret);
7295
7296 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7297 GSI_SAME_STMT);
7298 }
7299
7300 /* Build a unary operation and gimplify it. Emit code before GSI.
7301 Return the gimple_val holding the result. */
7302
7303 tree
7304 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7305 tree a)
7306 {
7307 tree ret;
7308
7309 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7310 STRIP_NOPS (ret);
7311
7312 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7313 GSI_SAME_STMT);
7314 }
7315
7316
7317 \f
7318 /* Emit return warnings. */
7319
7320 static unsigned int
7321 execute_warn_function_return (void)
7322 {
7323 source_location location;
7324 gimple last;
7325 edge e;
7326 edge_iterator ei;
7327
7328 /* If we have a path to EXIT, then we do return. */
7329 if (TREE_THIS_VOLATILE (cfun->decl)
7330 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7331 {
7332 location = UNKNOWN_LOCATION;
7333 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7334 {
7335 last = last_stmt (e->src);
7336 if ((gimple_code (last) == GIMPLE_RETURN
7337 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7338 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7339 break;
7340 }
7341 if (location == UNKNOWN_LOCATION)
7342 location = cfun->function_end_locus;
7343 warning_at (location, 0, "%<noreturn%> function does return");
7344 }
7345
7346 /* If we see "return;" in some basic block, then we do reach the end
7347 without returning a value. */
7348 else if (warn_return_type
7349 && !TREE_NO_WARNING (cfun->decl)
7350 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7351 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7352 {
7353 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7354 {
7355 gimple last = last_stmt (e->src);
7356 if (gimple_code (last) == GIMPLE_RETURN
7357 && gimple_return_retval (last) == NULL
7358 && !gimple_no_warning_p (last))
7359 {
7360 location = gimple_location (last);
7361 if (location == UNKNOWN_LOCATION)
7362 location = cfun->function_end_locus;
7363 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7364 TREE_NO_WARNING (cfun->decl) = 1;
7365 break;
7366 }
7367 }
7368 }
7369 return 0;
7370 }
7371
7372
7373 /* Given a basic block B which ends with a conditional and has
7374 precisely two successors, determine which of the edges is taken if
7375 the conditional is true and which is taken if the conditional is
7376 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7377
7378 void
7379 extract_true_false_edges_from_block (basic_block b,
7380 edge *true_edge,
7381 edge *false_edge)
7382 {
7383 edge e = EDGE_SUCC (b, 0);
7384
7385 if (e->flags & EDGE_TRUE_VALUE)
7386 {
7387 *true_edge = e;
7388 *false_edge = EDGE_SUCC (b, 1);
7389 }
7390 else
7391 {
7392 *false_edge = e;
7393 *true_edge = EDGE_SUCC (b, 1);
7394 }
7395 }
7396
7397 struct gimple_opt_pass pass_warn_function_return =
7398 {
7399 {
7400 GIMPLE_PASS,
7401 "*warn_function_return", /* name */
7402 NULL, /* gate */
7403 execute_warn_function_return, /* execute */
7404 NULL, /* sub */
7405 NULL, /* next */
7406 0, /* static_pass_number */
7407 TV_NONE, /* tv_id */
7408 PROP_cfg, /* properties_required */
7409 0, /* properties_provided */
7410 0, /* properties_destroyed */
7411 0, /* todo_flags_start */
7412 0 /* todo_flags_finish */
7413 }
7414 };
7415
7416 /* Emit noreturn warnings. */
7417
7418 static unsigned int
7419 execute_warn_function_noreturn (void)
7420 {
7421 if (!TREE_THIS_VOLATILE (current_function_decl)
7422 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7423 warn_function_noreturn (current_function_decl);
7424 return 0;
7425 }
7426
7427 static bool
7428 gate_warn_function_noreturn (void)
7429 {
7430 return warn_suggest_attribute_noreturn;
7431 }
7432
7433 struct gimple_opt_pass pass_warn_function_noreturn =
7434 {
7435 {
7436 GIMPLE_PASS,
7437 "*warn_function_noreturn", /* name */
7438 gate_warn_function_noreturn, /* gate */
7439 execute_warn_function_noreturn, /* execute */
7440 NULL, /* sub */
7441 NULL, /* next */
7442 0, /* static_pass_number */
7443 TV_NONE, /* tv_id */
7444 PROP_cfg, /* properties_required */
7445 0, /* properties_provided */
7446 0, /* properties_destroyed */
7447 0, /* todo_flags_start */
7448 0 /* todo_flags_finish */
7449 }
7450 };
7451
7452
7453 /* Walk a gimplified function and warn for functions whose return value is
7454 ignored and attribute((warn_unused_result)) is set. This is done before
7455 inlining, so we don't have to worry about that. */
7456
7457 static void
7458 do_warn_unused_result (gimple_seq seq)
7459 {
7460 tree fdecl, ftype;
7461 gimple_stmt_iterator i;
7462
7463 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7464 {
7465 gimple g = gsi_stmt (i);
7466
7467 switch (gimple_code (g))
7468 {
7469 case GIMPLE_BIND:
7470 do_warn_unused_result (gimple_bind_body (g));
7471 break;
7472 case GIMPLE_TRY:
7473 do_warn_unused_result (gimple_try_eval (g));
7474 do_warn_unused_result (gimple_try_cleanup (g));
7475 break;
7476 case GIMPLE_CATCH:
7477 do_warn_unused_result (gimple_catch_handler (g));
7478 break;
7479 case GIMPLE_EH_FILTER:
7480 do_warn_unused_result (gimple_eh_filter_failure (g));
7481 break;
7482
7483 case GIMPLE_CALL:
7484 if (gimple_call_lhs (g))
7485 break;
7486
7487 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7488 LHS. All calls whose value is ignored should be
7489 represented like this. Look for the attribute. */
7490 fdecl = gimple_call_fndecl (g);
7491 ftype = TREE_TYPE (TREE_TYPE (gimple_call_fn (g)));
7492
7493 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7494 {
7495 location_t loc = gimple_location (g);
7496
7497 if (fdecl)
7498 warning_at (loc, OPT_Wunused_result,
7499 "ignoring return value of %qD, "
7500 "declared with attribute warn_unused_result",
7501 fdecl);
7502 else
7503 warning_at (loc, OPT_Wunused_result,
7504 "ignoring return value of function "
7505 "declared with attribute warn_unused_result");
7506 }
7507 break;
7508
7509 default:
7510 /* Not a container, not a call, or a call whose value is used. */
7511 break;
7512 }
7513 }
7514 }
7515
7516 static unsigned int
7517 run_warn_unused_result (void)
7518 {
7519 do_warn_unused_result (gimple_body (current_function_decl));
7520 return 0;
7521 }
7522
7523 static bool
7524 gate_warn_unused_result (void)
7525 {
7526 return flag_warn_unused_result;
7527 }
7528
7529 struct gimple_opt_pass pass_warn_unused_result =
7530 {
7531 {
7532 GIMPLE_PASS,
7533 "*warn_unused_result", /* name */
7534 gate_warn_unused_result, /* gate */
7535 run_warn_unused_result, /* execute */
7536 NULL, /* sub */
7537 NULL, /* next */
7538 0, /* static_pass_number */
7539 TV_NONE, /* tv_id */
7540 PROP_gimple_any, /* properties_required */
7541 0, /* properties_provided */
7542 0, /* properties_destroyed */
7543 0, /* todo_flags_start */
7544 0, /* todo_flags_finish */
7545 }
7546 };
7547