re PR fortran/49103 (local variables exchange values / wrong code with -O3)
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
130
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
133 {
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
144
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
151
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
156
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
161 }
162
163 void
164 init_empty_tree_cfg (void)
165 {
166 init_empty_tree_cfg_for_function (cfun);
167 }
168
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
172
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
175
176 static void
177 build_gimple_cfg (gimple_seq seq)
178 {
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
181
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
183
184 init_empty_tree_cfg ();
185
186 found_computed_goto = 0;
187 make_blocks (seq);
188
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
196
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
200
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
204
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
207
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
212
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
219
220 /* Debugging dumps. */
221
222 /* Write the flowgraph to a VCG file. */
223 {
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
227 {
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
230 }
231 }
232 }
233
234 static unsigned int
235 execute_build_cfg (void)
236 {
237 gimple_seq body = gimple_body (current_function_decl);
238
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
242 {
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
245 }
246 return 0;
247 }
248
249 struct gimple_opt_pass pass_build_cfg =
250 {
251 {
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg
265 | TODO_dump_func /* todo_flags_finish */
266 }
267 };
268
269
270 /* Return true if T is a computed goto. */
271
272 static bool
273 computed_goto_p (gimple t)
274 {
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
277 }
278
279
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
284
285 static void
286 factor_computed_gotos (void)
287 {
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
293
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
297
298 FOR_EACH_BB (bb)
299 {
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
302
303 if (gsi_end_p (gsi))
304 continue;
305
306 last = gsi_stmt (gsi);
307
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
312
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
315 {
316 gimple assignment;
317
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
322 {
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
325
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
331
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
339
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
343 }
344
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
348
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
351 }
352 }
353 }
354
355
356 /* Build a flowgraph for the sequence of stmts SEQ. */
357
358 static void
359 make_blocks (gimple_seq seq)
360 {
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
366
367 while (!gsi_end_p (i))
368 {
369 gimple prev_stmt;
370
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
373
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
378 {
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
383 }
384
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
388
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
391
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
395 {
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
404 {
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
415 }
416 start_new_block = true;
417 }
418
419 gsi_next (&i);
420 first_stmt_of_seq = false;
421 }
422 }
423
424
425 /* Create and return a new empty basic block after bb AFTER. */
426
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
429 {
430 basic_block bb;
431
432 gcc_assert (!e);
433
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
438
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
443
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
446
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
449 {
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
452 }
453
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
456
457 n_basic_blocks++;
458 last_basic_block++;
459
460 return bb;
461 }
462
463
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
467
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
469
470 void
471 fold_cond_expr_cond (void)
472 {
473 basic_block bb;
474
475 FOR_EACH_BB (bb)
476 {
477 gimple stmt = last_stmt (bb);
478
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
480 {
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
484
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
489 {
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
492 }
493 else
494 zerop = onep = false;
495
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
503 }
504 }
505 }
506
507 /* Join all the blocks in the flowgraph. */
508
509 static void
510 make_edges (void)
511 {
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
514
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
518
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
521 {
522 gimple last = last_stmt (bb);
523 bool fallthru;
524
525 if (last)
526 {
527 enum gimple_code code = gimple_code (last);
528 switch (code)
529 {
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
553
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
560
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
564
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
572
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
580
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
585
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
597
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
602
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
606
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
611
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
620
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
624 {
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
633
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
641
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
644 {
645 basic_block switch_bb = single_succ (cur_region->entry);
646
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
649 {
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
653 }
654
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
658
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
662 }
663 break;
664
665 default:
666 gcc_unreachable ();
667 }
668 break;
669
670 default:
671 gcc_assert (!stmt_ends_bb_p (last));
672 fallthru = true;
673 }
674 }
675 else
676 fallthru = true;
677
678 if (fallthru)
679 {
680 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
681 if (last)
682 assign_discriminator (gimple_location (last), bb->next_bb);
683 }
684 }
685
686 if (root_omp_region)
687 free_omp_regions ();
688
689 /* Fold COND_EXPR_COND of each COND_EXPR. */
690 fold_cond_expr_cond ();
691 }
692
693 /* Trivial hash function for a location_t. ITEM is a pointer to
694 a hash table entry that maps a location_t to a discriminator. */
695
696 static unsigned int
697 locus_map_hash (const void *item)
698 {
699 return ((const struct locus_discrim_map *) item)->locus;
700 }
701
702 /* Equality function for the locus-to-discriminator map. VA and VB
703 point to the two hash table entries to compare. */
704
705 static int
706 locus_map_eq (const void *va, const void *vb)
707 {
708 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
709 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
710 return a->locus == b->locus;
711 }
712
713 /* Find the next available discriminator value for LOCUS. The
714 discriminator distinguishes among several basic blocks that
715 share a common locus, allowing for more accurate sample-based
716 profiling. */
717
718 static int
719 next_discriminator_for_locus (location_t locus)
720 {
721 struct locus_discrim_map item;
722 struct locus_discrim_map **slot;
723
724 item.locus = locus;
725 item.discriminator = 0;
726 slot = (struct locus_discrim_map **)
727 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
728 (hashval_t) locus, INSERT);
729 gcc_assert (slot);
730 if (*slot == HTAB_EMPTY_ENTRY)
731 {
732 *slot = XNEW (struct locus_discrim_map);
733 gcc_assert (*slot);
734 (*slot)->locus = locus;
735 (*slot)->discriminator = 0;
736 }
737 (*slot)->discriminator++;
738 return (*slot)->discriminator;
739 }
740
741 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
742
743 static bool
744 same_line_p (location_t locus1, location_t locus2)
745 {
746 expanded_location from, to;
747
748 if (locus1 == locus2)
749 return true;
750
751 from = expand_location (locus1);
752 to = expand_location (locus2);
753
754 if (from.line != to.line)
755 return false;
756 if (from.file == to.file)
757 return true;
758 return (from.file != NULL
759 && to.file != NULL
760 && filename_cmp (from.file, to.file) == 0);
761 }
762
763 /* Assign a unique discriminator value to block BB if it begins at the same
764 LOCUS as its predecessor block. */
765
766 static void
767 assign_discriminator (location_t locus, basic_block bb)
768 {
769 gimple first_in_to_bb, last_in_to_bb;
770
771 if (locus == 0 || bb->discriminator != 0)
772 return;
773
774 first_in_to_bb = first_non_label_stmt (bb);
775 last_in_to_bb = last_stmt (bb);
776 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
777 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
778 bb->discriminator = next_discriminator_for_locus (locus);
779 }
780
781 /* Create the edges for a GIMPLE_COND starting at block BB. */
782
783 static void
784 make_cond_expr_edges (basic_block bb)
785 {
786 gimple entry = last_stmt (bb);
787 gimple then_stmt, else_stmt;
788 basic_block then_bb, else_bb;
789 tree then_label, else_label;
790 edge e;
791 location_t entry_locus;
792
793 gcc_assert (entry);
794 gcc_assert (gimple_code (entry) == GIMPLE_COND);
795
796 entry_locus = gimple_location (entry);
797
798 /* Entry basic blocks for each component. */
799 then_label = gimple_cond_true_label (entry);
800 else_label = gimple_cond_false_label (entry);
801 then_bb = label_to_block (then_label);
802 else_bb = label_to_block (else_label);
803 then_stmt = first_stmt (then_bb);
804 else_stmt = first_stmt (else_bb);
805
806 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
807 assign_discriminator (entry_locus, then_bb);
808 e->goto_locus = gimple_location (then_stmt);
809 if (e->goto_locus)
810 e->goto_block = gimple_block (then_stmt);
811 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
812 if (e)
813 {
814 assign_discriminator (entry_locus, else_bb);
815 e->goto_locus = gimple_location (else_stmt);
816 if (e->goto_locus)
817 e->goto_block = gimple_block (else_stmt);
818 }
819
820 /* We do not need the labels anymore. */
821 gimple_cond_set_true_label (entry, NULL_TREE);
822 gimple_cond_set_false_label (entry, NULL_TREE);
823 }
824
825
826 /* Called for each element in the hash table (P) as we delete the
827 edge to cases hash table.
828
829 Clear all the TREE_CHAINs to prevent problems with copying of
830 SWITCH_EXPRs and structure sharing rules, then free the hash table
831 element. */
832
833 static bool
834 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
835 void *data ATTRIBUTE_UNUSED)
836 {
837 tree t, next;
838
839 for (t = (tree) *value; t; t = next)
840 {
841 next = CASE_CHAIN (t);
842 CASE_CHAIN (t) = NULL;
843 }
844
845 *value = NULL;
846 return true;
847 }
848
849 /* Start recording information mapping edges to case labels. */
850
851 void
852 start_recording_case_labels (void)
853 {
854 gcc_assert (edge_to_cases == NULL);
855 edge_to_cases = pointer_map_create ();
856 touched_switch_bbs = BITMAP_ALLOC (NULL);
857 }
858
859 /* Return nonzero if we are recording information for case labels. */
860
861 static bool
862 recording_case_labels_p (void)
863 {
864 return (edge_to_cases != NULL);
865 }
866
867 /* Stop recording information mapping edges to case labels and
868 remove any information we have recorded. */
869 void
870 end_recording_case_labels (void)
871 {
872 bitmap_iterator bi;
873 unsigned i;
874 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
875 pointer_map_destroy (edge_to_cases);
876 edge_to_cases = NULL;
877 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
878 {
879 basic_block bb = BASIC_BLOCK (i);
880 if (bb)
881 {
882 gimple stmt = last_stmt (bb);
883 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
884 group_case_labels_stmt (stmt);
885 }
886 }
887 BITMAP_FREE (touched_switch_bbs);
888 }
889
890 /* If we are inside a {start,end}_recording_cases block, then return
891 a chain of CASE_LABEL_EXPRs from T which reference E.
892
893 Otherwise return NULL. */
894
895 static tree
896 get_cases_for_edge (edge e, gimple t)
897 {
898 void **slot;
899 size_t i, n;
900
901 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
902 chains available. Return NULL so the caller can detect this case. */
903 if (!recording_case_labels_p ())
904 return NULL;
905
906 slot = pointer_map_contains (edge_to_cases, e);
907 if (slot)
908 return (tree) *slot;
909
910 /* If we did not find E in the hash table, then this must be the first
911 time we have been queried for information about E & T. Add all the
912 elements from T to the hash table then perform the query again. */
913
914 n = gimple_switch_num_labels (t);
915 for (i = 0; i < n; i++)
916 {
917 tree elt = gimple_switch_label (t, i);
918 tree lab = CASE_LABEL (elt);
919 basic_block label_bb = label_to_block (lab);
920 edge this_edge = find_edge (e->src, label_bb);
921
922 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
923 a new chain. */
924 slot = pointer_map_insert (edge_to_cases, this_edge);
925 CASE_CHAIN (elt) = (tree) *slot;
926 *slot = elt;
927 }
928
929 return (tree) *pointer_map_contains (edge_to_cases, e);
930 }
931
932 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
933
934 static void
935 make_gimple_switch_edges (basic_block bb)
936 {
937 gimple entry = last_stmt (bb);
938 location_t entry_locus;
939 size_t i, n;
940
941 entry_locus = gimple_location (entry);
942
943 n = gimple_switch_num_labels (entry);
944
945 for (i = 0; i < n; ++i)
946 {
947 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
948 basic_block label_bb = label_to_block (lab);
949 make_edge (bb, label_bb, 0);
950 assign_discriminator (entry_locus, label_bb);
951 }
952 }
953
954
955 /* Return the basic block holding label DEST. */
956
957 basic_block
958 label_to_block_fn (struct function *ifun, tree dest)
959 {
960 int uid = LABEL_DECL_UID (dest);
961
962 /* We would die hard when faced by an undefined label. Emit a label to
963 the very first basic block. This will hopefully make even the dataflow
964 and undefined variable warnings quite right. */
965 if (seen_error () && uid < 0)
966 {
967 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
968 gimple stmt;
969
970 stmt = gimple_build_label (dest);
971 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
972 uid = LABEL_DECL_UID (dest);
973 }
974 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
975 <= (unsigned int) uid)
976 return NULL;
977 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
978 }
979
980 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
981 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
982
983 void
984 make_abnormal_goto_edges (basic_block bb, bool for_call)
985 {
986 basic_block target_bb;
987 gimple_stmt_iterator gsi;
988
989 FOR_EACH_BB (target_bb)
990 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
991 {
992 gimple label_stmt = gsi_stmt (gsi);
993 tree target;
994
995 if (gimple_code (label_stmt) != GIMPLE_LABEL)
996 break;
997
998 target = gimple_label_label (label_stmt);
999
1000 /* Make an edge to every label block that has been marked as a
1001 potential target for a computed goto or a non-local goto. */
1002 if ((FORCED_LABEL (target) && !for_call)
1003 || (DECL_NONLOCAL (target) && for_call))
1004 {
1005 make_edge (bb, target_bb, EDGE_ABNORMAL);
1006 break;
1007 }
1008 }
1009 }
1010
1011 /* Create edges for a goto statement at block BB. */
1012
1013 static void
1014 make_goto_expr_edges (basic_block bb)
1015 {
1016 gimple_stmt_iterator last = gsi_last_bb (bb);
1017 gimple goto_t = gsi_stmt (last);
1018
1019 /* A simple GOTO creates normal edges. */
1020 if (simple_goto_p (goto_t))
1021 {
1022 tree dest = gimple_goto_dest (goto_t);
1023 basic_block label_bb = label_to_block (dest);
1024 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1025 e->goto_locus = gimple_location (goto_t);
1026 assign_discriminator (e->goto_locus, label_bb);
1027 if (e->goto_locus)
1028 e->goto_block = gimple_block (goto_t);
1029 gsi_remove (&last, true);
1030 return;
1031 }
1032
1033 /* A computed GOTO creates abnormal edges. */
1034 make_abnormal_goto_edges (bb, false);
1035 }
1036
1037 /* Create edges for an asm statement with labels at block BB. */
1038
1039 static void
1040 make_gimple_asm_edges (basic_block bb)
1041 {
1042 gimple stmt = last_stmt (bb);
1043 location_t stmt_loc = gimple_location (stmt);
1044 int i, n = gimple_asm_nlabels (stmt);
1045
1046 for (i = 0; i < n; ++i)
1047 {
1048 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1049 basic_block label_bb = label_to_block (label);
1050 make_edge (bb, label_bb, 0);
1051 assign_discriminator (stmt_loc, label_bb);
1052 }
1053 }
1054
1055 /*---------------------------------------------------------------------------
1056 Flowgraph analysis
1057 ---------------------------------------------------------------------------*/
1058
1059 /* Cleanup useless labels in basic blocks. This is something we wish
1060 to do early because it allows us to group case labels before creating
1061 the edges for the CFG, and it speeds up block statement iterators in
1062 all passes later on.
1063 We rerun this pass after CFG is created, to get rid of the labels that
1064 are no longer referenced. After then we do not run it any more, since
1065 (almost) no new labels should be created. */
1066
1067 /* A map from basic block index to the leading label of that block. */
1068 static struct label_record
1069 {
1070 /* The label. */
1071 tree label;
1072
1073 /* True if the label is referenced from somewhere. */
1074 bool used;
1075 } *label_for_bb;
1076
1077 /* Given LABEL return the first label in the same basic block. */
1078
1079 static tree
1080 main_block_label (tree label)
1081 {
1082 basic_block bb = label_to_block (label);
1083 tree main_label = label_for_bb[bb->index].label;
1084
1085 /* label_to_block possibly inserted undefined label into the chain. */
1086 if (!main_label)
1087 {
1088 label_for_bb[bb->index].label = label;
1089 main_label = label;
1090 }
1091
1092 label_for_bb[bb->index].used = true;
1093 return main_label;
1094 }
1095
1096 /* Clean up redundant labels within the exception tree. */
1097
1098 static void
1099 cleanup_dead_labels_eh (void)
1100 {
1101 eh_landing_pad lp;
1102 eh_region r;
1103 tree lab;
1104 int i;
1105
1106 if (cfun->eh == NULL)
1107 return;
1108
1109 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1110 if (lp && lp->post_landing_pad)
1111 {
1112 lab = main_block_label (lp->post_landing_pad);
1113 if (lab != lp->post_landing_pad)
1114 {
1115 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1116 EH_LANDING_PAD_NR (lab) = lp->index;
1117 }
1118 }
1119
1120 FOR_ALL_EH_REGION (r)
1121 switch (r->type)
1122 {
1123 case ERT_CLEANUP:
1124 case ERT_MUST_NOT_THROW:
1125 break;
1126
1127 case ERT_TRY:
1128 {
1129 eh_catch c;
1130 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1131 {
1132 lab = c->label;
1133 if (lab)
1134 c->label = main_block_label (lab);
1135 }
1136 }
1137 break;
1138
1139 case ERT_ALLOWED_EXCEPTIONS:
1140 lab = r->u.allowed.label;
1141 if (lab)
1142 r->u.allowed.label = main_block_label (lab);
1143 break;
1144 }
1145 }
1146
1147
1148 /* Cleanup redundant labels. This is a three-step process:
1149 1) Find the leading label for each block.
1150 2) Redirect all references to labels to the leading labels.
1151 3) Cleanup all useless labels. */
1152
1153 void
1154 cleanup_dead_labels (void)
1155 {
1156 basic_block bb;
1157 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1158
1159 /* Find a suitable label for each block. We use the first user-defined
1160 label if there is one, or otherwise just the first label we see. */
1161 FOR_EACH_BB (bb)
1162 {
1163 gimple_stmt_iterator i;
1164
1165 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1166 {
1167 tree label;
1168 gimple stmt = gsi_stmt (i);
1169
1170 if (gimple_code (stmt) != GIMPLE_LABEL)
1171 break;
1172
1173 label = gimple_label_label (stmt);
1174
1175 /* If we have not yet seen a label for the current block,
1176 remember this one and see if there are more labels. */
1177 if (!label_for_bb[bb->index].label)
1178 {
1179 label_for_bb[bb->index].label = label;
1180 continue;
1181 }
1182
1183 /* If we did see a label for the current block already, but it
1184 is an artificially created label, replace it if the current
1185 label is a user defined label. */
1186 if (!DECL_ARTIFICIAL (label)
1187 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1188 {
1189 label_for_bb[bb->index].label = label;
1190 break;
1191 }
1192 }
1193 }
1194
1195 /* Now redirect all jumps/branches to the selected label.
1196 First do so for each block ending in a control statement. */
1197 FOR_EACH_BB (bb)
1198 {
1199 gimple stmt = last_stmt (bb);
1200 if (!stmt)
1201 continue;
1202
1203 switch (gimple_code (stmt))
1204 {
1205 case GIMPLE_COND:
1206 {
1207 tree true_label = gimple_cond_true_label (stmt);
1208 tree false_label = gimple_cond_false_label (stmt);
1209
1210 if (true_label)
1211 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1212 if (false_label)
1213 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1214 break;
1215 }
1216
1217 case GIMPLE_SWITCH:
1218 {
1219 size_t i, n = gimple_switch_num_labels (stmt);
1220
1221 /* Replace all destination labels. */
1222 for (i = 0; i < n; ++i)
1223 {
1224 tree case_label = gimple_switch_label (stmt, i);
1225 tree label = main_block_label (CASE_LABEL (case_label));
1226 CASE_LABEL (case_label) = label;
1227 }
1228 break;
1229 }
1230
1231 case GIMPLE_ASM:
1232 {
1233 int i, n = gimple_asm_nlabels (stmt);
1234
1235 for (i = 0; i < n; ++i)
1236 {
1237 tree cons = gimple_asm_label_op (stmt, i);
1238 tree label = main_block_label (TREE_VALUE (cons));
1239 TREE_VALUE (cons) = label;
1240 }
1241 break;
1242 }
1243
1244 /* We have to handle gotos until they're removed, and we don't
1245 remove them until after we've created the CFG edges. */
1246 case GIMPLE_GOTO:
1247 if (!computed_goto_p (stmt))
1248 {
1249 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1250 gimple_goto_set_dest (stmt, new_dest);
1251 }
1252 break;
1253
1254 default:
1255 break;
1256 }
1257 }
1258
1259 /* Do the same for the exception region tree labels. */
1260 cleanup_dead_labels_eh ();
1261
1262 /* Finally, purge dead labels. All user-defined labels and labels that
1263 can be the target of non-local gotos and labels which have their
1264 address taken are preserved. */
1265 FOR_EACH_BB (bb)
1266 {
1267 gimple_stmt_iterator i;
1268 tree label_for_this_bb = label_for_bb[bb->index].label;
1269
1270 if (!label_for_this_bb)
1271 continue;
1272
1273 /* If the main label of the block is unused, we may still remove it. */
1274 if (!label_for_bb[bb->index].used)
1275 label_for_this_bb = NULL;
1276
1277 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1278 {
1279 tree label;
1280 gimple stmt = gsi_stmt (i);
1281
1282 if (gimple_code (stmt) != GIMPLE_LABEL)
1283 break;
1284
1285 label = gimple_label_label (stmt);
1286
1287 if (label == label_for_this_bb
1288 || !DECL_ARTIFICIAL (label)
1289 || DECL_NONLOCAL (label)
1290 || FORCED_LABEL (label))
1291 gsi_next (&i);
1292 else
1293 gsi_remove (&i, true);
1294 }
1295 }
1296
1297 free (label_for_bb);
1298 }
1299
1300 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1301 the ones jumping to the same label.
1302 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1303
1304 static void
1305 group_case_labels_stmt (gimple stmt)
1306 {
1307 int old_size = gimple_switch_num_labels (stmt);
1308 int i, j, new_size = old_size;
1309 tree default_case = NULL_TREE;
1310 tree default_label = NULL_TREE;
1311 bool has_default;
1312
1313 /* The default label is always the first case in a switch
1314 statement after gimplification if it was not optimized
1315 away */
1316 if (!CASE_LOW (gimple_switch_default_label (stmt))
1317 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1318 {
1319 default_case = gimple_switch_default_label (stmt);
1320 default_label = CASE_LABEL (default_case);
1321 has_default = true;
1322 }
1323 else
1324 has_default = false;
1325
1326 /* Look for possible opportunities to merge cases. */
1327 if (has_default)
1328 i = 1;
1329 else
1330 i = 0;
1331 while (i < old_size)
1332 {
1333 tree base_case, base_label, base_high;
1334 base_case = gimple_switch_label (stmt, i);
1335
1336 gcc_assert (base_case);
1337 base_label = CASE_LABEL (base_case);
1338
1339 /* Discard cases that have the same destination as the
1340 default case. */
1341 if (base_label == default_label)
1342 {
1343 gimple_switch_set_label (stmt, i, NULL_TREE);
1344 i++;
1345 new_size--;
1346 continue;
1347 }
1348
1349 base_high = CASE_HIGH (base_case)
1350 ? CASE_HIGH (base_case)
1351 : CASE_LOW (base_case);
1352 i++;
1353
1354 /* Try to merge case labels. Break out when we reach the end
1355 of the label vector or when we cannot merge the next case
1356 label with the current one. */
1357 while (i < old_size)
1358 {
1359 tree merge_case = gimple_switch_label (stmt, i);
1360 tree merge_label = CASE_LABEL (merge_case);
1361 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1362 double_int_one);
1363
1364 /* Merge the cases if they jump to the same place,
1365 and their ranges are consecutive. */
1366 if (merge_label == base_label
1367 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1368 bhp1))
1369 {
1370 base_high = CASE_HIGH (merge_case) ?
1371 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1372 CASE_HIGH (base_case) = base_high;
1373 gimple_switch_set_label (stmt, i, NULL_TREE);
1374 new_size--;
1375 i++;
1376 }
1377 else
1378 break;
1379 }
1380 }
1381
1382 /* Compress the case labels in the label vector, and adjust the
1383 length of the vector. */
1384 for (i = 0, j = 0; i < new_size; i++)
1385 {
1386 while (! gimple_switch_label (stmt, j))
1387 j++;
1388 gimple_switch_set_label (stmt, i,
1389 gimple_switch_label (stmt, j++));
1390 }
1391
1392 gcc_assert (new_size <= old_size);
1393 gimple_switch_set_num_labels (stmt, new_size);
1394 }
1395
1396 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1397 and scan the sorted vector of cases. Combine the ones jumping to the
1398 same label. */
1399
1400 void
1401 group_case_labels (void)
1402 {
1403 basic_block bb;
1404
1405 FOR_EACH_BB (bb)
1406 {
1407 gimple stmt = last_stmt (bb);
1408 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1409 group_case_labels_stmt (stmt);
1410 }
1411 }
1412
1413 /* Checks whether we can merge block B into block A. */
1414
1415 static bool
1416 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1417 {
1418 gimple stmt;
1419 gimple_stmt_iterator gsi;
1420 gimple_seq phis;
1421
1422 if (!single_succ_p (a))
1423 return false;
1424
1425 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1426 return false;
1427
1428 if (single_succ (a) != b)
1429 return false;
1430
1431 if (!single_pred_p (b))
1432 return false;
1433
1434 if (b == EXIT_BLOCK_PTR)
1435 return false;
1436
1437 /* If A ends by a statement causing exceptions or something similar, we
1438 cannot merge the blocks. */
1439 stmt = last_stmt (a);
1440 if (stmt && stmt_ends_bb_p (stmt))
1441 return false;
1442
1443 /* Do not allow a block with only a non-local label to be merged. */
1444 if (stmt
1445 && gimple_code (stmt) == GIMPLE_LABEL
1446 && DECL_NONLOCAL (gimple_label_label (stmt)))
1447 return false;
1448
1449 /* Examine the labels at the beginning of B. */
1450 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1451 {
1452 tree lab;
1453 stmt = gsi_stmt (gsi);
1454 if (gimple_code (stmt) != GIMPLE_LABEL)
1455 break;
1456 lab = gimple_label_label (stmt);
1457
1458 /* Do not remove user labels. */
1459 if (!DECL_ARTIFICIAL (lab))
1460 return false;
1461 }
1462
1463 /* Protect the loop latches. */
1464 if (current_loops && b->loop_father->latch == b)
1465 return false;
1466
1467 /* It must be possible to eliminate all phi nodes in B. If ssa form
1468 is not up-to-date and a name-mapping is registered, we cannot eliminate
1469 any phis. Symbols marked for renaming are never a problem though. */
1470 phis = phi_nodes (b);
1471 if (!gimple_seq_empty_p (phis)
1472 && name_mappings_registered_p ())
1473 return false;
1474
1475 /* When not optimizing, don't merge if we'd lose goto_locus. */
1476 if (!optimize
1477 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1478 {
1479 location_t goto_locus = single_succ_edge (a)->goto_locus;
1480 gimple_stmt_iterator prev, next;
1481 prev = gsi_last_nondebug_bb (a);
1482 next = gsi_after_labels (b);
1483 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1484 gsi_next_nondebug (&next);
1485 if ((gsi_end_p (prev)
1486 || gimple_location (gsi_stmt (prev)) != goto_locus)
1487 && (gsi_end_p (next)
1488 || gimple_location (gsi_stmt (next)) != goto_locus))
1489 return false;
1490 }
1491
1492 return true;
1493 }
1494
1495 /* Return true if the var whose chain of uses starts at PTR has no
1496 nondebug uses. */
1497 bool
1498 has_zero_uses_1 (const ssa_use_operand_t *head)
1499 {
1500 const ssa_use_operand_t *ptr;
1501
1502 for (ptr = head->next; ptr != head; ptr = ptr->next)
1503 if (!is_gimple_debug (USE_STMT (ptr)))
1504 return false;
1505
1506 return true;
1507 }
1508
1509 /* Return true if the var whose chain of uses starts at PTR has a
1510 single nondebug use. Set USE_P and STMT to that single nondebug
1511 use, if so, or to NULL otherwise. */
1512 bool
1513 single_imm_use_1 (const ssa_use_operand_t *head,
1514 use_operand_p *use_p, gimple *stmt)
1515 {
1516 ssa_use_operand_t *ptr, *single_use = 0;
1517
1518 for (ptr = head->next; ptr != head; ptr = ptr->next)
1519 if (!is_gimple_debug (USE_STMT (ptr)))
1520 {
1521 if (single_use)
1522 {
1523 single_use = NULL;
1524 break;
1525 }
1526 single_use = ptr;
1527 }
1528
1529 if (use_p)
1530 *use_p = single_use;
1531
1532 if (stmt)
1533 *stmt = single_use ? single_use->loc.stmt : NULL;
1534
1535 return !!single_use;
1536 }
1537
1538 /* Replaces all uses of NAME by VAL. */
1539
1540 void
1541 replace_uses_by (tree name, tree val)
1542 {
1543 imm_use_iterator imm_iter;
1544 use_operand_p use;
1545 gimple stmt;
1546 edge e;
1547
1548 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1549 {
1550 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1551 {
1552 replace_exp (use, val);
1553
1554 if (gimple_code (stmt) == GIMPLE_PHI)
1555 {
1556 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1557 if (e->flags & EDGE_ABNORMAL)
1558 {
1559 /* This can only occur for virtual operands, since
1560 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1561 would prevent replacement. */
1562 gcc_assert (!is_gimple_reg (name));
1563 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1564 }
1565 }
1566 }
1567
1568 if (gimple_code (stmt) != GIMPLE_PHI)
1569 {
1570 size_t i;
1571
1572 fold_stmt_inplace (stmt);
1573 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1574 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1575
1576 /* FIXME. This should go in update_stmt. */
1577 for (i = 0; i < gimple_num_ops (stmt); i++)
1578 {
1579 tree op = gimple_op (stmt, i);
1580 /* Operands may be empty here. For example, the labels
1581 of a GIMPLE_COND are nulled out following the creation
1582 of the corresponding CFG edges. */
1583 if (op && TREE_CODE (op) == ADDR_EXPR)
1584 recompute_tree_invariant_for_addr_expr (op);
1585 }
1586
1587 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1588 update_stmt (stmt);
1589 }
1590 }
1591
1592 gcc_assert (has_zero_uses (name));
1593
1594 /* Also update the trees stored in loop structures. */
1595 if (current_loops)
1596 {
1597 struct loop *loop;
1598 loop_iterator li;
1599
1600 FOR_EACH_LOOP (li, loop, 0)
1601 {
1602 substitute_in_loop_info (loop, name, val);
1603 }
1604 }
1605 }
1606
1607 /* Merge block B into block A. */
1608
1609 static void
1610 gimple_merge_blocks (basic_block a, basic_block b)
1611 {
1612 gimple_stmt_iterator last, gsi, psi;
1613 gimple_seq phis = phi_nodes (b);
1614
1615 if (dump_file)
1616 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1617
1618 /* Remove all single-valued PHI nodes from block B of the form
1619 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1620 gsi = gsi_last_bb (a);
1621 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1622 {
1623 gimple phi = gsi_stmt (psi);
1624 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1625 gimple copy;
1626 bool may_replace_uses = !is_gimple_reg (def)
1627 || may_propagate_copy (def, use);
1628
1629 /* In case we maintain loop closed ssa form, do not propagate arguments
1630 of loop exit phi nodes. */
1631 if (current_loops
1632 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1633 && is_gimple_reg (def)
1634 && TREE_CODE (use) == SSA_NAME
1635 && a->loop_father != b->loop_father)
1636 may_replace_uses = false;
1637
1638 if (!may_replace_uses)
1639 {
1640 gcc_assert (is_gimple_reg (def));
1641
1642 /* Note that just emitting the copies is fine -- there is no problem
1643 with ordering of phi nodes. This is because A is the single
1644 predecessor of B, therefore results of the phi nodes cannot
1645 appear as arguments of the phi nodes. */
1646 copy = gimple_build_assign (def, use);
1647 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1648 remove_phi_node (&psi, false);
1649 }
1650 else
1651 {
1652 /* If we deal with a PHI for virtual operands, we can simply
1653 propagate these without fussing with folding or updating
1654 the stmt. */
1655 if (!is_gimple_reg (def))
1656 {
1657 imm_use_iterator iter;
1658 use_operand_p use_p;
1659 gimple stmt;
1660
1661 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1662 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1663 SET_USE (use_p, use);
1664
1665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1666 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1667 }
1668 else
1669 replace_uses_by (def, use);
1670
1671 remove_phi_node (&psi, true);
1672 }
1673 }
1674
1675 /* Ensure that B follows A. */
1676 move_block_after (b, a);
1677
1678 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1679 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1680
1681 /* Remove labels from B and set gimple_bb to A for other statements. */
1682 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1683 {
1684 gimple stmt = gsi_stmt (gsi);
1685 if (gimple_code (stmt) == GIMPLE_LABEL)
1686 {
1687 tree label = gimple_label_label (stmt);
1688 int lp_nr;
1689
1690 gsi_remove (&gsi, false);
1691
1692 /* Now that we can thread computed gotos, we might have
1693 a situation where we have a forced label in block B
1694 However, the label at the start of block B might still be
1695 used in other ways (think about the runtime checking for
1696 Fortran assigned gotos). So we can not just delete the
1697 label. Instead we move the label to the start of block A. */
1698 if (FORCED_LABEL (label))
1699 {
1700 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1701 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1702 }
1703
1704 lp_nr = EH_LANDING_PAD_NR (label);
1705 if (lp_nr)
1706 {
1707 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1708 lp->post_landing_pad = NULL;
1709 }
1710 }
1711 else
1712 {
1713 gimple_set_bb (stmt, a);
1714 gsi_next (&gsi);
1715 }
1716 }
1717
1718 /* Merge the sequences. */
1719 last = gsi_last_bb (a);
1720 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1721 set_bb_seq (b, NULL);
1722
1723 if (cfgcleanup_altered_bbs)
1724 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1725 }
1726
1727
1728 /* Return the one of two successors of BB that is not reachable by a
1729 complex edge, if there is one. Else, return BB. We use
1730 this in optimizations that use post-dominators for their heuristics,
1731 to catch the cases in C++ where function calls are involved. */
1732
1733 basic_block
1734 single_noncomplex_succ (basic_block bb)
1735 {
1736 edge e0, e1;
1737 if (EDGE_COUNT (bb->succs) != 2)
1738 return bb;
1739
1740 e0 = EDGE_SUCC (bb, 0);
1741 e1 = EDGE_SUCC (bb, 1);
1742 if (e0->flags & EDGE_COMPLEX)
1743 return e1->dest;
1744 if (e1->flags & EDGE_COMPLEX)
1745 return e0->dest;
1746
1747 return bb;
1748 }
1749
1750 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1751
1752 void
1753 notice_special_calls (gimple call)
1754 {
1755 int flags = gimple_call_flags (call);
1756
1757 if (flags & ECF_MAY_BE_ALLOCA)
1758 cfun->calls_alloca = true;
1759 if (flags & ECF_RETURNS_TWICE)
1760 cfun->calls_setjmp = true;
1761 }
1762
1763
1764 /* Clear flags set by notice_special_calls. Used by dead code removal
1765 to update the flags. */
1766
1767 void
1768 clear_special_calls (void)
1769 {
1770 cfun->calls_alloca = false;
1771 cfun->calls_setjmp = false;
1772 }
1773
1774 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1775
1776 static void
1777 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1778 {
1779 /* Since this block is no longer reachable, we can just delete all
1780 of its PHI nodes. */
1781 remove_phi_nodes (bb);
1782
1783 /* Remove edges to BB's successors. */
1784 while (EDGE_COUNT (bb->succs) > 0)
1785 remove_edge (EDGE_SUCC (bb, 0));
1786 }
1787
1788
1789 /* Remove statements of basic block BB. */
1790
1791 static void
1792 remove_bb (basic_block bb)
1793 {
1794 gimple_stmt_iterator i;
1795
1796 if (dump_file)
1797 {
1798 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1799 if (dump_flags & TDF_DETAILS)
1800 {
1801 dump_bb (bb, dump_file, 0);
1802 fprintf (dump_file, "\n");
1803 }
1804 }
1805
1806 if (current_loops)
1807 {
1808 struct loop *loop = bb->loop_father;
1809
1810 /* If a loop gets removed, clean up the information associated
1811 with it. */
1812 if (loop->latch == bb
1813 || loop->header == bb)
1814 free_numbers_of_iterations_estimates_loop (loop);
1815 }
1816
1817 /* Remove all the instructions in the block. */
1818 if (bb_seq (bb) != NULL)
1819 {
1820 /* Walk backwards so as to get a chance to substitute all
1821 released DEFs into debug stmts. See
1822 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1823 details. */
1824 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1825 {
1826 gimple stmt = gsi_stmt (i);
1827 if (gimple_code (stmt) == GIMPLE_LABEL
1828 && (FORCED_LABEL (gimple_label_label (stmt))
1829 || DECL_NONLOCAL (gimple_label_label (stmt))))
1830 {
1831 basic_block new_bb;
1832 gimple_stmt_iterator new_gsi;
1833
1834 /* A non-reachable non-local label may still be referenced.
1835 But it no longer needs to carry the extra semantics of
1836 non-locality. */
1837 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1838 {
1839 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1840 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1841 }
1842
1843 new_bb = bb->prev_bb;
1844 new_gsi = gsi_start_bb (new_bb);
1845 gsi_remove (&i, false);
1846 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1847 }
1848 else
1849 {
1850 /* Release SSA definitions if we are in SSA. Note that we
1851 may be called when not in SSA. For example,
1852 final_cleanup calls this function via
1853 cleanup_tree_cfg. */
1854 if (gimple_in_ssa_p (cfun))
1855 release_defs (stmt);
1856
1857 gsi_remove (&i, true);
1858 }
1859
1860 if (gsi_end_p (i))
1861 i = gsi_last_bb (bb);
1862 else
1863 gsi_prev (&i);
1864 }
1865 }
1866
1867 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1868 bb->il.gimple = NULL;
1869 }
1870
1871
1872 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1873 predicate VAL, return the edge that will be taken out of the block.
1874 If VAL does not match a unique edge, NULL is returned. */
1875
1876 edge
1877 find_taken_edge (basic_block bb, tree val)
1878 {
1879 gimple stmt;
1880
1881 stmt = last_stmt (bb);
1882
1883 gcc_assert (stmt);
1884 gcc_assert (is_ctrl_stmt (stmt));
1885
1886 if (val == NULL)
1887 return NULL;
1888
1889 if (!is_gimple_min_invariant (val))
1890 return NULL;
1891
1892 if (gimple_code (stmt) == GIMPLE_COND)
1893 return find_taken_edge_cond_expr (bb, val);
1894
1895 if (gimple_code (stmt) == GIMPLE_SWITCH)
1896 return find_taken_edge_switch_expr (bb, val);
1897
1898 if (computed_goto_p (stmt))
1899 {
1900 /* Only optimize if the argument is a label, if the argument is
1901 not a label then we can not construct a proper CFG.
1902
1903 It may be the case that we only need to allow the LABEL_REF to
1904 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1905 appear inside a LABEL_EXPR just to be safe. */
1906 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1907 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1908 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1909 return NULL;
1910 }
1911
1912 gcc_unreachable ();
1913 }
1914
1915 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1916 statement, determine which of the outgoing edges will be taken out of the
1917 block. Return NULL if either edge may be taken. */
1918
1919 static edge
1920 find_taken_edge_computed_goto (basic_block bb, tree val)
1921 {
1922 basic_block dest;
1923 edge e = NULL;
1924
1925 dest = label_to_block (val);
1926 if (dest)
1927 {
1928 e = find_edge (bb, dest);
1929 gcc_assert (e != NULL);
1930 }
1931
1932 return e;
1933 }
1934
1935 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1936 statement, determine which of the two edges will be taken out of the
1937 block. Return NULL if either edge may be taken. */
1938
1939 static edge
1940 find_taken_edge_cond_expr (basic_block bb, tree val)
1941 {
1942 edge true_edge, false_edge;
1943
1944 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1945
1946 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1947 return (integer_zerop (val) ? false_edge : true_edge);
1948 }
1949
1950 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1951 statement, determine which edge will be taken out of the block. Return
1952 NULL if any edge may be taken. */
1953
1954 static edge
1955 find_taken_edge_switch_expr (basic_block bb, tree val)
1956 {
1957 basic_block dest_bb;
1958 edge e;
1959 gimple switch_stmt;
1960 tree taken_case;
1961
1962 switch_stmt = last_stmt (bb);
1963 taken_case = find_case_label_for_value (switch_stmt, val);
1964 dest_bb = label_to_block (CASE_LABEL (taken_case));
1965
1966 e = find_edge (bb, dest_bb);
1967 gcc_assert (e);
1968 return e;
1969 }
1970
1971
1972 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1973 We can make optimal use here of the fact that the case labels are
1974 sorted: We can do a binary search for a case matching VAL. */
1975
1976 static tree
1977 find_case_label_for_value (gimple switch_stmt, tree val)
1978 {
1979 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1980 tree default_case = gimple_switch_default_label (switch_stmt);
1981
1982 for (low = 0, high = n; high - low > 1; )
1983 {
1984 size_t i = (high + low) / 2;
1985 tree t = gimple_switch_label (switch_stmt, i);
1986 int cmp;
1987
1988 /* Cache the result of comparing CASE_LOW and val. */
1989 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1990
1991 if (cmp > 0)
1992 high = i;
1993 else
1994 low = i;
1995
1996 if (CASE_HIGH (t) == NULL)
1997 {
1998 /* A singe-valued case label. */
1999 if (cmp == 0)
2000 return t;
2001 }
2002 else
2003 {
2004 /* A case range. We can only handle integer ranges. */
2005 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2006 return t;
2007 }
2008 }
2009
2010 return default_case;
2011 }
2012
2013
2014 /* Dump a basic block on stderr. */
2015
2016 void
2017 gimple_debug_bb (basic_block bb)
2018 {
2019 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2020 }
2021
2022
2023 /* Dump basic block with index N on stderr. */
2024
2025 basic_block
2026 gimple_debug_bb_n (int n)
2027 {
2028 gimple_debug_bb (BASIC_BLOCK (n));
2029 return BASIC_BLOCK (n);
2030 }
2031
2032
2033 /* Dump the CFG on stderr.
2034
2035 FLAGS are the same used by the tree dumping functions
2036 (see TDF_* in tree-pass.h). */
2037
2038 void
2039 gimple_debug_cfg (int flags)
2040 {
2041 gimple_dump_cfg (stderr, flags);
2042 }
2043
2044
2045 /* Dump the program showing basic block boundaries on the given FILE.
2046
2047 FLAGS are the same used by the tree dumping functions (see TDF_* in
2048 tree.h). */
2049
2050 void
2051 gimple_dump_cfg (FILE *file, int flags)
2052 {
2053 if (flags & TDF_DETAILS)
2054 {
2055 dump_function_header (file, current_function_decl, flags);
2056 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2057 n_basic_blocks, n_edges, last_basic_block);
2058
2059 brief_dump_cfg (file);
2060 fprintf (file, "\n");
2061 }
2062
2063 if (flags & TDF_STATS)
2064 dump_cfg_stats (file);
2065
2066 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2067 }
2068
2069
2070 /* Dump CFG statistics on FILE. */
2071
2072 void
2073 dump_cfg_stats (FILE *file)
2074 {
2075 static long max_num_merged_labels = 0;
2076 unsigned long size, total = 0;
2077 long num_edges;
2078 basic_block bb;
2079 const char * const fmt_str = "%-30s%-13s%12s\n";
2080 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2081 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2082 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2083 const char *funcname
2084 = lang_hooks.decl_printable_name (current_function_decl, 2);
2085
2086
2087 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2088
2089 fprintf (file, "---------------------------------------------------------\n");
2090 fprintf (file, fmt_str, "", " Number of ", "Memory");
2091 fprintf (file, fmt_str, "", " instances ", "used ");
2092 fprintf (file, "---------------------------------------------------------\n");
2093
2094 size = n_basic_blocks * sizeof (struct basic_block_def);
2095 total += size;
2096 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2097 SCALE (size), LABEL (size));
2098
2099 num_edges = 0;
2100 FOR_EACH_BB (bb)
2101 num_edges += EDGE_COUNT (bb->succs);
2102 size = num_edges * sizeof (struct edge_def);
2103 total += size;
2104 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2105
2106 fprintf (file, "---------------------------------------------------------\n");
2107 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2108 LABEL (total));
2109 fprintf (file, "---------------------------------------------------------\n");
2110 fprintf (file, "\n");
2111
2112 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2113 max_num_merged_labels = cfg_stats.num_merged_labels;
2114
2115 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2116 cfg_stats.num_merged_labels, max_num_merged_labels);
2117
2118 fprintf (file, "\n");
2119 }
2120
2121
2122 /* Dump CFG statistics on stderr. Keep extern so that it's always
2123 linked in the final executable. */
2124
2125 DEBUG_FUNCTION void
2126 debug_cfg_stats (void)
2127 {
2128 dump_cfg_stats (stderr);
2129 }
2130
2131
2132 /* Dump the flowgraph to a .vcg FILE. */
2133
2134 static void
2135 gimple_cfg2vcg (FILE *file)
2136 {
2137 edge e;
2138 edge_iterator ei;
2139 basic_block bb;
2140 const char *funcname
2141 = lang_hooks.decl_printable_name (current_function_decl, 2);
2142
2143 /* Write the file header. */
2144 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2145 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2146 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2147
2148 /* Write blocks and edges. */
2149 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2150 {
2151 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2152 e->dest->index);
2153
2154 if (e->flags & EDGE_FAKE)
2155 fprintf (file, " linestyle: dotted priority: 10");
2156 else
2157 fprintf (file, " linestyle: solid priority: 100");
2158
2159 fprintf (file, " }\n");
2160 }
2161 fputc ('\n', file);
2162
2163 FOR_EACH_BB (bb)
2164 {
2165 enum gimple_code head_code, end_code;
2166 const char *head_name, *end_name;
2167 int head_line = 0;
2168 int end_line = 0;
2169 gimple first = first_stmt (bb);
2170 gimple last = last_stmt (bb);
2171
2172 if (first)
2173 {
2174 head_code = gimple_code (first);
2175 head_name = gimple_code_name[head_code];
2176 head_line = get_lineno (first);
2177 }
2178 else
2179 head_name = "no-statement";
2180
2181 if (last)
2182 {
2183 end_code = gimple_code (last);
2184 end_name = gimple_code_name[end_code];
2185 end_line = get_lineno (last);
2186 }
2187 else
2188 end_name = "no-statement";
2189
2190 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2191 bb->index, bb->index, head_name, head_line, end_name,
2192 end_line);
2193
2194 FOR_EACH_EDGE (e, ei, bb->succs)
2195 {
2196 if (e->dest == EXIT_BLOCK_PTR)
2197 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2198 else
2199 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2200
2201 if (e->flags & EDGE_FAKE)
2202 fprintf (file, " priority: 10 linestyle: dotted");
2203 else
2204 fprintf (file, " priority: 100 linestyle: solid");
2205
2206 fprintf (file, " }\n");
2207 }
2208
2209 if (bb->next_bb != EXIT_BLOCK_PTR)
2210 fputc ('\n', file);
2211 }
2212
2213 fputs ("}\n\n", file);
2214 }
2215
2216
2217
2218 /*---------------------------------------------------------------------------
2219 Miscellaneous helpers
2220 ---------------------------------------------------------------------------*/
2221
2222 /* Return true if T represents a stmt that always transfers control. */
2223
2224 bool
2225 is_ctrl_stmt (gimple t)
2226 {
2227 switch (gimple_code (t))
2228 {
2229 case GIMPLE_COND:
2230 case GIMPLE_SWITCH:
2231 case GIMPLE_GOTO:
2232 case GIMPLE_RETURN:
2233 case GIMPLE_RESX:
2234 return true;
2235 default:
2236 return false;
2237 }
2238 }
2239
2240
2241 /* Return true if T is a statement that may alter the flow of control
2242 (e.g., a call to a non-returning function). */
2243
2244 bool
2245 is_ctrl_altering_stmt (gimple t)
2246 {
2247 gcc_assert (t);
2248
2249 switch (gimple_code (t))
2250 {
2251 case GIMPLE_CALL:
2252 {
2253 int flags = gimple_call_flags (t);
2254
2255 /* A non-pure/const call alters flow control if the current
2256 function has nonlocal labels. */
2257 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2258 && cfun->has_nonlocal_label)
2259 return true;
2260
2261 /* A call also alters control flow if it does not return. */
2262 if (flags & ECF_NORETURN)
2263 return true;
2264
2265 /* BUILT_IN_RETURN call is same as return statement. */
2266 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2267 return true;
2268 }
2269 break;
2270
2271 case GIMPLE_EH_DISPATCH:
2272 /* EH_DISPATCH branches to the individual catch handlers at
2273 this level of a try or allowed-exceptions region. It can
2274 fallthru to the next statement as well. */
2275 return true;
2276
2277 case GIMPLE_ASM:
2278 if (gimple_asm_nlabels (t) > 0)
2279 return true;
2280 break;
2281
2282 CASE_GIMPLE_OMP:
2283 /* OpenMP directives alter control flow. */
2284 return true;
2285
2286 default:
2287 break;
2288 }
2289
2290 /* If a statement can throw, it alters control flow. */
2291 return stmt_can_throw_internal (t);
2292 }
2293
2294
2295 /* Return true if T is a simple local goto. */
2296
2297 bool
2298 simple_goto_p (gimple t)
2299 {
2300 return (gimple_code (t) == GIMPLE_GOTO
2301 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2302 }
2303
2304
2305 /* Return true if T can make an abnormal transfer of control flow.
2306 Transfers of control flow associated with EH are excluded. */
2307
2308 bool
2309 stmt_can_make_abnormal_goto (gimple t)
2310 {
2311 if (computed_goto_p (t))
2312 return true;
2313 if (is_gimple_call (t))
2314 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2315 && !(gimple_call_flags (t) & ECF_LEAF));
2316 return false;
2317 }
2318
2319
2320 /* Return true if STMT should start a new basic block. PREV_STMT is
2321 the statement preceding STMT. It is used when STMT is a label or a
2322 case label. Labels should only start a new basic block if their
2323 previous statement wasn't a label. Otherwise, sequence of labels
2324 would generate unnecessary basic blocks that only contain a single
2325 label. */
2326
2327 static inline bool
2328 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2329 {
2330 if (stmt == NULL)
2331 return false;
2332
2333 /* Labels start a new basic block only if the preceding statement
2334 wasn't a label of the same type. This prevents the creation of
2335 consecutive blocks that have nothing but a single label. */
2336 if (gimple_code (stmt) == GIMPLE_LABEL)
2337 {
2338 /* Nonlocal and computed GOTO targets always start a new block. */
2339 if (DECL_NONLOCAL (gimple_label_label (stmt))
2340 || FORCED_LABEL (gimple_label_label (stmt)))
2341 return true;
2342
2343 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2344 {
2345 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2346 return true;
2347
2348 cfg_stats.num_merged_labels++;
2349 return false;
2350 }
2351 else
2352 return true;
2353 }
2354
2355 return false;
2356 }
2357
2358
2359 /* Return true if T should end a basic block. */
2360
2361 bool
2362 stmt_ends_bb_p (gimple t)
2363 {
2364 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2365 }
2366
2367 /* Remove block annotations and other data structures. */
2368
2369 void
2370 delete_tree_cfg_annotations (void)
2371 {
2372 label_to_block_map = NULL;
2373 }
2374
2375
2376 /* Return the first statement in basic block BB. */
2377
2378 gimple
2379 first_stmt (basic_block bb)
2380 {
2381 gimple_stmt_iterator i = gsi_start_bb (bb);
2382 gimple stmt = NULL;
2383
2384 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2385 {
2386 gsi_next (&i);
2387 stmt = NULL;
2388 }
2389 return stmt;
2390 }
2391
2392 /* Return the first non-label statement in basic block BB. */
2393
2394 static gimple
2395 first_non_label_stmt (basic_block bb)
2396 {
2397 gimple_stmt_iterator i = gsi_start_bb (bb);
2398 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2399 gsi_next (&i);
2400 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2401 }
2402
2403 /* Return the last statement in basic block BB. */
2404
2405 gimple
2406 last_stmt (basic_block bb)
2407 {
2408 gimple_stmt_iterator i = gsi_last_bb (bb);
2409 gimple stmt = NULL;
2410
2411 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2412 {
2413 gsi_prev (&i);
2414 stmt = NULL;
2415 }
2416 return stmt;
2417 }
2418
2419 /* Return the last statement of an otherwise empty block. Return NULL
2420 if the block is totally empty, or if it contains more than one
2421 statement. */
2422
2423 gimple
2424 last_and_only_stmt (basic_block bb)
2425 {
2426 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2427 gimple last, prev;
2428
2429 if (gsi_end_p (i))
2430 return NULL;
2431
2432 last = gsi_stmt (i);
2433 gsi_prev_nondebug (&i);
2434 if (gsi_end_p (i))
2435 return last;
2436
2437 /* Empty statements should no longer appear in the instruction stream.
2438 Everything that might have appeared before should be deleted by
2439 remove_useless_stmts, and the optimizers should just gsi_remove
2440 instead of smashing with build_empty_stmt.
2441
2442 Thus the only thing that should appear here in a block containing
2443 one executable statement is a label. */
2444 prev = gsi_stmt (i);
2445 if (gimple_code (prev) == GIMPLE_LABEL)
2446 return last;
2447 else
2448 return NULL;
2449 }
2450
2451 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2452
2453 static void
2454 reinstall_phi_args (edge new_edge, edge old_edge)
2455 {
2456 edge_var_map_vector v;
2457 edge_var_map *vm;
2458 int i;
2459 gimple_stmt_iterator phis;
2460
2461 v = redirect_edge_var_map_vector (old_edge);
2462 if (!v)
2463 return;
2464
2465 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2466 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2467 i++, gsi_next (&phis))
2468 {
2469 gimple phi = gsi_stmt (phis);
2470 tree result = redirect_edge_var_map_result (vm);
2471 tree arg = redirect_edge_var_map_def (vm);
2472
2473 gcc_assert (result == gimple_phi_result (phi));
2474
2475 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2476 }
2477
2478 redirect_edge_var_map_clear (old_edge);
2479 }
2480
2481 /* Returns the basic block after which the new basic block created
2482 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2483 near its "logical" location. This is of most help to humans looking
2484 at debugging dumps. */
2485
2486 static basic_block
2487 split_edge_bb_loc (edge edge_in)
2488 {
2489 basic_block dest = edge_in->dest;
2490 basic_block dest_prev = dest->prev_bb;
2491
2492 if (dest_prev)
2493 {
2494 edge e = find_edge (dest_prev, dest);
2495 if (e && !(e->flags & EDGE_COMPLEX))
2496 return edge_in->src;
2497 }
2498 return dest_prev;
2499 }
2500
2501 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2502 Abort on abnormal edges. */
2503
2504 static basic_block
2505 gimple_split_edge (edge edge_in)
2506 {
2507 basic_block new_bb, after_bb, dest;
2508 edge new_edge, e;
2509
2510 /* Abnormal edges cannot be split. */
2511 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2512
2513 dest = edge_in->dest;
2514
2515 after_bb = split_edge_bb_loc (edge_in);
2516
2517 new_bb = create_empty_bb (after_bb);
2518 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2519 new_bb->count = edge_in->count;
2520 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2521 new_edge->probability = REG_BR_PROB_BASE;
2522 new_edge->count = edge_in->count;
2523
2524 e = redirect_edge_and_branch (edge_in, new_bb);
2525 gcc_assert (e == edge_in);
2526 reinstall_phi_args (new_edge, e);
2527
2528 return new_bb;
2529 }
2530
2531
2532 /* Verify properties of the address expression T with base object BASE. */
2533
2534 static tree
2535 verify_address (tree t, tree base)
2536 {
2537 bool old_constant;
2538 bool old_side_effects;
2539 bool new_constant;
2540 bool new_side_effects;
2541
2542 old_constant = TREE_CONSTANT (t);
2543 old_side_effects = TREE_SIDE_EFFECTS (t);
2544
2545 recompute_tree_invariant_for_addr_expr (t);
2546 new_side_effects = TREE_SIDE_EFFECTS (t);
2547 new_constant = TREE_CONSTANT (t);
2548
2549 if (old_constant != new_constant)
2550 {
2551 error ("constant not recomputed when ADDR_EXPR changed");
2552 return t;
2553 }
2554 if (old_side_effects != new_side_effects)
2555 {
2556 error ("side effects not recomputed when ADDR_EXPR changed");
2557 return t;
2558 }
2559
2560 if (!(TREE_CODE (base) == VAR_DECL
2561 || TREE_CODE (base) == PARM_DECL
2562 || TREE_CODE (base) == RESULT_DECL))
2563 return NULL_TREE;
2564
2565 if (DECL_GIMPLE_REG_P (base))
2566 {
2567 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2568 return base;
2569 }
2570
2571 return NULL_TREE;
2572 }
2573
2574 /* Callback for walk_tree, check that all elements with address taken are
2575 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2576 inside a PHI node. */
2577
2578 static tree
2579 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2580 {
2581 tree t = *tp, x;
2582
2583 if (TYPE_P (t))
2584 *walk_subtrees = 0;
2585
2586 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2587 #define CHECK_OP(N, MSG) \
2588 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2589 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2590
2591 switch (TREE_CODE (t))
2592 {
2593 case SSA_NAME:
2594 if (SSA_NAME_IN_FREE_LIST (t))
2595 {
2596 error ("SSA name in freelist but still referenced");
2597 return *tp;
2598 }
2599 break;
2600
2601 case INDIRECT_REF:
2602 error ("INDIRECT_REF in gimple IL");
2603 return t;
2604
2605 case MEM_REF:
2606 x = TREE_OPERAND (t, 0);
2607 if (!POINTER_TYPE_P (TREE_TYPE (x))
2608 || !is_gimple_mem_ref_addr (x))
2609 {
2610 error ("invalid first operand of MEM_REF");
2611 return x;
2612 }
2613 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2614 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2615 {
2616 error ("invalid offset operand of MEM_REF");
2617 return TREE_OPERAND (t, 1);
2618 }
2619 if (TREE_CODE (x) == ADDR_EXPR
2620 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2621 return x;
2622 *walk_subtrees = 0;
2623 break;
2624
2625 case ASSERT_EXPR:
2626 x = fold (ASSERT_EXPR_COND (t));
2627 if (x == boolean_false_node)
2628 {
2629 error ("ASSERT_EXPR with an always-false condition");
2630 return *tp;
2631 }
2632 break;
2633
2634 case MODIFY_EXPR:
2635 error ("MODIFY_EXPR not expected while having tuples");
2636 return *tp;
2637
2638 case ADDR_EXPR:
2639 {
2640 tree tem;
2641
2642 gcc_assert (is_gimple_address (t));
2643
2644 /* Skip any references (they will be checked when we recurse down the
2645 tree) and ensure that any variable used as a prefix is marked
2646 addressable. */
2647 for (x = TREE_OPERAND (t, 0);
2648 handled_component_p (x);
2649 x = TREE_OPERAND (x, 0))
2650 ;
2651
2652 if ((tem = verify_address (t, x)))
2653 return tem;
2654
2655 if (!(TREE_CODE (x) == VAR_DECL
2656 || TREE_CODE (x) == PARM_DECL
2657 || TREE_CODE (x) == RESULT_DECL))
2658 return NULL;
2659
2660 if (!TREE_ADDRESSABLE (x))
2661 {
2662 error ("address taken, but ADDRESSABLE bit not set");
2663 return x;
2664 }
2665
2666 break;
2667 }
2668
2669 case COND_EXPR:
2670 x = COND_EXPR_COND (t);
2671 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2672 {
2673 error ("non-integral used in condition");
2674 return x;
2675 }
2676 if (!is_gimple_condexpr (x))
2677 {
2678 error ("invalid conditional operand");
2679 return x;
2680 }
2681 break;
2682
2683 case NON_LVALUE_EXPR:
2684 gcc_unreachable ();
2685
2686 CASE_CONVERT:
2687 case FIX_TRUNC_EXPR:
2688 case FLOAT_EXPR:
2689 case NEGATE_EXPR:
2690 case ABS_EXPR:
2691 case BIT_NOT_EXPR:
2692 case TRUTH_NOT_EXPR:
2693 CHECK_OP (0, "invalid operand to unary operator");
2694 break;
2695
2696 case REALPART_EXPR:
2697 case IMAGPART_EXPR:
2698 case COMPONENT_REF:
2699 case ARRAY_REF:
2700 case ARRAY_RANGE_REF:
2701 case BIT_FIELD_REF:
2702 case VIEW_CONVERT_EXPR:
2703 /* We have a nest of references. Verify that each of the operands
2704 that determine where to reference is either a constant or a variable,
2705 verify that the base is valid, and then show we've already checked
2706 the subtrees. */
2707 while (handled_component_p (t))
2708 {
2709 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2710 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2711 else if (TREE_CODE (t) == ARRAY_REF
2712 || TREE_CODE (t) == ARRAY_RANGE_REF)
2713 {
2714 CHECK_OP (1, "invalid array index");
2715 if (TREE_OPERAND (t, 2))
2716 CHECK_OP (2, "invalid array lower bound");
2717 if (TREE_OPERAND (t, 3))
2718 CHECK_OP (3, "invalid array stride");
2719 }
2720 else if (TREE_CODE (t) == BIT_FIELD_REF)
2721 {
2722 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2723 || !host_integerp (TREE_OPERAND (t, 2), 1))
2724 {
2725 error ("invalid position or size operand to BIT_FIELD_REF");
2726 return t;
2727 }
2728 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2729 && (TYPE_PRECISION (TREE_TYPE (t))
2730 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2731 {
2732 error ("integral result type precision does not match "
2733 "field size of BIT_FIELD_REF");
2734 return t;
2735 }
2736 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2737 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2738 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2739 {
2740 error ("mode precision of non-integral result does not "
2741 "match field size of BIT_FIELD_REF");
2742 return t;
2743 }
2744 }
2745
2746 t = TREE_OPERAND (t, 0);
2747 }
2748
2749 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2750 {
2751 error ("invalid reference prefix");
2752 return t;
2753 }
2754 *walk_subtrees = 0;
2755 break;
2756 case PLUS_EXPR:
2757 case MINUS_EXPR:
2758 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2759 POINTER_PLUS_EXPR. */
2760 if (POINTER_TYPE_P (TREE_TYPE (t)))
2761 {
2762 error ("invalid operand to plus/minus, type is a pointer");
2763 return t;
2764 }
2765 CHECK_OP (0, "invalid operand to binary operator");
2766 CHECK_OP (1, "invalid operand to binary operator");
2767 break;
2768
2769 case POINTER_PLUS_EXPR:
2770 /* Check to make sure the first operand is a pointer or reference type. */
2771 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2772 {
2773 error ("invalid operand to pointer plus, first operand is not a pointer");
2774 return t;
2775 }
2776 /* Check to make sure the second operand is an integer with type of
2777 sizetype. */
2778 if (!useless_type_conversion_p (sizetype,
2779 TREE_TYPE (TREE_OPERAND (t, 1))))
2780 {
2781 error ("invalid operand to pointer plus, second operand is not an "
2782 "integer with type of sizetype");
2783 return t;
2784 }
2785 /* FALLTHROUGH */
2786 case LT_EXPR:
2787 case LE_EXPR:
2788 case GT_EXPR:
2789 case GE_EXPR:
2790 case EQ_EXPR:
2791 case NE_EXPR:
2792 case UNORDERED_EXPR:
2793 case ORDERED_EXPR:
2794 case UNLT_EXPR:
2795 case UNLE_EXPR:
2796 case UNGT_EXPR:
2797 case UNGE_EXPR:
2798 case UNEQ_EXPR:
2799 case LTGT_EXPR:
2800 case MULT_EXPR:
2801 case TRUNC_DIV_EXPR:
2802 case CEIL_DIV_EXPR:
2803 case FLOOR_DIV_EXPR:
2804 case ROUND_DIV_EXPR:
2805 case TRUNC_MOD_EXPR:
2806 case CEIL_MOD_EXPR:
2807 case FLOOR_MOD_EXPR:
2808 case ROUND_MOD_EXPR:
2809 case RDIV_EXPR:
2810 case EXACT_DIV_EXPR:
2811 case MIN_EXPR:
2812 case MAX_EXPR:
2813 case LSHIFT_EXPR:
2814 case RSHIFT_EXPR:
2815 case LROTATE_EXPR:
2816 case RROTATE_EXPR:
2817 case BIT_IOR_EXPR:
2818 case BIT_XOR_EXPR:
2819 case BIT_AND_EXPR:
2820 CHECK_OP (0, "invalid operand to binary operator");
2821 CHECK_OP (1, "invalid operand to binary operator");
2822 break;
2823
2824 case CONSTRUCTOR:
2825 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2826 *walk_subtrees = 0;
2827 break;
2828
2829 case CASE_LABEL_EXPR:
2830 if (CASE_CHAIN (t))
2831 {
2832 error ("invalid CASE_CHAIN");
2833 return t;
2834 }
2835 break;
2836
2837 default:
2838 break;
2839 }
2840 return NULL;
2841
2842 #undef CHECK_OP
2843 }
2844
2845
2846 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2847 Returns true if there is an error, otherwise false. */
2848
2849 static bool
2850 verify_types_in_gimple_min_lval (tree expr)
2851 {
2852 tree op;
2853
2854 if (is_gimple_id (expr))
2855 return false;
2856
2857 if (TREE_CODE (expr) != TARGET_MEM_REF
2858 && TREE_CODE (expr) != MEM_REF)
2859 {
2860 error ("invalid expression for min lvalue");
2861 return true;
2862 }
2863
2864 /* TARGET_MEM_REFs are strange beasts. */
2865 if (TREE_CODE (expr) == TARGET_MEM_REF)
2866 return false;
2867
2868 op = TREE_OPERAND (expr, 0);
2869 if (!is_gimple_val (op))
2870 {
2871 error ("invalid operand in indirect reference");
2872 debug_generic_stmt (op);
2873 return true;
2874 }
2875 /* Memory references now generally can involve a value conversion. */
2876
2877 return false;
2878 }
2879
2880 /* Verify if EXPR is a valid GIMPLE reference expression. If
2881 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2882 if there is an error, otherwise false. */
2883
2884 static bool
2885 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2886 {
2887 while (handled_component_p (expr))
2888 {
2889 tree op = TREE_OPERAND (expr, 0);
2890
2891 if (TREE_CODE (expr) == ARRAY_REF
2892 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2893 {
2894 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2895 || (TREE_OPERAND (expr, 2)
2896 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2897 || (TREE_OPERAND (expr, 3)
2898 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2899 {
2900 error ("invalid operands to array reference");
2901 debug_generic_stmt (expr);
2902 return true;
2903 }
2904 }
2905
2906 /* Verify if the reference array element types are compatible. */
2907 if (TREE_CODE (expr) == ARRAY_REF
2908 && !useless_type_conversion_p (TREE_TYPE (expr),
2909 TREE_TYPE (TREE_TYPE (op))))
2910 {
2911 error ("type mismatch in array reference");
2912 debug_generic_stmt (TREE_TYPE (expr));
2913 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2914 return true;
2915 }
2916 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2917 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2918 TREE_TYPE (TREE_TYPE (op))))
2919 {
2920 error ("type mismatch in array range reference");
2921 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2922 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2923 return true;
2924 }
2925
2926 if ((TREE_CODE (expr) == REALPART_EXPR
2927 || TREE_CODE (expr) == IMAGPART_EXPR)
2928 && !useless_type_conversion_p (TREE_TYPE (expr),
2929 TREE_TYPE (TREE_TYPE (op))))
2930 {
2931 error ("type mismatch in real/imagpart reference");
2932 debug_generic_stmt (TREE_TYPE (expr));
2933 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2934 return true;
2935 }
2936
2937 if (TREE_CODE (expr) == COMPONENT_REF
2938 && !useless_type_conversion_p (TREE_TYPE (expr),
2939 TREE_TYPE (TREE_OPERAND (expr, 1))))
2940 {
2941 error ("type mismatch in component reference");
2942 debug_generic_stmt (TREE_TYPE (expr));
2943 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2944 return true;
2945 }
2946
2947 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2948 {
2949 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2950 that their operand is not an SSA name or an invariant when
2951 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2952 bug). Otherwise there is nothing to verify, gross mismatches at
2953 most invoke undefined behavior. */
2954 if (require_lvalue
2955 && (TREE_CODE (op) == SSA_NAME
2956 || is_gimple_min_invariant (op)))
2957 {
2958 error ("conversion of an SSA_NAME on the left hand side");
2959 debug_generic_stmt (expr);
2960 return true;
2961 }
2962 else if (TREE_CODE (op) == SSA_NAME
2963 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2964 {
2965 error ("conversion of register to a different size");
2966 debug_generic_stmt (expr);
2967 return true;
2968 }
2969 else if (!handled_component_p (op))
2970 return false;
2971 }
2972
2973 expr = op;
2974 }
2975
2976 if (TREE_CODE (expr) == MEM_REF)
2977 {
2978 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2979 {
2980 error ("invalid address operand in MEM_REF");
2981 debug_generic_stmt (expr);
2982 return true;
2983 }
2984 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2985 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2986 {
2987 error ("invalid offset operand in MEM_REF");
2988 debug_generic_stmt (expr);
2989 return true;
2990 }
2991 }
2992 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2993 {
2994 if (!TMR_BASE (expr)
2995 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2996 {
2997 error ("invalid address operand in TARGET_MEM_REF");
2998 return true;
2999 }
3000 if (!TMR_OFFSET (expr)
3001 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3002 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3003 {
3004 error ("invalid offset operand in TARGET_MEM_REF");
3005 debug_generic_stmt (expr);
3006 return true;
3007 }
3008 }
3009
3010 return ((require_lvalue || !is_gimple_min_invariant (expr))
3011 && verify_types_in_gimple_min_lval (expr));
3012 }
3013
3014 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3015 list of pointer-to types that is trivially convertible to DEST. */
3016
3017 static bool
3018 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3019 {
3020 tree src;
3021
3022 if (!TYPE_POINTER_TO (src_obj))
3023 return true;
3024
3025 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3026 if (useless_type_conversion_p (dest, src))
3027 return true;
3028
3029 return false;
3030 }
3031
3032 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3033 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3034
3035 static bool
3036 valid_fixed_convert_types_p (tree type1, tree type2)
3037 {
3038 return (FIXED_POINT_TYPE_P (type1)
3039 && (INTEGRAL_TYPE_P (type2)
3040 || SCALAR_FLOAT_TYPE_P (type2)
3041 || FIXED_POINT_TYPE_P (type2)));
3042 }
3043
3044 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3045 is a problem, otherwise false. */
3046
3047 static bool
3048 verify_gimple_call (gimple stmt)
3049 {
3050 tree fn = gimple_call_fn (stmt);
3051 tree fntype, fndecl;
3052 unsigned i;
3053
3054 if (gimple_call_internal_p (stmt))
3055 {
3056 if (fn)
3057 {
3058 error ("gimple call has two targets");
3059 debug_generic_stmt (fn);
3060 return true;
3061 }
3062 }
3063 else
3064 {
3065 if (!fn)
3066 {
3067 error ("gimple call has no target");
3068 return true;
3069 }
3070 }
3071
3072 if (fn && !is_gimple_call_addr (fn))
3073 {
3074 error ("invalid function in gimple call");
3075 debug_generic_stmt (fn);
3076 return true;
3077 }
3078
3079 if (fn
3080 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3081 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3082 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3083 {
3084 error ("non-function in gimple call");
3085 return true;
3086 }
3087
3088 fndecl = gimple_call_fndecl (stmt);
3089 if (fndecl
3090 && TREE_CODE (fndecl) == FUNCTION_DECL
3091 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3092 && !DECL_PURE_P (fndecl)
3093 && !TREE_READONLY (fndecl))
3094 {
3095 error ("invalid pure const state for function");
3096 return true;
3097 }
3098
3099 if (gimple_call_lhs (stmt)
3100 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3101 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3102 {
3103 error ("invalid LHS in gimple call");
3104 return true;
3105 }
3106
3107 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3108 {
3109 error ("LHS in noreturn call");
3110 return true;
3111 }
3112
3113 fntype = gimple_call_fntype (stmt);
3114 if (fntype
3115 && gimple_call_lhs (stmt)
3116 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3117 TREE_TYPE (fntype))
3118 /* ??? At least C++ misses conversions at assignments from
3119 void * call results.
3120 ??? Java is completely off. Especially with functions
3121 returning java.lang.Object.
3122 For now simply allow arbitrary pointer type conversions. */
3123 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3124 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3125 {
3126 error ("invalid conversion in gimple call");
3127 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3128 debug_generic_stmt (TREE_TYPE (fntype));
3129 return true;
3130 }
3131
3132 if (gimple_call_chain (stmt)
3133 && !is_gimple_val (gimple_call_chain (stmt)))
3134 {
3135 error ("invalid static chain in gimple call");
3136 debug_generic_stmt (gimple_call_chain (stmt));
3137 return true;
3138 }
3139
3140 /* If there is a static chain argument, this should not be an indirect
3141 call, and the decl should have DECL_STATIC_CHAIN set. */
3142 if (gimple_call_chain (stmt))
3143 {
3144 if (!gimple_call_fndecl (stmt))
3145 {
3146 error ("static chain in indirect gimple call");
3147 return true;
3148 }
3149 fn = TREE_OPERAND (fn, 0);
3150
3151 if (!DECL_STATIC_CHAIN (fn))
3152 {
3153 error ("static chain with function that doesn%'t use one");
3154 return true;
3155 }
3156 }
3157
3158 /* ??? The C frontend passes unpromoted arguments in case it
3159 didn't see a function declaration before the call. So for now
3160 leave the call arguments mostly unverified. Once we gimplify
3161 unit-at-a-time we have a chance to fix this. */
3162
3163 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3164 {
3165 tree arg = gimple_call_arg (stmt, i);
3166 if ((is_gimple_reg_type (TREE_TYPE (arg))
3167 && !is_gimple_val (arg))
3168 || (!is_gimple_reg_type (TREE_TYPE (arg))
3169 && !is_gimple_lvalue (arg)))
3170 {
3171 error ("invalid argument to gimple call");
3172 debug_generic_expr (arg);
3173 return true;
3174 }
3175 }
3176
3177 return false;
3178 }
3179
3180 /* Verifies the gimple comparison with the result type TYPE and
3181 the operands OP0 and OP1. */
3182
3183 static bool
3184 verify_gimple_comparison (tree type, tree op0, tree op1)
3185 {
3186 tree op0_type = TREE_TYPE (op0);
3187 tree op1_type = TREE_TYPE (op1);
3188
3189 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3190 {
3191 error ("invalid operands in gimple comparison");
3192 return true;
3193 }
3194
3195 /* For comparisons we do not have the operations type as the
3196 effective type the comparison is carried out in. Instead
3197 we require that either the first operand is trivially
3198 convertible into the second, or the other way around.
3199 The resulting type of a comparison may be any integral type.
3200 Because we special-case pointers to void we allow
3201 comparisons of pointers with the same mode as well. */
3202 if ((!useless_type_conversion_p (op0_type, op1_type)
3203 && !useless_type_conversion_p (op1_type, op0_type)
3204 && (!POINTER_TYPE_P (op0_type)
3205 || !POINTER_TYPE_P (op1_type)
3206 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3207 || !INTEGRAL_TYPE_P (type))
3208 {
3209 error ("type mismatch in comparison expression");
3210 debug_generic_expr (type);
3211 debug_generic_expr (op0_type);
3212 debug_generic_expr (op1_type);
3213 return true;
3214 }
3215
3216 return false;
3217 }
3218
3219 /* Verify a gimple assignment statement STMT with an unary rhs.
3220 Returns true if anything is wrong. */
3221
3222 static bool
3223 verify_gimple_assign_unary (gimple stmt)
3224 {
3225 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3226 tree lhs = gimple_assign_lhs (stmt);
3227 tree lhs_type = TREE_TYPE (lhs);
3228 tree rhs1 = gimple_assign_rhs1 (stmt);
3229 tree rhs1_type = TREE_TYPE (rhs1);
3230
3231 if (!is_gimple_reg (lhs))
3232 {
3233 error ("non-register as LHS of unary operation");
3234 return true;
3235 }
3236
3237 if (!is_gimple_val (rhs1))
3238 {
3239 error ("invalid operand in unary operation");
3240 return true;
3241 }
3242
3243 /* First handle conversions. */
3244 switch (rhs_code)
3245 {
3246 CASE_CONVERT:
3247 {
3248 /* Allow conversions between integral types and pointers only if
3249 there is no sign or zero extension involved.
3250 For targets were the precision of sizetype doesn't match that
3251 of pointers we need to allow arbitrary conversions from and
3252 to sizetype. */
3253 if ((POINTER_TYPE_P (lhs_type)
3254 && INTEGRAL_TYPE_P (rhs1_type)
3255 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3256 || rhs1_type == sizetype))
3257 || (POINTER_TYPE_P (rhs1_type)
3258 && INTEGRAL_TYPE_P (lhs_type)
3259 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3260 || lhs_type == sizetype)))
3261 return false;
3262
3263 /* Allow conversion from integer to offset type and vice versa. */
3264 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3265 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3266 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3267 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3268 return false;
3269
3270 /* Otherwise assert we are converting between types of the
3271 same kind. */
3272 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3273 {
3274 error ("invalid types in nop conversion");
3275 debug_generic_expr (lhs_type);
3276 debug_generic_expr (rhs1_type);
3277 return true;
3278 }
3279
3280 return false;
3281 }
3282
3283 case ADDR_SPACE_CONVERT_EXPR:
3284 {
3285 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3286 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3287 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3288 {
3289 error ("invalid types in address space conversion");
3290 debug_generic_expr (lhs_type);
3291 debug_generic_expr (rhs1_type);
3292 return true;
3293 }
3294
3295 return false;
3296 }
3297
3298 case FIXED_CONVERT_EXPR:
3299 {
3300 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3301 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3302 {
3303 error ("invalid types in fixed-point conversion");
3304 debug_generic_expr (lhs_type);
3305 debug_generic_expr (rhs1_type);
3306 return true;
3307 }
3308
3309 return false;
3310 }
3311
3312 case FLOAT_EXPR:
3313 {
3314 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3315 {
3316 error ("invalid types in conversion to floating point");
3317 debug_generic_expr (lhs_type);
3318 debug_generic_expr (rhs1_type);
3319 return true;
3320 }
3321
3322 return false;
3323 }
3324
3325 case FIX_TRUNC_EXPR:
3326 {
3327 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3328 {
3329 error ("invalid types in conversion to integer");
3330 debug_generic_expr (lhs_type);
3331 debug_generic_expr (rhs1_type);
3332 return true;
3333 }
3334
3335 return false;
3336 }
3337
3338 case VEC_UNPACK_HI_EXPR:
3339 case VEC_UNPACK_LO_EXPR:
3340 case REDUC_MAX_EXPR:
3341 case REDUC_MIN_EXPR:
3342 case REDUC_PLUS_EXPR:
3343 case VEC_UNPACK_FLOAT_HI_EXPR:
3344 case VEC_UNPACK_FLOAT_LO_EXPR:
3345 /* FIXME. */
3346 return false;
3347
3348 case TRUTH_NOT_EXPR:
3349 /* We require two-valued operand types. */
3350 if (!(TREE_CODE (rhs1_type) == BOOLEAN_TYPE
3351 || (INTEGRAL_TYPE_P (rhs1_type)
3352 && TYPE_PRECISION (rhs1_type) == 1)))
3353 {
3354 error ("invalid types in truth not");
3355 debug_generic_expr (lhs_type);
3356 debug_generic_expr (rhs1_type);
3357 return true;
3358 }
3359 break;
3360
3361 case NEGATE_EXPR:
3362 case ABS_EXPR:
3363 case BIT_NOT_EXPR:
3364 case PAREN_EXPR:
3365 case NON_LVALUE_EXPR:
3366 case CONJ_EXPR:
3367 break;
3368
3369 default:
3370 gcc_unreachable ();
3371 }
3372
3373 /* For the remaining codes assert there is no conversion involved. */
3374 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3375 {
3376 error ("non-trivial conversion in unary operation");
3377 debug_generic_expr (lhs_type);
3378 debug_generic_expr (rhs1_type);
3379 return true;
3380 }
3381
3382 return false;
3383 }
3384
3385 /* Verify a gimple assignment statement STMT with a binary rhs.
3386 Returns true if anything is wrong. */
3387
3388 static bool
3389 verify_gimple_assign_binary (gimple stmt)
3390 {
3391 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3392 tree lhs = gimple_assign_lhs (stmt);
3393 tree lhs_type = TREE_TYPE (lhs);
3394 tree rhs1 = gimple_assign_rhs1 (stmt);
3395 tree rhs1_type = TREE_TYPE (rhs1);
3396 tree rhs2 = gimple_assign_rhs2 (stmt);
3397 tree rhs2_type = TREE_TYPE (rhs2);
3398
3399 if (!is_gimple_reg (lhs))
3400 {
3401 error ("non-register as LHS of binary operation");
3402 return true;
3403 }
3404
3405 if (!is_gimple_val (rhs1)
3406 || !is_gimple_val (rhs2))
3407 {
3408 error ("invalid operands in binary operation");
3409 return true;
3410 }
3411
3412 /* First handle operations that involve different types. */
3413 switch (rhs_code)
3414 {
3415 case COMPLEX_EXPR:
3416 {
3417 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3418 || !(INTEGRAL_TYPE_P (rhs1_type)
3419 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3420 || !(INTEGRAL_TYPE_P (rhs2_type)
3421 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3422 {
3423 error ("type mismatch in complex expression");
3424 debug_generic_expr (lhs_type);
3425 debug_generic_expr (rhs1_type);
3426 debug_generic_expr (rhs2_type);
3427 return true;
3428 }
3429
3430 return false;
3431 }
3432
3433 case LSHIFT_EXPR:
3434 case RSHIFT_EXPR:
3435 case LROTATE_EXPR:
3436 case RROTATE_EXPR:
3437 {
3438 /* Shifts and rotates are ok on integral types, fixed point
3439 types and integer vector types. */
3440 if ((!INTEGRAL_TYPE_P (rhs1_type)
3441 && !FIXED_POINT_TYPE_P (rhs1_type)
3442 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3443 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3444 || (!INTEGRAL_TYPE_P (rhs2_type)
3445 /* Vector shifts of vectors are also ok. */
3446 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3447 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3448 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3449 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3450 || !useless_type_conversion_p (lhs_type, rhs1_type))
3451 {
3452 error ("type mismatch in shift expression");
3453 debug_generic_expr (lhs_type);
3454 debug_generic_expr (rhs1_type);
3455 debug_generic_expr (rhs2_type);
3456 return true;
3457 }
3458
3459 return false;
3460 }
3461
3462 case VEC_LSHIFT_EXPR:
3463 case VEC_RSHIFT_EXPR:
3464 {
3465 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3466 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3467 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3468 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3469 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3470 || (!INTEGRAL_TYPE_P (rhs2_type)
3471 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3472 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3473 || !useless_type_conversion_p (lhs_type, rhs1_type))
3474 {
3475 error ("type mismatch in vector shift expression");
3476 debug_generic_expr (lhs_type);
3477 debug_generic_expr (rhs1_type);
3478 debug_generic_expr (rhs2_type);
3479 return true;
3480 }
3481 /* For shifting a vector of non-integral components we
3482 only allow shifting by a constant multiple of the element size. */
3483 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3484 && (TREE_CODE (rhs2) != INTEGER_CST
3485 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3486 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3487 {
3488 error ("non-element sized vector shift of floating point vector");
3489 return true;
3490 }
3491
3492 return false;
3493 }
3494
3495 case PLUS_EXPR:
3496 case MINUS_EXPR:
3497 {
3498 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3499 ??? This just makes the checker happy and may not be what is
3500 intended. */
3501 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3502 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3503 {
3504 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3505 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3506 {
3507 error ("invalid non-vector operands to vector valued plus");
3508 return true;
3509 }
3510 lhs_type = TREE_TYPE (lhs_type);
3511 rhs1_type = TREE_TYPE (rhs1_type);
3512 rhs2_type = TREE_TYPE (rhs2_type);
3513 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3514 the pointer to 2nd place. */
3515 if (POINTER_TYPE_P (rhs2_type))
3516 {
3517 tree tem = rhs1_type;
3518 rhs1_type = rhs2_type;
3519 rhs2_type = tem;
3520 }
3521 goto do_pointer_plus_expr_check;
3522 }
3523 if (POINTER_TYPE_P (lhs_type)
3524 || POINTER_TYPE_P (rhs1_type)
3525 || POINTER_TYPE_P (rhs2_type))
3526 {
3527 error ("invalid (pointer) operands to plus/minus");
3528 return true;
3529 }
3530
3531 /* Continue with generic binary expression handling. */
3532 break;
3533 }
3534
3535 case POINTER_PLUS_EXPR:
3536 {
3537 do_pointer_plus_expr_check:
3538 if (!POINTER_TYPE_P (rhs1_type)
3539 || !useless_type_conversion_p (lhs_type, rhs1_type)
3540 || !useless_type_conversion_p (sizetype, rhs2_type))
3541 {
3542 error ("type mismatch in pointer plus expression");
3543 debug_generic_stmt (lhs_type);
3544 debug_generic_stmt (rhs1_type);
3545 debug_generic_stmt (rhs2_type);
3546 return true;
3547 }
3548
3549 return false;
3550 }
3551
3552 case TRUTH_ANDIF_EXPR:
3553 case TRUTH_ORIF_EXPR:
3554 case TRUTH_AND_EXPR:
3555 case TRUTH_OR_EXPR:
3556 case TRUTH_XOR_EXPR:
3557
3558 gcc_unreachable ();
3559
3560 case LT_EXPR:
3561 case LE_EXPR:
3562 case GT_EXPR:
3563 case GE_EXPR:
3564 case EQ_EXPR:
3565 case NE_EXPR:
3566 case UNORDERED_EXPR:
3567 case ORDERED_EXPR:
3568 case UNLT_EXPR:
3569 case UNLE_EXPR:
3570 case UNGT_EXPR:
3571 case UNGE_EXPR:
3572 case UNEQ_EXPR:
3573 case LTGT_EXPR:
3574 /* Comparisons are also binary, but the result type is not
3575 connected to the operand types. */
3576 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3577
3578 case WIDEN_MULT_EXPR:
3579 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3580 return true;
3581 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3582 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3583
3584 case WIDEN_SUM_EXPR:
3585 case VEC_WIDEN_MULT_HI_EXPR:
3586 case VEC_WIDEN_MULT_LO_EXPR:
3587 case VEC_PACK_TRUNC_EXPR:
3588 case VEC_PACK_SAT_EXPR:
3589 case VEC_PACK_FIX_TRUNC_EXPR:
3590 case VEC_EXTRACT_EVEN_EXPR:
3591 case VEC_EXTRACT_ODD_EXPR:
3592 case VEC_INTERLEAVE_HIGH_EXPR:
3593 case VEC_INTERLEAVE_LOW_EXPR:
3594 /* FIXME. */
3595 return false;
3596
3597 case MULT_EXPR:
3598 case TRUNC_DIV_EXPR:
3599 case CEIL_DIV_EXPR:
3600 case FLOOR_DIV_EXPR:
3601 case ROUND_DIV_EXPR:
3602 case TRUNC_MOD_EXPR:
3603 case CEIL_MOD_EXPR:
3604 case FLOOR_MOD_EXPR:
3605 case ROUND_MOD_EXPR:
3606 case RDIV_EXPR:
3607 case EXACT_DIV_EXPR:
3608 case MIN_EXPR:
3609 case MAX_EXPR:
3610 case BIT_IOR_EXPR:
3611 case BIT_XOR_EXPR:
3612 case BIT_AND_EXPR:
3613 /* Continue with generic binary expression handling. */
3614 break;
3615
3616 default:
3617 gcc_unreachable ();
3618 }
3619
3620 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3621 || !useless_type_conversion_p (lhs_type, rhs2_type))
3622 {
3623 error ("type mismatch in binary expression");
3624 debug_generic_stmt (lhs_type);
3625 debug_generic_stmt (rhs1_type);
3626 debug_generic_stmt (rhs2_type);
3627 return true;
3628 }
3629
3630 return false;
3631 }
3632
3633 /* Verify a gimple assignment statement STMT with a ternary rhs.
3634 Returns true if anything is wrong. */
3635
3636 static bool
3637 verify_gimple_assign_ternary (gimple stmt)
3638 {
3639 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3640 tree lhs = gimple_assign_lhs (stmt);
3641 tree lhs_type = TREE_TYPE (lhs);
3642 tree rhs1 = gimple_assign_rhs1 (stmt);
3643 tree rhs1_type = TREE_TYPE (rhs1);
3644 tree rhs2 = gimple_assign_rhs2 (stmt);
3645 tree rhs2_type = TREE_TYPE (rhs2);
3646 tree rhs3 = gimple_assign_rhs3 (stmt);
3647 tree rhs3_type = TREE_TYPE (rhs3);
3648
3649 if (!is_gimple_reg (lhs))
3650 {
3651 error ("non-register as LHS of ternary operation");
3652 return true;
3653 }
3654
3655 if (!is_gimple_val (rhs1)
3656 || !is_gimple_val (rhs2)
3657 || !is_gimple_val (rhs3))
3658 {
3659 error ("invalid operands in ternary operation");
3660 return true;
3661 }
3662
3663 /* First handle operations that involve different types. */
3664 switch (rhs_code)
3665 {
3666 case WIDEN_MULT_PLUS_EXPR:
3667 case WIDEN_MULT_MINUS_EXPR:
3668 if ((!INTEGRAL_TYPE_P (rhs1_type)
3669 && !FIXED_POINT_TYPE_P (rhs1_type))
3670 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3671 || !useless_type_conversion_p (lhs_type, rhs3_type)
3672 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3673 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3674 {
3675 error ("type mismatch in widening multiply-accumulate expression");
3676 debug_generic_expr (lhs_type);
3677 debug_generic_expr (rhs1_type);
3678 debug_generic_expr (rhs2_type);
3679 debug_generic_expr (rhs3_type);
3680 return true;
3681 }
3682 break;
3683
3684 case FMA_EXPR:
3685 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3686 || !useless_type_conversion_p (lhs_type, rhs2_type)
3687 || !useless_type_conversion_p (lhs_type, rhs3_type))
3688 {
3689 error ("type mismatch in fused multiply-add expression");
3690 debug_generic_expr (lhs_type);
3691 debug_generic_expr (rhs1_type);
3692 debug_generic_expr (rhs2_type);
3693 debug_generic_expr (rhs3_type);
3694 return true;
3695 }
3696 break;
3697
3698 case DOT_PROD_EXPR:
3699 case REALIGN_LOAD_EXPR:
3700 /* FIXME. */
3701 return false;
3702
3703 default:
3704 gcc_unreachable ();
3705 }
3706 return false;
3707 }
3708
3709 /* Verify a gimple assignment statement STMT with a single rhs.
3710 Returns true if anything is wrong. */
3711
3712 static bool
3713 verify_gimple_assign_single (gimple stmt)
3714 {
3715 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3716 tree lhs = gimple_assign_lhs (stmt);
3717 tree lhs_type = TREE_TYPE (lhs);
3718 tree rhs1 = gimple_assign_rhs1 (stmt);
3719 tree rhs1_type = TREE_TYPE (rhs1);
3720 bool res = false;
3721
3722 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3723 {
3724 error ("non-trivial conversion at assignment");
3725 debug_generic_expr (lhs_type);
3726 debug_generic_expr (rhs1_type);
3727 return true;
3728 }
3729
3730 if (handled_component_p (lhs))
3731 res |= verify_types_in_gimple_reference (lhs, true);
3732
3733 /* Special codes we cannot handle via their class. */
3734 switch (rhs_code)
3735 {
3736 case ADDR_EXPR:
3737 {
3738 tree op = TREE_OPERAND (rhs1, 0);
3739 if (!is_gimple_addressable (op))
3740 {
3741 error ("invalid operand in unary expression");
3742 return true;
3743 }
3744
3745 /* Technically there is no longer a need for matching types, but
3746 gimple hygiene asks for this check. In LTO we can end up
3747 combining incompatible units and thus end up with addresses
3748 of globals that change their type to a common one. */
3749 if (!in_lto_p
3750 && !types_compatible_p (TREE_TYPE (op),
3751 TREE_TYPE (TREE_TYPE (rhs1)))
3752 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3753 TREE_TYPE (op)))
3754 {
3755 error ("type mismatch in address expression");
3756 debug_generic_stmt (TREE_TYPE (rhs1));
3757 debug_generic_stmt (TREE_TYPE (op));
3758 return true;
3759 }
3760
3761 return verify_types_in_gimple_reference (op, true);
3762 }
3763
3764 /* tcc_reference */
3765 case INDIRECT_REF:
3766 error ("INDIRECT_REF in gimple IL");
3767 return true;
3768
3769 case COMPONENT_REF:
3770 case BIT_FIELD_REF:
3771 case ARRAY_REF:
3772 case ARRAY_RANGE_REF:
3773 case VIEW_CONVERT_EXPR:
3774 case REALPART_EXPR:
3775 case IMAGPART_EXPR:
3776 case TARGET_MEM_REF:
3777 case MEM_REF:
3778 if (!is_gimple_reg (lhs)
3779 && is_gimple_reg_type (TREE_TYPE (lhs)))
3780 {
3781 error ("invalid rhs for gimple memory store");
3782 debug_generic_stmt (lhs);
3783 debug_generic_stmt (rhs1);
3784 return true;
3785 }
3786 return res || verify_types_in_gimple_reference (rhs1, false);
3787
3788 /* tcc_constant */
3789 case SSA_NAME:
3790 case INTEGER_CST:
3791 case REAL_CST:
3792 case FIXED_CST:
3793 case COMPLEX_CST:
3794 case VECTOR_CST:
3795 case STRING_CST:
3796 return res;
3797
3798 /* tcc_declaration */
3799 case CONST_DECL:
3800 return res;
3801 case VAR_DECL:
3802 case PARM_DECL:
3803 if (!is_gimple_reg (lhs)
3804 && !is_gimple_reg (rhs1)
3805 && is_gimple_reg_type (TREE_TYPE (lhs)))
3806 {
3807 error ("invalid rhs for gimple memory store");
3808 debug_generic_stmt (lhs);
3809 debug_generic_stmt (rhs1);
3810 return true;
3811 }
3812 return res;
3813
3814 case COND_EXPR:
3815 if (!is_gimple_reg (lhs)
3816 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3817 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3818 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3819 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3820 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3821 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3822 {
3823 error ("invalid COND_EXPR in gimple assignment");
3824 debug_generic_stmt (rhs1);
3825 return true;
3826 }
3827 return res;
3828
3829 case CONSTRUCTOR:
3830 case OBJ_TYPE_REF:
3831 case ASSERT_EXPR:
3832 case WITH_SIZE_EXPR:
3833 case VEC_COND_EXPR:
3834 /* FIXME. */
3835 return res;
3836
3837 default:;
3838 }
3839
3840 return res;
3841 }
3842
3843 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3844 is a problem, otherwise false. */
3845
3846 static bool
3847 verify_gimple_assign (gimple stmt)
3848 {
3849 switch (gimple_assign_rhs_class (stmt))
3850 {
3851 case GIMPLE_SINGLE_RHS:
3852 return verify_gimple_assign_single (stmt);
3853
3854 case GIMPLE_UNARY_RHS:
3855 return verify_gimple_assign_unary (stmt);
3856
3857 case GIMPLE_BINARY_RHS:
3858 return verify_gimple_assign_binary (stmt);
3859
3860 case GIMPLE_TERNARY_RHS:
3861 return verify_gimple_assign_ternary (stmt);
3862
3863 default:
3864 gcc_unreachable ();
3865 }
3866 }
3867
3868 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3869 is a problem, otherwise false. */
3870
3871 static bool
3872 verify_gimple_return (gimple stmt)
3873 {
3874 tree op = gimple_return_retval (stmt);
3875 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3876
3877 /* We cannot test for present return values as we do not fix up missing
3878 return values from the original source. */
3879 if (op == NULL)
3880 return false;
3881
3882 if (!is_gimple_val (op)
3883 && TREE_CODE (op) != RESULT_DECL)
3884 {
3885 error ("invalid operand in return statement");
3886 debug_generic_stmt (op);
3887 return true;
3888 }
3889
3890 if ((TREE_CODE (op) == RESULT_DECL
3891 && DECL_BY_REFERENCE (op))
3892 || (TREE_CODE (op) == SSA_NAME
3893 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3894 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3895 op = TREE_TYPE (op);
3896
3897 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3898 {
3899 error ("invalid conversion in return statement");
3900 debug_generic_stmt (restype);
3901 debug_generic_stmt (TREE_TYPE (op));
3902 return true;
3903 }
3904
3905 return false;
3906 }
3907
3908
3909 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3910 is a problem, otherwise false. */
3911
3912 static bool
3913 verify_gimple_goto (gimple stmt)
3914 {
3915 tree dest = gimple_goto_dest (stmt);
3916
3917 /* ??? We have two canonical forms of direct goto destinations, a
3918 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3919 if (TREE_CODE (dest) != LABEL_DECL
3920 && (!is_gimple_val (dest)
3921 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3922 {
3923 error ("goto destination is neither a label nor a pointer");
3924 return true;
3925 }
3926
3927 return false;
3928 }
3929
3930 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3931 is a problem, otherwise false. */
3932
3933 static bool
3934 verify_gimple_switch (gimple stmt)
3935 {
3936 if (!is_gimple_val (gimple_switch_index (stmt)))
3937 {
3938 error ("invalid operand to switch statement");
3939 debug_generic_stmt (gimple_switch_index (stmt));
3940 return true;
3941 }
3942
3943 return false;
3944 }
3945
3946
3947 /* Verify a gimple debug statement STMT.
3948 Returns true if anything is wrong. */
3949
3950 static bool
3951 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3952 {
3953 /* There isn't much that could be wrong in a gimple debug stmt. A
3954 gimple debug bind stmt, for example, maps a tree, that's usually
3955 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3956 component or member of an aggregate type, to another tree, that
3957 can be an arbitrary expression. These stmts expand into debug
3958 insns, and are converted to debug notes by var-tracking.c. */
3959 return false;
3960 }
3961
3962 /* Verify a gimple label statement STMT.
3963 Returns true if anything is wrong. */
3964
3965 static bool
3966 verify_gimple_label (gimple stmt)
3967 {
3968 tree decl = gimple_label_label (stmt);
3969 int uid;
3970 bool err = false;
3971
3972 if (TREE_CODE (decl) != LABEL_DECL)
3973 return true;
3974
3975 uid = LABEL_DECL_UID (decl);
3976 if (cfun->cfg
3977 && (uid == -1
3978 || VEC_index (basic_block,
3979 label_to_block_map, uid) != gimple_bb (stmt)))
3980 {
3981 error ("incorrect entry in label_to_block_map");
3982 err |= true;
3983 }
3984
3985 uid = EH_LANDING_PAD_NR (decl);
3986 if (uid)
3987 {
3988 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
3989 if (decl != lp->post_landing_pad)
3990 {
3991 error ("incorrect setting of landing pad number");
3992 err |= true;
3993 }
3994 }
3995
3996 return err;
3997 }
3998
3999 /* Verify the GIMPLE statement STMT. Returns true if there is an
4000 error, otherwise false. */
4001
4002 static bool
4003 verify_gimple_stmt (gimple stmt)
4004 {
4005 switch (gimple_code (stmt))
4006 {
4007 case GIMPLE_ASSIGN:
4008 return verify_gimple_assign (stmt);
4009
4010 case GIMPLE_LABEL:
4011 return verify_gimple_label (stmt);
4012
4013 case GIMPLE_CALL:
4014 return verify_gimple_call (stmt);
4015
4016 case GIMPLE_COND:
4017 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4018 {
4019 error ("invalid comparison code in gimple cond");
4020 return true;
4021 }
4022 if (!(!gimple_cond_true_label (stmt)
4023 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4024 || !(!gimple_cond_false_label (stmt)
4025 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4026 {
4027 error ("invalid labels in gimple cond");
4028 return true;
4029 }
4030
4031 return verify_gimple_comparison (boolean_type_node,
4032 gimple_cond_lhs (stmt),
4033 gimple_cond_rhs (stmt));
4034
4035 case GIMPLE_GOTO:
4036 return verify_gimple_goto (stmt);
4037
4038 case GIMPLE_SWITCH:
4039 return verify_gimple_switch (stmt);
4040
4041 case GIMPLE_RETURN:
4042 return verify_gimple_return (stmt);
4043
4044 case GIMPLE_ASM:
4045 return false;
4046
4047 /* Tuples that do not have tree operands. */
4048 case GIMPLE_NOP:
4049 case GIMPLE_PREDICT:
4050 case GIMPLE_RESX:
4051 case GIMPLE_EH_DISPATCH:
4052 case GIMPLE_EH_MUST_NOT_THROW:
4053 return false;
4054
4055 CASE_GIMPLE_OMP:
4056 /* OpenMP directives are validated by the FE and never operated
4057 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4058 non-gimple expressions when the main index variable has had
4059 its address taken. This does not affect the loop itself
4060 because the header of an GIMPLE_OMP_FOR is merely used to determine
4061 how to setup the parallel iteration. */
4062 return false;
4063
4064 case GIMPLE_DEBUG:
4065 return verify_gimple_debug (stmt);
4066
4067 default:
4068 gcc_unreachable ();
4069 }
4070 }
4071
4072 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4073 and false otherwise. */
4074
4075 static bool
4076 verify_gimple_phi (gimple phi)
4077 {
4078 bool err = false;
4079 unsigned i;
4080 tree phi_result = gimple_phi_result (phi);
4081 bool virtual_p;
4082
4083 if (!phi_result)
4084 {
4085 error ("invalid PHI result");
4086 return true;
4087 }
4088
4089 virtual_p = !is_gimple_reg (phi_result);
4090 if (TREE_CODE (phi_result) != SSA_NAME
4091 || (virtual_p
4092 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4093 {
4094 error ("invalid PHI result");
4095 err = true;
4096 }
4097
4098 for (i = 0; i < gimple_phi_num_args (phi); i++)
4099 {
4100 tree t = gimple_phi_arg_def (phi, i);
4101
4102 if (!t)
4103 {
4104 error ("missing PHI def");
4105 err |= true;
4106 continue;
4107 }
4108 /* Addressable variables do have SSA_NAMEs but they
4109 are not considered gimple values. */
4110 else if ((TREE_CODE (t) == SSA_NAME
4111 && virtual_p != !is_gimple_reg (t))
4112 || (virtual_p
4113 && (TREE_CODE (t) != SSA_NAME
4114 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4115 || (!virtual_p
4116 && !is_gimple_val (t)))
4117 {
4118 error ("invalid PHI argument");
4119 debug_generic_expr (t);
4120 err |= true;
4121 }
4122 #ifdef ENABLE_TYPES_CHECKING
4123 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4124 {
4125 error ("incompatible types in PHI argument %u", i);
4126 debug_generic_stmt (TREE_TYPE (phi_result));
4127 debug_generic_stmt (TREE_TYPE (t));
4128 err |= true;
4129 }
4130 #endif
4131 }
4132
4133 return err;
4134 }
4135
4136 /* Verify the GIMPLE statements inside the sequence STMTS. */
4137
4138 static bool
4139 verify_gimple_in_seq_2 (gimple_seq stmts)
4140 {
4141 gimple_stmt_iterator ittr;
4142 bool err = false;
4143
4144 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4145 {
4146 gimple stmt = gsi_stmt (ittr);
4147
4148 switch (gimple_code (stmt))
4149 {
4150 case GIMPLE_BIND:
4151 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4152 break;
4153
4154 case GIMPLE_TRY:
4155 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4156 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4157 break;
4158
4159 case GIMPLE_EH_FILTER:
4160 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4161 break;
4162
4163 case GIMPLE_CATCH:
4164 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4165 break;
4166
4167 default:
4168 {
4169 bool err2 = verify_gimple_stmt (stmt);
4170 if (err2)
4171 debug_gimple_stmt (stmt);
4172 err |= err2;
4173 }
4174 }
4175 }
4176
4177 return err;
4178 }
4179
4180
4181 /* Verify the GIMPLE statements inside the statement list STMTS. */
4182
4183 DEBUG_FUNCTION void
4184 verify_gimple_in_seq (gimple_seq stmts)
4185 {
4186 timevar_push (TV_TREE_STMT_VERIFY);
4187 if (verify_gimple_in_seq_2 (stmts))
4188 internal_error ("verify_gimple failed");
4189 timevar_pop (TV_TREE_STMT_VERIFY);
4190 }
4191
4192 /* Return true when the T can be shared. */
4193
4194 bool
4195 tree_node_can_be_shared (tree t)
4196 {
4197 if (IS_TYPE_OR_DECL_P (t)
4198 || is_gimple_min_invariant (t)
4199 || TREE_CODE (t) == SSA_NAME
4200 || t == error_mark_node
4201 || TREE_CODE (t) == IDENTIFIER_NODE)
4202 return true;
4203
4204 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4205 return true;
4206
4207 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4208 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4209 || TREE_CODE (t) == COMPONENT_REF
4210 || TREE_CODE (t) == REALPART_EXPR
4211 || TREE_CODE (t) == IMAGPART_EXPR)
4212 t = TREE_OPERAND (t, 0);
4213
4214 if (DECL_P (t))
4215 return true;
4216
4217 return false;
4218 }
4219
4220 /* Called via walk_gimple_stmt. Verify tree sharing. */
4221
4222 static tree
4223 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4224 {
4225 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4226 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4227
4228 if (tree_node_can_be_shared (*tp))
4229 {
4230 *walk_subtrees = false;
4231 return NULL;
4232 }
4233
4234 if (pointer_set_insert (visited, *tp))
4235 return *tp;
4236
4237 return NULL;
4238 }
4239
4240 static bool eh_error_found;
4241 static int
4242 verify_eh_throw_stmt_node (void **slot, void *data)
4243 {
4244 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4245 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4246
4247 if (!pointer_set_contains (visited, node->stmt))
4248 {
4249 error ("dead STMT in EH table");
4250 debug_gimple_stmt (node->stmt);
4251 eh_error_found = true;
4252 }
4253 return 1;
4254 }
4255
4256 /* Verify the GIMPLE statements in the CFG of FN. */
4257
4258 DEBUG_FUNCTION void
4259 verify_gimple_in_cfg (struct function *fn)
4260 {
4261 basic_block bb;
4262 bool err = false;
4263 struct pointer_set_t *visited, *visited_stmts;
4264
4265 timevar_push (TV_TREE_STMT_VERIFY);
4266 visited = pointer_set_create ();
4267 visited_stmts = pointer_set_create ();
4268
4269 FOR_EACH_BB_FN (bb, fn)
4270 {
4271 gimple_stmt_iterator gsi;
4272
4273 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4274 {
4275 gimple phi = gsi_stmt (gsi);
4276 bool err2 = false;
4277 unsigned i;
4278
4279 pointer_set_insert (visited_stmts, phi);
4280
4281 if (gimple_bb (phi) != bb)
4282 {
4283 error ("gimple_bb (phi) is set to a wrong basic block");
4284 err2 = true;
4285 }
4286
4287 err2 |= verify_gimple_phi (phi);
4288
4289 for (i = 0; i < gimple_phi_num_args (phi); i++)
4290 {
4291 tree arg = gimple_phi_arg_def (phi, i);
4292 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4293 if (addr)
4294 {
4295 error ("incorrect sharing of tree nodes");
4296 debug_generic_expr (addr);
4297 err2 |= true;
4298 }
4299 }
4300
4301 if (err2)
4302 debug_gimple_stmt (phi);
4303 err |= err2;
4304 }
4305
4306 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4307 {
4308 gimple stmt = gsi_stmt (gsi);
4309 bool err2 = false;
4310 struct walk_stmt_info wi;
4311 tree addr;
4312 int lp_nr;
4313
4314 pointer_set_insert (visited_stmts, stmt);
4315
4316 if (gimple_bb (stmt) != bb)
4317 {
4318 error ("gimple_bb (stmt) is set to a wrong basic block");
4319 err2 = true;
4320 }
4321
4322 err2 |= verify_gimple_stmt (stmt);
4323
4324 memset (&wi, 0, sizeof (wi));
4325 wi.info = (void *) visited;
4326 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4327 if (addr)
4328 {
4329 error ("incorrect sharing of tree nodes");
4330 debug_generic_expr (addr);
4331 err2 |= true;
4332 }
4333
4334 /* ??? Instead of not checking these stmts at all the walker
4335 should know its context via wi. */
4336 if (!is_gimple_debug (stmt)
4337 && !is_gimple_omp (stmt))
4338 {
4339 memset (&wi, 0, sizeof (wi));
4340 addr = walk_gimple_op (stmt, verify_expr, &wi);
4341 if (addr)
4342 {
4343 debug_generic_expr (addr);
4344 inform (gimple_location (stmt), "in statement");
4345 err2 |= true;
4346 }
4347 }
4348
4349 /* If the statement is marked as part of an EH region, then it is
4350 expected that the statement could throw. Verify that when we
4351 have optimizations that simplify statements such that we prove
4352 that they cannot throw, that we update other data structures
4353 to match. */
4354 lp_nr = lookup_stmt_eh_lp (stmt);
4355 if (lp_nr != 0)
4356 {
4357 if (!stmt_could_throw_p (stmt))
4358 {
4359 error ("statement marked for throw, but doesn%'t");
4360 err2 |= true;
4361 }
4362 else if (lp_nr > 0
4363 && !gsi_one_before_end_p (gsi)
4364 && stmt_can_throw_internal (stmt))
4365 {
4366 error ("statement marked for throw in middle of block");
4367 err2 |= true;
4368 }
4369 }
4370
4371 if (err2)
4372 debug_gimple_stmt (stmt);
4373 err |= err2;
4374 }
4375 }
4376
4377 eh_error_found = false;
4378 if (get_eh_throw_stmt_table (cfun))
4379 htab_traverse (get_eh_throw_stmt_table (cfun),
4380 verify_eh_throw_stmt_node,
4381 visited_stmts);
4382
4383 if (err || eh_error_found)
4384 internal_error ("verify_gimple failed");
4385
4386 pointer_set_destroy (visited);
4387 pointer_set_destroy (visited_stmts);
4388 verify_histograms ();
4389 timevar_pop (TV_TREE_STMT_VERIFY);
4390 }
4391
4392
4393 /* Verifies that the flow information is OK. */
4394
4395 static int
4396 gimple_verify_flow_info (void)
4397 {
4398 int err = 0;
4399 basic_block bb;
4400 gimple_stmt_iterator gsi;
4401 gimple stmt;
4402 edge e;
4403 edge_iterator ei;
4404
4405 if (ENTRY_BLOCK_PTR->il.gimple)
4406 {
4407 error ("ENTRY_BLOCK has IL associated with it");
4408 err = 1;
4409 }
4410
4411 if (EXIT_BLOCK_PTR->il.gimple)
4412 {
4413 error ("EXIT_BLOCK has IL associated with it");
4414 err = 1;
4415 }
4416
4417 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4418 if (e->flags & EDGE_FALLTHRU)
4419 {
4420 error ("fallthru to exit from bb %d", e->src->index);
4421 err = 1;
4422 }
4423
4424 FOR_EACH_BB (bb)
4425 {
4426 bool found_ctrl_stmt = false;
4427
4428 stmt = NULL;
4429
4430 /* Skip labels on the start of basic block. */
4431 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4432 {
4433 tree label;
4434 gimple prev_stmt = stmt;
4435
4436 stmt = gsi_stmt (gsi);
4437
4438 if (gimple_code (stmt) != GIMPLE_LABEL)
4439 break;
4440
4441 label = gimple_label_label (stmt);
4442 if (prev_stmt && DECL_NONLOCAL (label))
4443 {
4444 error ("nonlocal label ");
4445 print_generic_expr (stderr, label, 0);
4446 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4447 bb->index);
4448 err = 1;
4449 }
4450
4451 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4452 {
4453 error ("EH landing pad label ");
4454 print_generic_expr (stderr, label, 0);
4455 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4456 bb->index);
4457 err = 1;
4458 }
4459
4460 if (label_to_block (label) != bb)
4461 {
4462 error ("label ");
4463 print_generic_expr (stderr, label, 0);
4464 fprintf (stderr, " to block does not match in bb %d",
4465 bb->index);
4466 err = 1;
4467 }
4468
4469 if (decl_function_context (label) != current_function_decl)
4470 {
4471 error ("label ");
4472 print_generic_expr (stderr, label, 0);
4473 fprintf (stderr, " has incorrect context in bb %d",
4474 bb->index);
4475 err = 1;
4476 }
4477 }
4478
4479 /* Verify that body of basic block BB is free of control flow. */
4480 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4481 {
4482 gimple stmt = gsi_stmt (gsi);
4483
4484 if (found_ctrl_stmt)
4485 {
4486 error ("control flow in the middle of basic block %d",
4487 bb->index);
4488 err = 1;
4489 }
4490
4491 if (stmt_ends_bb_p (stmt))
4492 found_ctrl_stmt = true;
4493
4494 if (gimple_code (stmt) == GIMPLE_LABEL)
4495 {
4496 error ("label ");
4497 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4498 fprintf (stderr, " in the middle of basic block %d", bb->index);
4499 err = 1;
4500 }
4501 }
4502
4503 gsi = gsi_last_bb (bb);
4504 if (gsi_end_p (gsi))
4505 continue;
4506
4507 stmt = gsi_stmt (gsi);
4508
4509 if (gimple_code (stmt) == GIMPLE_LABEL)
4510 continue;
4511
4512 err |= verify_eh_edges (stmt);
4513
4514 if (is_ctrl_stmt (stmt))
4515 {
4516 FOR_EACH_EDGE (e, ei, bb->succs)
4517 if (e->flags & EDGE_FALLTHRU)
4518 {
4519 error ("fallthru edge after a control statement in bb %d",
4520 bb->index);
4521 err = 1;
4522 }
4523 }
4524
4525 if (gimple_code (stmt) != GIMPLE_COND)
4526 {
4527 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4528 after anything else but if statement. */
4529 FOR_EACH_EDGE (e, ei, bb->succs)
4530 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4531 {
4532 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4533 bb->index);
4534 err = 1;
4535 }
4536 }
4537
4538 switch (gimple_code (stmt))
4539 {
4540 case GIMPLE_COND:
4541 {
4542 edge true_edge;
4543 edge false_edge;
4544
4545 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4546
4547 if (!true_edge
4548 || !false_edge
4549 || !(true_edge->flags & EDGE_TRUE_VALUE)
4550 || !(false_edge->flags & EDGE_FALSE_VALUE)
4551 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4552 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4553 || EDGE_COUNT (bb->succs) >= 3)
4554 {
4555 error ("wrong outgoing edge flags at end of bb %d",
4556 bb->index);
4557 err = 1;
4558 }
4559 }
4560 break;
4561
4562 case GIMPLE_GOTO:
4563 if (simple_goto_p (stmt))
4564 {
4565 error ("explicit goto at end of bb %d", bb->index);
4566 err = 1;
4567 }
4568 else
4569 {
4570 /* FIXME. We should double check that the labels in the
4571 destination blocks have their address taken. */
4572 FOR_EACH_EDGE (e, ei, bb->succs)
4573 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4574 | EDGE_FALSE_VALUE))
4575 || !(e->flags & EDGE_ABNORMAL))
4576 {
4577 error ("wrong outgoing edge flags at end of bb %d",
4578 bb->index);
4579 err = 1;
4580 }
4581 }
4582 break;
4583
4584 case GIMPLE_CALL:
4585 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4586 break;
4587 /* ... fallthru ... */
4588 case GIMPLE_RETURN:
4589 if (!single_succ_p (bb)
4590 || (single_succ_edge (bb)->flags
4591 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4592 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4593 {
4594 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4595 err = 1;
4596 }
4597 if (single_succ (bb) != EXIT_BLOCK_PTR)
4598 {
4599 error ("return edge does not point to exit in bb %d",
4600 bb->index);
4601 err = 1;
4602 }
4603 break;
4604
4605 case GIMPLE_SWITCH:
4606 {
4607 tree prev;
4608 edge e;
4609 size_t i, n;
4610
4611 n = gimple_switch_num_labels (stmt);
4612
4613 /* Mark all the destination basic blocks. */
4614 for (i = 0; i < n; ++i)
4615 {
4616 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4617 basic_block label_bb = label_to_block (lab);
4618 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4619 label_bb->aux = (void *)1;
4620 }
4621
4622 /* Verify that the case labels are sorted. */
4623 prev = gimple_switch_label (stmt, 0);
4624 for (i = 1; i < n; ++i)
4625 {
4626 tree c = gimple_switch_label (stmt, i);
4627 if (!CASE_LOW (c))
4628 {
4629 error ("found default case not at the start of "
4630 "case vector");
4631 err = 1;
4632 continue;
4633 }
4634 if (CASE_LOW (prev)
4635 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4636 {
4637 error ("case labels not sorted: ");
4638 print_generic_expr (stderr, prev, 0);
4639 fprintf (stderr," is greater than ");
4640 print_generic_expr (stderr, c, 0);
4641 fprintf (stderr," but comes before it.\n");
4642 err = 1;
4643 }
4644 prev = c;
4645 }
4646 /* VRP will remove the default case if it can prove it will
4647 never be executed. So do not verify there always exists
4648 a default case here. */
4649
4650 FOR_EACH_EDGE (e, ei, bb->succs)
4651 {
4652 if (!e->dest->aux)
4653 {
4654 error ("extra outgoing edge %d->%d",
4655 bb->index, e->dest->index);
4656 err = 1;
4657 }
4658
4659 e->dest->aux = (void *)2;
4660 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4661 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4662 {
4663 error ("wrong outgoing edge flags at end of bb %d",
4664 bb->index);
4665 err = 1;
4666 }
4667 }
4668
4669 /* Check that we have all of them. */
4670 for (i = 0; i < n; ++i)
4671 {
4672 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4673 basic_block label_bb = label_to_block (lab);
4674
4675 if (label_bb->aux != (void *)2)
4676 {
4677 error ("missing edge %i->%i", bb->index, label_bb->index);
4678 err = 1;
4679 }
4680 }
4681
4682 FOR_EACH_EDGE (e, ei, bb->succs)
4683 e->dest->aux = (void *)0;
4684 }
4685 break;
4686
4687 case GIMPLE_EH_DISPATCH:
4688 err |= verify_eh_dispatch_edge (stmt);
4689 break;
4690
4691 default:
4692 break;
4693 }
4694 }
4695
4696 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4697 verify_dominators (CDI_DOMINATORS);
4698
4699 return err;
4700 }
4701
4702
4703 /* Updates phi nodes after creating a forwarder block joined
4704 by edge FALLTHRU. */
4705
4706 static void
4707 gimple_make_forwarder_block (edge fallthru)
4708 {
4709 edge e;
4710 edge_iterator ei;
4711 basic_block dummy, bb;
4712 tree var;
4713 gimple_stmt_iterator gsi;
4714
4715 dummy = fallthru->src;
4716 bb = fallthru->dest;
4717
4718 if (single_pred_p (bb))
4719 return;
4720
4721 /* If we redirected a branch we must create new PHI nodes at the
4722 start of BB. */
4723 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4724 {
4725 gimple phi, new_phi;
4726
4727 phi = gsi_stmt (gsi);
4728 var = gimple_phi_result (phi);
4729 new_phi = create_phi_node (var, bb);
4730 SSA_NAME_DEF_STMT (var) = new_phi;
4731 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4732 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4733 UNKNOWN_LOCATION);
4734 }
4735
4736 /* Add the arguments we have stored on edges. */
4737 FOR_EACH_EDGE (e, ei, bb->preds)
4738 {
4739 if (e == fallthru)
4740 continue;
4741
4742 flush_pending_stmts (e);
4743 }
4744 }
4745
4746
4747 /* Return a non-special label in the head of basic block BLOCK.
4748 Create one if it doesn't exist. */
4749
4750 tree
4751 gimple_block_label (basic_block bb)
4752 {
4753 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4754 bool first = true;
4755 tree label;
4756 gimple stmt;
4757
4758 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4759 {
4760 stmt = gsi_stmt (i);
4761 if (gimple_code (stmt) != GIMPLE_LABEL)
4762 break;
4763 label = gimple_label_label (stmt);
4764 if (!DECL_NONLOCAL (label))
4765 {
4766 if (!first)
4767 gsi_move_before (&i, &s);
4768 return label;
4769 }
4770 }
4771
4772 label = create_artificial_label (UNKNOWN_LOCATION);
4773 stmt = gimple_build_label (label);
4774 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4775 return label;
4776 }
4777
4778
4779 /* Attempt to perform edge redirection by replacing a possibly complex
4780 jump instruction by a goto or by removing the jump completely.
4781 This can apply only if all edges now point to the same block. The
4782 parameters and return values are equivalent to
4783 redirect_edge_and_branch. */
4784
4785 static edge
4786 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4787 {
4788 basic_block src = e->src;
4789 gimple_stmt_iterator i;
4790 gimple stmt;
4791
4792 /* We can replace or remove a complex jump only when we have exactly
4793 two edges. */
4794 if (EDGE_COUNT (src->succs) != 2
4795 /* Verify that all targets will be TARGET. Specifically, the
4796 edge that is not E must also go to TARGET. */
4797 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4798 return NULL;
4799
4800 i = gsi_last_bb (src);
4801 if (gsi_end_p (i))
4802 return NULL;
4803
4804 stmt = gsi_stmt (i);
4805
4806 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4807 {
4808 gsi_remove (&i, true);
4809 e = ssa_redirect_edge (e, target);
4810 e->flags = EDGE_FALLTHRU;
4811 return e;
4812 }
4813
4814 return NULL;
4815 }
4816
4817
4818 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4819 edge representing the redirected branch. */
4820
4821 static edge
4822 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4823 {
4824 basic_block bb = e->src;
4825 gimple_stmt_iterator gsi;
4826 edge ret;
4827 gimple stmt;
4828
4829 if (e->flags & EDGE_ABNORMAL)
4830 return NULL;
4831
4832 if (e->dest == dest)
4833 return NULL;
4834
4835 if (e->flags & EDGE_EH)
4836 return redirect_eh_edge (e, dest);
4837
4838 if (e->src != ENTRY_BLOCK_PTR)
4839 {
4840 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4841 if (ret)
4842 return ret;
4843 }
4844
4845 gsi = gsi_last_bb (bb);
4846 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4847
4848 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4849 {
4850 case GIMPLE_COND:
4851 /* For COND_EXPR, we only need to redirect the edge. */
4852 break;
4853
4854 case GIMPLE_GOTO:
4855 /* No non-abnormal edges should lead from a non-simple goto, and
4856 simple ones should be represented implicitly. */
4857 gcc_unreachable ();
4858
4859 case GIMPLE_SWITCH:
4860 {
4861 tree label = gimple_block_label (dest);
4862 tree cases = get_cases_for_edge (e, stmt);
4863
4864 /* If we have a list of cases associated with E, then use it
4865 as it's a lot faster than walking the entire case vector. */
4866 if (cases)
4867 {
4868 edge e2 = find_edge (e->src, dest);
4869 tree last, first;
4870
4871 first = cases;
4872 while (cases)
4873 {
4874 last = cases;
4875 CASE_LABEL (cases) = label;
4876 cases = CASE_CHAIN (cases);
4877 }
4878
4879 /* If there was already an edge in the CFG, then we need
4880 to move all the cases associated with E to E2. */
4881 if (e2)
4882 {
4883 tree cases2 = get_cases_for_edge (e2, stmt);
4884
4885 CASE_CHAIN (last) = CASE_CHAIN (cases2);
4886 CASE_CHAIN (cases2) = first;
4887 }
4888 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4889 }
4890 else
4891 {
4892 size_t i, n = gimple_switch_num_labels (stmt);
4893
4894 for (i = 0; i < n; i++)
4895 {
4896 tree elt = gimple_switch_label (stmt, i);
4897 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4898 CASE_LABEL (elt) = label;
4899 }
4900 }
4901 }
4902 break;
4903
4904 case GIMPLE_ASM:
4905 {
4906 int i, n = gimple_asm_nlabels (stmt);
4907 tree label = NULL;
4908
4909 for (i = 0; i < n; ++i)
4910 {
4911 tree cons = gimple_asm_label_op (stmt, i);
4912 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4913 {
4914 if (!label)
4915 label = gimple_block_label (dest);
4916 TREE_VALUE (cons) = label;
4917 }
4918 }
4919
4920 /* If we didn't find any label matching the former edge in the
4921 asm labels, we must be redirecting the fallthrough
4922 edge. */
4923 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4924 }
4925 break;
4926
4927 case GIMPLE_RETURN:
4928 gsi_remove (&gsi, true);
4929 e->flags |= EDGE_FALLTHRU;
4930 break;
4931
4932 case GIMPLE_OMP_RETURN:
4933 case GIMPLE_OMP_CONTINUE:
4934 case GIMPLE_OMP_SECTIONS_SWITCH:
4935 case GIMPLE_OMP_FOR:
4936 /* The edges from OMP constructs can be simply redirected. */
4937 break;
4938
4939 case GIMPLE_EH_DISPATCH:
4940 if (!(e->flags & EDGE_FALLTHRU))
4941 redirect_eh_dispatch_edge (stmt, e, dest);
4942 break;
4943
4944 default:
4945 /* Otherwise it must be a fallthru edge, and we don't need to
4946 do anything besides redirecting it. */
4947 gcc_assert (e->flags & EDGE_FALLTHRU);
4948 break;
4949 }
4950
4951 /* Update/insert PHI nodes as necessary. */
4952
4953 /* Now update the edges in the CFG. */
4954 e = ssa_redirect_edge (e, dest);
4955
4956 return e;
4957 }
4958
4959 /* Returns true if it is possible to remove edge E by redirecting
4960 it to the destination of the other edge from E->src. */
4961
4962 static bool
4963 gimple_can_remove_branch_p (const_edge e)
4964 {
4965 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4966 return false;
4967
4968 return true;
4969 }
4970
4971 /* Simple wrapper, as we can always redirect fallthru edges. */
4972
4973 static basic_block
4974 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4975 {
4976 e = gimple_redirect_edge_and_branch (e, dest);
4977 gcc_assert (e);
4978
4979 return NULL;
4980 }
4981
4982
4983 /* Splits basic block BB after statement STMT (but at least after the
4984 labels). If STMT is NULL, BB is split just after the labels. */
4985
4986 static basic_block
4987 gimple_split_block (basic_block bb, void *stmt)
4988 {
4989 gimple_stmt_iterator gsi;
4990 gimple_stmt_iterator gsi_tgt;
4991 gimple act;
4992 gimple_seq list;
4993 basic_block new_bb;
4994 edge e;
4995 edge_iterator ei;
4996
4997 new_bb = create_empty_bb (bb);
4998
4999 /* Redirect the outgoing edges. */
5000 new_bb->succs = bb->succs;
5001 bb->succs = NULL;
5002 FOR_EACH_EDGE (e, ei, new_bb->succs)
5003 e->src = new_bb;
5004
5005 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5006 stmt = NULL;
5007
5008 /* Move everything from GSI to the new basic block. */
5009 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5010 {
5011 act = gsi_stmt (gsi);
5012 if (gimple_code (act) == GIMPLE_LABEL)
5013 continue;
5014
5015 if (!stmt)
5016 break;
5017
5018 if (stmt == act)
5019 {
5020 gsi_next (&gsi);
5021 break;
5022 }
5023 }
5024
5025 if (gsi_end_p (gsi))
5026 return new_bb;
5027
5028 /* Split the statement list - avoid re-creating new containers as this
5029 brings ugly quadratic memory consumption in the inliner.
5030 (We are still quadratic since we need to update stmt BB pointers,
5031 sadly.) */
5032 list = gsi_split_seq_before (&gsi);
5033 set_bb_seq (new_bb, list);
5034 for (gsi_tgt = gsi_start (list);
5035 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5036 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5037
5038 return new_bb;
5039 }
5040
5041
5042 /* Moves basic block BB after block AFTER. */
5043
5044 static bool
5045 gimple_move_block_after (basic_block bb, basic_block after)
5046 {
5047 if (bb->prev_bb == after)
5048 return true;
5049
5050 unlink_block (bb);
5051 link_block (bb, after);
5052
5053 return true;
5054 }
5055
5056
5057 /* Return true if basic_block can be duplicated. */
5058
5059 static bool
5060 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5061 {
5062 return true;
5063 }
5064
5065 /* Create a duplicate of the basic block BB. NOTE: This does not
5066 preserve SSA form. */
5067
5068 static basic_block
5069 gimple_duplicate_bb (basic_block bb)
5070 {
5071 basic_block new_bb;
5072 gimple_stmt_iterator gsi, gsi_tgt;
5073 gimple_seq phis = phi_nodes (bb);
5074 gimple phi, stmt, copy;
5075
5076 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5077
5078 /* Copy the PHI nodes. We ignore PHI node arguments here because
5079 the incoming edges have not been setup yet. */
5080 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5081 {
5082 phi = gsi_stmt (gsi);
5083 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5084 create_new_def_for (gimple_phi_result (copy), copy,
5085 gimple_phi_result_ptr (copy));
5086 }
5087
5088 gsi_tgt = gsi_start_bb (new_bb);
5089 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5090 {
5091 def_operand_p def_p;
5092 ssa_op_iter op_iter;
5093 tree lhs;
5094
5095 stmt = gsi_stmt (gsi);
5096 if (gimple_code (stmt) == GIMPLE_LABEL)
5097 continue;
5098
5099 /* Create a new copy of STMT and duplicate STMT's virtual
5100 operands. */
5101 copy = gimple_copy (stmt);
5102 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5103
5104 maybe_duplicate_eh_stmt (copy, stmt);
5105 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5106
5107 /* When copying around a stmt writing into a local non-user
5108 aggregate, make sure it won't share stack slot with other
5109 vars. */
5110 lhs = gimple_get_lhs (stmt);
5111 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5112 {
5113 tree base = get_base_address (lhs);
5114 if (base
5115 && (TREE_CODE (base) == VAR_DECL
5116 || TREE_CODE (base) == RESULT_DECL)
5117 && DECL_IGNORED_P (base)
5118 && !TREE_STATIC (base)
5119 && !DECL_EXTERNAL (base)
5120 && (TREE_CODE (base) != VAR_DECL
5121 || !DECL_HAS_VALUE_EXPR_P (base)))
5122 DECL_NONSHAREABLE (base) = 1;
5123 }
5124
5125 /* Create new names for all the definitions created by COPY and
5126 add replacement mappings for each new name. */
5127 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5128 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5129 }
5130
5131 return new_bb;
5132 }
5133
5134 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5135
5136 static void
5137 add_phi_args_after_copy_edge (edge e_copy)
5138 {
5139 basic_block bb, bb_copy = e_copy->src, dest;
5140 edge e;
5141 edge_iterator ei;
5142 gimple phi, phi_copy;
5143 tree def;
5144 gimple_stmt_iterator psi, psi_copy;
5145
5146 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5147 return;
5148
5149 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5150
5151 if (e_copy->dest->flags & BB_DUPLICATED)
5152 dest = get_bb_original (e_copy->dest);
5153 else
5154 dest = e_copy->dest;
5155
5156 e = find_edge (bb, dest);
5157 if (!e)
5158 {
5159 /* During loop unrolling the target of the latch edge is copied.
5160 In this case we are not looking for edge to dest, but to
5161 duplicated block whose original was dest. */
5162 FOR_EACH_EDGE (e, ei, bb->succs)
5163 {
5164 if ((e->dest->flags & BB_DUPLICATED)
5165 && get_bb_original (e->dest) == dest)
5166 break;
5167 }
5168
5169 gcc_assert (e != NULL);
5170 }
5171
5172 for (psi = gsi_start_phis (e->dest),
5173 psi_copy = gsi_start_phis (e_copy->dest);
5174 !gsi_end_p (psi);
5175 gsi_next (&psi), gsi_next (&psi_copy))
5176 {
5177 phi = gsi_stmt (psi);
5178 phi_copy = gsi_stmt (psi_copy);
5179 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5180 add_phi_arg (phi_copy, def, e_copy,
5181 gimple_phi_arg_location_from_edge (phi, e));
5182 }
5183 }
5184
5185
5186 /* Basic block BB_COPY was created by code duplication. Add phi node
5187 arguments for edges going out of BB_COPY. The blocks that were
5188 duplicated have BB_DUPLICATED set. */
5189
5190 void
5191 add_phi_args_after_copy_bb (basic_block bb_copy)
5192 {
5193 edge e_copy;
5194 edge_iterator ei;
5195
5196 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5197 {
5198 add_phi_args_after_copy_edge (e_copy);
5199 }
5200 }
5201
5202 /* Blocks in REGION_COPY array of length N_REGION were created by
5203 duplication of basic blocks. Add phi node arguments for edges
5204 going from these blocks. If E_COPY is not NULL, also add
5205 phi node arguments for its destination.*/
5206
5207 void
5208 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5209 edge e_copy)
5210 {
5211 unsigned i;
5212
5213 for (i = 0; i < n_region; i++)
5214 region_copy[i]->flags |= BB_DUPLICATED;
5215
5216 for (i = 0; i < n_region; i++)
5217 add_phi_args_after_copy_bb (region_copy[i]);
5218 if (e_copy)
5219 add_phi_args_after_copy_edge (e_copy);
5220
5221 for (i = 0; i < n_region; i++)
5222 region_copy[i]->flags &= ~BB_DUPLICATED;
5223 }
5224
5225 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5226 important exit edge EXIT. By important we mean that no SSA name defined
5227 inside region is live over the other exit edges of the region. All entry
5228 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5229 to the duplicate of the region. SSA form, dominance and loop information
5230 is updated. The new basic blocks are stored to REGION_COPY in the same
5231 order as they had in REGION, provided that REGION_COPY is not NULL.
5232 The function returns false if it is unable to copy the region,
5233 true otherwise. */
5234
5235 bool
5236 gimple_duplicate_sese_region (edge entry, edge exit,
5237 basic_block *region, unsigned n_region,
5238 basic_block *region_copy)
5239 {
5240 unsigned i;
5241 bool free_region_copy = false, copying_header = false;
5242 struct loop *loop = entry->dest->loop_father;
5243 edge exit_copy;
5244 VEC (basic_block, heap) *doms;
5245 edge redirected;
5246 int total_freq = 0, entry_freq = 0;
5247 gcov_type total_count = 0, entry_count = 0;
5248
5249 if (!can_copy_bbs_p (region, n_region))
5250 return false;
5251
5252 /* Some sanity checking. Note that we do not check for all possible
5253 missuses of the functions. I.e. if you ask to copy something weird,
5254 it will work, but the state of structures probably will not be
5255 correct. */
5256 for (i = 0; i < n_region; i++)
5257 {
5258 /* We do not handle subloops, i.e. all the blocks must belong to the
5259 same loop. */
5260 if (region[i]->loop_father != loop)
5261 return false;
5262
5263 if (region[i] != entry->dest
5264 && region[i] == loop->header)
5265 return false;
5266 }
5267
5268 set_loop_copy (loop, loop);
5269
5270 /* In case the function is used for loop header copying (which is the primary
5271 use), ensure that EXIT and its copy will be new latch and entry edges. */
5272 if (loop->header == entry->dest)
5273 {
5274 copying_header = true;
5275 set_loop_copy (loop, loop_outer (loop));
5276
5277 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5278 return false;
5279
5280 for (i = 0; i < n_region; i++)
5281 if (region[i] != exit->src
5282 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5283 return false;
5284 }
5285
5286 if (!region_copy)
5287 {
5288 region_copy = XNEWVEC (basic_block, n_region);
5289 free_region_copy = true;
5290 }
5291
5292 gcc_assert (!need_ssa_update_p (cfun));
5293
5294 /* Record blocks outside the region that are dominated by something
5295 inside. */
5296 doms = NULL;
5297 initialize_original_copy_tables ();
5298
5299 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5300
5301 if (entry->dest->count)
5302 {
5303 total_count = entry->dest->count;
5304 entry_count = entry->count;
5305 /* Fix up corner cases, to avoid division by zero or creation of negative
5306 frequencies. */
5307 if (entry_count > total_count)
5308 entry_count = total_count;
5309 }
5310 else
5311 {
5312 total_freq = entry->dest->frequency;
5313 entry_freq = EDGE_FREQUENCY (entry);
5314 /* Fix up corner cases, to avoid division by zero or creation of negative
5315 frequencies. */
5316 if (total_freq == 0)
5317 total_freq = 1;
5318 else if (entry_freq > total_freq)
5319 entry_freq = total_freq;
5320 }
5321
5322 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5323 split_edge_bb_loc (entry));
5324 if (total_count)
5325 {
5326 scale_bbs_frequencies_gcov_type (region, n_region,
5327 total_count - entry_count,
5328 total_count);
5329 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5330 total_count);
5331 }
5332 else
5333 {
5334 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5335 total_freq);
5336 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5337 }
5338
5339 if (copying_header)
5340 {
5341 loop->header = exit->dest;
5342 loop->latch = exit->src;
5343 }
5344
5345 /* Redirect the entry and add the phi node arguments. */
5346 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5347 gcc_assert (redirected != NULL);
5348 flush_pending_stmts (entry);
5349
5350 /* Concerning updating of dominators: We must recount dominators
5351 for entry block and its copy. Anything that is outside of the
5352 region, but was dominated by something inside needs recounting as
5353 well. */
5354 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5355 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5356 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5357 VEC_free (basic_block, heap, doms);
5358
5359 /* Add the other PHI node arguments. */
5360 add_phi_args_after_copy (region_copy, n_region, NULL);
5361
5362 /* Update the SSA web. */
5363 update_ssa (TODO_update_ssa);
5364
5365 if (free_region_copy)
5366 free (region_copy);
5367
5368 free_original_copy_tables ();
5369 return true;
5370 }
5371
5372 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5373 are stored to REGION_COPY in the same order in that they appear
5374 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5375 the region, EXIT an exit from it. The condition guarding EXIT
5376 is moved to ENTRY. Returns true if duplication succeeds, false
5377 otherwise.
5378
5379 For example,
5380
5381 some_code;
5382 if (cond)
5383 A;
5384 else
5385 B;
5386
5387 is transformed to
5388
5389 if (cond)
5390 {
5391 some_code;
5392 A;
5393 }
5394 else
5395 {
5396 some_code;
5397 B;
5398 }
5399 */
5400
5401 bool
5402 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5403 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5404 basic_block *region_copy ATTRIBUTE_UNUSED)
5405 {
5406 unsigned i;
5407 bool free_region_copy = false;
5408 struct loop *loop = exit->dest->loop_father;
5409 struct loop *orig_loop = entry->dest->loop_father;
5410 basic_block switch_bb, entry_bb, nentry_bb;
5411 VEC (basic_block, heap) *doms;
5412 int total_freq = 0, exit_freq = 0;
5413 gcov_type total_count = 0, exit_count = 0;
5414 edge exits[2], nexits[2], e;
5415 gimple_stmt_iterator gsi,gsi1;
5416 gimple cond_stmt;
5417 edge sorig, snew;
5418 basic_block exit_bb;
5419 basic_block iters_bb;
5420 tree new_rhs;
5421 gimple_stmt_iterator psi;
5422 gimple phi;
5423 tree def;
5424
5425 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5426 exits[0] = exit;
5427 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5428
5429 if (!can_copy_bbs_p (region, n_region))
5430 return false;
5431
5432 initialize_original_copy_tables ();
5433 set_loop_copy (orig_loop, loop);
5434 duplicate_subloops (orig_loop, loop);
5435
5436 if (!region_copy)
5437 {
5438 region_copy = XNEWVEC (basic_block, n_region);
5439 free_region_copy = true;
5440 }
5441
5442 gcc_assert (!need_ssa_update_p (cfun));
5443
5444 /* Record blocks outside the region that are dominated by something
5445 inside. */
5446 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5447
5448 if (exit->src->count)
5449 {
5450 total_count = exit->src->count;
5451 exit_count = exit->count;
5452 /* Fix up corner cases, to avoid division by zero or creation of negative
5453 frequencies. */
5454 if (exit_count > total_count)
5455 exit_count = total_count;
5456 }
5457 else
5458 {
5459 total_freq = exit->src->frequency;
5460 exit_freq = EDGE_FREQUENCY (exit);
5461 /* Fix up corner cases, to avoid division by zero or creation of negative
5462 frequencies. */
5463 if (total_freq == 0)
5464 total_freq = 1;
5465 if (exit_freq > total_freq)
5466 exit_freq = total_freq;
5467 }
5468
5469 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5470 split_edge_bb_loc (exit));
5471 if (total_count)
5472 {
5473 scale_bbs_frequencies_gcov_type (region, n_region,
5474 total_count - exit_count,
5475 total_count);
5476 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5477 total_count);
5478 }
5479 else
5480 {
5481 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5482 total_freq);
5483 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5484 }
5485
5486 /* Create the switch block, and put the exit condition to it. */
5487 entry_bb = entry->dest;
5488 nentry_bb = get_bb_copy (entry_bb);
5489 if (!last_stmt (entry->src)
5490 || !stmt_ends_bb_p (last_stmt (entry->src)))
5491 switch_bb = entry->src;
5492 else
5493 switch_bb = split_edge (entry);
5494 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5495
5496 gsi = gsi_last_bb (switch_bb);
5497 cond_stmt = last_stmt (exit->src);
5498 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5499 cond_stmt = gimple_copy (cond_stmt);
5500
5501 /* If the block consisting of the exit condition has the latch as
5502 successor, then the body of the loop is executed before
5503 the exit condition is tested. In such case, moving the
5504 condition to the entry, causes that the loop will iterate
5505 one less iteration (which is the wanted outcome, since we
5506 peel out the last iteration). If the body is executed after
5507 the condition, moving the condition to the entry requires
5508 decrementing one iteration. */
5509 if (exits[1]->dest == orig_loop->latch)
5510 new_rhs = gimple_cond_rhs (cond_stmt);
5511 else
5512 {
5513 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5514 gimple_cond_rhs (cond_stmt),
5515 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5516
5517 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5518 {
5519 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5520 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5521 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5522 break;
5523
5524 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5525 NULL_TREE,false,GSI_CONTINUE_LINKING);
5526 }
5527 }
5528 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5529 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5530 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5531
5532 sorig = single_succ_edge (switch_bb);
5533 sorig->flags = exits[1]->flags;
5534 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5535
5536 /* Register the new edge from SWITCH_BB in loop exit lists. */
5537 rescan_loop_exit (snew, true, false);
5538
5539 /* Add the PHI node arguments. */
5540 add_phi_args_after_copy (region_copy, n_region, snew);
5541
5542 /* Get rid of now superfluous conditions and associated edges (and phi node
5543 arguments). */
5544 exit_bb = exit->dest;
5545
5546 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5547 PENDING_STMT (e) = NULL;
5548
5549 /* The latch of ORIG_LOOP was copied, and so was the backedge
5550 to the original header. We redirect this backedge to EXIT_BB. */
5551 for (i = 0; i < n_region; i++)
5552 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5553 {
5554 gcc_assert (single_succ_edge (region_copy[i]));
5555 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5556 PENDING_STMT (e) = NULL;
5557 for (psi = gsi_start_phis (exit_bb);
5558 !gsi_end_p (psi);
5559 gsi_next (&psi))
5560 {
5561 phi = gsi_stmt (psi);
5562 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5563 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5564 }
5565 }
5566 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5567 PENDING_STMT (e) = NULL;
5568
5569 /* Anything that is outside of the region, but was dominated by something
5570 inside needs to update dominance info. */
5571 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5572 VEC_free (basic_block, heap, doms);
5573 /* Update the SSA web. */
5574 update_ssa (TODO_update_ssa);
5575
5576 if (free_region_copy)
5577 free (region_copy);
5578
5579 free_original_copy_tables ();
5580 return true;
5581 }
5582
5583 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5584 adding blocks when the dominator traversal reaches EXIT. This
5585 function silently assumes that ENTRY strictly dominates EXIT. */
5586
5587 void
5588 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5589 VEC(basic_block,heap) **bbs_p)
5590 {
5591 basic_block son;
5592
5593 for (son = first_dom_son (CDI_DOMINATORS, entry);
5594 son;
5595 son = next_dom_son (CDI_DOMINATORS, son))
5596 {
5597 VEC_safe_push (basic_block, heap, *bbs_p, son);
5598 if (son != exit)
5599 gather_blocks_in_sese_region (son, exit, bbs_p);
5600 }
5601 }
5602
5603 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5604 The duplicates are recorded in VARS_MAP. */
5605
5606 static void
5607 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5608 tree to_context)
5609 {
5610 tree t = *tp, new_t;
5611 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5612 void **loc;
5613
5614 if (DECL_CONTEXT (t) == to_context)
5615 return;
5616
5617 loc = pointer_map_contains (vars_map, t);
5618
5619 if (!loc)
5620 {
5621 loc = pointer_map_insert (vars_map, t);
5622
5623 if (SSA_VAR_P (t))
5624 {
5625 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5626 add_local_decl (f, new_t);
5627 }
5628 else
5629 {
5630 gcc_assert (TREE_CODE (t) == CONST_DECL);
5631 new_t = copy_node (t);
5632 }
5633 DECL_CONTEXT (new_t) = to_context;
5634
5635 *loc = new_t;
5636 }
5637 else
5638 new_t = (tree) *loc;
5639
5640 *tp = new_t;
5641 }
5642
5643
5644 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5645 VARS_MAP maps old ssa names and var_decls to the new ones. */
5646
5647 static tree
5648 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5649 tree to_context)
5650 {
5651 void **loc;
5652 tree new_name, decl = SSA_NAME_VAR (name);
5653
5654 gcc_assert (is_gimple_reg (name));
5655
5656 loc = pointer_map_contains (vars_map, name);
5657
5658 if (!loc)
5659 {
5660 replace_by_duplicate_decl (&decl, vars_map, to_context);
5661
5662 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5663 if (gimple_in_ssa_p (cfun))
5664 add_referenced_var (decl);
5665
5666 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5667 if (SSA_NAME_IS_DEFAULT_DEF (name))
5668 set_default_def (decl, new_name);
5669 pop_cfun ();
5670
5671 loc = pointer_map_insert (vars_map, name);
5672 *loc = new_name;
5673 }
5674 else
5675 new_name = (tree) *loc;
5676
5677 return new_name;
5678 }
5679
5680 struct move_stmt_d
5681 {
5682 tree orig_block;
5683 tree new_block;
5684 tree from_context;
5685 tree to_context;
5686 struct pointer_map_t *vars_map;
5687 htab_t new_label_map;
5688 struct pointer_map_t *eh_map;
5689 bool remap_decls_p;
5690 };
5691
5692 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5693 contained in *TP if it has been ORIG_BLOCK previously and change the
5694 DECL_CONTEXT of every local variable referenced in *TP. */
5695
5696 static tree
5697 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5698 {
5699 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5700 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5701 tree t = *tp;
5702
5703 if (EXPR_P (t))
5704 /* We should never have TREE_BLOCK set on non-statements. */
5705 gcc_assert (!TREE_BLOCK (t));
5706
5707 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5708 {
5709 if (TREE_CODE (t) == SSA_NAME)
5710 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5711 else if (TREE_CODE (t) == LABEL_DECL)
5712 {
5713 if (p->new_label_map)
5714 {
5715 struct tree_map in, *out;
5716 in.base.from = t;
5717 out = (struct tree_map *)
5718 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5719 if (out)
5720 *tp = t = out->to;
5721 }
5722
5723 DECL_CONTEXT (t) = p->to_context;
5724 }
5725 else if (p->remap_decls_p)
5726 {
5727 /* Replace T with its duplicate. T should no longer appear in the
5728 parent function, so this looks wasteful; however, it may appear
5729 in referenced_vars, and more importantly, as virtual operands of
5730 statements, and in alias lists of other variables. It would be
5731 quite difficult to expunge it from all those places. ??? It might
5732 suffice to do this for addressable variables. */
5733 if ((TREE_CODE (t) == VAR_DECL
5734 && !is_global_var (t))
5735 || TREE_CODE (t) == CONST_DECL)
5736 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5737
5738 if (SSA_VAR_P (t)
5739 && gimple_in_ssa_p (cfun))
5740 {
5741 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5742 add_referenced_var (*tp);
5743 pop_cfun ();
5744 }
5745 }
5746 *walk_subtrees = 0;
5747 }
5748 else if (TYPE_P (t))
5749 *walk_subtrees = 0;
5750
5751 return NULL_TREE;
5752 }
5753
5754 /* Helper for move_stmt_r. Given an EH region number for the source
5755 function, map that to the duplicate EH regio number in the dest. */
5756
5757 static int
5758 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5759 {
5760 eh_region old_r, new_r;
5761 void **slot;
5762
5763 old_r = get_eh_region_from_number (old_nr);
5764 slot = pointer_map_contains (p->eh_map, old_r);
5765 new_r = (eh_region) *slot;
5766
5767 return new_r->index;
5768 }
5769
5770 /* Similar, but operate on INTEGER_CSTs. */
5771
5772 static tree
5773 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5774 {
5775 int old_nr, new_nr;
5776
5777 old_nr = tree_low_cst (old_t_nr, 0);
5778 new_nr = move_stmt_eh_region_nr (old_nr, p);
5779
5780 return build_int_cst (integer_type_node, new_nr);
5781 }
5782
5783 /* Like move_stmt_op, but for gimple statements.
5784
5785 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5786 contained in the current statement in *GSI_P and change the
5787 DECL_CONTEXT of every local variable referenced in the current
5788 statement. */
5789
5790 static tree
5791 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5792 struct walk_stmt_info *wi)
5793 {
5794 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5795 gimple stmt = gsi_stmt (*gsi_p);
5796 tree block = gimple_block (stmt);
5797
5798 if (p->orig_block == NULL_TREE
5799 || block == p->orig_block
5800 || block == NULL_TREE)
5801 gimple_set_block (stmt, p->new_block);
5802 #ifdef ENABLE_CHECKING
5803 else if (block != p->new_block)
5804 {
5805 while (block && block != p->orig_block)
5806 block = BLOCK_SUPERCONTEXT (block);
5807 gcc_assert (block);
5808 }
5809 #endif
5810
5811 switch (gimple_code (stmt))
5812 {
5813 case GIMPLE_CALL:
5814 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5815 {
5816 tree r, fndecl = gimple_call_fndecl (stmt);
5817 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5818 switch (DECL_FUNCTION_CODE (fndecl))
5819 {
5820 case BUILT_IN_EH_COPY_VALUES:
5821 r = gimple_call_arg (stmt, 1);
5822 r = move_stmt_eh_region_tree_nr (r, p);
5823 gimple_call_set_arg (stmt, 1, r);
5824 /* FALLTHRU */
5825
5826 case BUILT_IN_EH_POINTER:
5827 case BUILT_IN_EH_FILTER:
5828 r = gimple_call_arg (stmt, 0);
5829 r = move_stmt_eh_region_tree_nr (r, p);
5830 gimple_call_set_arg (stmt, 0, r);
5831 break;
5832
5833 default:
5834 break;
5835 }
5836 }
5837 break;
5838
5839 case GIMPLE_RESX:
5840 {
5841 int r = gimple_resx_region (stmt);
5842 r = move_stmt_eh_region_nr (r, p);
5843 gimple_resx_set_region (stmt, r);
5844 }
5845 break;
5846
5847 case GIMPLE_EH_DISPATCH:
5848 {
5849 int r = gimple_eh_dispatch_region (stmt);
5850 r = move_stmt_eh_region_nr (r, p);
5851 gimple_eh_dispatch_set_region (stmt, r);
5852 }
5853 break;
5854
5855 case GIMPLE_OMP_RETURN:
5856 case GIMPLE_OMP_CONTINUE:
5857 break;
5858 default:
5859 if (is_gimple_omp (stmt))
5860 {
5861 /* Do not remap variables inside OMP directives. Variables
5862 referenced in clauses and directive header belong to the
5863 parent function and should not be moved into the child
5864 function. */
5865 bool save_remap_decls_p = p->remap_decls_p;
5866 p->remap_decls_p = false;
5867 *handled_ops_p = true;
5868
5869 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5870 move_stmt_op, wi);
5871
5872 p->remap_decls_p = save_remap_decls_p;
5873 }
5874 break;
5875 }
5876
5877 return NULL_TREE;
5878 }
5879
5880 /* Move basic block BB from function CFUN to function DEST_FN. The
5881 block is moved out of the original linked list and placed after
5882 block AFTER in the new list. Also, the block is removed from the
5883 original array of blocks and placed in DEST_FN's array of blocks.
5884 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5885 updated to reflect the moved edges.
5886
5887 The local variables are remapped to new instances, VARS_MAP is used
5888 to record the mapping. */
5889
5890 static void
5891 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5892 basic_block after, bool update_edge_count_p,
5893 struct move_stmt_d *d)
5894 {
5895 struct control_flow_graph *cfg;
5896 edge_iterator ei;
5897 edge e;
5898 gimple_stmt_iterator si;
5899 unsigned old_len, new_len;
5900
5901 /* Remove BB from dominance structures. */
5902 delete_from_dominance_info (CDI_DOMINATORS, bb);
5903 if (current_loops)
5904 remove_bb_from_loops (bb);
5905
5906 /* Link BB to the new linked list. */
5907 move_block_after (bb, after);
5908
5909 /* Update the edge count in the corresponding flowgraphs. */
5910 if (update_edge_count_p)
5911 FOR_EACH_EDGE (e, ei, bb->succs)
5912 {
5913 cfun->cfg->x_n_edges--;
5914 dest_cfun->cfg->x_n_edges++;
5915 }
5916
5917 /* Remove BB from the original basic block array. */
5918 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5919 cfun->cfg->x_n_basic_blocks--;
5920
5921 /* Grow DEST_CFUN's basic block array if needed. */
5922 cfg = dest_cfun->cfg;
5923 cfg->x_n_basic_blocks++;
5924 if (bb->index >= cfg->x_last_basic_block)
5925 cfg->x_last_basic_block = bb->index + 1;
5926
5927 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5928 if ((unsigned) cfg->x_last_basic_block >= old_len)
5929 {
5930 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5931 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5932 new_len);
5933 }
5934
5935 VEC_replace (basic_block, cfg->x_basic_block_info,
5936 bb->index, bb);
5937
5938 /* Remap the variables in phi nodes. */
5939 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5940 {
5941 gimple phi = gsi_stmt (si);
5942 use_operand_p use;
5943 tree op = PHI_RESULT (phi);
5944 ssa_op_iter oi;
5945
5946 if (!is_gimple_reg (op))
5947 {
5948 /* Remove the phi nodes for virtual operands (alias analysis will be
5949 run for the new function, anyway). */
5950 remove_phi_node (&si, true);
5951 continue;
5952 }
5953
5954 SET_PHI_RESULT (phi,
5955 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5956 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5957 {
5958 op = USE_FROM_PTR (use);
5959 if (TREE_CODE (op) == SSA_NAME)
5960 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5961 }
5962
5963 gsi_next (&si);
5964 }
5965
5966 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5967 {
5968 gimple stmt = gsi_stmt (si);
5969 struct walk_stmt_info wi;
5970
5971 memset (&wi, 0, sizeof (wi));
5972 wi.info = d;
5973 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5974
5975 if (gimple_code (stmt) == GIMPLE_LABEL)
5976 {
5977 tree label = gimple_label_label (stmt);
5978 int uid = LABEL_DECL_UID (label);
5979
5980 gcc_assert (uid > -1);
5981
5982 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5983 if (old_len <= (unsigned) uid)
5984 {
5985 new_len = 3 * uid / 2 + 1;
5986 VEC_safe_grow_cleared (basic_block, gc,
5987 cfg->x_label_to_block_map, new_len);
5988 }
5989
5990 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5991 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5992
5993 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5994
5995 if (uid >= dest_cfun->cfg->last_label_uid)
5996 dest_cfun->cfg->last_label_uid = uid + 1;
5997 }
5998
5999 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6000 remove_stmt_from_eh_lp_fn (cfun, stmt);
6001
6002 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6003 gimple_remove_stmt_histograms (cfun, stmt);
6004
6005 /* We cannot leave any operands allocated from the operand caches of
6006 the current function. */
6007 free_stmt_operands (stmt);
6008 push_cfun (dest_cfun);
6009 update_stmt (stmt);
6010 pop_cfun ();
6011 }
6012
6013 FOR_EACH_EDGE (e, ei, bb->succs)
6014 if (e->goto_locus)
6015 {
6016 tree block = e->goto_block;
6017 if (d->orig_block == NULL_TREE
6018 || block == d->orig_block)
6019 e->goto_block = d->new_block;
6020 #ifdef ENABLE_CHECKING
6021 else if (block != d->new_block)
6022 {
6023 while (block && block != d->orig_block)
6024 block = BLOCK_SUPERCONTEXT (block);
6025 gcc_assert (block);
6026 }
6027 #endif
6028 }
6029 }
6030
6031 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6032 the outermost EH region. Use REGION as the incoming base EH region. */
6033
6034 static eh_region
6035 find_outermost_region_in_block (struct function *src_cfun,
6036 basic_block bb, eh_region region)
6037 {
6038 gimple_stmt_iterator si;
6039
6040 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6041 {
6042 gimple stmt = gsi_stmt (si);
6043 eh_region stmt_region;
6044 int lp_nr;
6045
6046 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6047 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6048 if (stmt_region)
6049 {
6050 if (region == NULL)
6051 region = stmt_region;
6052 else if (stmt_region != region)
6053 {
6054 region = eh_region_outermost (src_cfun, stmt_region, region);
6055 gcc_assert (region != NULL);
6056 }
6057 }
6058 }
6059
6060 return region;
6061 }
6062
6063 static tree
6064 new_label_mapper (tree decl, void *data)
6065 {
6066 htab_t hash = (htab_t) data;
6067 struct tree_map *m;
6068 void **slot;
6069
6070 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6071
6072 m = XNEW (struct tree_map);
6073 m->hash = DECL_UID (decl);
6074 m->base.from = decl;
6075 m->to = create_artificial_label (UNKNOWN_LOCATION);
6076 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6077 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6078 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6079
6080 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6081 gcc_assert (*slot == NULL);
6082
6083 *slot = m;
6084
6085 return m->to;
6086 }
6087
6088 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6089 subblocks. */
6090
6091 static void
6092 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6093 tree to_context)
6094 {
6095 tree *tp, t;
6096
6097 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6098 {
6099 t = *tp;
6100 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6101 continue;
6102 replace_by_duplicate_decl (&t, vars_map, to_context);
6103 if (t != *tp)
6104 {
6105 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6106 {
6107 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6108 DECL_HAS_VALUE_EXPR_P (t) = 1;
6109 }
6110 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6111 *tp = t;
6112 }
6113 }
6114
6115 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6116 replace_block_vars_by_duplicates (block, vars_map, to_context);
6117 }
6118
6119 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6120 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6121 single basic block in the original CFG and the new basic block is
6122 returned. DEST_CFUN must not have a CFG yet.
6123
6124 Note that the region need not be a pure SESE region. Blocks inside
6125 the region may contain calls to abort/exit. The only restriction
6126 is that ENTRY_BB should be the only entry point and it must
6127 dominate EXIT_BB.
6128
6129 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6130 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6131 to the new function.
6132
6133 All local variables referenced in the region are assumed to be in
6134 the corresponding BLOCK_VARS and unexpanded variable lists
6135 associated with DEST_CFUN. */
6136
6137 basic_block
6138 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6139 basic_block exit_bb, tree orig_block)
6140 {
6141 VEC(basic_block,heap) *bbs, *dom_bbs;
6142 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6143 basic_block after, bb, *entry_pred, *exit_succ, abb;
6144 struct function *saved_cfun = cfun;
6145 int *entry_flag, *exit_flag;
6146 unsigned *entry_prob, *exit_prob;
6147 unsigned i, num_entry_edges, num_exit_edges;
6148 edge e;
6149 edge_iterator ei;
6150 htab_t new_label_map;
6151 struct pointer_map_t *vars_map, *eh_map;
6152 struct loop *loop = entry_bb->loop_father;
6153 struct move_stmt_d d;
6154
6155 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6156 region. */
6157 gcc_assert (entry_bb != exit_bb
6158 && (!exit_bb
6159 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6160
6161 /* Collect all the blocks in the region. Manually add ENTRY_BB
6162 because it won't be added by dfs_enumerate_from. */
6163 bbs = NULL;
6164 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6165 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6166
6167 /* The blocks that used to be dominated by something in BBS will now be
6168 dominated by the new block. */
6169 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6170 VEC_address (basic_block, bbs),
6171 VEC_length (basic_block, bbs));
6172
6173 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6174 the predecessor edges to ENTRY_BB and the successor edges to
6175 EXIT_BB so that we can re-attach them to the new basic block that
6176 will replace the region. */
6177 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6178 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6179 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6180 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6181 i = 0;
6182 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6183 {
6184 entry_prob[i] = e->probability;
6185 entry_flag[i] = e->flags;
6186 entry_pred[i++] = e->src;
6187 remove_edge (e);
6188 }
6189
6190 if (exit_bb)
6191 {
6192 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6193 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6194 sizeof (basic_block));
6195 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6196 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6197 i = 0;
6198 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6199 {
6200 exit_prob[i] = e->probability;
6201 exit_flag[i] = e->flags;
6202 exit_succ[i++] = e->dest;
6203 remove_edge (e);
6204 }
6205 }
6206 else
6207 {
6208 num_exit_edges = 0;
6209 exit_succ = NULL;
6210 exit_flag = NULL;
6211 exit_prob = NULL;
6212 }
6213
6214 /* Switch context to the child function to initialize DEST_FN's CFG. */
6215 gcc_assert (dest_cfun->cfg == NULL);
6216 push_cfun (dest_cfun);
6217
6218 init_empty_tree_cfg ();
6219
6220 /* Initialize EH information for the new function. */
6221 eh_map = NULL;
6222 new_label_map = NULL;
6223 if (saved_cfun->eh)
6224 {
6225 eh_region region = NULL;
6226
6227 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6228 region = find_outermost_region_in_block (saved_cfun, bb, region);
6229
6230 init_eh_for_function ();
6231 if (region != NULL)
6232 {
6233 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6234 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6235 new_label_mapper, new_label_map);
6236 }
6237 }
6238
6239 pop_cfun ();
6240
6241 /* Move blocks from BBS into DEST_CFUN. */
6242 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6243 after = dest_cfun->cfg->x_entry_block_ptr;
6244 vars_map = pointer_map_create ();
6245
6246 memset (&d, 0, sizeof (d));
6247 d.orig_block = orig_block;
6248 d.new_block = DECL_INITIAL (dest_cfun->decl);
6249 d.from_context = cfun->decl;
6250 d.to_context = dest_cfun->decl;
6251 d.vars_map = vars_map;
6252 d.new_label_map = new_label_map;
6253 d.eh_map = eh_map;
6254 d.remap_decls_p = true;
6255
6256 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6257 {
6258 /* No need to update edge counts on the last block. It has
6259 already been updated earlier when we detached the region from
6260 the original CFG. */
6261 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6262 after = bb;
6263 }
6264
6265 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6266 if (orig_block)
6267 {
6268 tree block;
6269 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6270 == NULL_TREE);
6271 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6272 = BLOCK_SUBBLOCKS (orig_block);
6273 for (block = BLOCK_SUBBLOCKS (orig_block);
6274 block; block = BLOCK_CHAIN (block))
6275 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6276 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6277 }
6278
6279 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6280 vars_map, dest_cfun->decl);
6281
6282 if (new_label_map)
6283 htab_delete (new_label_map);
6284 if (eh_map)
6285 pointer_map_destroy (eh_map);
6286 pointer_map_destroy (vars_map);
6287
6288 /* Rewire the entry and exit blocks. The successor to the entry
6289 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6290 the child function. Similarly, the predecessor of DEST_FN's
6291 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6292 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6293 various CFG manipulation function get to the right CFG.
6294
6295 FIXME, this is silly. The CFG ought to become a parameter to
6296 these helpers. */
6297 push_cfun (dest_cfun);
6298 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6299 if (exit_bb)
6300 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6301 pop_cfun ();
6302
6303 /* Back in the original function, the SESE region has disappeared,
6304 create a new basic block in its place. */
6305 bb = create_empty_bb (entry_pred[0]);
6306 if (current_loops)
6307 add_bb_to_loop (bb, loop);
6308 for (i = 0; i < num_entry_edges; i++)
6309 {
6310 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6311 e->probability = entry_prob[i];
6312 }
6313
6314 for (i = 0; i < num_exit_edges; i++)
6315 {
6316 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6317 e->probability = exit_prob[i];
6318 }
6319
6320 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6321 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6322 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6323 VEC_free (basic_block, heap, dom_bbs);
6324
6325 if (exit_bb)
6326 {
6327 free (exit_prob);
6328 free (exit_flag);
6329 free (exit_succ);
6330 }
6331 free (entry_prob);
6332 free (entry_flag);
6333 free (entry_pred);
6334 VEC_free (basic_block, heap, bbs);
6335
6336 return bb;
6337 }
6338
6339
6340 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6341 */
6342
6343 void
6344 dump_function_to_file (tree fn, FILE *file, int flags)
6345 {
6346 tree arg, var;
6347 struct function *dsf;
6348 bool ignore_topmost_bind = false, any_var = false;
6349 basic_block bb;
6350 tree chain;
6351
6352 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6353
6354 arg = DECL_ARGUMENTS (fn);
6355 while (arg)
6356 {
6357 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6358 fprintf (file, " ");
6359 print_generic_expr (file, arg, dump_flags);
6360 if (flags & TDF_VERBOSE)
6361 print_node (file, "", arg, 4);
6362 if (DECL_CHAIN (arg))
6363 fprintf (file, ", ");
6364 arg = DECL_CHAIN (arg);
6365 }
6366 fprintf (file, ")\n");
6367
6368 if (flags & TDF_VERBOSE)
6369 print_node (file, "", fn, 2);
6370
6371 dsf = DECL_STRUCT_FUNCTION (fn);
6372 if (dsf && (flags & TDF_EH))
6373 dump_eh_tree (file, dsf);
6374
6375 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6376 {
6377 dump_node (fn, TDF_SLIM | flags, file);
6378 return;
6379 }
6380
6381 /* Switch CFUN to point to FN. */
6382 push_cfun (DECL_STRUCT_FUNCTION (fn));
6383
6384 /* When GIMPLE is lowered, the variables are no longer available in
6385 BIND_EXPRs, so display them separately. */
6386 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6387 {
6388 unsigned ix;
6389 ignore_topmost_bind = true;
6390
6391 fprintf (file, "{\n");
6392 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6393 {
6394 print_generic_decl (file, var, flags);
6395 if (flags & TDF_VERBOSE)
6396 print_node (file, "", var, 4);
6397 fprintf (file, "\n");
6398
6399 any_var = true;
6400 }
6401 }
6402
6403 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6404 {
6405 /* If the CFG has been built, emit a CFG-based dump. */
6406 check_bb_profile (ENTRY_BLOCK_PTR, file);
6407 if (!ignore_topmost_bind)
6408 fprintf (file, "{\n");
6409
6410 if (any_var && n_basic_blocks)
6411 fprintf (file, "\n");
6412
6413 FOR_EACH_BB (bb)
6414 gimple_dump_bb (bb, file, 2, flags);
6415
6416 fprintf (file, "}\n");
6417 check_bb_profile (EXIT_BLOCK_PTR, file);
6418 }
6419 else if (DECL_SAVED_TREE (fn) == NULL)
6420 {
6421 /* The function is now in GIMPLE form but the CFG has not been
6422 built yet. Emit the single sequence of GIMPLE statements
6423 that make up its body. */
6424 gimple_seq body = gimple_body (fn);
6425
6426 if (gimple_seq_first_stmt (body)
6427 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6428 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6429 print_gimple_seq (file, body, 0, flags);
6430 else
6431 {
6432 if (!ignore_topmost_bind)
6433 fprintf (file, "{\n");
6434
6435 if (any_var)
6436 fprintf (file, "\n");
6437
6438 print_gimple_seq (file, body, 2, flags);
6439 fprintf (file, "}\n");
6440 }
6441 }
6442 else
6443 {
6444 int indent;
6445
6446 /* Make a tree based dump. */
6447 chain = DECL_SAVED_TREE (fn);
6448
6449 if (chain && TREE_CODE (chain) == BIND_EXPR)
6450 {
6451 if (ignore_topmost_bind)
6452 {
6453 chain = BIND_EXPR_BODY (chain);
6454 indent = 2;
6455 }
6456 else
6457 indent = 0;
6458 }
6459 else
6460 {
6461 if (!ignore_topmost_bind)
6462 fprintf (file, "{\n");
6463 indent = 2;
6464 }
6465
6466 if (any_var)
6467 fprintf (file, "\n");
6468
6469 print_generic_stmt_indented (file, chain, flags, indent);
6470 if (ignore_topmost_bind)
6471 fprintf (file, "}\n");
6472 }
6473
6474 if (flags & TDF_ENUMERATE_LOCALS)
6475 dump_enumerated_decls (file, flags);
6476 fprintf (file, "\n\n");
6477
6478 /* Restore CFUN. */
6479 pop_cfun ();
6480 }
6481
6482
6483 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6484
6485 DEBUG_FUNCTION void
6486 debug_function (tree fn, int flags)
6487 {
6488 dump_function_to_file (fn, stderr, flags);
6489 }
6490
6491
6492 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6493
6494 static void
6495 print_pred_bbs (FILE *file, basic_block bb)
6496 {
6497 edge e;
6498 edge_iterator ei;
6499
6500 FOR_EACH_EDGE (e, ei, bb->preds)
6501 fprintf (file, "bb_%d ", e->src->index);
6502 }
6503
6504
6505 /* Print on FILE the indexes for the successors of basic_block BB. */
6506
6507 static void
6508 print_succ_bbs (FILE *file, basic_block bb)
6509 {
6510 edge e;
6511 edge_iterator ei;
6512
6513 FOR_EACH_EDGE (e, ei, bb->succs)
6514 fprintf (file, "bb_%d ", e->dest->index);
6515 }
6516
6517 /* Print to FILE the basic block BB following the VERBOSITY level. */
6518
6519 void
6520 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6521 {
6522 char *s_indent = (char *) alloca ((size_t) indent + 1);
6523 memset ((void *) s_indent, ' ', (size_t) indent);
6524 s_indent[indent] = '\0';
6525
6526 /* Print basic_block's header. */
6527 if (verbosity >= 2)
6528 {
6529 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6530 print_pred_bbs (file, bb);
6531 fprintf (file, "}, succs = {");
6532 print_succ_bbs (file, bb);
6533 fprintf (file, "})\n");
6534 }
6535
6536 /* Print basic_block's body. */
6537 if (verbosity >= 3)
6538 {
6539 fprintf (file, "%s {\n", s_indent);
6540 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6541 fprintf (file, "%s }\n", s_indent);
6542 }
6543 }
6544
6545 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6546
6547 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6548 VERBOSITY level this outputs the contents of the loop, or just its
6549 structure. */
6550
6551 static void
6552 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6553 {
6554 char *s_indent;
6555 basic_block bb;
6556
6557 if (loop == NULL)
6558 return;
6559
6560 s_indent = (char *) alloca ((size_t) indent + 1);
6561 memset ((void *) s_indent, ' ', (size_t) indent);
6562 s_indent[indent] = '\0';
6563
6564 /* Print loop's header. */
6565 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6566 loop->num, loop->header->index, loop->latch->index);
6567 fprintf (file, ", niter = ");
6568 print_generic_expr (file, loop->nb_iterations, 0);
6569
6570 if (loop->any_upper_bound)
6571 {
6572 fprintf (file, ", upper_bound = ");
6573 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6574 }
6575
6576 if (loop->any_estimate)
6577 {
6578 fprintf (file, ", estimate = ");
6579 dump_double_int (file, loop->nb_iterations_estimate, true);
6580 }
6581 fprintf (file, ")\n");
6582
6583 /* Print loop's body. */
6584 if (verbosity >= 1)
6585 {
6586 fprintf (file, "%s{\n", s_indent);
6587 FOR_EACH_BB (bb)
6588 if (bb->loop_father == loop)
6589 print_loops_bb (file, bb, indent, verbosity);
6590
6591 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6592 fprintf (file, "%s}\n", s_indent);
6593 }
6594 }
6595
6596 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6597 spaces. Following VERBOSITY level this outputs the contents of the
6598 loop, or just its structure. */
6599
6600 static void
6601 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6602 {
6603 if (loop == NULL)
6604 return;
6605
6606 print_loop (file, loop, indent, verbosity);
6607 print_loop_and_siblings (file, loop->next, indent, verbosity);
6608 }
6609
6610 /* Follow a CFG edge from the entry point of the program, and on entry
6611 of a loop, pretty print the loop structure on FILE. */
6612
6613 void
6614 print_loops (FILE *file, int verbosity)
6615 {
6616 basic_block bb;
6617
6618 bb = ENTRY_BLOCK_PTR;
6619 if (bb && bb->loop_father)
6620 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6621 }
6622
6623
6624 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6625
6626 DEBUG_FUNCTION void
6627 debug_loops (int verbosity)
6628 {
6629 print_loops (stderr, verbosity);
6630 }
6631
6632 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6633
6634 DEBUG_FUNCTION void
6635 debug_loop (struct loop *loop, int verbosity)
6636 {
6637 print_loop (stderr, loop, 0, verbosity);
6638 }
6639
6640 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6641 level. */
6642
6643 DEBUG_FUNCTION void
6644 debug_loop_num (unsigned num, int verbosity)
6645 {
6646 debug_loop (get_loop (num), verbosity);
6647 }
6648
6649 /* Return true if BB ends with a call, possibly followed by some
6650 instructions that must stay with the call. Return false,
6651 otherwise. */
6652
6653 static bool
6654 gimple_block_ends_with_call_p (basic_block bb)
6655 {
6656 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6657 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6658 }
6659
6660
6661 /* Return true if BB ends with a conditional branch. Return false,
6662 otherwise. */
6663
6664 static bool
6665 gimple_block_ends_with_condjump_p (const_basic_block bb)
6666 {
6667 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6668 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6669 }
6670
6671
6672 /* Return true if we need to add fake edge to exit at statement T.
6673 Helper function for gimple_flow_call_edges_add. */
6674
6675 static bool
6676 need_fake_edge_p (gimple t)
6677 {
6678 tree fndecl = NULL_TREE;
6679 int call_flags = 0;
6680
6681 /* NORETURN and LONGJMP calls already have an edge to exit.
6682 CONST and PURE calls do not need one.
6683 We don't currently check for CONST and PURE here, although
6684 it would be a good idea, because those attributes are
6685 figured out from the RTL in mark_constant_function, and
6686 the counter incrementation code from -fprofile-arcs
6687 leads to different results from -fbranch-probabilities. */
6688 if (is_gimple_call (t))
6689 {
6690 fndecl = gimple_call_fndecl (t);
6691 call_flags = gimple_call_flags (t);
6692 }
6693
6694 if (is_gimple_call (t)
6695 && fndecl
6696 && DECL_BUILT_IN (fndecl)
6697 && (call_flags & ECF_NOTHROW)
6698 && !(call_flags & ECF_RETURNS_TWICE)
6699 /* fork() doesn't really return twice, but the effect of
6700 wrapping it in __gcov_fork() which calls __gcov_flush()
6701 and clears the counters before forking has the same
6702 effect as returning twice. Force a fake edge. */
6703 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6704 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6705 return false;
6706
6707 if (is_gimple_call (t)
6708 && !(call_flags & ECF_NORETURN))
6709 return true;
6710
6711 if (gimple_code (t) == GIMPLE_ASM
6712 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6713 return true;
6714
6715 return false;
6716 }
6717
6718
6719 /* Add fake edges to the function exit for any non constant and non
6720 noreturn calls, volatile inline assembly in the bitmap of blocks
6721 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6722 the number of blocks that were split.
6723
6724 The goal is to expose cases in which entering a basic block does
6725 not imply that all subsequent instructions must be executed. */
6726
6727 static int
6728 gimple_flow_call_edges_add (sbitmap blocks)
6729 {
6730 int i;
6731 int blocks_split = 0;
6732 int last_bb = last_basic_block;
6733 bool check_last_block = false;
6734
6735 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6736 return 0;
6737
6738 if (! blocks)
6739 check_last_block = true;
6740 else
6741 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6742
6743 /* In the last basic block, before epilogue generation, there will be
6744 a fallthru edge to EXIT. Special care is required if the last insn
6745 of the last basic block is a call because make_edge folds duplicate
6746 edges, which would result in the fallthru edge also being marked
6747 fake, which would result in the fallthru edge being removed by
6748 remove_fake_edges, which would result in an invalid CFG.
6749
6750 Moreover, we can't elide the outgoing fake edge, since the block
6751 profiler needs to take this into account in order to solve the minimal
6752 spanning tree in the case that the call doesn't return.
6753
6754 Handle this by adding a dummy instruction in a new last basic block. */
6755 if (check_last_block)
6756 {
6757 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6758 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6759 gimple t = NULL;
6760
6761 if (!gsi_end_p (gsi))
6762 t = gsi_stmt (gsi);
6763
6764 if (t && need_fake_edge_p (t))
6765 {
6766 edge e;
6767
6768 e = find_edge (bb, EXIT_BLOCK_PTR);
6769 if (e)
6770 {
6771 gsi_insert_on_edge (e, gimple_build_nop ());
6772 gsi_commit_edge_inserts ();
6773 }
6774 }
6775 }
6776
6777 /* Now add fake edges to the function exit for any non constant
6778 calls since there is no way that we can determine if they will
6779 return or not... */
6780 for (i = 0; i < last_bb; i++)
6781 {
6782 basic_block bb = BASIC_BLOCK (i);
6783 gimple_stmt_iterator gsi;
6784 gimple stmt, last_stmt;
6785
6786 if (!bb)
6787 continue;
6788
6789 if (blocks && !TEST_BIT (blocks, i))
6790 continue;
6791
6792 gsi = gsi_last_nondebug_bb (bb);
6793 if (!gsi_end_p (gsi))
6794 {
6795 last_stmt = gsi_stmt (gsi);
6796 do
6797 {
6798 stmt = gsi_stmt (gsi);
6799 if (need_fake_edge_p (stmt))
6800 {
6801 edge e;
6802
6803 /* The handling above of the final block before the
6804 epilogue should be enough to verify that there is
6805 no edge to the exit block in CFG already.
6806 Calling make_edge in such case would cause us to
6807 mark that edge as fake and remove it later. */
6808 #ifdef ENABLE_CHECKING
6809 if (stmt == last_stmt)
6810 {
6811 e = find_edge (bb, EXIT_BLOCK_PTR);
6812 gcc_assert (e == NULL);
6813 }
6814 #endif
6815
6816 /* Note that the following may create a new basic block
6817 and renumber the existing basic blocks. */
6818 if (stmt != last_stmt)
6819 {
6820 e = split_block (bb, stmt);
6821 if (e)
6822 blocks_split++;
6823 }
6824 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6825 }
6826 gsi_prev (&gsi);
6827 }
6828 while (!gsi_end_p (gsi));
6829 }
6830 }
6831
6832 if (blocks_split)
6833 verify_flow_info ();
6834
6835 return blocks_split;
6836 }
6837
6838 /* Removes edge E and all the blocks dominated by it, and updates dominance
6839 information. The IL in E->src needs to be updated separately.
6840 If dominance info is not available, only the edge E is removed.*/
6841
6842 void
6843 remove_edge_and_dominated_blocks (edge e)
6844 {
6845 VEC (basic_block, heap) *bbs_to_remove = NULL;
6846 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6847 bitmap df, df_idom;
6848 edge f;
6849 edge_iterator ei;
6850 bool none_removed = false;
6851 unsigned i;
6852 basic_block bb, dbb;
6853 bitmap_iterator bi;
6854
6855 if (!dom_info_available_p (CDI_DOMINATORS))
6856 {
6857 remove_edge (e);
6858 return;
6859 }
6860
6861 /* No updating is needed for edges to exit. */
6862 if (e->dest == EXIT_BLOCK_PTR)
6863 {
6864 if (cfgcleanup_altered_bbs)
6865 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6866 remove_edge (e);
6867 return;
6868 }
6869
6870 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6871 that is not dominated by E->dest, then this set is empty. Otherwise,
6872 all the basic blocks dominated by E->dest are removed.
6873
6874 Also, to DF_IDOM we store the immediate dominators of the blocks in
6875 the dominance frontier of E (i.e., of the successors of the
6876 removed blocks, if there are any, and of E->dest otherwise). */
6877 FOR_EACH_EDGE (f, ei, e->dest->preds)
6878 {
6879 if (f == e)
6880 continue;
6881
6882 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6883 {
6884 none_removed = true;
6885 break;
6886 }
6887 }
6888
6889 df = BITMAP_ALLOC (NULL);
6890 df_idom = BITMAP_ALLOC (NULL);
6891
6892 if (none_removed)
6893 bitmap_set_bit (df_idom,
6894 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6895 else
6896 {
6897 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6898 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6899 {
6900 FOR_EACH_EDGE (f, ei, bb->succs)
6901 {
6902 if (f->dest != EXIT_BLOCK_PTR)
6903 bitmap_set_bit (df, f->dest->index);
6904 }
6905 }
6906 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6907 bitmap_clear_bit (df, bb->index);
6908
6909 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6910 {
6911 bb = BASIC_BLOCK (i);
6912 bitmap_set_bit (df_idom,
6913 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6914 }
6915 }
6916
6917 if (cfgcleanup_altered_bbs)
6918 {
6919 /* Record the set of the altered basic blocks. */
6920 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6921 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6922 }
6923
6924 /* Remove E and the cancelled blocks. */
6925 if (none_removed)
6926 remove_edge (e);
6927 else
6928 {
6929 /* Walk backwards so as to get a chance to substitute all
6930 released DEFs into debug stmts. See
6931 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6932 details. */
6933 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6934 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6935 }
6936
6937 /* Update the dominance information. The immediate dominator may change only
6938 for blocks whose immediate dominator belongs to DF_IDOM:
6939
6940 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6941 removal. Let Z the arbitrary block such that idom(Z) = Y and
6942 Z dominates X after the removal. Before removal, there exists a path P
6943 from Y to X that avoids Z. Let F be the last edge on P that is
6944 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6945 dominates W, and because of P, Z does not dominate W), and W belongs to
6946 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6947 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6948 {
6949 bb = BASIC_BLOCK (i);
6950 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6951 dbb;
6952 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6953 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6954 }
6955
6956 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6957
6958 BITMAP_FREE (df);
6959 BITMAP_FREE (df_idom);
6960 VEC_free (basic_block, heap, bbs_to_remove);
6961 VEC_free (basic_block, heap, bbs_to_fix_dom);
6962 }
6963
6964 /* Purge dead EH edges from basic block BB. */
6965
6966 bool
6967 gimple_purge_dead_eh_edges (basic_block bb)
6968 {
6969 bool changed = false;
6970 edge e;
6971 edge_iterator ei;
6972 gimple stmt = last_stmt (bb);
6973
6974 if (stmt && stmt_can_throw_internal (stmt))
6975 return false;
6976
6977 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6978 {
6979 if (e->flags & EDGE_EH)
6980 {
6981 remove_edge_and_dominated_blocks (e);
6982 changed = true;
6983 }
6984 else
6985 ei_next (&ei);
6986 }
6987
6988 return changed;
6989 }
6990
6991 /* Purge dead EH edges from basic block listed in BLOCKS. */
6992
6993 bool
6994 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6995 {
6996 bool changed = false;
6997 unsigned i;
6998 bitmap_iterator bi;
6999
7000 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7001 {
7002 basic_block bb = BASIC_BLOCK (i);
7003
7004 /* Earlier gimple_purge_dead_eh_edges could have removed
7005 this basic block already. */
7006 gcc_assert (bb || changed);
7007 if (bb != NULL)
7008 changed |= gimple_purge_dead_eh_edges (bb);
7009 }
7010
7011 return changed;
7012 }
7013
7014 /* Purge dead abnormal call edges from basic block BB. */
7015
7016 bool
7017 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7018 {
7019 bool changed = false;
7020 edge e;
7021 edge_iterator ei;
7022 gimple stmt = last_stmt (bb);
7023
7024 if (!cfun->has_nonlocal_label)
7025 return false;
7026
7027 if (stmt && stmt_can_make_abnormal_goto (stmt))
7028 return false;
7029
7030 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7031 {
7032 if (e->flags & EDGE_ABNORMAL)
7033 {
7034 remove_edge_and_dominated_blocks (e);
7035 changed = true;
7036 }
7037 else
7038 ei_next (&ei);
7039 }
7040
7041 return changed;
7042 }
7043
7044 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7045
7046 bool
7047 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7048 {
7049 bool changed = false;
7050 unsigned i;
7051 bitmap_iterator bi;
7052
7053 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7054 {
7055 basic_block bb = BASIC_BLOCK (i);
7056
7057 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7058 this basic block already. */
7059 gcc_assert (bb || changed);
7060 if (bb != NULL)
7061 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7062 }
7063
7064 return changed;
7065 }
7066
7067 /* This function is called whenever a new edge is created or
7068 redirected. */
7069
7070 static void
7071 gimple_execute_on_growing_pred (edge e)
7072 {
7073 basic_block bb = e->dest;
7074
7075 if (!gimple_seq_empty_p (phi_nodes (bb)))
7076 reserve_phi_args_for_new_edge (bb);
7077 }
7078
7079 /* This function is called immediately before edge E is removed from
7080 the edge vector E->dest->preds. */
7081
7082 static void
7083 gimple_execute_on_shrinking_pred (edge e)
7084 {
7085 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7086 remove_phi_args (e);
7087 }
7088
7089 /*---------------------------------------------------------------------------
7090 Helper functions for Loop versioning
7091 ---------------------------------------------------------------------------*/
7092
7093 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7094 of 'first'. Both of them are dominated by 'new_head' basic block. When
7095 'new_head' was created by 'second's incoming edge it received phi arguments
7096 on the edge by split_edge(). Later, additional edge 'e' was created to
7097 connect 'new_head' and 'first'. Now this routine adds phi args on this
7098 additional edge 'e' that new_head to second edge received as part of edge
7099 splitting. */
7100
7101 static void
7102 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7103 basic_block new_head, edge e)
7104 {
7105 gimple phi1, phi2;
7106 gimple_stmt_iterator psi1, psi2;
7107 tree def;
7108 edge e2 = find_edge (new_head, second);
7109
7110 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7111 edge, we should always have an edge from NEW_HEAD to SECOND. */
7112 gcc_assert (e2 != NULL);
7113
7114 /* Browse all 'second' basic block phi nodes and add phi args to
7115 edge 'e' for 'first' head. PHI args are always in correct order. */
7116
7117 for (psi2 = gsi_start_phis (second),
7118 psi1 = gsi_start_phis (first);
7119 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7120 gsi_next (&psi2), gsi_next (&psi1))
7121 {
7122 phi1 = gsi_stmt (psi1);
7123 phi2 = gsi_stmt (psi2);
7124 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7125 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7126 }
7127 }
7128
7129
7130 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7131 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7132 the destination of the ELSE part. */
7133
7134 static void
7135 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7136 basic_block second_head ATTRIBUTE_UNUSED,
7137 basic_block cond_bb, void *cond_e)
7138 {
7139 gimple_stmt_iterator gsi;
7140 gimple new_cond_expr;
7141 tree cond_expr = (tree) cond_e;
7142 edge e0;
7143
7144 /* Build new conditional expr */
7145 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7146 NULL_TREE, NULL_TREE);
7147
7148 /* Add new cond in cond_bb. */
7149 gsi = gsi_last_bb (cond_bb);
7150 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7151
7152 /* Adjust edges appropriately to connect new head with first head
7153 as well as second head. */
7154 e0 = single_succ_edge (cond_bb);
7155 e0->flags &= ~EDGE_FALLTHRU;
7156 e0->flags |= EDGE_FALSE_VALUE;
7157 }
7158
7159 struct cfg_hooks gimple_cfg_hooks = {
7160 "gimple",
7161 gimple_verify_flow_info,
7162 gimple_dump_bb, /* dump_bb */
7163 create_bb, /* create_basic_block */
7164 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7165 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7166 gimple_can_remove_branch_p, /* can_remove_branch_p */
7167 remove_bb, /* delete_basic_block */
7168 gimple_split_block, /* split_block */
7169 gimple_move_block_after, /* move_block_after */
7170 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7171 gimple_merge_blocks, /* merge_blocks */
7172 gimple_predict_edge, /* predict_edge */
7173 gimple_predicted_by_p, /* predicted_by_p */
7174 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7175 gimple_duplicate_bb, /* duplicate_block */
7176 gimple_split_edge, /* split_edge */
7177 gimple_make_forwarder_block, /* make_forward_block */
7178 NULL, /* tidy_fallthru_edge */
7179 NULL, /* force_nonfallthru */
7180 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7181 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7182 gimple_flow_call_edges_add, /* flow_call_edges_add */
7183 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7184 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7185 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7186 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7187 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7188 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7189 flush_pending_stmts /* flush_pending_stmts */
7190 };
7191
7192
7193 /* Split all critical edges. */
7194
7195 static unsigned int
7196 split_critical_edges (void)
7197 {
7198 basic_block bb;
7199 edge e;
7200 edge_iterator ei;
7201
7202 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7203 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7204 mappings around the calls to split_edge. */
7205 start_recording_case_labels ();
7206 FOR_ALL_BB (bb)
7207 {
7208 FOR_EACH_EDGE (e, ei, bb->succs)
7209 {
7210 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7211 split_edge (e);
7212 /* PRE inserts statements to edges and expects that
7213 since split_critical_edges was done beforehand, committing edge
7214 insertions will not split more edges. In addition to critical
7215 edges we must split edges that have multiple successors and
7216 end by control flow statements, such as RESX.
7217 Go ahead and split them too. This matches the logic in
7218 gimple_find_edge_insert_loc. */
7219 else if ((!single_pred_p (e->dest)
7220 || !gimple_seq_empty_p (phi_nodes (e->dest))
7221 || e->dest == EXIT_BLOCK_PTR)
7222 && e->src != ENTRY_BLOCK_PTR
7223 && !(e->flags & EDGE_ABNORMAL))
7224 {
7225 gimple_stmt_iterator gsi;
7226
7227 gsi = gsi_last_bb (e->src);
7228 if (!gsi_end_p (gsi)
7229 && stmt_ends_bb_p (gsi_stmt (gsi))
7230 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7231 && !gimple_call_builtin_p (gsi_stmt (gsi),
7232 BUILT_IN_RETURN)))
7233 split_edge (e);
7234 }
7235 }
7236 }
7237 end_recording_case_labels ();
7238 return 0;
7239 }
7240
7241 struct gimple_opt_pass pass_split_crit_edges =
7242 {
7243 {
7244 GIMPLE_PASS,
7245 "crited", /* name */
7246 NULL, /* gate */
7247 split_critical_edges, /* execute */
7248 NULL, /* sub */
7249 NULL, /* next */
7250 0, /* static_pass_number */
7251 TV_TREE_SPLIT_EDGES, /* tv_id */
7252 PROP_cfg, /* properties required */
7253 PROP_no_crit_edges, /* properties_provided */
7254 0, /* properties_destroyed */
7255 0, /* todo_flags_start */
7256 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7257 }
7258 };
7259
7260
7261 /* Build a ternary operation and gimplify it. Emit code before GSI.
7262 Return the gimple_val holding the result. */
7263
7264 tree
7265 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7266 tree type, tree a, tree b, tree c)
7267 {
7268 tree ret;
7269 location_t loc = gimple_location (gsi_stmt (*gsi));
7270
7271 ret = fold_build3_loc (loc, code, type, a, b, c);
7272 STRIP_NOPS (ret);
7273
7274 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7275 GSI_SAME_STMT);
7276 }
7277
7278 /* Build a binary operation and gimplify it. Emit code before GSI.
7279 Return the gimple_val holding the result. */
7280
7281 tree
7282 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7283 tree type, tree a, tree b)
7284 {
7285 tree ret;
7286
7287 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7288 STRIP_NOPS (ret);
7289
7290 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7291 GSI_SAME_STMT);
7292 }
7293
7294 /* Build a unary operation and gimplify it. Emit code before GSI.
7295 Return the gimple_val holding the result. */
7296
7297 tree
7298 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7299 tree a)
7300 {
7301 tree ret;
7302
7303 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7304 STRIP_NOPS (ret);
7305
7306 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7307 GSI_SAME_STMT);
7308 }
7309
7310
7311 \f
7312 /* Emit return warnings. */
7313
7314 static unsigned int
7315 execute_warn_function_return (void)
7316 {
7317 source_location location;
7318 gimple last;
7319 edge e;
7320 edge_iterator ei;
7321
7322 /* If we have a path to EXIT, then we do return. */
7323 if (TREE_THIS_VOLATILE (cfun->decl)
7324 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7325 {
7326 location = UNKNOWN_LOCATION;
7327 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7328 {
7329 last = last_stmt (e->src);
7330 if ((gimple_code (last) == GIMPLE_RETURN
7331 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7332 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7333 break;
7334 }
7335 if (location == UNKNOWN_LOCATION)
7336 location = cfun->function_end_locus;
7337 warning_at (location, 0, "%<noreturn%> function does return");
7338 }
7339
7340 /* If we see "return;" in some basic block, then we do reach the end
7341 without returning a value. */
7342 else if (warn_return_type
7343 && !TREE_NO_WARNING (cfun->decl)
7344 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7345 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7346 {
7347 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7348 {
7349 gimple last = last_stmt (e->src);
7350 if (gimple_code (last) == GIMPLE_RETURN
7351 && gimple_return_retval (last) == NULL
7352 && !gimple_no_warning_p (last))
7353 {
7354 location = gimple_location (last);
7355 if (location == UNKNOWN_LOCATION)
7356 location = cfun->function_end_locus;
7357 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7358 TREE_NO_WARNING (cfun->decl) = 1;
7359 break;
7360 }
7361 }
7362 }
7363 return 0;
7364 }
7365
7366
7367 /* Given a basic block B which ends with a conditional and has
7368 precisely two successors, determine which of the edges is taken if
7369 the conditional is true and which is taken if the conditional is
7370 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7371
7372 void
7373 extract_true_false_edges_from_block (basic_block b,
7374 edge *true_edge,
7375 edge *false_edge)
7376 {
7377 edge e = EDGE_SUCC (b, 0);
7378
7379 if (e->flags & EDGE_TRUE_VALUE)
7380 {
7381 *true_edge = e;
7382 *false_edge = EDGE_SUCC (b, 1);
7383 }
7384 else
7385 {
7386 *false_edge = e;
7387 *true_edge = EDGE_SUCC (b, 1);
7388 }
7389 }
7390
7391 struct gimple_opt_pass pass_warn_function_return =
7392 {
7393 {
7394 GIMPLE_PASS,
7395 "*warn_function_return", /* name */
7396 NULL, /* gate */
7397 execute_warn_function_return, /* execute */
7398 NULL, /* sub */
7399 NULL, /* next */
7400 0, /* static_pass_number */
7401 TV_NONE, /* tv_id */
7402 PROP_cfg, /* properties_required */
7403 0, /* properties_provided */
7404 0, /* properties_destroyed */
7405 0, /* todo_flags_start */
7406 0 /* todo_flags_finish */
7407 }
7408 };
7409
7410 /* Emit noreturn warnings. */
7411
7412 static unsigned int
7413 execute_warn_function_noreturn (void)
7414 {
7415 if (!TREE_THIS_VOLATILE (current_function_decl)
7416 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7417 warn_function_noreturn (current_function_decl);
7418 return 0;
7419 }
7420
7421 static bool
7422 gate_warn_function_noreturn (void)
7423 {
7424 return warn_suggest_attribute_noreturn;
7425 }
7426
7427 struct gimple_opt_pass pass_warn_function_noreturn =
7428 {
7429 {
7430 GIMPLE_PASS,
7431 "*warn_function_noreturn", /* name */
7432 gate_warn_function_noreturn, /* gate */
7433 execute_warn_function_noreturn, /* execute */
7434 NULL, /* sub */
7435 NULL, /* next */
7436 0, /* static_pass_number */
7437 TV_NONE, /* tv_id */
7438 PROP_cfg, /* properties_required */
7439 0, /* properties_provided */
7440 0, /* properties_destroyed */
7441 0, /* todo_flags_start */
7442 0 /* todo_flags_finish */
7443 }
7444 };
7445
7446
7447 /* Walk a gimplified function and warn for functions whose return value is
7448 ignored and attribute((warn_unused_result)) is set. This is done before
7449 inlining, so we don't have to worry about that. */
7450
7451 static void
7452 do_warn_unused_result (gimple_seq seq)
7453 {
7454 tree fdecl, ftype;
7455 gimple_stmt_iterator i;
7456
7457 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7458 {
7459 gimple g = gsi_stmt (i);
7460
7461 switch (gimple_code (g))
7462 {
7463 case GIMPLE_BIND:
7464 do_warn_unused_result (gimple_bind_body (g));
7465 break;
7466 case GIMPLE_TRY:
7467 do_warn_unused_result (gimple_try_eval (g));
7468 do_warn_unused_result (gimple_try_cleanup (g));
7469 break;
7470 case GIMPLE_CATCH:
7471 do_warn_unused_result (gimple_catch_handler (g));
7472 break;
7473 case GIMPLE_EH_FILTER:
7474 do_warn_unused_result (gimple_eh_filter_failure (g));
7475 break;
7476
7477 case GIMPLE_CALL:
7478 if (gimple_call_lhs (g))
7479 break;
7480 if (gimple_call_internal_p (g))
7481 break;
7482
7483 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7484 LHS. All calls whose value is ignored should be
7485 represented like this. Look for the attribute. */
7486 fdecl = gimple_call_fndecl (g);
7487 ftype = gimple_call_fntype (g);
7488
7489 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7490 {
7491 location_t loc = gimple_location (g);
7492
7493 if (fdecl)
7494 warning_at (loc, OPT_Wunused_result,
7495 "ignoring return value of %qD, "
7496 "declared with attribute warn_unused_result",
7497 fdecl);
7498 else
7499 warning_at (loc, OPT_Wunused_result,
7500 "ignoring return value of function "
7501 "declared with attribute warn_unused_result");
7502 }
7503 break;
7504
7505 default:
7506 /* Not a container, not a call, or a call whose value is used. */
7507 break;
7508 }
7509 }
7510 }
7511
7512 static unsigned int
7513 run_warn_unused_result (void)
7514 {
7515 do_warn_unused_result (gimple_body (current_function_decl));
7516 return 0;
7517 }
7518
7519 static bool
7520 gate_warn_unused_result (void)
7521 {
7522 return flag_warn_unused_result;
7523 }
7524
7525 struct gimple_opt_pass pass_warn_unused_result =
7526 {
7527 {
7528 GIMPLE_PASS,
7529 "*warn_unused_result", /* name */
7530 gate_warn_unused_result, /* gate */
7531 run_warn_unused_result, /* execute */
7532 NULL, /* sub */
7533 NULL, /* next */
7534 0, /* static_pass_number */
7535 TV_NONE, /* tv_id */
7536 PROP_gimple_any, /* properties_required */
7537 0, /* properties_provided */
7538 0, /* properties_destroyed */
7539 0, /* todo_flags_start */
7540 0, /* todo_flags_finish */
7541 }
7542 };