targhooks.c (default_unwind_emit, [...]): Use gcc_assert, gcc_unreachable & internal_...
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "errors.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "ggc.h"
37 #include "langhooks.h"
38 #include "diagnostic.h"
39 #include "tree-flow.h"
40 #include "timevar.h"
41 #include "tree-dump.h"
42 #include "tree-pass.h"
43 #include "toplev.h"
44 #include "except.h"
45 #include "cfgloop.h"
46
47 /* This file contains functions for building the Control Flow Graph (CFG)
48 for a function tree. */
49
50 /* Local declarations. */
51
52 /* Initial capacity for the basic block array. */
53 static const int initial_cfg_capacity = 20;
54
55 /* Mapping of labels to their associated blocks. This can greatly speed up
56 building of the CFG in code with lots of gotos. */
57 static GTY(()) varray_type label_to_block_map;
58
59 /* CFG statistics. */
60 struct cfg_stats_d
61 {
62 long num_merged_labels;
63 };
64
65 static struct cfg_stats_d cfg_stats;
66
67 /* Nonzero if we found a computed goto while building basic blocks. */
68 static bool found_computed_goto;
69
70 /* Basic blocks and flowgraphs. */
71 static basic_block create_bb (void *, void *, basic_block);
72 static void create_block_annotation (basic_block);
73 static void free_blocks_annotations (void);
74 static void clear_blocks_annotations (void);
75 static void make_blocks (tree);
76 static void factor_computed_gotos (void);
77
78 /* Edges. */
79 static void make_edges (void);
80 static void make_ctrl_stmt_edges (basic_block);
81 static void make_exit_edges (basic_block);
82 static void make_cond_expr_edges (basic_block);
83 static void make_switch_expr_edges (basic_block);
84 static void make_goto_expr_edges (basic_block);
85 static edge tree_redirect_edge_and_branch (edge, basic_block);
86 static edge tree_try_redirect_by_replacing_jump (edge, basic_block);
87 static void split_critical_edges (void);
88
89 /* Various helpers. */
90 static inline bool stmt_starts_bb_p (tree, tree);
91 static int tree_verify_flow_info (void);
92 static void tree_make_forwarder_block (edge);
93 static bool thread_jumps (void);
94 static bool tree_forwarder_block_p (basic_block);
95 static void bsi_commit_edge_inserts_1 (edge e);
96 static void tree_cfg2vcg (FILE *);
97
98 /* Flowgraph optimization and cleanup. */
99 static void tree_merge_blocks (basic_block, basic_block);
100 static bool tree_can_merge_blocks_p (basic_block, basic_block);
101 static void remove_bb (basic_block);
102 static bool cleanup_control_flow (void);
103 static bool cleanup_control_expr_graph (basic_block, block_stmt_iterator);
104 static edge find_taken_edge_cond_expr (basic_block, tree);
105 static edge find_taken_edge_switch_expr (basic_block, tree);
106 static tree find_case_label_for_value (tree, tree);
107 static bool phi_alternatives_equal (basic_block, edge, edge);
108
109
110 /*---------------------------------------------------------------------------
111 Create basic blocks
112 ---------------------------------------------------------------------------*/
113
114 /* Entry point to the CFG builder for trees. TP points to the list of
115 statements to be added to the flowgraph. */
116
117 static void
118 build_tree_cfg (tree *tp)
119 {
120 /* Register specific tree functions. */
121 tree_register_cfg_hooks ();
122
123 /* Initialize rbi_pool. */
124 alloc_rbi_pool ();
125
126 /* Initialize the basic block array. */
127 init_flow ();
128 profile_status = PROFILE_ABSENT;
129 n_basic_blocks = 0;
130 last_basic_block = 0;
131 VARRAY_BB_INIT (basic_block_info, initial_cfg_capacity, "basic_block_info");
132 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
133
134 /* Build a mapping of labels to their associated blocks. */
135 VARRAY_BB_INIT (label_to_block_map, initial_cfg_capacity,
136 "label to block map");
137
138 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
139 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
140
141 found_computed_goto = 0;
142 make_blocks (*tp);
143
144 /* Computed gotos are hell to deal with, especially if there are
145 lots of them with a large number of destinations. So we factor
146 them to a common computed goto location before we build the
147 edge list. After we convert back to normal form, we will un-factor
148 the computed gotos since factoring introduces an unwanted jump. */
149 if (found_computed_goto)
150 factor_computed_gotos ();
151
152 /* Make sure there is always at least one block, even if its empty. */
153 if (n_basic_blocks == 0)
154 create_empty_bb (ENTRY_BLOCK_PTR);
155
156 create_block_annotation (ENTRY_BLOCK_PTR);
157 create_block_annotation (EXIT_BLOCK_PTR);
158
159 /* Adjust the size of the array. */
160 VARRAY_GROW (basic_block_info, n_basic_blocks);
161
162 /* To speed up statement iterator walks, we first purge dead labels. */
163 cleanup_dead_labels ();
164
165 /* Group case nodes to reduce the number of edges.
166 We do this after cleaning up dead labels because otherwise we miss
167 a lot of obvious case merging opportunities. */
168 group_case_labels ();
169
170 /* Create the edges of the flowgraph. */
171 make_edges ();
172
173 /* Debugging dumps. */
174
175 /* Write the flowgraph to a VCG file. */
176 {
177 int local_dump_flags;
178 FILE *dump_file = dump_begin (TDI_vcg, &local_dump_flags);
179 if (dump_file)
180 {
181 tree_cfg2vcg (dump_file);
182 dump_end (TDI_vcg, dump_file);
183 }
184 }
185
186 /* Dump a textual representation of the flowgraph. */
187 if (dump_file)
188 dump_tree_cfg (dump_file, dump_flags);
189 }
190
191 static void
192 execute_build_cfg (void)
193 {
194 build_tree_cfg (&DECL_SAVED_TREE (current_function_decl));
195 }
196
197 struct tree_opt_pass pass_build_cfg =
198 {
199 "cfg", /* name */
200 NULL, /* gate */
201 execute_build_cfg, /* execute */
202 NULL, /* sub */
203 NULL, /* next */
204 0, /* static_pass_number */
205 TV_TREE_CFG, /* tv_id */
206 PROP_gimple_leh, /* properties_required */
207 PROP_cfg, /* properties_provided */
208 0, /* properties_destroyed */
209 0, /* todo_flags_start */
210 TODO_verify_stmts, /* todo_flags_finish */
211 0 /* letter */
212 };
213
214 /* Search the CFG for any computed gotos. If found, factor them to a
215 common computed goto site. Also record the location of that site so
216 that we can un-factor the gotos after we have converted back to
217 normal form. */
218
219 static void
220 factor_computed_gotos (void)
221 {
222 basic_block bb;
223 tree factored_label_decl = NULL;
224 tree var = NULL;
225 tree factored_computed_goto_label = NULL;
226 tree factored_computed_goto = NULL;
227
228 /* We know there are one or more computed gotos in this function.
229 Examine the last statement in each basic block to see if the block
230 ends with a computed goto. */
231
232 FOR_EACH_BB (bb)
233 {
234 block_stmt_iterator bsi = bsi_last (bb);
235 tree last;
236
237 if (bsi_end_p (bsi))
238 continue;
239 last = bsi_stmt (bsi);
240
241 /* Ignore the computed goto we create when we factor the original
242 computed gotos. */
243 if (last == factored_computed_goto)
244 continue;
245
246 /* If the last statement is a computed goto, factor it. */
247 if (computed_goto_p (last))
248 {
249 tree assignment;
250
251 /* The first time we find a computed goto we need to create
252 the factored goto block and the variable each original
253 computed goto will use for their goto destination. */
254 if (! factored_computed_goto)
255 {
256 basic_block new_bb = create_empty_bb (bb);
257 block_stmt_iterator new_bsi = bsi_start (new_bb);
258
259 /* Create the destination of the factored goto. Each original
260 computed goto will put its desired destination into this
261 variable and jump to the label we create immediately
262 below. */
263 var = create_tmp_var (ptr_type_node, "gotovar");
264
265 /* Build a label for the new block which will contain the
266 factored computed goto. */
267 factored_label_decl = create_artificial_label ();
268 factored_computed_goto_label
269 = build1 (LABEL_EXPR, void_type_node, factored_label_decl);
270 bsi_insert_after (&new_bsi, factored_computed_goto_label,
271 BSI_NEW_STMT);
272
273 /* Build our new computed goto. */
274 factored_computed_goto = build1 (GOTO_EXPR, void_type_node, var);
275 bsi_insert_after (&new_bsi, factored_computed_goto,
276 BSI_NEW_STMT);
277 }
278
279 /* Copy the original computed goto's destination into VAR. */
280 assignment = build (MODIFY_EXPR, ptr_type_node,
281 var, GOTO_DESTINATION (last));
282 bsi_insert_before (&bsi, assignment, BSI_SAME_STMT);
283
284 /* And re-vector the computed goto to the new destination. */
285 GOTO_DESTINATION (last) = factored_label_decl;
286 }
287 }
288 }
289
290
291 /* Create annotations for a single basic block. */
292
293 static void
294 create_block_annotation (basic_block bb)
295 {
296 /* Verify that the tree_annotations field is clear. */
297 gcc_assert (!bb->tree_annotations);
298 bb->tree_annotations = ggc_alloc_cleared (sizeof (struct bb_ann_d));
299 }
300
301
302 /* Free the annotations for all the basic blocks. */
303
304 static void free_blocks_annotations (void)
305 {
306 clear_blocks_annotations ();
307 }
308
309
310 /* Clear the annotations for all the basic blocks. */
311
312 static void
313 clear_blocks_annotations (void)
314 {
315 basic_block bb;
316
317 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
318 bb->tree_annotations = NULL;
319 }
320
321
322 /* Build a flowgraph for the statement_list STMT_LIST. */
323
324 static void
325 make_blocks (tree stmt_list)
326 {
327 tree_stmt_iterator i = tsi_start (stmt_list);
328 tree stmt = NULL;
329 bool start_new_block = true;
330 bool first_stmt_of_list = true;
331 basic_block bb = ENTRY_BLOCK_PTR;
332
333 while (!tsi_end_p (i))
334 {
335 tree prev_stmt;
336
337 prev_stmt = stmt;
338 stmt = tsi_stmt (i);
339
340 /* If the statement starts a new basic block or if we have determined
341 in a previous pass that we need to create a new block for STMT, do
342 so now. */
343 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
344 {
345 if (!first_stmt_of_list)
346 stmt_list = tsi_split_statement_list_before (&i);
347 bb = create_basic_block (stmt_list, NULL, bb);
348 start_new_block = false;
349 }
350
351 /* Now add STMT to BB and create the subgraphs for special statement
352 codes. */
353 set_bb_for_stmt (stmt, bb);
354
355 if (computed_goto_p (stmt))
356 found_computed_goto = true;
357
358 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
359 next iteration. */
360 if (stmt_ends_bb_p (stmt))
361 start_new_block = true;
362
363 tsi_next (&i);
364 first_stmt_of_list = false;
365 }
366 }
367
368
369 /* Create and return a new empty basic block after bb AFTER. */
370
371 static basic_block
372 create_bb (void *h, void *e, basic_block after)
373 {
374 basic_block bb;
375
376 gcc_assert (!e);
377
378 /* Create and initialize a new basic block. */
379 bb = alloc_block ();
380 memset (bb, 0, sizeof (*bb));
381
382 bb->index = last_basic_block;
383 bb->flags = BB_NEW;
384 bb->stmt_list = h ? h : alloc_stmt_list ();
385
386 /* Add the new block to the linked list of blocks. */
387 link_block (bb, after);
388
389 /* Grow the basic block array if needed. */
390 if ((size_t) last_basic_block == VARRAY_SIZE (basic_block_info))
391 {
392 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
393 VARRAY_GROW (basic_block_info, new_size);
394 }
395
396 /* Add the newly created block to the array. */
397 BASIC_BLOCK (last_basic_block) = bb;
398
399 create_block_annotation (bb);
400
401 n_basic_blocks++;
402 last_basic_block++;
403
404 initialize_bb_rbi (bb);
405 return bb;
406 }
407
408
409 /*---------------------------------------------------------------------------
410 Edge creation
411 ---------------------------------------------------------------------------*/
412
413 /* Join all the blocks in the flowgraph. */
414
415 static void
416 make_edges (void)
417 {
418 basic_block bb;
419
420 /* Create an edge from entry to the first block with executable
421 statements in it. */
422 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (0), EDGE_FALLTHRU);
423
424 /* Traverse basic block array placing edges. */
425 FOR_EACH_BB (bb)
426 {
427 tree first = first_stmt (bb);
428 tree last = last_stmt (bb);
429
430 if (first)
431 {
432 /* Edges for statements that always alter flow control. */
433 if (is_ctrl_stmt (last))
434 make_ctrl_stmt_edges (bb);
435
436 /* Edges for statements that sometimes alter flow control. */
437 if (is_ctrl_altering_stmt (last))
438 make_exit_edges (bb);
439 }
440
441 /* Finally, if no edges were created above, this is a regular
442 basic block that only needs a fallthru edge. */
443 if (bb->succ == NULL)
444 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
445 }
446
447 /* We do not care about fake edges, so remove any that the CFG
448 builder inserted for completeness. */
449 remove_fake_exit_edges ();
450
451 /* Clean up the graph and warn for unreachable code. */
452 cleanup_tree_cfg ();
453 }
454
455
456 /* Create edges for control statement at basic block BB. */
457
458 static void
459 make_ctrl_stmt_edges (basic_block bb)
460 {
461 tree last = last_stmt (bb);
462
463 gcc_assert (last);
464 switch (TREE_CODE (last))
465 {
466 case GOTO_EXPR:
467 make_goto_expr_edges (bb);
468 break;
469
470 case RETURN_EXPR:
471 make_edge (bb, EXIT_BLOCK_PTR, 0);
472 break;
473
474 case COND_EXPR:
475 make_cond_expr_edges (bb);
476 break;
477
478 case SWITCH_EXPR:
479 make_switch_expr_edges (bb);
480 break;
481
482 case RESX_EXPR:
483 make_eh_edges (last);
484 /* Yet another NORETURN hack. */
485 if (bb->succ == NULL)
486 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
487 break;
488
489 default:
490 gcc_unreachable ();
491 }
492 }
493
494
495 /* Create exit edges for statements in block BB that alter the flow of
496 control. Statements that alter the control flow are 'goto', 'return'
497 and calls to non-returning functions. */
498
499 static void
500 make_exit_edges (basic_block bb)
501 {
502 tree last = last_stmt (bb), op;
503
504 gcc_assert (last);
505 switch (TREE_CODE (last))
506 {
507 case CALL_EXPR:
508 /* If this function receives a nonlocal goto, then we need to
509 make edges from this call site to all the nonlocal goto
510 handlers. */
511 if (TREE_SIDE_EFFECTS (last)
512 && current_function_has_nonlocal_label)
513 make_goto_expr_edges (bb);
514
515 /* If this statement has reachable exception handlers, then
516 create abnormal edges to them. */
517 make_eh_edges (last);
518
519 /* Some calls are known not to return. For such calls we create
520 a fake edge.
521
522 We really need to revamp how we build edges so that it's not
523 such a bloody pain to avoid creating edges for this case since
524 all we do is remove these edges when we're done building the
525 CFG. */
526 if (call_expr_flags (last) & (ECF_NORETURN | ECF_LONGJMP))
527 {
528 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
529 return;
530 }
531
532 /* Don't forget the fall-thru edge. */
533 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
534 break;
535
536 case MODIFY_EXPR:
537 /* A MODIFY_EXPR may have a CALL_EXPR on its RHS and the CALL_EXPR
538 may have an abnormal edge. Search the RHS for this case and
539 create any required edges. */
540 op = get_call_expr_in (last);
541 if (op && TREE_SIDE_EFFECTS (op)
542 && current_function_has_nonlocal_label)
543 make_goto_expr_edges (bb);
544
545 make_eh_edges (last);
546 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
547 break;
548
549 default:
550 gcc_unreachable ();
551 }
552 }
553
554
555 /* Create the edges for a COND_EXPR starting at block BB.
556 At this point, both clauses must contain only simple gotos. */
557
558 static void
559 make_cond_expr_edges (basic_block bb)
560 {
561 tree entry = last_stmt (bb);
562 basic_block then_bb, else_bb;
563 tree then_label, else_label;
564
565 gcc_assert (entry);
566 gcc_assert (TREE_CODE (entry) == COND_EXPR);
567
568 /* Entry basic blocks for each component. */
569 then_label = GOTO_DESTINATION (COND_EXPR_THEN (entry));
570 else_label = GOTO_DESTINATION (COND_EXPR_ELSE (entry));
571 then_bb = label_to_block (then_label);
572 else_bb = label_to_block (else_label);
573
574 make_edge (bb, then_bb, EDGE_TRUE_VALUE);
575 make_edge (bb, else_bb, EDGE_FALSE_VALUE);
576 }
577
578
579 /* Create the edges for a SWITCH_EXPR starting at block BB.
580 At this point, the switch body has been lowered and the
581 SWITCH_LABELS filled in, so this is in effect a multi-way branch. */
582
583 static void
584 make_switch_expr_edges (basic_block bb)
585 {
586 tree entry = last_stmt (bb);
587 size_t i, n;
588 tree vec;
589
590 vec = SWITCH_LABELS (entry);
591 n = TREE_VEC_LENGTH (vec);
592
593 for (i = 0; i < n; ++i)
594 {
595 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
596 basic_block label_bb = label_to_block (lab);
597 make_edge (bb, label_bb, 0);
598 }
599 }
600
601
602 /* Return the basic block holding label DEST. */
603
604 basic_block
605 label_to_block (tree dest)
606 {
607 int uid = LABEL_DECL_UID (dest);
608
609 /* We would die hard when faced by undefined label. Emit label to
610 very first basic block. This will hopefully make even the dataflow
611 and undefined variable warnings quite right. */
612 if ((errorcount || sorrycount) && uid < 0)
613 {
614 block_stmt_iterator bsi = bsi_start (BASIC_BLOCK (0));
615 tree stmt;
616
617 stmt = build1 (LABEL_EXPR, void_type_node, dest);
618 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
619 uid = LABEL_DECL_UID (dest);
620 }
621 return VARRAY_BB (label_to_block_map, uid);
622 }
623
624
625 /* Create edges for a goto statement at block BB. */
626
627 static void
628 make_goto_expr_edges (basic_block bb)
629 {
630 tree goto_t, dest;
631 basic_block target_bb;
632 int for_call;
633 block_stmt_iterator last = bsi_last (bb);
634
635 goto_t = bsi_stmt (last);
636
637 /* If the last statement is not a GOTO (i.e., it is a RETURN_EXPR,
638 CALL_EXPR or MODIFY_EXPR), then the edge is an abnormal edge resulting
639 from a nonlocal goto. */
640 if (TREE_CODE (goto_t) != GOTO_EXPR)
641 {
642 dest = error_mark_node;
643 for_call = 1;
644 }
645 else
646 {
647 dest = GOTO_DESTINATION (goto_t);
648 for_call = 0;
649
650 /* A GOTO to a local label creates normal edges. */
651 if (simple_goto_p (goto_t))
652 {
653 edge e = make_edge (bb, label_to_block (dest), EDGE_FALLTHRU);
654 #ifdef USE_MAPPED_LOCATION
655 e->goto_locus = EXPR_LOCATION (goto_t);
656 #else
657 e->goto_locus = EXPR_LOCUS (goto_t);
658 #endif
659 bsi_remove (&last);
660 return;
661 }
662
663 /* Nothing more to do for nonlocal gotos. */
664 if (TREE_CODE (dest) == LABEL_DECL)
665 return;
666
667 /* Computed gotos remain. */
668 }
669
670 /* Look for the block starting with the destination label. In the
671 case of a computed goto, make an edge to any label block we find
672 in the CFG. */
673 FOR_EACH_BB (target_bb)
674 {
675 block_stmt_iterator bsi;
676
677 for (bsi = bsi_start (target_bb); !bsi_end_p (bsi); bsi_next (&bsi))
678 {
679 tree target = bsi_stmt (bsi);
680
681 if (TREE_CODE (target) != LABEL_EXPR)
682 break;
683
684 if (
685 /* Computed GOTOs. Make an edge to every label block that has
686 been marked as a potential target for a computed goto. */
687 (FORCED_LABEL (LABEL_EXPR_LABEL (target)) && for_call == 0)
688 /* Nonlocal GOTO target. Make an edge to every label block
689 that has been marked as a potential target for a nonlocal
690 goto. */
691 || (DECL_NONLOCAL (LABEL_EXPR_LABEL (target)) && for_call == 1))
692 {
693 make_edge (bb, target_bb, EDGE_ABNORMAL);
694 break;
695 }
696 }
697 }
698
699 /* Degenerate case of computed goto with no labels. */
700 if (!for_call && !bb->succ)
701 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
702 }
703
704
705 /*---------------------------------------------------------------------------
706 Flowgraph analysis
707 ---------------------------------------------------------------------------*/
708
709 /* Remove unreachable blocks and other miscellaneous clean up work. */
710
711 bool
712 cleanup_tree_cfg (void)
713 {
714 bool something_changed = true;
715 bool retval = false;
716
717 timevar_push (TV_TREE_CLEANUP_CFG);
718
719 /* These three transformations can cascade, so we iterate on them until
720 nothing changes. */
721 while (something_changed)
722 {
723 something_changed = cleanup_control_flow ();
724 something_changed |= delete_unreachable_blocks ();
725 something_changed |= thread_jumps ();
726 retval |= something_changed;
727 }
728
729 /* Merging the blocks creates no new opportunities for the other
730 optimizations, so do it here. */
731 merge_seq_blocks ();
732
733 compact_blocks ();
734
735 #ifdef ENABLE_CHECKING
736 verify_flow_info ();
737 #endif
738 timevar_pop (TV_TREE_CLEANUP_CFG);
739 return retval;
740 }
741
742
743 /* Cleanup useless labels in basic blocks. This is something we wish
744 to do early because it allows us to group case labels before creating
745 the edges for the CFG, and it speeds up block statement iterators in
746 all passes later on.
747 We only run this pass once, running it more than once is probably not
748 profitable. */
749
750 /* A map from basic block index to the leading label of that block. */
751 static tree *label_for_bb;
752
753 /* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
754 static void
755 update_eh_label (struct eh_region *region)
756 {
757 tree old_label = get_eh_region_tree_label (region);
758 if (old_label)
759 {
760 tree new_label;
761 basic_block bb = label_to_block (old_label);
762
763 /* ??? After optimizing, there may be EH regions with labels
764 that have already been removed from the function body, so
765 there is no basic block for them. */
766 if (! bb)
767 return;
768
769 new_label = label_for_bb[bb->index];
770 set_eh_region_tree_label (region, new_label);
771 }
772 }
773
774 /* Given LABEL return the first label in the same basic block. */
775 static tree
776 main_block_label (tree label)
777 {
778 basic_block bb = label_to_block (label);
779
780 /* label_to_block possibly inserted undefined label into the chain. */
781 if (!label_for_bb[bb->index])
782 label_for_bb[bb->index] = label;
783 return label_for_bb[bb->index];
784 }
785
786 /* Cleanup redundant labels. This is a three-steo process:
787 1) Find the leading label for each block.
788 2) Redirect all references to labels to the leading labels.
789 3) Cleanup all useless labels. */
790
791 void
792 cleanup_dead_labels (void)
793 {
794 basic_block bb;
795 label_for_bb = xcalloc (last_basic_block, sizeof (tree));
796
797 /* Find a suitable label for each block. We use the first user-defined
798 label is there is one, or otherwise just the first label we see. */
799 FOR_EACH_BB (bb)
800 {
801 block_stmt_iterator i;
802
803 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
804 {
805 tree label, stmt = bsi_stmt (i);
806
807 if (TREE_CODE (stmt) != LABEL_EXPR)
808 break;
809
810 label = LABEL_EXPR_LABEL (stmt);
811
812 /* If we have not yet seen a label for the current block,
813 remember this one and see if there are more labels. */
814 if (! label_for_bb[bb->index])
815 {
816 label_for_bb[bb->index] = label;
817 continue;
818 }
819
820 /* If we did see a label for the current block already, but it
821 is an artificially created label, replace it if the current
822 label is a user defined label. */
823 if (! DECL_ARTIFICIAL (label)
824 && DECL_ARTIFICIAL (label_for_bb[bb->index]))
825 {
826 label_for_bb[bb->index] = label;
827 break;
828 }
829 }
830 }
831
832 /* Now redirect all jumps/branches to the selected label.
833 First do so for each block ending in a control statement. */
834 FOR_EACH_BB (bb)
835 {
836 tree stmt = last_stmt (bb);
837 if (!stmt)
838 continue;
839
840 switch (TREE_CODE (stmt))
841 {
842 case COND_EXPR:
843 {
844 tree true_branch, false_branch;
845
846 true_branch = COND_EXPR_THEN (stmt);
847 false_branch = COND_EXPR_ELSE (stmt);
848
849 GOTO_DESTINATION (true_branch)
850 = main_block_label (GOTO_DESTINATION (true_branch));
851 GOTO_DESTINATION (false_branch)
852 = main_block_label (GOTO_DESTINATION (false_branch));
853
854 break;
855 }
856
857 case SWITCH_EXPR:
858 {
859 size_t i;
860 tree vec = SWITCH_LABELS (stmt);
861 size_t n = TREE_VEC_LENGTH (vec);
862
863 /* Replace all destination labels. */
864 for (i = 0; i < n; ++i)
865 CASE_LABEL (TREE_VEC_ELT (vec, i))
866 = main_block_label (CASE_LABEL (TREE_VEC_ELT (vec, i)));
867
868 break;
869 }
870
871 /* We have to handle GOTO_EXPRs until they're removed, and we don't
872 remove them until after we've created the CFG edges. */
873 case GOTO_EXPR:
874 if (! computed_goto_p (stmt))
875 {
876 GOTO_DESTINATION (stmt)
877 = main_block_label (GOTO_DESTINATION (stmt));
878 break;
879 }
880
881 default:
882 break;
883 }
884 }
885
886 for_each_eh_region (update_eh_label);
887
888 /* Finally, purge dead labels. All user-defined labels and labels that
889 can be the target of non-local gotos are preserved. */
890 FOR_EACH_BB (bb)
891 {
892 block_stmt_iterator i;
893 tree label_for_this_bb = label_for_bb[bb->index];
894
895 if (! label_for_this_bb)
896 continue;
897
898 for (i = bsi_start (bb); !bsi_end_p (i); )
899 {
900 tree label, stmt = bsi_stmt (i);
901
902 if (TREE_CODE (stmt) != LABEL_EXPR)
903 break;
904
905 label = LABEL_EXPR_LABEL (stmt);
906
907 if (label == label_for_this_bb
908 || ! DECL_ARTIFICIAL (label)
909 || DECL_NONLOCAL (label))
910 bsi_next (&i);
911 else
912 bsi_remove (&i);
913 }
914 }
915
916 free (label_for_bb);
917 }
918
919 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
920 and scan the sorted vector of cases. Combine the ones jumping to the
921 same label.
922 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
923
924 void
925 group_case_labels (void)
926 {
927 basic_block bb;
928
929 FOR_EACH_BB (bb)
930 {
931 tree stmt = last_stmt (bb);
932 if (stmt && TREE_CODE (stmt) == SWITCH_EXPR)
933 {
934 tree labels = SWITCH_LABELS (stmt);
935 int old_size = TREE_VEC_LENGTH (labels);
936 int i, j, new_size = old_size;
937 tree default_label = TREE_VEC_ELT (labels, old_size - 1);
938
939 /* Look for possible opportunities to merge cases.
940 Ignore the last element of the label vector because it
941 must be the default case. */
942 i = 0;
943 while (i < old_size - 2)
944 {
945 tree base_case, base_label, base_high, type;
946 base_case = TREE_VEC_ELT (labels, i);
947
948 gcc_assert (base_case);
949 base_label = CASE_LABEL (base_case);
950
951 /* Discard cases that have the same destination as the
952 default case. */
953 if (base_label == default_label)
954 {
955 TREE_VEC_ELT (labels, i) = NULL_TREE;
956 i++;
957 continue;
958 }
959
960 type = TREE_TYPE (CASE_LOW (base_case));
961 base_high = CASE_HIGH (base_case) ?
962 CASE_HIGH (base_case) : CASE_LOW (base_case);
963
964 /* Try to merge case labels. Break out when we reach the end
965 of the label vector or when we cannot merge the next case
966 label with the current one. */
967 while (i < old_size - 2)
968 {
969 tree merge_case = TREE_VEC_ELT (labels, ++i);
970 tree merge_label = CASE_LABEL (merge_case);
971 tree t = int_const_binop (PLUS_EXPR, base_high,
972 integer_one_node, 1);
973
974 /* Merge the cases if they jump to the same place,
975 and their ranges are consecutive. */
976 if (merge_label == base_label
977 && tree_int_cst_equal (CASE_LOW (merge_case), t))
978 {
979 base_high = CASE_HIGH (merge_case) ?
980 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
981 CASE_HIGH (base_case) = base_high;
982 TREE_VEC_ELT (labels, i) = NULL_TREE;
983 new_size--;
984 }
985 else
986 break;
987 }
988 }
989
990 /* Compress the case labels in the label vector, and adjust the
991 length of the vector. */
992 for (i = 0, j = 0; i < new_size; i++)
993 {
994 while (! TREE_VEC_ELT (labels, j))
995 j++;
996 TREE_VEC_ELT (labels, i) = TREE_VEC_ELT (labels, j++);
997 }
998 TREE_VEC_LENGTH (labels) = new_size;
999 }
1000 }
1001 }
1002
1003 /* Checks whether we can merge block B into block A. */
1004
1005 static bool
1006 tree_can_merge_blocks_p (basic_block a, basic_block b)
1007 {
1008 tree stmt;
1009 block_stmt_iterator bsi;
1010
1011 if (!a->succ
1012 || a->succ->succ_next)
1013 return false;
1014
1015 if (a->succ->flags & EDGE_ABNORMAL)
1016 return false;
1017
1018 if (a->succ->dest != b)
1019 return false;
1020
1021 if (b == EXIT_BLOCK_PTR)
1022 return false;
1023
1024 if (b->pred->pred_next)
1025 return false;
1026
1027 /* If A ends by a statement causing exceptions or something similar, we
1028 cannot merge the blocks. */
1029 stmt = last_stmt (a);
1030 if (stmt && stmt_ends_bb_p (stmt))
1031 return false;
1032
1033 /* Do not allow a block with only a non-local label to be merged. */
1034 if (stmt && TREE_CODE (stmt) == LABEL_EXPR
1035 && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
1036 return false;
1037
1038 /* There may be no phi nodes at the start of b. Most of these degenerate
1039 phi nodes should be cleaned up by kill_redundant_phi_nodes. */
1040 if (phi_nodes (b))
1041 return false;
1042
1043 /* Do not remove user labels. */
1044 for (bsi = bsi_start (b); !bsi_end_p (bsi); bsi_next (&bsi))
1045 {
1046 stmt = bsi_stmt (bsi);
1047 if (TREE_CODE (stmt) != LABEL_EXPR)
1048 break;
1049 if (!DECL_ARTIFICIAL (LABEL_EXPR_LABEL (stmt)))
1050 return false;
1051 }
1052
1053 return true;
1054 }
1055
1056
1057 /* Merge block B into block A. */
1058
1059 static void
1060 tree_merge_blocks (basic_block a, basic_block b)
1061 {
1062 block_stmt_iterator bsi;
1063 tree_stmt_iterator last;
1064
1065 if (dump_file)
1066 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1067
1068 /* Ensure that B follows A. */
1069 move_block_after (b, a);
1070
1071 gcc_assert (a->succ->flags & EDGE_FALLTHRU);
1072 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1073
1074 /* Remove labels from B and set bb_for_stmt to A for other statements. */
1075 for (bsi = bsi_start (b); !bsi_end_p (bsi);)
1076 {
1077 if (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
1078 bsi_remove (&bsi);
1079 else
1080 {
1081 set_bb_for_stmt (bsi_stmt (bsi), a);
1082 bsi_next (&bsi);
1083 }
1084 }
1085
1086 /* Merge the chains. */
1087 last = tsi_last (a->stmt_list);
1088 tsi_link_after (&last, b->stmt_list, TSI_NEW_STMT);
1089 b->stmt_list = NULL;
1090 }
1091
1092
1093 /* Walk the function tree removing unnecessary statements.
1094
1095 * Empty statement nodes are removed
1096
1097 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1098
1099 * Unnecessary COND_EXPRs are removed
1100
1101 * Some unnecessary BIND_EXPRs are removed
1102
1103 Clearly more work could be done. The trick is doing the analysis
1104 and removal fast enough to be a net improvement in compile times.
1105
1106 Note that when we remove a control structure such as a COND_EXPR
1107 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1108 to ensure we eliminate all the useless code. */
1109
1110 struct rus_data
1111 {
1112 tree *last_goto;
1113 bool repeat;
1114 bool may_throw;
1115 bool may_branch;
1116 bool has_label;
1117 };
1118
1119 static void remove_useless_stmts_1 (tree *, struct rus_data *);
1120
1121 static bool
1122 remove_useless_stmts_warn_notreached (tree stmt)
1123 {
1124 if (EXPR_HAS_LOCATION (stmt))
1125 {
1126 location_t loc = EXPR_LOCATION (stmt);
1127 warning ("%Hwill never be executed", &loc);
1128 return true;
1129 }
1130
1131 switch (TREE_CODE (stmt))
1132 {
1133 case STATEMENT_LIST:
1134 {
1135 tree_stmt_iterator i;
1136 for (i = tsi_start (stmt); !tsi_end_p (i); tsi_next (&i))
1137 if (remove_useless_stmts_warn_notreached (tsi_stmt (i)))
1138 return true;
1139 }
1140 break;
1141
1142 case COND_EXPR:
1143 if (remove_useless_stmts_warn_notreached (COND_EXPR_COND (stmt)))
1144 return true;
1145 if (remove_useless_stmts_warn_notreached (COND_EXPR_THEN (stmt)))
1146 return true;
1147 if (remove_useless_stmts_warn_notreached (COND_EXPR_ELSE (stmt)))
1148 return true;
1149 break;
1150
1151 case TRY_FINALLY_EXPR:
1152 case TRY_CATCH_EXPR:
1153 if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 0)))
1154 return true;
1155 if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 1)))
1156 return true;
1157 break;
1158
1159 case CATCH_EXPR:
1160 return remove_useless_stmts_warn_notreached (CATCH_BODY (stmt));
1161 case EH_FILTER_EXPR:
1162 return remove_useless_stmts_warn_notreached (EH_FILTER_FAILURE (stmt));
1163 case BIND_EXPR:
1164 return remove_useless_stmts_warn_notreached (BIND_EXPR_BLOCK (stmt));
1165
1166 default:
1167 /* Not a live container. */
1168 break;
1169 }
1170
1171 return false;
1172 }
1173
1174 static void
1175 remove_useless_stmts_cond (tree *stmt_p, struct rus_data *data)
1176 {
1177 tree then_clause, else_clause, cond;
1178 bool save_has_label, then_has_label, else_has_label;
1179
1180 save_has_label = data->has_label;
1181 data->has_label = false;
1182 data->last_goto = NULL;
1183
1184 remove_useless_stmts_1 (&COND_EXPR_THEN (*stmt_p), data);
1185
1186 then_has_label = data->has_label;
1187 data->has_label = false;
1188 data->last_goto = NULL;
1189
1190 remove_useless_stmts_1 (&COND_EXPR_ELSE (*stmt_p), data);
1191
1192 else_has_label = data->has_label;
1193 data->has_label = save_has_label | then_has_label | else_has_label;
1194
1195 fold_stmt (stmt_p);
1196 then_clause = COND_EXPR_THEN (*stmt_p);
1197 else_clause = COND_EXPR_ELSE (*stmt_p);
1198 cond = COND_EXPR_COND (*stmt_p);
1199
1200 /* If neither arm does anything at all, we can remove the whole IF. */
1201 if (!TREE_SIDE_EFFECTS (then_clause) && !TREE_SIDE_EFFECTS (else_clause))
1202 {
1203 *stmt_p = build_empty_stmt ();
1204 data->repeat = true;
1205 }
1206
1207 /* If there are no reachable statements in an arm, then we can
1208 zap the entire conditional. */
1209 else if (integer_nonzerop (cond) && !else_has_label)
1210 {
1211 if (warn_notreached)
1212 remove_useless_stmts_warn_notreached (else_clause);
1213 *stmt_p = then_clause;
1214 data->repeat = true;
1215 }
1216 else if (integer_zerop (cond) && !then_has_label)
1217 {
1218 if (warn_notreached)
1219 remove_useless_stmts_warn_notreached (then_clause);
1220 *stmt_p = else_clause;
1221 data->repeat = true;
1222 }
1223
1224 /* Check a couple of simple things on then/else with single stmts. */
1225 else
1226 {
1227 tree then_stmt = expr_only (then_clause);
1228 tree else_stmt = expr_only (else_clause);
1229
1230 /* Notice branches to a common destination. */
1231 if (then_stmt && else_stmt
1232 && TREE_CODE (then_stmt) == GOTO_EXPR
1233 && TREE_CODE (else_stmt) == GOTO_EXPR
1234 && (GOTO_DESTINATION (then_stmt) == GOTO_DESTINATION (else_stmt)))
1235 {
1236 *stmt_p = then_stmt;
1237 data->repeat = true;
1238 }
1239
1240 /* If the THEN/ELSE clause merely assigns a value to a variable or
1241 parameter which is already known to contain that value, then
1242 remove the useless THEN/ELSE clause. */
1243 else if (TREE_CODE (cond) == VAR_DECL || TREE_CODE (cond) == PARM_DECL)
1244 {
1245 if (else_stmt
1246 && TREE_CODE (else_stmt) == MODIFY_EXPR
1247 && TREE_OPERAND (else_stmt, 0) == cond
1248 && integer_zerop (TREE_OPERAND (else_stmt, 1)))
1249 COND_EXPR_ELSE (*stmt_p) = alloc_stmt_list ();
1250 }
1251 else if ((TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
1252 && (TREE_CODE (TREE_OPERAND (cond, 0)) == VAR_DECL
1253 || TREE_CODE (TREE_OPERAND (cond, 0)) == PARM_DECL)
1254 && TREE_CONSTANT (TREE_OPERAND (cond, 1)))
1255 {
1256 tree stmt = (TREE_CODE (cond) == EQ_EXPR
1257 ? then_stmt : else_stmt);
1258 tree *location = (TREE_CODE (cond) == EQ_EXPR
1259 ? &COND_EXPR_THEN (*stmt_p)
1260 : &COND_EXPR_ELSE (*stmt_p));
1261
1262 if (stmt
1263 && TREE_CODE (stmt) == MODIFY_EXPR
1264 && TREE_OPERAND (stmt, 0) == TREE_OPERAND (cond, 0)
1265 && TREE_OPERAND (stmt, 1) == TREE_OPERAND (cond, 1))
1266 *location = alloc_stmt_list ();
1267 }
1268 }
1269
1270 /* Protect GOTOs in the arm of COND_EXPRs from being removed. They
1271 would be re-introduced during lowering. */
1272 data->last_goto = NULL;
1273 }
1274
1275
1276 static void
1277 remove_useless_stmts_tf (tree *stmt_p, struct rus_data *data)
1278 {
1279 bool save_may_branch, save_may_throw;
1280 bool this_may_branch, this_may_throw;
1281
1282 /* Collect may_branch and may_throw information for the body only. */
1283 save_may_branch = data->may_branch;
1284 save_may_throw = data->may_throw;
1285 data->may_branch = false;
1286 data->may_throw = false;
1287 data->last_goto = NULL;
1288
1289 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
1290
1291 this_may_branch = data->may_branch;
1292 this_may_throw = data->may_throw;
1293 data->may_branch |= save_may_branch;
1294 data->may_throw |= save_may_throw;
1295 data->last_goto = NULL;
1296
1297 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
1298
1299 /* If the body is empty, then we can emit the FINALLY block without
1300 the enclosing TRY_FINALLY_EXPR. */
1301 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 0)))
1302 {
1303 *stmt_p = TREE_OPERAND (*stmt_p, 1);
1304 data->repeat = true;
1305 }
1306
1307 /* If the handler is empty, then we can emit the TRY block without
1308 the enclosing TRY_FINALLY_EXPR. */
1309 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
1310 {
1311 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1312 data->repeat = true;
1313 }
1314
1315 /* If the body neither throws, nor branches, then we can safely
1316 string the TRY and FINALLY blocks together. */
1317 else if (!this_may_branch && !this_may_throw)
1318 {
1319 tree stmt = *stmt_p;
1320 *stmt_p = TREE_OPERAND (stmt, 0);
1321 append_to_statement_list (TREE_OPERAND (stmt, 1), stmt_p);
1322 data->repeat = true;
1323 }
1324 }
1325
1326
1327 static void
1328 remove_useless_stmts_tc (tree *stmt_p, struct rus_data *data)
1329 {
1330 bool save_may_throw, this_may_throw;
1331 tree_stmt_iterator i;
1332 tree stmt;
1333
1334 /* Collect may_throw information for the body only. */
1335 save_may_throw = data->may_throw;
1336 data->may_throw = false;
1337 data->last_goto = NULL;
1338
1339 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
1340
1341 this_may_throw = data->may_throw;
1342 data->may_throw = save_may_throw;
1343
1344 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1345 if (!this_may_throw)
1346 {
1347 if (warn_notreached)
1348 remove_useless_stmts_warn_notreached (TREE_OPERAND (*stmt_p, 1));
1349 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1350 data->repeat = true;
1351 return;
1352 }
1353
1354 /* Process the catch clause specially. We may be able to tell that
1355 no exceptions propagate past this point. */
1356
1357 this_may_throw = true;
1358 i = tsi_start (TREE_OPERAND (*stmt_p, 1));
1359 stmt = tsi_stmt (i);
1360 data->last_goto = NULL;
1361
1362 switch (TREE_CODE (stmt))
1363 {
1364 case CATCH_EXPR:
1365 for (; !tsi_end_p (i); tsi_next (&i))
1366 {
1367 stmt = tsi_stmt (i);
1368 /* If we catch all exceptions, then the body does not
1369 propagate exceptions past this point. */
1370 if (CATCH_TYPES (stmt) == NULL)
1371 this_may_throw = false;
1372 data->last_goto = NULL;
1373 remove_useless_stmts_1 (&CATCH_BODY (stmt), data);
1374 }
1375 break;
1376
1377 case EH_FILTER_EXPR:
1378 if (EH_FILTER_MUST_NOT_THROW (stmt))
1379 this_may_throw = false;
1380 else if (EH_FILTER_TYPES (stmt) == NULL)
1381 this_may_throw = false;
1382 remove_useless_stmts_1 (&EH_FILTER_FAILURE (stmt), data);
1383 break;
1384
1385 default:
1386 /* Otherwise this is a cleanup. */
1387 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
1388
1389 /* If the cleanup is empty, then we can emit the TRY block without
1390 the enclosing TRY_CATCH_EXPR. */
1391 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
1392 {
1393 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1394 data->repeat = true;
1395 }
1396 break;
1397 }
1398 data->may_throw |= this_may_throw;
1399 }
1400
1401
1402 static void
1403 remove_useless_stmts_bind (tree *stmt_p, struct rus_data *data)
1404 {
1405 tree block;
1406
1407 /* First remove anything underneath the BIND_EXPR. */
1408 remove_useless_stmts_1 (&BIND_EXPR_BODY (*stmt_p), data);
1409
1410 /* If the BIND_EXPR has no variables, then we can pull everything
1411 up one level and remove the BIND_EXPR, unless this is the toplevel
1412 BIND_EXPR for the current function or an inlined function.
1413
1414 When this situation occurs we will want to apply this
1415 optimization again. */
1416 block = BIND_EXPR_BLOCK (*stmt_p);
1417 if (BIND_EXPR_VARS (*stmt_p) == NULL_TREE
1418 && *stmt_p != DECL_SAVED_TREE (current_function_decl)
1419 && (! block
1420 || ! BLOCK_ABSTRACT_ORIGIN (block)
1421 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
1422 != FUNCTION_DECL)))
1423 {
1424 *stmt_p = BIND_EXPR_BODY (*stmt_p);
1425 data->repeat = true;
1426 }
1427 }
1428
1429
1430 static void
1431 remove_useless_stmts_goto (tree *stmt_p, struct rus_data *data)
1432 {
1433 tree dest = GOTO_DESTINATION (*stmt_p);
1434
1435 data->may_branch = true;
1436 data->last_goto = NULL;
1437
1438 /* Record the last goto expr, so that we can delete it if unnecessary. */
1439 if (TREE_CODE (dest) == LABEL_DECL)
1440 data->last_goto = stmt_p;
1441 }
1442
1443
1444 static void
1445 remove_useless_stmts_label (tree *stmt_p, struct rus_data *data)
1446 {
1447 tree label = LABEL_EXPR_LABEL (*stmt_p);
1448
1449 data->has_label = true;
1450
1451 /* We do want to jump across non-local label receiver code. */
1452 if (DECL_NONLOCAL (label))
1453 data->last_goto = NULL;
1454
1455 else if (data->last_goto && GOTO_DESTINATION (*data->last_goto) == label)
1456 {
1457 *data->last_goto = build_empty_stmt ();
1458 data->repeat = true;
1459 }
1460
1461 /* ??? Add something here to delete unused labels. */
1462 }
1463
1464
1465 /* If the function is "const" or "pure", then clear TREE_SIDE_EFFECTS on its
1466 decl. This allows us to eliminate redundant or useless
1467 calls to "const" functions.
1468
1469 Gimplifier already does the same operation, but we may notice functions
1470 being const and pure once their calls has been gimplified, so we need
1471 to update the flag. */
1472
1473 static void
1474 update_call_expr_flags (tree call)
1475 {
1476 tree decl = get_callee_fndecl (call);
1477 if (!decl)
1478 return;
1479 if (call_expr_flags (call) & (ECF_CONST | ECF_PURE))
1480 TREE_SIDE_EFFECTS (call) = 0;
1481 if (TREE_NOTHROW (decl))
1482 TREE_NOTHROW (call) = 1;
1483 }
1484
1485
1486 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1487
1488 void
1489 notice_special_calls (tree t)
1490 {
1491 int flags = call_expr_flags (t);
1492
1493 if (flags & ECF_MAY_BE_ALLOCA)
1494 current_function_calls_alloca = true;
1495 if (flags & ECF_RETURNS_TWICE)
1496 current_function_calls_setjmp = true;
1497 }
1498
1499
1500 /* Clear flags set by notice_special_calls. Used by dead code removal
1501 to update the flags. */
1502
1503 void
1504 clear_special_calls (void)
1505 {
1506 current_function_calls_alloca = false;
1507 current_function_calls_setjmp = false;
1508 }
1509
1510
1511 static void
1512 remove_useless_stmts_1 (tree *tp, struct rus_data *data)
1513 {
1514 tree t = *tp, op;
1515
1516 switch (TREE_CODE (t))
1517 {
1518 case COND_EXPR:
1519 remove_useless_stmts_cond (tp, data);
1520 break;
1521
1522 case TRY_FINALLY_EXPR:
1523 remove_useless_stmts_tf (tp, data);
1524 break;
1525
1526 case TRY_CATCH_EXPR:
1527 remove_useless_stmts_tc (tp, data);
1528 break;
1529
1530 case BIND_EXPR:
1531 remove_useless_stmts_bind (tp, data);
1532 break;
1533
1534 case GOTO_EXPR:
1535 remove_useless_stmts_goto (tp, data);
1536 break;
1537
1538 case LABEL_EXPR:
1539 remove_useless_stmts_label (tp, data);
1540 break;
1541
1542 case RETURN_EXPR:
1543 fold_stmt (tp);
1544 data->last_goto = NULL;
1545 data->may_branch = true;
1546 break;
1547
1548 case CALL_EXPR:
1549 fold_stmt (tp);
1550 data->last_goto = NULL;
1551 notice_special_calls (t);
1552 update_call_expr_flags (t);
1553 if (tree_could_throw_p (t))
1554 data->may_throw = true;
1555 break;
1556
1557 case MODIFY_EXPR:
1558 data->last_goto = NULL;
1559 fold_stmt (tp);
1560 op = get_call_expr_in (t);
1561 if (op)
1562 {
1563 update_call_expr_flags (op);
1564 notice_special_calls (op);
1565 }
1566 if (tree_could_throw_p (t))
1567 data->may_throw = true;
1568 break;
1569
1570 case STATEMENT_LIST:
1571 {
1572 tree_stmt_iterator i = tsi_start (t);
1573 while (!tsi_end_p (i))
1574 {
1575 t = tsi_stmt (i);
1576 if (IS_EMPTY_STMT (t))
1577 {
1578 tsi_delink (&i);
1579 continue;
1580 }
1581
1582 remove_useless_stmts_1 (tsi_stmt_ptr (i), data);
1583
1584 t = tsi_stmt (i);
1585 if (TREE_CODE (t) == STATEMENT_LIST)
1586 {
1587 tsi_link_before (&i, t, TSI_SAME_STMT);
1588 tsi_delink (&i);
1589 }
1590 else
1591 tsi_next (&i);
1592 }
1593 }
1594 break;
1595 case SWITCH_EXPR:
1596 fold_stmt (tp);
1597 data->last_goto = NULL;
1598 break;
1599
1600 default:
1601 data->last_goto = NULL;
1602 break;
1603 }
1604 }
1605
1606 static void
1607 remove_useless_stmts (void)
1608 {
1609 struct rus_data data;
1610
1611 clear_special_calls ();
1612
1613 do
1614 {
1615 memset (&data, 0, sizeof (data));
1616 remove_useless_stmts_1 (&DECL_SAVED_TREE (current_function_decl), &data);
1617 }
1618 while (data.repeat);
1619 }
1620
1621
1622 struct tree_opt_pass pass_remove_useless_stmts =
1623 {
1624 "useless", /* name */
1625 NULL, /* gate */
1626 remove_useless_stmts, /* execute */
1627 NULL, /* sub */
1628 NULL, /* next */
1629 0, /* static_pass_number */
1630 0, /* tv_id */
1631 PROP_gimple_any, /* properties_required */
1632 0, /* properties_provided */
1633 0, /* properties_destroyed */
1634 0, /* todo_flags_start */
1635 TODO_dump_func, /* todo_flags_finish */
1636 0 /* letter */
1637 };
1638
1639
1640 /* Remove obviously useless statements in basic block BB. */
1641
1642 static void
1643 cfg_remove_useless_stmts_bb (basic_block bb)
1644 {
1645 block_stmt_iterator bsi;
1646 tree stmt = NULL_TREE;
1647 tree cond, var = NULL_TREE, val = NULL_TREE;
1648 struct var_ann_d *ann;
1649
1650 /* Check whether we come here from a condition, and if so, get the
1651 condition. */
1652 if (!bb->pred
1653 || bb->pred->pred_next
1654 || !(bb->pred->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
1655 return;
1656
1657 cond = COND_EXPR_COND (last_stmt (bb->pred->src));
1658
1659 if (TREE_CODE (cond) == VAR_DECL || TREE_CODE (cond) == PARM_DECL)
1660 {
1661 var = cond;
1662 val = (bb->pred->flags & EDGE_FALSE_VALUE
1663 ? boolean_false_node : boolean_true_node);
1664 }
1665 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR
1666 && (TREE_CODE (TREE_OPERAND (cond, 0)) == VAR_DECL
1667 || TREE_CODE (TREE_OPERAND (cond, 0)) == PARM_DECL))
1668 {
1669 var = TREE_OPERAND (cond, 0);
1670 val = (bb->pred->flags & EDGE_FALSE_VALUE
1671 ? boolean_true_node : boolean_false_node);
1672 }
1673 else
1674 {
1675 if (bb->pred->flags & EDGE_FALSE_VALUE)
1676 cond = invert_truthvalue (cond);
1677 if (TREE_CODE (cond) == EQ_EXPR
1678 && (TREE_CODE (TREE_OPERAND (cond, 0)) == VAR_DECL
1679 || TREE_CODE (TREE_OPERAND (cond, 0)) == PARM_DECL)
1680 && (TREE_CODE (TREE_OPERAND (cond, 1)) == VAR_DECL
1681 || TREE_CODE (TREE_OPERAND (cond, 1)) == PARM_DECL
1682 || TREE_CONSTANT (TREE_OPERAND (cond, 1))))
1683 {
1684 var = TREE_OPERAND (cond, 0);
1685 val = TREE_OPERAND (cond, 1);
1686 }
1687 else
1688 return;
1689 }
1690
1691 /* Only work for normal local variables. */
1692 ann = var_ann (var);
1693 if (!ann
1694 || ann->may_aliases
1695 || TREE_ADDRESSABLE (var))
1696 return;
1697
1698 if (! TREE_CONSTANT (val))
1699 {
1700 ann = var_ann (val);
1701 if (!ann
1702 || ann->may_aliases
1703 || TREE_ADDRESSABLE (val))
1704 return;
1705 }
1706
1707 /* Ignore floating point variables, since comparison behaves weird for
1708 them. */
1709 if (FLOAT_TYPE_P (TREE_TYPE (var)))
1710 return;
1711
1712 for (bsi = bsi_start (bb); !bsi_end_p (bsi);)
1713 {
1714 stmt = bsi_stmt (bsi);
1715
1716 /* If the THEN/ELSE clause merely assigns a value to a variable/parameter
1717 which is already known to contain that value, then remove the useless
1718 THEN/ELSE clause. */
1719 if (TREE_CODE (stmt) == MODIFY_EXPR
1720 && TREE_OPERAND (stmt, 0) == var
1721 && operand_equal_p (val, TREE_OPERAND (stmt, 1), 0))
1722 {
1723 bsi_remove (&bsi);
1724 continue;
1725 }
1726
1727 /* Invalidate the var if we encounter something that could modify it.
1728 Likewise for the value it was previously set to. Note that we only
1729 consider values that are either a VAR_DECL or PARM_DECL so we
1730 can test for conflict very simply. */
1731 if (TREE_CODE (stmt) == ASM_EXPR
1732 || (TREE_CODE (stmt) == MODIFY_EXPR
1733 && (TREE_OPERAND (stmt, 0) == var
1734 || TREE_OPERAND (stmt, 0) == val)))
1735 return;
1736
1737 bsi_next (&bsi);
1738 }
1739 }
1740
1741
1742 /* A CFG-aware version of remove_useless_stmts. */
1743
1744 void
1745 cfg_remove_useless_stmts (void)
1746 {
1747 basic_block bb;
1748
1749 #ifdef ENABLE_CHECKING
1750 verify_flow_info ();
1751 #endif
1752
1753 FOR_EACH_BB (bb)
1754 {
1755 cfg_remove_useless_stmts_bb (bb);
1756 }
1757 }
1758
1759
1760 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1761
1762 static void
1763 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1764 {
1765 tree phi;
1766
1767 /* Since this block is no longer reachable, we can just delete all
1768 of its PHI nodes. */
1769 phi = phi_nodes (bb);
1770 while (phi)
1771 {
1772 tree next = PHI_CHAIN (phi);
1773 remove_phi_node (phi, NULL_TREE, bb);
1774 phi = next;
1775 }
1776
1777 /* Remove edges to BB's successors. */
1778 while (bb->succ != NULL)
1779 ssa_remove_edge (bb->succ);
1780 }
1781
1782
1783 /* Remove statements of basic block BB. */
1784
1785 static void
1786 remove_bb (basic_block bb)
1787 {
1788 block_stmt_iterator i;
1789 source_locus loc = 0;
1790
1791 if (dump_file)
1792 {
1793 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1794 if (dump_flags & TDF_DETAILS)
1795 {
1796 dump_bb (bb, dump_file, 0);
1797 fprintf (dump_file, "\n");
1798 }
1799 }
1800
1801 /* Remove all the instructions in the block. */
1802 for (i = bsi_start (bb); !bsi_end_p (i); bsi_remove (&i))
1803 {
1804 tree stmt = bsi_stmt (i);
1805
1806 set_bb_for_stmt (stmt, NULL);
1807
1808 /* Don't warn for removed gotos. Gotos are often removed due to
1809 jump threading, thus resulting in bogus warnings. Not great,
1810 since this way we lose warnings for gotos in the original
1811 program that are indeed unreachable. */
1812 if (TREE_CODE (stmt) != GOTO_EXPR && EXPR_HAS_LOCATION (stmt) && !loc)
1813 #ifdef USE_MAPPED_LOCATION
1814 loc = EXPR_LOCATION (stmt);
1815 #else
1816 loc = EXPR_LOCUS (stmt);
1817 #endif
1818 }
1819
1820 /* If requested, give a warning that the first statement in the
1821 block is unreachable. We walk statements backwards in the
1822 loop above, so the last statement we process is the first statement
1823 in the block. */
1824 if (warn_notreached && loc)
1825 #ifdef USE_MAPPED_LOCATION
1826 warning ("%Hwill never be executed", &loc);
1827 #else
1828 warning ("%Hwill never be executed", loc);
1829 #endif
1830
1831 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1832 }
1833
1834
1835 /* Examine BB to determine if it is a forwarding block (a block which only
1836 transfers control to a new destination). If BB is a forwarding block,
1837 then return the edge leading to the ultimate destination. */
1838
1839 edge
1840 tree_block_forwards_to (basic_block bb)
1841 {
1842 block_stmt_iterator bsi;
1843 bb_ann_t ann = bb_ann (bb);
1844 tree stmt;
1845
1846 /* If this block is not forwardable, then avoid useless work. */
1847 if (! ann->forwardable)
1848 return NULL;
1849
1850 /* Set this block to not be forwardable. This prevents infinite loops since
1851 any block currently under examination is considered non-forwardable. */
1852 ann->forwardable = 0;
1853
1854 /* No forwarding is possible if this block is a special block (ENTRY/EXIT),
1855 this block has more than one successor, this block's single successor is
1856 reached via an abnormal edge, this block has phi nodes, or this block's
1857 single successor has phi nodes. */
1858 if (bb == EXIT_BLOCK_PTR
1859 || bb == ENTRY_BLOCK_PTR
1860 || !bb->succ
1861 || bb->succ->succ_next
1862 || bb->succ->dest == EXIT_BLOCK_PTR
1863 || (bb->succ->flags & EDGE_ABNORMAL) != 0
1864 || phi_nodes (bb)
1865 || phi_nodes (bb->succ->dest))
1866 return NULL;
1867
1868 /* Walk past any labels at the start of this block. */
1869 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1870 {
1871 stmt = bsi_stmt (bsi);
1872 if (TREE_CODE (stmt) != LABEL_EXPR)
1873 break;
1874 }
1875
1876 /* If we reached the end of this block we may be able to optimize this
1877 case. */
1878 if (bsi_end_p (bsi))
1879 {
1880 edge dest;
1881
1882 /* Recursive call to pick up chains of forwarding blocks. */
1883 dest = tree_block_forwards_to (bb->succ->dest);
1884
1885 /* If none found, we forward to bb->succ at minimum. */
1886 if (!dest)
1887 dest = bb->succ;
1888
1889 ann->forwardable = 1;
1890 return dest;
1891 }
1892
1893 /* No forwarding possible. */
1894 return NULL;
1895 }
1896
1897
1898 /* Try to remove superfluous control structures. */
1899
1900 static bool
1901 cleanup_control_flow (void)
1902 {
1903 basic_block bb;
1904 block_stmt_iterator bsi;
1905 bool retval = false;
1906 tree stmt;
1907
1908 FOR_EACH_BB (bb)
1909 {
1910 bsi = bsi_last (bb);
1911
1912 if (bsi_end_p (bsi))
1913 continue;
1914
1915 stmt = bsi_stmt (bsi);
1916 if (TREE_CODE (stmt) == COND_EXPR
1917 || TREE_CODE (stmt) == SWITCH_EXPR)
1918 retval |= cleanup_control_expr_graph (bb, bsi);
1919 }
1920 return retval;
1921 }
1922
1923
1924 /* Disconnect an unreachable block in the control expression starting
1925 at block BB. */
1926
1927 static bool
1928 cleanup_control_expr_graph (basic_block bb, block_stmt_iterator bsi)
1929 {
1930 edge taken_edge;
1931 bool retval = false;
1932 tree expr = bsi_stmt (bsi), val;
1933
1934 if (bb->succ->succ_next)
1935 {
1936 edge e, next;
1937
1938 switch (TREE_CODE (expr))
1939 {
1940 case COND_EXPR:
1941 val = COND_EXPR_COND (expr);
1942 break;
1943
1944 case SWITCH_EXPR:
1945 val = SWITCH_COND (expr);
1946 if (TREE_CODE (val) != INTEGER_CST)
1947 return false;
1948 break;
1949
1950 default:
1951 gcc_unreachable ();
1952 }
1953
1954 taken_edge = find_taken_edge (bb, val);
1955 if (!taken_edge)
1956 return false;
1957
1958 /* Remove all the edges except the one that is always executed. */
1959 for (e = bb->succ; e; e = next)
1960 {
1961 next = e->succ_next;
1962 if (e != taken_edge)
1963 {
1964 taken_edge->probability += e->probability;
1965 taken_edge->count += e->count;
1966 ssa_remove_edge (e);
1967 retval = true;
1968 }
1969 }
1970 if (taken_edge->probability > REG_BR_PROB_BASE)
1971 taken_edge->probability = REG_BR_PROB_BASE;
1972 }
1973 else
1974 taken_edge = bb->succ;
1975
1976 bsi_remove (&bsi);
1977 taken_edge->flags = EDGE_FALLTHRU;
1978
1979 /* We removed some paths from the cfg. */
1980 if (dom_computed[CDI_DOMINATORS] >= DOM_CONS_OK)
1981 dom_computed[CDI_DOMINATORS] = DOM_CONS_OK;
1982
1983 return retval;
1984 }
1985
1986
1987 /* Given a control block BB and a predicate VAL, return the edge that
1988 will be taken out of the block. If VAL does not match a unique
1989 edge, NULL is returned. */
1990
1991 edge
1992 find_taken_edge (basic_block bb, tree val)
1993 {
1994 tree stmt;
1995
1996 stmt = last_stmt (bb);
1997
1998 gcc_assert (stmt);
1999 gcc_assert (is_ctrl_stmt (stmt));
2000
2001 /* If VAL is a predicate of the form N RELOP N, where N is an
2002 SSA_NAME, we can always determine its truth value (except when
2003 doing floating point comparisons that may involve NaNs). */
2004 if (val
2005 && TREE_CODE_CLASS (TREE_CODE (val)) == '<'
2006 && TREE_OPERAND (val, 0) == TREE_OPERAND (val, 1)
2007 && TREE_CODE (TREE_OPERAND (val, 0)) == SSA_NAME
2008 && (TREE_CODE (TREE_TYPE (TREE_OPERAND (val, 0))) != REAL_TYPE
2009 || !HONOR_NANS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (val, 0))))))
2010 {
2011 enum tree_code code = TREE_CODE (val);
2012
2013 if (code == EQ_EXPR || code == LE_EXPR || code == GE_EXPR)
2014 val = boolean_true_node;
2015 else if (code == LT_EXPR || code == GT_EXPR || code == NE_EXPR)
2016 val = boolean_false_node;
2017 }
2018
2019 /* If VAL is not a constant, we can't determine which edge might
2020 be taken. */
2021 if (val == NULL || !really_constant_p (val))
2022 return NULL;
2023
2024 if (TREE_CODE (stmt) == COND_EXPR)
2025 return find_taken_edge_cond_expr (bb, val);
2026
2027 if (TREE_CODE (stmt) == SWITCH_EXPR)
2028 return find_taken_edge_switch_expr (bb, val);
2029
2030 return bb->succ;
2031 }
2032
2033
2034 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2035 statement, determine which of the two edges will be taken out of the
2036 block. Return NULL if either edge may be taken. */
2037
2038 static edge
2039 find_taken_edge_cond_expr (basic_block bb, tree val)
2040 {
2041 edge true_edge, false_edge;
2042
2043 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2044
2045 /* If both edges of the branch lead to the same basic block, it doesn't
2046 matter which edge is taken. */
2047 if (true_edge->dest == false_edge->dest)
2048 return true_edge;
2049
2050 /* Otherwise, try to determine which branch of the if() will be taken.
2051 If VAL is a constant but it can't be reduced to a 0 or a 1, then
2052 we don't really know which edge will be taken at runtime. This
2053 may happen when comparing addresses (e.g., if (&var1 == 4)). */
2054 if (integer_nonzerop (val))
2055 return true_edge;
2056 else if (integer_zerop (val))
2057 return false_edge;
2058 else
2059 return NULL;
2060 }
2061
2062
2063 /* Given a constant value VAL and the entry block BB to a SWITCH_EXPR
2064 statement, determine which edge will be taken out of the block. Return
2065 NULL if any edge may be taken. */
2066
2067 static edge
2068 find_taken_edge_switch_expr (basic_block bb, tree val)
2069 {
2070 tree switch_expr, taken_case;
2071 basic_block dest_bb;
2072 edge e;
2073
2074 if (TREE_CODE (val) != INTEGER_CST)
2075 return NULL;
2076
2077 switch_expr = last_stmt (bb);
2078 taken_case = find_case_label_for_value (switch_expr, val);
2079 dest_bb = label_to_block (CASE_LABEL (taken_case));
2080
2081 e = find_edge (bb, dest_bb);
2082 gcc_assert (e);
2083 return e;
2084 }
2085
2086
2087 /* Return the CASE_LABEL_EXPR that SWITCH_EXPR will take for VAL.
2088 We can make optimal use here of the fact that the case labels are
2089 sorted: We can do a binary search for a case matching VAL. */
2090
2091 static tree
2092 find_case_label_for_value (tree switch_expr, tree val)
2093 {
2094 tree vec = SWITCH_LABELS (switch_expr);
2095 size_t low, high, n = TREE_VEC_LENGTH (vec);
2096 tree default_case = TREE_VEC_ELT (vec, n - 1);
2097
2098 for (low = -1, high = n - 1; high - low > 1; )
2099 {
2100 size_t i = (high + low) / 2;
2101 tree t = TREE_VEC_ELT (vec, i);
2102 int cmp;
2103
2104 /* Cache the result of comparing CASE_LOW and val. */
2105 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2106
2107 if (cmp > 0)
2108 high = i;
2109 else
2110 low = i;
2111
2112 if (CASE_HIGH (t) == NULL)
2113 {
2114 /* A singe-valued case label. */
2115 if (cmp == 0)
2116 return t;
2117 }
2118 else
2119 {
2120 /* A case range. We can only handle integer ranges. */
2121 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2122 return t;
2123 }
2124 }
2125
2126 return default_case;
2127 }
2128
2129
2130 /* If all the PHI nodes in DEST have alternatives for E1 and E2 and
2131 those alternatives are equal in each of the PHI nodes, then return
2132 true, else return false. */
2133
2134 static bool
2135 phi_alternatives_equal (basic_block dest, edge e1, edge e2)
2136 {
2137 tree phi, val1, val2;
2138 int n1, n2;
2139
2140 for (phi = phi_nodes (dest); phi; phi = PHI_CHAIN (phi))
2141 {
2142 n1 = phi_arg_from_edge (phi, e1);
2143 n2 = phi_arg_from_edge (phi, e2);
2144
2145 gcc_assert (n1 >= 0);
2146 gcc_assert (n2 >= 0);
2147
2148 val1 = PHI_ARG_DEF (phi, n1);
2149 val2 = PHI_ARG_DEF (phi, n2);
2150
2151 if (!operand_equal_p (val1, val2, 0))
2152 return false;
2153 }
2154
2155 return true;
2156 }
2157
2158
2159 /*---------------------------------------------------------------------------
2160 Debugging functions
2161 ---------------------------------------------------------------------------*/
2162
2163 /* Dump tree-specific information of block BB to file OUTF. */
2164
2165 void
2166 tree_dump_bb (basic_block bb, FILE *outf, int indent)
2167 {
2168 dump_generic_bb (outf, bb, indent, TDF_VOPS);
2169 }
2170
2171
2172 /* Dump a basic block on stderr. */
2173
2174 void
2175 debug_tree_bb (basic_block bb)
2176 {
2177 dump_bb (bb, stderr, 0);
2178 }
2179
2180
2181 /* Dump basic block with index N on stderr. */
2182
2183 basic_block
2184 debug_tree_bb_n (int n)
2185 {
2186 debug_tree_bb (BASIC_BLOCK (n));
2187 return BASIC_BLOCK (n);
2188 }
2189
2190
2191 /* Dump the CFG on stderr.
2192
2193 FLAGS are the same used by the tree dumping functions
2194 (see TDF_* in tree.h). */
2195
2196 void
2197 debug_tree_cfg (int flags)
2198 {
2199 dump_tree_cfg (stderr, flags);
2200 }
2201
2202
2203 /* Dump the program showing basic block boundaries on the given FILE.
2204
2205 FLAGS are the same used by the tree dumping functions (see TDF_* in
2206 tree.h). */
2207
2208 void
2209 dump_tree_cfg (FILE *file, int flags)
2210 {
2211 if (flags & TDF_DETAILS)
2212 {
2213 const char *funcname
2214 = lang_hooks.decl_printable_name (current_function_decl, 2);
2215
2216 fputc ('\n', file);
2217 fprintf (file, ";; Function %s\n\n", funcname);
2218 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2219 n_basic_blocks, n_edges, last_basic_block);
2220
2221 brief_dump_cfg (file);
2222 fprintf (file, "\n");
2223 }
2224
2225 if (flags & TDF_STATS)
2226 dump_cfg_stats (file);
2227
2228 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2229 }
2230
2231
2232 /* Dump CFG statistics on FILE. */
2233
2234 void
2235 dump_cfg_stats (FILE *file)
2236 {
2237 static long max_num_merged_labels = 0;
2238 unsigned long size, total = 0;
2239 int n_edges;
2240 basic_block bb;
2241 const char * const fmt_str = "%-30s%-13s%12s\n";
2242 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2243 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2244 const char *funcname
2245 = lang_hooks.decl_printable_name (current_function_decl, 2);
2246
2247
2248 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2249
2250 fprintf (file, "---------------------------------------------------------\n");
2251 fprintf (file, fmt_str, "", " Number of ", "Memory");
2252 fprintf (file, fmt_str, "", " instances ", "used ");
2253 fprintf (file, "---------------------------------------------------------\n");
2254
2255 size = n_basic_blocks * sizeof (struct basic_block_def);
2256 total += size;
2257 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2258 SCALE (size), LABEL (size));
2259
2260 n_edges = 0;
2261 FOR_EACH_BB (bb)
2262 {
2263 edge e;
2264 for (e = bb->succ; e; e = e->succ_next)
2265 n_edges++;
2266 }
2267 size = n_edges * sizeof (struct edge_def);
2268 total += size;
2269 fprintf (file, fmt_str_1, "Edges", n_edges, SCALE (size), LABEL (size));
2270
2271 size = n_basic_blocks * sizeof (struct bb_ann_d);
2272 total += size;
2273 fprintf (file, fmt_str_1, "Basic block annotations", n_basic_blocks,
2274 SCALE (size), LABEL (size));
2275
2276 fprintf (file, "---------------------------------------------------------\n");
2277 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2278 LABEL (total));
2279 fprintf (file, "---------------------------------------------------------\n");
2280 fprintf (file, "\n");
2281
2282 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2283 max_num_merged_labels = cfg_stats.num_merged_labels;
2284
2285 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2286 cfg_stats.num_merged_labels, max_num_merged_labels);
2287
2288 fprintf (file, "\n");
2289 }
2290
2291
2292 /* Dump CFG statistics on stderr. Keep extern so that it's always
2293 linked in the final executable. */
2294
2295 void
2296 debug_cfg_stats (void)
2297 {
2298 dump_cfg_stats (stderr);
2299 }
2300
2301
2302 /* Dump the flowgraph to a .vcg FILE. */
2303
2304 static void
2305 tree_cfg2vcg (FILE *file)
2306 {
2307 edge e;
2308 basic_block bb;
2309 const char *funcname
2310 = lang_hooks.decl_printable_name (current_function_decl, 2);
2311
2312 /* Write the file header. */
2313 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2314 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2315 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2316
2317 /* Write blocks and edges. */
2318 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
2319 {
2320 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2321 e->dest->index);
2322
2323 if (e->flags & EDGE_FAKE)
2324 fprintf (file, " linestyle: dotted priority: 10");
2325 else
2326 fprintf (file, " linestyle: solid priority: 100");
2327
2328 fprintf (file, " }\n");
2329 }
2330 fputc ('\n', file);
2331
2332 FOR_EACH_BB (bb)
2333 {
2334 enum tree_code head_code, end_code;
2335 const char *head_name, *end_name;
2336 int head_line = 0;
2337 int end_line = 0;
2338 tree first = first_stmt (bb);
2339 tree last = last_stmt (bb);
2340
2341 if (first)
2342 {
2343 head_code = TREE_CODE (first);
2344 head_name = tree_code_name[head_code];
2345 head_line = get_lineno (first);
2346 }
2347 else
2348 head_name = "no-statement";
2349
2350 if (last)
2351 {
2352 end_code = TREE_CODE (last);
2353 end_name = tree_code_name[end_code];
2354 end_line = get_lineno (last);
2355 }
2356 else
2357 end_name = "no-statement";
2358
2359 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2360 bb->index, bb->index, head_name, head_line, end_name,
2361 end_line);
2362
2363 for (e = bb->succ; e; e = e->succ_next)
2364 {
2365 if (e->dest == EXIT_BLOCK_PTR)
2366 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2367 else
2368 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2369
2370 if (e->flags & EDGE_FAKE)
2371 fprintf (file, " priority: 10 linestyle: dotted");
2372 else
2373 fprintf (file, " priority: 100 linestyle: solid");
2374
2375 fprintf (file, " }\n");
2376 }
2377
2378 if (bb->next_bb != EXIT_BLOCK_PTR)
2379 fputc ('\n', file);
2380 }
2381
2382 fputs ("}\n\n", file);
2383 }
2384
2385
2386
2387 /*---------------------------------------------------------------------------
2388 Miscellaneous helpers
2389 ---------------------------------------------------------------------------*/
2390
2391 /* Return true if T represents a stmt that always transfers control. */
2392
2393 bool
2394 is_ctrl_stmt (tree t)
2395 {
2396 return (TREE_CODE (t) == COND_EXPR
2397 || TREE_CODE (t) == SWITCH_EXPR
2398 || TREE_CODE (t) == GOTO_EXPR
2399 || TREE_CODE (t) == RETURN_EXPR
2400 || TREE_CODE (t) == RESX_EXPR);
2401 }
2402
2403
2404 /* Return true if T is a statement that may alter the flow of control
2405 (e.g., a call to a non-returning function). */
2406
2407 bool
2408 is_ctrl_altering_stmt (tree t)
2409 {
2410 tree call;
2411
2412 gcc_assert (t);
2413 call = get_call_expr_in (t);
2414 if (call)
2415 {
2416 /* A non-pure/const CALL_EXPR alters flow control if the current
2417 function has nonlocal labels. */
2418 if (TREE_SIDE_EFFECTS (call) && current_function_has_nonlocal_label)
2419 return true;
2420
2421 /* A CALL_EXPR also alters control flow if it does not return. */
2422 if (call_expr_flags (call) & (ECF_NORETURN | ECF_LONGJMP))
2423 return true;
2424 }
2425
2426 /* If a statement can throw, it alters control flow. */
2427 return tree_can_throw_internal (t);
2428 }
2429
2430
2431 /* Return true if T is a computed goto. */
2432
2433 bool
2434 computed_goto_p (tree t)
2435 {
2436 return (TREE_CODE (t) == GOTO_EXPR
2437 && TREE_CODE (GOTO_DESTINATION (t)) != LABEL_DECL);
2438 }
2439
2440
2441 /* Checks whether EXPR is a simple local goto. */
2442
2443 bool
2444 simple_goto_p (tree expr)
2445 {
2446 return (TREE_CODE (expr) == GOTO_EXPR
2447 && TREE_CODE (GOTO_DESTINATION (expr)) == LABEL_DECL);
2448 }
2449
2450
2451 /* Return true if T should start a new basic block. PREV_T is the
2452 statement preceding T. It is used when T is a label or a case label.
2453 Labels should only start a new basic block if their previous statement
2454 wasn't a label. Otherwise, sequence of labels would generate
2455 unnecessary basic blocks that only contain a single label. */
2456
2457 static inline bool
2458 stmt_starts_bb_p (tree t, tree prev_t)
2459 {
2460 enum tree_code code;
2461
2462 if (t == NULL_TREE)
2463 return false;
2464
2465 /* LABEL_EXPRs start a new basic block only if the preceding
2466 statement wasn't a label of the same type. This prevents the
2467 creation of consecutive blocks that have nothing but a single
2468 label. */
2469 code = TREE_CODE (t);
2470 if (code == LABEL_EXPR)
2471 {
2472 /* Nonlocal and computed GOTO targets always start a new block. */
2473 if (code == LABEL_EXPR
2474 && (DECL_NONLOCAL (LABEL_EXPR_LABEL (t))
2475 || FORCED_LABEL (LABEL_EXPR_LABEL (t))))
2476 return true;
2477
2478 if (prev_t && TREE_CODE (prev_t) == code)
2479 {
2480 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (prev_t)))
2481 return true;
2482
2483 cfg_stats.num_merged_labels++;
2484 return false;
2485 }
2486 else
2487 return true;
2488 }
2489
2490 return false;
2491 }
2492
2493
2494 /* Return true if T should end a basic block. */
2495
2496 bool
2497 stmt_ends_bb_p (tree t)
2498 {
2499 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2500 }
2501
2502
2503 /* Add gotos that used to be represented implicitly in the CFG. */
2504
2505 void
2506 disband_implicit_edges (void)
2507 {
2508 basic_block bb;
2509 block_stmt_iterator last;
2510 edge e;
2511 tree stmt, label;
2512
2513 FOR_EACH_BB (bb)
2514 {
2515 last = bsi_last (bb);
2516 stmt = last_stmt (bb);
2517
2518 if (stmt && TREE_CODE (stmt) == COND_EXPR)
2519 {
2520 /* Remove superfluous gotos from COND_EXPR branches. Moved
2521 from cfg_remove_useless_stmts here since it violates the
2522 invariants for tree--cfg correspondence and thus fits better
2523 here where we do it anyway. */
2524 for (e = bb->succ; e; e = e->succ_next)
2525 {
2526 if (e->dest != bb->next_bb)
2527 continue;
2528
2529 if (e->flags & EDGE_TRUE_VALUE)
2530 COND_EXPR_THEN (stmt) = build_empty_stmt ();
2531 else if (e->flags & EDGE_FALSE_VALUE)
2532 COND_EXPR_ELSE (stmt) = build_empty_stmt ();
2533 else
2534 gcc_unreachable ();
2535 e->flags |= EDGE_FALLTHRU;
2536 }
2537
2538 continue;
2539 }
2540
2541 if (stmt && TREE_CODE (stmt) == RETURN_EXPR)
2542 {
2543 /* Remove the RETURN_EXPR if we may fall though to the exit
2544 instead. */
2545 gcc_assert (bb->succ);
2546 gcc_assert (!bb->succ->succ_next);
2547 gcc_assert (bb->succ->dest == EXIT_BLOCK_PTR);
2548
2549 if (bb->next_bb == EXIT_BLOCK_PTR
2550 && !TREE_OPERAND (stmt, 0))
2551 {
2552 bsi_remove (&last);
2553 bb->succ->flags |= EDGE_FALLTHRU;
2554 }
2555 continue;
2556 }
2557
2558 /* There can be no fallthru edge if the last statement is a control
2559 one. */
2560 if (stmt && is_ctrl_stmt (stmt))
2561 continue;
2562
2563 /* Find a fallthru edge and emit the goto if necessary. */
2564 for (e = bb->succ; e; e = e->succ_next)
2565 if (e->flags & EDGE_FALLTHRU)
2566 break;
2567
2568 if (!e || e->dest == bb->next_bb)
2569 continue;
2570
2571 gcc_assert (e->dest != EXIT_BLOCK_PTR);
2572 label = tree_block_label (e->dest);
2573
2574 stmt = build1 (GOTO_EXPR, void_type_node, label);
2575 #ifdef USE_MAPPED_LOCATION
2576 SET_EXPR_LOCATION (stmt, e->goto_locus);
2577 #else
2578 SET_EXPR_LOCUS (stmt, e->goto_locus);
2579 #endif
2580 bsi_insert_after (&last, stmt, BSI_NEW_STMT);
2581 e->flags &= ~EDGE_FALLTHRU;
2582 }
2583 }
2584
2585 /* Remove block annotations and other datastructures. */
2586
2587 void
2588 delete_tree_cfg_annotations (void)
2589 {
2590 basic_block bb;
2591 if (n_basic_blocks > 0)
2592 free_blocks_annotations ();
2593
2594 label_to_block_map = NULL;
2595 free_rbi_pool ();
2596 FOR_EACH_BB (bb)
2597 bb->rbi = NULL;
2598 }
2599
2600
2601 /* Return the first statement in basic block BB. */
2602
2603 tree
2604 first_stmt (basic_block bb)
2605 {
2606 block_stmt_iterator i = bsi_start (bb);
2607 return !bsi_end_p (i) ? bsi_stmt (i) : NULL_TREE;
2608 }
2609
2610
2611 /* Return the last statement in basic block BB. */
2612
2613 tree
2614 last_stmt (basic_block bb)
2615 {
2616 block_stmt_iterator b = bsi_last (bb);
2617 return !bsi_end_p (b) ? bsi_stmt (b) : NULL_TREE;
2618 }
2619
2620
2621 /* Return a pointer to the last statement in block BB. */
2622
2623 tree *
2624 last_stmt_ptr (basic_block bb)
2625 {
2626 block_stmt_iterator last = bsi_last (bb);
2627 return !bsi_end_p (last) ? bsi_stmt_ptr (last) : NULL;
2628 }
2629
2630
2631 /* Return the last statement of an otherwise empty block. Return NULL
2632 if the block is totally empty, or if it contains more than one
2633 statement. */
2634
2635 tree
2636 last_and_only_stmt (basic_block bb)
2637 {
2638 block_stmt_iterator i = bsi_last (bb);
2639 tree last, prev;
2640
2641 if (bsi_end_p (i))
2642 return NULL_TREE;
2643
2644 last = bsi_stmt (i);
2645 bsi_prev (&i);
2646 if (bsi_end_p (i))
2647 return last;
2648
2649 /* Empty statements should no longer appear in the instruction stream.
2650 Everything that might have appeared before should be deleted by
2651 remove_useless_stmts, and the optimizers should just bsi_remove
2652 instead of smashing with build_empty_stmt.
2653
2654 Thus the only thing that should appear here in a block containing
2655 one executable statement is a label. */
2656 prev = bsi_stmt (i);
2657 if (TREE_CODE (prev) == LABEL_EXPR)
2658 return last;
2659 else
2660 return NULL_TREE;
2661 }
2662
2663
2664 /* Mark BB as the basic block holding statement T. */
2665
2666 void
2667 set_bb_for_stmt (tree t, basic_block bb)
2668 {
2669 if (TREE_CODE (t) == STATEMENT_LIST)
2670 {
2671 tree_stmt_iterator i;
2672 for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
2673 set_bb_for_stmt (tsi_stmt (i), bb);
2674 }
2675 else
2676 {
2677 stmt_ann_t ann = get_stmt_ann (t);
2678 ann->bb = bb;
2679
2680 /* If the statement is a label, add the label to block-to-labels map
2681 so that we can speed up edge creation for GOTO_EXPRs. */
2682 if (TREE_CODE (t) == LABEL_EXPR)
2683 {
2684 int uid;
2685
2686 t = LABEL_EXPR_LABEL (t);
2687 uid = LABEL_DECL_UID (t);
2688 if (uid == -1)
2689 {
2690 LABEL_DECL_UID (t) = uid = cfun->last_label_uid++;
2691 if (VARRAY_SIZE (label_to_block_map) <= (unsigned) uid)
2692 VARRAY_GROW (label_to_block_map, 3 * uid / 2);
2693 }
2694 else
2695 /* We're moving an existing label. Make sure that we've
2696 removed it from the old block. */
2697 gcc_assert (!bb || !VARRAY_BB (label_to_block_map, uid));
2698 VARRAY_BB (label_to_block_map, uid) = bb;
2699 }
2700 }
2701 }
2702
2703 /* Finds iterator for STMT. */
2704
2705 extern block_stmt_iterator
2706 stmt_for_bsi (tree stmt)
2707 {
2708 block_stmt_iterator bsi;
2709
2710 for (bsi = bsi_start (bb_for_stmt (stmt)); !bsi_end_p (bsi); bsi_next (&bsi))
2711 if (bsi_stmt (bsi) == stmt)
2712 return bsi;
2713
2714 gcc_unreachable ();
2715 }
2716
2717 /* Insert statement (or statement list) T before the statement
2718 pointed-to by iterator I. M specifies how to update iterator I
2719 after insertion (see enum bsi_iterator_update). */
2720
2721 void
2722 bsi_insert_before (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
2723 {
2724 set_bb_for_stmt (t, i->bb);
2725 tsi_link_before (&i->tsi, t, m);
2726 modify_stmt (t);
2727 }
2728
2729
2730 /* Insert statement (or statement list) T after the statement
2731 pointed-to by iterator I. M specifies how to update iterator I
2732 after insertion (see enum bsi_iterator_update). */
2733
2734 void
2735 bsi_insert_after (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
2736 {
2737 set_bb_for_stmt (t, i->bb);
2738 tsi_link_after (&i->tsi, t, m);
2739 modify_stmt (t);
2740 }
2741
2742
2743 /* Remove the statement pointed to by iterator I. The iterator is updated
2744 to the next statement. */
2745
2746 void
2747 bsi_remove (block_stmt_iterator *i)
2748 {
2749 tree t = bsi_stmt (*i);
2750 set_bb_for_stmt (t, NULL);
2751 tsi_delink (&i->tsi);
2752 }
2753
2754
2755 /* Move the statement at FROM so it comes right after the statement at TO. */
2756
2757 void
2758 bsi_move_after (block_stmt_iterator *from, block_stmt_iterator *to)
2759 {
2760 tree stmt = bsi_stmt (*from);
2761 bsi_remove (from);
2762 bsi_insert_after (to, stmt, BSI_SAME_STMT);
2763 }
2764
2765
2766 /* Move the statement at FROM so it comes right before the statement at TO. */
2767
2768 void
2769 bsi_move_before (block_stmt_iterator *from, block_stmt_iterator *to)
2770 {
2771 tree stmt = bsi_stmt (*from);
2772 bsi_remove (from);
2773 bsi_insert_before (to, stmt, BSI_SAME_STMT);
2774 }
2775
2776
2777 /* Move the statement at FROM to the end of basic block BB. */
2778
2779 void
2780 bsi_move_to_bb_end (block_stmt_iterator *from, basic_block bb)
2781 {
2782 block_stmt_iterator last = bsi_last (bb);
2783
2784 /* Have to check bsi_end_p because it could be an empty block. */
2785 if (!bsi_end_p (last) && is_ctrl_stmt (bsi_stmt (last)))
2786 bsi_move_before (from, &last);
2787 else
2788 bsi_move_after (from, &last);
2789 }
2790
2791
2792 /* Replace the contents of the statement pointed to by iterator BSI
2793 with STMT. If PRESERVE_EH_INFO is true, the exception handling
2794 information of the original statement is preserved. */
2795
2796 void
2797 bsi_replace (const block_stmt_iterator *bsi, tree stmt, bool preserve_eh_info)
2798 {
2799 int eh_region;
2800 tree orig_stmt = bsi_stmt (*bsi);
2801
2802 SET_EXPR_LOCUS (stmt, EXPR_LOCUS (orig_stmt));
2803 set_bb_for_stmt (stmt, bsi->bb);
2804
2805 /* Preserve EH region information from the original statement, if
2806 requested by the caller. */
2807 if (preserve_eh_info)
2808 {
2809 eh_region = lookup_stmt_eh_region (orig_stmt);
2810 if (eh_region >= 0)
2811 add_stmt_to_eh_region (stmt, eh_region);
2812 }
2813
2814 *bsi_stmt_ptr (*bsi) = stmt;
2815 modify_stmt (stmt);
2816 }
2817
2818
2819 /* Insert the statement pointed-to by BSI into edge E. Every attempt
2820 is made to place the statement in an existing basic block, but
2821 sometimes that isn't possible. When it isn't possible, the edge is
2822 split and the statement is added to the new block.
2823
2824 In all cases, the returned *BSI points to the correct location. The
2825 return value is true if insertion should be done after the location,
2826 or false if it should be done before the location. If new basic block
2827 has to be created, it is stored in *NEW_BB. */
2828
2829 static bool
2830 tree_find_edge_insert_loc (edge e, block_stmt_iterator *bsi,
2831 basic_block *new_bb)
2832 {
2833 basic_block dest, src;
2834 tree tmp;
2835
2836 dest = e->dest;
2837 restart:
2838
2839 /* If the destination has one predecessor which has no PHI nodes,
2840 insert there. Except for the exit block.
2841
2842 The requirement for no PHI nodes could be relaxed. Basically we
2843 would have to examine the PHIs to prove that none of them used
2844 the value set by the statement we want to insert on E. That
2845 hardly seems worth the effort. */
2846 if (dest->pred->pred_next == NULL
2847 && ! phi_nodes (dest)
2848 && dest != EXIT_BLOCK_PTR)
2849 {
2850 *bsi = bsi_start (dest);
2851 if (bsi_end_p (*bsi))
2852 return true;
2853
2854 /* Make sure we insert after any leading labels. */
2855 tmp = bsi_stmt (*bsi);
2856 while (TREE_CODE (tmp) == LABEL_EXPR)
2857 {
2858 bsi_next (bsi);
2859 if (bsi_end_p (*bsi))
2860 break;
2861 tmp = bsi_stmt (*bsi);
2862 }
2863
2864 if (bsi_end_p (*bsi))
2865 {
2866 *bsi = bsi_last (dest);
2867 return true;
2868 }
2869 else
2870 return false;
2871 }
2872
2873 /* If the source has one successor, the edge is not abnormal and
2874 the last statement does not end a basic block, insert there.
2875 Except for the entry block. */
2876 src = e->src;
2877 if ((e->flags & EDGE_ABNORMAL) == 0
2878 && src->succ->succ_next == NULL
2879 && src != ENTRY_BLOCK_PTR)
2880 {
2881 *bsi = bsi_last (src);
2882 if (bsi_end_p (*bsi))
2883 return true;
2884
2885 tmp = bsi_stmt (*bsi);
2886 if (!stmt_ends_bb_p (tmp))
2887 return true;
2888
2889 /* Insert code just before returning the value. We may need to decompose
2890 the return in the case it contains non-trivial operand. */
2891 if (TREE_CODE (tmp) == RETURN_EXPR)
2892 {
2893 tree op = TREE_OPERAND (tmp, 0);
2894 if (!is_gimple_val (op))
2895 {
2896 gcc_assert (TREE_CODE (op) == MODIFY_EXPR);
2897 bsi_insert_before (bsi, op, BSI_NEW_STMT);
2898 TREE_OPERAND (tmp, 0) = TREE_OPERAND (op, 0);
2899 }
2900 bsi_prev (bsi);
2901 return true;
2902 }
2903 }
2904
2905 /* Otherwise, create a new basic block, and split this edge. */
2906 dest = split_edge (e);
2907 if (new_bb)
2908 *new_bb = dest;
2909 e = dest->pred;
2910 goto restart;
2911 }
2912
2913
2914 /* This routine will commit all pending edge insertions, creating any new
2915 basic blocks which are necessary.
2916
2917 If specified, NEW_BLOCKS returns a count of the number of new basic
2918 blocks which were created. */
2919
2920 void
2921 bsi_commit_edge_inserts (int *new_blocks)
2922 {
2923 basic_block bb;
2924 edge e;
2925 int blocks;
2926
2927 blocks = n_basic_blocks;
2928
2929 bsi_commit_edge_inserts_1 (ENTRY_BLOCK_PTR->succ);
2930
2931 FOR_EACH_BB (bb)
2932 for (e = bb->succ; e; e = e->succ_next)
2933 bsi_commit_edge_inserts_1 (e);
2934
2935 if (new_blocks)
2936 *new_blocks = n_basic_blocks - blocks;
2937 }
2938
2939
2940 /* Commit insertions pending at edge E. */
2941
2942 static void
2943 bsi_commit_edge_inserts_1 (edge e)
2944 {
2945 if (PENDING_STMT (e))
2946 {
2947 block_stmt_iterator bsi;
2948 tree stmt = PENDING_STMT (e);
2949
2950 PENDING_STMT (e) = NULL_TREE;
2951
2952 if (tree_find_edge_insert_loc (e, &bsi, NULL))
2953 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
2954 else
2955 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
2956 }
2957 }
2958
2959
2960 /* Add STMT to the pending list of edge E. No actual insertion is
2961 made until a call to bsi_commit_edge_inserts () is made. */
2962
2963 void
2964 bsi_insert_on_edge (edge e, tree stmt)
2965 {
2966 append_to_statement_list (stmt, &PENDING_STMT (e));
2967 }
2968
2969 /* Similar to bsi_insert_on_edge+bsi_commit_edge_inserts. If new block has to
2970 be created, it is returned. */
2971
2972 basic_block
2973 bsi_insert_on_edge_immediate (edge e, tree stmt)
2974 {
2975 block_stmt_iterator bsi;
2976 basic_block new_bb = NULL;
2977
2978 gcc_assert (!PENDING_STMT (e));
2979
2980 if (tree_find_edge_insert_loc (e, &bsi, &new_bb))
2981 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
2982 else
2983 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
2984
2985 return new_bb;
2986 }
2987
2988 /*---------------------------------------------------------------------------
2989 Tree specific functions for CFG manipulation
2990 ---------------------------------------------------------------------------*/
2991
2992 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2993 Abort on abnormal edges. */
2994
2995 static basic_block
2996 tree_split_edge (edge edge_in)
2997 {
2998 basic_block new_bb, after_bb, dest, src;
2999 edge new_edge, e;
3000 tree phi;
3001 int i, num_elem;
3002
3003 /* Abnormal edges cannot be split. */
3004 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
3005
3006 src = edge_in->src;
3007 dest = edge_in->dest;
3008
3009 /* Place the new block in the block list. Try to keep the new block
3010 near its "logical" location. This is of most help to humans looking
3011 at debugging dumps. */
3012 for (e = dest->pred; e; e = e->pred_next)
3013 if (e->src->next_bb == dest)
3014 break;
3015 if (!e)
3016 after_bb = dest->prev_bb;
3017 else
3018 after_bb = edge_in->src;
3019
3020 new_bb = create_empty_bb (after_bb);
3021 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
3022
3023 /* Find all the PHI arguments on the original edge, and change them to
3024 the new edge. Do it before redirection, so that the argument does not
3025 get removed. */
3026 for (phi = phi_nodes (dest); phi; phi = PHI_CHAIN (phi))
3027 {
3028 num_elem = PHI_NUM_ARGS (phi);
3029 for (i = 0; i < num_elem; i++)
3030 if (PHI_ARG_EDGE (phi, i) == edge_in)
3031 {
3032 PHI_ARG_EDGE (phi, i) = new_edge;
3033 break;
3034 }
3035 }
3036
3037 e = redirect_edge_and_branch (edge_in, new_bb);
3038 gcc_assert (e);
3039 gcc_assert (!PENDING_STMT (edge_in));
3040
3041 return new_bb;
3042 }
3043
3044
3045 /* Return true when BB has label LABEL in it. */
3046
3047 static bool
3048 has_label_p (basic_block bb, tree label)
3049 {
3050 block_stmt_iterator bsi;
3051
3052 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3053 {
3054 tree stmt = bsi_stmt (bsi);
3055
3056 if (TREE_CODE (stmt) != LABEL_EXPR)
3057 return false;
3058 if (LABEL_EXPR_LABEL (stmt) == label)
3059 return true;
3060 }
3061 return false;
3062 }
3063
3064
3065 /* Callback for walk_tree, check that all elements with address taken are
3066 properly noticed as such. */
3067
3068 static tree
3069 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3070 {
3071 tree t = *tp, x;
3072
3073 if (TYPE_P (t))
3074 *walk_subtrees = 0;
3075
3076 /* Check operand N for being valid GIMPLE and give error MSG if not.
3077 We check for constants explicitly since they are not considered
3078 gimple invariants if they overflowed. */
3079 #define CHECK_OP(N, MSG) \
3080 do { if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (t, N))) != 'c' \
3081 && !is_gimple_val (TREE_OPERAND (t, N))) \
3082 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
3083
3084 switch (TREE_CODE (t))
3085 {
3086 case SSA_NAME:
3087 if (SSA_NAME_IN_FREE_LIST (t))
3088 {
3089 error ("SSA name in freelist but still referenced");
3090 return *tp;
3091 }
3092 break;
3093
3094 case MODIFY_EXPR:
3095 x = TREE_OPERAND (t, 0);
3096 if (TREE_CODE (x) == BIT_FIELD_REF
3097 && is_gimple_reg (TREE_OPERAND (x, 0)))
3098 {
3099 error ("GIMPLE register modified with BIT_FIELD_REF");
3100 return t;
3101 }
3102 break;
3103
3104 case ADDR_EXPR:
3105 /* Skip any references (they will be checked when we recurse down the
3106 tree) and ensure that any variable used as a prefix is marked
3107 addressable. */
3108 for (x = TREE_OPERAND (t, 0);
3109 (handled_component_p (x)
3110 || TREE_CODE (x) == REALPART_EXPR
3111 || TREE_CODE (x) == IMAGPART_EXPR);
3112 x = TREE_OPERAND (x, 0))
3113 ;
3114
3115 if (TREE_CODE (x) != VAR_DECL && TREE_CODE (x) != PARM_DECL)
3116 return NULL;
3117 if (!TREE_ADDRESSABLE (x))
3118 {
3119 error ("address taken, but ADDRESSABLE bit not set");
3120 return x;
3121 }
3122 break;
3123
3124 case COND_EXPR:
3125 x = TREE_OPERAND (t, 0);
3126 if (TREE_CODE (TREE_TYPE (x)) != BOOLEAN_TYPE)
3127 {
3128 error ("non-boolean used in condition");
3129 return x;
3130 }
3131 break;
3132
3133 case NOP_EXPR:
3134 case CONVERT_EXPR:
3135 case FIX_TRUNC_EXPR:
3136 case FIX_CEIL_EXPR:
3137 case FIX_FLOOR_EXPR:
3138 case FIX_ROUND_EXPR:
3139 case FLOAT_EXPR:
3140 case NEGATE_EXPR:
3141 case ABS_EXPR:
3142 case BIT_NOT_EXPR:
3143 case NON_LVALUE_EXPR:
3144 case TRUTH_NOT_EXPR:
3145 CHECK_OP (0, "Invalid operand to unary operator");
3146 break;
3147
3148 case REALPART_EXPR:
3149 case IMAGPART_EXPR:
3150 case COMPONENT_REF:
3151 case ARRAY_REF:
3152 case ARRAY_RANGE_REF:
3153 case BIT_FIELD_REF:
3154 case VIEW_CONVERT_EXPR:
3155 /* We have a nest of references. Verify that each of the operands
3156 that determine where to reference is either a constant or a variable,
3157 verify that the base is valid, and then show we've already checked
3158 the subtrees. */
3159 while (TREE_CODE (t) == REALPART_EXPR || TREE_CODE (t) == IMAGPART_EXPR
3160 || handled_component_p (t))
3161 {
3162 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3163 CHECK_OP (2, "Invalid COMPONENT_REF offset operator");
3164 else if (TREE_CODE (t) == ARRAY_REF
3165 || TREE_CODE (t) == ARRAY_RANGE_REF)
3166 {
3167 CHECK_OP (1, "Invalid array index.");
3168 if (TREE_OPERAND (t, 2))
3169 CHECK_OP (2, "Invalid array lower bound.");
3170 if (TREE_OPERAND (t, 3))
3171 CHECK_OP (3, "Invalid array stride.");
3172 }
3173 else if (TREE_CODE (t) == BIT_FIELD_REF)
3174 {
3175 CHECK_OP (1, "Invalid operand to BIT_FIELD_REF");
3176 CHECK_OP (2, "Invalid operand to BIT_FIELD_REF");
3177 }
3178
3179 t = TREE_OPERAND (t, 0);
3180 }
3181
3182 if (TREE_CODE_CLASS (TREE_CODE (t)) != 'c'
3183 && !is_gimple_lvalue (t))
3184 {
3185 error ("Invalid reference prefix.");
3186 return t;
3187 }
3188 *walk_subtrees = 0;
3189 break;
3190
3191 case LT_EXPR:
3192 case LE_EXPR:
3193 case GT_EXPR:
3194 case GE_EXPR:
3195 case EQ_EXPR:
3196 case NE_EXPR:
3197 case UNORDERED_EXPR:
3198 case ORDERED_EXPR:
3199 case UNLT_EXPR:
3200 case UNLE_EXPR:
3201 case UNGT_EXPR:
3202 case UNGE_EXPR:
3203 case UNEQ_EXPR:
3204 case LTGT_EXPR:
3205 case PLUS_EXPR:
3206 case MINUS_EXPR:
3207 case MULT_EXPR:
3208 case TRUNC_DIV_EXPR:
3209 case CEIL_DIV_EXPR:
3210 case FLOOR_DIV_EXPR:
3211 case ROUND_DIV_EXPR:
3212 case TRUNC_MOD_EXPR:
3213 case CEIL_MOD_EXPR:
3214 case FLOOR_MOD_EXPR:
3215 case ROUND_MOD_EXPR:
3216 case RDIV_EXPR:
3217 case EXACT_DIV_EXPR:
3218 case MIN_EXPR:
3219 case MAX_EXPR:
3220 case LSHIFT_EXPR:
3221 case RSHIFT_EXPR:
3222 case LROTATE_EXPR:
3223 case RROTATE_EXPR:
3224 case BIT_IOR_EXPR:
3225 case BIT_XOR_EXPR:
3226 case BIT_AND_EXPR:
3227 CHECK_OP (0, "Invalid operand to binary operator");
3228 CHECK_OP (1, "Invalid operand to binary operator");
3229 break;
3230
3231 default:
3232 break;
3233 }
3234 return NULL;
3235
3236 #undef CHECK_OP
3237 }
3238
3239
3240 /* Verify STMT, return true if STMT is not in GIMPLE form.
3241 TODO: Implement type checking. */
3242
3243 static bool
3244 verify_stmt (tree stmt, bool last_in_block)
3245 {
3246 tree addr;
3247
3248 if (!is_gimple_stmt (stmt))
3249 {
3250 error ("Is not a valid GIMPLE statement.");
3251 goto fail;
3252 }
3253
3254 addr = walk_tree (&stmt, verify_expr, NULL, NULL);
3255 if (addr)
3256 {
3257 debug_generic_stmt (addr);
3258 return true;
3259 }
3260
3261 /* If the statement is marked as part of an EH region, then it is
3262 expected that the statement could throw. Verify that when we
3263 have optimizations that simplify statements such that we prove
3264 that they cannot throw, that we update other data structures
3265 to match. */
3266 if (lookup_stmt_eh_region (stmt) >= 0)
3267 {
3268 if (!tree_could_throw_p (stmt))
3269 {
3270 error ("Statement marked for throw, but doesn't.");
3271 goto fail;
3272 }
3273 if (!last_in_block && tree_can_throw_internal (stmt))
3274 {
3275 error ("Statement marked for throw in middle of block.");
3276 goto fail;
3277 }
3278 }
3279
3280 return false;
3281
3282 fail:
3283 debug_generic_stmt (stmt);
3284 return true;
3285 }
3286
3287
3288 /* Return true when the T can be shared. */
3289
3290 static bool
3291 tree_node_can_be_shared (tree t)
3292 {
3293 if (TYPE_P (t) || DECL_P (t)
3294 /* We check for constants explicitly since they are not considered
3295 gimple invariants if they overflowed. */
3296 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c'
3297 || is_gimple_min_invariant (t)
3298 || TREE_CODE (t) == SSA_NAME)
3299 return true;
3300
3301 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3302 /* We check for constants explicitly since they are not considered
3303 gimple invariants if they overflowed. */
3304 && (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (t, 1))) == 'c'
3305 || is_gimple_min_invariant (TREE_OPERAND (t, 1))))
3306 || (TREE_CODE (t) == COMPONENT_REF
3307 || TREE_CODE (t) == REALPART_EXPR
3308 || TREE_CODE (t) == IMAGPART_EXPR))
3309 t = TREE_OPERAND (t, 0);
3310
3311 if (DECL_P (t))
3312 return true;
3313
3314 return false;
3315 }
3316
3317
3318 /* Called via walk_trees. Verify tree sharing. */
3319
3320 static tree
3321 verify_node_sharing (tree * tp, int *walk_subtrees, void *data)
3322 {
3323 htab_t htab = (htab_t) data;
3324 void **slot;
3325
3326 if (tree_node_can_be_shared (*tp))
3327 {
3328 *walk_subtrees = false;
3329 return NULL;
3330 }
3331
3332 slot = htab_find_slot (htab, *tp, INSERT);
3333 if (*slot)
3334 return *slot;
3335 *slot = *tp;
3336
3337 return NULL;
3338 }
3339
3340
3341 /* Verify the GIMPLE statement chain. */
3342
3343 void
3344 verify_stmts (void)
3345 {
3346 basic_block bb;
3347 block_stmt_iterator bsi;
3348 bool err = false;
3349 htab_t htab;
3350 tree addr;
3351
3352 timevar_push (TV_TREE_STMT_VERIFY);
3353 htab = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
3354
3355 FOR_EACH_BB (bb)
3356 {
3357 tree phi;
3358 int i;
3359
3360 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3361 {
3362 int phi_num_args = PHI_NUM_ARGS (phi);
3363
3364 for (i = 0; i < phi_num_args; i++)
3365 {
3366 tree t = PHI_ARG_DEF (phi, i);
3367 tree addr;
3368
3369 /* Addressable variables do have SSA_NAMEs but they
3370 are not considered gimple values. */
3371 if (TREE_CODE (t) != SSA_NAME
3372 && TREE_CODE (t) != FUNCTION_DECL
3373 && !is_gimple_val (t))
3374 {
3375 error ("PHI def is not a GIMPLE value");
3376 debug_generic_stmt (phi);
3377 debug_generic_stmt (t);
3378 err |= true;
3379 }
3380
3381 addr = walk_tree (&t, verify_expr, NULL, NULL);
3382 if (addr)
3383 {
3384 debug_generic_stmt (addr);
3385 err |= true;
3386 }
3387
3388 addr = walk_tree (&t, verify_node_sharing, htab, NULL);
3389 if (addr)
3390 {
3391 error ("Incorrect sharing of tree nodes");
3392 debug_generic_stmt (phi);
3393 debug_generic_stmt (addr);
3394 err |= true;
3395 }
3396 }
3397 }
3398
3399 for (bsi = bsi_start (bb); !bsi_end_p (bsi); )
3400 {
3401 tree stmt = bsi_stmt (bsi);
3402 bsi_next (&bsi);
3403 err |= verify_stmt (stmt, bsi_end_p (bsi));
3404 addr = walk_tree (&stmt, verify_node_sharing, htab, NULL);
3405 if (addr)
3406 {
3407 error ("Incorrect sharing of tree nodes");
3408 debug_generic_stmt (stmt);
3409 debug_generic_stmt (addr);
3410 err |= true;
3411 }
3412 }
3413 }
3414
3415 if (err)
3416 internal_error ("verify_stmts failed.");
3417
3418 htab_delete (htab);
3419 timevar_pop (TV_TREE_STMT_VERIFY);
3420 }
3421
3422
3423 /* Verifies that the flow information is OK. */
3424
3425 static int
3426 tree_verify_flow_info (void)
3427 {
3428 int err = 0;
3429 basic_block bb;
3430 block_stmt_iterator bsi;
3431 tree stmt;
3432 edge e;
3433
3434 if (ENTRY_BLOCK_PTR->stmt_list)
3435 {
3436 error ("ENTRY_BLOCK has a statement list associated with it\n");
3437 err = 1;
3438 }
3439
3440 if (EXIT_BLOCK_PTR->stmt_list)
3441 {
3442 error ("EXIT_BLOCK has a statement list associated with it\n");
3443 err = 1;
3444 }
3445
3446 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
3447 if (e->flags & EDGE_FALLTHRU)
3448 {
3449 error ("Fallthru to exit from bb %d\n", e->src->index);
3450 err = 1;
3451 }
3452
3453 FOR_EACH_BB (bb)
3454 {
3455 bool found_ctrl_stmt = false;
3456
3457 /* Skip labels on the start of basic block. */
3458 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3459 {
3460 if (TREE_CODE (bsi_stmt (bsi)) != LABEL_EXPR)
3461 break;
3462
3463 if (label_to_block (LABEL_EXPR_LABEL (bsi_stmt (bsi))) != bb)
3464 {
3465 error ("Label %s to block does not match in bb %d\n",
3466 IDENTIFIER_POINTER (DECL_NAME (bsi_stmt (bsi))),
3467 bb->index);
3468 err = 1;
3469 }
3470
3471 if (decl_function_context (LABEL_EXPR_LABEL (bsi_stmt (bsi)))
3472 != current_function_decl)
3473 {
3474 error ("Label %s has incorrect context in bb %d\n",
3475 IDENTIFIER_POINTER (DECL_NAME (bsi_stmt (bsi))),
3476 bb->index);
3477 err = 1;
3478 }
3479 }
3480
3481 /* Verify that body of basic block BB is free of control flow. */
3482 for (; !bsi_end_p (bsi); bsi_next (&bsi))
3483 {
3484 tree stmt = bsi_stmt (bsi);
3485
3486 if (found_ctrl_stmt)
3487 {
3488 error ("Control flow in the middle of basic block %d\n",
3489 bb->index);
3490 err = 1;
3491 }
3492
3493 if (stmt_ends_bb_p (stmt))
3494 found_ctrl_stmt = true;
3495
3496 if (TREE_CODE (stmt) == LABEL_EXPR)
3497 {
3498 error ("Label %s in the middle of basic block %d\n",
3499 IDENTIFIER_POINTER (DECL_NAME (stmt)),
3500 bb->index);
3501 err = 1;
3502 }
3503 }
3504 bsi = bsi_last (bb);
3505 if (bsi_end_p (bsi))
3506 continue;
3507
3508 stmt = bsi_stmt (bsi);
3509
3510 if (is_ctrl_stmt (stmt))
3511 {
3512 for (e = bb->succ; e; e = e->succ_next)
3513 if (e->flags & EDGE_FALLTHRU)
3514 {
3515 error ("Fallthru edge after a control statement in bb %d \n",
3516 bb->index);
3517 err = 1;
3518 }
3519 }
3520
3521 switch (TREE_CODE (stmt))
3522 {
3523 case COND_EXPR:
3524 {
3525 edge true_edge;
3526 edge false_edge;
3527 if (TREE_CODE (COND_EXPR_THEN (stmt)) != GOTO_EXPR
3528 || TREE_CODE (COND_EXPR_ELSE (stmt)) != GOTO_EXPR)
3529 {
3530 error ("Structured COND_EXPR at the end of bb %d\n", bb->index);
3531 err = 1;
3532 }
3533
3534 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
3535
3536 if (!true_edge || !false_edge
3537 || !(true_edge->flags & EDGE_TRUE_VALUE)
3538 || !(false_edge->flags & EDGE_FALSE_VALUE)
3539 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
3540 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
3541 || bb->succ->succ_next->succ_next)
3542 {
3543 error ("Wrong outgoing edge flags at end of bb %d\n",
3544 bb->index);
3545 err = 1;
3546 }
3547
3548 if (!has_label_p (true_edge->dest,
3549 GOTO_DESTINATION (COND_EXPR_THEN (stmt))))
3550 {
3551 error ("`then' label does not match edge at end of bb %d\n",
3552 bb->index);
3553 err = 1;
3554 }
3555
3556 if (!has_label_p (false_edge->dest,
3557 GOTO_DESTINATION (COND_EXPR_ELSE (stmt))))
3558 {
3559 error ("`else' label does not match edge at end of bb %d\n",
3560 bb->index);
3561 err = 1;
3562 }
3563 }
3564 break;
3565
3566 case GOTO_EXPR:
3567 if (simple_goto_p (stmt))
3568 {
3569 error ("Explicit goto at end of bb %d\n", bb->index);
3570 err = 1;
3571 }
3572 else
3573 {
3574 /* FIXME. We should double check that the labels in the
3575 destination blocks have their address taken. */
3576 for (e = bb->succ; e; e = e->succ_next)
3577 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
3578 | EDGE_FALSE_VALUE))
3579 || !(e->flags & EDGE_ABNORMAL))
3580 {
3581 error ("Wrong outgoing edge flags at end of bb %d\n",
3582 bb->index);
3583 err = 1;
3584 }
3585 }
3586 break;
3587
3588 case RETURN_EXPR:
3589 if (!bb->succ || bb->succ->succ_next
3590 || (bb->succ->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
3591 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3592 {
3593 error ("Wrong outgoing edge flags at end of bb %d\n", bb->index);
3594 err = 1;
3595 }
3596 if (bb->succ->dest != EXIT_BLOCK_PTR)
3597 {
3598 error ("Return edge does not point to exit in bb %d\n",
3599 bb->index);
3600 err = 1;
3601 }
3602 break;
3603
3604 case SWITCH_EXPR:
3605 {
3606 tree prev;
3607 edge e;
3608 size_t i, n;
3609 tree vec;
3610
3611 vec = SWITCH_LABELS (stmt);
3612 n = TREE_VEC_LENGTH (vec);
3613
3614 /* Mark all the destination basic blocks. */
3615 for (i = 0; i < n; ++i)
3616 {
3617 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
3618 basic_block label_bb = label_to_block (lab);
3619
3620 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
3621 label_bb->aux = (void *)1;
3622 }
3623
3624 /* Verify that the case labels are sorted. */
3625 prev = TREE_VEC_ELT (vec, 0);
3626 for (i = 1; i < n - 1; ++i)
3627 {
3628 tree c = TREE_VEC_ELT (vec, i);
3629 if (! CASE_LOW (c))
3630 {
3631 error ("Found default case not at end of case vector");
3632 err = 1;
3633 continue;
3634 }
3635 if (! tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
3636 {
3637 error ("Case labels not sorted:\n ");
3638 print_generic_expr (stderr, prev, 0);
3639 fprintf (stderr," is greater than ");
3640 print_generic_expr (stderr, c, 0);
3641 fprintf (stderr," but comes before it.\n");
3642 err = 1;
3643 }
3644 prev = c;
3645 }
3646 if (CASE_LOW (TREE_VEC_ELT (vec, n - 1)))
3647 {
3648 error ("No default case found at end of case vector");
3649 err = 1;
3650 }
3651
3652 for (e = bb->succ; e; e = e->succ_next)
3653 {
3654 if (!e->dest->aux)
3655 {
3656 error ("Extra outgoing edge %d->%d\n",
3657 bb->index, e->dest->index);
3658 err = 1;
3659 }
3660 e->dest->aux = (void *)2;
3661 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
3662 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3663 {
3664 error ("Wrong outgoing edge flags at end of bb %d\n",
3665 bb->index);
3666 err = 1;
3667 }
3668 }
3669
3670 /* Check that we have all of them. */
3671 for (i = 0; i < n; ++i)
3672 {
3673 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
3674 basic_block label_bb = label_to_block (lab);
3675
3676 if (label_bb->aux != (void *)2)
3677 {
3678 error ("Missing edge %i->%i\n",
3679 bb->index, label_bb->index);
3680 err = 1;
3681 }
3682 }
3683
3684 for (e = bb->succ; e; e = e->succ_next)
3685 e->dest->aux = (void *)0;
3686 }
3687
3688 default: ;
3689 }
3690 }
3691
3692 if (dom_computed[CDI_DOMINATORS] >= DOM_NO_FAST_QUERY)
3693 verify_dominators (CDI_DOMINATORS);
3694
3695 return err;
3696 }
3697
3698
3699 /* Updates phi nodes after creating forwarder block joined
3700 by edge FALLTHRU. */
3701
3702 static void
3703 tree_make_forwarder_block (edge fallthru)
3704 {
3705 edge e;
3706 basic_block dummy, bb;
3707 tree phi, new_phi, var, prev, next;
3708
3709 dummy = fallthru->src;
3710 bb = fallthru->dest;
3711
3712 if (!bb->pred->pred_next)
3713 return;
3714
3715 /* If we redirected a branch we must create new phi nodes at the
3716 start of BB. */
3717 for (phi = phi_nodes (dummy); phi; phi = PHI_CHAIN (phi))
3718 {
3719 var = PHI_RESULT (phi);
3720 new_phi = create_phi_node (var, bb);
3721 SSA_NAME_DEF_STMT (var) = new_phi;
3722 SET_PHI_RESULT (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
3723 add_phi_arg (&new_phi, PHI_RESULT (phi), fallthru);
3724 }
3725
3726 /* Ensure that the PHI node chain is in the same order. */
3727 prev = NULL;
3728 for (phi = phi_nodes (bb); phi; phi = next)
3729 {
3730 next = PHI_CHAIN (phi);
3731 PHI_CHAIN (phi) = prev;
3732 prev = phi;
3733 }
3734 set_phi_nodes (bb, prev);
3735
3736 /* Add the arguments we have stored on edges. */
3737 for (e = bb->pred; e; e = e->pred_next)
3738 {
3739 if (e == fallthru)
3740 continue;
3741
3742 for (phi = phi_nodes (bb), var = PENDING_STMT (e);
3743 phi;
3744 phi = PHI_CHAIN (phi), var = TREE_CHAIN (var))
3745 add_phi_arg (&phi, TREE_VALUE (var), e);
3746
3747 PENDING_STMT (e) = NULL;
3748 }
3749 }
3750
3751
3752 /* Return true if basic block BB does nothing except pass control
3753 flow to another block and that we can safely insert a label at
3754 the start of the successor block. */
3755
3756 static bool
3757 tree_forwarder_block_p (basic_block bb)
3758 {
3759 block_stmt_iterator bsi;
3760 edge e;
3761
3762 /* If we have already determined that this block is not forwardable,
3763 then no further checks are necessary. */
3764 if (! bb_ann (bb)->forwardable)
3765 return false;
3766
3767 /* BB must have a single outgoing normal edge. Otherwise it can not be
3768 a forwarder block. */
3769 if (!bb->succ
3770 || bb->succ->succ_next
3771 || bb->succ->dest == EXIT_BLOCK_PTR
3772 || (bb->succ->flags & EDGE_ABNORMAL)
3773 || bb == ENTRY_BLOCK_PTR)
3774 {
3775 bb_ann (bb)->forwardable = 0;
3776 return false;
3777 }
3778
3779 /* Successors of the entry block are not forwarders. */
3780 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
3781 if (e->dest == bb)
3782 {
3783 bb_ann (bb)->forwardable = 0;
3784 return false;
3785 }
3786
3787 /* BB can not have any PHI nodes. This could potentially be relaxed
3788 early in compilation if we re-rewrote the variables appearing in
3789 any PHI nodes in forwarder blocks. */
3790 if (phi_nodes (bb))
3791 {
3792 bb_ann (bb)->forwardable = 0;
3793 return false;
3794 }
3795
3796 /* Now walk through the statements. We can ignore labels, anything else
3797 means this is not a forwarder block. */
3798 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3799 {
3800 tree stmt = bsi_stmt (bsi);
3801
3802 switch (TREE_CODE (stmt))
3803 {
3804 case LABEL_EXPR:
3805 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
3806 return false;
3807 break;
3808
3809 default:
3810 bb_ann (bb)->forwardable = 0;
3811 return false;
3812 }
3813 }
3814
3815 return true;
3816 }
3817
3818
3819 /* Thread jumps over empty statements.
3820
3821 This code should _not_ thread over obviously equivalent conditions
3822 as that requires nontrivial updates to the SSA graph. */
3823
3824 static bool
3825 thread_jumps (void)
3826 {
3827 edge e, next, last, old;
3828 basic_block bb, dest, tmp, old_dest, dom;
3829 tree phi;
3830 int arg;
3831 bool retval = false;
3832
3833 FOR_EACH_BB (bb)
3834 bb_ann (bb)->forwardable = 1;
3835
3836 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
3837 {
3838 /* Don't waste time on unreachable blocks. */
3839 if (!bb->pred)
3840 continue;
3841
3842 /* Nor on forwarders. */
3843 if (tree_forwarder_block_p (bb))
3844 continue;
3845
3846 /* This block is now part of a forwarding path, mark it as not
3847 forwardable so that we can detect loops. This bit will be
3848 reset below. */
3849 bb_ann (bb)->forwardable = 0;
3850
3851 /* Examine each of our block's successors to see if it is
3852 forwardable. */
3853 for (e = bb->succ; e; e = next)
3854 {
3855 next = e->succ_next;
3856
3857 /* If the edge is abnormal or its destination is not
3858 forwardable, then there's nothing to do. */
3859 if ((e->flags & EDGE_ABNORMAL)
3860 || !tree_forwarder_block_p (e->dest))
3861 continue;
3862
3863 /* Now walk through as many forwarder block as possible to
3864 find the ultimate destination we want to thread our jump
3865 to. */
3866 last = e->dest->succ;
3867 bb_ann (e->dest)->forwardable = 0;
3868 for (dest = e->dest->succ->dest;
3869 tree_forwarder_block_p (dest);
3870 last = dest->succ,
3871 dest = dest->succ->dest)
3872 {
3873 /* An infinite loop detected. We redirect the edge anyway, so
3874 that the loop is shrunk into single basic block. */
3875 if (!bb_ann (dest)->forwardable)
3876 break;
3877
3878 if (dest->succ->dest == EXIT_BLOCK_PTR)
3879 break;
3880
3881 bb_ann (dest)->forwardable = 0;
3882 }
3883
3884 /* Reset the forwardable marks to 1. */
3885 for (tmp = e->dest;
3886 tmp != dest;
3887 tmp = tmp->succ->dest)
3888 bb_ann (tmp)->forwardable = 1;
3889
3890 if (dest == e->dest)
3891 continue;
3892
3893 old = find_edge (bb, dest);
3894 if (old)
3895 {
3896 /* If there already is an edge, check whether the values
3897 in phi nodes differ. */
3898 if (!phi_alternatives_equal (dest, last, old))
3899 {
3900 /* The previous block is forwarder. Redirect our jump
3901 to that target instead since we know it has no PHI
3902 nodes that will need updating. */
3903 dest = last->src;
3904
3905 /* That might mean that no forwarding at all is possible. */
3906 if (dest == e->dest)
3907 continue;
3908
3909 old = find_edge (bb, dest);
3910 }
3911 }
3912
3913 /* Perform the redirection. */
3914 retval = true;
3915 old_dest = e->dest;
3916 e = redirect_edge_and_branch (e, dest);
3917
3918 if (!old)
3919 {
3920 /* Update PHI nodes. We know that the new argument should
3921 have the same value as the argument associated with LAST.
3922 Otherwise we would have changed our target block above. */
3923 for (phi = phi_nodes (dest); phi; phi = PHI_CHAIN (phi))
3924 {
3925 arg = phi_arg_from_edge (phi, last);
3926 gcc_assert (arg >= 0);
3927 add_phi_arg (&phi, PHI_ARG_DEF (phi, arg), e);
3928 }
3929 }
3930
3931 /* Update the dominators. */
3932 if (dom_computed[CDI_DOMINATORS] >= DOM_CONS_OK)
3933 {
3934 /* Remove the unreachable blocks (observe that if all blocks
3935 were reachable before, only those in the path we threaded
3936 over and did not have any predecessor outside of the path
3937 become unreachable). */
3938 for (; old_dest != dest; old_dest = tmp)
3939 {
3940 tmp = old_dest->succ->dest;
3941
3942 if (old_dest->pred)
3943 break;
3944
3945 delete_basic_block (old_dest);
3946 }
3947 /* If the dominator of the destination was in the path, set its
3948 dominator to the start of the redirected edge. */
3949 if (get_immediate_dominator (CDI_DOMINATORS, old_dest) == NULL)
3950 set_immediate_dominator (CDI_DOMINATORS, old_dest, bb);
3951
3952 /* Now proceed like if we forwarded just over one edge at a time.
3953 Algorithm for forwarding over edge A --> B then is
3954
3955 if (idom (B) == A)
3956 idom (B) = idom (A);
3957 recount_idom (A); */
3958
3959 for (; old_dest != dest; old_dest = tmp)
3960 {
3961 tmp = old_dest->succ->dest;
3962
3963 if (get_immediate_dominator (CDI_DOMINATORS, tmp) == old_dest)
3964 {
3965 dom = get_immediate_dominator (CDI_DOMINATORS, old_dest);
3966 set_immediate_dominator (CDI_DOMINATORS, tmp, dom);
3967 }
3968
3969 dom = recount_dominator (CDI_DOMINATORS, old_dest);
3970 set_immediate_dominator (CDI_DOMINATORS, old_dest, dom);
3971 }
3972 }
3973 }
3974
3975 /* Reset the forwardable bit on our block since it's no longer in
3976 a forwarding chain path. */
3977 bb_ann (bb)->forwardable = 1;
3978 }
3979
3980 return retval;
3981 }
3982
3983
3984 /* Return a non-special label in the head of basic block BLOCK.
3985 Create one if it doesn't exist. */
3986
3987 tree
3988 tree_block_label (basic_block bb)
3989 {
3990 block_stmt_iterator i, s = bsi_start (bb);
3991 bool first = true;
3992 tree label, stmt;
3993
3994 for (i = s; !bsi_end_p (i); first = false, bsi_next (&i))
3995 {
3996 stmt = bsi_stmt (i);
3997 if (TREE_CODE (stmt) != LABEL_EXPR)
3998 break;
3999 label = LABEL_EXPR_LABEL (stmt);
4000 if (!DECL_NONLOCAL (label))
4001 {
4002 if (!first)
4003 bsi_move_before (&i, &s);
4004 return label;
4005 }
4006 }
4007
4008 label = create_artificial_label ();
4009 stmt = build1 (LABEL_EXPR, void_type_node, label);
4010 bsi_insert_before (&s, stmt, BSI_NEW_STMT);
4011 return label;
4012 }
4013
4014
4015 /* Attempt to perform edge redirection by replacing a possibly complex
4016 jump instruction by a goto or by removing the jump completely.
4017 This can apply only if all edges now point to the same block. The
4018 parameters and return values are equivalent to
4019 redirect_edge_and_branch. */
4020
4021 static edge
4022 tree_try_redirect_by_replacing_jump (edge e, basic_block target)
4023 {
4024 basic_block src = e->src;
4025 edge tmp;
4026 block_stmt_iterator b;
4027 tree stmt;
4028
4029 /* Verify that all targets will be TARGET. */
4030 for (tmp = src->succ; tmp; tmp = tmp->succ_next)
4031 if (tmp->dest != target && tmp != e)
4032 break;
4033
4034 if (tmp)
4035 return NULL;
4036
4037 b = bsi_last (src);
4038 if (bsi_end_p (b))
4039 return NULL;
4040 stmt = bsi_stmt (b);
4041
4042 if (TREE_CODE (stmt) == COND_EXPR
4043 || TREE_CODE (stmt) == SWITCH_EXPR)
4044 {
4045 bsi_remove (&b);
4046 e = ssa_redirect_edge (e, target);
4047 e->flags = EDGE_FALLTHRU;
4048 return e;
4049 }
4050
4051 return NULL;
4052 }
4053
4054
4055 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4056 edge representing the redirected branch. */
4057
4058 static edge
4059 tree_redirect_edge_and_branch (edge e, basic_block dest)
4060 {
4061 basic_block bb = e->src;
4062 block_stmt_iterator bsi;
4063 edge ret;
4064 tree label, stmt;
4065
4066 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
4067 return NULL;
4068
4069 if (e->src != ENTRY_BLOCK_PTR
4070 && (ret = tree_try_redirect_by_replacing_jump (e, dest)))
4071 return ret;
4072
4073 if (e->dest == dest)
4074 return NULL;
4075
4076 label = tree_block_label (dest);
4077
4078 bsi = bsi_last (bb);
4079 stmt = bsi_end_p (bsi) ? NULL : bsi_stmt (bsi);
4080
4081 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
4082 {
4083 case COND_EXPR:
4084 stmt = (e->flags & EDGE_TRUE_VALUE
4085 ? COND_EXPR_THEN (stmt)
4086 : COND_EXPR_ELSE (stmt));
4087 GOTO_DESTINATION (stmt) = label;
4088 break;
4089
4090 case GOTO_EXPR:
4091 /* No non-abnormal edges should lead from a non-simple goto, and
4092 simple ones should be represented implicitly. */
4093 gcc_unreachable ();
4094
4095 case SWITCH_EXPR:
4096 {
4097 tree vec = SWITCH_LABELS (stmt);
4098 size_t i, n = TREE_VEC_LENGTH (vec);
4099
4100 for (i = 0; i < n; ++i)
4101 {
4102 tree elt = TREE_VEC_ELT (vec, i);
4103 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4104 CASE_LABEL (elt) = label;
4105 }
4106 }
4107 break;
4108
4109 case RETURN_EXPR:
4110 bsi_remove (&bsi);
4111 e->flags |= EDGE_FALLTHRU;
4112 break;
4113
4114 default:
4115 /* Otherwise it must be a fallthru edge, and we don't need to
4116 do anything besides redirecting it. */
4117 gcc_assert (e->flags & EDGE_FALLTHRU);
4118 break;
4119 }
4120
4121 /* Update/insert PHI nodes as necessary. */
4122
4123 /* Now update the edges in the CFG. */
4124 e = ssa_redirect_edge (e, dest);
4125
4126 return e;
4127 }
4128
4129
4130 /* Simple wrapper, as we can always redirect fallthru edges. */
4131
4132 static basic_block
4133 tree_redirect_edge_and_branch_force (edge e, basic_block dest)
4134 {
4135 e = tree_redirect_edge_and_branch (e, dest);
4136 gcc_assert (e);
4137
4138 return NULL;
4139 }
4140
4141
4142 /* Splits basic block BB after statement STMT (but at least after the
4143 labels). If STMT is NULL, BB is split just after the labels. */
4144
4145 static basic_block
4146 tree_split_block (basic_block bb, void *stmt)
4147 {
4148 block_stmt_iterator bsi, bsi_tgt;
4149 tree act;
4150 basic_block new_bb;
4151 edge e;
4152
4153 new_bb = create_empty_bb (bb);
4154
4155 /* Redirect the outgoing edges. */
4156 new_bb->succ = bb->succ;
4157 bb->succ = NULL;
4158 for (e = new_bb->succ; e; e = e->succ_next)
4159 e->src = new_bb;
4160
4161 if (stmt && TREE_CODE ((tree) stmt) == LABEL_EXPR)
4162 stmt = NULL;
4163
4164 /* Move everything from BSI to the new basic block. */
4165 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4166 {
4167 act = bsi_stmt (bsi);
4168 if (TREE_CODE (act) == LABEL_EXPR)
4169 continue;
4170
4171 if (!stmt)
4172 break;
4173
4174 if (stmt == act)
4175 {
4176 bsi_next (&bsi);
4177 break;
4178 }
4179 }
4180
4181 bsi_tgt = bsi_start (new_bb);
4182 while (!bsi_end_p (bsi))
4183 {
4184 act = bsi_stmt (bsi);
4185 bsi_remove (&bsi);
4186 bsi_insert_after (&bsi_tgt, act, BSI_NEW_STMT);
4187 }
4188
4189 return new_bb;
4190 }
4191
4192
4193 /* Moves basic block BB after block AFTER. */
4194
4195 static bool
4196 tree_move_block_after (basic_block bb, basic_block after)
4197 {
4198 if (bb->prev_bb == after)
4199 return true;
4200
4201 unlink_block (bb);
4202 link_block (bb, after);
4203
4204 return true;
4205 }
4206
4207
4208 /* Return true if basic_block can be duplicated. */
4209
4210 static bool
4211 tree_can_duplicate_bb_p (basic_block bb ATTRIBUTE_UNUSED)
4212 {
4213 return true;
4214 }
4215
4216
4217 /* Create a duplicate of the basic block BB. NOTE: This does not
4218 preserve SSA form. */
4219
4220 static basic_block
4221 tree_duplicate_bb (basic_block bb)
4222 {
4223 basic_block new_bb;
4224 block_stmt_iterator bsi, bsi_tgt;
4225 tree phi, val;
4226 ssa_op_iter op_iter;
4227
4228 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
4229
4230 for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
4231 {
4232 mark_for_rewrite (PHI_RESULT (phi));
4233 }
4234
4235 bsi_tgt = bsi_start (new_bb);
4236 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4237 {
4238 tree stmt = bsi_stmt (bsi);
4239 tree copy;
4240
4241 if (TREE_CODE (stmt) == LABEL_EXPR)
4242 continue;
4243
4244 /* Record the definitions. */
4245 get_stmt_operands (stmt);
4246
4247 FOR_EACH_SSA_TREE_OPERAND (val, stmt, op_iter, SSA_OP_ALL_DEFS)
4248 mark_for_rewrite (val);
4249
4250 copy = unshare_expr (stmt);
4251
4252 /* Copy also the virtual operands. */
4253 get_stmt_ann (copy);
4254 copy_virtual_operands (copy, stmt);
4255
4256 bsi_insert_after (&bsi_tgt, copy, BSI_NEW_STMT);
4257 }
4258
4259 return new_bb;
4260 }
4261
4262
4263 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree.h) */
4264
4265 void
4266 dump_function_to_file (tree fn, FILE *file, int flags)
4267 {
4268 tree arg, vars, var;
4269 bool ignore_topmost_bind = false, any_var = false;
4270 basic_block bb;
4271 tree chain;
4272
4273 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
4274
4275 arg = DECL_ARGUMENTS (fn);
4276 while (arg)
4277 {
4278 print_generic_expr (file, arg, dump_flags);
4279 if (TREE_CHAIN (arg))
4280 fprintf (file, ", ");
4281 arg = TREE_CHAIN (arg);
4282 }
4283 fprintf (file, ")\n");
4284
4285 if (flags & TDF_RAW)
4286 {
4287 dump_node (fn, TDF_SLIM | flags, file);
4288 return;
4289 }
4290
4291 /* When GIMPLE is lowered, the variables are no longer available in
4292 BIND_EXPRs, so display them separately. */
4293 if (cfun && cfun->unexpanded_var_list)
4294 {
4295 ignore_topmost_bind = true;
4296
4297 fprintf (file, "{\n");
4298 for (vars = cfun->unexpanded_var_list; vars; vars = TREE_CHAIN (vars))
4299 {
4300 var = TREE_VALUE (vars);
4301
4302 print_generic_decl (file, var, flags);
4303 fprintf (file, "\n");
4304
4305 any_var = true;
4306 }
4307 }
4308
4309 if (basic_block_info)
4310 {
4311 /* Make a CFG based dump. */
4312 check_bb_profile (ENTRY_BLOCK_PTR, file);
4313 if (!ignore_topmost_bind)
4314 fprintf (file, "{\n");
4315
4316 if (any_var && n_basic_blocks)
4317 fprintf (file, "\n");
4318
4319 FOR_EACH_BB (bb)
4320 dump_generic_bb (file, bb, 2, flags);
4321
4322 fprintf (file, "}\n");
4323 check_bb_profile (EXIT_BLOCK_PTR, file);
4324 }
4325 else
4326 {
4327 int indent;
4328
4329 /* Make a tree based dump. */
4330 chain = DECL_SAVED_TREE (fn);
4331
4332 if (TREE_CODE (chain) == BIND_EXPR)
4333 {
4334 if (ignore_topmost_bind)
4335 {
4336 chain = BIND_EXPR_BODY (chain);
4337 indent = 2;
4338 }
4339 else
4340 indent = 0;
4341 }
4342 else
4343 {
4344 if (!ignore_topmost_bind)
4345 fprintf (file, "{\n");
4346 indent = 2;
4347 }
4348
4349 if (any_var)
4350 fprintf (file, "\n");
4351
4352 print_generic_stmt_indented (file, chain, flags, indent);
4353 if (ignore_topmost_bind)
4354 fprintf (file, "}\n");
4355 }
4356
4357 fprintf (file, "\n\n");
4358 }
4359
4360
4361 /* Pretty print of the loops intermediate representation. */
4362 static void print_loop (FILE *, struct loop *, int);
4363 static void print_pred_bbs (FILE *, edge);
4364 static void print_succ_bbs (FILE *, edge);
4365
4366
4367 /* Print the predecessors indexes of edge E on FILE. */
4368
4369 static void
4370 print_pred_bbs (FILE *file, edge e)
4371 {
4372 if (e == NULL)
4373 return;
4374
4375 else if (e->pred_next == NULL)
4376 fprintf (file, "bb_%d", e->src->index);
4377
4378 else
4379 {
4380 fprintf (file, "bb_%d, ", e->src->index);
4381 print_pred_bbs (file, e->pred_next);
4382 }
4383 }
4384
4385
4386 /* Print the successors indexes of edge E on FILE. */
4387
4388 static void
4389 print_succ_bbs (FILE *file, edge e)
4390 {
4391 if (e == NULL)
4392 return;
4393 else if (e->succ_next == NULL)
4394 fprintf (file, "bb_%d", e->dest->index);
4395 else
4396 {
4397 fprintf (file, "bb_%d, ", e->dest->index);
4398 print_succ_bbs (file, e->succ_next);
4399 }
4400 }
4401
4402
4403 /* Pretty print LOOP on FILE, indented INDENT spaces. */
4404
4405 static void
4406 print_loop (FILE *file, struct loop *loop, int indent)
4407 {
4408 char *s_indent;
4409 basic_block bb;
4410
4411 if (loop == NULL)
4412 return;
4413
4414 s_indent = (char *) alloca ((size_t) indent + 1);
4415 memset ((void *) s_indent, ' ', (size_t) indent);
4416 s_indent[indent] = '\0';
4417
4418 /* Print the loop's header. */
4419 fprintf (file, "%sloop_%d\n", s_indent, loop->num);
4420
4421 /* Print the loop's body. */
4422 fprintf (file, "%s{\n", s_indent);
4423 FOR_EACH_BB (bb)
4424 if (bb->loop_father == loop)
4425 {
4426 /* Print the basic_block's header. */
4427 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
4428 print_pred_bbs (file, bb->pred);
4429 fprintf (file, "}, succs = {");
4430 print_succ_bbs (file, bb->succ);
4431 fprintf (file, "})\n");
4432
4433 /* Print the basic_block's body. */
4434 fprintf (file, "%s {\n", s_indent);
4435 tree_dump_bb (bb, file, indent + 4);
4436 fprintf (file, "%s }\n", s_indent);
4437 }
4438
4439 print_loop (file, loop->inner, indent + 2);
4440 fprintf (file, "%s}\n", s_indent);
4441 print_loop (file, loop->next, indent);
4442 }
4443
4444
4445 /* Follow a CFG edge from the entry point of the program, and on entry
4446 of a loop, pretty print the loop structure on FILE. */
4447
4448 void
4449 print_loop_ir (FILE *file)
4450 {
4451 basic_block bb;
4452
4453 bb = BASIC_BLOCK (0);
4454 if (bb && bb->loop_father)
4455 print_loop (file, bb->loop_father, 0);
4456 }
4457
4458
4459 /* Debugging loops structure at tree level. */
4460
4461 void
4462 debug_loop_ir (void)
4463 {
4464 print_loop_ir (stderr);
4465 }
4466
4467
4468 /* Return true if BB ends with a call, possibly followed by some
4469 instructions that must stay with the call. Return false,
4470 otherwise. */
4471
4472 static bool
4473 tree_block_ends_with_call_p (basic_block bb)
4474 {
4475 block_stmt_iterator bsi = bsi_last (bb);
4476 return get_call_expr_in (bsi_stmt (bsi)) != NULL;
4477 }
4478
4479
4480 /* Return true if BB ends with a conditional branch. Return false,
4481 otherwise. */
4482
4483 static bool
4484 tree_block_ends_with_condjump_p (basic_block bb)
4485 {
4486 tree stmt = tsi_stmt (bsi_last (bb).tsi);
4487 return (TREE_CODE (stmt) == COND_EXPR);
4488 }
4489
4490
4491 /* Return true if we need to add fake edge to exit at statement T.
4492 Helper function for tree_flow_call_edges_add. */
4493
4494 static bool
4495 need_fake_edge_p (tree t)
4496 {
4497 tree call;
4498
4499 /* NORETURN and LONGJMP calls already have an edge to exit.
4500 CONST, PURE and ALWAYS_RETURN calls do not need one.
4501 We don't currently check for CONST and PURE here, although
4502 it would be a good idea, because those attributes are
4503 figured out from the RTL in mark_constant_function, and
4504 the counter incrementation code from -fprofile-arcs
4505 leads to different results from -fbranch-probabilities. */
4506 call = get_call_expr_in (t);
4507 if (call
4508 && !(call_expr_flags (call) &
4509 (ECF_NORETURN | ECF_LONGJMP | ECF_ALWAYS_RETURN)))
4510 return true;
4511
4512 if (TREE_CODE (t) == ASM_EXPR
4513 && (ASM_VOLATILE_P (t) || ASM_INPUT_P (t)))
4514 return true;
4515
4516 return false;
4517 }
4518
4519
4520 /* Add fake edges to the function exit for any non constant and non
4521 noreturn calls, volatile inline assembly in the bitmap of blocks
4522 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
4523 the number of blocks that were split.
4524
4525 The goal is to expose cases in which entering a basic block does
4526 not imply that all subsequent instructions must be executed. */
4527
4528 static int
4529 tree_flow_call_edges_add (sbitmap blocks)
4530 {
4531 int i;
4532 int blocks_split = 0;
4533 int last_bb = last_basic_block;
4534 bool check_last_block = false;
4535
4536 if (n_basic_blocks == 0)
4537 return 0;
4538
4539 if (! blocks)
4540 check_last_block = true;
4541 else
4542 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
4543
4544 /* In the last basic block, before epilogue generation, there will be
4545 a fallthru edge to EXIT. Special care is required if the last insn
4546 of the last basic block is a call because make_edge folds duplicate
4547 edges, which would result in the fallthru edge also being marked
4548 fake, which would result in the fallthru edge being removed by
4549 remove_fake_edges, which would result in an invalid CFG.
4550
4551 Moreover, we can't elide the outgoing fake edge, since the block
4552 profiler needs to take this into account in order to solve the minimal
4553 spanning tree in the case that the call doesn't return.
4554
4555 Handle this by adding a dummy instruction in a new last basic block. */
4556 if (check_last_block)
4557 {
4558 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
4559 block_stmt_iterator bsi = bsi_last (bb);
4560 tree t = NULL_TREE;
4561 if (!bsi_end_p (bsi))
4562 t = bsi_stmt (bsi);
4563
4564 if (need_fake_edge_p (t))
4565 {
4566 edge e;
4567
4568 for (e = bb->succ; e; e = e->succ_next)
4569 if (e->dest == EXIT_BLOCK_PTR)
4570 {
4571 bsi_insert_on_edge (e, build_empty_stmt ());
4572 bsi_commit_edge_inserts ((int *)NULL);
4573 break;
4574 }
4575 }
4576 }
4577
4578 /* Now add fake edges to the function exit for any non constant
4579 calls since there is no way that we can determine if they will
4580 return or not... */
4581 for (i = 0; i < last_bb; i++)
4582 {
4583 basic_block bb = BASIC_BLOCK (i);
4584 block_stmt_iterator bsi;
4585 tree stmt, last_stmt;
4586
4587 if (!bb)
4588 continue;
4589
4590 if (blocks && !TEST_BIT (blocks, i))
4591 continue;
4592
4593 bsi = bsi_last (bb);
4594 if (!bsi_end_p (bsi))
4595 {
4596 last_stmt = bsi_stmt (bsi);
4597 do
4598 {
4599 stmt = bsi_stmt (bsi);
4600 if (need_fake_edge_p (stmt))
4601 {
4602 edge e;
4603 /* The handling above of the final block before the
4604 epilogue should be enough to verify that there is
4605 no edge to the exit block in CFG already.
4606 Calling make_edge in such case would cause us to
4607 mark that edge as fake and remove it later. */
4608 #ifdef ENABLE_CHECKING
4609 if (stmt == last_stmt)
4610 for (e = bb->succ; e; e = e->succ_next)
4611 gcc_assert (e->dest != EXIT_BLOCK_PTR);
4612 #endif
4613
4614 /* Note that the following may create a new basic block
4615 and renumber the existing basic blocks. */
4616 if (stmt != last_stmt)
4617 {
4618 e = split_block (bb, stmt);
4619 if (e)
4620 blocks_split++;
4621 }
4622 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
4623 }
4624 bsi_prev (&bsi);
4625 }
4626 while (!bsi_end_p (bsi));
4627 }
4628 }
4629
4630 if (blocks_split)
4631 verify_flow_info ();
4632
4633 return blocks_split;
4634 }
4635
4636 bool
4637 tree_purge_dead_eh_edges (basic_block bb)
4638 {
4639 bool changed = false;
4640 edge e, next;
4641 tree stmt = last_stmt (bb);
4642
4643 if (stmt && tree_can_throw_internal (stmt))
4644 return false;
4645
4646 for (e = bb->succ; e ; e = next)
4647 {
4648 next = e->succ_next;
4649 if (e->flags & EDGE_EH)
4650 {
4651 ssa_remove_edge (e);
4652 changed = true;
4653 }
4654 }
4655
4656 return changed;
4657 }
4658
4659 bool
4660 tree_purge_all_dead_eh_edges (bitmap blocks)
4661 {
4662 bool changed = false;
4663 size_t i;
4664
4665 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i,
4666 { changed |= tree_purge_dead_eh_edges (BASIC_BLOCK (i)); });
4667
4668 return changed;
4669 }
4670
4671 struct cfg_hooks tree_cfg_hooks = {
4672 "tree",
4673 tree_verify_flow_info,
4674 tree_dump_bb, /* dump_bb */
4675 create_bb, /* create_basic_block */
4676 tree_redirect_edge_and_branch,/* redirect_edge_and_branch */
4677 tree_redirect_edge_and_branch_force,/* redirect_edge_and_branch_force */
4678 remove_bb, /* delete_basic_block */
4679 tree_split_block, /* split_block */
4680 tree_move_block_after, /* move_block_after */
4681 tree_can_merge_blocks_p, /* can_merge_blocks_p */
4682 tree_merge_blocks, /* merge_blocks */
4683 tree_predict_edge, /* predict_edge */
4684 tree_predicted_by_p, /* predicted_by_p */
4685 tree_can_duplicate_bb_p, /* can_duplicate_block_p */
4686 tree_duplicate_bb, /* duplicate_block */
4687 tree_split_edge, /* split_edge */
4688 tree_make_forwarder_block, /* make_forward_block */
4689 NULL, /* tidy_fallthru_edge */
4690 tree_block_ends_with_call_p, /* block_ends_with_call_p */
4691 tree_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
4692 tree_flow_call_edges_add /* flow_call_edges_add */
4693 };
4694
4695
4696 /* Split all critical edges. */
4697
4698 static void
4699 split_critical_edges (void)
4700 {
4701 basic_block bb;
4702 edge e;
4703
4704 FOR_ALL_BB (bb)
4705 {
4706 for (e = bb->succ; e ; e = e->succ_next)
4707 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
4708 {
4709 split_edge (e);
4710 }
4711 }
4712 }
4713
4714 struct tree_opt_pass pass_split_crit_edges =
4715 {
4716 "crited", /* name */
4717 NULL, /* gate */
4718 split_critical_edges, /* execute */
4719 NULL, /* sub */
4720 NULL, /* next */
4721 0, /* static_pass_number */
4722 TV_TREE_SPLIT_EDGES, /* tv_id */
4723 PROP_cfg, /* properties required */
4724 PROP_no_crit_edges, /* properties_provided */
4725 0, /* properties_destroyed */
4726 0, /* todo_flags_start */
4727 TODO_dump_func, /* todo_flags_finish */
4728 0 /* letter */
4729 };
4730
4731 \f
4732 /* Return EXP if it is a valid GIMPLE rvalue, else gimplify it into
4733 a temporary, make sure and register it to be renamed if necessary,
4734 and finally return the temporary. Put the statements to compute
4735 EXP before the current statement in BSI. */
4736
4737 tree
4738 gimplify_val (block_stmt_iterator *bsi, tree type, tree exp)
4739 {
4740 tree t, new_stmt, orig_stmt;
4741
4742 if (is_gimple_val (exp))
4743 return exp;
4744
4745 t = make_rename_temp (type, NULL);
4746 new_stmt = build (MODIFY_EXPR, type, t, exp);
4747
4748 orig_stmt = bsi_stmt (*bsi);
4749 SET_EXPR_LOCUS (new_stmt, EXPR_LOCUS (orig_stmt));
4750 TREE_BLOCK (new_stmt) = TREE_BLOCK (orig_stmt);
4751
4752 bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT);
4753
4754 return t;
4755 }
4756
4757 /* Build a ternary operation and gimplify it. Emit code before BSI.
4758 Return the gimple_val holding the result. */
4759
4760 tree
4761 gimplify_build3 (block_stmt_iterator *bsi, enum tree_code code,
4762 tree type, tree a, tree b, tree c)
4763 {
4764 tree ret;
4765
4766 ret = fold (build3 (code, type, a, b, c));
4767 STRIP_NOPS (ret);
4768
4769 return gimplify_val (bsi, type, ret);
4770 }
4771
4772 /* Build a binary operation and gimplify it. Emit code before BSI.
4773 Return the gimple_val holding the result. */
4774
4775 tree
4776 gimplify_build2 (block_stmt_iterator *bsi, enum tree_code code,
4777 tree type, tree a, tree b)
4778 {
4779 tree ret;
4780
4781 ret = fold (build2 (code, type, a, b));
4782 STRIP_NOPS (ret);
4783
4784 return gimplify_val (bsi, type, ret);
4785 }
4786
4787 /* Build a unary operation and gimplify it. Emit code before BSI.
4788 Return the gimple_val holding the result. */
4789
4790 tree
4791 gimplify_build1 (block_stmt_iterator *bsi, enum tree_code code, tree type,
4792 tree a)
4793 {
4794 tree ret;
4795
4796 ret = fold (build1 (code, type, a));
4797 STRIP_NOPS (ret);
4798
4799 return gimplify_val (bsi, type, ret);
4800 }
4801
4802
4803 \f
4804 /* Emit return warnings. */
4805
4806 static void
4807 execute_warn_function_return (void)
4808 {
4809 #ifdef USE_MAPPED_LOCATION
4810 source_location location;
4811 #else
4812 location_t *locus;
4813 #endif
4814 tree last;
4815 edge e;
4816
4817 if (warn_missing_noreturn
4818 && !TREE_THIS_VOLATILE (cfun->decl)
4819 && EXIT_BLOCK_PTR->pred == NULL
4820 && !lang_hooks.function.missing_noreturn_ok_p (cfun->decl))
4821 warning ("%Jfunction might be possible candidate for attribute `noreturn'",
4822 cfun->decl);
4823
4824 /* If we have a path to EXIT, then we do return. */
4825 if (TREE_THIS_VOLATILE (cfun->decl)
4826 && EXIT_BLOCK_PTR->pred != NULL)
4827 {
4828 #ifdef USE_MAPPED_LOCATION
4829 location = UNKNOWN_LOCATION;
4830 #else
4831 locus = NULL;
4832 #endif
4833 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
4834 {
4835 last = last_stmt (e->src);
4836 if (TREE_CODE (last) == RETURN_EXPR
4837 #ifdef USE_MAPPED_LOCATION
4838 && (location = EXPR_LOCATION (last)) != UNKNOWN_LOCATION)
4839 #else
4840 && (locus = EXPR_LOCUS (last)) != NULL)
4841 #endif
4842 break;
4843 }
4844 #ifdef USE_MAPPED_LOCATION
4845 if (location == UNKNOWN_LOCATION)
4846 location = cfun->function_end_locus;
4847 warning ("%H`noreturn' function does return", &location);
4848 #else
4849 if (!locus)
4850 locus = &cfun->function_end_locus;
4851 warning ("%H`noreturn' function does return", locus);
4852 #endif
4853 }
4854
4855 /* If we see "return;" in some basic block, then we do reach the end
4856 without returning a value. */
4857 else if (warn_return_type
4858 && EXIT_BLOCK_PTR->pred != NULL
4859 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
4860 {
4861 for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
4862 {
4863 tree last = last_stmt (e->src);
4864 if (TREE_CODE (last) == RETURN_EXPR
4865 && TREE_OPERAND (last, 0) == NULL)
4866 {
4867 #ifdef USE_MAPPED_LOCATION
4868 location = EXPR_LOCATION (last);
4869 if (location == UNKNOWN_LOCATION)
4870 location = cfun->function_end_locus;
4871 warning ("%Hcontrol reaches end of non-void function", &location);
4872 #else
4873 locus = EXPR_LOCUS (last);
4874 if (!locus)
4875 locus = &cfun->function_end_locus;
4876 warning ("%Hcontrol reaches end of non-void function", locus);
4877 #endif
4878 break;
4879 }
4880 }
4881 }
4882 }
4883
4884
4885 /* Given a basic block B which ends with a conditional and has
4886 precisely two successors, determine which of the edges is taken if
4887 the conditional is true and which is taken if the conditional is
4888 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
4889
4890 void
4891 extract_true_false_edges_from_block (basic_block b,
4892 edge *true_edge,
4893 edge *false_edge)
4894 {
4895 edge e = b->succ;
4896
4897 if (e->flags & EDGE_TRUE_VALUE)
4898 {
4899 *true_edge = e;
4900 *false_edge = e->succ_next;
4901 }
4902 else
4903 {
4904 *false_edge = e;
4905 *true_edge = e->succ_next;
4906 }
4907 }
4908
4909 struct tree_opt_pass pass_warn_function_return =
4910 {
4911 NULL, /* name */
4912 NULL, /* gate */
4913 execute_warn_function_return, /* execute */
4914 NULL, /* sub */
4915 NULL, /* next */
4916 0, /* static_pass_number */
4917 0, /* tv_id */
4918 PROP_cfg, /* properties_required */
4919 0, /* properties_provided */
4920 0, /* properties_destroyed */
4921 0, /* todo_flags_start */
4922 0, /* todo_flags_finish */
4923 0 /* letter */
4924 };
4925
4926 #include "gt-tree-cfg.h"