Automated conversion of passes to C++ classes
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "ggc.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "diagnostic-core.h"
37 #include "except.h"
38 #include "cfgloop.h"
39 #include "tree-ssa-propagate.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "tree-inline.h"
43 #include "target.h"
44
45 /* This file contains functions for building the Control Flow Graph (CFG)
46 for a function tree. */
47
48 /* Local declarations. */
49
50 /* Initial capacity for the basic block array. */
51 static const int initial_cfg_capacity = 20;
52
53 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
54 which use a particular edge. The CASE_LABEL_EXPRs are chained together
55 via their CASE_CHAIN field, which we clear after we're done with the
56 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
57
58 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
59 update the case vector in response to edge redirections.
60
61 Right now this table is set up and torn down at key points in the
62 compilation process. It would be nice if we could make the table
63 more persistent. The key is getting notification of changes to
64 the CFG (particularly edge removal, creation and redirection). */
65
66 static struct pointer_map_t *edge_to_cases;
67
68 /* If we record edge_to_cases, this bitmap will hold indexes
69 of basic blocks that end in a GIMPLE_SWITCH which we touched
70 due to edge manipulations. */
71
72 static bitmap touched_switch_bbs;
73
74 /* CFG statistics. */
75 struct cfg_stats_d
76 {
77 long num_merged_labels;
78 };
79
80 static struct cfg_stats_d cfg_stats;
81
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
84
85 /* Hash table to store last discriminator assigned for each locus. */
86 struct locus_discrim_map
87 {
88 location_t locus;
89 int discriminator;
90 };
91
92 /* Hashtable helpers. */
93
94 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
95 {
96 typedef locus_discrim_map value_type;
97 typedef locus_discrim_map compare_type;
98 static inline hashval_t hash (const value_type *);
99 static inline bool equal (const value_type *, const compare_type *);
100 };
101
102 /* Trivial hash function for a location_t. ITEM is a pointer to
103 a hash table entry that maps a location_t to a discriminator. */
104
105 inline hashval_t
106 locus_discrim_hasher::hash (const value_type *item)
107 {
108 return LOCATION_LINE (item->locus);
109 }
110
111 /* Equality function for the locus-to-discriminator map. A and B
112 point to the two hash table entries to compare. */
113
114 inline bool
115 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
116 {
117 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
118 }
119
120 static hash_table <locus_discrim_hasher> discriminator_per_locus;
121
122 /* Basic blocks and flowgraphs. */
123 static void make_blocks (gimple_seq);
124 static void factor_computed_gotos (void);
125
126 /* Edges. */
127 static void make_edges (void);
128 static void assign_discriminators (void);
129 static void make_cond_expr_edges (basic_block);
130 static void make_gimple_switch_edges (basic_block);
131 static void make_goto_expr_edges (basic_block);
132 static void make_gimple_asm_edges (basic_block);
133 static edge gimple_redirect_edge_and_branch (edge, basic_block);
134 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
135 static unsigned int split_critical_edges (void);
136
137 /* Various helpers. */
138 static inline bool stmt_starts_bb_p (gimple, gimple);
139 static int gimple_verify_flow_info (void);
140 static void gimple_make_forwarder_block (edge);
141 static gimple first_non_label_stmt (basic_block);
142 static bool verify_gimple_transaction (gimple);
143
144 /* Flowgraph optimization and cleanup. */
145 static void gimple_merge_blocks (basic_block, basic_block);
146 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
147 static void remove_bb (basic_block);
148 static edge find_taken_edge_computed_goto (basic_block, tree);
149 static edge find_taken_edge_cond_expr (basic_block, tree);
150 static edge find_taken_edge_switch_expr (basic_block, tree);
151 static tree find_case_label_for_value (gimple, tree);
152
153 void
154 init_empty_tree_cfg_for_function (struct function *fn)
155 {
156 /* Initialize the basic block array. */
157 init_flow (fn);
158 profile_status_for_function (fn) = PROFILE_ABSENT;
159 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
160 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
161 vec_alloc (basic_block_info_for_function (fn), initial_cfg_capacity);
162 vec_safe_grow_cleared (basic_block_info_for_function (fn),
163 initial_cfg_capacity);
164
165 /* Build a mapping of labels to their associated blocks. */
166 vec_alloc (label_to_block_map_for_function (fn), initial_cfg_capacity);
167 vec_safe_grow_cleared (label_to_block_map_for_function (fn),
168 initial_cfg_capacity);
169
170 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
171 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
172 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
173 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
174
175 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
176 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
177 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
178 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
179 }
180
181 void
182 init_empty_tree_cfg (void)
183 {
184 init_empty_tree_cfg_for_function (cfun);
185 }
186
187 /*---------------------------------------------------------------------------
188 Create basic blocks
189 ---------------------------------------------------------------------------*/
190
191 /* Entry point to the CFG builder for trees. SEQ is the sequence of
192 statements to be added to the flowgraph. */
193
194 static void
195 build_gimple_cfg (gimple_seq seq)
196 {
197 /* Register specific gimple functions. */
198 gimple_register_cfg_hooks ();
199
200 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
201
202 init_empty_tree_cfg ();
203
204 found_computed_goto = 0;
205 make_blocks (seq);
206
207 /* Computed gotos are hell to deal with, especially if there are
208 lots of them with a large number of destinations. So we factor
209 them to a common computed goto location before we build the
210 edge list. After we convert back to normal form, we will un-factor
211 the computed gotos since factoring introduces an unwanted jump. */
212 if (found_computed_goto)
213 factor_computed_gotos ();
214
215 /* Make sure there is always at least one block, even if it's empty. */
216 if (n_basic_blocks == NUM_FIXED_BLOCKS)
217 create_empty_bb (ENTRY_BLOCK_PTR);
218
219 /* Adjust the size of the array. */
220 if (basic_block_info->length () < (size_t) n_basic_blocks)
221 vec_safe_grow_cleared (basic_block_info, n_basic_blocks);
222
223 /* To speed up statement iterator walks, we first purge dead labels. */
224 cleanup_dead_labels ();
225
226 /* Group case nodes to reduce the number of edges.
227 We do this after cleaning up dead labels because otherwise we miss
228 a lot of obvious case merging opportunities. */
229 group_case_labels ();
230
231 /* Create the edges of the flowgraph. */
232 discriminator_per_locus.create (13);
233 make_edges ();
234 assign_discriminators ();
235 cleanup_dead_labels ();
236 discriminator_per_locus.dispose ();
237 }
238
239 static unsigned int
240 execute_build_cfg (void)
241 {
242 gimple_seq body = gimple_body (current_function_decl);
243
244 build_gimple_cfg (body);
245 gimple_set_body (current_function_decl, NULL);
246 if (dump_file && (dump_flags & TDF_DETAILS))
247 {
248 fprintf (dump_file, "Scope blocks:\n");
249 dump_scope_blocks (dump_file, dump_flags);
250 }
251 cleanup_tree_cfg ();
252 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
253 return 0;
254 }
255
256 namespace {
257
258 const pass_data pass_data_build_cfg =
259 {
260 GIMPLE_PASS, /* type */
261 "cfg", /* name */
262 OPTGROUP_NONE, /* optinfo_flags */
263 false, /* has_gate */
264 true, /* has_execute */
265 TV_TREE_CFG, /* tv_id */
266 PROP_gimple_leh, /* properties_required */
267 ( PROP_cfg | PROP_loops ), /* properties_provided */
268 0, /* properties_destroyed */
269 0, /* todo_flags_start */
270 TODO_verify_stmts, /* todo_flags_finish */
271 };
272
273 class pass_build_cfg : public gimple_opt_pass
274 {
275 public:
276 pass_build_cfg(gcc::context *ctxt)
277 : gimple_opt_pass(pass_data_build_cfg, ctxt)
278 {}
279
280 /* opt_pass methods: */
281 unsigned int execute () { return execute_build_cfg (); }
282
283 }; // class pass_build_cfg
284
285 } // anon namespace
286
287 gimple_opt_pass *
288 make_pass_build_cfg (gcc::context *ctxt)
289 {
290 return new pass_build_cfg (ctxt);
291 }
292
293
294 /* Return true if T is a computed goto. */
295
296 static bool
297 computed_goto_p (gimple t)
298 {
299 return (gimple_code (t) == GIMPLE_GOTO
300 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
301 }
302
303
304 /* Search the CFG for any computed gotos. If found, factor them to a
305 common computed goto site. Also record the location of that site so
306 that we can un-factor the gotos after we have converted back to
307 normal form. */
308
309 static void
310 factor_computed_gotos (void)
311 {
312 basic_block bb;
313 tree factored_label_decl = NULL;
314 tree var = NULL;
315 gimple factored_computed_goto_label = NULL;
316 gimple factored_computed_goto = NULL;
317
318 /* We know there are one or more computed gotos in this function.
319 Examine the last statement in each basic block to see if the block
320 ends with a computed goto. */
321
322 FOR_EACH_BB (bb)
323 {
324 gimple_stmt_iterator gsi = gsi_last_bb (bb);
325 gimple last;
326
327 if (gsi_end_p (gsi))
328 continue;
329
330 last = gsi_stmt (gsi);
331
332 /* Ignore the computed goto we create when we factor the original
333 computed gotos. */
334 if (last == factored_computed_goto)
335 continue;
336
337 /* If the last statement is a computed goto, factor it. */
338 if (computed_goto_p (last))
339 {
340 gimple assignment;
341
342 /* The first time we find a computed goto we need to create
343 the factored goto block and the variable each original
344 computed goto will use for their goto destination. */
345 if (!factored_computed_goto)
346 {
347 basic_block new_bb = create_empty_bb (bb);
348 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
349
350 /* Create the destination of the factored goto. Each original
351 computed goto will put its desired destination into this
352 variable and jump to the label we create immediately
353 below. */
354 var = create_tmp_var (ptr_type_node, "gotovar");
355
356 /* Build a label for the new block which will contain the
357 factored computed goto. */
358 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
359 factored_computed_goto_label
360 = gimple_build_label (factored_label_decl);
361 gsi_insert_after (&new_gsi, factored_computed_goto_label,
362 GSI_NEW_STMT);
363
364 /* Build our new computed goto. */
365 factored_computed_goto = gimple_build_goto (var);
366 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
367 }
368
369 /* Copy the original computed goto's destination into VAR. */
370 assignment = gimple_build_assign (var, gimple_goto_dest (last));
371 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
372
373 /* And re-vector the computed goto to the new destination. */
374 gimple_goto_set_dest (last, factored_label_decl);
375 }
376 }
377 }
378
379
380 /* Build a flowgraph for the sequence of stmts SEQ. */
381
382 static void
383 make_blocks (gimple_seq seq)
384 {
385 gimple_stmt_iterator i = gsi_start (seq);
386 gimple stmt = NULL;
387 bool start_new_block = true;
388 bool first_stmt_of_seq = true;
389 basic_block bb = ENTRY_BLOCK_PTR;
390
391 while (!gsi_end_p (i))
392 {
393 gimple prev_stmt;
394
395 prev_stmt = stmt;
396 stmt = gsi_stmt (i);
397
398 /* If the statement starts a new basic block or if we have determined
399 in a previous pass that we need to create a new block for STMT, do
400 so now. */
401 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
402 {
403 if (!first_stmt_of_seq)
404 gsi_split_seq_before (&i, &seq);
405 bb = create_basic_block (seq, NULL, bb);
406 start_new_block = false;
407 }
408
409 /* Now add STMT to BB and create the subgraphs for special statement
410 codes. */
411 gimple_set_bb (stmt, bb);
412
413 if (computed_goto_p (stmt))
414 found_computed_goto = true;
415
416 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
417 next iteration. */
418 if (stmt_ends_bb_p (stmt))
419 {
420 /* If the stmt can make abnormal goto use a new temporary
421 for the assignment to the LHS. This makes sure the old value
422 of the LHS is available on the abnormal edge. Otherwise
423 we will end up with overlapping life-ranges for abnormal
424 SSA names. */
425 if (gimple_has_lhs (stmt)
426 && stmt_can_make_abnormal_goto (stmt)
427 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
428 {
429 tree lhs = gimple_get_lhs (stmt);
430 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
431 gimple s = gimple_build_assign (lhs, tmp);
432 gimple_set_location (s, gimple_location (stmt));
433 gimple_set_block (s, gimple_block (stmt));
434 gimple_set_lhs (stmt, tmp);
435 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
436 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
437 DECL_GIMPLE_REG_P (tmp) = 1;
438 gsi_insert_after (&i, s, GSI_SAME_STMT);
439 }
440 start_new_block = true;
441 }
442
443 gsi_next (&i);
444 first_stmt_of_seq = false;
445 }
446 }
447
448
449 /* Create and return a new empty basic block after bb AFTER. */
450
451 static basic_block
452 create_bb (void *h, void *e, basic_block after)
453 {
454 basic_block bb;
455
456 gcc_assert (!e);
457
458 /* Create and initialize a new basic block. Since alloc_block uses
459 GC allocation that clears memory to allocate a basic block, we do
460 not have to clear the newly allocated basic block here. */
461 bb = alloc_block ();
462
463 bb->index = last_basic_block;
464 bb->flags = BB_NEW;
465 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
466
467 /* Add the new block to the linked list of blocks. */
468 link_block (bb, after);
469
470 /* Grow the basic block array if needed. */
471 if ((size_t) last_basic_block == basic_block_info->length ())
472 {
473 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
474 vec_safe_grow_cleared (basic_block_info, new_size);
475 }
476
477 /* Add the newly created block to the array. */
478 SET_BASIC_BLOCK (last_basic_block, bb);
479
480 n_basic_blocks++;
481 last_basic_block++;
482
483 return bb;
484 }
485
486
487 /*---------------------------------------------------------------------------
488 Edge creation
489 ---------------------------------------------------------------------------*/
490
491 /* Fold COND_EXPR_COND of each COND_EXPR. */
492
493 void
494 fold_cond_expr_cond (void)
495 {
496 basic_block bb;
497
498 FOR_EACH_BB (bb)
499 {
500 gimple stmt = last_stmt (bb);
501
502 if (stmt && gimple_code (stmt) == GIMPLE_COND)
503 {
504 location_t loc = gimple_location (stmt);
505 tree cond;
506 bool zerop, onep;
507
508 fold_defer_overflow_warnings ();
509 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
510 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
511 if (cond)
512 {
513 zerop = integer_zerop (cond);
514 onep = integer_onep (cond);
515 }
516 else
517 zerop = onep = false;
518
519 fold_undefer_overflow_warnings (zerop || onep,
520 stmt,
521 WARN_STRICT_OVERFLOW_CONDITIONAL);
522 if (zerop)
523 gimple_cond_make_false (stmt);
524 else if (onep)
525 gimple_cond_make_true (stmt);
526 }
527 }
528 }
529
530 /* Join all the blocks in the flowgraph. */
531
532 static void
533 make_edges (void)
534 {
535 basic_block bb;
536 struct omp_region *cur_region = NULL;
537
538 /* Create an edge from entry to the first block with executable
539 statements in it. */
540 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
541
542 /* Traverse the basic block array placing edges. */
543 FOR_EACH_BB (bb)
544 {
545 gimple last = last_stmt (bb);
546 bool fallthru;
547
548 if (last)
549 {
550 enum gimple_code code = gimple_code (last);
551 switch (code)
552 {
553 case GIMPLE_GOTO:
554 make_goto_expr_edges (bb);
555 fallthru = false;
556 break;
557 case GIMPLE_RETURN:
558 make_edge (bb, EXIT_BLOCK_PTR, 0);
559 fallthru = false;
560 break;
561 case GIMPLE_COND:
562 make_cond_expr_edges (bb);
563 fallthru = false;
564 break;
565 case GIMPLE_SWITCH:
566 make_gimple_switch_edges (bb);
567 fallthru = false;
568 break;
569 case GIMPLE_RESX:
570 make_eh_edges (last);
571 fallthru = false;
572 break;
573 case GIMPLE_EH_DISPATCH:
574 fallthru = make_eh_dispatch_edges (last);
575 break;
576
577 case GIMPLE_CALL:
578 /* If this function receives a nonlocal goto, then we need to
579 make edges from this call site to all the nonlocal goto
580 handlers. */
581 if (stmt_can_make_abnormal_goto (last))
582 make_abnormal_goto_edges (bb, true);
583
584 /* If this statement has reachable exception handlers, then
585 create abnormal edges to them. */
586 make_eh_edges (last);
587
588 /* BUILTIN_RETURN is really a return statement. */
589 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
590 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
591 /* Some calls are known not to return. */
592 else
593 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
594 break;
595
596 case GIMPLE_ASSIGN:
597 /* A GIMPLE_ASSIGN may throw internally and thus be considered
598 control-altering. */
599 if (is_ctrl_altering_stmt (last))
600 make_eh_edges (last);
601 fallthru = true;
602 break;
603
604 case GIMPLE_ASM:
605 make_gimple_asm_edges (bb);
606 fallthru = true;
607 break;
608
609 case GIMPLE_OMP_PARALLEL:
610 case GIMPLE_OMP_TASK:
611 case GIMPLE_OMP_FOR:
612 case GIMPLE_OMP_SINGLE:
613 case GIMPLE_OMP_MASTER:
614 case GIMPLE_OMP_ORDERED:
615 case GIMPLE_OMP_CRITICAL:
616 case GIMPLE_OMP_SECTION:
617 cur_region = new_omp_region (bb, code, cur_region);
618 fallthru = true;
619 break;
620
621 case GIMPLE_OMP_SECTIONS:
622 cur_region = new_omp_region (bb, code, cur_region);
623 fallthru = true;
624 break;
625
626 case GIMPLE_OMP_SECTIONS_SWITCH:
627 fallthru = false;
628 break;
629
630 case GIMPLE_OMP_ATOMIC_LOAD:
631 case GIMPLE_OMP_ATOMIC_STORE:
632 fallthru = true;
633 break;
634
635 case GIMPLE_OMP_RETURN:
636 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
637 somewhere other than the next block. This will be
638 created later. */
639 cur_region->exit = bb;
640 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
641 cur_region = cur_region->outer;
642 break;
643
644 case GIMPLE_OMP_CONTINUE:
645 cur_region->cont = bb;
646 switch (cur_region->type)
647 {
648 case GIMPLE_OMP_FOR:
649 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
650 succs edges as abnormal to prevent splitting
651 them. */
652 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
653 /* Make the loopback edge. */
654 make_edge (bb, single_succ (cur_region->entry),
655 EDGE_ABNORMAL);
656
657 /* Create an edge from GIMPLE_OMP_FOR to exit, which
658 corresponds to the case that the body of the loop
659 is not executed at all. */
660 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
661 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
662 fallthru = false;
663 break;
664
665 case GIMPLE_OMP_SECTIONS:
666 /* Wire up the edges into and out of the nested sections. */
667 {
668 basic_block switch_bb = single_succ (cur_region->entry);
669
670 struct omp_region *i;
671 for (i = cur_region->inner; i ; i = i->next)
672 {
673 gcc_assert (i->type == GIMPLE_OMP_SECTION);
674 make_edge (switch_bb, i->entry, 0);
675 make_edge (i->exit, bb, EDGE_FALLTHRU);
676 }
677
678 /* Make the loopback edge to the block with
679 GIMPLE_OMP_SECTIONS_SWITCH. */
680 make_edge (bb, switch_bb, 0);
681
682 /* Make the edge from the switch to exit. */
683 make_edge (switch_bb, bb->next_bb, 0);
684 fallthru = false;
685 }
686 break;
687
688 default:
689 gcc_unreachable ();
690 }
691 break;
692
693 case GIMPLE_TRANSACTION:
694 {
695 tree abort_label = gimple_transaction_label (last);
696 if (abort_label)
697 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
698 fallthru = true;
699 }
700 break;
701
702 default:
703 gcc_assert (!stmt_ends_bb_p (last));
704 fallthru = true;
705 }
706 }
707 else
708 fallthru = true;
709
710 if (fallthru)
711 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
712 }
713
714 if (root_omp_region)
715 free_omp_regions ();
716
717 /* Fold COND_EXPR_COND of each COND_EXPR. */
718 fold_cond_expr_cond ();
719 }
720
721 /* Find the next available discriminator value for LOCUS. The
722 discriminator distinguishes among several basic blocks that
723 share a common locus, allowing for more accurate sample-based
724 profiling. */
725
726 static int
727 next_discriminator_for_locus (location_t locus)
728 {
729 struct locus_discrim_map item;
730 struct locus_discrim_map **slot;
731
732 item.locus = locus;
733 item.discriminator = 0;
734 slot = discriminator_per_locus.find_slot_with_hash (
735 &item, LOCATION_LINE (locus), INSERT);
736 gcc_assert (slot);
737 if (*slot == HTAB_EMPTY_ENTRY)
738 {
739 *slot = XNEW (struct locus_discrim_map);
740 gcc_assert (*slot);
741 (*slot)->locus = locus;
742 (*slot)->discriminator = 0;
743 }
744 (*slot)->discriminator++;
745 return (*slot)->discriminator;
746 }
747
748 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
749
750 static bool
751 same_line_p (location_t locus1, location_t locus2)
752 {
753 expanded_location from, to;
754
755 if (locus1 == locus2)
756 return true;
757
758 from = expand_location (locus1);
759 to = expand_location (locus2);
760
761 if (from.line != to.line)
762 return false;
763 if (from.file == to.file)
764 return true;
765 return (from.file != NULL
766 && to.file != NULL
767 && filename_cmp (from.file, to.file) == 0);
768 }
769
770 /* Assign discriminators to each basic block. */
771
772 static void
773 assign_discriminators (void)
774 {
775 basic_block bb;
776
777 FOR_EACH_BB (bb)
778 {
779 edge e;
780 edge_iterator ei;
781 gimple last = last_stmt (bb);
782 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
783
784 if (locus == UNKNOWN_LOCATION)
785 continue;
786
787 FOR_EACH_EDGE (e, ei, bb->succs)
788 {
789 gimple first = first_non_label_stmt (e->dest);
790 gimple last = last_stmt (e->dest);
791 if ((first && same_line_p (locus, gimple_location (first)))
792 || (last && same_line_p (locus, gimple_location (last))))
793 {
794 if (e->dest->discriminator != 0 && bb->discriminator == 0)
795 bb->discriminator = next_discriminator_for_locus (locus);
796 else
797 e->dest->discriminator = next_discriminator_for_locus (locus);
798 }
799 }
800 }
801 }
802
803 /* Create the edges for a GIMPLE_COND starting at block BB. */
804
805 static void
806 make_cond_expr_edges (basic_block bb)
807 {
808 gimple entry = last_stmt (bb);
809 gimple then_stmt, else_stmt;
810 basic_block then_bb, else_bb;
811 tree then_label, else_label;
812 edge e;
813
814 gcc_assert (entry);
815 gcc_assert (gimple_code (entry) == GIMPLE_COND);
816
817 /* Entry basic blocks for each component. */
818 then_label = gimple_cond_true_label (entry);
819 else_label = gimple_cond_false_label (entry);
820 then_bb = label_to_block (then_label);
821 else_bb = label_to_block (else_label);
822 then_stmt = first_stmt (then_bb);
823 else_stmt = first_stmt (else_bb);
824
825 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
826 e->goto_locus = gimple_location (then_stmt);
827 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
828 if (e)
829 e->goto_locus = gimple_location (else_stmt);
830
831 /* We do not need the labels anymore. */
832 gimple_cond_set_true_label (entry, NULL_TREE);
833 gimple_cond_set_false_label (entry, NULL_TREE);
834 }
835
836
837 /* Called for each element in the hash table (P) as we delete the
838 edge to cases hash table.
839
840 Clear all the TREE_CHAINs to prevent problems with copying of
841 SWITCH_EXPRs and structure sharing rules, then free the hash table
842 element. */
843
844 static bool
845 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
846 void *data ATTRIBUTE_UNUSED)
847 {
848 tree t, next;
849
850 for (t = (tree) *value; t; t = next)
851 {
852 next = CASE_CHAIN (t);
853 CASE_CHAIN (t) = NULL;
854 }
855
856 *value = NULL;
857 return true;
858 }
859
860 /* Start recording information mapping edges to case labels. */
861
862 void
863 start_recording_case_labels (void)
864 {
865 gcc_assert (edge_to_cases == NULL);
866 edge_to_cases = pointer_map_create ();
867 touched_switch_bbs = BITMAP_ALLOC (NULL);
868 }
869
870 /* Return nonzero if we are recording information for case labels. */
871
872 static bool
873 recording_case_labels_p (void)
874 {
875 return (edge_to_cases != NULL);
876 }
877
878 /* Stop recording information mapping edges to case labels and
879 remove any information we have recorded. */
880 void
881 end_recording_case_labels (void)
882 {
883 bitmap_iterator bi;
884 unsigned i;
885 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
886 pointer_map_destroy (edge_to_cases);
887 edge_to_cases = NULL;
888 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
889 {
890 basic_block bb = BASIC_BLOCK (i);
891 if (bb)
892 {
893 gimple stmt = last_stmt (bb);
894 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
895 group_case_labels_stmt (stmt);
896 }
897 }
898 BITMAP_FREE (touched_switch_bbs);
899 }
900
901 /* If we are inside a {start,end}_recording_cases block, then return
902 a chain of CASE_LABEL_EXPRs from T which reference E.
903
904 Otherwise return NULL. */
905
906 static tree
907 get_cases_for_edge (edge e, gimple t)
908 {
909 void **slot;
910 size_t i, n;
911
912 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
913 chains available. Return NULL so the caller can detect this case. */
914 if (!recording_case_labels_p ())
915 return NULL;
916
917 slot = pointer_map_contains (edge_to_cases, e);
918 if (slot)
919 return (tree) *slot;
920
921 /* If we did not find E in the hash table, then this must be the first
922 time we have been queried for information about E & T. Add all the
923 elements from T to the hash table then perform the query again. */
924
925 n = gimple_switch_num_labels (t);
926 for (i = 0; i < n; i++)
927 {
928 tree elt = gimple_switch_label (t, i);
929 tree lab = CASE_LABEL (elt);
930 basic_block label_bb = label_to_block (lab);
931 edge this_edge = find_edge (e->src, label_bb);
932
933 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
934 a new chain. */
935 slot = pointer_map_insert (edge_to_cases, this_edge);
936 CASE_CHAIN (elt) = (tree) *slot;
937 *slot = elt;
938 }
939
940 return (tree) *pointer_map_contains (edge_to_cases, e);
941 }
942
943 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
944
945 static void
946 make_gimple_switch_edges (basic_block bb)
947 {
948 gimple entry = last_stmt (bb);
949 size_t i, n;
950
951 n = gimple_switch_num_labels (entry);
952
953 for (i = 0; i < n; ++i)
954 {
955 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
956 basic_block label_bb = label_to_block (lab);
957 make_edge (bb, label_bb, 0);
958 }
959 }
960
961
962 /* Return the basic block holding label DEST. */
963
964 basic_block
965 label_to_block_fn (struct function *ifun, tree dest)
966 {
967 int uid = LABEL_DECL_UID (dest);
968
969 /* We would die hard when faced by an undefined label. Emit a label to
970 the very first basic block. This will hopefully make even the dataflow
971 and undefined variable warnings quite right. */
972 if (seen_error () && uid < 0)
973 {
974 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
975 gimple stmt;
976
977 stmt = gimple_build_label (dest);
978 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
979 uid = LABEL_DECL_UID (dest);
980 }
981 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
982 return NULL;
983 return (*ifun->cfg->x_label_to_block_map)[uid];
984 }
985
986 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
987 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
988
989 void
990 make_abnormal_goto_edges (basic_block bb, bool for_call)
991 {
992 basic_block target_bb;
993 gimple_stmt_iterator gsi;
994
995 FOR_EACH_BB (target_bb)
996 {
997 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
998 {
999 gimple label_stmt = gsi_stmt (gsi);
1000 tree target;
1001
1002 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1003 break;
1004
1005 target = gimple_label_label (label_stmt);
1006
1007 /* Make an edge to every label block that has been marked as a
1008 potential target for a computed goto or a non-local goto. */
1009 if ((FORCED_LABEL (target) && !for_call)
1010 || (DECL_NONLOCAL (target) && for_call))
1011 {
1012 make_edge (bb, target_bb, EDGE_ABNORMAL);
1013 break;
1014 }
1015 }
1016 if (!gsi_end_p (gsi))
1017 {
1018 /* Make an edge to every setjmp-like call. */
1019 gimple call_stmt = gsi_stmt (gsi);
1020 if (is_gimple_call (call_stmt)
1021 && (gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE))
1022 make_edge (bb, target_bb, EDGE_ABNORMAL);
1023 }
1024 }
1025 }
1026
1027 /* Create edges for a goto statement at block BB. */
1028
1029 static void
1030 make_goto_expr_edges (basic_block bb)
1031 {
1032 gimple_stmt_iterator last = gsi_last_bb (bb);
1033 gimple goto_t = gsi_stmt (last);
1034
1035 /* A simple GOTO creates normal edges. */
1036 if (simple_goto_p (goto_t))
1037 {
1038 tree dest = gimple_goto_dest (goto_t);
1039 basic_block label_bb = label_to_block (dest);
1040 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1041 e->goto_locus = gimple_location (goto_t);
1042 gsi_remove (&last, true);
1043 return;
1044 }
1045
1046 /* A computed GOTO creates abnormal edges. */
1047 make_abnormal_goto_edges (bb, false);
1048 }
1049
1050 /* Create edges for an asm statement with labels at block BB. */
1051
1052 static void
1053 make_gimple_asm_edges (basic_block bb)
1054 {
1055 gimple stmt = last_stmt (bb);
1056 int i, n = gimple_asm_nlabels (stmt);
1057
1058 for (i = 0; i < n; ++i)
1059 {
1060 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1061 basic_block label_bb = label_to_block (label);
1062 make_edge (bb, label_bb, 0);
1063 }
1064 }
1065
1066 /*---------------------------------------------------------------------------
1067 Flowgraph analysis
1068 ---------------------------------------------------------------------------*/
1069
1070 /* Cleanup useless labels in basic blocks. This is something we wish
1071 to do early because it allows us to group case labels before creating
1072 the edges for the CFG, and it speeds up block statement iterators in
1073 all passes later on.
1074 We rerun this pass after CFG is created, to get rid of the labels that
1075 are no longer referenced. After then we do not run it any more, since
1076 (almost) no new labels should be created. */
1077
1078 /* A map from basic block index to the leading label of that block. */
1079 static struct label_record
1080 {
1081 /* The label. */
1082 tree label;
1083
1084 /* True if the label is referenced from somewhere. */
1085 bool used;
1086 } *label_for_bb;
1087
1088 /* Given LABEL return the first label in the same basic block. */
1089
1090 static tree
1091 main_block_label (tree label)
1092 {
1093 basic_block bb = label_to_block (label);
1094 tree main_label = label_for_bb[bb->index].label;
1095
1096 /* label_to_block possibly inserted undefined label into the chain. */
1097 if (!main_label)
1098 {
1099 label_for_bb[bb->index].label = label;
1100 main_label = label;
1101 }
1102
1103 label_for_bb[bb->index].used = true;
1104 return main_label;
1105 }
1106
1107 /* Clean up redundant labels within the exception tree. */
1108
1109 static void
1110 cleanup_dead_labels_eh (void)
1111 {
1112 eh_landing_pad lp;
1113 eh_region r;
1114 tree lab;
1115 int i;
1116
1117 if (cfun->eh == NULL)
1118 return;
1119
1120 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1121 if (lp && lp->post_landing_pad)
1122 {
1123 lab = main_block_label (lp->post_landing_pad);
1124 if (lab != lp->post_landing_pad)
1125 {
1126 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1127 EH_LANDING_PAD_NR (lab) = lp->index;
1128 }
1129 }
1130
1131 FOR_ALL_EH_REGION (r)
1132 switch (r->type)
1133 {
1134 case ERT_CLEANUP:
1135 case ERT_MUST_NOT_THROW:
1136 break;
1137
1138 case ERT_TRY:
1139 {
1140 eh_catch c;
1141 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1142 {
1143 lab = c->label;
1144 if (lab)
1145 c->label = main_block_label (lab);
1146 }
1147 }
1148 break;
1149
1150 case ERT_ALLOWED_EXCEPTIONS:
1151 lab = r->u.allowed.label;
1152 if (lab)
1153 r->u.allowed.label = main_block_label (lab);
1154 break;
1155 }
1156 }
1157
1158
1159 /* Cleanup redundant labels. This is a three-step process:
1160 1) Find the leading label for each block.
1161 2) Redirect all references to labels to the leading labels.
1162 3) Cleanup all useless labels. */
1163
1164 void
1165 cleanup_dead_labels (void)
1166 {
1167 basic_block bb;
1168 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1169
1170 /* Find a suitable label for each block. We use the first user-defined
1171 label if there is one, or otherwise just the first label we see. */
1172 FOR_EACH_BB (bb)
1173 {
1174 gimple_stmt_iterator i;
1175
1176 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1177 {
1178 tree label;
1179 gimple stmt = gsi_stmt (i);
1180
1181 if (gimple_code (stmt) != GIMPLE_LABEL)
1182 break;
1183
1184 label = gimple_label_label (stmt);
1185
1186 /* If we have not yet seen a label for the current block,
1187 remember this one and see if there are more labels. */
1188 if (!label_for_bb[bb->index].label)
1189 {
1190 label_for_bb[bb->index].label = label;
1191 continue;
1192 }
1193
1194 /* If we did see a label for the current block already, but it
1195 is an artificially created label, replace it if the current
1196 label is a user defined label. */
1197 if (!DECL_ARTIFICIAL (label)
1198 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1199 {
1200 label_for_bb[bb->index].label = label;
1201 break;
1202 }
1203 }
1204 }
1205
1206 /* Now redirect all jumps/branches to the selected label.
1207 First do so for each block ending in a control statement. */
1208 FOR_EACH_BB (bb)
1209 {
1210 gimple stmt = last_stmt (bb);
1211 tree label, new_label;
1212
1213 if (!stmt)
1214 continue;
1215
1216 switch (gimple_code (stmt))
1217 {
1218 case GIMPLE_COND:
1219 label = gimple_cond_true_label (stmt);
1220 if (label)
1221 {
1222 new_label = main_block_label (label);
1223 if (new_label != label)
1224 gimple_cond_set_true_label (stmt, new_label);
1225 }
1226
1227 label = gimple_cond_false_label (stmt);
1228 if (label)
1229 {
1230 new_label = main_block_label (label);
1231 if (new_label != label)
1232 gimple_cond_set_false_label (stmt, new_label);
1233 }
1234 break;
1235
1236 case GIMPLE_SWITCH:
1237 {
1238 size_t i, n = gimple_switch_num_labels (stmt);
1239
1240 /* Replace all destination labels. */
1241 for (i = 0; i < n; ++i)
1242 {
1243 tree case_label = gimple_switch_label (stmt, i);
1244 label = CASE_LABEL (case_label);
1245 new_label = main_block_label (label);
1246 if (new_label != label)
1247 CASE_LABEL (case_label) = new_label;
1248 }
1249 break;
1250 }
1251
1252 case GIMPLE_ASM:
1253 {
1254 int i, n = gimple_asm_nlabels (stmt);
1255
1256 for (i = 0; i < n; ++i)
1257 {
1258 tree cons = gimple_asm_label_op (stmt, i);
1259 tree label = main_block_label (TREE_VALUE (cons));
1260 TREE_VALUE (cons) = label;
1261 }
1262 break;
1263 }
1264
1265 /* We have to handle gotos until they're removed, and we don't
1266 remove them until after we've created the CFG edges. */
1267 case GIMPLE_GOTO:
1268 if (!computed_goto_p (stmt))
1269 {
1270 label = gimple_goto_dest (stmt);
1271 new_label = main_block_label (label);
1272 if (new_label != label)
1273 gimple_goto_set_dest (stmt, new_label);
1274 }
1275 break;
1276
1277 case GIMPLE_TRANSACTION:
1278 {
1279 tree label = gimple_transaction_label (stmt);
1280 if (label)
1281 {
1282 tree new_label = main_block_label (label);
1283 if (new_label != label)
1284 gimple_transaction_set_label (stmt, new_label);
1285 }
1286 }
1287 break;
1288
1289 default:
1290 break;
1291 }
1292 }
1293
1294 /* Do the same for the exception region tree labels. */
1295 cleanup_dead_labels_eh ();
1296
1297 /* Finally, purge dead labels. All user-defined labels and labels that
1298 can be the target of non-local gotos and labels which have their
1299 address taken are preserved. */
1300 FOR_EACH_BB (bb)
1301 {
1302 gimple_stmt_iterator i;
1303 tree label_for_this_bb = label_for_bb[bb->index].label;
1304
1305 if (!label_for_this_bb)
1306 continue;
1307
1308 /* If the main label of the block is unused, we may still remove it. */
1309 if (!label_for_bb[bb->index].used)
1310 label_for_this_bb = NULL;
1311
1312 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1313 {
1314 tree label;
1315 gimple stmt = gsi_stmt (i);
1316
1317 if (gimple_code (stmt) != GIMPLE_LABEL)
1318 break;
1319
1320 label = gimple_label_label (stmt);
1321
1322 if (label == label_for_this_bb
1323 || !DECL_ARTIFICIAL (label)
1324 || DECL_NONLOCAL (label)
1325 || FORCED_LABEL (label))
1326 gsi_next (&i);
1327 else
1328 gsi_remove (&i, true);
1329 }
1330 }
1331
1332 free (label_for_bb);
1333 }
1334
1335 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1336 the ones jumping to the same label.
1337 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1338
1339 void
1340 group_case_labels_stmt (gimple stmt)
1341 {
1342 int old_size = gimple_switch_num_labels (stmt);
1343 int i, j, new_size = old_size;
1344 basic_block default_bb = NULL;
1345
1346 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1347
1348 /* Look for possible opportunities to merge cases. */
1349 i = 1;
1350 while (i < old_size)
1351 {
1352 tree base_case, base_high;
1353 basic_block base_bb;
1354
1355 base_case = gimple_switch_label (stmt, i);
1356
1357 gcc_assert (base_case);
1358 base_bb = label_to_block (CASE_LABEL (base_case));
1359
1360 /* Discard cases that have the same destination as the
1361 default case. */
1362 if (base_bb == default_bb)
1363 {
1364 gimple_switch_set_label (stmt, i, NULL_TREE);
1365 i++;
1366 new_size--;
1367 continue;
1368 }
1369
1370 base_high = CASE_HIGH (base_case)
1371 ? CASE_HIGH (base_case)
1372 : CASE_LOW (base_case);
1373 i++;
1374
1375 /* Try to merge case labels. Break out when we reach the end
1376 of the label vector or when we cannot merge the next case
1377 label with the current one. */
1378 while (i < old_size)
1379 {
1380 tree merge_case = gimple_switch_label (stmt, i);
1381 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1382 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1383
1384 /* Merge the cases if they jump to the same place,
1385 and their ranges are consecutive. */
1386 if (merge_bb == base_bb
1387 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1388 {
1389 base_high = CASE_HIGH (merge_case) ?
1390 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1391 CASE_HIGH (base_case) = base_high;
1392 gimple_switch_set_label (stmt, i, NULL_TREE);
1393 new_size--;
1394 i++;
1395 }
1396 else
1397 break;
1398 }
1399 }
1400
1401 /* Compress the case labels in the label vector, and adjust the
1402 length of the vector. */
1403 for (i = 0, j = 0; i < new_size; i++)
1404 {
1405 while (! gimple_switch_label (stmt, j))
1406 j++;
1407 gimple_switch_set_label (stmt, i,
1408 gimple_switch_label (stmt, j++));
1409 }
1410
1411 gcc_assert (new_size <= old_size);
1412 gimple_switch_set_num_labels (stmt, new_size);
1413 }
1414
1415 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1416 and scan the sorted vector of cases. Combine the ones jumping to the
1417 same label. */
1418
1419 void
1420 group_case_labels (void)
1421 {
1422 basic_block bb;
1423
1424 FOR_EACH_BB (bb)
1425 {
1426 gimple stmt = last_stmt (bb);
1427 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1428 group_case_labels_stmt (stmt);
1429 }
1430 }
1431
1432 /* Checks whether we can merge block B into block A. */
1433
1434 static bool
1435 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1436 {
1437 gimple stmt;
1438 gimple_stmt_iterator gsi;
1439
1440 if (!single_succ_p (a))
1441 return false;
1442
1443 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1444 return false;
1445
1446 if (single_succ (a) != b)
1447 return false;
1448
1449 if (!single_pred_p (b))
1450 return false;
1451
1452 if (b == EXIT_BLOCK_PTR)
1453 return false;
1454
1455 /* If A ends by a statement causing exceptions or something similar, we
1456 cannot merge the blocks. */
1457 stmt = last_stmt (a);
1458 if (stmt && stmt_ends_bb_p (stmt))
1459 return false;
1460
1461 /* Do not allow a block with only a non-local label to be merged. */
1462 if (stmt
1463 && gimple_code (stmt) == GIMPLE_LABEL
1464 && DECL_NONLOCAL (gimple_label_label (stmt)))
1465 return false;
1466
1467 /* Examine the labels at the beginning of B. */
1468 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1469 {
1470 tree lab;
1471 stmt = gsi_stmt (gsi);
1472 if (gimple_code (stmt) != GIMPLE_LABEL)
1473 break;
1474 lab = gimple_label_label (stmt);
1475
1476 /* Do not remove user forced labels or for -O0 any user labels. */
1477 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1478 return false;
1479 }
1480
1481 /* Protect the loop latches. */
1482 if (current_loops && b->loop_father->latch == b)
1483 return false;
1484
1485 /* It must be possible to eliminate all phi nodes in B. If ssa form
1486 is not up-to-date and a name-mapping is registered, we cannot eliminate
1487 any phis. Symbols marked for renaming are never a problem though. */
1488 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1489 {
1490 gimple phi = gsi_stmt (gsi);
1491 /* Technically only new names matter. */
1492 if (name_registered_for_update_p (PHI_RESULT (phi)))
1493 return false;
1494 }
1495
1496 /* When not optimizing, don't merge if we'd lose goto_locus. */
1497 if (!optimize
1498 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1499 {
1500 location_t goto_locus = single_succ_edge (a)->goto_locus;
1501 gimple_stmt_iterator prev, next;
1502 prev = gsi_last_nondebug_bb (a);
1503 next = gsi_after_labels (b);
1504 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1505 gsi_next_nondebug (&next);
1506 if ((gsi_end_p (prev)
1507 || gimple_location (gsi_stmt (prev)) != goto_locus)
1508 && (gsi_end_p (next)
1509 || gimple_location (gsi_stmt (next)) != goto_locus))
1510 return false;
1511 }
1512
1513 return true;
1514 }
1515
1516 /* Return true if the var whose chain of uses starts at PTR has no
1517 nondebug uses. */
1518 bool
1519 has_zero_uses_1 (const ssa_use_operand_t *head)
1520 {
1521 const ssa_use_operand_t *ptr;
1522
1523 for (ptr = head->next; ptr != head; ptr = ptr->next)
1524 if (!is_gimple_debug (USE_STMT (ptr)))
1525 return false;
1526
1527 return true;
1528 }
1529
1530 /* Return true if the var whose chain of uses starts at PTR has a
1531 single nondebug use. Set USE_P and STMT to that single nondebug
1532 use, if so, or to NULL otherwise. */
1533 bool
1534 single_imm_use_1 (const ssa_use_operand_t *head,
1535 use_operand_p *use_p, gimple *stmt)
1536 {
1537 ssa_use_operand_t *ptr, *single_use = 0;
1538
1539 for (ptr = head->next; ptr != head; ptr = ptr->next)
1540 if (!is_gimple_debug (USE_STMT (ptr)))
1541 {
1542 if (single_use)
1543 {
1544 single_use = NULL;
1545 break;
1546 }
1547 single_use = ptr;
1548 }
1549
1550 if (use_p)
1551 *use_p = single_use;
1552
1553 if (stmt)
1554 *stmt = single_use ? single_use->loc.stmt : NULL;
1555
1556 return !!single_use;
1557 }
1558
1559 /* Replaces all uses of NAME by VAL. */
1560
1561 void
1562 replace_uses_by (tree name, tree val)
1563 {
1564 imm_use_iterator imm_iter;
1565 use_operand_p use;
1566 gimple stmt;
1567 edge e;
1568
1569 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1570 {
1571 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1572 {
1573 replace_exp (use, val);
1574
1575 if (gimple_code (stmt) == GIMPLE_PHI)
1576 {
1577 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1578 if (e->flags & EDGE_ABNORMAL)
1579 {
1580 /* This can only occur for virtual operands, since
1581 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1582 would prevent replacement. */
1583 gcc_checking_assert (virtual_operand_p (name));
1584 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1585 }
1586 }
1587 }
1588
1589 if (gimple_code (stmt) != GIMPLE_PHI)
1590 {
1591 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1592 gimple orig_stmt = stmt;
1593 size_t i;
1594
1595 /* Mark the block if we changed the last stmt in it. */
1596 if (cfgcleanup_altered_bbs
1597 && stmt_ends_bb_p (stmt))
1598 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1599
1600 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1601 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1602 only change sth from non-invariant to invariant, and only
1603 when propagating constants. */
1604 if (is_gimple_min_invariant (val))
1605 for (i = 0; i < gimple_num_ops (stmt); i++)
1606 {
1607 tree op = gimple_op (stmt, i);
1608 /* Operands may be empty here. For example, the labels
1609 of a GIMPLE_COND are nulled out following the creation
1610 of the corresponding CFG edges. */
1611 if (op && TREE_CODE (op) == ADDR_EXPR)
1612 recompute_tree_invariant_for_addr_expr (op);
1613 }
1614
1615 if (fold_stmt (&gsi))
1616 stmt = gsi_stmt (gsi);
1617
1618 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1619 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1620
1621 update_stmt (stmt);
1622 }
1623 }
1624
1625 gcc_checking_assert (has_zero_uses (name));
1626
1627 /* Also update the trees stored in loop structures. */
1628 if (current_loops)
1629 {
1630 struct loop *loop;
1631 loop_iterator li;
1632
1633 FOR_EACH_LOOP (li, loop, 0)
1634 {
1635 substitute_in_loop_info (loop, name, val);
1636 }
1637 }
1638 }
1639
1640 /* Merge block B into block A. */
1641
1642 static void
1643 gimple_merge_blocks (basic_block a, basic_block b)
1644 {
1645 gimple_stmt_iterator last, gsi, psi;
1646
1647 if (dump_file)
1648 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1649
1650 /* Remove all single-valued PHI nodes from block B of the form
1651 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1652 gsi = gsi_last_bb (a);
1653 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1654 {
1655 gimple phi = gsi_stmt (psi);
1656 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1657 gimple copy;
1658 bool may_replace_uses = (virtual_operand_p (def)
1659 || may_propagate_copy (def, use));
1660
1661 /* In case we maintain loop closed ssa form, do not propagate arguments
1662 of loop exit phi nodes. */
1663 if (current_loops
1664 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1665 && !virtual_operand_p (def)
1666 && TREE_CODE (use) == SSA_NAME
1667 && a->loop_father != b->loop_father)
1668 may_replace_uses = false;
1669
1670 if (!may_replace_uses)
1671 {
1672 gcc_assert (!virtual_operand_p (def));
1673
1674 /* Note that just emitting the copies is fine -- there is no problem
1675 with ordering of phi nodes. This is because A is the single
1676 predecessor of B, therefore results of the phi nodes cannot
1677 appear as arguments of the phi nodes. */
1678 copy = gimple_build_assign (def, use);
1679 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1680 remove_phi_node (&psi, false);
1681 }
1682 else
1683 {
1684 /* If we deal with a PHI for virtual operands, we can simply
1685 propagate these without fussing with folding or updating
1686 the stmt. */
1687 if (virtual_operand_p (def))
1688 {
1689 imm_use_iterator iter;
1690 use_operand_p use_p;
1691 gimple stmt;
1692
1693 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1694 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1695 SET_USE (use_p, use);
1696
1697 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1698 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1699 }
1700 else
1701 replace_uses_by (def, use);
1702
1703 remove_phi_node (&psi, true);
1704 }
1705 }
1706
1707 /* Ensure that B follows A. */
1708 move_block_after (b, a);
1709
1710 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1711 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1712
1713 /* Remove labels from B and set gimple_bb to A for other statements. */
1714 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1715 {
1716 gimple stmt = gsi_stmt (gsi);
1717 if (gimple_code (stmt) == GIMPLE_LABEL)
1718 {
1719 tree label = gimple_label_label (stmt);
1720 int lp_nr;
1721
1722 gsi_remove (&gsi, false);
1723
1724 /* Now that we can thread computed gotos, we might have
1725 a situation where we have a forced label in block B
1726 However, the label at the start of block B might still be
1727 used in other ways (think about the runtime checking for
1728 Fortran assigned gotos). So we can not just delete the
1729 label. Instead we move the label to the start of block A. */
1730 if (FORCED_LABEL (label))
1731 {
1732 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1733 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1734 }
1735 /* Other user labels keep around in a form of a debug stmt. */
1736 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1737 {
1738 gimple dbg = gimple_build_debug_bind (label,
1739 integer_zero_node,
1740 stmt);
1741 gimple_debug_bind_reset_value (dbg);
1742 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1743 }
1744
1745 lp_nr = EH_LANDING_PAD_NR (label);
1746 if (lp_nr)
1747 {
1748 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1749 lp->post_landing_pad = NULL;
1750 }
1751 }
1752 else
1753 {
1754 gimple_set_bb (stmt, a);
1755 gsi_next (&gsi);
1756 }
1757 }
1758
1759 /* Merge the sequences. */
1760 last = gsi_last_bb (a);
1761 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1762 set_bb_seq (b, NULL);
1763
1764 if (cfgcleanup_altered_bbs)
1765 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1766 }
1767
1768
1769 /* Return the one of two successors of BB that is not reachable by a
1770 complex edge, if there is one. Else, return BB. We use
1771 this in optimizations that use post-dominators for their heuristics,
1772 to catch the cases in C++ where function calls are involved. */
1773
1774 basic_block
1775 single_noncomplex_succ (basic_block bb)
1776 {
1777 edge e0, e1;
1778 if (EDGE_COUNT (bb->succs) != 2)
1779 return bb;
1780
1781 e0 = EDGE_SUCC (bb, 0);
1782 e1 = EDGE_SUCC (bb, 1);
1783 if (e0->flags & EDGE_COMPLEX)
1784 return e1->dest;
1785 if (e1->flags & EDGE_COMPLEX)
1786 return e0->dest;
1787
1788 return bb;
1789 }
1790
1791 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1792
1793 void
1794 notice_special_calls (gimple call)
1795 {
1796 int flags = gimple_call_flags (call);
1797
1798 if (flags & ECF_MAY_BE_ALLOCA)
1799 cfun->calls_alloca = true;
1800 if (flags & ECF_RETURNS_TWICE)
1801 cfun->calls_setjmp = true;
1802 }
1803
1804
1805 /* Clear flags set by notice_special_calls. Used by dead code removal
1806 to update the flags. */
1807
1808 void
1809 clear_special_calls (void)
1810 {
1811 cfun->calls_alloca = false;
1812 cfun->calls_setjmp = false;
1813 }
1814
1815 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1816
1817 static void
1818 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1819 {
1820 /* Since this block is no longer reachable, we can just delete all
1821 of its PHI nodes. */
1822 remove_phi_nodes (bb);
1823
1824 /* Remove edges to BB's successors. */
1825 while (EDGE_COUNT (bb->succs) > 0)
1826 remove_edge (EDGE_SUCC (bb, 0));
1827 }
1828
1829
1830 /* Remove statements of basic block BB. */
1831
1832 static void
1833 remove_bb (basic_block bb)
1834 {
1835 gimple_stmt_iterator i;
1836
1837 if (dump_file)
1838 {
1839 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1840 if (dump_flags & TDF_DETAILS)
1841 {
1842 dump_bb (dump_file, bb, 0, dump_flags);
1843 fprintf (dump_file, "\n");
1844 }
1845 }
1846
1847 if (current_loops)
1848 {
1849 struct loop *loop = bb->loop_father;
1850
1851 /* If a loop gets removed, clean up the information associated
1852 with it. */
1853 if (loop->latch == bb
1854 || loop->header == bb)
1855 free_numbers_of_iterations_estimates_loop (loop);
1856 }
1857
1858 /* Remove all the instructions in the block. */
1859 if (bb_seq (bb) != NULL)
1860 {
1861 /* Walk backwards so as to get a chance to substitute all
1862 released DEFs into debug stmts. See
1863 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1864 details. */
1865 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1866 {
1867 gimple stmt = gsi_stmt (i);
1868 if (gimple_code (stmt) == GIMPLE_LABEL
1869 && (FORCED_LABEL (gimple_label_label (stmt))
1870 || DECL_NONLOCAL (gimple_label_label (stmt))))
1871 {
1872 basic_block new_bb;
1873 gimple_stmt_iterator new_gsi;
1874
1875 /* A non-reachable non-local label may still be referenced.
1876 But it no longer needs to carry the extra semantics of
1877 non-locality. */
1878 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1879 {
1880 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1881 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1882 }
1883
1884 new_bb = bb->prev_bb;
1885 new_gsi = gsi_start_bb (new_bb);
1886 gsi_remove (&i, false);
1887 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1888 }
1889 else
1890 {
1891 /* Release SSA definitions if we are in SSA. Note that we
1892 may be called when not in SSA. For example,
1893 final_cleanup calls this function via
1894 cleanup_tree_cfg. */
1895 if (gimple_in_ssa_p (cfun))
1896 release_defs (stmt);
1897
1898 gsi_remove (&i, true);
1899 }
1900
1901 if (gsi_end_p (i))
1902 i = gsi_last_bb (bb);
1903 else
1904 gsi_prev (&i);
1905 }
1906 }
1907
1908 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1909 bb->il.gimple.seq = NULL;
1910 bb->il.gimple.phi_nodes = NULL;
1911 }
1912
1913
1914 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1915 predicate VAL, return the edge that will be taken out of the block.
1916 If VAL does not match a unique edge, NULL is returned. */
1917
1918 edge
1919 find_taken_edge (basic_block bb, tree val)
1920 {
1921 gimple stmt;
1922
1923 stmt = last_stmt (bb);
1924
1925 gcc_assert (stmt);
1926 gcc_assert (is_ctrl_stmt (stmt));
1927
1928 if (val == NULL)
1929 return NULL;
1930
1931 if (!is_gimple_min_invariant (val))
1932 return NULL;
1933
1934 if (gimple_code (stmt) == GIMPLE_COND)
1935 return find_taken_edge_cond_expr (bb, val);
1936
1937 if (gimple_code (stmt) == GIMPLE_SWITCH)
1938 return find_taken_edge_switch_expr (bb, val);
1939
1940 if (computed_goto_p (stmt))
1941 {
1942 /* Only optimize if the argument is a label, if the argument is
1943 not a label then we can not construct a proper CFG.
1944
1945 It may be the case that we only need to allow the LABEL_REF to
1946 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1947 appear inside a LABEL_EXPR just to be safe. */
1948 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1949 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1950 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1951 return NULL;
1952 }
1953
1954 gcc_unreachable ();
1955 }
1956
1957 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1958 statement, determine which of the outgoing edges will be taken out of the
1959 block. Return NULL if either edge may be taken. */
1960
1961 static edge
1962 find_taken_edge_computed_goto (basic_block bb, tree val)
1963 {
1964 basic_block dest;
1965 edge e = NULL;
1966
1967 dest = label_to_block (val);
1968 if (dest)
1969 {
1970 e = find_edge (bb, dest);
1971 gcc_assert (e != NULL);
1972 }
1973
1974 return e;
1975 }
1976
1977 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1978 statement, determine which of the two edges will be taken out of the
1979 block. Return NULL if either edge may be taken. */
1980
1981 static edge
1982 find_taken_edge_cond_expr (basic_block bb, tree val)
1983 {
1984 edge true_edge, false_edge;
1985
1986 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1987
1988 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1989 return (integer_zerop (val) ? false_edge : true_edge);
1990 }
1991
1992 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1993 statement, determine which edge will be taken out of the block. Return
1994 NULL if any edge may be taken. */
1995
1996 static edge
1997 find_taken_edge_switch_expr (basic_block bb, tree val)
1998 {
1999 basic_block dest_bb;
2000 edge e;
2001 gimple switch_stmt;
2002 tree taken_case;
2003
2004 switch_stmt = last_stmt (bb);
2005 taken_case = find_case_label_for_value (switch_stmt, val);
2006 dest_bb = label_to_block (CASE_LABEL (taken_case));
2007
2008 e = find_edge (bb, dest_bb);
2009 gcc_assert (e);
2010 return e;
2011 }
2012
2013
2014 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2015 We can make optimal use here of the fact that the case labels are
2016 sorted: We can do a binary search for a case matching VAL. */
2017
2018 static tree
2019 find_case_label_for_value (gimple switch_stmt, tree val)
2020 {
2021 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2022 tree default_case = gimple_switch_default_label (switch_stmt);
2023
2024 for (low = 0, high = n; high - low > 1; )
2025 {
2026 size_t i = (high + low) / 2;
2027 tree t = gimple_switch_label (switch_stmt, i);
2028 int cmp;
2029
2030 /* Cache the result of comparing CASE_LOW and val. */
2031 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2032
2033 if (cmp > 0)
2034 high = i;
2035 else
2036 low = i;
2037
2038 if (CASE_HIGH (t) == NULL)
2039 {
2040 /* A singe-valued case label. */
2041 if (cmp == 0)
2042 return t;
2043 }
2044 else
2045 {
2046 /* A case range. We can only handle integer ranges. */
2047 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2048 return t;
2049 }
2050 }
2051
2052 return default_case;
2053 }
2054
2055
2056 /* Dump a basic block on stderr. */
2057
2058 void
2059 gimple_debug_bb (basic_block bb)
2060 {
2061 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2062 }
2063
2064
2065 /* Dump basic block with index N on stderr. */
2066
2067 basic_block
2068 gimple_debug_bb_n (int n)
2069 {
2070 gimple_debug_bb (BASIC_BLOCK (n));
2071 return BASIC_BLOCK (n);
2072 }
2073
2074
2075 /* Dump the CFG on stderr.
2076
2077 FLAGS are the same used by the tree dumping functions
2078 (see TDF_* in dumpfile.h). */
2079
2080 void
2081 gimple_debug_cfg (int flags)
2082 {
2083 gimple_dump_cfg (stderr, flags);
2084 }
2085
2086
2087 /* Dump the program showing basic block boundaries on the given FILE.
2088
2089 FLAGS are the same used by the tree dumping functions (see TDF_* in
2090 tree.h). */
2091
2092 void
2093 gimple_dump_cfg (FILE *file, int flags)
2094 {
2095 if (flags & TDF_DETAILS)
2096 {
2097 dump_function_header (file, current_function_decl, flags);
2098 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2099 n_basic_blocks, n_edges, last_basic_block);
2100
2101 brief_dump_cfg (file, flags | TDF_COMMENT);
2102 fprintf (file, "\n");
2103 }
2104
2105 if (flags & TDF_STATS)
2106 dump_cfg_stats (file);
2107
2108 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2109 }
2110
2111
2112 /* Dump CFG statistics on FILE. */
2113
2114 void
2115 dump_cfg_stats (FILE *file)
2116 {
2117 static long max_num_merged_labels = 0;
2118 unsigned long size, total = 0;
2119 long num_edges;
2120 basic_block bb;
2121 const char * const fmt_str = "%-30s%-13s%12s\n";
2122 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2123 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2124 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2125 const char *funcname = current_function_name ();
2126
2127 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2128
2129 fprintf (file, "---------------------------------------------------------\n");
2130 fprintf (file, fmt_str, "", " Number of ", "Memory");
2131 fprintf (file, fmt_str, "", " instances ", "used ");
2132 fprintf (file, "---------------------------------------------------------\n");
2133
2134 size = n_basic_blocks * sizeof (struct basic_block_def);
2135 total += size;
2136 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2137 SCALE (size), LABEL (size));
2138
2139 num_edges = 0;
2140 FOR_EACH_BB (bb)
2141 num_edges += EDGE_COUNT (bb->succs);
2142 size = num_edges * sizeof (struct edge_def);
2143 total += size;
2144 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2145
2146 fprintf (file, "---------------------------------------------------------\n");
2147 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2148 LABEL (total));
2149 fprintf (file, "---------------------------------------------------------\n");
2150 fprintf (file, "\n");
2151
2152 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2153 max_num_merged_labels = cfg_stats.num_merged_labels;
2154
2155 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2156 cfg_stats.num_merged_labels, max_num_merged_labels);
2157
2158 fprintf (file, "\n");
2159 }
2160
2161
2162 /* Dump CFG statistics on stderr. Keep extern so that it's always
2163 linked in the final executable. */
2164
2165 DEBUG_FUNCTION void
2166 debug_cfg_stats (void)
2167 {
2168 dump_cfg_stats (stderr);
2169 }
2170
2171 /*---------------------------------------------------------------------------
2172 Miscellaneous helpers
2173 ---------------------------------------------------------------------------*/
2174
2175 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2176 flow. Transfers of control flow associated with EH are excluded. */
2177
2178 static bool
2179 call_can_make_abnormal_goto (gimple t)
2180 {
2181 /* If the function has no non-local labels, then a call cannot make an
2182 abnormal transfer of control. */
2183 if (!cfun->has_nonlocal_label
2184 && !cfun->calls_setjmp)
2185 return false;
2186
2187 /* Likewise if the call has no side effects. */
2188 if (!gimple_has_side_effects (t))
2189 return false;
2190
2191 /* Likewise if the called function is leaf. */
2192 if (gimple_call_flags (t) & ECF_LEAF)
2193 return false;
2194
2195 return true;
2196 }
2197
2198
2199 /* Return true if T can make an abnormal transfer of control flow.
2200 Transfers of control flow associated with EH are excluded. */
2201
2202 bool
2203 stmt_can_make_abnormal_goto (gimple t)
2204 {
2205 if (computed_goto_p (t))
2206 return true;
2207 if (is_gimple_call (t))
2208 return call_can_make_abnormal_goto (t);
2209 return false;
2210 }
2211
2212
2213 /* Return true if T represents a stmt that always transfers control. */
2214
2215 bool
2216 is_ctrl_stmt (gimple t)
2217 {
2218 switch (gimple_code (t))
2219 {
2220 case GIMPLE_COND:
2221 case GIMPLE_SWITCH:
2222 case GIMPLE_GOTO:
2223 case GIMPLE_RETURN:
2224 case GIMPLE_RESX:
2225 return true;
2226 default:
2227 return false;
2228 }
2229 }
2230
2231
2232 /* Return true if T is a statement that may alter the flow of control
2233 (e.g., a call to a non-returning function). */
2234
2235 bool
2236 is_ctrl_altering_stmt (gimple t)
2237 {
2238 gcc_assert (t);
2239
2240 switch (gimple_code (t))
2241 {
2242 case GIMPLE_CALL:
2243 {
2244 int flags = gimple_call_flags (t);
2245
2246 /* A call alters control flow if it can make an abnormal goto. */
2247 if (call_can_make_abnormal_goto (t))
2248 return true;
2249
2250 /* A call also alters control flow if it does not return. */
2251 if (flags & ECF_NORETURN)
2252 return true;
2253
2254 /* TM ending statements have backedges out of the transaction.
2255 Return true so we split the basic block containing them.
2256 Note that the TM_BUILTIN test is merely an optimization. */
2257 if ((flags & ECF_TM_BUILTIN)
2258 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2259 return true;
2260
2261 /* BUILT_IN_RETURN call is same as return statement. */
2262 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2263 return true;
2264 }
2265 break;
2266
2267 case GIMPLE_EH_DISPATCH:
2268 /* EH_DISPATCH branches to the individual catch handlers at
2269 this level of a try or allowed-exceptions region. It can
2270 fallthru to the next statement as well. */
2271 return true;
2272
2273 case GIMPLE_ASM:
2274 if (gimple_asm_nlabels (t) > 0)
2275 return true;
2276 break;
2277
2278 CASE_GIMPLE_OMP:
2279 /* OpenMP directives alter control flow. */
2280 return true;
2281
2282 case GIMPLE_TRANSACTION:
2283 /* A transaction start alters control flow. */
2284 return true;
2285
2286 default:
2287 break;
2288 }
2289
2290 /* If a statement can throw, it alters control flow. */
2291 return stmt_can_throw_internal (t);
2292 }
2293
2294
2295 /* Return true if T is a simple local goto. */
2296
2297 bool
2298 simple_goto_p (gimple t)
2299 {
2300 return (gimple_code (t) == GIMPLE_GOTO
2301 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2302 }
2303
2304
2305 /* Return true if STMT should start a new basic block. PREV_STMT is
2306 the statement preceding STMT. It is used when STMT is a label or a
2307 case label. Labels should only start a new basic block if their
2308 previous statement wasn't a label. Otherwise, sequence of labels
2309 would generate unnecessary basic blocks that only contain a single
2310 label. */
2311
2312 static inline bool
2313 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2314 {
2315 if (stmt == NULL)
2316 return false;
2317
2318 /* Labels start a new basic block only if the preceding statement
2319 wasn't a label of the same type. This prevents the creation of
2320 consecutive blocks that have nothing but a single label. */
2321 if (gimple_code (stmt) == GIMPLE_LABEL)
2322 {
2323 /* Nonlocal and computed GOTO targets always start a new block. */
2324 if (DECL_NONLOCAL (gimple_label_label (stmt))
2325 || FORCED_LABEL (gimple_label_label (stmt)))
2326 return true;
2327
2328 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2329 {
2330 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2331 return true;
2332
2333 cfg_stats.num_merged_labels++;
2334 return false;
2335 }
2336 else
2337 return true;
2338 }
2339 else if (gimple_code (stmt) == GIMPLE_CALL
2340 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2341 /* setjmp acts similar to a nonlocal GOTO target and thus should
2342 start a new block. */
2343 return true;
2344
2345 return false;
2346 }
2347
2348
2349 /* Return true if T should end a basic block. */
2350
2351 bool
2352 stmt_ends_bb_p (gimple t)
2353 {
2354 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2355 }
2356
2357 /* Remove block annotations and other data structures. */
2358
2359 void
2360 delete_tree_cfg_annotations (void)
2361 {
2362 vec_free (label_to_block_map);
2363 }
2364
2365
2366 /* Return the first statement in basic block BB. */
2367
2368 gimple
2369 first_stmt (basic_block bb)
2370 {
2371 gimple_stmt_iterator i = gsi_start_bb (bb);
2372 gimple stmt = NULL;
2373
2374 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2375 {
2376 gsi_next (&i);
2377 stmt = NULL;
2378 }
2379 return stmt;
2380 }
2381
2382 /* Return the first non-label statement in basic block BB. */
2383
2384 static gimple
2385 first_non_label_stmt (basic_block bb)
2386 {
2387 gimple_stmt_iterator i = gsi_start_bb (bb);
2388 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2389 gsi_next (&i);
2390 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2391 }
2392
2393 /* Return the last statement in basic block BB. */
2394
2395 gimple
2396 last_stmt (basic_block bb)
2397 {
2398 gimple_stmt_iterator i = gsi_last_bb (bb);
2399 gimple stmt = NULL;
2400
2401 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2402 {
2403 gsi_prev (&i);
2404 stmt = NULL;
2405 }
2406 return stmt;
2407 }
2408
2409 /* Return the last statement of an otherwise empty block. Return NULL
2410 if the block is totally empty, or if it contains more than one
2411 statement. */
2412
2413 gimple
2414 last_and_only_stmt (basic_block bb)
2415 {
2416 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2417 gimple last, prev;
2418
2419 if (gsi_end_p (i))
2420 return NULL;
2421
2422 last = gsi_stmt (i);
2423 gsi_prev_nondebug (&i);
2424 if (gsi_end_p (i))
2425 return last;
2426
2427 /* Empty statements should no longer appear in the instruction stream.
2428 Everything that might have appeared before should be deleted by
2429 remove_useless_stmts, and the optimizers should just gsi_remove
2430 instead of smashing with build_empty_stmt.
2431
2432 Thus the only thing that should appear here in a block containing
2433 one executable statement is a label. */
2434 prev = gsi_stmt (i);
2435 if (gimple_code (prev) == GIMPLE_LABEL)
2436 return last;
2437 else
2438 return NULL;
2439 }
2440
2441 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2442
2443 static void
2444 reinstall_phi_args (edge new_edge, edge old_edge)
2445 {
2446 edge_var_map_vector *v;
2447 edge_var_map *vm;
2448 int i;
2449 gimple_stmt_iterator phis;
2450
2451 v = redirect_edge_var_map_vector (old_edge);
2452 if (!v)
2453 return;
2454
2455 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2456 v->iterate (i, &vm) && !gsi_end_p (phis);
2457 i++, gsi_next (&phis))
2458 {
2459 gimple phi = gsi_stmt (phis);
2460 tree result = redirect_edge_var_map_result (vm);
2461 tree arg = redirect_edge_var_map_def (vm);
2462
2463 gcc_assert (result == gimple_phi_result (phi));
2464
2465 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2466 }
2467
2468 redirect_edge_var_map_clear (old_edge);
2469 }
2470
2471 /* Returns the basic block after which the new basic block created
2472 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2473 near its "logical" location. This is of most help to humans looking
2474 at debugging dumps. */
2475
2476 static basic_block
2477 split_edge_bb_loc (edge edge_in)
2478 {
2479 basic_block dest = edge_in->dest;
2480 basic_block dest_prev = dest->prev_bb;
2481
2482 if (dest_prev)
2483 {
2484 edge e = find_edge (dest_prev, dest);
2485 if (e && !(e->flags & EDGE_COMPLEX))
2486 return edge_in->src;
2487 }
2488 return dest_prev;
2489 }
2490
2491 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2492 Abort on abnormal edges. */
2493
2494 static basic_block
2495 gimple_split_edge (edge edge_in)
2496 {
2497 basic_block new_bb, after_bb, dest;
2498 edge new_edge, e;
2499
2500 /* Abnormal edges cannot be split. */
2501 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2502
2503 dest = edge_in->dest;
2504
2505 after_bb = split_edge_bb_loc (edge_in);
2506
2507 new_bb = create_empty_bb (after_bb);
2508 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2509 new_bb->count = edge_in->count;
2510 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2511 new_edge->probability = REG_BR_PROB_BASE;
2512 new_edge->count = edge_in->count;
2513
2514 e = redirect_edge_and_branch (edge_in, new_bb);
2515 gcc_assert (e == edge_in);
2516 reinstall_phi_args (new_edge, e);
2517
2518 return new_bb;
2519 }
2520
2521
2522 /* Verify properties of the address expression T with base object BASE. */
2523
2524 static tree
2525 verify_address (tree t, tree base)
2526 {
2527 bool old_constant;
2528 bool old_side_effects;
2529 bool new_constant;
2530 bool new_side_effects;
2531
2532 old_constant = TREE_CONSTANT (t);
2533 old_side_effects = TREE_SIDE_EFFECTS (t);
2534
2535 recompute_tree_invariant_for_addr_expr (t);
2536 new_side_effects = TREE_SIDE_EFFECTS (t);
2537 new_constant = TREE_CONSTANT (t);
2538
2539 if (old_constant != new_constant)
2540 {
2541 error ("constant not recomputed when ADDR_EXPR changed");
2542 return t;
2543 }
2544 if (old_side_effects != new_side_effects)
2545 {
2546 error ("side effects not recomputed when ADDR_EXPR changed");
2547 return t;
2548 }
2549
2550 if (!(TREE_CODE (base) == VAR_DECL
2551 || TREE_CODE (base) == PARM_DECL
2552 || TREE_CODE (base) == RESULT_DECL))
2553 return NULL_TREE;
2554
2555 if (DECL_GIMPLE_REG_P (base))
2556 {
2557 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2558 return base;
2559 }
2560
2561 return NULL_TREE;
2562 }
2563
2564 /* Callback for walk_tree, check that all elements with address taken are
2565 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2566 inside a PHI node. */
2567
2568 static tree
2569 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2570 {
2571 tree t = *tp, x;
2572
2573 if (TYPE_P (t))
2574 *walk_subtrees = 0;
2575
2576 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2577 #define CHECK_OP(N, MSG) \
2578 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2579 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2580
2581 switch (TREE_CODE (t))
2582 {
2583 case SSA_NAME:
2584 if (SSA_NAME_IN_FREE_LIST (t))
2585 {
2586 error ("SSA name in freelist but still referenced");
2587 return *tp;
2588 }
2589 break;
2590
2591 case INDIRECT_REF:
2592 error ("INDIRECT_REF in gimple IL");
2593 return t;
2594
2595 case MEM_REF:
2596 x = TREE_OPERAND (t, 0);
2597 if (!POINTER_TYPE_P (TREE_TYPE (x))
2598 || !is_gimple_mem_ref_addr (x))
2599 {
2600 error ("invalid first operand of MEM_REF");
2601 return x;
2602 }
2603 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2604 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2605 {
2606 error ("invalid offset operand of MEM_REF");
2607 return TREE_OPERAND (t, 1);
2608 }
2609 if (TREE_CODE (x) == ADDR_EXPR
2610 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2611 return x;
2612 *walk_subtrees = 0;
2613 break;
2614
2615 case ASSERT_EXPR:
2616 x = fold (ASSERT_EXPR_COND (t));
2617 if (x == boolean_false_node)
2618 {
2619 error ("ASSERT_EXPR with an always-false condition");
2620 return *tp;
2621 }
2622 break;
2623
2624 case MODIFY_EXPR:
2625 error ("MODIFY_EXPR not expected while having tuples");
2626 return *tp;
2627
2628 case ADDR_EXPR:
2629 {
2630 tree tem;
2631
2632 gcc_assert (is_gimple_address (t));
2633
2634 /* Skip any references (they will be checked when we recurse down the
2635 tree) and ensure that any variable used as a prefix is marked
2636 addressable. */
2637 for (x = TREE_OPERAND (t, 0);
2638 handled_component_p (x);
2639 x = TREE_OPERAND (x, 0))
2640 ;
2641
2642 if ((tem = verify_address (t, x)))
2643 return tem;
2644
2645 if (!(TREE_CODE (x) == VAR_DECL
2646 || TREE_CODE (x) == PARM_DECL
2647 || TREE_CODE (x) == RESULT_DECL))
2648 return NULL;
2649
2650 if (!TREE_ADDRESSABLE (x))
2651 {
2652 error ("address taken, but ADDRESSABLE bit not set");
2653 return x;
2654 }
2655
2656 break;
2657 }
2658
2659 case COND_EXPR:
2660 x = COND_EXPR_COND (t);
2661 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2662 {
2663 error ("non-integral used in condition");
2664 return x;
2665 }
2666 if (!is_gimple_condexpr (x))
2667 {
2668 error ("invalid conditional operand");
2669 return x;
2670 }
2671 break;
2672
2673 case NON_LVALUE_EXPR:
2674 case TRUTH_NOT_EXPR:
2675 gcc_unreachable ();
2676
2677 CASE_CONVERT:
2678 case FIX_TRUNC_EXPR:
2679 case FLOAT_EXPR:
2680 case NEGATE_EXPR:
2681 case ABS_EXPR:
2682 case BIT_NOT_EXPR:
2683 CHECK_OP (0, "invalid operand to unary operator");
2684 break;
2685
2686 case REALPART_EXPR:
2687 case IMAGPART_EXPR:
2688 case BIT_FIELD_REF:
2689 if (!is_gimple_reg_type (TREE_TYPE (t)))
2690 {
2691 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2692 return t;
2693 }
2694
2695 if (TREE_CODE (t) == BIT_FIELD_REF)
2696 {
2697 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2698 || !host_integerp (TREE_OPERAND (t, 2), 1))
2699 {
2700 error ("invalid position or size operand to BIT_FIELD_REF");
2701 return t;
2702 }
2703 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2704 && (TYPE_PRECISION (TREE_TYPE (t))
2705 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2706 {
2707 error ("integral result type precision does not match "
2708 "field size of BIT_FIELD_REF");
2709 return t;
2710 }
2711 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2712 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2713 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2714 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2715 {
2716 error ("mode precision of non-integral result does not "
2717 "match field size of BIT_FIELD_REF");
2718 return t;
2719 }
2720 }
2721 t = TREE_OPERAND (t, 0);
2722
2723 /* Fall-through. */
2724 case COMPONENT_REF:
2725 case ARRAY_REF:
2726 case ARRAY_RANGE_REF:
2727 case VIEW_CONVERT_EXPR:
2728 /* We have a nest of references. Verify that each of the operands
2729 that determine where to reference is either a constant or a variable,
2730 verify that the base is valid, and then show we've already checked
2731 the subtrees. */
2732 while (handled_component_p (t))
2733 {
2734 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2735 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2736 else if (TREE_CODE (t) == ARRAY_REF
2737 || TREE_CODE (t) == ARRAY_RANGE_REF)
2738 {
2739 CHECK_OP (1, "invalid array index");
2740 if (TREE_OPERAND (t, 2))
2741 CHECK_OP (2, "invalid array lower bound");
2742 if (TREE_OPERAND (t, 3))
2743 CHECK_OP (3, "invalid array stride");
2744 }
2745 else if (TREE_CODE (t) == BIT_FIELD_REF
2746 || TREE_CODE (t) == REALPART_EXPR
2747 || TREE_CODE (t) == IMAGPART_EXPR)
2748 {
2749 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2750 "REALPART_EXPR");
2751 return t;
2752 }
2753
2754 t = TREE_OPERAND (t, 0);
2755 }
2756
2757 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2758 {
2759 error ("invalid reference prefix");
2760 return t;
2761 }
2762 *walk_subtrees = 0;
2763 break;
2764 case PLUS_EXPR:
2765 case MINUS_EXPR:
2766 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2767 POINTER_PLUS_EXPR. */
2768 if (POINTER_TYPE_P (TREE_TYPE (t)))
2769 {
2770 error ("invalid operand to plus/minus, type is a pointer");
2771 return t;
2772 }
2773 CHECK_OP (0, "invalid operand to binary operator");
2774 CHECK_OP (1, "invalid operand to binary operator");
2775 break;
2776
2777 case POINTER_PLUS_EXPR:
2778 /* Check to make sure the first operand is a pointer or reference type. */
2779 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2780 {
2781 error ("invalid operand to pointer plus, first operand is not a pointer");
2782 return t;
2783 }
2784 /* Check to make sure the second operand is a ptrofftype. */
2785 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2786 {
2787 error ("invalid operand to pointer plus, second operand is not an "
2788 "integer type of appropriate width");
2789 return t;
2790 }
2791 /* FALLTHROUGH */
2792 case LT_EXPR:
2793 case LE_EXPR:
2794 case GT_EXPR:
2795 case GE_EXPR:
2796 case EQ_EXPR:
2797 case NE_EXPR:
2798 case UNORDERED_EXPR:
2799 case ORDERED_EXPR:
2800 case UNLT_EXPR:
2801 case UNLE_EXPR:
2802 case UNGT_EXPR:
2803 case UNGE_EXPR:
2804 case UNEQ_EXPR:
2805 case LTGT_EXPR:
2806 case MULT_EXPR:
2807 case TRUNC_DIV_EXPR:
2808 case CEIL_DIV_EXPR:
2809 case FLOOR_DIV_EXPR:
2810 case ROUND_DIV_EXPR:
2811 case TRUNC_MOD_EXPR:
2812 case CEIL_MOD_EXPR:
2813 case FLOOR_MOD_EXPR:
2814 case ROUND_MOD_EXPR:
2815 case RDIV_EXPR:
2816 case EXACT_DIV_EXPR:
2817 case MIN_EXPR:
2818 case MAX_EXPR:
2819 case LSHIFT_EXPR:
2820 case RSHIFT_EXPR:
2821 case LROTATE_EXPR:
2822 case RROTATE_EXPR:
2823 case BIT_IOR_EXPR:
2824 case BIT_XOR_EXPR:
2825 case BIT_AND_EXPR:
2826 CHECK_OP (0, "invalid operand to binary operator");
2827 CHECK_OP (1, "invalid operand to binary operator");
2828 break;
2829
2830 case CONSTRUCTOR:
2831 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2832 *walk_subtrees = 0;
2833 break;
2834
2835 case CASE_LABEL_EXPR:
2836 if (CASE_CHAIN (t))
2837 {
2838 error ("invalid CASE_CHAIN");
2839 return t;
2840 }
2841 break;
2842
2843 default:
2844 break;
2845 }
2846 return NULL;
2847
2848 #undef CHECK_OP
2849 }
2850
2851
2852 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2853 Returns true if there is an error, otherwise false. */
2854
2855 static bool
2856 verify_types_in_gimple_min_lval (tree expr)
2857 {
2858 tree op;
2859
2860 if (is_gimple_id (expr))
2861 return false;
2862
2863 if (TREE_CODE (expr) != TARGET_MEM_REF
2864 && TREE_CODE (expr) != MEM_REF)
2865 {
2866 error ("invalid expression for min lvalue");
2867 return true;
2868 }
2869
2870 /* TARGET_MEM_REFs are strange beasts. */
2871 if (TREE_CODE (expr) == TARGET_MEM_REF)
2872 return false;
2873
2874 op = TREE_OPERAND (expr, 0);
2875 if (!is_gimple_val (op))
2876 {
2877 error ("invalid operand in indirect reference");
2878 debug_generic_stmt (op);
2879 return true;
2880 }
2881 /* Memory references now generally can involve a value conversion. */
2882
2883 return false;
2884 }
2885
2886 /* Verify if EXPR is a valid GIMPLE reference expression. If
2887 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2888 if there is an error, otherwise false. */
2889
2890 static bool
2891 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2892 {
2893 while (handled_component_p (expr))
2894 {
2895 tree op = TREE_OPERAND (expr, 0);
2896
2897 if (TREE_CODE (expr) == ARRAY_REF
2898 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2899 {
2900 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2901 || (TREE_OPERAND (expr, 2)
2902 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2903 || (TREE_OPERAND (expr, 3)
2904 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2905 {
2906 error ("invalid operands to array reference");
2907 debug_generic_stmt (expr);
2908 return true;
2909 }
2910 }
2911
2912 /* Verify if the reference array element types are compatible. */
2913 if (TREE_CODE (expr) == ARRAY_REF
2914 && !useless_type_conversion_p (TREE_TYPE (expr),
2915 TREE_TYPE (TREE_TYPE (op))))
2916 {
2917 error ("type mismatch in array reference");
2918 debug_generic_stmt (TREE_TYPE (expr));
2919 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2920 return true;
2921 }
2922 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2923 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2924 TREE_TYPE (TREE_TYPE (op))))
2925 {
2926 error ("type mismatch in array range reference");
2927 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2928 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2929 return true;
2930 }
2931
2932 if ((TREE_CODE (expr) == REALPART_EXPR
2933 || TREE_CODE (expr) == IMAGPART_EXPR)
2934 && !useless_type_conversion_p (TREE_TYPE (expr),
2935 TREE_TYPE (TREE_TYPE (op))))
2936 {
2937 error ("type mismatch in real/imagpart reference");
2938 debug_generic_stmt (TREE_TYPE (expr));
2939 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2940 return true;
2941 }
2942
2943 if (TREE_CODE (expr) == COMPONENT_REF
2944 && !useless_type_conversion_p (TREE_TYPE (expr),
2945 TREE_TYPE (TREE_OPERAND (expr, 1))))
2946 {
2947 error ("type mismatch in component reference");
2948 debug_generic_stmt (TREE_TYPE (expr));
2949 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2950 return true;
2951 }
2952
2953 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2954 {
2955 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2956 that their operand is not an SSA name or an invariant when
2957 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2958 bug). Otherwise there is nothing to verify, gross mismatches at
2959 most invoke undefined behavior. */
2960 if (require_lvalue
2961 && (TREE_CODE (op) == SSA_NAME
2962 || is_gimple_min_invariant (op)))
2963 {
2964 error ("conversion of an SSA_NAME on the left hand side");
2965 debug_generic_stmt (expr);
2966 return true;
2967 }
2968 else if (TREE_CODE (op) == SSA_NAME
2969 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2970 {
2971 error ("conversion of register to a different size");
2972 debug_generic_stmt (expr);
2973 return true;
2974 }
2975 else if (!handled_component_p (op))
2976 return false;
2977 }
2978
2979 expr = op;
2980 }
2981
2982 if (TREE_CODE (expr) == MEM_REF)
2983 {
2984 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2985 {
2986 error ("invalid address operand in MEM_REF");
2987 debug_generic_stmt (expr);
2988 return true;
2989 }
2990 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2991 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2992 {
2993 error ("invalid offset operand in MEM_REF");
2994 debug_generic_stmt (expr);
2995 return true;
2996 }
2997 }
2998 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2999 {
3000 if (!TMR_BASE (expr)
3001 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3002 {
3003 error ("invalid address operand in TARGET_MEM_REF");
3004 return true;
3005 }
3006 if (!TMR_OFFSET (expr)
3007 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3008 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3009 {
3010 error ("invalid offset operand in TARGET_MEM_REF");
3011 debug_generic_stmt (expr);
3012 return true;
3013 }
3014 }
3015
3016 return ((require_lvalue || !is_gimple_min_invariant (expr))
3017 && verify_types_in_gimple_min_lval (expr));
3018 }
3019
3020 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3021 list of pointer-to types that is trivially convertible to DEST. */
3022
3023 static bool
3024 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3025 {
3026 tree src;
3027
3028 if (!TYPE_POINTER_TO (src_obj))
3029 return true;
3030
3031 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3032 if (useless_type_conversion_p (dest, src))
3033 return true;
3034
3035 return false;
3036 }
3037
3038 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3039 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3040
3041 static bool
3042 valid_fixed_convert_types_p (tree type1, tree type2)
3043 {
3044 return (FIXED_POINT_TYPE_P (type1)
3045 && (INTEGRAL_TYPE_P (type2)
3046 || SCALAR_FLOAT_TYPE_P (type2)
3047 || FIXED_POINT_TYPE_P (type2)));
3048 }
3049
3050 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3051 is a problem, otherwise false. */
3052
3053 static bool
3054 verify_gimple_call (gimple stmt)
3055 {
3056 tree fn = gimple_call_fn (stmt);
3057 tree fntype, fndecl;
3058 unsigned i;
3059
3060 if (gimple_call_internal_p (stmt))
3061 {
3062 if (fn)
3063 {
3064 error ("gimple call has two targets");
3065 debug_generic_stmt (fn);
3066 return true;
3067 }
3068 }
3069 else
3070 {
3071 if (!fn)
3072 {
3073 error ("gimple call has no target");
3074 return true;
3075 }
3076 }
3077
3078 if (fn && !is_gimple_call_addr (fn))
3079 {
3080 error ("invalid function in gimple call");
3081 debug_generic_stmt (fn);
3082 return true;
3083 }
3084
3085 if (fn
3086 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3087 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3088 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3089 {
3090 error ("non-function in gimple call");
3091 return true;
3092 }
3093
3094 fndecl = gimple_call_fndecl (stmt);
3095 if (fndecl
3096 && TREE_CODE (fndecl) == FUNCTION_DECL
3097 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3098 && !DECL_PURE_P (fndecl)
3099 && !TREE_READONLY (fndecl))
3100 {
3101 error ("invalid pure const state for function");
3102 return true;
3103 }
3104
3105 if (gimple_call_lhs (stmt)
3106 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3107 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3108 {
3109 error ("invalid LHS in gimple call");
3110 return true;
3111 }
3112
3113 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3114 {
3115 error ("LHS in noreturn call");
3116 return true;
3117 }
3118
3119 fntype = gimple_call_fntype (stmt);
3120 if (fntype
3121 && gimple_call_lhs (stmt)
3122 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3123 TREE_TYPE (fntype))
3124 /* ??? At least C++ misses conversions at assignments from
3125 void * call results.
3126 ??? Java is completely off. Especially with functions
3127 returning java.lang.Object.
3128 For now simply allow arbitrary pointer type conversions. */
3129 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3130 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3131 {
3132 error ("invalid conversion in gimple call");
3133 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3134 debug_generic_stmt (TREE_TYPE (fntype));
3135 return true;
3136 }
3137
3138 if (gimple_call_chain (stmt)
3139 && !is_gimple_val (gimple_call_chain (stmt)))
3140 {
3141 error ("invalid static chain in gimple call");
3142 debug_generic_stmt (gimple_call_chain (stmt));
3143 return true;
3144 }
3145
3146 /* If there is a static chain argument, this should not be an indirect
3147 call, and the decl should have DECL_STATIC_CHAIN set. */
3148 if (gimple_call_chain (stmt))
3149 {
3150 if (!gimple_call_fndecl (stmt))
3151 {
3152 error ("static chain in indirect gimple call");
3153 return true;
3154 }
3155 fn = TREE_OPERAND (fn, 0);
3156
3157 if (!DECL_STATIC_CHAIN (fn))
3158 {
3159 error ("static chain with function that doesn%'t use one");
3160 return true;
3161 }
3162 }
3163
3164 /* ??? The C frontend passes unpromoted arguments in case it
3165 didn't see a function declaration before the call. So for now
3166 leave the call arguments mostly unverified. Once we gimplify
3167 unit-at-a-time we have a chance to fix this. */
3168
3169 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3170 {
3171 tree arg = gimple_call_arg (stmt, i);
3172 if ((is_gimple_reg_type (TREE_TYPE (arg))
3173 && !is_gimple_val (arg))
3174 || (!is_gimple_reg_type (TREE_TYPE (arg))
3175 && !is_gimple_lvalue (arg)))
3176 {
3177 error ("invalid argument to gimple call");
3178 debug_generic_expr (arg);
3179 return true;
3180 }
3181 }
3182
3183 return false;
3184 }
3185
3186 /* Verifies the gimple comparison with the result type TYPE and
3187 the operands OP0 and OP1. */
3188
3189 static bool
3190 verify_gimple_comparison (tree type, tree op0, tree op1)
3191 {
3192 tree op0_type = TREE_TYPE (op0);
3193 tree op1_type = TREE_TYPE (op1);
3194
3195 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3196 {
3197 error ("invalid operands in gimple comparison");
3198 return true;
3199 }
3200
3201 /* For comparisons we do not have the operations type as the
3202 effective type the comparison is carried out in. Instead
3203 we require that either the first operand is trivially
3204 convertible into the second, or the other way around.
3205 Because we special-case pointers to void we allow
3206 comparisons of pointers with the same mode as well. */
3207 if (!useless_type_conversion_p (op0_type, op1_type)
3208 && !useless_type_conversion_p (op1_type, op0_type)
3209 && (!POINTER_TYPE_P (op0_type)
3210 || !POINTER_TYPE_P (op1_type)
3211 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3212 {
3213 error ("mismatching comparison operand types");
3214 debug_generic_expr (op0_type);
3215 debug_generic_expr (op1_type);
3216 return true;
3217 }
3218
3219 /* The resulting type of a comparison may be an effective boolean type. */
3220 if (INTEGRAL_TYPE_P (type)
3221 && (TREE_CODE (type) == BOOLEAN_TYPE
3222 || TYPE_PRECISION (type) == 1))
3223 {
3224 if (TREE_CODE (op0_type) == VECTOR_TYPE
3225 || TREE_CODE (op1_type) == VECTOR_TYPE)
3226 {
3227 error ("vector comparison returning a boolean");
3228 debug_generic_expr (op0_type);
3229 debug_generic_expr (op1_type);
3230 return true;
3231 }
3232 }
3233 /* Or an integer vector type with the same size and element count
3234 as the comparison operand types. */
3235 else if (TREE_CODE (type) == VECTOR_TYPE
3236 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3237 {
3238 if (TREE_CODE (op0_type) != VECTOR_TYPE
3239 || TREE_CODE (op1_type) != VECTOR_TYPE)
3240 {
3241 error ("non-vector operands in vector comparison");
3242 debug_generic_expr (op0_type);
3243 debug_generic_expr (op1_type);
3244 return true;
3245 }
3246
3247 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3248 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3249 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3250 /* The result of a vector comparison is of signed
3251 integral type. */
3252 || TYPE_UNSIGNED (TREE_TYPE (type)))
3253 {
3254 error ("invalid vector comparison resulting type");
3255 debug_generic_expr (type);
3256 return true;
3257 }
3258 }
3259 else
3260 {
3261 error ("bogus comparison result type");
3262 debug_generic_expr (type);
3263 return true;
3264 }
3265
3266 return false;
3267 }
3268
3269 /* Verify a gimple assignment statement STMT with an unary rhs.
3270 Returns true if anything is wrong. */
3271
3272 static bool
3273 verify_gimple_assign_unary (gimple stmt)
3274 {
3275 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3276 tree lhs = gimple_assign_lhs (stmt);
3277 tree lhs_type = TREE_TYPE (lhs);
3278 tree rhs1 = gimple_assign_rhs1 (stmt);
3279 tree rhs1_type = TREE_TYPE (rhs1);
3280
3281 if (!is_gimple_reg (lhs))
3282 {
3283 error ("non-register as LHS of unary operation");
3284 return true;
3285 }
3286
3287 if (!is_gimple_val (rhs1))
3288 {
3289 error ("invalid operand in unary operation");
3290 return true;
3291 }
3292
3293 /* First handle conversions. */
3294 switch (rhs_code)
3295 {
3296 CASE_CONVERT:
3297 {
3298 /* Allow conversions from pointer type to integral type only if
3299 there is no sign or zero extension involved.
3300 For targets were the precision of ptrofftype doesn't match that
3301 of pointers we need to allow arbitrary conversions to ptrofftype. */
3302 if ((POINTER_TYPE_P (lhs_type)
3303 && INTEGRAL_TYPE_P (rhs1_type))
3304 || (POINTER_TYPE_P (rhs1_type)
3305 && INTEGRAL_TYPE_P (lhs_type)
3306 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3307 || ptrofftype_p (sizetype))))
3308 return false;
3309
3310 /* Allow conversion from integral to offset type and vice versa. */
3311 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3312 && INTEGRAL_TYPE_P (rhs1_type))
3313 || (INTEGRAL_TYPE_P (lhs_type)
3314 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3315 return false;
3316
3317 /* Otherwise assert we are converting between types of the
3318 same kind. */
3319 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3320 {
3321 error ("invalid types in nop conversion");
3322 debug_generic_expr (lhs_type);
3323 debug_generic_expr (rhs1_type);
3324 return true;
3325 }
3326
3327 return false;
3328 }
3329
3330 case ADDR_SPACE_CONVERT_EXPR:
3331 {
3332 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3333 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3334 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3335 {
3336 error ("invalid types in address space conversion");
3337 debug_generic_expr (lhs_type);
3338 debug_generic_expr (rhs1_type);
3339 return true;
3340 }
3341
3342 return false;
3343 }
3344
3345 case FIXED_CONVERT_EXPR:
3346 {
3347 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3348 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3349 {
3350 error ("invalid types in fixed-point conversion");
3351 debug_generic_expr (lhs_type);
3352 debug_generic_expr (rhs1_type);
3353 return true;
3354 }
3355
3356 return false;
3357 }
3358
3359 case FLOAT_EXPR:
3360 {
3361 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3362 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3363 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3364 {
3365 error ("invalid types in conversion to floating point");
3366 debug_generic_expr (lhs_type);
3367 debug_generic_expr (rhs1_type);
3368 return true;
3369 }
3370
3371 return false;
3372 }
3373
3374 case FIX_TRUNC_EXPR:
3375 {
3376 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3377 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3378 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3379 {
3380 error ("invalid types in conversion to integer");
3381 debug_generic_expr (lhs_type);
3382 debug_generic_expr (rhs1_type);
3383 return true;
3384 }
3385
3386 return false;
3387 }
3388
3389 case VEC_UNPACK_HI_EXPR:
3390 case VEC_UNPACK_LO_EXPR:
3391 case REDUC_MAX_EXPR:
3392 case REDUC_MIN_EXPR:
3393 case REDUC_PLUS_EXPR:
3394 case VEC_UNPACK_FLOAT_HI_EXPR:
3395 case VEC_UNPACK_FLOAT_LO_EXPR:
3396 /* FIXME. */
3397 return false;
3398
3399 case NEGATE_EXPR:
3400 case ABS_EXPR:
3401 case BIT_NOT_EXPR:
3402 case PAREN_EXPR:
3403 case NON_LVALUE_EXPR:
3404 case CONJ_EXPR:
3405 break;
3406
3407 default:
3408 gcc_unreachable ();
3409 }
3410
3411 /* For the remaining codes assert there is no conversion involved. */
3412 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3413 {
3414 error ("non-trivial conversion in unary operation");
3415 debug_generic_expr (lhs_type);
3416 debug_generic_expr (rhs1_type);
3417 return true;
3418 }
3419
3420 return false;
3421 }
3422
3423 /* Verify a gimple assignment statement STMT with a binary rhs.
3424 Returns true if anything is wrong. */
3425
3426 static bool
3427 verify_gimple_assign_binary (gimple stmt)
3428 {
3429 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3430 tree lhs = gimple_assign_lhs (stmt);
3431 tree lhs_type = TREE_TYPE (lhs);
3432 tree rhs1 = gimple_assign_rhs1 (stmt);
3433 tree rhs1_type = TREE_TYPE (rhs1);
3434 tree rhs2 = gimple_assign_rhs2 (stmt);
3435 tree rhs2_type = TREE_TYPE (rhs2);
3436
3437 if (!is_gimple_reg (lhs))
3438 {
3439 error ("non-register as LHS of binary operation");
3440 return true;
3441 }
3442
3443 if (!is_gimple_val (rhs1)
3444 || !is_gimple_val (rhs2))
3445 {
3446 error ("invalid operands in binary operation");
3447 return true;
3448 }
3449
3450 /* First handle operations that involve different types. */
3451 switch (rhs_code)
3452 {
3453 case COMPLEX_EXPR:
3454 {
3455 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3456 || !(INTEGRAL_TYPE_P (rhs1_type)
3457 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3458 || !(INTEGRAL_TYPE_P (rhs2_type)
3459 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3460 {
3461 error ("type mismatch in complex expression");
3462 debug_generic_expr (lhs_type);
3463 debug_generic_expr (rhs1_type);
3464 debug_generic_expr (rhs2_type);
3465 return true;
3466 }
3467
3468 return false;
3469 }
3470
3471 case LSHIFT_EXPR:
3472 case RSHIFT_EXPR:
3473 case LROTATE_EXPR:
3474 case RROTATE_EXPR:
3475 {
3476 /* Shifts and rotates are ok on integral types, fixed point
3477 types and integer vector types. */
3478 if ((!INTEGRAL_TYPE_P (rhs1_type)
3479 && !FIXED_POINT_TYPE_P (rhs1_type)
3480 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3481 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3482 || (!INTEGRAL_TYPE_P (rhs2_type)
3483 /* Vector shifts of vectors are also ok. */
3484 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3485 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3486 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3487 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3488 || !useless_type_conversion_p (lhs_type, rhs1_type))
3489 {
3490 error ("type mismatch in shift expression");
3491 debug_generic_expr (lhs_type);
3492 debug_generic_expr (rhs1_type);
3493 debug_generic_expr (rhs2_type);
3494 return true;
3495 }
3496
3497 return false;
3498 }
3499
3500 case VEC_LSHIFT_EXPR:
3501 case VEC_RSHIFT_EXPR:
3502 {
3503 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3504 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3505 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3506 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3507 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3508 || (!INTEGRAL_TYPE_P (rhs2_type)
3509 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3510 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3511 || !useless_type_conversion_p (lhs_type, rhs1_type))
3512 {
3513 error ("type mismatch in vector shift expression");
3514 debug_generic_expr (lhs_type);
3515 debug_generic_expr (rhs1_type);
3516 debug_generic_expr (rhs2_type);
3517 return true;
3518 }
3519 /* For shifting a vector of non-integral components we
3520 only allow shifting by a constant multiple of the element size. */
3521 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3522 && (TREE_CODE (rhs2) != INTEGER_CST
3523 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3524 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3525 {
3526 error ("non-element sized vector shift of floating point vector");
3527 return true;
3528 }
3529
3530 return false;
3531 }
3532
3533 case WIDEN_LSHIFT_EXPR:
3534 {
3535 if (!INTEGRAL_TYPE_P (lhs_type)
3536 || !INTEGRAL_TYPE_P (rhs1_type)
3537 || TREE_CODE (rhs2) != INTEGER_CST
3538 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3539 {
3540 error ("type mismatch in widening vector shift expression");
3541 debug_generic_expr (lhs_type);
3542 debug_generic_expr (rhs1_type);
3543 debug_generic_expr (rhs2_type);
3544 return true;
3545 }
3546
3547 return false;
3548 }
3549
3550 case VEC_WIDEN_LSHIFT_HI_EXPR:
3551 case VEC_WIDEN_LSHIFT_LO_EXPR:
3552 {
3553 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3554 || TREE_CODE (lhs_type) != VECTOR_TYPE
3555 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3556 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3557 || TREE_CODE (rhs2) != INTEGER_CST
3558 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3559 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3560 {
3561 error ("type mismatch in widening vector shift expression");
3562 debug_generic_expr (lhs_type);
3563 debug_generic_expr (rhs1_type);
3564 debug_generic_expr (rhs2_type);
3565 return true;
3566 }
3567
3568 return false;
3569 }
3570
3571 case PLUS_EXPR:
3572 case MINUS_EXPR:
3573 {
3574 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3575 ??? This just makes the checker happy and may not be what is
3576 intended. */
3577 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3578 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3579 {
3580 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3581 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3582 {
3583 error ("invalid non-vector operands to vector valued plus");
3584 return true;
3585 }
3586 lhs_type = TREE_TYPE (lhs_type);
3587 rhs1_type = TREE_TYPE (rhs1_type);
3588 rhs2_type = TREE_TYPE (rhs2_type);
3589 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3590 the pointer to 2nd place. */
3591 if (POINTER_TYPE_P (rhs2_type))
3592 {
3593 tree tem = rhs1_type;
3594 rhs1_type = rhs2_type;
3595 rhs2_type = tem;
3596 }
3597 goto do_pointer_plus_expr_check;
3598 }
3599 if (POINTER_TYPE_P (lhs_type)
3600 || POINTER_TYPE_P (rhs1_type)
3601 || POINTER_TYPE_P (rhs2_type))
3602 {
3603 error ("invalid (pointer) operands to plus/minus");
3604 return true;
3605 }
3606
3607 /* Continue with generic binary expression handling. */
3608 break;
3609 }
3610
3611 case POINTER_PLUS_EXPR:
3612 {
3613 do_pointer_plus_expr_check:
3614 if (!POINTER_TYPE_P (rhs1_type)
3615 || !useless_type_conversion_p (lhs_type, rhs1_type)
3616 || !ptrofftype_p (rhs2_type))
3617 {
3618 error ("type mismatch in pointer plus expression");
3619 debug_generic_stmt (lhs_type);
3620 debug_generic_stmt (rhs1_type);
3621 debug_generic_stmt (rhs2_type);
3622 return true;
3623 }
3624
3625 return false;
3626 }
3627
3628 case TRUTH_ANDIF_EXPR:
3629 case TRUTH_ORIF_EXPR:
3630 case TRUTH_AND_EXPR:
3631 case TRUTH_OR_EXPR:
3632 case TRUTH_XOR_EXPR:
3633
3634 gcc_unreachable ();
3635
3636 case LT_EXPR:
3637 case LE_EXPR:
3638 case GT_EXPR:
3639 case GE_EXPR:
3640 case EQ_EXPR:
3641 case NE_EXPR:
3642 case UNORDERED_EXPR:
3643 case ORDERED_EXPR:
3644 case UNLT_EXPR:
3645 case UNLE_EXPR:
3646 case UNGT_EXPR:
3647 case UNGE_EXPR:
3648 case UNEQ_EXPR:
3649 case LTGT_EXPR:
3650 /* Comparisons are also binary, but the result type is not
3651 connected to the operand types. */
3652 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3653
3654 case WIDEN_MULT_EXPR:
3655 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3656 return true;
3657 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3658 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3659
3660 case WIDEN_SUM_EXPR:
3661 case VEC_WIDEN_MULT_HI_EXPR:
3662 case VEC_WIDEN_MULT_LO_EXPR:
3663 case VEC_WIDEN_MULT_EVEN_EXPR:
3664 case VEC_WIDEN_MULT_ODD_EXPR:
3665 case VEC_PACK_TRUNC_EXPR:
3666 case VEC_PACK_SAT_EXPR:
3667 case VEC_PACK_FIX_TRUNC_EXPR:
3668 /* FIXME. */
3669 return false;
3670
3671 case MULT_EXPR:
3672 case MULT_HIGHPART_EXPR:
3673 case TRUNC_DIV_EXPR:
3674 case CEIL_DIV_EXPR:
3675 case FLOOR_DIV_EXPR:
3676 case ROUND_DIV_EXPR:
3677 case TRUNC_MOD_EXPR:
3678 case CEIL_MOD_EXPR:
3679 case FLOOR_MOD_EXPR:
3680 case ROUND_MOD_EXPR:
3681 case RDIV_EXPR:
3682 case EXACT_DIV_EXPR:
3683 case MIN_EXPR:
3684 case MAX_EXPR:
3685 case BIT_IOR_EXPR:
3686 case BIT_XOR_EXPR:
3687 case BIT_AND_EXPR:
3688 /* Continue with generic binary expression handling. */
3689 break;
3690
3691 default:
3692 gcc_unreachable ();
3693 }
3694
3695 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3696 || !useless_type_conversion_p (lhs_type, rhs2_type))
3697 {
3698 error ("type mismatch in binary expression");
3699 debug_generic_stmt (lhs_type);
3700 debug_generic_stmt (rhs1_type);
3701 debug_generic_stmt (rhs2_type);
3702 return true;
3703 }
3704
3705 return false;
3706 }
3707
3708 /* Verify a gimple assignment statement STMT with a ternary rhs.
3709 Returns true if anything is wrong. */
3710
3711 static bool
3712 verify_gimple_assign_ternary (gimple stmt)
3713 {
3714 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3715 tree lhs = gimple_assign_lhs (stmt);
3716 tree lhs_type = TREE_TYPE (lhs);
3717 tree rhs1 = gimple_assign_rhs1 (stmt);
3718 tree rhs1_type = TREE_TYPE (rhs1);
3719 tree rhs2 = gimple_assign_rhs2 (stmt);
3720 tree rhs2_type = TREE_TYPE (rhs2);
3721 tree rhs3 = gimple_assign_rhs3 (stmt);
3722 tree rhs3_type = TREE_TYPE (rhs3);
3723
3724 if (!is_gimple_reg (lhs))
3725 {
3726 error ("non-register as LHS of ternary operation");
3727 return true;
3728 }
3729
3730 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3731 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3732 || !is_gimple_val (rhs2)
3733 || !is_gimple_val (rhs3))
3734 {
3735 error ("invalid operands in ternary operation");
3736 return true;
3737 }
3738
3739 /* First handle operations that involve different types. */
3740 switch (rhs_code)
3741 {
3742 case WIDEN_MULT_PLUS_EXPR:
3743 case WIDEN_MULT_MINUS_EXPR:
3744 if ((!INTEGRAL_TYPE_P (rhs1_type)
3745 && !FIXED_POINT_TYPE_P (rhs1_type))
3746 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3747 || !useless_type_conversion_p (lhs_type, rhs3_type)
3748 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3749 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3750 {
3751 error ("type mismatch in widening multiply-accumulate expression");
3752 debug_generic_expr (lhs_type);
3753 debug_generic_expr (rhs1_type);
3754 debug_generic_expr (rhs2_type);
3755 debug_generic_expr (rhs3_type);
3756 return true;
3757 }
3758 break;
3759
3760 case FMA_EXPR:
3761 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3762 || !useless_type_conversion_p (lhs_type, rhs2_type)
3763 || !useless_type_conversion_p (lhs_type, rhs3_type))
3764 {
3765 error ("type mismatch in fused multiply-add expression");
3766 debug_generic_expr (lhs_type);
3767 debug_generic_expr (rhs1_type);
3768 debug_generic_expr (rhs2_type);
3769 debug_generic_expr (rhs3_type);
3770 return true;
3771 }
3772 break;
3773
3774 case COND_EXPR:
3775 case VEC_COND_EXPR:
3776 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3777 || !useless_type_conversion_p (lhs_type, rhs3_type))
3778 {
3779 error ("type mismatch in conditional expression");
3780 debug_generic_expr (lhs_type);
3781 debug_generic_expr (rhs2_type);
3782 debug_generic_expr (rhs3_type);
3783 return true;
3784 }
3785 break;
3786
3787 case VEC_PERM_EXPR:
3788 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3789 || !useless_type_conversion_p (lhs_type, rhs2_type))
3790 {
3791 error ("type mismatch in vector permute expression");
3792 debug_generic_expr (lhs_type);
3793 debug_generic_expr (rhs1_type);
3794 debug_generic_expr (rhs2_type);
3795 debug_generic_expr (rhs3_type);
3796 return true;
3797 }
3798
3799 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3800 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3801 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3802 {
3803 error ("vector types expected in vector permute expression");
3804 debug_generic_expr (lhs_type);
3805 debug_generic_expr (rhs1_type);
3806 debug_generic_expr (rhs2_type);
3807 debug_generic_expr (rhs3_type);
3808 return true;
3809 }
3810
3811 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3812 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3813 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3814 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3815 != TYPE_VECTOR_SUBPARTS (lhs_type))
3816 {
3817 error ("vectors with different element number found "
3818 "in vector permute expression");
3819 debug_generic_expr (lhs_type);
3820 debug_generic_expr (rhs1_type);
3821 debug_generic_expr (rhs2_type);
3822 debug_generic_expr (rhs3_type);
3823 return true;
3824 }
3825
3826 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3827 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3828 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3829 {
3830 error ("invalid mask type in vector permute expression");
3831 debug_generic_expr (lhs_type);
3832 debug_generic_expr (rhs1_type);
3833 debug_generic_expr (rhs2_type);
3834 debug_generic_expr (rhs3_type);
3835 return true;
3836 }
3837
3838 return false;
3839
3840 case DOT_PROD_EXPR:
3841 case REALIGN_LOAD_EXPR:
3842 /* FIXME. */
3843 return false;
3844
3845 default:
3846 gcc_unreachable ();
3847 }
3848 return false;
3849 }
3850
3851 /* Verify a gimple assignment statement STMT with a single rhs.
3852 Returns true if anything is wrong. */
3853
3854 static bool
3855 verify_gimple_assign_single (gimple stmt)
3856 {
3857 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3858 tree lhs = gimple_assign_lhs (stmt);
3859 tree lhs_type = TREE_TYPE (lhs);
3860 tree rhs1 = gimple_assign_rhs1 (stmt);
3861 tree rhs1_type = TREE_TYPE (rhs1);
3862 bool res = false;
3863
3864 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3865 {
3866 error ("non-trivial conversion at assignment");
3867 debug_generic_expr (lhs_type);
3868 debug_generic_expr (rhs1_type);
3869 return true;
3870 }
3871
3872 if (gimple_clobber_p (stmt)
3873 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
3874 {
3875 error ("non-decl/MEM_REF LHS in clobber statement");
3876 debug_generic_expr (lhs);
3877 return true;
3878 }
3879
3880 if (handled_component_p (lhs))
3881 res |= verify_types_in_gimple_reference (lhs, true);
3882
3883 /* Special codes we cannot handle via their class. */
3884 switch (rhs_code)
3885 {
3886 case ADDR_EXPR:
3887 {
3888 tree op = TREE_OPERAND (rhs1, 0);
3889 if (!is_gimple_addressable (op))
3890 {
3891 error ("invalid operand in unary expression");
3892 return true;
3893 }
3894
3895 /* Technically there is no longer a need for matching types, but
3896 gimple hygiene asks for this check. In LTO we can end up
3897 combining incompatible units and thus end up with addresses
3898 of globals that change their type to a common one. */
3899 if (!in_lto_p
3900 && !types_compatible_p (TREE_TYPE (op),
3901 TREE_TYPE (TREE_TYPE (rhs1)))
3902 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3903 TREE_TYPE (op)))
3904 {
3905 error ("type mismatch in address expression");
3906 debug_generic_stmt (TREE_TYPE (rhs1));
3907 debug_generic_stmt (TREE_TYPE (op));
3908 return true;
3909 }
3910
3911 return verify_types_in_gimple_reference (op, true);
3912 }
3913
3914 /* tcc_reference */
3915 case INDIRECT_REF:
3916 error ("INDIRECT_REF in gimple IL");
3917 return true;
3918
3919 case COMPONENT_REF:
3920 case BIT_FIELD_REF:
3921 case ARRAY_REF:
3922 case ARRAY_RANGE_REF:
3923 case VIEW_CONVERT_EXPR:
3924 case REALPART_EXPR:
3925 case IMAGPART_EXPR:
3926 case TARGET_MEM_REF:
3927 case MEM_REF:
3928 if (!is_gimple_reg (lhs)
3929 && is_gimple_reg_type (TREE_TYPE (lhs)))
3930 {
3931 error ("invalid rhs for gimple memory store");
3932 debug_generic_stmt (lhs);
3933 debug_generic_stmt (rhs1);
3934 return true;
3935 }
3936 return res || verify_types_in_gimple_reference (rhs1, false);
3937
3938 /* tcc_constant */
3939 case SSA_NAME:
3940 case INTEGER_CST:
3941 case REAL_CST:
3942 case FIXED_CST:
3943 case COMPLEX_CST:
3944 case VECTOR_CST:
3945 case STRING_CST:
3946 return res;
3947
3948 /* tcc_declaration */
3949 case CONST_DECL:
3950 return res;
3951 case VAR_DECL:
3952 case PARM_DECL:
3953 if (!is_gimple_reg (lhs)
3954 && !is_gimple_reg (rhs1)
3955 && is_gimple_reg_type (TREE_TYPE (lhs)))
3956 {
3957 error ("invalid rhs for gimple memory store");
3958 debug_generic_stmt (lhs);
3959 debug_generic_stmt (rhs1);
3960 return true;
3961 }
3962 return res;
3963
3964 case CONSTRUCTOR:
3965 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
3966 {
3967 unsigned int i;
3968 tree elt_i, elt_v, elt_t = NULL_TREE;
3969
3970 if (CONSTRUCTOR_NELTS (rhs1) == 0)
3971 return res;
3972 /* For vector CONSTRUCTORs we require that either it is empty
3973 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3974 (then the element count must be correct to cover the whole
3975 outer vector and index must be NULL on all elements, or it is
3976 a CONSTRUCTOR of scalar elements, where we as an exception allow
3977 smaller number of elements (assuming zero filling) and
3978 consecutive indexes as compared to NULL indexes (such
3979 CONSTRUCTORs can appear in the IL from FEs). */
3980 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
3981 {
3982 if (elt_t == NULL_TREE)
3983 {
3984 elt_t = TREE_TYPE (elt_v);
3985 if (TREE_CODE (elt_t) == VECTOR_TYPE)
3986 {
3987 tree elt_t = TREE_TYPE (elt_v);
3988 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3989 TREE_TYPE (elt_t)))
3990 {
3991 error ("incorrect type of vector CONSTRUCTOR"
3992 " elements");
3993 debug_generic_stmt (rhs1);
3994 return true;
3995 }
3996 else if (CONSTRUCTOR_NELTS (rhs1)
3997 * TYPE_VECTOR_SUBPARTS (elt_t)
3998 != TYPE_VECTOR_SUBPARTS (rhs1_type))
3999 {
4000 error ("incorrect number of vector CONSTRUCTOR"
4001 " elements");
4002 debug_generic_stmt (rhs1);
4003 return true;
4004 }
4005 }
4006 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4007 elt_t))
4008 {
4009 error ("incorrect type of vector CONSTRUCTOR elements");
4010 debug_generic_stmt (rhs1);
4011 return true;
4012 }
4013 else if (CONSTRUCTOR_NELTS (rhs1)
4014 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4015 {
4016 error ("incorrect number of vector CONSTRUCTOR elements");
4017 debug_generic_stmt (rhs1);
4018 return true;
4019 }
4020 }
4021 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4022 {
4023 error ("incorrect type of vector CONSTRUCTOR elements");
4024 debug_generic_stmt (rhs1);
4025 return true;
4026 }
4027 if (elt_i != NULL_TREE
4028 && (TREE_CODE (elt_t) == VECTOR_TYPE
4029 || TREE_CODE (elt_i) != INTEGER_CST
4030 || compare_tree_int (elt_i, i) != 0))
4031 {
4032 error ("vector CONSTRUCTOR with non-NULL element index");
4033 debug_generic_stmt (rhs1);
4034 return true;
4035 }
4036 }
4037 }
4038 return res;
4039 case OBJ_TYPE_REF:
4040 case ASSERT_EXPR:
4041 case WITH_SIZE_EXPR:
4042 /* FIXME. */
4043 return res;
4044
4045 default:;
4046 }
4047
4048 return res;
4049 }
4050
4051 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4052 is a problem, otherwise false. */
4053
4054 static bool
4055 verify_gimple_assign (gimple stmt)
4056 {
4057 switch (gimple_assign_rhs_class (stmt))
4058 {
4059 case GIMPLE_SINGLE_RHS:
4060 return verify_gimple_assign_single (stmt);
4061
4062 case GIMPLE_UNARY_RHS:
4063 return verify_gimple_assign_unary (stmt);
4064
4065 case GIMPLE_BINARY_RHS:
4066 return verify_gimple_assign_binary (stmt);
4067
4068 case GIMPLE_TERNARY_RHS:
4069 return verify_gimple_assign_ternary (stmt);
4070
4071 default:
4072 gcc_unreachable ();
4073 }
4074 }
4075
4076 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4077 is a problem, otherwise false. */
4078
4079 static bool
4080 verify_gimple_return (gimple stmt)
4081 {
4082 tree op = gimple_return_retval (stmt);
4083 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4084
4085 /* We cannot test for present return values as we do not fix up missing
4086 return values from the original source. */
4087 if (op == NULL)
4088 return false;
4089
4090 if (!is_gimple_val (op)
4091 && TREE_CODE (op) != RESULT_DECL)
4092 {
4093 error ("invalid operand in return statement");
4094 debug_generic_stmt (op);
4095 return true;
4096 }
4097
4098 if ((TREE_CODE (op) == RESULT_DECL
4099 && DECL_BY_REFERENCE (op))
4100 || (TREE_CODE (op) == SSA_NAME
4101 && SSA_NAME_VAR (op)
4102 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4103 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4104 op = TREE_TYPE (op);
4105
4106 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4107 {
4108 error ("invalid conversion in return statement");
4109 debug_generic_stmt (restype);
4110 debug_generic_stmt (TREE_TYPE (op));
4111 return true;
4112 }
4113
4114 return false;
4115 }
4116
4117
4118 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4119 is a problem, otherwise false. */
4120
4121 static bool
4122 verify_gimple_goto (gimple stmt)
4123 {
4124 tree dest = gimple_goto_dest (stmt);
4125
4126 /* ??? We have two canonical forms of direct goto destinations, a
4127 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4128 if (TREE_CODE (dest) != LABEL_DECL
4129 && (!is_gimple_val (dest)
4130 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4131 {
4132 error ("goto destination is neither a label nor a pointer");
4133 return true;
4134 }
4135
4136 return false;
4137 }
4138
4139 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4140 is a problem, otherwise false. */
4141
4142 static bool
4143 verify_gimple_switch (gimple stmt)
4144 {
4145 unsigned int i, n;
4146 tree elt, prev_upper_bound = NULL_TREE;
4147 tree index_type, elt_type = NULL_TREE;
4148
4149 if (!is_gimple_val (gimple_switch_index (stmt)))
4150 {
4151 error ("invalid operand to switch statement");
4152 debug_generic_stmt (gimple_switch_index (stmt));
4153 return true;
4154 }
4155
4156 index_type = TREE_TYPE (gimple_switch_index (stmt));
4157 if (! INTEGRAL_TYPE_P (index_type))
4158 {
4159 error ("non-integral type switch statement");
4160 debug_generic_expr (index_type);
4161 return true;
4162 }
4163
4164 elt = gimple_switch_label (stmt, 0);
4165 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4166 {
4167 error ("invalid default case label in switch statement");
4168 debug_generic_expr (elt);
4169 return true;
4170 }
4171
4172 n = gimple_switch_num_labels (stmt);
4173 for (i = 1; i < n; i++)
4174 {
4175 elt = gimple_switch_label (stmt, i);
4176
4177 if (! CASE_LOW (elt))
4178 {
4179 error ("invalid case label in switch statement");
4180 debug_generic_expr (elt);
4181 return true;
4182 }
4183 if (CASE_HIGH (elt)
4184 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4185 {
4186 error ("invalid case range in switch statement");
4187 debug_generic_expr (elt);
4188 return true;
4189 }
4190
4191 if (elt_type)
4192 {
4193 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4194 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4195 {
4196 error ("type mismatch for case label in switch statement");
4197 debug_generic_expr (elt);
4198 return true;
4199 }
4200 }
4201 else
4202 {
4203 elt_type = TREE_TYPE (CASE_LOW (elt));
4204 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4205 {
4206 error ("type precision mismatch in switch statement");
4207 return true;
4208 }
4209 }
4210
4211 if (prev_upper_bound)
4212 {
4213 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4214 {
4215 error ("case labels not sorted in switch statement");
4216 return true;
4217 }
4218 }
4219
4220 prev_upper_bound = CASE_HIGH (elt);
4221 if (! prev_upper_bound)
4222 prev_upper_bound = CASE_LOW (elt);
4223 }
4224
4225 return false;
4226 }
4227
4228 /* Verify a gimple debug statement STMT.
4229 Returns true if anything is wrong. */
4230
4231 static bool
4232 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4233 {
4234 /* There isn't much that could be wrong in a gimple debug stmt. A
4235 gimple debug bind stmt, for example, maps a tree, that's usually
4236 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4237 component or member of an aggregate type, to another tree, that
4238 can be an arbitrary expression. These stmts expand into debug
4239 insns, and are converted to debug notes by var-tracking.c. */
4240 return false;
4241 }
4242
4243 /* Verify a gimple label statement STMT.
4244 Returns true if anything is wrong. */
4245
4246 static bool
4247 verify_gimple_label (gimple stmt)
4248 {
4249 tree decl = gimple_label_label (stmt);
4250 int uid;
4251 bool err = false;
4252
4253 if (TREE_CODE (decl) != LABEL_DECL)
4254 return true;
4255
4256 uid = LABEL_DECL_UID (decl);
4257 if (cfun->cfg
4258 && (uid == -1 || (*label_to_block_map)[uid] != gimple_bb (stmt)))
4259 {
4260 error ("incorrect entry in label_to_block_map");
4261 err |= true;
4262 }
4263
4264 uid = EH_LANDING_PAD_NR (decl);
4265 if (uid)
4266 {
4267 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4268 if (decl != lp->post_landing_pad)
4269 {
4270 error ("incorrect setting of landing pad number");
4271 err |= true;
4272 }
4273 }
4274
4275 return err;
4276 }
4277
4278 /* Verify the GIMPLE statement STMT. Returns true if there is an
4279 error, otherwise false. */
4280
4281 static bool
4282 verify_gimple_stmt (gimple stmt)
4283 {
4284 switch (gimple_code (stmt))
4285 {
4286 case GIMPLE_ASSIGN:
4287 return verify_gimple_assign (stmt);
4288
4289 case GIMPLE_LABEL:
4290 return verify_gimple_label (stmt);
4291
4292 case GIMPLE_CALL:
4293 return verify_gimple_call (stmt);
4294
4295 case GIMPLE_COND:
4296 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4297 {
4298 error ("invalid comparison code in gimple cond");
4299 return true;
4300 }
4301 if (!(!gimple_cond_true_label (stmt)
4302 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4303 || !(!gimple_cond_false_label (stmt)
4304 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4305 {
4306 error ("invalid labels in gimple cond");
4307 return true;
4308 }
4309
4310 return verify_gimple_comparison (boolean_type_node,
4311 gimple_cond_lhs (stmt),
4312 gimple_cond_rhs (stmt));
4313
4314 case GIMPLE_GOTO:
4315 return verify_gimple_goto (stmt);
4316
4317 case GIMPLE_SWITCH:
4318 return verify_gimple_switch (stmt);
4319
4320 case GIMPLE_RETURN:
4321 return verify_gimple_return (stmt);
4322
4323 case GIMPLE_ASM:
4324 return false;
4325
4326 case GIMPLE_TRANSACTION:
4327 return verify_gimple_transaction (stmt);
4328
4329 /* Tuples that do not have tree operands. */
4330 case GIMPLE_NOP:
4331 case GIMPLE_PREDICT:
4332 case GIMPLE_RESX:
4333 case GIMPLE_EH_DISPATCH:
4334 case GIMPLE_EH_MUST_NOT_THROW:
4335 return false;
4336
4337 CASE_GIMPLE_OMP:
4338 /* OpenMP directives are validated by the FE and never operated
4339 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4340 non-gimple expressions when the main index variable has had
4341 its address taken. This does not affect the loop itself
4342 because the header of an GIMPLE_OMP_FOR is merely used to determine
4343 how to setup the parallel iteration. */
4344 return false;
4345
4346 case GIMPLE_DEBUG:
4347 return verify_gimple_debug (stmt);
4348
4349 default:
4350 gcc_unreachable ();
4351 }
4352 }
4353
4354 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4355 and false otherwise. */
4356
4357 static bool
4358 verify_gimple_phi (gimple phi)
4359 {
4360 bool err = false;
4361 unsigned i;
4362 tree phi_result = gimple_phi_result (phi);
4363 bool virtual_p;
4364
4365 if (!phi_result)
4366 {
4367 error ("invalid PHI result");
4368 return true;
4369 }
4370
4371 virtual_p = virtual_operand_p (phi_result);
4372 if (TREE_CODE (phi_result) != SSA_NAME
4373 || (virtual_p
4374 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4375 {
4376 error ("invalid PHI result");
4377 err = true;
4378 }
4379
4380 for (i = 0; i < gimple_phi_num_args (phi); i++)
4381 {
4382 tree t = gimple_phi_arg_def (phi, i);
4383
4384 if (!t)
4385 {
4386 error ("missing PHI def");
4387 err |= true;
4388 continue;
4389 }
4390 /* Addressable variables do have SSA_NAMEs but they
4391 are not considered gimple values. */
4392 else if ((TREE_CODE (t) == SSA_NAME
4393 && virtual_p != virtual_operand_p (t))
4394 || (virtual_p
4395 && (TREE_CODE (t) != SSA_NAME
4396 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4397 || (!virtual_p
4398 && !is_gimple_val (t)))
4399 {
4400 error ("invalid PHI argument");
4401 debug_generic_expr (t);
4402 err |= true;
4403 }
4404 #ifdef ENABLE_TYPES_CHECKING
4405 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4406 {
4407 error ("incompatible types in PHI argument %u", i);
4408 debug_generic_stmt (TREE_TYPE (phi_result));
4409 debug_generic_stmt (TREE_TYPE (t));
4410 err |= true;
4411 }
4412 #endif
4413 }
4414
4415 return err;
4416 }
4417
4418 /* Verify the GIMPLE statements inside the sequence STMTS. */
4419
4420 static bool
4421 verify_gimple_in_seq_2 (gimple_seq stmts)
4422 {
4423 gimple_stmt_iterator ittr;
4424 bool err = false;
4425
4426 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4427 {
4428 gimple stmt = gsi_stmt (ittr);
4429
4430 switch (gimple_code (stmt))
4431 {
4432 case GIMPLE_BIND:
4433 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4434 break;
4435
4436 case GIMPLE_TRY:
4437 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4438 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4439 break;
4440
4441 case GIMPLE_EH_FILTER:
4442 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4443 break;
4444
4445 case GIMPLE_EH_ELSE:
4446 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4447 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4448 break;
4449
4450 case GIMPLE_CATCH:
4451 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4452 break;
4453
4454 case GIMPLE_TRANSACTION:
4455 err |= verify_gimple_transaction (stmt);
4456 break;
4457
4458 default:
4459 {
4460 bool err2 = verify_gimple_stmt (stmt);
4461 if (err2)
4462 debug_gimple_stmt (stmt);
4463 err |= err2;
4464 }
4465 }
4466 }
4467
4468 return err;
4469 }
4470
4471 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4472 is a problem, otherwise false. */
4473
4474 static bool
4475 verify_gimple_transaction (gimple stmt)
4476 {
4477 tree lab = gimple_transaction_label (stmt);
4478 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4479 return true;
4480 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4481 }
4482
4483
4484 /* Verify the GIMPLE statements inside the statement list STMTS. */
4485
4486 DEBUG_FUNCTION void
4487 verify_gimple_in_seq (gimple_seq stmts)
4488 {
4489 timevar_push (TV_TREE_STMT_VERIFY);
4490 if (verify_gimple_in_seq_2 (stmts))
4491 internal_error ("verify_gimple failed");
4492 timevar_pop (TV_TREE_STMT_VERIFY);
4493 }
4494
4495 /* Return true when the T can be shared. */
4496
4497 bool
4498 tree_node_can_be_shared (tree t)
4499 {
4500 if (IS_TYPE_OR_DECL_P (t)
4501 || is_gimple_min_invariant (t)
4502 || TREE_CODE (t) == SSA_NAME
4503 || t == error_mark_node
4504 || TREE_CODE (t) == IDENTIFIER_NODE)
4505 return true;
4506
4507 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4508 return true;
4509
4510 if (DECL_P (t))
4511 return true;
4512
4513 return false;
4514 }
4515
4516 /* Called via walk_tree. Verify tree sharing. */
4517
4518 static tree
4519 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4520 {
4521 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4522
4523 if (tree_node_can_be_shared (*tp))
4524 {
4525 *walk_subtrees = false;
4526 return NULL;
4527 }
4528
4529 if (pointer_set_insert (visited, *tp))
4530 return *tp;
4531
4532 return NULL;
4533 }
4534
4535 /* Called via walk_gimple_stmt. Verify tree sharing. */
4536
4537 static tree
4538 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4539 {
4540 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4541 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4542 }
4543
4544 static bool eh_error_found;
4545 static int
4546 verify_eh_throw_stmt_node (void **slot, void *data)
4547 {
4548 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4549 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4550
4551 if (!pointer_set_contains (visited, node->stmt))
4552 {
4553 error ("dead STMT in EH table");
4554 debug_gimple_stmt (node->stmt);
4555 eh_error_found = true;
4556 }
4557 return 1;
4558 }
4559
4560 /* Verify if the location LOCs block is in BLOCKS. */
4561
4562 static bool
4563 verify_location (pointer_set_t *blocks, location_t loc)
4564 {
4565 tree block = LOCATION_BLOCK (loc);
4566 if (block != NULL_TREE
4567 && !pointer_set_contains (blocks, block))
4568 {
4569 error ("location references block not in block tree");
4570 return true;
4571 }
4572 if (block != NULL_TREE)
4573 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4574 return false;
4575 }
4576
4577 /* Called via walk_tree. Verify that expressions have no blocks. */
4578
4579 static tree
4580 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4581 {
4582 if (!EXPR_P (*tp))
4583 {
4584 *walk_subtrees = false;
4585 return NULL;
4586 }
4587
4588 location_t loc = EXPR_LOCATION (*tp);
4589 if (LOCATION_BLOCK (loc) != NULL)
4590 return *tp;
4591
4592 return NULL;
4593 }
4594
4595 /* Called via walk_tree. Verify locations of expressions. */
4596
4597 static tree
4598 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4599 {
4600 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4601
4602 if (TREE_CODE (*tp) == VAR_DECL
4603 && DECL_HAS_DEBUG_EXPR_P (*tp))
4604 {
4605 tree t = DECL_DEBUG_EXPR (*tp);
4606 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4607 if (addr)
4608 return addr;
4609 }
4610 if ((TREE_CODE (*tp) == VAR_DECL
4611 || TREE_CODE (*tp) == PARM_DECL
4612 || TREE_CODE (*tp) == RESULT_DECL)
4613 && DECL_HAS_VALUE_EXPR_P (*tp))
4614 {
4615 tree t = DECL_VALUE_EXPR (*tp);
4616 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4617 if (addr)
4618 return addr;
4619 }
4620
4621 if (!EXPR_P (*tp))
4622 {
4623 *walk_subtrees = false;
4624 return NULL;
4625 }
4626
4627 location_t loc = EXPR_LOCATION (*tp);
4628 if (verify_location (blocks, loc))
4629 return *tp;
4630
4631 return NULL;
4632 }
4633
4634 /* Called via walk_gimple_op. Verify locations of expressions. */
4635
4636 static tree
4637 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4638 {
4639 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4640 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4641 }
4642
4643 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4644
4645 static void
4646 collect_subblocks (pointer_set_t *blocks, tree block)
4647 {
4648 tree t;
4649 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4650 {
4651 pointer_set_insert (blocks, t);
4652 collect_subblocks (blocks, t);
4653 }
4654 }
4655
4656 /* Verify the GIMPLE statements in the CFG of FN. */
4657
4658 DEBUG_FUNCTION void
4659 verify_gimple_in_cfg (struct function *fn)
4660 {
4661 basic_block bb;
4662 bool err = false;
4663 struct pointer_set_t *visited, *visited_stmts, *blocks;
4664
4665 timevar_push (TV_TREE_STMT_VERIFY);
4666 visited = pointer_set_create ();
4667 visited_stmts = pointer_set_create ();
4668
4669 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4670 blocks = pointer_set_create ();
4671 if (DECL_INITIAL (fn->decl))
4672 {
4673 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4674 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4675 }
4676
4677 FOR_EACH_BB_FN (bb, fn)
4678 {
4679 gimple_stmt_iterator gsi;
4680
4681 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4682 {
4683 gimple phi = gsi_stmt (gsi);
4684 bool err2 = false;
4685 unsigned i;
4686
4687 pointer_set_insert (visited_stmts, phi);
4688
4689 if (gimple_bb (phi) != bb)
4690 {
4691 error ("gimple_bb (phi) is set to a wrong basic block");
4692 err2 = true;
4693 }
4694
4695 err2 |= verify_gimple_phi (phi);
4696
4697 /* Only PHI arguments have locations. */
4698 if (gimple_location (phi) != UNKNOWN_LOCATION)
4699 {
4700 error ("PHI node with location");
4701 err2 = true;
4702 }
4703
4704 for (i = 0; i < gimple_phi_num_args (phi); i++)
4705 {
4706 tree arg = gimple_phi_arg_def (phi, i);
4707 tree addr = walk_tree (&arg, verify_node_sharing_1,
4708 visited, NULL);
4709 if (addr)
4710 {
4711 error ("incorrect sharing of tree nodes");
4712 debug_generic_expr (addr);
4713 err2 |= true;
4714 }
4715 location_t loc = gimple_phi_arg_location (phi, i);
4716 if (virtual_operand_p (gimple_phi_result (phi))
4717 && loc != UNKNOWN_LOCATION)
4718 {
4719 error ("virtual PHI with argument locations");
4720 err2 = true;
4721 }
4722 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4723 if (addr)
4724 {
4725 debug_generic_expr (addr);
4726 err2 = true;
4727 }
4728 err2 |= verify_location (blocks, loc);
4729 }
4730
4731 if (err2)
4732 debug_gimple_stmt (phi);
4733 err |= err2;
4734 }
4735
4736 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4737 {
4738 gimple stmt = gsi_stmt (gsi);
4739 bool err2 = false;
4740 struct walk_stmt_info wi;
4741 tree addr;
4742 int lp_nr;
4743
4744 pointer_set_insert (visited_stmts, stmt);
4745
4746 if (gimple_bb (stmt) != bb)
4747 {
4748 error ("gimple_bb (stmt) is set to a wrong basic block");
4749 err2 = true;
4750 }
4751
4752 err2 |= verify_gimple_stmt (stmt);
4753 err2 |= verify_location (blocks, gimple_location (stmt));
4754
4755 memset (&wi, 0, sizeof (wi));
4756 wi.info = (void *) visited;
4757 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4758 if (addr)
4759 {
4760 error ("incorrect sharing of tree nodes");
4761 debug_generic_expr (addr);
4762 err2 |= true;
4763 }
4764
4765 memset (&wi, 0, sizeof (wi));
4766 wi.info = (void *) blocks;
4767 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4768 if (addr)
4769 {
4770 debug_generic_expr (addr);
4771 err2 |= true;
4772 }
4773
4774 /* ??? Instead of not checking these stmts at all the walker
4775 should know its context via wi. */
4776 if (!is_gimple_debug (stmt)
4777 && !is_gimple_omp (stmt))
4778 {
4779 memset (&wi, 0, sizeof (wi));
4780 addr = walk_gimple_op (stmt, verify_expr, &wi);
4781 if (addr)
4782 {
4783 debug_generic_expr (addr);
4784 inform (gimple_location (stmt), "in statement");
4785 err2 |= true;
4786 }
4787 }
4788
4789 /* If the statement is marked as part of an EH region, then it is
4790 expected that the statement could throw. Verify that when we
4791 have optimizations that simplify statements such that we prove
4792 that they cannot throw, that we update other data structures
4793 to match. */
4794 lp_nr = lookup_stmt_eh_lp (stmt);
4795 if (lp_nr != 0)
4796 {
4797 if (!stmt_could_throw_p (stmt))
4798 {
4799 error ("statement marked for throw, but doesn%'t");
4800 err2 |= true;
4801 }
4802 else if (lp_nr > 0
4803 && !gsi_one_before_end_p (gsi)
4804 && stmt_can_throw_internal (stmt))
4805 {
4806 error ("statement marked for throw in middle of block");
4807 err2 |= true;
4808 }
4809 }
4810
4811 if (err2)
4812 debug_gimple_stmt (stmt);
4813 err |= err2;
4814 }
4815 }
4816
4817 eh_error_found = false;
4818 if (get_eh_throw_stmt_table (cfun))
4819 htab_traverse (get_eh_throw_stmt_table (cfun),
4820 verify_eh_throw_stmt_node,
4821 visited_stmts);
4822
4823 if (err || eh_error_found)
4824 internal_error ("verify_gimple failed");
4825
4826 pointer_set_destroy (visited);
4827 pointer_set_destroy (visited_stmts);
4828 pointer_set_destroy (blocks);
4829 verify_histograms ();
4830 timevar_pop (TV_TREE_STMT_VERIFY);
4831 }
4832
4833
4834 /* Verifies that the flow information is OK. */
4835
4836 static int
4837 gimple_verify_flow_info (void)
4838 {
4839 int err = 0;
4840 basic_block bb;
4841 gimple_stmt_iterator gsi;
4842 gimple stmt;
4843 edge e;
4844 edge_iterator ei;
4845
4846 if (ENTRY_BLOCK_PTR->il.gimple.seq || ENTRY_BLOCK_PTR->il.gimple.phi_nodes)
4847 {
4848 error ("ENTRY_BLOCK has IL associated with it");
4849 err = 1;
4850 }
4851
4852 if (EXIT_BLOCK_PTR->il.gimple.seq || EXIT_BLOCK_PTR->il.gimple.phi_nodes)
4853 {
4854 error ("EXIT_BLOCK has IL associated with it");
4855 err = 1;
4856 }
4857
4858 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4859 if (e->flags & EDGE_FALLTHRU)
4860 {
4861 error ("fallthru to exit from bb %d", e->src->index);
4862 err = 1;
4863 }
4864
4865 FOR_EACH_BB (bb)
4866 {
4867 bool found_ctrl_stmt = false;
4868
4869 stmt = NULL;
4870
4871 /* Skip labels on the start of basic block. */
4872 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4873 {
4874 tree label;
4875 gimple prev_stmt = stmt;
4876
4877 stmt = gsi_stmt (gsi);
4878
4879 if (gimple_code (stmt) != GIMPLE_LABEL)
4880 break;
4881
4882 label = gimple_label_label (stmt);
4883 if (prev_stmt && DECL_NONLOCAL (label))
4884 {
4885 error ("nonlocal label ");
4886 print_generic_expr (stderr, label, 0);
4887 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4888 bb->index);
4889 err = 1;
4890 }
4891
4892 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4893 {
4894 error ("EH landing pad label ");
4895 print_generic_expr (stderr, label, 0);
4896 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4897 bb->index);
4898 err = 1;
4899 }
4900
4901 if (label_to_block (label) != bb)
4902 {
4903 error ("label ");
4904 print_generic_expr (stderr, label, 0);
4905 fprintf (stderr, " to block does not match in bb %d",
4906 bb->index);
4907 err = 1;
4908 }
4909
4910 if (decl_function_context (label) != current_function_decl)
4911 {
4912 error ("label ");
4913 print_generic_expr (stderr, label, 0);
4914 fprintf (stderr, " has incorrect context in bb %d",
4915 bb->index);
4916 err = 1;
4917 }
4918 }
4919
4920 /* Verify that body of basic block BB is free of control flow. */
4921 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4922 {
4923 gimple stmt = gsi_stmt (gsi);
4924
4925 if (found_ctrl_stmt)
4926 {
4927 error ("control flow in the middle of basic block %d",
4928 bb->index);
4929 err = 1;
4930 }
4931
4932 if (stmt_ends_bb_p (stmt))
4933 found_ctrl_stmt = true;
4934
4935 if (gimple_code (stmt) == GIMPLE_LABEL)
4936 {
4937 error ("label ");
4938 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4939 fprintf (stderr, " in the middle of basic block %d", bb->index);
4940 err = 1;
4941 }
4942 }
4943
4944 gsi = gsi_last_bb (bb);
4945 if (gsi_end_p (gsi))
4946 continue;
4947
4948 stmt = gsi_stmt (gsi);
4949
4950 if (gimple_code (stmt) == GIMPLE_LABEL)
4951 continue;
4952
4953 err |= verify_eh_edges (stmt);
4954
4955 if (is_ctrl_stmt (stmt))
4956 {
4957 FOR_EACH_EDGE (e, ei, bb->succs)
4958 if (e->flags & EDGE_FALLTHRU)
4959 {
4960 error ("fallthru edge after a control statement in bb %d",
4961 bb->index);
4962 err = 1;
4963 }
4964 }
4965
4966 if (gimple_code (stmt) != GIMPLE_COND)
4967 {
4968 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4969 after anything else but if statement. */
4970 FOR_EACH_EDGE (e, ei, bb->succs)
4971 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4972 {
4973 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4974 bb->index);
4975 err = 1;
4976 }
4977 }
4978
4979 switch (gimple_code (stmt))
4980 {
4981 case GIMPLE_COND:
4982 {
4983 edge true_edge;
4984 edge false_edge;
4985
4986 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4987
4988 if (!true_edge
4989 || !false_edge
4990 || !(true_edge->flags & EDGE_TRUE_VALUE)
4991 || !(false_edge->flags & EDGE_FALSE_VALUE)
4992 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4993 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4994 || EDGE_COUNT (bb->succs) >= 3)
4995 {
4996 error ("wrong outgoing edge flags at end of bb %d",
4997 bb->index);
4998 err = 1;
4999 }
5000 }
5001 break;
5002
5003 case GIMPLE_GOTO:
5004 if (simple_goto_p (stmt))
5005 {
5006 error ("explicit goto at end of bb %d", bb->index);
5007 err = 1;
5008 }
5009 else
5010 {
5011 /* FIXME. We should double check that the labels in the
5012 destination blocks have their address taken. */
5013 FOR_EACH_EDGE (e, ei, bb->succs)
5014 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5015 | EDGE_FALSE_VALUE))
5016 || !(e->flags & EDGE_ABNORMAL))
5017 {
5018 error ("wrong outgoing edge flags at end of bb %d",
5019 bb->index);
5020 err = 1;
5021 }
5022 }
5023 break;
5024
5025 case GIMPLE_CALL:
5026 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5027 break;
5028 /* ... fallthru ... */
5029 case GIMPLE_RETURN:
5030 if (!single_succ_p (bb)
5031 || (single_succ_edge (bb)->flags
5032 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5033 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5034 {
5035 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5036 err = 1;
5037 }
5038 if (single_succ (bb) != EXIT_BLOCK_PTR)
5039 {
5040 error ("return edge does not point to exit in bb %d",
5041 bb->index);
5042 err = 1;
5043 }
5044 break;
5045
5046 case GIMPLE_SWITCH:
5047 {
5048 tree prev;
5049 edge e;
5050 size_t i, n;
5051
5052 n = gimple_switch_num_labels (stmt);
5053
5054 /* Mark all the destination basic blocks. */
5055 for (i = 0; i < n; ++i)
5056 {
5057 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5058 basic_block label_bb = label_to_block (lab);
5059 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5060 label_bb->aux = (void *)1;
5061 }
5062
5063 /* Verify that the case labels are sorted. */
5064 prev = gimple_switch_label (stmt, 0);
5065 for (i = 1; i < n; ++i)
5066 {
5067 tree c = gimple_switch_label (stmt, i);
5068 if (!CASE_LOW (c))
5069 {
5070 error ("found default case not at the start of "
5071 "case vector");
5072 err = 1;
5073 continue;
5074 }
5075 if (CASE_LOW (prev)
5076 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5077 {
5078 error ("case labels not sorted: ");
5079 print_generic_expr (stderr, prev, 0);
5080 fprintf (stderr," is greater than ");
5081 print_generic_expr (stderr, c, 0);
5082 fprintf (stderr," but comes before it.\n");
5083 err = 1;
5084 }
5085 prev = c;
5086 }
5087 /* VRP will remove the default case if it can prove it will
5088 never be executed. So do not verify there always exists
5089 a default case here. */
5090
5091 FOR_EACH_EDGE (e, ei, bb->succs)
5092 {
5093 if (!e->dest->aux)
5094 {
5095 error ("extra outgoing edge %d->%d",
5096 bb->index, e->dest->index);
5097 err = 1;
5098 }
5099
5100 e->dest->aux = (void *)2;
5101 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5102 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5103 {
5104 error ("wrong outgoing edge flags at end of bb %d",
5105 bb->index);
5106 err = 1;
5107 }
5108 }
5109
5110 /* Check that we have all of them. */
5111 for (i = 0; i < n; ++i)
5112 {
5113 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5114 basic_block label_bb = label_to_block (lab);
5115
5116 if (label_bb->aux != (void *)2)
5117 {
5118 error ("missing edge %i->%i", bb->index, label_bb->index);
5119 err = 1;
5120 }
5121 }
5122
5123 FOR_EACH_EDGE (e, ei, bb->succs)
5124 e->dest->aux = (void *)0;
5125 }
5126 break;
5127
5128 case GIMPLE_EH_DISPATCH:
5129 err |= verify_eh_dispatch_edge (stmt);
5130 break;
5131
5132 default:
5133 break;
5134 }
5135 }
5136
5137 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5138 verify_dominators (CDI_DOMINATORS);
5139
5140 return err;
5141 }
5142
5143
5144 /* Updates phi nodes after creating a forwarder block joined
5145 by edge FALLTHRU. */
5146
5147 static void
5148 gimple_make_forwarder_block (edge fallthru)
5149 {
5150 edge e;
5151 edge_iterator ei;
5152 basic_block dummy, bb;
5153 tree var;
5154 gimple_stmt_iterator gsi;
5155
5156 dummy = fallthru->src;
5157 bb = fallthru->dest;
5158
5159 if (single_pred_p (bb))
5160 return;
5161
5162 /* If we redirected a branch we must create new PHI nodes at the
5163 start of BB. */
5164 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5165 {
5166 gimple phi, new_phi;
5167
5168 phi = gsi_stmt (gsi);
5169 var = gimple_phi_result (phi);
5170 new_phi = create_phi_node (var, bb);
5171 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5172 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5173 UNKNOWN_LOCATION);
5174 }
5175
5176 /* Add the arguments we have stored on edges. */
5177 FOR_EACH_EDGE (e, ei, bb->preds)
5178 {
5179 if (e == fallthru)
5180 continue;
5181
5182 flush_pending_stmts (e);
5183 }
5184 }
5185
5186
5187 /* Return a non-special label in the head of basic block BLOCK.
5188 Create one if it doesn't exist. */
5189
5190 tree
5191 gimple_block_label (basic_block bb)
5192 {
5193 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5194 bool first = true;
5195 tree label;
5196 gimple stmt;
5197
5198 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5199 {
5200 stmt = gsi_stmt (i);
5201 if (gimple_code (stmt) != GIMPLE_LABEL)
5202 break;
5203 label = gimple_label_label (stmt);
5204 if (!DECL_NONLOCAL (label))
5205 {
5206 if (!first)
5207 gsi_move_before (&i, &s);
5208 return label;
5209 }
5210 }
5211
5212 label = create_artificial_label (UNKNOWN_LOCATION);
5213 stmt = gimple_build_label (label);
5214 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5215 return label;
5216 }
5217
5218
5219 /* Attempt to perform edge redirection by replacing a possibly complex
5220 jump instruction by a goto or by removing the jump completely.
5221 This can apply only if all edges now point to the same block. The
5222 parameters and return values are equivalent to
5223 redirect_edge_and_branch. */
5224
5225 static edge
5226 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5227 {
5228 basic_block src = e->src;
5229 gimple_stmt_iterator i;
5230 gimple stmt;
5231
5232 /* We can replace or remove a complex jump only when we have exactly
5233 two edges. */
5234 if (EDGE_COUNT (src->succs) != 2
5235 /* Verify that all targets will be TARGET. Specifically, the
5236 edge that is not E must also go to TARGET. */
5237 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5238 return NULL;
5239
5240 i = gsi_last_bb (src);
5241 if (gsi_end_p (i))
5242 return NULL;
5243
5244 stmt = gsi_stmt (i);
5245
5246 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5247 {
5248 gsi_remove (&i, true);
5249 e = ssa_redirect_edge (e, target);
5250 e->flags = EDGE_FALLTHRU;
5251 return e;
5252 }
5253
5254 return NULL;
5255 }
5256
5257
5258 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5259 edge representing the redirected branch. */
5260
5261 static edge
5262 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5263 {
5264 basic_block bb = e->src;
5265 gimple_stmt_iterator gsi;
5266 edge ret;
5267 gimple stmt;
5268
5269 if (e->flags & EDGE_ABNORMAL)
5270 return NULL;
5271
5272 if (e->dest == dest)
5273 return NULL;
5274
5275 if (e->flags & EDGE_EH)
5276 return redirect_eh_edge (e, dest);
5277
5278 if (e->src != ENTRY_BLOCK_PTR)
5279 {
5280 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5281 if (ret)
5282 return ret;
5283 }
5284
5285 gsi = gsi_last_bb (bb);
5286 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5287
5288 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5289 {
5290 case GIMPLE_COND:
5291 /* For COND_EXPR, we only need to redirect the edge. */
5292 break;
5293
5294 case GIMPLE_GOTO:
5295 /* No non-abnormal edges should lead from a non-simple goto, and
5296 simple ones should be represented implicitly. */
5297 gcc_unreachable ();
5298
5299 case GIMPLE_SWITCH:
5300 {
5301 tree label = gimple_block_label (dest);
5302 tree cases = get_cases_for_edge (e, stmt);
5303
5304 /* If we have a list of cases associated with E, then use it
5305 as it's a lot faster than walking the entire case vector. */
5306 if (cases)
5307 {
5308 edge e2 = find_edge (e->src, dest);
5309 tree last, first;
5310
5311 first = cases;
5312 while (cases)
5313 {
5314 last = cases;
5315 CASE_LABEL (cases) = label;
5316 cases = CASE_CHAIN (cases);
5317 }
5318
5319 /* If there was already an edge in the CFG, then we need
5320 to move all the cases associated with E to E2. */
5321 if (e2)
5322 {
5323 tree cases2 = get_cases_for_edge (e2, stmt);
5324
5325 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5326 CASE_CHAIN (cases2) = first;
5327 }
5328 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5329 }
5330 else
5331 {
5332 size_t i, n = gimple_switch_num_labels (stmt);
5333
5334 for (i = 0; i < n; i++)
5335 {
5336 tree elt = gimple_switch_label (stmt, i);
5337 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5338 CASE_LABEL (elt) = label;
5339 }
5340 }
5341 }
5342 break;
5343
5344 case GIMPLE_ASM:
5345 {
5346 int i, n = gimple_asm_nlabels (stmt);
5347 tree label = NULL;
5348
5349 for (i = 0; i < n; ++i)
5350 {
5351 tree cons = gimple_asm_label_op (stmt, i);
5352 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5353 {
5354 if (!label)
5355 label = gimple_block_label (dest);
5356 TREE_VALUE (cons) = label;
5357 }
5358 }
5359
5360 /* If we didn't find any label matching the former edge in the
5361 asm labels, we must be redirecting the fallthrough
5362 edge. */
5363 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5364 }
5365 break;
5366
5367 case GIMPLE_RETURN:
5368 gsi_remove (&gsi, true);
5369 e->flags |= EDGE_FALLTHRU;
5370 break;
5371
5372 case GIMPLE_OMP_RETURN:
5373 case GIMPLE_OMP_CONTINUE:
5374 case GIMPLE_OMP_SECTIONS_SWITCH:
5375 case GIMPLE_OMP_FOR:
5376 /* The edges from OMP constructs can be simply redirected. */
5377 break;
5378
5379 case GIMPLE_EH_DISPATCH:
5380 if (!(e->flags & EDGE_FALLTHRU))
5381 redirect_eh_dispatch_edge (stmt, e, dest);
5382 break;
5383
5384 case GIMPLE_TRANSACTION:
5385 /* The ABORT edge has a stored label associated with it, otherwise
5386 the edges are simply redirectable. */
5387 if (e->flags == 0)
5388 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5389 break;
5390
5391 default:
5392 /* Otherwise it must be a fallthru edge, and we don't need to
5393 do anything besides redirecting it. */
5394 gcc_assert (e->flags & EDGE_FALLTHRU);
5395 break;
5396 }
5397
5398 /* Update/insert PHI nodes as necessary. */
5399
5400 /* Now update the edges in the CFG. */
5401 e = ssa_redirect_edge (e, dest);
5402
5403 return e;
5404 }
5405
5406 /* Returns true if it is possible to remove edge E by redirecting
5407 it to the destination of the other edge from E->src. */
5408
5409 static bool
5410 gimple_can_remove_branch_p (const_edge e)
5411 {
5412 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5413 return false;
5414
5415 return true;
5416 }
5417
5418 /* Simple wrapper, as we can always redirect fallthru edges. */
5419
5420 static basic_block
5421 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5422 {
5423 e = gimple_redirect_edge_and_branch (e, dest);
5424 gcc_assert (e);
5425
5426 return NULL;
5427 }
5428
5429
5430 /* Splits basic block BB after statement STMT (but at least after the
5431 labels). If STMT is NULL, BB is split just after the labels. */
5432
5433 static basic_block
5434 gimple_split_block (basic_block bb, void *stmt)
5435 {
5436 gimple_stmt_iterator gsi;
5437 gimple_stmt_iterator gsi_tgt;
5438 gimple act;
5439 gimple_seq list;
5440 basic_block new_bb;
5441 edge e;
5442 edge_iterator ei;
5443
5444 new_bb = create_empty_bb (bb);
5445
5446 /* Redirect the outgoing edges. */
5447 new_bb->succs = bb->succs;
5448 bb->succs = NULL;
5449 FOR_EACH_EDGE (e, ei, new_bb->succs)
5450 e->src = new_bb;
5451
5452 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5453 stmt = NULL;
5454
5455 /* Move everything from GSI to the new basic block. */
5456 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5457 {
5458 act = gsi_stmt (gsi);
5459 if (gimple_code (act) == GIMPLE_LABEL)
5460 continue;
5461
5462 if (!stmt)
5463 break;
5464
5465 if (stmt == act)
5466 {
5467 gsi_next (&gsi);
5468 break;
5469 }
5470 }
5471
5472 if (gsi_end_p (gsi))
5473 return new_bb;
5474
5475 /* Split the statement list - avoid re-creating new containers as this
5476 brings ugly quadratic memory consumption in the inliner.
5477 (We are still quadratic since we need to update stmt BB pointers,
5478 sadly.) */
5479 gsi_split_seq_before (&gsi, &list);
5480 set_bb_seq (new_bb, list);
5481 for (gsi_tgt = gsi_start (list);
5482 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5483 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5484
5485 return new_bb;
5486 }
5487
5488
5489 /* Moves basic block BB after block AFTER. */
5490
5491 static bool
5492 gimple_move_block_after (basic_block bb, basic_block after)
5493 {
5494 if (bb->prev_bb == after)
5495 return true;
5496
5497 unlink_block (bb);
5498 link_block (bb, after);
5499
5500 return true;
5501 }
5502
5503
5504 /* Return TRUE if block BB has no executable statements, otherwise return
5505 FALSE. */
5506
5507 bool
5508 gimple_empty_block_p (basic_block bb)
5509 {
5510 /* BB must have no executable statements. */
5511 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5512 if (phi_nodes (bb))
5513 return false;
5514 if (gsi_end_p (gsi))
5515 return true;
5516 if (is_gimple_debug (gsi_stmt (gsi)))
5517 gsi_next_nondebug (&gsi);
5518 return gsi_end_p (gsi);
5519 }
5520
5521
5522 /* Split a basic block if it ends with a conditional branch and if the
5523 other part of the block is not empty. */
5524
5525 static basic_block
5526 gimple_split_block_before_cond_jump (basic_block bb)
5527 {
5528 gimple last, split_point;
5529 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5530 if (gsi_end_p (gsi))
5531 return NULL;
5532 last = gsi_stmt (gsi);
5533 if (gimple_code (last) != GIMPLE_COND
5534 && gimple_code (last) != GIMPLE_SWITCH)
5535 return NULL;
5536 gsi_prev_nondebug (&gsi);
5537 split_point = gsi_stmt (gsi);
5538 return split_block (bb, split_point)->dest;
5539 }
5540
5541
5542 /* Return true if basic_block can be duplicated. */
5543
5544 static bool
5545 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5546 {
5547 return true;
5548 }
5549
5550 /* Create a duplicate of the basic block BB. NOTE: This does not
5551 preserve SSA form. */
5552
5553 static basic_block
5554 gimple_duplicate_bb (basic_block bb)
5555 {
5556 basic_block new_bb;
5557 gimple_stmt_iterator gsi, gsi_tgt;
5558 gimple_seq phis = phi_nodes (bb);
5559 gimple phi, stmt, copy;
5560
5561 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5562
5563 /* Copy the PHI nodes. We ignore PHI node arguments here because
5564 the incoming edges have not been setup yet. */
5565 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5566 {
5567 phi = gsi_stmt (gsi);
5568 copy = create_phi_node (NULL_TREE, new_bb);
5569 create_new_def_for (gimple_phi_result (phi), copy,
5570 gimple_phi_result_ptr (copy));
5571 }
5572
5573 gsi_tgt = gsi_start_bb (new_bb);
5574 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5575 {
5576 def_operand_p def_p;
5577 ssa_op_iter op_iter;
5578 tree lhs;
5579
5580 stmt = gsi_stmt (gsi);
5581 if (gimple_code (stmt) == GIMPLE_LABEL)
5582 continue;
5583
5584 /* Don't duplicate label debug stmts. */
5585 if (gimple_debug_bind_p (stmt)
5586 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5587 == LABEL_DECL)
5588 continue;
5589
5590 /* Create a new copy of STMT and duplicate STMT's virtual
5591 operands. */
5592 copy = gimple_copy (stmt);
5593 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5594
5595 maybe_duplicate_eh_stmt (copy, stmt);
5596 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5597
5598 /* When copying around a stmt writing into a local non-user
5599 aggregate, make sure it won't share stack slot with other
5600 vars. */
5601 lhs = gimple_get_lhs (stmt);
5602 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5603 {
5604 tree base = get_base_address (lhs);
5605 if (base
5606 && (TREE_CODE (base) == VAR_DECL
5607 || TREE_CODE (base) == RESULT_DECL)
5608 && DECL_IGNORED_P (base)
5609 && !TREE_STATIC (base)
5610 && !DECL_EXTERNAL (base)
5611 && (TREE_CODE (base) != VAR_DECL
5612 || !DECL_HAS_VALUE_EXPR_P (base)))
5613 DECL_NONSHAREABLE (base) = 1;
5614 }
5615
5616 /* Create new names for all the definitions created by COPY and
5617 add replacement mappings for each new name. */
5618 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5619 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5620 }
5621
5622 return new_bb;
5623 }
5624
5625 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5626
5627 static void
5628 add_phi_args_after_copy_edge (edge e_copy)
5629 {
5630 basic_block bb, bb_copy = e_copy->src, dest;
5631 edge e;
5632 edge_iterator ei;
5633 gimple phi, phi_copy;
5634 tree def;
5635 gimple_stmt_iterator psi, psi_copy;
5636
5637 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5638 return;
5639
5640 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5641
5642 if (e_copy->dest->flags & BB_DUPLICATED)
5643 dest = get_bb_original (e_copy->dest);
5644 else
5645 dest = e_copy->dest;
5646
5647 e = find_edge (bb, dest);
5648 if (!e)
5649 {
5650 /* During loop unrolling the target of the latch edge is copied.
5651 In this case we are not looking for edge to dest, but to
5652 duplicated block whose original was dest. */
5653 FOR_EACH_EDGE (e, ei, bb->succs)
5654 {
5655 if ((e->dest->flags & BB_DUPLICATED)
5656 && get_bb_original (e->dest) == dest)
5657 break;
5658 }
5659
5660 gcc_assert (e != NULL);
5661 }
5662
5663 for (psi = gsi_start_phis (e->dest),
5664 psi_copy = gsi_start_phis (e_copy->dest);
5665 !gsi_end_p (psi);
5666 gsi_next (&psi), gsi_next (&psi_copy))
5667 {
5668 phi = gsi_stmt (psi);
5669 phi_copy = gsi_stmt (psi_copy);
5670 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5671 add_phi_arg (phi_copy, def, e_copy,
5672 gimple_phi_arg_location_from_edge (phi, e));
5673 }
5674 }
5675
5676
5677 /* Basic block BB_COPY was created by code duplication. Add phi node
5678 arguments for edges going out of BB_COPY. The blocks that were
5679 duplicated have BB_DUPLICATED set. */
5680
5681 void
5682 add_phi_args_after_copy_bb (basic_block bb_copy)
5683 {
5684 edge e_copy;
5685 edge_iterator ei;
5686
5687 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5688 {
5689 add_phi_args_after_copy_edge (e_copy);
5690 }
5691 }
5692
5693 /* Blocks in REGION_COPY array of length N_REGION were created by
5694 duplication of basic blocks. Add phi node arguments for edges
5695 going from these blocks. If E_COPY is not NULL, also add
5696 phi node arguments for its destination.*/
5697
5698 void
5699 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5700 edge e_copy)
5701 {
5702 unsigned i;
5703
5704 for (i = 0; i < n_region; i++)
5705 region_copy[i]->flags |= BB_DUPLICATED;
5706
5707 for (i = 0; i < n_region; i++)
5708 add_phi_args_after_copy_bb (region_copy[i]);
5709 if (e_copy)
5710 add_phi_args_after_copy_edge (e_copy);
5711
5712 for (i = 0; i < n_region; i++)
5713 region_copy[i]->flags &= ~BB_DUPLICATED;
5714 }
5715
5716 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5717 important exit edge EXIT. By important we mean that no SSA name defined
5718 inside region is live over the other exit edges of the region. All entry
5719 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5720 to the duplicate of the region. Dominance and loop information is
5721 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5722 UPDATE_DOMINANCE is false then we assume that the caller will update the
5723 dominance information after calling this function. The new basic
5724 blocks are stored to REGION_COPY in the same order as they had in REGION,
5725 provided that REGION_COPY is not NULL.
5726 The function returns false if it is unable to copy the region,
5727 true otherwise. */
5728
5729 bool
5730 gimple_duplicate_sese_region (edge entry, edge exit,
5731 basic_block *region, unsigned n_region,
5732 basic_block *region_copy,
5733 bool update_dominance)
5734 {
5735 unsigned i;
5736 bool free_region_copy = false, copying_header = false;
5737 struct loop *loop = entry->dest->loop_father;
5738 edge exit_copy;
5739 vec<basic_block> doms;
5740 edge redirected;
5741 int total_freq = 0, entry_freq = 0;
5742 gcov_type total_count = 0, entry_count = 0;
5743
5744 if (!can_copy_bbs_p (region, n_region))
5745 return false;
5746
5747 /* Some sanity checking. Note that we do not check for all possible
5748 missuses of the functions. I.e. if you ask to copy something weird,
5749 it will work, but the state of structures probably will not be
5750 correct. */
5751 for (i = 0; i < n_region; i++)
5752 {
5753 /* We do not handle subloops, i.e. all the blocks must belong to the
5754 same loop. */
5755 if (region[i]->loop_father != loop)
5756 return false;
5757
5758 if (region[i] != entry->dest
5759 && region[i] == loop->header)
5760 return false;
5761 }
5762
5763 set_loop_copy (loop, loop);
5764
5765 /* In case the function is used for loop header copying (which is the primary
5766 use), ensure that EXIT and its copy will be new latch and entry edges. */
5767 if (loop->header == entry->dest)
5768 {
5769 copying_header = true;
5770 set_loop_copy (loop, loop_outer (loop));
5771
5772 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5773 return false;
5774
5775 for (i = 0; i < n_region; i++)
5776 if (region[i] != exit->src
5777 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5778 return false;
5779 }
5780
5781 if (!region_copy)
5782 {
5783 region_copy = XNEWVEC (basic_block, n_region);
5784 free_region_copy = true;
5785 }
5786
5787 initialize_original_copy_tables ();
5788
5789 /* Record blocks outside the region that are dominated by something
5790 inside. */
5791 if (update_dominance)
5792 {
5793 doms.create (0);
5794 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5795 }
5796
5797 if (entry->dest->count)
5798 {
5799 total_count = entry->dest->count;
5800 entry_count = entry->count;
5801 /* Fix up corner cases, to avoid division by zero or creation of negative
5802 frequencies. */
5803 if (entry_count > total_count)
5804 entry_count = total_count;
5805 }
5806 else
5807 {
5808 total_freq = entry->dest->frequency;
5809 entry_freq = EDGE_FREQUENCY (entry);
5810 /* Fix up corner cases, to avoid division by zero or creation of negative
5811 frequencies. */
5812 if (total_freq == 0)
5813 total_freq = 1;
5814 else if (entry_freq > total_freq)
5815 entry_freq = total_freq;
5816 }
5817
5818 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5819 split_edge_bb_loc (entry), update_dominance);
5820 if (total_count)
5821 {
5822 scale_bbs_frequencies_gcov_type (region, n_region,
5823 total_count - entry_count,
5824 total_count);
5825 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5826 total_count);
5827 }
5828 else
5829 {
5830 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5831 total_freq);
5832 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5833 }
5834
5835 if (copying_header)
5836 {
5837 loop->header = exit->dest;
5838 loop->latch = exit->src;
5839 }
5840
5841 /* Redirect the entry and add the phi node arguments. */
5842 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5843 gcc_assert (redirected != NULL);
5844 flush_pending_stmts (entry);
5845
5846 /* Concerning updating of dominators: We must recount dominators
5847 for entry block and its copy. Anything that is outside of the
5848 region, but was dominated by something inside needs recounting as
5849 well. */
5850 if (update_dominance)
5851 {
5852 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5853 doms.safe_push (get_bb_original (entry->dest));
5854 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5855 doms.release ();
5856 }
5857
5858 /* Add the other PHI node arguments. */
5859 add_phi_args_after_copy (region_copy, n_region, NULL);
5860
5861 if (free_region_copy)
5862 free (region_copy);
5863
5864 free_original_copy_tables ();
5865 return true;
5866 }
5867
5868 /* Checks if BB is part of the region defined by N_REGION BBS. */
5869 static bool
5870 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5871 {
5872 unsigned int n;
5873
5874 for (n = 0; n < n_region; n++)
5875 {
5876 if (bb == bbs[n])
5877 return true;
5878 }
5879 return false;
5880 }
5881
5882 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5883 are stored to REGION_COPY in the same order in that they appear
5884 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5885 the region, EXIT an exit from it. The condition guarding EXIT
5886 is moved to ENTRY. Returns true if duplication succeeds, false
5887 otherwise.
5888
5889 For example,
5890
5891 some_code;
5892 if (cond)
5893 A;
5894 else
5895 B;
5896
5897 is transformed to
5898
5899 if (cond)
5900 {
5901 some_code;
5902 A;
5903 }
5904 else
5905 {
5906 some_code;
5907 B;
5908 }
5909 */
5910
5911 bool
5912 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5913 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5914 basic_block *region_copy ATTRIBUTE_UNUSED)
5915 {
5916 unsigned i;
5917 bool free_region_copy = false;
5918 struct loop *loop = exit->dest->loop_father;
5919 struct loop *orig_loop = entry->dest->loop_father;
5920 basic_block switch_bb, entry_bb, nentry_bb;
5921 vec<basic_block> doms;
5922 int total_freq = 0, exit_freq = 0;
5923 gcov_type total_count = 0, exit_count = 0;
5924 edge exits[2], nexits[2], e;
5925 gimple_stmt_iterator gsi;
5926 gimple cond_stmt;
5927 edge sorig, snew;
5928 basic_block exit_bb;
5929 gimple_stmt_iterator psi;
5930 gimple phi;
5931 tree def;
5932 struct loop *target, *aloop, *cloop;
5933
5934 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5935 exits[0] = exit;
5936 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5937
5938 if (!can_copy_bbs_p (region, n_region))
5939 return false;
5940
5941 initialize_original_copy_tables ();
5942 set_loop_copy (orig_loop, loop);
5943
5944 target= loop;
5945 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
5946 {
5947 if (bb_part_of_region_p (aloop->header, region, n_region))
5948 {
5949 cloop = duplicate_loop (aloop, target);
5950 duplicate_subloops (aloop, cloop);
5951 }
5952 }
5953
5954 if (!region_copy)
5955 {
5956 region_copy = XNEWVEC (basic_block, n_region);
5957 free_region_copy = true;
5958 }
5959
5960 gcc_assert (!need_ssa_update_p (cfun));
5961
5962 /* Record blocks outside the region that are dominated by something
5963 inside. */
5964 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5965
5966 if (exit->src->count)
5967 {
5968 total_count = exit->src->count;
5969 exit_count = exit->count;
5970 /* Fix up corner cases, to avoid division by zero or creation of negative
5971 frequencies. */
5972 if (exit_count > total_count)
5973 exit_count = total_count;
5974 }
5975 else
5976 {
5977 total_freq = exit->src->frequency;
5978 exit_freq = EDGE_FREQUENCY (exit);
5979 /* Fix up corner cases, to avoid division by zero or creation of negative
5980 frequencies. */
5981 if (total_freq == 0)
5982 total_freq = 1;
5983 if (exit_freq > total_freq)
5984 exit_freq = total_freq;
5985 }
5986
5987 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5988 split_edge_bb_loc (exit), true);
5989 if (total_count)
5990 {
5991 scale_bbs_frequencies_gcov_type (region, n_region,
5992 total_count - exit_count,
5993 total_count);
5994 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5995 total_count);
5996 }
5997 else
5998 {
5999 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6000 total_freq);
6001 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6002 }
6003
6004 /* Create the switch block, and put the exit condition to it. */
6005 entry_bb = entry->dest;
6006 nentry_bb = get_bb_copy (entry_bb);
6007 if (!last_stmt (entry->src)
6008 || !stmt_ends_bb_p (last_stmt (entry->src)))
6009 switch_bb = entry->src;
6010 else
6011 switch_bb = split_edge (entry);
6012 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6013
6014 gsi = gsi_last_bb (switch_bb);
6015 cond_stmt = last_stmt (exit->src);
6016 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6017 cond_stmt = gimple_copy (cond_stmt);
6018
6019 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6020
6021 sorig = single_succ_edge (switch_bb);
6022 sorig->flags = exits[1]->flags;
6023 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6024
6025 /* Register the new edge from SWITCH_BB in loop exit lists. */
6026 rescan_loop_exit (snew, true, false);
6027
6028 /* Add the PHI node arguments. */
6029 add_phi_args_after_copy (region_copy, n_region, snew);
6030
6031 /* Get rid of now superfluous conditions and associated edges (and phi node
6032 arguments). */
6033 exit_bb = exit->dest;
6034
6035 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6036 PENDING_STMT (e) = NULL;
6037
6038 /* The latch of ORIG_LOOP was copied, and so was the backedge
6039 to the original header. We redirect this backedge to EXIT_BB. */
6040 for (i = 0; i < n_region; i++)
6041 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6042 {
6043 gcc_assert (single_succ_edge (region_copy[i]));
6044 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6045 PENDING_STMT (e) = NULL;
6046 for (psi = gsi_start_phis (exit_bb);
6047 !gsi_end_p (psi);
6048 gsi_next (&psi))
6049 {
6050 phi = gsi_stmt (psi);
6051 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6052 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6053 }
6054 }
6055 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6056 PENDING_STMT (e) = NULL;
6057
6058 /* Anything that is outside of the region, but was dominated by something
6059 inside needs to update dominance info. */
6060 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6061 doms.release ();
6062 /* Update the SSA web. */
6063 update_ssa (TODO_update_ssa);
6064
6065 if (free_region_copy)
6066 free (region_copy);
6067
6068 free_original_copy_tables ();
6069 return true;
6070 }
6071
6072 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6073 adding blocks when the dominator traversal reaches EXIT. This
6074 function silently assumes that ENTRY strictly dominates EXIT. */
6075
6076 void
6077 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6078 vec<basic_block> *bbs_p)
6079 {
6080 basic_block son;
6081
6082 for (son = first_dom_son (CDI_DOMINATORS, entry);
6083 son;
6084 son = next_dom_son (CDI_DOMINATORS, son))
6085 {
6086 bbs_p->safe_push (son);
6087 if (son != exit)
6088 gather_blocks_in_sese_region (son, exit, bbs_p);
6089 }
6090 }
6091
6092 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6093 The duplicates are recorded in VARS_MAP. */
6094
6095 static void
6096 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6097 tree to_context)
6098 {
6099 tree t = *tp, new_t;
6100 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6101 void **loc;
6102
6103 if (DECL_CONTEXT (t) == to_context)
6104 return;
6105
6106 loc = pointer_map_contains (vars_map, t);
6107
6108 if (!loc)
6109 {
6110 loc = pointer_map_insert (vars_map, t);
6111
6112 if (SSA_VAR_P (t))
6113 {
6114 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6115 add_local_decl (f, new_t);
6116 }
6117 else
6118 {
6119 gcc_assert (TREE_CODE (t) == CONST_DECL);
6120 new_t = copy_node (t);
6121 }
6122 DECL_CONTEXT (new_t) = to_context;
6123
6124 *loc = new_t;
6125 }
6126 else
6127 new_t = (tree) *loc;
6128
6129 *tp = new_t;
6130 }
6131
6132
6133 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6134 VARS_MAP maps old ssa names and var_decls to the new ones. */
6135
6136 static tree
6137 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6138 tree to_context)
6139 {
6140 void **loc;
6141 tree new_name;
6142
6143 gcc_assert (!virtual_operand_p (name));
6144
6145 loc = pointer_map_contains (vars_map, name);
6146
6147 if (!loc)
6148 {
6149 tree decl = SSA_NAME_VAR (name);
6150 if (decl)
6151 {
6152 replace_by_duplicate_decl (&decl, vars_map, to_context);
6153 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6154 decl, SSA_NAME_DEF_STMT (name));
6155 if (SSA_NAME_IS_DEFAULT_DEF (name))
6156 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6157 decl, new_name);
6158 }
6159 else
6160 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6161 name, SSA_NAME_DEF_STMT (name));
6162
6163 loc = pointer_map_insert (vars_map, name);
6164 *loc = new_name;
6165 }
6166 else
6167 new_name = (tree) *loc;
6168
6169 return new_name;
6170 }
6171
6172 struct move_stmt_d
6173 {
6174 tree orig_block;
6175 tree new_block;
6176 tree from_context;
6177 tree to_context;
6178 struct pointer_map_t *vars_map;
6179 htab_t new_label_map;
6180 struct pointer_map_t *eh_map;
6181 bool remap_decls_p;
6182 };
6183
6184 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6185 contained in *TP if it has been ORIG_BLOCK previously and change the
6186 DECL_CONTEXT of every local variable referenced in *TP. */
6187
6188 static tree
6189 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6190 {
6191 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6192 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6193 tree t = *tp;
6194
6195 if (EXPR_P (t))
6196 {
6197 tree block = TREE_BLOCK (t);
6198 if (block == p->orig_block
6199 || (p->orig_block == NULL_TREE
6200 && block != NULL_TREE))
6201 TREE_SET_BLOCK (t, p->new_block);
6202 #ifdef ENABLE_CHECKING
6203 else if (block != NULL_TREE)
6204 {
6205 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6206 block = BLOCK_SUPERCONTEXT (block);
6207 gcc_assert (block == p->orig_block);
6208 }
6209 #endif
6210 }
6211 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6212 {
6213 if (TREE_CODE (t) == SSA_NAME)
6214 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6215 else if (TREE_CODE (t) == LABEL_DECL)
6216 {
6217 if (p->new_label_map)
6218 {
6219 struct tree_map in, *out;
6220 in.base.from = t;
6221 out = (struct tree_map *)
6222 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6223 if (out)
6224 *tp = t = out->to;
6225 }
6226
6227 DECL_CONTEXT (t) = p->to_context;
6228 }
6229 else if (p->remap_decls_p)
6230 {
6231 /* Replace T with its duplicate. T should no longer appear in the
6232 parent function, so this looks wasteful; however, it may appear
6233 in referenced_vars, and more importantly, as virtual operands of
6234 statements, and in alias lists of other variables. It would be
6235 quite difficult to expunge it from all those places. ??? It might
6236 suffice to do this for addressable variables. */
6237 if ((TREE_CODE (t) == VAR_DECL
6238 && !is_global_var (t))
6239 || TREE_CODE (t) == CONST_DECL)
6240 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6241 }
6242 *walk_subtrees = 0;
6243 }
6244 else if (TYPE_P (t))
6245 *walk_subtrees = 0;
6246
6247 return NULL_TREE;
6248 }
6249
6250 /* Helper for move_stmt_r. Given an EH region number for the source
6251 function, map that to the duplicate EH regio number in the dest. */
6252
6253 static int
6254 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6255 {
6256 eh_region old_r, new_r;
6257 void **slot;
6258
6259 old_r = get_eh_region_from_number (old_nr);
6260 slot = pointer_map_contains (p->eh_map, old_r);
6261 new_r = (eh_region) *slot;
6262
6263 return new_r->index;
6264 }
6265
6266 /* Similar, but operate on INTEGER_CSTs. */
6267
6268 static tree
6269 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6270 {
6271 int old_nr, new_nr;
6272
6273 old_nr = tree_low_cst (old_t_nr, 0);
6274 new_nr = move_stmt_eh_region_nr (old_nr, p);
6275
6276 return build_int_cst (integer_type_node, new_nr);
6277 }
6278
6279 /* Like move_stmt_op, but for gimple statements.
6280
6281 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6282 contained in the current statement in *GSI_P and change the
6283 DECL_CONTEXT of every local variable referenced in the current
6284 statement. */
6285
6286 static tree
6287 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6288 struct walk_stmt_info *wi)
6289 {
6290 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6291 gimple stmt = gsi_stmt (*gsi_p);
6292 tree block = gimple_block (stmt);
6293
6294 if (block == p->orig_block
6295 || (p->orig_block == NULL_TREE
6296 && block != NULL_TREE))
6297 gimple_set_block (stmt, p->new_block);
6298
6299 switch (gimple_code (stmt))
6300 {
6301 case GIMPLE_CALL:
6302 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6303 {
6304 tree r, fndecl = gimple_call_fndecl (stmt);
6305 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6306 switch (DECL_FUNCTION_CODE (fndecl))
6307 {
6308 case BUILT_IN_EH_COPY_VALUES:
6309 r = gimple_call_arg (stmt, 1);
6310 r = move_stmt_eh_region_tree_nr (r, p);
6311 gimple_call_set_arg (stmt, 1, r);
6312 /* FALLTHRU */
6313
6314 case BUILT_IN_EH_POINTER:
6315 case BUILT_IN_EH_FILTER:
6316 r = gimple_call_arg (stmt, 0);
6317 r = move_stmt_eh_region_tree_nr (r, p);
6318 gimple_call_set_arg (stmt, 0, r);
6319 break;
6320
6321 default:
6322 break;
6323 }
6324 }
6325 break;
6326
6327 case GIMPLE_RESX:
6328 {
6329 int r = gimple_resx_region (stmt);
6330 r = move_stmt_eh_region_nr (r, p);
6331 gimple_resx_set_region (stmt, r);
6332 }
6333 break;
6334
6335 case GIMPLE_EH_DISPATCH:
6336 {
6337 int r = gimple_eh_dispatch_region (stmt);
6338 r = move_stmt_eh_region_nr (r, p);
6339 gimple_eh_dispatch_set_region (stmt, r);
6340 }
6341 break;
6342
6343 case GIMPLE_OMP_RETURN:
6344 case GIMPLE_OMP_CONTINUE:
6345 break;
6346 default:
6347 if (is_gimple_omp (stmt))
6348 {
6349 /* Do not remap variables inside OMP directives. Variables
6350 referenced in clauses and directive header belong to the
6351 parent function and should not be moved into the child
6352 function. */
6353 bool save_remap_decls_p = p->remap_decls_p;
6354 p->remap_decls_p = false;
6355 *handled_ops_p = true;
6356
6357 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6358 move_stmt_op, wi);
6359
6360 p->remap_decls_p = save_remap_decls_p;
6361 }
6362 break;
6363 }
6364
6365 return NULL_TREE;
6366 }
6367
6368 /* Move basic block BB from function CFUN to function DEST_FN. The
6369 block is moved out of the original linked list and placed after
6370 block AFTER in the new list. Also, the block is removed from the
6371 original array of blocks and placed in DEST_FN's array of blocks.
6372 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6373 updated to reflect the moved edges.
6374
6375 The local variables are remapped to new instances, VARS_MAP is used
6376 to record the mapping. */
6377
6378 static void
6379 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6380 basic_block after, bool update_edge_count_p,
6381 struct move_stmt_d *d)
6382 {
6383 struct control_flow_graph *cfg;
6384 edge_iterator ei;
6385 edge e;
6386 gimple_stmt_iterator si;
6387 unsigned old_len, new_len;
6388
6389 /* Remove BB from dominance structures. */
6390 delete_from_dominance_info (CDI_DOMINATORS, bb);
6391
6392 /* Move BB from its current loop to the copy in the new function. */
6393 if (current_loops)
6394 {
6395 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6396 if (new_loop)
6397 bb->loop_father = new_loop;
6398 }
6399
6400 /* Link BB to the new linked list. */
6401 move_block_after (bb, after);
6402
6403 /* Update the edge count in the corresponding flowgraphs. */
6404 if (update_edge_count_p)
6405 FOR_EACH_EDGE (e, ei, bb->succs)
6406 {
6407 cfun->cfg->x_n_edges--;
6408 dest_cfun->cfg->x_n_edges++;
6409 }
6410
6411 /* Remove BB from the original basic block array. */
6412 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6413 cfun->cfg->x_n_basic_blocks--;
6414
6415 /* Grow DEST_CFUN's basic block array if needed. */
6416 cfg = dest_cfun->cfg;
6417 cfg->x_n_basic_blocks++;
6418 if (bb->index >= cfg->x_last_basic_block)
6419 cfg->x_last_basic_block = bb->index + 1;
6420
6421 old_len = vec_safe_length (cfg->x_basic_block_info);
6422 if ((unsigned) cfg->x_last_basic_block >= old_len)
6423 {
6424 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6425 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6426 }
6427
6428 (*cfg->x_basic_block_info)[bb->index] = bb;
6429
6430 /* Remap the variables in phi nodes. */
6431 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6432 {
6433 gimple phi = gsi_stmt (si);
6434 use_operand_p use;
6435 tree op = PHI_RESULT (phi);
6436 ssa_op_iter oi;
6437 unsigned i;
6438
6439 if (virtual_operand_p (op))
6440 {
6441 /* Remove the phi nodes for virtual operands (alias analysis will be
6442 run for the new function, anyway). */
6443 remove_phi_node (&si, true);
6444 continue;
6445 }
6446
6447 SET_PHI_RESULT (phi,
6448 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6449 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6450 {
6451 op = USE_FROM_PTR (use);
6452 if (TREE_CODE (op) == SSA_NAME)
6453 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6454 }
6455
6456 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6457 {
6458 location_t locus = gimple_phi_arg_location (phi, i);
6459 tree block = LOCATION_BLOCK (locus);
6460
6461 if (locus == UNKNOWN_LOCATION)
6462 continue;
6463 if (d->orig_block == NULL_TREE || block == d->orig_block)
6464 {
6465 if (d->new_block == NULL_TREE)
6466 locus = LOCATION_LOCUS (locus);
6467 else
6468 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6469 gimple_phi_arg_set_location (phi, i, locus);
6470 }
6471 }
6472
6473 gsi_next (&si);
6474 }
6475
6476 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6477 {
6478 gimple stmt = gsi_stmt (si);
6479 struct walk_stmt_info wi;
6480
6481 memset (&wi, 0, sizeof (wi));
6482 wi.info = d;
6483 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6484
6485 if (gimple_code (stmt) == GIMPLE_LABEL)
6486 {
6487 tree label = gimple_label_label (stmt);
6488 int uid = LABEL_DECL_UID (label);
6489
6490 gcc_assert (uid > -1);
6491
6492 old_len = vec_safe_length (cfg->x_label_to_block_map);
6493 if (old_len <= (unsigned) uid)
6494 {
6495 new_len = 3 * uid / 2 + 1;
6496 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6497 }
6498
6499 (*cfg->x_label_to_block_map)[uid] = bb;
6500 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6501
6502 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6503
6504 if (uid >= dest_cfun->cfg->last_label_uid)
6505 dest_cfun->cfg->last_label_uid = uid + 1;
6506 }
6507
6508 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6509 remove_stmt_from_eh_lp_fn (cfun, stmt);
6510
6511 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6512 gimple_remove_stmt_histograms (cfun, stmt);
6513
6514 /* We cannot leave any operands allocated from the operand caches of
6515 the current function. */
6516 free_stmt_operands (stmt);
6517 push_cfun (dest_cfun);
6518 update_stmt (stmt);
6519 pop_cfun ();
6520 }
6521
6522 FOR_EACH_EDGE (e, ei, bb->succs)
6523 if (e->goto_locus != UNKNOWN_LOCATION)
6524 {
6525 tree block = LOCATION_BLOCK (e->goto_locus);
6526 if (d->orig_block == NULL_TREE
6527 || block == d->orig_block)
6528 e->goto_locus = d->new_block ?
6529 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6530 LOCATION_LOCUS (e->goto_locus);
6531 }
6532 }
6533
6534 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6535 the outermost EH region. Use REGION as the incoming base EH region. */
6536
6537 static eh_region
6538 find_outermost_region_in_block (struct function *src_cfun,
6539 basic_block bb, eh_region region)
6540 {
6541 gimple_stmt_iterator si;
6542
6543 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6544 {
6545 gimple stmt = gsi_stmt (si);
6546 eh_region stmt_region;
6547 int lp_nr;
6548
6549 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6550 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6551 if (stmt_region)
6552 {
6553 if (region == NULL)
6554 region = stmt_region;
6555 else if (stmt_region != region)
6556 {
6557 region = eh_region_outermost (src_cfun, stmt_region, region);
6558 gcc_assert (region != NULL);
6559 }
6560 }
6561 }
6562
6563 return region;
6564 }
6565
6566 static tree
6567 new_label_mapper (tree decl, void *data)
6568 {
6569 htab_t hash = (htab_t) data;
6570 struct tree_map *m;
6571 void **slot;
6572
6573 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6574
6575 m = XNEW (struct tree_map);
6576 m->hash = DECL_UID (decl);
6577 m->base.from = decl;
6578 m->to = create_artificial_label (UNKNOWN_LOCATION);
6579 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6580 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6581 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6582
6583 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6584 gcc_assert (*slot == NULL);
6585
6586 *slot = m;
6587
6588 return m->to;
6589 }
6590
6591 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6592 subblocks. */
6593
6594 static void
6595 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6596 tree to_context)
6597 {
6598 tree *tp, t;
6599
6600 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6601 {
6602 t = *tp;
6603 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6604 continue;
6605 replace_by_duplicate_decl (&t, vars_map, to_context);
6606 if (t != *tp)
6607 {
6608 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6609 {
6610 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6611 DECL_HAS_VALUE_EXPR_P (t) = 1;
6612 }
6613 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6614 *tp = t;
6615 }
6616 }
6617
6618 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6619 replace_block_vars_by_duplicates (block, vars_map, to_context);
6620 }
6621
6622 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6623 from FN1 to FN2. */
6624
6625 static void
6626 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6627 struct loop *loop)
6628 {
6629 /* Discard it from the old loop array. */
6630 (*get_loops (fn1))[loop->num] = NULL;
6631
6632 /* Place it in the new loop array, assigning it a new number. */
6633 loop->num = number_of_loops (fn2);
6634 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6635
6636 /* Recurse to children. */
6637 for (loop = loop->inner; loop; loop = loop->next)
6638 fixup_loop_arrays_after_move (fn1, fn2, loop);
6639 }
6640
6641 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6642 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6643 single basic block in the original CFG and the new basic block is
6644 returned. DEST_CFUN must not have a CFG yet.
6645
6646 Note that the region need not be a pure SESE region. Blocks inside
6647 the region may contain calls to abort/exit. The only restriction
6648 is that ENTRY_BB should be the only entry point and it must
6649 dominate EXIT_BB.
6650
6651 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6652 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6653 to the new function.
6654
6655 All local variables referenced in the region are assumed to be in
6656 the corresponding BLOCK_VARS and unexpanded variable lists
6657 associated with DEST_CFUN. */
6658
6659 basic_block
6660 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6661 basic_block exit_bb, tree orig_block)
6662 {
6663 vec<basic_block> bbs, dom_bbs;
6664 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6665 basic_block after, bb, *entry_pred, *exit_succ, abb;
6666 struct function *saved_cfun = cfun;
6667 int *entry_flag, *exit_flag;
6668 unsigned *entry_prob, *exit_prob;
6669 unsigned i, num_entry_edges, num_exit_edges;
6670 edge e;
6671 edge_iterator ei;
6672 htab_t new_label_map;
6673 struct pointer_map_t *vars_map, *eh_map;
6674 struct loop *loop = entry_bb->loop_father;
6675 struct move_stmt_d d;
6676
6677 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6678 region. */
6679 gcc_assert (entry_bb != exit_bb
6680 && (!exit_bb
6681 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6682
6683 /* Collect all the blocks in the region. Manually add ENTRY_BB
6684 because it won't be added by dfs_enumerate_from. */
6685 bbs.create (0);
6686 bbs.safe_push (entry_bb);
6687 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6688
6689 /* The blocks that used to be dominated by something in BBS will now be
6690 dominated by the new block. */
6691 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6692 bbs.address (),
6693 bbs.length ());
6694
6695 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6696 the predecessor edges to ENTRY_BB and the successor edges to
6697 EXIT_BB so that we can re-attach them to the new basic block that
6698 will replace the region. */
6699 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6700 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6701 entry_flag = XNEWVEC (int, num_entry_edges);
6702 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6703 i = 0;
6704 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6705 {
6706 entry_prob[i] = e->probability;
6707 entry_flag[i] = e->flags;
6708 entry_pred[i++] = e->src;
6709 remove_edge (e);
6710 }
6711
6712 if (exit_bb)
6713 {
6714 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6715 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6716 exit_flag = XNEWVEC (int, num_exit_edges);
6717 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6718 i = 0;
6719 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6720 {
6721 exit_prob[i] = e->probability;
6722 exit_flag[i] = e->flags;
6723 exit_succ[i++] = e->dest;
6724 remove_edge (e);
6725 }
6726 }
6727 else
6728 {
6729 num_exit_edges = 0;
6730 exit_succ = NULL;
6731 exit_flag = NULL;
6732 exit_prob = NULL;
6733 }
6734
6735 /* Switch context to the child function to initialize DEST_FN's CFG. */
6736 gcc_assert (dest_cfun->cfg == NULL);
6737 push_cfun (dest_cfun);
6738
6739 init_empty_tree_cfg ();
6740
6741 /* Initialize EH information for the new function. */
6742 eh_map = NULL;
6743 new_label_map = NULL;
6744 if (saved_cfun->eh)
6745 {
6746 eh_region region = NULL;
6747
6748 FOR_EACH_VEC_ELT (bbs, i, bb)
6749 region = find_outermost_region_in_block (saved_cfun, bb, region);
6750
6751 init_eh_for_function ();
6752 if (region != NULL)
6753 {
6754 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6755 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6756 new_label_mapper, new_label_map);
6757 }
6758 }
6759
6760 /* Initialize an empty loop tree. */
6761 struct loops *loops = ggc_alloc_cleared_loops ();
6762 init_loops_structure (dest_cfun, loops, 1);
6763 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6764 set_loops_for_fn (dest_cfun, loops);
6765
6766 /* Move the outlined loop tree part. */
6767 FOR_EACH_VEC_ELT (bbs, i, bb)
6768 {
6769 if (bb->loop_father->header == bb
6770 && loop_outer (bb->loop_father) == loop)
6771 {
6772 struct loop *loop = bb->loop_father;
6773 flow_loop_tree_node_remove (bb->loop_father);
6774 flow_loop_tree_node_add (get_loop (dest_cfun, 0), loop);
6775 fixup_loop_arrays_after_move (saved_cfun, cfun, loop);
6776 }
6777
6778 /* Remove loop exits from the outlined region. */
6779 if (loops_for_fn (saved_cfun)->exits)
6780 FOR_EACH_EDGE (e, ei, bb->succs)
6781 {
6782 void **slot = htab_find_slot_with_hash
6783 (loops_for_fn (saved_cfun)->exits, e,
6784 htab_hash_pointer (e), NO_INSERT);
6785 if (slot)
6786 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6787 }
6788 }
6789
6790
6791 /* Adjust the number of blocks in the tree root of the outlined part. */
6792 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6793
6794 /* Setup a mapping to be used by move_block_to_fn. */
6795 loop->aux = current_loops->tree_root;
6796
6797 pop_cfun ();
6798
6799 /* Move blocks from BBS into DEST_CFUN. */
6800 gcc_assert (bbs.length () >= 2);
6801 after = dest_cfun->cfg->x_entry_block_ptr;
6802 vars_map = pointer_map_create ();
6803
6804 memset (&d, 0, sizeof (d));
6805 d.orig_block = orig_block;
6806 d.new_block = DECL_INITIAL (dest_cfun->decl);
6807 d.from_context = cfun->decl;
6808 d.to_context = dest_cfun->decl;
6809 d.vars_map = vars_map;
6810 d.new_label_map = new_label_map;
6811 d.eh_map = eh_map;
6812 d.remap_decls_p = true;
6813
6814 FOR_EACH_VEC_ELT (bbs, i, bb)
6815 {
6816 /* No need to update edge counts on the last block. It has
6817 already been updated earlier when we detached the region from
6818 the original CFG. */
6819 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6820 after = bb;
6821 }
6822
6823 loop->aux = NULL;
6824 /* Loop sizes are no longer correct, fix them up. */
6825 loop->num_nodes -= bbs.length ();
6826 for (struct loop *outer = loop_outer (loop);
6827 outer; outer = loop_outer (outer))
6828 outer->num_nodes -= bbs.length ();
6829
6830 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6831 if (orig_block)
6832 {
6833 tree block;
6834 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6835 == NULL_TREE);
6836 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6837 = BLOCK_SUBBLOCKS (orig_block);
6838 for (block = BLOCK_SUBBLOCKS (orig_block);
6839 block; block = BLOCK_CHAIN (block))
6840 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6841 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6842 }
6843
6844 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6845 vars_map, dest_cfun->decl);
6846
6847 if (new_label_map)
6848 htab_delete (new_label_map);
6849 if (eh_map)
6850 pointer_map_destroy (eh_map);
6851 pointer_map_destroy (vars_map);
6852
6853 /* Rewire the entry and exit blocks. The successor to the entry
6854 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6855 the child function. Similarly, the predecessor of DEST_FN's
6856 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6857 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6858 various CFG manipulation function get to the right CFG.
6859
6860 FIXME, this is silly. The CFG ought to become a parameter to
6861 these helpers. */
6862 push_cfun (dest_cfun);
6863 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6864 if (exit_bb)
6865 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6866 pop_cfun ();
6867
6868 /* Back in the original function, the SESE region has disappeared,
6869 create a new basic block in its place. */
6870 bb = create_empty_bb (entry_pred[0]);
6871 if (current_loops)
6872 add_bb_to_loop (bb, loop);
6873 for (i = 0; i < num_entry_edges; i++)
6874 {
6875 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6876 e->probability = entry_prob[i];
6877 }
6878
6879 for (i = 0; i < num_exit_edges; i++)
6880 {
6881 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6882 e->probability = exit_prob[i];
6883 }
6884
6885 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6886 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
6887 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6888 dom_bbs.release ();
6889
6890 if (exit_bb)
6891 {
6892 free (exit_prob);
6893 free (exit_flag);
6894 free (exit_succ);
6895 }
6896 free (entry_prob);
6897 free (entry_flag);
6898 free (entry_pred);
6899 bbs.release ();
6900
6901 return bb;
6902 }
6903
6904
6905 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6906 */
6907
6908 void
6909 dump_function_to_file (tree fndecl, FILE *file, int flags)
6910 {
6911 tree arg, var, old_current_fndecl = current_function_decl;
6912 struct function *dsf;
6913 bool ignore_topmost_bind = false, any_var = false;
6914 basic_block bb;
6915 tree chain;
6916 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
6917 && decl_is_tm_clone (fndecl));
6918 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
6919
6920 current_function_decl = fndecl;
6921 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
6922
6923 arg = DECL_ARGUMENTS (fndecl);
6924 while (arg)
6925 {
6926 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6927 fprintf (file, " ");
6928 print_generic_expr (file, arg, dump_flags);
6929 if (flags & TDF_VERBOSE)
6930 print_node (file, "", arg, 4);
6931 if (DECL_CHAIN (arg))
6932 fprintf (file, ", ");
6933 arg = DECL_CHAIN (arg);
6934 }
6935 fprintf (file, ")\n");
6936
6937 if (flags & TDF_VERBOSE)
6938 print_node (file, "", fndecl, 2);
6939
6940 dsf = DECL_STRUCT_FUNCTION (fndecl);
6941 if (dsf && (flags & TDF_EH))
6942 dump_eh_tree (file, dsf);
6943
6944 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
6945 {
6946 dump_node (fndecl, TDF_SLIM | flags, file);
6947 current_function_decl = old_current_fndecl;
6948 return;
6949 }
6950
6951 /* When GIMPLE is lowered, the variables are no longer available in
6952 BIND_EXPRs, so display them separately. */
6953 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
6954 {
6955 unsigned ix;
6956 ignore_topmost_bind = true;
6957
6958 fprintf (file, "{\n");
6959 if (!vec_safe_is_empty (fun->local_decls))
6960 FOR_EACH_LOCAL_DECL (fun, ix, var)
6961 {
6962 print_generic_decl (file, var, flags);
6963 if (flags & TDF_VERBOSE)
6964 print_node (file, "", var, 4);
6965 fprintf (file, "\n");
6966
6967 any_var = true;
6968 }
6969 if (gimple_in_ssa_p (cfun))
6970 for (ix = 1; ix < num_ssa_names; ++ix)
6971 {
6972 tree name = ssa_name (ix);
6973 if (name && !SSA_NAME_VAR (name))
6974 {
6975 fprintf (file, " ");
6976 print_generic_expr (file, TREE_TYPE (name), flags);
6977 fprintf (file, " ");
6978 print_generic_expr (file, name, flags);
6979 fprintf (file, ";\n");
6980
6981 any_var = true;
6982 }
6983 }
6984 }
6985
6986 if (fun && fun->decl == fndecl
6987 && fun->cfg
6988 && basic_block_info_for_function (fun))
6989 {
6990 /* If the CFG has been built, emit a CFG-based dump. */
6991 if (!ignore_topmost_bind)
6992 fprintf (file, "{\n");
6993
6994 if (any_var && n_basic_blocks_for_function (fun))
6995 fprintf (file, "\n");
6996
6997 FOR_EACH_BB_FN (bb, fun)
6998 dump_bb (file, bb, 2, flags | TDF_COMMENT);
6999
7000 fprintf (file, "}\n");
7001 }
7002 else if (DECL_SAVED_TREE (fndecl) == NULL)
7003 {
7004 /* The function is now in GIMPLE form but the CFG has not been
7005 built yet. Emit the single sequence of GIMPLE statements
7006 that make up its body. */
7007 gimple_seq body = gimple_body (fndecl);
7008
7009 if (gimple_seq_first_stmt (body)
7010 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7011 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7012 print_gimple_seq (file, body, 0, flags);
7013 else
7014 {
7015 if (!ignore_topmost_bind)
7016 fprintf (file, "{\n");
7017
7018 if (any_var)
7019 fprintf (file, "\n");
7020
7021 print_gimple_seq (file, body, 2, flags);
7022 fprintf (file, "}\n");
7023 }
7024 }
7025 else
7026 {
7027 int indent;
7028
7029 /* Make a tree based dump. */
7030 chain = DECL_SAVED_TREE (fndecl);
7031 if (chain && TREE_CODE (chain) == BIND_EXPR)
7032 {
7033 if (ignore_topmost_bind)
7034 {
7035 chain = BIND_EXPR_BODY (chain);
7036 indent = 2;
7037 }
7038 else
7039 indent = 0;
7040 }
7041 else
7042 {
7043 if (!ignore_topmost_bind)
7044 fprintf (file, "{\n");
7045 indent = 2;
7046 }
7047
7048 if (any_var)
7049 fprintf (file, "\n");
7050
7051 print_generic_stmt_indented (file, chain, flags, indent);
7052 if (ignore_topmost_bind)
7053 fprintf (file, "}\n");
7054 }
7055
7056 if (flags & TDF_ENUMERATE_LOCALS)
7057 dump_enumerated_decls (file, flags);
7058 fprintf (file, "\n\n");
7059
7060 current_function_decl = old_current_fndecl;
7061 }
7062
7063 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7064
7065 DEBUG_FUNCTION void
7066 debug_function (tree fn, int flags)
7067 {
7068 dump_function_to_file (fn, stderr, flags);
7069 }
7070
7071
7072 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7073
7074 static void
7075 print_pred_bbs (FILE *file, basic_block bb)
7076 {
7077 edge e;
7078 edge_iterator ei;
7079
7080 FOR_EACH_EDGE (e, ei, bb->preds)
7081 fprintf (file, "bb_%d ", e->src->index);
7082 }
7083
7084
7085 /* Print on FILE the indexes for the successors of basic_block BB. */
7086
7087 static void
7088 print_succ_bbs (FILE *file, basic_block bb)
7089 {
7090 edge e;
7091 edge_iterator ei;
7092
7093 FOR_EACH_EDGE (e, ei, bb->succs)
7094 fprintf (file, "bb_%d ", e->dest->index);
7095 }
7096
7097 /* Print to FILE the basic block BB following the VERBOSITY level. */
7098
7099 void
7100 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7101 {
7102 char *s_indent = (char *) alloca ((size_t) indent + 1);
7103 memset ((void *) s_indent, ' ', (size_t) indent);
7104 s_indent[indent] = '\0';
7105
7106 /* Print basic_block's header. */
7107 if (verbosity >= 2)
7108 {
7109 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7110 print_pred_bbs (file, bb);
7111 fprintf (file, "}, succs = {");
7112 print_succ_bbs (file, bb);
7113 fprintf (file, "})\n");
7114 }
7115
7116 /* Print basic_block's body. */
7117 if (verbosity >= 3)
7118 {
7119 fprintf (file, "%s {\n", s_indent);
7120 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7121 fprintf (file, "%s }\n", s_indent);
7122 }
7123 }
7124
7125 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7126
7127 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7128 VERBOSITY level this outputs the contents of the loop, or just its
7129 structure. */
7130
7131 static void
7132 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7133 {
7134 char *s_indent;
7135 basic_block bb;
7136
7137 if (loop == NULL)
7138 return;
7139
7140 s_indent = (char *) alloca ((size_t) indent + 1);
7141 memset ((void *) s_indent, ' ', (size_t) indent);
7142 s_indent[indent] = '\0';
7143
7144 /* Print loop's header. */
7145 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7146 if (loop->header)
7147 fprintf (file, "header = %d", loop->header->index);
7148 else
7149 {
7150 fprintf (file, "deleted)\n");
7151 return;
7152 }
7153 if (loop->latch)
7154 fprintf (file, ", latch = %d", loop->latch->index);
7155 else
7156 fprintf (file, ", multiple latches");
7157 fprintf (file, ", niter = ");
7158 print_generic_expr (file, loop->nb_iterations, 0);
7159
7160 if (loop->any_upper_bound)
7161 {
7162 fprintf (file, ", upper_bound = ");
7163 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7164 }
7165
7166 if (loop->any_estimate)
7167 {
7168 fprintf (file, ", estimate = ");
7169 dump_double_int (file, loop->nb_iterations_estimate, true);
7170 }
7171 fprintf (file, ")\n");
7172
7173 /* Print loop's body. */
7174 if (verbosity >= 1)
7175 {
7176 fprintf (file, "%s{\n", s_indent);
7177 FOR_EACH_BB (bb)
7178 if (bb->loop_father == loop)
7179 print_loops_bb (file, bb, indent, verbosity);
7180
7181 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7182 fprintf (file, "%s}\n", s_indent);
7183 }
7184 }
7185
7186 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7187 spaces. Following VERBOSITY level this outputs the contents of the
7188 loop, or just its structure. */
7189
7190 static void
7191 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7192 int verbosity)
7193 {
7194 if (loop == NULL)
7195 return;
7196
7197 print_loop (file, loop, indent, verbosity);
7198 print_loop_and_siblings (file, loop->next, indent, verbosity);
7199 }
7200
7201 /* Follow a CFG edge from the entry point of the program, and on entry
7202 of a loop, pretty print the loop structure on FILE. */
7203
7204 void
7205 print_loops (FILE *file, int verbosity)
7206 {
7207 basic_block bb;
7208
7209 bb = ENTRY_BLOCK_PTR;
7210 if (bb && bb->loop_father)
7211 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7212 }
7213
7214 /* Dump a loop. */
7215
7216 DEBUG_FUNCTION void
7217 debug (struct loop &ref)
7218 {
7219 print_loop (stderr, &ref, 0, /*verbosity*/0);
7220 }
7221
7222 DEBUG_FUNCTION void
7223 debug (struct loop *ptr)
7224 {
7225 if (ptr)
7226 debug (*ptr);
7227 else
7228 fprintf (stderr, "<nil>\n");
7229 }
7230
7231 /* Dump a loop verbosely. */
7232
7233 DEBUG_FUNCTION void
7234 debug_verbose (struct loop &ref)
7235 {
7236 print_loop (stderr, &ref, 0, /*verbosity*/3);
7237 }
7238
7239 DEBUG_FUNCTION void
7240 debug_verbose (struct loop *ptr)
7241 {
7242 if (ptr)
7243 debug (*ptr);
7244 else
7245 fprintf (stderr, "<nil>\n");
7246 }
7247
7248
7249 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7250
7251 DEBUG_FUNCTION void
7252 debug_loops (int verbosity)
7253 {
7254 print_loops (stderr, verbosity);
7255 }
7256
7257 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7258
7259 DEBUG_FUNCTION void
7260 debug_loop (struct loop *loop, int verbosity)
7261 {
7262 print_loop (stderr, loop, 0, verbosity);
7263 }
7264
7265 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7266 level. */
7267
7268 DEBUG_FUNCTION void
7269 debug_loop_num (unsigned num, int verbosity)
7270 {
7271 debug_loop (get_loop (cfun, num), verbosity);
7272 }
7273
7274 /* Return true if BB ends with a call, possibly followed by some
7275 instructions that must stay with the call. Return false,
7276 otherwise. */
7277
7278 static bool
7279 gimple_block_ends_with_call_p (basic_block bb)
7280 {
7281 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7282 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7283 }
7284
7285
7286 /* Return true if BB ends with a conditional branch. Return false,
7287 otherwise. */
7288
7289 static bool
7290 gimple_block_ends_with_condjump_p (const_basic_block bb)
7291 {
7292 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7293 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7294 }
7295
7296
7297 /* Return true if we need to add fake edge to exit at statement T.
7298 Helper function for gimple_flow_call_edges_add. */
7299
7300 static bool
7301 need_fake_edge_p (gimple t)
7302 {
7303 tree fndecl = NULL_TREE;
7304 int call_flags = 0;
7305
7306 /* NORETURN and LONGJMP calls already have an edge to exit.
7307 CONST and PURE calls do not need one.
7308 We don't currently check for CONST and PURE here, although
7309 it would be a good idea, because those attributes are
7310 figured out from the RTL in mark_constant_function, and
7311 the counter incrementation code from -fprofile-arcs
7312 leads to different results from -fbranch-probabilities. */
7313 if (is_gimple_call (t))
7314 {
7315 fndecl = gimple_call_fndecl (t);
7316 call_flags = gimple_call_flags (t);
7317 }
7318
7319 if (is_gimple_call (t)
7320 && fndecl
7321 && DECL_BUILT_IN (fndecl)
7322 && (call_flags & ECF_NOTHROW)
7323 && !(call_flags & ECF_RETURNS_TWICE)
7324 /* fork() doesn't really return twice, but the effect of
7325 wrapping it in __gcov_fork() which calls __gcov_flush()
7326 and clears the counters before forking has the same
7327 effect as returning twice. Force a fake edge. */
7328 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7329 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7330 return false;
7331
7332 if (is_gimple_call (t))
7333 {
7334 edge_iterator ei;
7335 edge e;
7336 basic_block bb;
7337
7338 if (!(call_flags & ECF_NORETURN))
7339 return true;
7340
7341 bb = gimple_bb (t);
7342 FOR_EACH_EDGE (e, ei, bb->succs)
7343 if ((e->flags & EDGE_FAKE) == 0)
7344 return true;
7345 }
7346
7347 if (gimple_code (t) == GIMPLE_ASM
7348 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7349 return true;
7350
7351 return false;
7352 }
7353
7354
7355 /* Add fake edges to the function exit for any non constant and non
7356 noreturn calls (or noreturn calls with EH/abnormal edges),
7357 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7358 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7359 that were split.
7360
7361 The goal is to expose cases in which entering a basic block does
7362 not imply that all subsequent instructions must be executed. */
7363
7364 static int
7365 gimple_flow_call_edges_add (sbitmap blocks)
7366 {
7367 int i;
7368 int blocks_split = 0;
7369 int last_bb = last_basic_block;
7370 bool check_last_block = false;
7371
7372 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7373 return 0;
7374
7375 if (! blocks)
7376 check_last_block = true;
7377 else
7378 check_last_block = bitmap_bit_p (blocks, EXIT_BLOCK_PTR->prev_bb->index);
7379
7380 /* In the last basic block, before epilogue generation, there will be
7381 a fallthru edge to EXIT. Special care is required if the last insn
7382 of the last basic block is a call because make_edge folds duplicate
7383 edges, which would result in the fallthru edge also being marked
7384 fake, which would result in the fallthru edge being removed by
7385 remove_fake_edges, which would result in an invalid CFG.
7386
7387 Moreover, we can't elide the outgoing fake edge, since the block
7388 profiler needs to take this into account in order to solve the minimal
7389 spanning tree in the case that the call doesn't return.
7390
7391 Handle this by adding a dummy instruction in a new last basic block. */
7392 if (check_last_block)
7393 {
7394 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
7395 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7396 gimple t = NULL;
7397
7398 if (!gsi_end_p (gsi))
7399 t = gsi_stmt (gsi);
7400
7401 if (t && need_fake_edge_p (t))
7402 {
7403 edge e;
7404
7405 e = find_edge (bb, EXIT_BLOCK_PTR);
7406 if (e)
7407 {
7408 gsi_insert_on_edge (e, gimple_build_nop ());
7409 gsi_commit_edge_inserts ();
7410 }
7411 }
7412 }
7413
7414 /* Now add fake edges to the function exit for any non constant
7415 calls since there is no way that we can determine if they will
7416 return or not... */
7417 for (i = 0; i < last_bb; i++)
7418 {
7419 basic_block bb = BASIC_BLOCK (i);
7420 gimple_stmt_iterator gsi;
7421 gimple stmt, last_stmt;
7422
7423 if (!bb)
7424 continue;
7425
7426 if (blocks && !bitmap_bit_p (blocks, i))
7427 continue;
7428
7429 gsi = gsi_last_nondebug_bb (bb);
7430 if (!gsi_end_p (gsi))
7431 {
7432 last_stmt = gsi_stmt (gsi);
7433 do
7434 {
7435 stmt = gsi_stmt (gsi);
7436 if (need_fake_edge_p (stmt))
7437 {
7438 edge e;
7439
7440 /* The handling above of the final block before the
7441 epilogue should be enough to verify that there is
7442 no edge to the exit block in CFG already.
7443 Calling make_edge in such case would cause us to
7444 mark that edge as fake and remove it later. */
7445 #ifdef ENABLE_CHECKING
7446 if (stmt == last_stmt)
7447 {
7448 e = find_edge (bb, EXIT_BLOCK_PTR);
7449 gcc_assert (e == NULL);
7450 }
7451 #endif
7452
7453 /* Note that the following may create a new basic block
7454 and renumber the existing basic blocks. */
7455 if (stmt != last_stmt)
7456 {
7457 e = split_block (bb, stmt);
7458 if (e)
7459 blocks_split++;
7460 }
7461 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7462 }
7463 gsi_prev (&gsi);
7464 }
7465 while (!gsi_end_p (gsi));
7466 }
7467 }
7468
7469 if (blocks_split)
7470 verify_flow_info ();
7471
7472 return blocks_split;
7473 }
7474
7475 /* Removes edge E and all the blocks dominated by it, and updates dominance
7476 information. The IL in E->src needs to be updated separately.
7477 If dominance info is not available, only the edge E is removed.*/
7478
7479 void
7480 remove_edge_and_dominated_blocks (edge e)
7481 {
7482 vec<basic_block> bbs_to_remove = vNULL;
7483 vec<basic_block> bbs_to_fix_dom = vNULL;
7484 bitmap df, df_idom;
7485 edge f;
7486 edge_iterator ei;
7487 bool none_removed = false;
7488 unsigned i;
7489 basic_block bb, dbb;
7490 bitmap_iterator bi;
7491
7492 if (!dom_info_available_p (CDI_DOMINATORS))
7493 {
7494 remove_edge (e);
7495 return;
7496 }
7497
7498 /* No updating is needed for edges to exit. */
7499 if (e->dest == EXIT_BLOCK_PTR)
7500 {
7501 if (cfgcleanup_altered_bbs)
7502 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7503 remove_edge (e);
7504 return;
7505 }
7506
7507 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7508 that is not dominated by E->dest, then this set is empty. Otherwise,
7509 all the basic blocks dominated by E->dest are removed.
7510
7511 Also, to DF_IDOM we store the immediate dominators of the blocks in
7512 the dominance frontier of E (i.e., of the successors of the
7513 removed blocks, if there are any, and of E->dest otherwise). */
7514 FOR_EACH_EDGE (f, ei, e->dest->preds)
7515 {
7516 if (f == e)
7517 continue;
7518
7519 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7520 {
7521 none_removed = true;
7522 break;
7523 }
7524 }
7525
7526 df = BITMAP_ALLOC (NULL);
7527 df_idom = BITMAP_ALLOC (NULL);
7528
7529 if (none_removed)
7530 bitmap_set_bit (df_idom,
7531 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7532 else
7533 {
7534 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7535 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7536 {
7537 FOR_EACH_EDGE (f, ei, bb->succs)
7538 {
7539 if (f->dest != EXIT_BLOCK_PTR)
7540 bitmap_set_bit (df, f->dest->index);
7541 }
7542 }
7543 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7544 bitmap_clear_bit (df, bb->index);
7545
7546 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7547 {
7548 bb = BASIC_BLOCK (i);
7549 bitmap_set_bit (df_idom,
7550 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7551 }
7552 }
7553
7554 if (cfgcleanup_altered_bbs)
7555 {
7556 /* Record the set of the altered basic blocks. */
7557 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7558 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7559 }
7560
7561 /* Remove E and the cancelled blocks. */
7562 if (none_removed)
7563 remove_edge (e);
7564 else
7565 {
7566 /* Walk backwards so as to get a chance to substitute all
7567 released DEFs into debug stmts. See
7568 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7569 details. */
7570 for (i = bbs_to_remove.length (); i-- > 0; )
7571 delete_basic_block (bbs_to_remove[i]);
7572 }
7573
7574 /* Update the dominance information. The immediate dominator may change only
7575 for blocks whose immediate dominator belongs to DF_IDOM:
7576
7577 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7578 removal. Let Z the arbitrary block such that idom(Z) = Y and
7579 Z dominates X after the removal. Before removal, there exists a path P
7580 from Y to X that avoids Z. Let F be the last edge on P that is
7581 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7582 dominates W, and because of P, Z does not dominate W), and W belongs to
7583 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7584 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7585 {
7586 bb = BASIC_BLOCK (i);
7587 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7588 dbb;
7589 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7590 bbs_to_fix_dom.safe_push (dbb);
7591 }
7592
7593 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7594
7595 BITMAP_FREE (df);
7596 BITMAP_FREE (df_idom);
7597 bbs_to_remove.release ();
7598 bbs_to_fix_dom.release ();
7599 }
7600
7601 /* Purge dead EH edges from basic block BB. */
7602
7603 bool
7604 gimple_purge_dead_eh_edges (basic_block bb)
7605 {
7606 bool changed = false;
7607 edge e;
7608 edge_iterator ei;
7609 gimple stmt = last_stmt (bb);
7610
7611 if (stmt && stmt_can_throw_internal (stmt))
7612 return false;
7613
7614 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7615 {
7616 if (e->flags & EDGE_EH)
7617 {
7618 remove_edge_and_dominated_blocks (e);
7619 changed = true;
7620 }
7621 else
7622 ei_next (&ei);
7623 }
7624
7625 return changed;
7626 }
7627
7628 /* Purge dead EH edges from basic block listed in BLOCKS. */
7629
7630 bool
7631 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7632 {
7633 bool changed = false;
7634 unsigned i;
7635 bitmap_iterator bi;
7636
7637 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7638 {
7639 basic_block bb = BASIC_BLOCK (i);
7640
7641 /* Earlier gimple_purge_dead_eh_edges could have removed
7642 this basic block already. */
7643 gcc_assert (bb || changed);
7644 if (bb != NULL)
7645 changed |= gimple_purge_dead_eh_edges (bb);
7646 }
7647
7648 return changed;
7649 }
7650
7651 /* Purge dead abnormal call edges from basic block BB. */
7652
7653 bool
7654 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7655 {
7656 bool changed = false;
7657 edge e;
7658 edge_iterator ei;
7659 gimple stmt = last_stmt (bb);
7660
7661 if (!cfun->has_nonlocal_label
7662 && !cfun->calls_setjmp)
7663 return false;
7664
7665 if (stmt && stmt_can_make_abnormal_goto (stmt))
7666 return false;
7667
7668 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7669 {
7670 if (e->flags & EDGE_ABNORMAL)
7671 {
7672 if (e->flags & EDGE_FALLTHRU)
7673 e->flags &= ~EDGE_ABNORMAL;
7674 else
7675 remove_edge_and_dominated_blocks (e);
7676 changed = true;
7677 }
7678 else
7679 ei_next (&ei);
7680 }
7681
7682 return changed;
7683 }
7684
7685 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7686
7687 bool
7688 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7689 {
7690 bool changed = false;
7691 unsigned i;
7692 bitmap_iterator bi;
7693
7694 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7695 {
7696 basic_block bb = BASIC_BLOCK (i);
7697
7698 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7699 this basic block already. */
7700 gcc_assert (bb || changed);
7701 if (bb != NULL)
7702 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7703 }
7704
7705 return changed;
7706 }
7707
7708 /* This function is called whenever a new edge is created or
7709 redirected. */
7710
7711 static void
7712 gimple_execute_on_growing_pred (edge e)
7713 {
7714 basic_block bb = e->dest;
7715
7716 if (!gimple_seq_empty_p (phi_nodes (bb)))
7717 reserve_phi_args_for_new_edge (bb);
7718 }
7719
7720 /* This function is called immediately before edge E is removed from
7721 the edge vector E->dest->preds. */
7722
7723 static void
7724 gimple_execute_on_shrinking_pred (edge e)
7725 {
7726 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7727 remove_phi_args (e);
7728 }
7729
7730 /*---------------------------------------------------------------------------
7731 Helper functions for Loop versioning
7732 ---------------------------------------------------------------------------*/
7733
7734 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7735 of 'first'. Both of them are dominated by 'new_head' basic block. When
7736 'new_head' was created by 'second's incoming edge it received phi arguments
7737 on the edge by split_edge(). Later, additional edge 'e' was created to
7738 connect 'new_head' and 'first'. Now this routine adds phi args on this
7739 additional edge 'e' that new_head to second edge received as part of edge
7740 splitting. */
7741
7742 static void
7743 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7744 basic_block new_head, edge e)
7745 {
7746 gimple phi1, phi2;
7747 gimple_stmt_iterator psi1, psi2;
7748 tree def;
7749 edge e2 = find_edge (new_head, second);
7750
7751 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7752 edge, we should always have an edge from NEW_HEAD to SECOND. */
7753 gcc_assert (e2 != NULL);
7754
7755 /* Browse all 'second' basic block phi nodes and add phi args to
7756 edge 'e' for 'first' head. PHI args are always in correct order. */
7757
7758 for (psi2 = gsi_start_phis (second),
7759 psi1 = gsi_start_phis (first);
7760 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7761 gsi_next (&psi2), gsi_next (&psi1))
7762 {
7763 phi1 = gsi_stmt (psi1);
7764 phi2 = gsi_stmt (psi2);
7765 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7766 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7767 }
7768 }
7769
7770
7771 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7772 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7773 the destination of the ELSE part. */
7774
7775 static void
7776 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7777 basic_block second_head ATTRIBUTE_UNUSED,
7778 basic_block cond_bb, void *cond_e)
7779 {
7780 gimple_stmt_iterator gsi;
7781 gimple new_cond_expr;
7782 tree cond_expr = (tree) cond_e;
7783 edge e0;
7784
7785 /* Build new conditional expr */
7786 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7787 NULL_TREE, NULL_TREE);
7788
7789 /* Add new cond in cond_bb. */
7790 gsi = gsi_last_bb (cond_bb);
7791 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7792
7793 /* Adjust edges appropriately to connect new head with first head
7794 as well as second head. */
7795 e0 = single_succ_edge (cond_bb);
7796 e0->flags &= ~EDGE_FALLTHRU;
7797 e0->flags |= EDGE_FALSE_VALUE;
7798 }
7799
7800
7801 /* Do book-keeping of basic block BB for the profile consistency checker.
7802 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7803 then do post-pass accounting. Store the counting in RECORD. */
7804 static void
7805 gimple_account_profile_record (basic_block bb, int after_pass,
7806 struct profile_record *record)
7807 {
7808 gimple_stmt_iterator i;
7809 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7810 {
7811 record->size[after_pass]
7812 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7813 if (profile_status == PROFILE_READ)
7814 record->time[after_pass]
7815 += estimate_num_insns (gsi_stmt (i),
7816 &eni_time_weights) * bb->count;
7817 else if (profile_status == PROFILE_GUESSED)
7818 record->time[after_pass]
7819 += estimate_num_insns (gsi_stmt (i),
7820 &eni_time_weights) * bb->frequency;
7821 }
7822 }
7823
7824 struct cfg_hooks gimple_cfg_hooks = {
7825 "gimple",
7826 gimple_verify_flow_info,
7827 gimple_dump_bb, /* dump_bb */
7828 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7829 create_bb, /* create_basic_block */
7830 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7831 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7832 gimple_can_remove_branch_p, /* can_remove_branch_p */
7833 remove_bb, /* delete_basic_block */
7834 gimple_split_block, /* split_block */
7835 gimple_move_block_after, /* move_block_after */
7836 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7837 gimple_merge_blocks, /* merge_blocks */
7838 gimple_predict_edge, /* predict_edge */
7839 gimple_predicted_by_p, /* predicted_by_p */
7840 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7841 gimple_duplicate_bb, /* duplicate_block */
7842 gimple_split_edge, /* split_edge */
7843 gimple_make_forwarder_block, /* make_forward_block */
7844 NULL, /* tidy_fallthru_edge */
7845 NULL, /* force_nonfallthru */
7846 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7847 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7848 gimple_flow_call_edges_add, /* flow_call_edges_add */
7849 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7850 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7851 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7852 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7853 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7854 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7855 flush_pending_stmts, /* flush_pending_stmts */
7856 gimple_empty_block_p, /* block_empty_p */
7857 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
7858 gimple_account_profile_record,
7859 };
7860
7861
7862 /* Split all critical edges. */
7863
7864 static unsigned int
7865 split_critical_edges (void)
7866 {
7867 basic_block bb;
7868 edge e;
7869 edge_iterator ei;
7870
7871 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7872 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7873 mappings around the calls to split_edge. */
7874 start_recording_case_labels ();
7875 FOR_ALL_BB (bb)
7876 {
7877 FOR_EACH_EDGE (e, ei, bb->succs)
7878 {
7879 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7880 split_edge (e);
7881 /* PRE inserts statements to edges and expects that
7882 since split_critical_edges was done beforehand, committing edge
7883 insertions will not split more edges. In addition to critical
7884 edges we must split edges that have multiple successors and
7885 end by control flow statements, such as RESX.
7886 Go ahead and split them too. This matches the logic in
7887 gimple_find_edge_insert_loc. */
7888 else if ((!single_pred_p (e->dest)
7889 || !gimple_seq_empty_p (phi_nodes (e->dest))
7890 || e->dest == EXIT_BLOCK_PTR)
7891 && e->src != ENTRY_BLOCK_PTR
7892 && !(e->flags & EDGE_ABNORMAL))
7893 {
7894 gimple_stmt_iterator gsi;
7895
7896 gsi = gsi_last_bb (e->src);
7897 if (!gsi_end_p (gsi)
7898 && stmt_ends_bb_p (gsi_stmt (gsi))
7899 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7900 && !gimple_call_builtin_p (gsi_stmt (gsi),
7901 BUILT_IN_RETURN)))
7902 split_edge (e);
7903 }
7904 }
7905 }
7906 end_recording_case_labels ();
7907 return 0;
7908 }
7909
7910 namespace {
7911
7912 const pass_data pass_data_split_crit_edges =
7913 {
7914 GIMPLE_PASS, /* type */
7915 "crited", /* name */
7916 OPTGROUP_NONE, /* optinfo_flags */
7917 false, /* has_gate */
7918 true, /* has_execute */
7919 TV_TREE_SPLIT_EDGES, /* tv_id */
7920 PROP_cfg, /* properties_required */
7921 PROP_no_crit_edges, /* properties_provided */
7922 0, /* properties_destroyed */
7923 0, /* todo_flags_start */
7924 TODO_verify_flow, /* todo_flags_finish */
7925 };
7926
7927 class pass_split_crit_edges : public gimple_opt_pass
7928 {
7929 public:
7930 pass_split_crit_edges(gcc::context *ctxt)
7931 : gimple_opt_pass(pass_data_split_crit_edges, ctxt)
7932 {}
7933
7934 /* opt_pass methods: */
7935 unsigned int execute () { return split_critical_edges (); }
7936
7937 }; // class pass_split_crit_edges
7938
7939 } // anon namespace
7940
7941 gimple_opt_pass *
7942 make_pass_split_crit_edges (gcc::context *ctxt)
7943 {
7944 return new pass_split_crit_edges (ctxt);
7945 }
7946
7947
7948 /* Build a ternary operation and gimplify it. Emit code before GSI.
7949 Return the gimple_val holding the result. */
7950
7951 tree
7952 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7953 tree type, tree a, tree b, tree c)
7954 {
7955 tree ret;
7956 location_t loc = gimple_location (gsi_stmt (*gsi));
7957
7958 ret = fold_build3_loc (loc, code, type, a, b, c);
7959 STRIP_NOPS (ret);
7960
7961 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7962 GSI_SAME_STMT);
7963 }
7964
7965 /* Build a binary operation and gimplify it. Emit code before GSI.
7966 Return the gimple_val holding the result. */
7967
7968 tree
7969 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7970 tree type, tree a, tree b)
7971 {
7972 tree ret;
7973
7974 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7975 STRIP_NOPS (ret);
7976
7977 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7978 GSI_SAME_STMT);
7979 }
7980
7981 /* Build a unary operation and gimplify it. Emit code before GSI.
7982 Return the gimple_val holding the result. */
7983
7984 tree
7985 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7986 tree a)
7987 {
7988 tree ret;
7989
7990 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7991 STRIP_NOPS (ret);
7992
7993 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7994 GSI_SAME_STMT);
7995 }
7996
7997
7998 \f
7999 /* Emit return warnings. */
8000
8001 static unsigned int
8002 execute_warn_function_return (void)
8003 {
8004 source_location location;
8005 gimple last;
8006 edge e;
8007 edge_iterator ei;
8008
8009 if (!targetm.warn_func_return (cfun->decl))
8010 return 0;
8011
8012 /* If we have a path to EXIT, then we do return. */
8013 if (TREE_THIS_VOLATILE (cfun->decl)
8014 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
8015 {
8016 location = UNKNOWN_LOCATION;
8017 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
8018 {
8019 last = last_stmt (e->src);
8020 if ((gimple_code (last) == GIMPLE_RETURN
8021 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8022 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8023 break;
8024 }
8025 if (location == UNKNOWN_LOCATION)
8026 location = cfun->function_end_locus;
8027 warning_at (location, 0, "%<noreturn%> function does return");
8028 }
8029
8030 /* If we see "return;" in some basic block, then we do reach the end
8031 without returning a value. */
8032 else if (warn_return_type
8033 && !TREE_NO_WARNING (cfun->decl)
8034 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
8035 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
8036 {
8037 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
8038 {
8039 gimple last = last_stmt (e->src);
8040 if (gimple_code (last) == GIMPLE_RETURN
8041 && gimple_return_retval (last) == NULL
8042 && !gimple_no_warning_p (last))
8043 {
8044 location = gimple_location (last);
8045 if (location == UNKNOWN_LOCATION)
8046 location = cfun->function_end_locus;
8047 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8048 TREE_NO_WARNING (cfun->decl) = 1;
8049 break;
8050 }
8051 }
8052 }
8053 return 0;
8054 }
8055
8056
8057 /* Given a basic block B which ends with a conditional and has
8058 precisely two successors, determine which of the edges is taken if
8059 the conditional is true and which is taken if the conditional is
8060 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8061
8062 void
8063 extract_true_false_edges_from_block (basic_block b,
8064 edge *true_edge,
8065 edge *false_edge)
8066 {
8067 edge e = EDGE_SUCC (b, 0);
8068
8069 if (e->flags & EDGE_TRUE_VALUE)
8070 {
8071 *true_edge = e;
8072 *false_edge = EDGE_SUCC (b, 1);
8073 }
8074 else
8075 {
8076 *false_edge = e;
8077 *true_edge = EDGE_SUCC (b, 1);
8078 }
8079 }
8080
8081 namespace {
8082
8083 const pass_data pass_data_warn_function_return =
8084 {
8085 GIMPLE_PASS, /* type */
8086 "*warn_function_return", /* name */
8087 OPTGROUP_NONE, /* optinfo_flags */
8088 false, /* has_gate */
8089 true, /* has_execute */
8090 TV_NONE, /* tv_id */
8091 PROP_cfg, /* properties_required */
8092 0, /* properties_provided */
8093 0, /* properties_destroyed */
8094 0, /* todo_flags_start */
8095 0, /* todo_flags_finish */
8096 };
8097
8098 class pass_warn_function_return : public gimple_opt_pass
8099 {
8100 public:
8101 pass_warn_function_return(gcc::context *ctxt)
8102 : gimple_opt_pass(pass_data_warn_function_return, ctxt)
8103 {}
8104
8105 /* opt_pass methods: */
8106 unsigned int execute () { return execute_warn_function_return (); }
8107
8108 }; // class pass_warn_function_return
8109
8110 } // anon namespace
8111
8112 gimple_opt_pass *
8113 make_pass_warn_function_return (gcc::context *ctxt)
8114 {
8115 return new pass_warn_function_return (ctxt);
8116 }
8117
8118 /* Emit noreturn warnings. */
8119
8120 static unsigned int
8121 execute_warn_function_noreturn (void)
8122 {
8123 if (!TREE_THIS_VOLATILE (current_function_decl)
8124 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
8125 warn_function_noreturn (current_function_decl);
8126 return 0;
8127 }
8128
8129 static bool
8130 gate_warn_function_noreturn (void)
8131 {
8132 return warn_suggest_attribute_noreturn;
8133 }
8134
8135 namespace {
8136
8137 const pass_data pass_data_warn_function_noreturn =
8138 {
8139 GIMPLE_PASS, /* type */
8140 "*warn_function_noreturn", /* name */
8141 OPTGROUP_NONE, /* optinfo_flags */
8142 true, /* has_gate */
8143 true, /* has_execute */
8144 TV_NONE, /* tv_id */
8145 PROP_cfg, /* properties_required */
8146 0, /* properties_provided */
8147 0, /* properties_destroyed */
8148 0, /* todo_flags_start */
8149 0, /* todo_flags_finish */
8150 };
8151
8152 class pass_warn_function_noreturn : public gimple_opt_pass
8153 {
8154 public:
8155 pass_warn_function_noreturn(gcc::context *ctxt)
8156 : gimple_opt_pass(pass_data_warn_function_noreturn, ctxt)
8157 {}
8158
8159 /* opt_pass methods: */
8160 bool gate () { return gate_warn_function_noreturn (); }
8161 unsigned int execute () { return execute_warn_function_noreturn (); }
8162
8163 }; // class pass_warn_function_noreturn
8164
8165 } // anon namespace
8166
8167 gimple_opt_pass *
8168 make_pass_warn_function_noreturn (gcc::context *ctxt)
8169 {
8170 return new pass_warn_function_noreturn (ctxt);
8171 }
8172
8173
8174 /* Walk a gimplified function and warn for functions whose return value is
8175 ignored and attribute((warn_unused_result)) is set. This is done before
8176 inlining, so we don't have to worry about that. */
8177
8178 static void
8179 do_warn_unused_result (gimple_seq seq)
8180 {
8181 tree fdecl, ftype;
8182 gimple_stmt_iterator i;
8183
8184 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8185 {
8186 gimple g = gsi_stmt (i);
8187
8188 switch (gimple_code (g))
8189 {
8190 case GIMPLE_BIND:
8191 do_warn_unused_result (gimple_bind_body (g));
8192 break;
8193 case GIMPLE_TRY:
8194 do_warn_unused_result (gimple_try_eval (g));
8195 do_warn_unused_result (gimple_try_cleanup (g));
8196 break;
8197 case GIMPLE_CATCH:
8198 do_warn_unused_result (gimple_catch_handler (g));
8199 break;
8200 case GIMPLE_EH_FILTER:
8201 do_warn_unused_result (gimple_eh_filter_failure (g));
8202 break;
8203
8204 case GIMPLE_CALL:
8205 if (gimple_call_lhs (g))
8206 break;
8207 if (gimple_call_internal_p (g))
8208 break;
8209
8210 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8211 LHS. All calls whose value is ignored should be
8212 represented like this. Look for the attribute. */
8213 fdecl = gimple_call_fndecl (g);
8214 ftype = gimple_call_fntype (g);
8215
8216 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8217 {
8218 location_t loc = gimple_location (g);
8219
8220 if (fdecl)
8221 warning_at (loc, OPT_Wunused_result,
8222 "ignoring return value of %qD, "
8223 "declared with attribute warn_unused_result",
8224 fdecl);
8225 else
8226 warning_at (loc, OPT_Wunused_result,
8227 "ignoring return value of function "
8228 "declared with attribute warn_unused_result");
8229 }
8230 break;
8231
8232 default:
8233 /* Not a container, not a call, or a call whose value is used. */
8234 break;
8235 }
8236 }
8237 }
8238
8239 static unsigned int
8240 run_warn_unused_result (void)
8241 {
8242 do_warn_unused_result (gimple_body (current_function_decl));
8243 return 0;
8244 }
8245
8246 static bool
8247 gate_warn_unused_result (void)
8248 {
8249 return flag_warn_unused_result;
8250 }
8251
8252 namespace {
8253
8254 const pass_data pass_data_warn_unused_result =
8255 {
8256 GIMPLE_PASS, /* type */
8257 "*warn_unused_result", /* name */
8258 OPTGROUP_NONE, /* optinfo_flags */
8259 true, /* has_gate */
8260 true, /* has_execute */
8261 TV_NONE, /* tv_id */
8262 PROP_gimple_any, /* properties_required */
8263 0, /* properties_provided */
8264 0, /* properties_destroyed */
8265 0, /* todo_flags_start */
8266 0, /* todo_flags_finish */
8267 };
8268
8269 class pass_warn_unused_result : public gimple_opt_pass
8270 {
8271 public:
8272 pass_warn_unused_result(gcc::context *ctxt)
8273 : gimple_opt_pass(pass_data_warn_unused_result, ctxt)
8274 {}
8275
8276 /* opt_pass methods: */
8277 bool gate () { return gate_warn_unused_result (); }
8278 unsigned int execute () { return run_warn_unused_result (); }
8279
8280 }; // class pass_warn_unused_result
8281
8282 } // anon namespace
8283
8284 gimple_opt_pass *
8285 make_pass_warn_unused_result (gcc::context *ctxt)
8286 {
8287 return new pass_warn_unused_result (ctxt);
8288 }
8289
8290
8291 /* Garbage collection support for edge_def. */
8292
8293 extern void gt_ggc_mx (tree&);
8294 extern void gt_ggc_mx (gimple&);
8295 extern void gt_ggc_mx (rtx&);
8296 extern void gt_ggc_mx (basic_block&);
8297
8298 void
8299 gt_ggc_mx (edge_def *e)
8300 {
8301 tree block = LOCATION_BLOCK (e->goto_locus);
8302 gt_ggc_mx (e->src);
8303 gt_ggc_mx (e->dest);
8304 if (current_ir_type () == IR_GIMPLE)
8305 gt_ggc_mx (e->insns.g);
8306 else
8307 gt_ggc_mx (e->insns.r);
8308 gt_ggc_mx (block);
8309 }
8310
8311 /* PCH support for edge_def. */
8312
8313 extern void gt_pch_nx (tree&);
8314 extern void gt_pch_nx (gimple&);
8315 extern void gt_pch_nx (rtx&);
8316 extern void gt_pch_nx (basic_block&);
8317
8318 void
8319 gt_pch_nx (edge_def *e)
8320 {
8321 tree block = LOCATION_BLOCK (e->goto_locus);
8322 gt_pch_nx (e->src);
8323 gt_pch_nx (e->dest);
8324 if (current_ir_type () == IR_GIMPLE)
8325 gt_pch_nx (e->insns.g);
8326 else
8327 gt_pch_nx (e->insns.r);
8328 gt_pch_nx (block);
8329 }
8330
8331 void
8332 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8333 {
8334 tree block = LOCATION_BLOCK (e->goto_locus);
8335 op (&(e->src), cookie);
8336 op (&(e->dest), cookie);
8337 if (current_ir_type () == IR_GIMPLE)
8338 op (&(e->insns.g), cookie);
8339 else
8340 op (&(e->insns.r), cookie);
8341 op (&(block), cookie);
8342 }