gimplify.c (gimplify_expr): Make sure operand is boolified.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
130
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
133 {
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
144
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
151
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
156
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
161 }
162
163 void
164 init_empty_tree_cfg (void)
165 {
166 init_empty_tree_cfg_for_function (cfun);
167 }
168
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
172
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
175
176 static void
177 build_gimple_cfg (gimple_seq seq)
178 {
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
181
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
183
184 init_empty_tree_cfg ();
185
186 found_computed_goto = 0;
187 make_blocks (seq);
188
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
196
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
200
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
204
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
207
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
212
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
219
220 /* Debugging dumps. */
221
222 /* Write the flowgraph to a VCG file. */
223 {
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
227 {
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
230 }
231 }
232 }
233
234 static unsigned int
235 execute_build_cfg (void)
236 {
237 gimple_seq body = gimple_body (current_function_decl);
238
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
242 {
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
245 }
246 return 0;
247 }
248
249 struct gimple_opt_pass pass_build_cfg =
250 {
251 {
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg
265 | TODO_dump_func /* todo_flags_finish */
266 }
267 };
268
269
270 /* Return true if T is a computed goto. */
271
272 static bool
273 computed_goto_p (gimple t)
274 {
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
277 }
278
279
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
284
285 static void
286 factor_computed_gotos (void)
287 {
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
293
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
297
298 FOR_EACH_BB (bb)
299 {
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
302
303 if (gsi_end_p (gsi))
304 continue;
305
306 last = gsi_stmt (gsi);
307
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
312
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
315 {
316 gimple assignment;
317
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
322 {
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
325
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
331
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
339
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
343 }
344
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
348
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
351 }
352 }
353 }
354
355
356 /* Build a flowgraph for the sequence of stmts SEQ. */
357
358 static void
359 make_blocks (gimple_seq seq)
360 {
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
366
367 while (!gsi_end_p (i))
368 {
369 gimple prev_stmt;
370
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
373
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
378 {
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
383 }
384
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
388
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
391
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
395 {
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
404 {
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
415 }
416 start_new_block = true;
417 }
418
419 gsi_next (&i);
420 first_stmt_of_seq = false;
421 }
422 }
423
424
425 /* Create and return a new empty basic block after bb AFTER. */
426
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
429 {
430 basic_block bb;
431
432 gcc_assert (!e);
433
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
438
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
443
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
446
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
449 {
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
452 }
453
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
456
457 n_basic_blocks++;
458 last_basic_block++;
459
460 return bb;
461 }
462
463
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
467
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
469
470 void
471 fold_cond_expr_cond (void)
472 {
473 basic_block bb;
474
475 FOR_EACH_BB (bb)
476 {
477 gimple stmt = last_stmt (bb);
478
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
480 {
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
484
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
489 {
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
492 }
493 else
494 zerop = onep = false;
495
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
503 }
504 }
505 }
506
507 /* Join all the blocks in the flowgraph. */
508
509 static void
510 make_edges (void)
511 {
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
514
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
518
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
521 {
522 gimple last = last_stmt (bb);
523 bool fallthru;
524
525 if (last)
526 {
527 enum gimple_code code = gimple_code (last);
528 switch (code)
529 {
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
553
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
560
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
564
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
572
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
580
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
585
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
597
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
602
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
606
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
611
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
620
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
624 {
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
633
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
641
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
644 {
645 basic_block switch_bb = single_succ (cur_region->entry);
646
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
649 {
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
653 }
654
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
658
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
662 }
663 break;
664
665 default:
666 gcc_unreachable ();
667 }
668 break;
669
670 default:
671 gcc_assert (!stmt_ends_bb_p (last));
672 fallthru = true;
673 }
674 }
675 else
676 fallthru = true;
677
678 if (fallthru)
679 {
680 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
681 if (last)
682 assign_discriminator (gimple_location (last), bb->next_bb);
683 }
684 }
685
686 if (root_omp_region)
687 free_omp_regions ();
688
689 /* Fold COND_EXPR_COND of each COND_EXPR. */
690 fold_cond_expr_cond ();
691 }
692
693 /* Trivial hash function for a location_t. ITEM is a pointer to
694 a hash table entry that maps a location_t to a discriminator. */
695
696 static unsigned int
697 locus_map_hash (const void *item)
698 {
699 return ((const struct locus_discrim_map *) item)->locus;
700 }
701
702 /* Equality function for the locus-to-discriminator map. VA and VB
703 point to the two hash table entries to compare. */
704
705 static int
706 locus_map_eq (const void *va, const void *vb)
707 {
708 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
709 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
710 return a->locus == b->locus;
711 }
712
713 /* Find the next available discriminator value for LOCUS. The
714 discriminator distinguishes among several basic blocks that
715 share a common locus, allowing for more accurate sample-based
716 profiling. */
717
718 static int
719 next_discriminator_for_locus (location_t locus)
720 {
721 struct locus_discrim_map item;
722 struct locus_discrim_map **slot;
723
724 item.locus = locus;
725 item.discriminator = 0;
726 slot = (struct locus_discrim_map **)
727 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
728 (hashval_t) locus, INSERT);
729 gcc_assert (slot);
730 if (*slot == HTAB_EMPTY_ENTRY)
731 {
732 *slot = XNEW (struct locus_discrim_map);
733 gcc_assert (*slot);
734 (*slot)->locus = locus;
735 (*slot)->discriminator = 0;
736 }
737 (*slot)->discriminator++;
738 return (*slot)->discriminator;
739 }
740
741 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
742
743 static bool
744 same_line_p (location_t locus1, location_t locus2)
745 {
746 expanded_location from, to;
747
748 if (locus1 == locus2)
749 return true;
750
751 from = expand_location (locus1);
752 to = expand_location (locus2);
753
754 if (from.line != to.line)
755 return false;
756 if (from.file == to.file)
757 return true;
758 return (from.file != NULL
759 && to.file != NULL
760 && filename_cmp (from.file, to.file) == 0);
761 }
762
763 /* Assign a unique discriminator value to block BB if it begins at the same
764 LOCUS as its predecessor block. */
765
766 static void
767 assign_discriminator (location_t locus, basic_block bb)
768 {
769 gimple first_in_to_bb, last_in_to_bb;
770
771 if (locus == 0 || bb->discriminator != 0)
772 return;
773
774 first_in_to_bb = first_non_label_stmt (bb);
775 last_in_to_bb = last_stmt (bb);
776 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
777 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
778 bb->discriminator = next_discriminator_for_locus (locus);
779 }
780
781 /* Create the edges for a GIMPLE_COND starting at block BB. */
782
783 static void
784 make_cond_expr_edges (basic_block bb)
785 {
786 gimple entry = last_stmt (bb);
787 gimple then_stmt, else_stmt;
788 basic_block then_bb, else_bb;
789 tree then_label, else_label;
790 edge e;
791 location_t entry_locus;
792
793 gcc_assert (entry);
794 gcc_assert (gimple_code (entry) == GIMPLE_COND);
795
796 entry_locus = gimple_location (entry);
797
798 /* Entry basic blocks for each component. */
799 then_label = gimple_cond_true_label (entry);
800 else_label = gimple_cond_false_label (entry);
801 then_bb = label_to_block (then_label);
802 else_bb = label_to_block (else_label);
803 then_stmt = first_stmt (then_bb);
804 else_stmt = first_stmt (else_bb);
805
806 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
807 assign_discriminator (entry_locus, then_bb);
808 e->goto_locus = gimple_location (then_stmt);
809 if (e->goto_locus)
810 e->goto_block = gimple_block (then_stmt);
811 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
812 if (e)
813 {
814 assign_discriminator (entry_locus, else_bb);
815 e->goto_locus = gimple_location (else_stmt);
816 if (e->goto_locus)
817 e->goto_block = gimple_block (else_stmt);
818 }
819
820 /* We do not need the labels anymore. */
821 gimple_cond_set_true_label (entry, NULL_TREE);
822 gimple_cond_set_false_label (entry, NULL_TREE);
823 }
824
825
826 /* Called for each element in the hash table (P) as we delete the
827 edge to cases hash table.
828
829 Clear all the TREE_CHAINs to prevent problems with copying of
830 SWITCH_EXPRs and structure sharing rules, then free the hash table
831 element. */
832
833 static bool
834 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
835 void *data ATTRIBUTE_UNUSED)
836 {
837 tree t, next;
838
839 for (t = (tree) *value; t; t = next)
840 {
841 next = CASE_CHAIN (t);
842 CASE_CHAIN (t) = NULL;
843 }
844
845 *value = NULL;
846 return false;
847 }
848
849 /* Start recording information mapping edges to case labels. */
850
851 void
852 start_recording_case_labels (void)
853 {
854 gcc_assert (edge_to_cases == NULL);
855 edge_to_cases = pointer_map_create ();
856 touched_switch_bbs = BITMAP_ALLOC (NULL);
857 }
858
859 /* Return nonzero if we are recording information for case labels. */
860
861 static bool
862 recording_case_labels_p (void)
863 {
864 return (edge_to_cases != NULL);
865 }
866
867 /* Stop recording information mapping edges to case labels and
868 remove any information we have recorded. */
869 void
870 end_recording_case_labels (void)
871 {
872 bitmap_iterator bi;
873 unsigned i;
874 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
875 pointer_map_destroy (edge_to_cases);
876 edge_to_cases = NULL;
877 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
878 {
879 basic_block bb = BASIC_BLOCK (i);
880 if (bb)
881 {
882 gimple stmt = last_stmt (bb);
883 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
884 group_case_labels_stmt (stmt);
885 }
886 }
887 BITMAP_FREE (touched_switch_bbs);
888 }
889
890 /* If we are inside a {start,end}_recording_cases block, then return
891 a chain of CASE_LABEL_EXPRs from T which reference E.
892
893 Otherwise return NULL. */
894
895 static tree
896 get_cases_for_edge (edge e, gimple t)
897 {
898 void **slot;
899 size_t i, n;
900
901 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
902 chains available. Return NULL so the caller can detect this case. */
903 if (!recording_case_labels_p ())
904 return NULL;
905
906 slot = pointer_map_contains (edge_to_cases, e);
907 if (slot)
908 return (tree) *slot;
909
910 /* If we did not find E in the hash table, then this must be the first
911 time we have been queried for information about E & T. Add all the
912 elements from T to the hash table then perform the query again. */
913
914 n = gimple_switch_num_labels (t);
915 for (i = 0; i < n; i++)
916 {
917 tree elt = gimple_switch_label (t, i);
918 tree lab = CASE_LABEL (elt);
919 basic_block label_bb = label_to_block (lab);
920 edge this_edge = find_edge (e->src, label_bb);
921
922 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
923 a new chain. */
924 slot = pointer_map_insert (edge_to_cases, this_edge);
925 CASE_CHAIN (elt) = (tree) *slot;
926 *slot = elt;
927 }
928
929 return (tree) *pointer_map_contains (edge_to_cases, e);
930 }
931
932 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
933
934 static void
935 make_gimple_switch_edges (basic_block bb)
936 {
937 gimple entry = last_stmt (bb);
938 location_t entry_locus;
939 size_t i, n;
940
941 entry_locus = gimple_location (entry);
942
943 n = gimple_switch_num_labels (entry);
944
945 for (i = 0; i < n; ++i)
946 {
947 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
948 basic_block label_bb = label_to_block (lab);
949 make_edge (bb, label_bb, 0);
950 assign_discriminator (entry_locus, label_bb);
951 }
952 }
953
954
955 /* Return the basic block holding label DEST. */
956
957 basic_block
958 label_to_block_fn (struct function *ifun, tree dest)
959 {
960 int uid = LABEL_DECL_UID (dest);
961
962 /* We would die hard when faced by an undefined label. Emit a label to
963 the very first basic block. This will hopefully make even the dataflow
964 and undefined variable warnings quite right. */
965 if (seen_error () && uid < 0)
966 {
967 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
968 gimple stmt;
969
970 stmt = gimple_build_label (dest);
971 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
972 uid = LABEL_DECL_UID (dest);
973 }
974 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
975 <= (unsigned int) uid)
976 return NULL;
977 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
978 }
979
980 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
981 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
982
983 void
984 make_abnormal_goto_edges (basic_block bb, bool for_call)
985 {
986 basic_block target_bb;
987 gimple_stmt_iterator gsi;
988
989 FOR_EACH_BB (target_bb)
990 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
991 {
992 gimple label_stmt = gsi_stmt (gsi);
993 tree target;
994
995 if (gimple_code (label_stmt) != GIMPLE_LABEL)
996 break;
997
998 target = gimple_label_label (label_stmt);
999
1000 /* Make an edge to every label block that has been marked as a
1001 potential target for a computed goto or a non-local goto. */
1002 if ((FORCED_LABEL (target) && !for_call)
1003 || (DECL_NONLOCAL (target) && for_call))
1004 {
1005 make_edge (bb, target_bb, EDGE_ABNORMAL);
1006 break;
1007 }
1008 }
1009 }
1010
1011 /* Create edges for a goto statement at block BB. */
1012
1013 static void
1014 make_goto_expr_edges (basic_block bb)
1015 {
1016 gimple_stmt_iterator last = gsi_last_bb (bb);
1017 gimple goto_t = gsi_stmt (last);
1018
1019 /* A simple GOTO creates normal edges. */
1020 if (simple_goto_p (goto_t))
1021 {
1022 tree dest = gimple_goto_dest (goto_t);
1023 basic_block label_bb = label_to_block (dest);
1024 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1025 e->goto_locus = gimple_location (goto_t);
1026 assign_discriminator (e->goto_locus, label_bb);
1027 if (e->goto_locus)
1028 e->goto_block = gimple_block (goto_t);
1029 gsi_remove (&last, true);
1030 return;
1031 }
1032
1033 /* A computed GOTO creates abnormal edges. */
1034 make_abnormal_goto_edges (bb, false);
1035 }
1036
1037 /* Create edges for an asm statement with labels at block BB. */
1038
1039 static void
1040 make_gimple_asm_edges (basic_block bb)
1041 {
1042 gimple stmt = last_stmt (bb);
1043 location_t stmt_loc = gimple_location (stmt);
1044 int i, n = gimple_asm_nlabels (stmt);
1045
1046 for (i = 0; i < n; ++i)
1047 {
1048 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1049 basic_block label_bb = label_to_block (label);
1050 make_edge (bb, label_bb, 0);
1051 assign_discriminator (stmt_loc, label_bb);
1052 }
1053 }
1054
1055 /*---------------------------------------------------------------------------
1056 Flowgraph analysis
1057 ---------------------------------------------------------------------------*/
1058
1059 /* Cleanup useless labels in basic blocks. This is something we wish
1060 to do early because it allows us to group case labels before creating
1061 the edges for the CFG, and it speeds up block statement iterators in
1062 all passes later on.
1063 We rerun this pass after CFG is created, to get rid of the labels that
1064 are no longer referenced. After then we do not run it any more, since
1065 (almost) no new labels should be created. */
1066
1067 /* A map from basic block index to the leading label of that block. */
1068 static struct label_record
1069 {
1070 /* The label. */
1071 tree label;
1072
1073 /* True if the label is referenced from somewhere. */
1074 bool used;
1075 } *label_for_bb;
1076
1077 /* Given LABEL return the first label in the same basic block. */
1078
1079 static tree
1080 main_block_label (tree label)
1081 {
1082 basic_block bb = label_to_block (label);
1083 tree main_label = label_for_bb[bb->index].label;
1084
1085 /* label_to_block possibly inserted undefined label into the chain. */
1086 if (!main_label)
1087 {
1088 label_for_bb[bb->index].label = label;
1089 main_label = label;
1090 }
1091
1092 label_for_bb[bb->index].used = true;
1093 return main_label;
1094 }
1095
1096 /* Clean up redundant labels within the exception tree. */
1097
1098 static void
1099 cleanup_dead_labels_eh (void)
1100 {
1101 eh_landing_pad lp;
1102 eh_region r;
1103 tree lab;
1104 int i;
1105
1106 if (cfun->eh == NULL)
1107 return;
1108
1109 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1110 if (lp && lp->post_landing_pad)
1111 {
1112 lab = main_block_label (lp->post_landing_pad);
1113 if (lab != lp->post_landing_pad)
1114 {
1115 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1116 EH_LANDING_PAD_NR (lab) = lp->index;
1117 }
1118 }
1119
1120 FOR_ALL_EH_REGION (r)
1121 switch (r->type)
1122 {
1123 case ERT_CLEANUP:
1124 case ERT_MUST_NOT_THROW:
1125 break;
1126
1127 case ERT_TRY:
1128 {
1129 eh_catch c;
1130 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1131 {
1132 lab = c->label;
1133 if (lab)
1134 c->label = main_block_label (lab);
1135 }
1136 }
1137 break;
1138
1139 case ERT_ALLOWED_EXCEPTIONS:
1140 lab = r->u.allowed.label;
1141 if (lab)
1142 r->u.allowed.label = main_block_label (lab);
1143 break;
1144 }
1145 }
1146
1147
1148 /* Cleanup redundant labels. This is a three-step process:
1149 1) Find the leading label for each block.
1150 2) Redirect all references to labels to the leading labels.
1151 3) Cleanup all useless labels. */
1152
1153 void
1154 cleanup_dead_labels (void)
1155 {
1156 basic_block bb;
1157 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1158
1159 /* Find a suitable label for each block. We use the first user-defined
1160 label if there is one, or otherwise just the first label we see. */
1161 FOR_EACH_BB (bb)
1162 {
1163 gimple_stmt_iterator i;
1164
1165 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1166 {
1167 tree label;
1168 gimple stmt = gsi_stmt (i);
1169
1170 if (gimple_code (stmt) != GIMPLE_LABEL)
1171 break;
1172
1173 label = gimple_label_label (stmt);
1174
1175 /* If we have not yet seen a label for the current block,
1176 remember this one and see if there are more labels. */
1177 if (!label_for_bb[bb->index].label)
1178 {
1179 label_for_bb[bb->index].label = label;
1180 continue;
1181 }
1182
1183 /* If we did see a label for the current block already, but it
1184 is an artificially created label, replace it if the current
1185 label is a user defined label. */
1186 if (!DECL_ARTIFICIAL (label)
1187 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1188 {
1189 label_for_bb[bb->index].label = label;
1190 break;
1191 }
1192 }
1193 }
1194
1195 /* Now redirect all jumps/branches to the selected label.
1196 First do so for each block ending in a control statement. */
1197 FOR_EACH_BB (bb)
1198 {
1199 gimple stmt = last_stmt (bb);
1200 if (!stmt)
1201 continue;
1202
1203 switch (gimple_code (stmt))
1204 {
1205 case GIMPLE_COND:
1206 {
1207 tree true_label = gimple_cond_true_label (stmt);
1208 tree false_label = gimple_cond_false_label (stmt);
1209
1210 if (true_label)
1211 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1212 if (false_label)
1213 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1214 break;
1215 }
1216
1217 case GIMPLE_SWITCH:
1218 {
1219 size_t i, n = gimple_switch_num_labels (stmt);
1220
1221 /* Replace all destination labels. */
1222 for (i = 0; i < n; ++i)
1223 {
1224 tree case_label = gimple_switch_label (stmt, i);
1225 tree label = main_block_label (CASE_LABEL (case_label));
1226 CASE_LABEL (case_label) = label;
1227 }
1228 break;
1229 }
1230
1231 case GIMPLE_ASM:
1232 {
1233 int i, n = gimple_asm_nlabels (stmt);
1234
1235 for (i = 0; i < n; ++i)
1236 {
1237 tree cons = gimple_asm_label_op (stmt, i);
1238 tree label = main_block_label (TREE_VALUE (cons));
1239 TREE_VALUE (cons) = label;
1240 }
1241 break;
1242 }
1243
1244 /* We have to handle gotos until they're removed, and we don't
1245 remove them until after we've created the CFG edges. */
1246 case GIMPLE_GOTO:
1247 if (!computed_goto_p (stmt))
1248 {
1249 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1250 gimple_goto_set_dest (stmt, new_dest);
1251 }
1252 break;
1253
1254 default:
1255 break;
1256 }
1257 }
1258
1259 /* Do the same for the exception region tree labels. */
1260 cleanup_dead_labels_eh ();
1261
1262 /* Finally, purge dead labels. All user-defined labels and labels that
1263 can be the target of non-local gotos and labels which have their
1264 address taken are preserved. */
1265 FOR_EACH_BB (bb)
1266 {
1267 gimple_stmt_iterator i;
1268 tree label_for_this_bb = label_for_bb[bb->index].label;
1269
1270 if (!label_for_this_bb)
1271 continue;
1272
1273 /* If the main label of the block is unused, we may still remove it. */
1274 if (!label_for_bb[bb->index].used)
1275 label_for_this_bb = NULL;
1276
1277 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1278 {
1279 tree label;
1280 gimple stmt = gsi_stmt (i);
1281
1282 if (gimple_code (stmt) != GIMPLE_LABEL)
1283 break;
1284
1285 label = gimple_label_label (stmt);
1286
1287 if (label == label_for_this_bb
1288 || !DECL_ARTIFICIAL (label)
1289 || DECL_NONLOCAL (label)
1290 || FORCED_LABEL (label))
1291 gsi_next (&i);
1292 else
1293 gsi_remove (&i, true);
1294 }
1295 }
1296
1297 free (label_for_bb);
1298 }
1299
1300 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1301 the ones jumping to the same label.
1302 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1303
1304 static void
1305 group_case_labels_stmt (gimple stmt)
1306 {
1307 int old_size = gimple_switch_num_labels (stmt);
1308 int i, j, new_size = old_size;
1309 tree default_case = NULL_TREE;
1310 tree default_label = NULL_TREE;
1311 bool has_default;
1312
1313 /* The default label is always the first case in a switch
1314 statement after gimplification if it was not optimized
1315 away */
1316 if (!CASE_LOW (gimple_switch_default_label (stmt))
1317 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1318 {
1319 default_case = gimple_switch_default_label (stmt);
1320 default_label = CASE_LABEL (default_case);
1321 has_default = true;
1322 }
1323 else
1324 has_default = false;
1325
1326 /* Look for possible opportunities to merge cases. */
1327 if (has_default)
1328 i = 1;
1329 else
1330 i = 0;
1331 while (i < old_size)
1332 {
1333 tree base_case, base_label, base_high;
1334 base_case = gimple_switch_label (stmt, i);
1335
1336 gcc_assert (base_case);
1337 base_label = CASE_LABEL (base_case);
1338
1339 /* Discard cases that have the same destination as the
1340 default case. */
1341 if (base_label == default_label)
1342 {
1343 gimple_switch_set_label (stmt, i, NULL_TREE);
1344 i++;
1345 new_size--;
1346 continue;
1347 }
1348
1349 base_high = CASE_HIGH (base_case)
1350 ? CASE_HIGH (base_case)
1351 : CASE_LOW (base_case);
1352 i++;
1353
1354 /* Try to merge case labels. Break out when we reach the end
1355 of the label vector or when we cannot merge the next case
1356 label with the current one. */
1357 while (i < old_size)
1358 {
1359 tree merge_case = gimple_switch_label (stmt, i);
1360 tree merge_label = CASE_LABEL (merge_case);
1361 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1362 double_int_one);
1363
1364 /* Merge the cases if they jump to the same place,
1365 and their ranges are consecutive. */
1366 if (merge_label == base_label
1367 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1368 bhp1))
1369 {
1370 base_high = CASE_HIGH (merge_case) ?
1371 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1372 CASE_HIGH (base_case) = base_high;
1373 gimple_switch_set_label (stmt, i, NULL_TREE);
1374 new_size--;
1375 i++;
1376 }
1377 else
1378 break;
1379 }
1380 }
1381
1382 /* Compress the case labels in the label vector, and adjust the
1383 length of the vector. */
1384 for (i = 0, j = 0; i < new_size; i++)
1385 {
1386 while (! gimple_switch_label (stmt, j))
1387 j++;
1388 gimple_switch_set_label (stmt, i,
1389 gimple_switch_label (stmt, j++));
1390 }
1391
1392 gcc_assert (new_size <= old_size);
1393 gimple_switch_set_num_labels (stmt, new_size);
1394 }
1395
1396 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1397 and scan the sorted vector of cases. Combine the ones jumping to the
1398 same label. */
1399
1400 void
1401 group_case_labels (void)
1402 {
1403 basic_block bb;
1404
1405 FOR_EACH_BB (bb)
1406 {
1407 gimple stmt = last_stmt (bb);
1408 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1409 group_case_labels_stmt (stmt);
1410 }
1411 }
1412
1413 /* Checks whether we can merge block B into block A. */
1414
1415 static bool
1416 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1417 {
1418 gimple stmt;
1419 gimple_stmt_iterator gsi;
1420 gimple_seq phis;
1421
1422 if (!single_succ_p (a))
1423 return false;
1424
1425 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1426 return false;
1427
1428 if (single_succ (a) != b)
1429 return false;
1430
1431 if (!single_pred_p (b))
1432 return false;
1433
1434 if (b == EXIT_BLOCK_PTR)
1435 return false;
1436
1437 /* If A ends by a statement causing exceptions or something similar, we
1438 cannot merge the blocks. */
1439 stmt = last_stmt (a);
1440 if (stmt && stmt_ends_bb_p (stmt))
1441 return false;
1442
1443 /* Do not allow a block with only a non-local label to be merged. */
1444 if (stmt
1445 && gimple_code (stmt) == GIMPLE_LABEL
1446 && DECL_NONLOCAL (gimple_label_label (stmt)))
1447 return false;
1448
1449 /* Examine the labels at the beginning of B. */
1450 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1451 {
1452 tree lab;
1453 stmt = gsi_stmt (gsi);
1454 if (gimple_code (stmt) != GIMPLE_LABEL)
1455 break;
1456 lab = gimple_label_label (stmt);
1457
1458 /* Do not remove user labels. */
1459 if (!DECL_ARTIFICIAL (lab))
1460 return false;
1461 }
1462
1463 /* Protect the loop latches. */
1464 if (current_loops && b->loop_father->latch == b)
1465 return false;
1466
1467 /* It must be possible to eliminate all phi nodes in B. If ssa form
1468 is not up-to-date and a name-mapping is registered, we cannot eliminate
1469 any phis. Symbols marked for renaming are never a problem though. */
1470 phis = phi_nodes (b);
1471 if (!gimple_seq_empty_p (phis)
1472 && name_mappings_registered_p ())
1473 return false;
1474
1475 /* When not optimizing, don't merge if we'd lose goto_locus. */
1476 if (!optimize
1477 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1478 {
1479 location_t goto_locus = single_succ_edge (a)->goto_locus;
1480 gimple_stmt_iterator prev, next;
1481 prev = gsi_last_nondebug_bb (a);
1482 next = gsi_after_labels (b);
1483 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1484 gsi_next_nondebug (&next);
1485 if ((gsi_end_p (prev)
1486 || gimple_location (gsi_stmt (prev)) != goto_locus)
1487 && (gsi_end_p (next)
1488 || gimple_location (gsi_stmt (next)) != goto_locus))
1489 return false;
1490 }
1491
1492 return true;
1493 }
1494
1495 /* Return true if the var whose chain of uses starts at PTR has no
1496 nondebug uses. */
1497 bool
1498 has_zero_uses_1 (const ssa_use_operand_t *head)
1499 {
1500 const ssa_use_operand_t *ptr;
1501
1502 for (ptr = head->next; ptr != head; ptr = ptr->next)
1503 if (!is_gimple_debug (USE_STMT (ptr)))
1504 return false;
1505
1506 return true;
1507 }
1508
1509 /* Return true if the var whose chain of uses starts at PTR has a
1510 single nondebug use. Set USE_P and STMT to that single nondebug
1511 use, if so, or to NULL otherwise. */
1512 bool
1513 single_imm_use_1 (const ssa_use_operand_t *head,
1514 use_operand_p *use_p, gimple *stmt)
1515 {
1516 ssa_use_operand_t *ptr, *single_use = 0;
1517
1518 for (ptr = head->next; ptr != head; ptr = ptr->next)
1519 if (!is_gimple_debug (USE_STMT (ptr)))
1520 {
1521 if (single_use)
1522 {
1523 single_use = NULL;
1524 break;
1525 }
1526 single_use = ptr;
1527 }
1528
1529 if (use_p)
1530 *use_p = single_use;
1531
1532 if (stmt)
1533 *stmt = single_use ? single_use->loc.stmt : NULL;
1534
1535 return !!single_use;
1536 }
1537
1538 /* Replaces all uses of NAME by VAL. */
1539
1540 void
1541 replace_uses_by (tree name, tree val)
1542 {
1543 imm_use_iterator imm_iter;
1544 use_operand_p use;
1545 gimple stmt;
1546 edge e;
1547
1548 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1549 {
1550 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1551 {
1552 replace_exp (use, val);
1553
1554 if (gimple_code (stmt) == GIMPLE_PHI)
1555 {
1556 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1557 if (e->flags & EDGE_ABNORMAL)
1558 {
1559 /* This can only occur for virtual operands, since
1560 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1561 would prevent replacement. */
1562 gcc_assert (!is_gimple_reg (name));
1563 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1564 }
1565 }
1566 }
1567
1568 if (gimple_code (stmt) != GIMPLE_PHI)
1569 {
1570 size_t i;
1571
1572 fold_stmt_inplace (stmt);
1573 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1574 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1575
1576 /* FIXME. This should go in update_stmt. */
1577 for (i = 0; i < gimple_num_ops (stmt); i++)
1578 {
1579 tree op = gimple_op (stmt, i);
1580 /* Operands may be empty here. For example, the labels
1581 of a GIMPLE_COND are nulled out following the creation
1582 of the corresponding CFG edges. */
1583 if (op && TREE_CODE (op) == ADDR_EXPR)
1584 recompute_tree_invariant_for_addr_expr (op);
1585 }
1586
1587 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1588 update_stmt (stmt);
1589 }
1590 }
1591
1592 gcc_assert (has_zero_uses (name));
1593
1594 /* Also update the trees stored in loop structures. */
1595 if (current_loops)
1596 {
1597 struct loop *loop;
1598 loop_iterator li;
1599
1600 FOR_EACH_LOOP (li, loop, 0)
1601 {
1602 substitute_in_loop_info (loop, name, val);
1603 }
1604 }
1605 }
1606
1607 /* Merge block B into block A. */
1608
1609 static void
1610 gimple_merge_blocks (basic_block a, basic_block b)
1611 {
1612 gimple_stmt_iterator last, gsi, psi;
1613 gimple_seq phis = phi_nodes (b);
1614
1615 if (dump_file)
1616 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1617
1618 /* Remove all single-valued PHI nodes from block B of the form
1619 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1620 gsi = gsi_last_bb (a);
1621 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1622 {
1623 gimple phi = gsi_stmt (psi);
1624 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1625 gimple copy;
1626 bool may_replace_uses = !is_gimple_reg (def)
1627 || may_propagate_copy (def, use);
1628
1629 /* In case we maintain loop closed ssa form, do not propagate arguments
1630 of loop exit phi nodes. */
1631 if (current_loops
1632 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1633 && is_gimple_reg (def)
1634 && TREE_CODE (use) == SSA_NAME
1635 && a->loop_father != b->loop_father)
1636 may_replace_uses = false;
1637
1638 if (!may_replace_uses)
1639 {
1640 gcc_assert (is_gimple_reg (def));
1641
1642 /* Note that just emitting the copies is fine -- there is no problem
1643 with ordering of phi nodes. This is because A is the single
1644 predecessor of B, therefore results of the phi nodes cannot
1645 appear as arguments of the phi nodes. */
1646 copy = gimple_build_assign (def, use);
1647 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1648 remove_phi_node (&psi, false);
1649 }
1650 else
1651 {
1652 /* If we deal with a PHI for virtual operands, we can simply
1653 propagate these without fussing with folding or updating
1654 the stmt. */
1655 if (!is_gimple_reg (def))
1656 {
1657 imm_use_iterator iter;
1658 use_operand_p use_p;
1659 gimple stmt;
1660
1661 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1662 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1663 SET_USE (use_p, use);
1664
1665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1666 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1667 }
1668 else
1669 replace_uses_by (def, use);
1670
1671 remove_phi_node (&psi, true);
1672 }
1673 }
1674
1675 /* Ensure that B follows A. */
1676 move_block_after (b, a);
1677
1678 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1679 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1680
1681 /* Remove labels from B and set gimple_bb to A for other statements. */
1682 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1683 {
1684 gimple stmt = gsi_stmt (gsi);
1685 if (gimple_code (stmt) == GIMPLE_LABEL)
1686 {
1687 tree label = gimple_label_label (stmt);
1688 int lp_nr;
1689
1690 gsi_remove (&gsi, false);
1691
1692 /* Now that we can thread computed gotos, we might have
1693 a situation where we have a forced label in block B
1694 However, the label at the start of block B might still be
1695 used in other ways (think about the runtime checking for
1696 Fortran assigned gotos). So we can not just delete the
1697 label. Instead we move the label to the start of block A. */
1698 if (FORCED_LABEL (label))
1699 {
1700 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1701 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1702 }
1703
1704 lp_nr = EH_LANDING_PAD_NR (label);
1705 if (lp_nr)
1706 {
1707 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1708 lp->post_landing_pad = NULL;
1709 }
1710 }
1711 else
1712 {
1713 gimple_set_bb (stmt, a);
1714 gsi_next (&gsi);
1715 }
1716 }
1717
1718 /* Merge the sequences. */
1719 last = gsi_last_bb (a);
1720 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1721 set_bb_seq (b, NULL);
1722
1723 if (cfgcleanup_altered_bbs)
1724 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1725 }
1726
1727
1728 /* Return the one of two successors of BB that is not reachable by a
1729 complex edge, if there is one. Else, return BB. We use
1730 this in optimizations that use post-dominators for their heuristics,
1731 to catch the cases in C++ where function calls are involved. */
1732
1733 basic_block
1734 single_noncomplex_succ (basic_block bb)
1735 {
1736 edge e0, e1;
1737 if (EDGE_COUNT (bb->succs) != 2)
1738 return bb;
1739
1740 e0 = EDGE_SUCC (bb, 0);
1741 e1 = EDGE_SUCC (bb, 1);
1742 if (e0->flags & EDGE_COMPLEX)
1743 return e1->dest;
1744 if (e1->flags & EDGE_COMPLEX)
1745 return e0->dest;
1746
1747 return bb;
1748 }
1749
1750 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1751
1752 void
1753 notice_special_calls (gimple call)
1754 {
1755 int flags = gimple_call_flags (call);
1756
1757 if (flags & ECF_MAY_BE_ALLOCA)
1758 cfun->calls_alloca = true;
1759 if (flags & ECF_RETURNS_TWICE)
1760 cfun->calls_setjmp = true;
1761 }
1762
1763
1764 /* Clear flags set by notice_special_calls. Used by dead code removal
1765 to update the flags. */
1766
1767 void
1768 clear_special_calls (void)
1769 {
1770 cfun->calls_alloca = false;
1771 cfun->calls_setjmp = false;
1772 }
1773
1774 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1775
1776 static void
1777 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1778 {
1779 /* Since this block is no longer reachable, we can just delete all
1780 of its PHI nodes. */
1781 remove_phi_nodes (bb);
1782
1783 /* Remove edges to BB's successors. */
1784 while (EDGE_COUNT (bb->succs) > 0)
1785 remove_edge (EDGE_SUCC (bb, 0));
1786 }
1787
1788
1789 /* Remove statements of basic block BB. */
1790
1791 static void
1792 remove_bb (basic_block bb)
1793 {
1794 gimple_stmt_iterator i;
1795
1796 if (dump_file)
1797 {
1798 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1799 if (dump_flags & TDF_DETAILS)
1800 {
1801 dump_bb (bb, dump_file, 0);
1802 fprintf (dump_file, "\n");
1803 }
1804 }
1805
1806 if (current_loops)
1807 {
1808 struct loop *loop = bb->loop_father;
1809
1810 /* If a loop gets removed, clean up the information associated
1811 with it. */
1812 if (loop->latch == bb
1813 || loop->header == bb)
1814 free_numbers_of_iterations_estimates_loop (loop);
1815 }
1816
1817 /* Remove all the instructions in the block. */
1818 if (bb_seq (bb) != NULL)
1819 {
1820 /* Walk backwards so as to get a chance to substitute all
1821 released DEFs into debug stmts. See
1822 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1823 details. */
1824 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1825 {
1826 gimple stmt = gsi_stmt (i);
1827 if (gimple_code (stmt) == GIMPLE_LABEL
1828 && (FORCED_LABEL (gimple_label_label (stmt))
1829 || DECL_NONLOCAL (gimple_label_label (stmt))))
1830 {
1831 basic_block new_bb;
1832 gimple_stmt_iterator new_gsi;
1833
1834 /* A non-reachable non-local label may still be referenced.
1835 But it no longer needs to carry the extra semantics of
1836 non-locality. */
1837 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1838 {
1839 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1840 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1841 }
1842
1843 new_bb = bb->prev_bb;
1844 new_gsi = gsi_start_bb (new_bb);
1845 gsi_remove (&i, false);
1846 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1847 }
1848 else
1849 {
1850 /* Release SSA definitions if we are in SSA. Note that we
1851 may be called when not in SSA. For example,
1852 final_cleanup calls this function via
1853 cleanup_tree_cfg. */
1854 if (gimple_in_ssa_p (cfun))
1855 release_defs (stmt);
1856
1857 gsi_remove (&i, true);
1858 }
1859
1860 if (gsi_end_p (i))
1861 i = gsi_last_bb (bb);
1862 else
1863 gsi_prev (&i);
1864 }
1865 }
1866
1867 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1868 bb->il.gimple = NULL;
1869 }
1870
1871
1872 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1873 predicate VAL, return the edge that will be taken out of the block.
1874 If VAL does not match a unique edge, NULL is returned. */
1875
1876 edge
1877 find_taken_edge (basic_block bb, tree val)
1878 {
1879 gimple stmt;
1880
1881 stmt = last_stmt (bb);
1882
1883 gcc_assert (stmt);
1884 gcc_assert (is_ctrl_stmt (stmt));
1885
1886 if (val == NULL)
1887 return NULL;
1888
1889 if (!is_gimple_min_invariant (val))
1890 return NULL;
1891
1892 if (gimple_code (stmt) == GIMPLE_COND)
1893 return find_taken_edge_cond_expr (bb, val);
1894
1895 if (gimple_code (stmt) == GIMPLE_SWITCH)
1896 return find_taken_edge_switch_expr (bb, val);
1897
1898 if (computed_goto_p (stmt))
1899 {
1900 /* Only optimize if the argument is a label, if the argument is
1901 not a label then we can not construct a proper CFG.
1902
1903 It may be the case that we only need to allow the LABEL_REF to
1904 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1905 appear inside a LABEL_EXPR just to be safe. */
1906 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1907 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1908 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1909 return NULL;
1910 }
1911
1912 gcc_unreachable ();
1913 }
1914
1915 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1916 statement, determine which of the outgoing edges will be taken out of the
1917 block. Return NULL if either edge may be taken. */
1918
1919 static edge
1920 find_taken_edge_computed_goto (basic_block bb, tree val)
1921 {
1922 basic_block dest;
1923 edge e = NULL;
1924
1925 dest = label_to_block (val);
1926 if (dest)
1927 {
1928 e = find_edge (bb, dest);
1929 gcc_assert (e != NULL);
1930 }
1931
1932 return e;
1933 }
1934
1935 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1936 statement, determine which of the two edges will be taken out of the
1937 block. Return NULL if either edge may be taken. */
1938
1939 static edge
1940 find_taken_edge_cond_expr (basic_block bb, tree val)
1941 {
1942 edge true_edge, false_edge;
1943
1944 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1945
1946 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1947 return (integer_zerop (val) ? false_edge : true_edge);
1948 }
1949
1950 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1951 statement, determine which edge will be taken out of the block. Return
1952 NULL if any edge may be taken. */
1953
1954 static edge
1955 find_taken_edge_switch_expr (basic_block bb, tree val)
1956 {
1957 basic_block dest_bb;
1958 edge e;
1959 gimple switch_stmt;
1960 tree taken_case;
1961
1962 switch_stmt = last_stmt (bb);
1963 taken_case = find_case_label_for_value (switch_stmt, val);
1964 dest_bb = label_to_block (CASE_LABEL (taken_case));
1965
1966 e = find_edge (bb, dest_bb);
1967 gcc_assert (e);
1968 return e;
1969 }
1970
1971
1972 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1973 We can make optimal use here of the fact that the case labels are
1974 sorted: We can do a binary search for a case matching VAL. */
1975
1976 static tree
1977 find_case_label_for_value (gimple switch_stmt, tree val)
1978 {
1979 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1980 tree default_case = gimple_switch_default_label (switch_stmt);
1981
1982 for (low = 0, high = n; high - low > 1; )
1983 {
1984 size_t i = (high + low) / 2;
1985 tree t = gimple_switch_label (switch_stmt, i);
1986 int cmp;
1987
1988 /* Cache the result of comparing CASE_LOW and val. */
1989 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1990
1991 if (cmp > 0)
1992 high = i;
1993 else
1994 low = i;
1995
1996 if (CASE_HIGH (t) == NULL)
1997 {
1998 /* A singe-valued case label. */
1999 if (cmp == 0)
2000 return t;
2001 }
2002 else
2003 {
2004 /* A case range. We can only handle integer ranges. */
2005 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2006 return t;
2007 }
2008 }
2009
2010 return default_case;
2011 }
2012
2013
2014 /* Dump a basic block on stderr. */
2015
2016 void
2017 gimple_debug_bb (basic_block bb)
2018 {
2019 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2020 }
2021
2022
2023 /* Dump basic block with index N on stderr. */
2024
2025 basic_block
2026 gimple_debug_bb_n (int n)
2027 {
2028 gimple_debug_bb (BASIC_BLOCK (n));
2029 return BASIC_BLOCK (n);
2030 }
2031
2032
2033 /* Dump the CFG on stderr.
2034
2035 FLAGS are the same used by the tree dumping functions
2036 (see TDF_* in tree-pass.h). */
2037
2038 void
2039 gimple_debug_cfg (int flags)
2040 {
2041 gimple_dump_cfg (stderr, flags);
2042 }
2043
2044
2045 /* Dump the program showing basic block boundaries on the given FILE.
2046
2047 FLAGS are the same used by the tree dumping functions (see TDF_* in
2048 tree.h). */
2049
2050 void
2051 gimple_dump_cfg (FILE *file, int flags)
2052 {
2053 if (flags & TDF_DETAILS)
2054 {
2055 const char *funcname
2056 = lang_hooks.decl_printable_name (current_function_decl, 2);
2057
2058 fputc ('\n', file);
2059 fprintf (file, ";; Function %s\n\n", funcname);
2060 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2061 n_basic_blocks, n_edges, last_basic_block);
2062
2063 brief_dump_cfg (file);
2064 fprintf (file, "\n");
2065 }
2066
2067 if (flags & TDF_STATS)
2068 dump_cfg_stats (file);
2069
2070 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2071 }
2072
2073
2074 /* Dump CFG statistics on FILE. */
2075
2076 void
2077 dump_cfg_stats (FILE *file)
2078 {
2079 static long max_num_merged_labels = 0;
2080 unsigned long size, total = 0;
2081 long num_edges;
2082 basic_block bb;
2083 const char * const fmt_str = "%-30s%-13s%12s\n";
2084 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2085 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2086 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2087 const char *funcname
2088 = lang_hooks.decl_printable_name (current_function_decl, 2);
2089
2090
2091 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2092
2093 fprintf (file, "---------------------------------------------------------\n");
2094 fprintf (file, fmt_str, "", " Number of ", "Memory");
2095 fprintf (file, fmt_str, "", " instances ", "used ");
2096 fprintf (file, "---------------------------------------------------------\n");
2097
2098 size = n_basic_blocks * sizeof (struct basic_block_def);
2099 total += size;
2100 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2101 SCALE (size), LABEL (size));
2102
2103 num_edges = 0;
2104 FOR_EACH_BB (bb)
2105 num_edges += EDGE_COUNT (bb->succs);
2106 size = num_edges * sizeof (struct edge_def);
2107 total += size;
2108 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2109
2110 fprintf (file, "---------------------------------------------------------\n");
2111 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2112 LABEL (total));
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, "\n");
2115
2116 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2117 max_num_merged_labels = cfg_stats.num_merged_labels;
2118
2119 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2120 cfg_stats.num_merged_labels, max_num_merged_labels);
2121
2122 fprintf (file, "\n");
2123 }
2124
2125
2126 /* Dump CFG statistics on stderr. Keep extern so that it's always
2127 linked in the final executable. */
2128
2129 DEBUG_FUNCTION void
2130 debug_cfg_stats (void)
2131 {
2132 dump_cfg_stats (stderr);
2133 }
2134
2135
2136 /* Dump the flowgraph to a .vcg FILE. */
2137
2138 static void
2139 gimple_cfg2vcg (FILE *file)
2140 {
2141 edge e;
2142 edge_iterator ei;
2143 basic_block bb;
2144 const char *funcname
2145 = lang_hooks.decl_printable_name (current_function_decl, 2);
2146
2147 /* Write the file header. */
2148 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2149 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2150 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2151
2152 /* Write blocks and edges. */
2153 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2154 {
2155 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2156 e->dest->index);
2157
2158 if (e->flags & EDGE_FAKE)
2159 fprintf (file, " linestyle: dotted priority: 10");
2160 else
2161 fprintf (file, " linestyle: solid priority: 100");
2162
2163 fprintf (file, " }\n");
2164 }
2165 fputc ('\n', file);
2166
2167 FOR_EACH_BB (bb)
2168 {
2169 enum gimple_code head_code, end_code;
2170 const char *head_name, *end_name;
2171 int head_line = 0;
2172 int end_line = 0;
2173 gimple first = first_stmt (bb);
2174 gimple last = last_stmt (bb);
2175
2176 if (first)
2177 {
2178 head_code = gimple_code (first);
2179 head_name = gimple_code_name[head_code];
2180 head_line = get_lineno (first);
2181 }
2182 else
2183 head_name = "no-statement";
2184
2185 if (last)
2186 {
2187 end_code = gimple_code (last);
2188 end_name = gimple_code_name[end_code];
2189 end_line = get_lineno (last);
2190 }
2191 else
2192 end_name = "no-statement";
2193
2194 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2195 bb->index, bb->index, head_name, head_line, end_name,
2196 end_line);
2197
2198 FOR_EACH_EDGE (e, ei, bb->succs)
2199 {
2200 if (e->dest == EXIT_BLOCK_PTR)
2201 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2202 else
2203 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2204
2205 if (e->flags & EDGE_FAKE)
2206 fprintf (file, " priority: 10 linestyle: dotted");
2207 else
2208 fprintf (file, " priority: 100 linestyle: solid");
2209
2210 fprintf (file, " }\n");
2211 }
2212
2213 if (bb->next_bb != EXIT_BLOCK_PTR)
2214 fputc ('\n', file);
2215 }
2216
2217 fputs ("}\n\n", file);
2218 }
2219
2220
2221
2222 /*---------------------------------------------------------------------------
2223 Miscellaneous helpers
2224 ---------------------------------------------------------------------------*/
2225
2226 /* Return true if T represents a stmt that always transfers control. */
2227
2228 bool
2229 is_ctrl_stmt (gimple t)
2230 {
2231 switch (gimple_code (t))
2232 {
2233 case GIMPLE_COND:
2234 case GIMPLE_SWITCH:
2235 case GIMPLE_GOTO:
2236 case GIMPLE_RETURN:
2237 case GIMPLE_RESX:
2238 return true;
2239 default:
2240 return false;
2241 }
2242 }
2243
2244
2245 /* Return true if T is a statement that may alter the flow of control
2246 (e.g., a call to a non-returning function). */
2247
2248 bool
2249 is_ctrl_altering_stmt (gimple t)
2250 {
2251 gcc_assert (t);
2252
2253 switch (gimple_code (t))
2254 {
2255 case GIMPLE_CALL:
2256 {
2257 int flags = gimple_call_flags (t);
2258
2259 /* A non-pure/const call alters flow control if the current
2260 function has nonlocal labels. */
2261 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2262 && cfun->has_nonlocal_label)
2263 return true;
2264
2265 /* A call also alters control flow if it does not return. */
2266 if (flags & ECF_NORETURN)
2267 return true;
2268
2269 /* BUILT_IN_RETURN call is same as return statement. */
2270 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2271 return true;
2272 }
2273 break;
2274
2275 case GIMPLE_EH_DISPATCH:
2276 /* EH_DISPATCH branches to the individual catch handlers at
2277 this level of a try or allowed-exceptions region. It can
2278 fallthru to the next statement as well. */
2279 return true;
2280
2281 case GIMPLE_ASM:
2282 if (gimple_asm_nlabels (t) > 0)
2283 return true;
2284 break;
2285
2286 CASE_GIMPLE_OMP:
2287 /* OpenMP directives alter control flow. */
2288 return true;
2289
2290 default:
2291 break;
2292 }
2293
2294 /* If a statement can throw, it alters control flow. */
2295 return stmt_can_throw_internal (t);
2296 }
2297
2298
2299 /* Return true if T is a simple local goto. */
2300
2301 bool
2302 simple_goto_p (gimple t)
2303 {
2304 return (gimple_code (t) == GIMPLE_GOTO
2305 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2306 }
2307
2308
2309 /* Return true if T can make an abnormal transfer of control flow.
2310 Transfers of control flow associated with EH are excluded. */
2311
2312 bool
2313 stmt_can_make_abnormal_goto (gimple t)
2314 {
2315 if (computed_goto_p (t))
2316 return true;
2317 if (is_gimple_call (t))
2318 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2319 && !(gimple_call_flags (t) & ECF_LEAF));
2320 return false;
2321 }
2322
2323
2324 /* Return true if STMT should start a new basic block. PREV_STMT is
2325 the statement preceding STMT. It is used when STMT is a label or a
2326 case label. Labels should only start a new basic block if their
2327 previous statement wasn't a label. Otherwise, sequence of labels
2328 would generate unnecessary basic blocks that only contain a single
2329 label. */
2330
2331 static inline bool
2332 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2333 {
2334 if (stmt == NULL)
2335 return false;
2336
2337 /* Labels start a new basic block only if the preceding statement
2338 wasn't a label of the same type. This prevents the creation of
2339 consecutive blocks that have nothing but a single label. */
2340 if (gimple_code (stmt) == GIMPLE_LABEL)
2341 {
2342 /* Nonlocal and computed GOTO targets always start a new block. */
2343 if (DECL_NONLOCAL (gimple_label_label (stmt))
2344 || FORCED_LABEL (gimple_label_label (stmt)))
2345 return true;
2346
2347 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2348 {
2349 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2350 return true;
2351
2352 cfg_stats.num_merged_labels++;
2353 return false;
2354 }
2355 else
2356 return true;
2357 }
2358
2359 return false;
2360 }
2361
2362
2363 /* Return true if T should end a basic block. */
2364
2365 bool
2366 stmt_ends_bb_p (gimple t)
2367 {
2368 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2369 }
2370
2371 /* Remove block annotations and other data structures. */
2372
2373 void
2374 delete_tree_cfg_annotations (void)
2375 {
2376 label_to_block_map = NULL;
2377 }
2378
2379
2380 /* Return the first statement in basic block BB. */
2381
2382 gimple
2383 first_stmt (basic_block bb)
2384 {
2385 gimple_stmt_iterator i = gsi_start_bb (bb);
2386 gimple stmt = NULL;
2387
2388 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2389 {
2390 gsi_next (&i);
2391 stmt = NULL;
2392 }
2393 return stmt;
2394 }
2395
2396 /* Return the first non-label statement in basic block BB. */
2397
2398 static gimple
2399 first_non_label_stmt (basic_block bb)
2400 {
2401 gimple_stmt_iterator i = gsi_start_bb (bb);
2402 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2403 gsi_next (&i);
2404 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2405 }
2406
2407 /* Return the last statement in basic block BB. */
2408
2409 gimple
2410 last_stmt (basic_block bb)
2411 {
2412 gimple_stmt_iterator i = gsi_last_bb (bb);
2413 gimple stmt = NULL;
2414
2415 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2416 {
2417 gsi_prev (&i);
2418 stmt = NULL;
2419 }
2420 return stmt;
2421 }
2422
2423 /* Return the last statement of an otherwise empty block. Return NULL
2424 if the block is totally empty, or if it contains more than one
2425 statement. */
2426
2427 gimple
2428 last_and_only_stmt (basic_block bb)
2429 {
2430 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2431 gimple last, prev;
2432
2433 if (gsi_end_p (i))
2434 return NULL;
2435
2436 last = gsi_stmt (i);
2437 gsi_prev_nondebug (&i);
2438 if (gsi_end_p (i))
2439 return last;
2440
2441 /* Empty statements should no longer appear in the instruction stream.
2442 Everything that might have appeared before should be deleted by
2443 remove_useless_stmts, and the optimizers should just gsi_remove
2444 instead of smashing with build_empty_stmt.
2445
2446 Thus the only thing that should appear here in a block containing
2447 one executable statement is a label. */
2448 prev = gsi_stmt (i);
2449 if (gimple_code (prev) == GIMPLE_LABEL)
2450 return last;
2451 else
2452 return NULL;
2453 }
2454
2455 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2456
2457 static void
2458 reinstall_phi_args (edge new_edge, edge old_edge)
2459 {
2460 edge_var_map_vector v;
2461 edge_var_map *vm;
2462 int i;
2463 gimple_stmt_iterator phis;
2464
2465 v = redirect_edge_var_map_vector (old_edge);
2466 if (!v)
2467 return;
2468
2469 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2470 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2471 i++, gsi_next (&phis))
2472 {
2473 gimple phi = gsi_stmt (phis);
2474 tree result = redirect_edge_var_map_result (vm);
2475 tree arg = redirect_edge_var_map_def (vm);
2476
2477 gcc_assert (result == gimple_phi_result (phi));
2478
2479 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2480 }
2481
2482 redirect_edge_var_map_clear (old_edge);
2483 }
2484
2485 /* Returns the basic block after which the new basic block created
2486 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2487 near its "logical" location. This is of most help to humans looking
2488 at debugging dumps. */
2489
2490 static basic_block
2491 split_edge_bb_loc (edge edge_in)
2492 {
2493 basic_block dest = edge_in->dest;
2494 basic_block dest_prev = dest->prev_bb;
2495
2496 if (dest_prev)
2497 {
2498 edge e = find_edge (dest_prev, dest);
2499 if (e && !(e->flags & EDGE_COMPLEX))
2500 return edge_in->src;
2501 }
2502 return dest_prev;
2503 }
2504
2505 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2506 Abort on abnormal edges. */
2507
2508 static basic_block
2509 gimple_split_edge (edge edge_in)
2510 {
2511 basic_block new_bb, after_bb, dest;
2512 edge new_edge, e;
2513
2514 /* Abnormal edges cannot be split. */
2515 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2516
2517 dest = edge_in->dest;
2518
2519 after_bb = split_edge_bb_loc (edge_in);
2520
2521 new_bb = create_empty_bb (after_bb);
2522 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2523 new_bb->count = edge_in->count;
2524 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2525 new_edge->probability = REG_BR_PROB_BASE;
2526 new_edge->count = edge_in->count;
2527
2528 e = redirect_edge_and_branch (edge_in, new_bb);
2529 gcc_assert (e == edge_in);
2530 reinstall_phi_args (new_edge, e);
2531
2532 return new_bb;
2533 }
2534
2535
2536 /* Verify properties of the address expression T with base object BASE. */
2537
2538 static tree
2539 verify_address (tree t, tree base)
2540 {
2541 bool old_constant;
2542 bool old_side_effects;
2543 bool new_constant;
2544 bool new_side_effects;
2545
2546 old_constant = TREE_CONSTANT (t);
2547 old_side_effects = TREE_SIDE_EFFECTS (t);
2548
2549 recompute_tree_invariant_for_addr_expr (t);
2550 new_side_effects = TREE_SIDE_EFFECTS (t);
2551 new_constant = TREE_CONSTANT (t);
2552
2553 if (old_constant != new_constant)
2554 {
2555 error ("constant not recomputed when ADDR_EXPR changed");
2556 return t;
2557 }
2558 if (old_side_effects != new_side_effects)
2559 {
2560 error ("side effects not recomputed when ADDR_EXPR changed");
2561 return t;
2562 }
2563
2564 if (!(TREE_CODE (base) == VAR_DECL
2565 || TREE_CODE (base) == PARM_DECL
2566 || TREE_CODE (base) == RESULT_DECL))
2567 return NULL_TREE;
2568
2569 if (DECL_GIMPLE_REG_P (base))
2570 {
2571 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2572 return base;
2573 }
2574
2575 return NULL_TREE;
2576 }
2577
2578 /* Callback for walk_tree, check that all elements with address taken are
2579 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2580 inside a PHI node. */
2581
2582 static tree
2583 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2584 {
2585 tree t = *tp, x;
2586
2587 if (TYPE_P (t))
2588 *walk_subtrees = 0;
2589
2590 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2591 #define CHECK_OP(N, MSG) \
2592 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2593 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2594
2595 switch (TREE_CODE (t))
2596 {
2597 case SSA_NAME:
2598 if (SSA_NAME_IN_FREE_LIST (t))
2599 {
2600 error ("SSA name in freelist but still referenced");
2601 return *tp;
2602 }
2603 break;
2604
2605 case INDIRECT_REF:
2606 error ("INDIRECT_REF in gimple IL");
2607 return t;
2608
2609 case MEM_REF:
2610 x = TREE_OPERAND (t, 0);
2611 if (!POINTER_TYPE_P (TREE_TYPE (x))
2612 || !is_gimple_mem_ref_addr (x))
2613 {
2614 error ("invalid first operand of MEM_REF");
2615 return x;
2616 }
2617 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2618 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2619 {
2620 error ("invalid offset operand of MEM_REF");
2621 return TREE_OPERAND (t, 1);
2622 }
2623 if (TREE_CODE (x) == ADDR_EXPR
2624 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2625 return x;
2626 *walk_subtrees = 0;
2627 break;
2628
2629 case ASSERT_EXPR:
2630 x = fold (ASSERT_EXPR_COND (t));
2631 if (x == boolean_false_node)
2632 {
2633 error ("ASSERT_EXPR with an always-false condition");
2634 return *tp;
2635 }
2636 break;
2637
2638 case MODIFY_EXPR:
2639 error ("MODIFY_EXPR not expected while having tuples");
2640 return *tp;
2641
2642 case ADDR_EXPR:
2643 {
2644 tree tem;
2645
2646 gcc_assert (is_gimple_address (t));
2647
2648 /* Skip any references (they will be checked when we recurse down the
2649 tree) and ensure that any variable used as a prefix is marked
2650 addressable. */
2651 for (x = TREE_OPERAND (t, 0);
2652 handled_component_p (x);
2653 x = TREE_OPERAND (x, 0))
2654 ;
2655
2656 if ((tem = verify_address (t, x)))
2657 return tem;
2658
2659 if (!(TREE_CODE (x) == VAR_DECL
2660 || TREE_CODE (x) == PARM_DECL
2661 || TREE_CODE (x) == RESULT_DECL))
2662 return NULL;
2663
2664 if (!TREE_ADDRESSABLE (x))
2665 {
2666 error ("address taken, but ADDRESSABLE bit not set");
2667 return x;
2668 }
2669
2670 break;
2671 }
2672
2673 case COND_EXPR:
2674 x = COND_EXPR_COND (t);
2675 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2676 {
2677 error ("non-integral used in condition");
2678 return x;
2679 }
2680 if (!is_gimple_condexpr (x))
2681 {
2682 error ("invalid conditional operand");
2683 return x;
2684 }
2685 break;
2686
2687 case NON_LVALUE_EXPR:
2688 gcc_unreachable ();
2689
2690 CASE_CONVERT:
2691 case FIX_TRUNC_EXPR:
2692 case FLOAT_EXPR:
2693 case NEGATE_EXPR:
2694 case ABS_EXPR:
2695 case BIT_NOT_EXPR:
2696 case TRUTH_NOT_EXPR:
2697 CHECK_OP (0, "invalid operand to unary operator");
2698 break;
2699
2700 case REALPART_EXPR:
2701 case IMAGPART_EXPR:
2702 case COMPONENT_REF:
2703 case ARRAY_REF:
2704 case ARRAY_RANGE_REF:
2705 case BIT_FIELD_REF:
2706 case VIEW_CONVERT_EXPR:
2707 /* We have a nest of references. Verify that each of the operands
2708 that determine where to reference is either a constant or a variable,
2709 verify that the base is valid, and then show we've already checked
2710 the subtrees. */
2711 while (handled_component_p (t))
2712 {
2713 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2714 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2715 else if (TREE_CODE (t) == ARRAY_REF
2716 || TREE_CODE (t) == ARRAY_RANGE_REF)
2717 {
2718 CHECK_OP (1, "invalid array index");
2719 if (TREE_OPERAND (t, 2))
2720 CHECK_OP (2, "invalid array lower bound");
2721 if (TREE_OPERAND (t, 3))
2722 CHECK_OP (3, "invalid array stride");
2723 }
2724 else if (TREE_CODE (t) == BIT_FIELD_REF)
2725 {
2726 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2727 || !host_integerp (TREE_OPERAND (t, 2), 1))
2728 {
2729 error ("invalid position or size operand to BIT_FIELD_REF");
2730 return t;
2731 }
2732 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2733 && (TYPE_PRECISION (TREE_TYPE (t))
2734 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2735 {
2736 error ("integral result type precision does not match "
2737 "field size of BIT_FIELD_REF");
2738 return t;
2739 }
2740 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2741 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2742 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2743 {
2744 error ("mode precision of non-integral result does not "
2745 "match field size of BIT_FIELD_REF");
2746 return t;
2747 }
2748 }
2749
2750 t = TREE_OPERAND (t, 0);
2751 }
2752
2753 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2754 {
2755 error ("invalid reference prefix");
2756 return t;
2757 }
2758 *walk_subtrees = 0;
2759 break;
2760 case PLUS_EXPR:
2761 case MINUS_EXPR:
2762 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2763 POINTER_PLUS_EXPR. */
2764 if (POINTER_TYPE_P (TREE_TYPE (t)))
2765 {
2766 error ("invalid operand to plus/minus, type is a pointer");
2767 return t;
2768 }
2769 CHECK_OP (0, "invalid operand to binary operator");
2770 CHECK_OP (1, "invalid operand to binary operator");
2771 break;
2772
2773 case POINTER_PLUS_EXPR:
2774 /* Check to make sure the first operand is a pointer or reference type. */
2775 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2776 {
2777 error ("invalid operand to pointer plus, first operand is not a pointer");
2778 return t;
2779 }
2780 /* Check to make sure the second operand is an integer with type of
2781 sizetype. */
2782 if (!useless_type_conversion_p (sizetype,
2783 TREE_TYPE (TREE_OPERAND (t, 1))))
2784 {
2785 error ("invalid operand to pointer plus, second operand is not an "
2786 "integer with type of sizetype");
2787 return t;
2788 }
2789 /* FALLTHROUGH */
2790 case LT_EXPR:
2791 case LE_EXPR:
2792 case GT_EXPR:
2793 case GE_EXPR:
2794 case EQ_EXPR:
2795 case NE_EXPR:
2796 case UNORDERED_EXPR:
2797 case ORDERED_EXPR:
2798 case UNLT_EXPR:
2799 case UNLE_EXPR:
2800 case UNGT_EXPR:
2801 case UNGE_EXPR:
2802 case UNEQ_EXPR:
2803 case LTGT_EXPR:
2804 case MULT_EXPR:
2805 case TRUNC_DIV_EXPR:
2806 case CEIL_DIV_EXPR:
2807 case FLOOR_DIV_EXPR:
2808 case ROUND_DIV_EXPR:
2809 case TRUNC_MOD_EXPR:
2810 case CEIL_MOD_EXPR:
2811 case FLOOR_MOD_EXPR:
2812 case ROUND_MOD_EXPR:
2813 case RDIV_EXPR:
2814 case EXACT_DIV_EXPR:
2815 case MIN_EXPR:
2816 case MAX_EXPR:
2817 case LSHIFT_EXPR:
2818 case RSHIFT_EXPR:
2819 case LROTATE_EXPR:
2820 case RROTATE_EXPR:
2821 case BIT_IOR_EXPR:
2822 case BIT_XOR_EXPR:
2823 case BIT_AND_EXPR:
2824 CHECK_OP (0, "invalid operand to binary operator");
2825 CHECK_OP (1, "invalid operand to binary operator");
2826 break;
2827
2828 case CONSTRUCTOR:
2829 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2830 *walk_subtrees = 0;
2831 break;
2832
2833 default:
2834 break;
2835 }
2836 return NULL;
2837
2838 #undef CHECK_OP
2839 }
2840
2841
2842 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2843 Returns true if there is an error, otherwise false. */
2844
2845 static bool
2846 verify_types_in_gimple_min_lval (tree expr)
2847 {
2848 tree op;
2849
2850 if (is_gimple_id (expr))
2851 return false;
2852
2853 if (TREE_CODE (expr) != TARGET_MEM_REF
2854 && TREE_CODE (expr) != MEM_REF)
2855 {
2856 error ("invalid expression for min lvalue");
2857 return true;
2858 }
2859
2860 /* TARGET_MEM_REFs are strange beasts. */
2861 if (TREE_CODE (expr) == TARGET_MEM_REF)
2862 return false;
2863
2864 op = TREE_OPERAND (expr, 0);
2865 if (!is_gimple_val (op))
2866 {
2867 error ("invalid operand in indirect reference");
2868 debug_generic_stmt (op);
2869 return true;
2870 }
2871 /* Memory references now generally can involve a value conversion. */
2872
2873 return false;
2874 }
2875
2876 /* Verify if EXPR is a valid GIMPLE reference expression. If
2877 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2878 if there is an error, otherwise false. */
2879
2880 static bool
2881 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2882 {
2883 while (handled_component_p (expr))
2884 {
2885 tree op = TREE_OPERAND (expr, 0);
2886
2887 if (TREE_CODE (expr) == ARRAY_REF
2888 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2889 {
2890 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2891 || (TREE_OPERAND (expr, 2)
2892 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2893 || (TREE_OPERAND (expr, 3)
2894 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2895 {
2896 error ("invalid operands to array reference");
2897 debug_generic_stmt (expr);
2898 return true;
2899 }
2900 }
2901
2902 /* Verify if the reference array element types are compatible. */
2903 if (TREE_CODE (expr) == ARRAY_REF
2904 && !useless_type_conversion_p (TREE_TYPE (expr),
2905 TREE_TYPE (TREE_TYPE (op))))
2906 {
2907 error ("type mismatch in array reference");
2908 debug_generic_stmt (TREE_TYPE (expr));
2909 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2910 return true;
2911 }
2912 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2913 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2914 TREE_TYPE (TREE_TYPE (op))))
2915 {
2916 error ("type mismatch in array range reference");
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2918 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2919 return true;
2920 }
2921
2922 if ((TREE_CODE (expr) == REALPART_EXPR
2923 || TREE_CODE (expr) == IMAGPART_EXPR)
2924 && !useless_type_conversion_p (TREE_TYPE (expr),
2925 TREE_TYPE (TREE_TYPE (op))))
2926 {
2927 error ("type mismatch in real/imagpart reference");
2928 debug_generic_stmt (TREE_TYPE (expr));
2929 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2930 return true;
2931 }
2932
2933 if (TREE_CODE (expr) == COMPONENT_REF
2934 && !useless_type_conversion_p (TREE_TYPE (expr),
2935 TREE_TYPE (TREE_OPERAND (expr, 1))))
2936 {
2937 error ("type mismatch in component reference");
2938 debug_generic_stmt (TREE_TYPE (expr));
2939 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2940 return true;
2941 }
2942
2943 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2944 {
2945 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2946 that their operand is not an SSA name or an invariant when
2947 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2948 bug). Otherwise there is nothing to verify, gross mismatches at
2949 most invoke undefined behavior. */
2950 if (require_lvalue
2951 && (TREE_CODE (op) == SSA_NAME
2952 || is_gimple_min_invariant (op)))
2953 {
2954 error ("conversion of an SSA_NAME on the left hand side");
2955 debug_generic_stmt (expr);
2956 return true;
2957 }
2958 else if (TREE_CODE (op) == SSA_NAME
2959 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2960 {
2961 error ("conversion of register to a different size");
2962 debug_generic_stmt (expr);
2963 return true;
2964 }
2965 else if (!handled_component_p (op))
2966 return false;
2967 }
2968
2969 expr = op;
2970 }
2971
2972 if (TREE_CODE (expr) == MEM_REF)
2973 {
2974 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2975 {
2976 error ("invalid address operand in MEM_REF");
2977 debug_generic_stmt (expr);
2978 return true;
2979 }
2980 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2981 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2982 {
2983 error ("invalid offset operand in MEM_REF");
2984 debug_generic_stmt (expr);
2985 return true;
2986 }
2987 }
2988 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2989 {
2990 if (!TMR_BASE (expr)
2991 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2992 {
2993 error ("invalid address operand in TARGET_MEM_REF");
2994 return true;
2995 }
2996 if (!TMR_OFFSET (expr)
2997 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2998 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
2999 {
3000 error ("invalid offset operand in TARGET_MEM_REF");
3001 debug_generic_stmt (expr);
3002 return true;
3003 }
3004 }
3005
3006 return ((require_lvalue || !is_gimple_min_invariant (expr))
3007 && verify_types_in_gimple_min_lval (expr));
3008 }
3009
3010 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3011 list of pointer-to types that is trivially convertible to DEST. */
3012
3013 static bool
3014 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3015 {
3016 tree src;
3017
3018 if (!TYPE_POINTER_TO (src_obj))
3019 return true;
3020
3021 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3022 if (useless_type_conversion_p (dest, src))
3023 return true;
3024
3025 return false;
3026 }
3027
3028 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3029 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3030
3031 static bool
3032 valid_fixed_convert_types_p (tree type1, tree type2)
3033 {
3034 return (FIXED_POINT_TYPE_P (type1)
3035 && (INTEGRAL_TYPE_P (type2)
3036 || SCALAR_FLOAT_TYPE_P (type2)
3037 || FIXED_POINT_TYPE_P (type2)));
3038 }
3039
3040 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3041 is a problem, otherwise false. */
3042
3043 static bool
3044 verify_gimple_call (gimple stmt)
3045 {
3046 tree fn = gimple_call_fn (stmt);
3047 tree fntype, fndecl;
3048 unsigned i;
3049
3050 if (gimple_call_internal_p (stmt))
3051 {
3052 if (fn)
3053 {
3054 error ("gimple call has two targets");
3055 debug_generic_stmt (fn);
3056 return true;
3057 }
3058 }
3059 else
3060 {
3061 if (!fn)
3062 {
3063 error ("gimple call has no target");
3064 return true;
3065 }
3066 }
3067
3068 if (fn && !is_gimple_call_addr (fn))
3069 {
3070 error ("invalid function in gimple call");
3071 debug_generic_stmt (fn);
3072 return true;
3073 }
3074
3075 if (fn
3076 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3077 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3078 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3079 {
3080 error ("non-function in gimple call");
3081 return true;
3082 }
3083
3084 fndecl = gimple_call_fndecl (stmt);
3085 if (fndecl
3086 && TREE_CODE (fndecl) == FUNCTION_DECL
3087 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3088 && !DECL_PURE_P (fndecl)
3089 && !TREE_READONLY (fndecl))
3090 {
3091 error ("invalid pure const state for function");
3092 return true;
3093 }
3094
3095 if (gimple_call_lhs (stmt)
3096 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3097 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3098 {
3099 error ("invalid LHS in gimple call");
3100 return true;
3101 }
3102
3103 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3104 {
3105 error ("LHS in noreturn call");
3106 return true;
3107 }
3108
3109 fntype = gimple_call_fntype (stmt);
3110 if (fntype
3111 && gimple_call_lhs (stmt)
3112 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3113 TREE_TYPE (fntype))
3114 /* ??? At least C++ misses conversions at assignments from
3115 void * call results.
3116 ??? Java is completely off. Especially with functions
3117 returning java.lang.Object.
3118 For now simply allow arbitrary pointer type conversions. */
3119 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3120 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3121 {
3122 error ("invalid conversion in gimple call");
3123 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3124 debug_generic_stmt (TREE_TYPE (fntype));
3125 return true;
3126 }
3127
3128 if (gimple_call_chain (stmt)
3129 && !is_gimple_val (gimple_call_chain (stmt)))
3130 {
3131 error ("invalid static chain in gimple call");
3132 debug_generic_stmt (gimple_call_chain (stmt));
3133 return true;
3134 }
3135
3136 /* If there is a static chain argument, this should not be an indirect
3137 call, and the decl should have DECL_STATIC_CHAIN set. */
3138 if (gimple_call_chain (stmt))
3139 {
3140 if (!gimple_call_fndecl (stmt))
3141 {
3142 error ("static chain in indirect gimple call");
3143 return true;
3144 }
3145 fn = TREE_OPERAND (fn, 0);
3146
3147 if (!DECL_STATIC_CHAIN (fn))
3148 {
3149 error ("static chain with function that doesn%'t use one");
3150 return true;
3151 }
3152 }
3153
3154 /* ??? The C frontend passes unpromoted arguments in case it
3155 didn't see a function declaration before the call. So for now
3156 leave the call arguments mostly unverified. Once we gimplify
3157 unit-at-a-time we have a chance to fix this. */
3158
3159 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3160 {
3161 tree arg = gimple_call_arg (stmt, i);
3162 if ((is_gimple_reg_type (TREE_TYPE (arg))
3163 && !is_gimple_val (arg))
3164 || (!is_gimple_reg_type (TREE_TYPE (arg))
3165 && !is_gimple_lvalue (arg)))
3166 {
3167 error ("invalid argument to gimple call");
3168 debug_generic_expr (arg);
3169 return true;
3170 }
3171 }
3172
3173 return false;
3174 }
3175
3176 /* Verifies the gimple comparison with the result type TYPE and
3177 the operands OP0 and OP1. */
3178
3179 static bool
3180 verify_gimple_comparison (tree type, tree op0, tree op1)
3181 {
3182 tree op0_type = TREE_TYPE (op0);
3183 tree op1_type = TREE_TYPE (op1);
3184
3185 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3186 {
3187 error ("invalid operands in gimple comparison");
3188 return true;
3189 }
3190
3191 /* For comparisons we do not have the operations type as the
3192 effective type the comparison is carried out in. Instead
3193 we require that either the first operand is trivially
3194 convertible into the second, or the other way around.
3195 The resulting type of a comparison may be any integral type.
3196 Because we special-case pointers to void we allow
3197 comparisons of pointers with the same mode as well. */
3198 if ((!useless_type_conversion_p (op0_type, op1_type)
3199 && !useless_type_conversion_p (op1_type, op0_type)
3200 && (!POINTER_TYPE_P (op0_type)
3201 || !POINTER_TYPE_P (op1_type)
3202 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3203 || !INTEGRAL_TYPE_P (type))
3204 {
3205 error ("type mismatch in comparison expression");
3206 debug_generic_expr (type);
3207 debug_generic_expr (op0_type);
3208 debug_generic_expr (op1_type);
3209 return true;
3210 }
3211
3212 return false;
3213 }
3214
3215 /* Verify a gimple assignment statement STMT with an unary rhs.
3216 Returns true if anything is wrong. */
3217
3218 static bool
3219 verify_gimple_assign_unary (gimple stmt)
3220 {
3221 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3222 tree lhs = gimple_assign_lhs (stmt);
3223 tree lhs_type = TREE_TYPE (lhs);
3224 tree rhs1 = gimple_assign_rhs1 (stmt);
3225 tree rhs1_type = TREE_TYPE (rhs1);
3226
3227 if (!is_gimple_reg (lhs))
3228 {
3229 error ("non-register as LHS of unary operation");
3230 return true;
3231 }
3232
3233 if (!is_gimple_val (rhs1))
3234 {
3235 error ("invalid operand in unary operation");
3236 return true;
3237 }
3238
3239 /* First handle conversions. */
3240 switch (rhs_code)
3241 {
3242 CASE_CONVERT:
3243 {
3244 /* Allow conversions between integral types and pointers only if
3245 there is no sign or zero extension involved.
3246 For targets were the precision of sizetype doesn't match that
3247 of pointers we need to allow arbitrary conversions from and
3248 to sizetype. */
3249 if ((POINTER_TYPE_P (lhs_type)
3250 && INTEGRAL_TYPE_P (rhs1_type)
3251 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3252 || rhs1_type == sizetype))
3253 || (POINTER_TYPE_P (rhs1_type)
3254 && INTEGRAL_TYPE_P (lhs_type)
3255 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3256 || lhs_type == sizetype)))
3257 return false;
3258
3259 /* Allow conversion from integer to offset type and vice versa. */
3260 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3261 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3262 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3263 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3264 return false;
3265
3266 /* Otherwise assert we are converting between types of the
3267 same kind. */
3268 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3269 {
3270 error ("invalid types in nop conversion");
3271 debug_generic_expr (lhs_type);
3272 debug_generic_expr (rhs1_type);
3273 return true;
3274 }
3275
3276 return false;
3277 }
3278
3279 case ADDR_SPACE_CONVERT_EXPR:
3280 {
3281 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3282 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3283 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3284 {
3285 error ("invalid types in address space conversion");
3286 debug_generic_expr (lhs_type);
3287 debug_generic_expr (rhs1_type);
3288 return true;
3289 }
3290
3291 return false;
3292 }
3293
3294 case FIXED_CONVERT_EXPR:
3295 {
3296 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3297 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3298 {
3299 error ("invalid types in fixed-point conversion");
3300 debug_generic_expr (lhs_type);
3301 debug_generic_expr (rhs1_type);
3302 return true;
3303 }
3304
3305 return false;
3306 }
3307
3308 case FLOAT_EXPR:
3309 {
3310 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3311 {
3312 error ("invalid types in conversion to floating point");
3313 debug_generic_expr (lhs_type);
3314 debug_generic_expr (rhs1_type);
3315 return true;
3316 }
3317
3318 return false;
3319 }
3320
3321 case FIX_TRUNC_EXPR:
3322 {
3323 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3324 {
3325 error ("invalid types in conversion to integer");
3326 debug_generic_expr (lhs_type);
3327 debug_generic_expr (rhs1_type);
3328 return true;
3329 }
3330
3331 return false;
3332 }
3333
3334 case VEC_UNPACK_HI_EXPR:
3335 case VEC_UNPACK_LO_EXPR:
3336 case REDUC_MAX_EXPR:
3337 case REDUC_MIN_EXPR:
3338 case REDUC_PLUS_EXPR:
3339 case VEC_UNPACK_FLOAT_HI_EXPR:
3340 case VEC_UNPACK_FLOAT_LO_EXPR:
3341 /* FIXME. */
3342 return false;
3343
3344 case TRUTH_NOT_EXPR:
3345 if (!useless_type_conversion_p (boolean_type_node, rhs1_type))
3346 {
3347 error ("invalid types in truth not");
3348 debug_generic_expr (lhs_type);
3349 debug_generic_expr (rhs1_type);
3350 return true;
3351 }
3352 break;
3353
3354 case NEGATE_EXPR:
3355 case ABS_EXPR:
3356 case BIT_NOT_EXPR:
3357 case PAREN_EXPR:
3358 case NON_LVALUE_EXPR:
3359 case CONJ_EXPR:
3360 break;
3361
3362 default:
3363 gcc_unreachable ();
3364 }
3365
3366 /* For the remaining codes assert there is no conversion involved. */
3367 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3368 {
3369 error ("non-trivial conversion in unary operation");
3370 debug_generic_expr (lhs_type);
3371 debug_generic_expr (rhs1_type);
3372 return true;
3373 }
3374
3375 return false;
3376 }
3377
3378 /* Verify a gimple assignment statement STMT with a binary rhs.
3379 Returns true if anything is wrong. */
3380
3381 static bool
3382 verify_gimple_assign_binary (gimple stmt)
3383 {
3384 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3385 tree lhs = gimple_assign_lhs (stmt);
3386 tree lhs_type = TREE_TYPE (lhs);
3387 tree rhs1 = gimple_assign_rhs1 (stmt);
3388 tree rhs1_type = TREE_TYPE (rhs1);
3389 tree rhs2 = gimple_assign_rhs2 (stmt);
3390 tree rhs2_type = TREE_TYPE (rhs2);
3391
3392 if (!is_gimple_reg (lhs))
3393 {
3394 error ("non-register as LHS of binary operation");
3395 return true;
3396 }
3397
3398 if (!is_gimple_val (rhs1)
3399 || !is_gimple_val (rhs2))
3400 {
3401 error ("invalid operands in binary operation");
3402 return true;
3403 }
3404
3405 /* First handle operations that involve different types. */
3406 switch (rhs_code)
3407 {
3408 case COMPLEX_EXPR:
3409 {
3410 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3411 || !(INTEGRAL_TYPE_P (rhs1_type)
3412 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3413 || !(INTEGRAL_TYPE_P (rhs2_type)
3414 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3415 {
3416 error ("type mismatch in complex expression");
3417 debug_generic_expr (lhs_type);
3418 debug_generic_expr (rhs1_type);
3419 debug_generic_expr (rhs2_type);
3420 return true;
3421 }
3422
3423 return false;
3424 }
3425
3426 case LSHIFT_EXPR:
3427 case RSHIFT_EXPR:
3428 case LROTATE_EXPR:
3429 case RROTATE_EXPR:
3430 {
3431 /* Shifts and rotates are ok on integral types, fixed point
3432 types and integer vector types. */
3433 if ((!INTEGRAL_TYPE_P (rhs1_type)
3434 && !FIXED_POINT_TYPE_P (rhs1_type)
3435 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3436 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3437 || (!INTEGRAL_TYPE_P (rhs2_type)
3438 /* Vector shifts of vectors are also ok. */
3439 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3440 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3441 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3442 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3443 || !useless_type_conversion_p (lhs_type, rhs1_type))
3444 {
3445 error ("type mismatch in shift expression");
3446 debug_generic_expr (lhs_type);
3447 debug_generic_expr (rhs1_type);
3448 debug_generic_expr (rhs2_type);
3449 return true;
3450 }
3451
3452 return false;
3453 }
3454
3455 case VEC_LSHIFT_EXPR:
3456 case VEC_RSHIFT_EXPR:
3457 {
3458 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3459 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3460 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3461 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3462 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3463 || (!INTEGRAL_TYPE_P (rhs2_type)
3464 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3465 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3466 || !useless_type_conversion_p (lhs_type, rhs1_type))
3467 {
3468 error ("type mismatch in vector shift expression");
3469 debug_generic_expr (lhs_type);
3470 debug_generic_expr (rhs1_type);
3471 debug_generic_expr (rhs2_type);
3472 return true;
3473 }
3474 /* For shifting a vector of non-integral components we
3475 only allow shifting by a constant multiple of the element size. */
3476 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3477 && (TREE_CODE (rhs2) != INTEGER_CST
3478 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3479 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3480 {
3481 error ("non-element sized vector shift of floating point vector");
3482 return true;
3483 }
3484
3485 return false;
3486 }
3487
3488 case PLUS_EXPR:
3489 case MINUS_EXPR:
3490 {
3491 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3492 ??? This just makes the checker happy and may not be what is
3493 intended. */
3494 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3495 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3496 {
3497 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3498 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3499 {
3500 error ("invalid non-vector operands to vector valued plus");
3501 return true;
3502 }
3503 lhs_type = TREE_TYPE (lhs_type);
3504 rhs1_type = TREE_TYPE (rhs1_type);
3505 rhs2_type = TREE_TYPE (rhs2_type);
3506 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3507 the pointer to 2nd place. */
3508 if (POINTER_TYPE_P (rhs2_type))
3509 {
3510 tree tem = rhs1_type;
3511 rhs1_type = rhs2_type;
3512 rhs2_type = tem;
3513 }
3514 goto do_pointer_plus_expr_check;
3515 }
3516 if (POINTER_TYPE_P (lhs_type)
3517 || POINTER_TYPE_P (rhs1_type)
3518 || POINTER_TYPE_P (rhs2_type))
3519 {
3520 error ("invalid (pointer) operands to plus/minus");
3521 return true;
3522 }
3523
3524 /* Continue with generic binary expression handling. */
3525 break;
3526 }
3527
3528 case POINTER_PLUS_EXPR:
3529 {
3530 do_pointer_plus_expr_check:
3531 if (!POINTER_TYPE_P (rhs1_type)
3532 || !useless_type_conversion_p (lhs_type, rhs1_type)
3533 || !useless_type_conversion_p (sizetype, rhs2_type))
3534 {
3535 error ("type mismatch in pointer plus expression");
3536 debug_generic_stmt (lhs_type);
3537 debug_generic_stmt (rhs1_type);
3538 debug_generic_stmt (rhs2_type);
3539 return true;
3540 }
3541
3542 return false;
3543 }
3544
3545 case TRUTH_ANDIF_EXPR:
3546 case TRUTH_ORIF_EXPR:
3547 gcc_unreachable ();
3548
3549 case TRUTH_AND_EXPR:
3550 case TRUTH_OR_EXPR:
3551 case TRUTH_XOR_EXPR:
3552 {
3553 /* We allow only boolean typed or compatible argument and result. */
3554 if (!useless_type_conversion_p (boolean_type_node, rhs1_type)
3555 || !useless_type_conversion_p (boolean_type_node, rhs2_type)
3556 || !useless_type_conversion_p (boolean_type_node, lhs_type))
3557 {
3558 error ("type mismatch in binary truth expression");
3559 debug_generic_expr (lhs_type);
3560 debug_generic_expr (rhs1_type);
3561 debug_generic_expr (rhs2_type);
3562 return true;
3563 }
3564
3565 return false;
3566 }
3567
3568 case LT_EXPR:
3569 case LE_EXPR:
3570 case GT_EXPR:
3571 case GE_EXPR:
3572 case EQ_EXPR:
3573 case NE_EXPR:
3574 case UNORDERED_EXPR:
3575 case ORDERED_EXPR:
3576 case UNLT_EXPR:
3577 case UNLE_EXPR:
3578 case UNGT_EXPR:
3579 case UNGE_EXPR:
3580 case UNEQ_EXPR:
3581 case LTGT_EXPR:
3582 /* Comparisons are also binary, but the result type is not
3583 connected to the operand types. */
3584 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3585
3586 case WIDEN_MULT_EXPR:
3587 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3588 return true;
3589 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3590 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3591
3592 case WIDEN_SUM_EXPR:
3593 case VEC_WIDEN_MULT_HI_EXPR:
3594 case VEC_WIDEN_MULT_LO_EXPR:
3595 case VEC_PACK_TRUNC_EXPR:
3596 case VEC_PACK_SAT_EXPR:
3597 case VEC_PACK_FIX_TRUNC_EXPR:
3598 case VEC_EXTRACT_EVEN_EXPR:
3599 case VEC_EXTRACT_ODD_EXPR:
3600 case VEC_INTERLEAVE_HIGH_EXPR:
3601 case VEC_INTERLEAVE_LOW_EXPR:
3602 /* FIXME. */
3603 return false;
3604
3605 case MULT_EXPR:
3606 case TRUNC_DIV_EXPR:
3607 case CEIL_DIV_EXPR:
3608 case FLOOR_DIV_EXPR:
3609 case ROUND_DIV_EXPR:
3610 case TRUNC_MOD_EXPR:
3611 case CEIL_MOD_EXPR:
3612 case FLOOR_MOD_EXPR:
3613 case ROUND_MOD_EXPR:
3614 case RDIV_EXPR:
3615 case EXACT_DIV_EXPR:
3616 case MIN_EXPR:
3617 case MAX_EXPR:
3618 case BIT_IOR_EXPR:
3619 case BIT_XOR_EXPR:
3620 case BIT_AND_EXPR:
3621 /* Continue with generic binary expression handling. */
3622 break;
3623
3624 default:
3625 gcc_unreachable ();
3626 }
3627
3628 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3629 || !useless_type_conversion_p (lhs_type, rhs2_type))
3630 {
3631 error ("type mismatch in binary expression");
3632 debug_generic_stmt (lhs_type);
3633 debug_generic_stmt (rhs1_type);
3634 debug_generic_stmt (rhs2_type);
3635 return true;
3636 }
3637
3638 return false;
3639 }
3640
3641 /* Verify a gimple assignment statement STMT with a ternary rhs.
3642 Returns true if anything is wrong. */
3643
3644 static bool
3645 verify_gimple_assign_ternary (gimple stmt)
3646 {
3647 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3648 tree lhs = gimple_assign_lhs (stmt);
3649 tree lhs_type = TREE_TYPE (lhs);
3650 tree rhs1 = gimple_assign_rhs1 (stmt);
3651 tree rhs1_type = TREE_TYPE (rhs1);
3652 tree rhs2 = gimple_assign_rhs2 (stmt);
3653 tree rhs2_type = TREE_TYPE (rhs2);
3654 tree rhs3 = gimple_assign_rhs3 (stmt);
3655 tree rhs3_type = TREE_TYPE (rhs3);
3656
3657 if (!is_gimple_reg (lhs))
3658 {
3659 error ("non-register as LHS of ternary operation");
3660 return true;
3661 }
3662
3663 if (!is_gimple_val (rhs1)
3664 || !is_gimple_val (rhs2)
3665 || !is_gimple_val (rhs3))
3666 {
3667 error ("invalid operands in ternary operation");
3668 return true;
3669 }
3670
3671 /* First handle operations that involve different types. */
3672 switch (rhs_code)
3673 {
3674 case WIDEN_MULT_PLUS_EXPR:
3675 case WIDEN_MULT_MINUS_EXPR:
3676 if ((!INTEGRAL_TYPE_P (rhs1_type)
3677 && !FIXED_POINT_TYPE_P (rhs1_type))
3678 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3679 || !useless_type_conversion_p (lhs_type, rhs3_type)
3680 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3681 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3682 {
3683 error ("type mismatch in widening multiply-accumulate expression");
3684 debug_generic_expr (lhs_type);
3685 debug_generic_expr (rhs1_type);
3686 debug_generic_expr (rhs2_type);
3687 debug_generic_expr (rhs3_type);
3688 return true;
3689 }
3690 break;
3691
3692 case FMA_EXPR:
3693 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3694 || !useless_type_conversion_p (lhs_type, rhs2_type)
3695 || !useless_type_conversion_p (lhs_type, rhs3_type))
3696 {
3697 error ("type mismatch in fused multiply-add expression");
3698 debug_generic_expr (lhs_type);
3699 debug_generic_expr (rhs1_type);
3700 debug_generic_expr (rhs2_type);
3701 debug_generic_expr (rhs3_type);
3702 return true;
3703 }
3704 break;
3705
3706 case DOT_PROD_EXPR:
3707 case REALIGN_LOAD_EXPR:
3708 /* FIXME. */
3709 return false;
3710
3711 default:
3712 gcc_unreachable ();
3713 }
3714 return false;
3715 }
3716
3717 /* Verify a gimple assignment statement STMT with a single rhs.
3718 Returns true if anything is wrong. */
3719
3720 static bool
3721 verify_gimple_assign_single (gimple stmt)
3722 {
3723 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3724 tree lhs = gimple_assign_lhs (stmt);
3725 tree lhs_type = TREE_TYPE (lhs);
3726 tree rhs1 = gimple_assign_rhs1 (stmt);
3727 tree rhs1_type = TREE_TYPE (rhs1);
3728 bool res = false;
3729
3730 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3731 {
3732 error ("non-trivial conversion at assignment");
3733 debug_generic_expr (lhs_type);
3734 debug_generic_expr (rhs1_type);
3735 return true;
3736 }
3737
3738 if (handled_component_p (lhs))
3739 res |= verify_types_in_gimple_reference (lhs, true);
3740
3741 /* Special codes we cannot handle via their class. */
3742 switch (rhs_code)
3743 {
3744 case ADDR_EXPR:
3745 {
3746 tree op = TREE_OPERAND (rhs1, 0);
3747 if (!is_gimple_addressable (op))
3748 {
3749 error ("invalid operand in unary expression");
3750 return true;
3751 }
3752
3753 /* Technically there is no longer a need for matching types, but
3754 gimple hygiene asks for this check. In LTO we can end up
3755 combining incompatible units and thus end up with addresses
3756 of globals that change their type to a common one. */
3757 if (!in_lto_p
3758 && !types_compatible_p (TREE_TYPE (op),
3759 TREE_TYPE (TREE_TYPE (rhs1)))
3760 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3761 TREE_TYPE (op)))
3762 {
3763 error ("type mismatch in address expression");
3764 debug_generic_stmt (TREE_TYPE (rhs1));
3765 debug_generic_stmt (TREE_TYPE (op));
3766 return true;
3767 }
3768
3769 return verify_types_in_gimple_reference (op, true);
3770 }
3771
3772 /* tcc_reference */
3773 case INDIRECT_REF:
3774 error ("INDIRECT_REF in gimple IL");
3775 return true;
3776
3777 case COMPONENT_REF:
3778 case BIT_FIELD_REF:
3779 case ARRAY_REF:
3780 case ARRAY_RANGE_REF:
3781 case VIEW_CONVERT_EXPR:
3782 case REALPART_EXPR:
3783 case IMAGPART_EXPR:
3784 case TARGET_MEM_REF:
3785 case MEM_REF:
3786 if (!is_gimple_reg (lhs)
3787 && is_gimple_reg_type (TREE_TYPE (lhs)))
3788 {
3789 error ("invalid rhs for gimple memory store");
3790 debug_generic_stmt (lhs);
3791 debug_generic_stmt (rhs1);
3792 return true;
3793 }
3794 return res || verify_types_in_gimple_reference (rhs1, false);
3795
3796 /* tcc_constant */
3797 case SSA_NAME:
3798 case INTEGER_CST:
3799 case REAL_CST:
3800 case FIXED_CST:
3801 case COMPLEX_CST:
3802 case VECTOR_CST:
3803 case STRING_CST:
3804 return res;
3805
3806 /* tcc_declaration */
3807 case CONST_DECL:
3808 return res;
3809 case VAR_DECL:
3810 case PARM_DECL:
3811 if (!is_gimple_reg (lhs)
3812 && !is_gimple_reg (rhs1)
3813 && is_gimple_reg_type (TREE_TYPE (lhs)))
3814 {
3815 error ("invalid rhs for gimple memory store");
3816 debug_generic_stmt (lhs);
3817 debug_generic_stmt (rhs1);
3818 return true;
3819 }
3820 return res;
3821
3822 case COND_EXPR:
3823 if (!is_gimple_reg (lhs)
3824 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3825 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3826 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3827 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3828 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3829 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3830 {
3831 error ("invalid COND_EXPR in gimple assignment");
3832 debug_generic_stmt (rhs1);
3833 return true;
3834 }
3835 return res;
3836
3837 case CONSTRUCTOR:
3838 case OBJ_TYPE_REF:
3839 case ASSERT_EXPR:
3840 case WITH_SIZE_EXPR:
3841 case VEC_COND_EXPR:
3842 /* FIXME. */
3843 return res;
3844
3845 default:;
3846 }
3847
3848 return res;
3849 }
3850
3851 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3852 is a problem, otherwise false. */
3853
3854 static bool
3855 verify_gimple_assign (gimple stmt)
3856 {
3857 switch (gimple_assign_rhs_class (stmt))
3858 {
3859 case GIMPLE_SINGLE_RHS:
3860 return verify_gimple_assign_single (stmt);
3861
3862 case GIMPLE_UNARY_RHS:
3863 return verify_gimple_assign_unary (stmt);
3864
3865 case GIMPLE_BINARY_RHS:
3866 return verify_gimple_assign_binary (stmt);
3867
3868 case GIMPLE_TERNARY_RHS:
3869 return verify_gimple_assign_ternary (stmt);
3870
3871 default:
3872 gcc_unreachable ();
3873 }
3874 }
3875
3876 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3877 is a problem, otherwise false. */
3878
3879 static bool
3880 verify_gimple_return (gimple stmt)
3881 {
3882 tree op = gimple_return_retval (stmt);
3883 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3884
3885 /* We cannot test for present return values as we do not fix up missing
3886 return values from the original source. */
3887 if (op == NULL)
3888 return false;
3889
3890 if (!is_gimple_val (op)
3891 && TREE_CODE (op) != RESULT_DECL)
3892 {
3893 error ("invalid operand in return statement");
3894 debug_generic_stmt (op);
3895 return true;
3896 }
3897
3898 if ((TREE_CODE (op) == RESULT_DECL
3899 && DECL_BY_REFERENCE (op))
3900 || (TREE_CODE (op) == SSA_NAME
3901 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3902 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3903 op = TREE_TYPE (op);
3904
3905 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3906 {
3907 error ("invalid conversion in return statement");
3908 debug_generic_stmt (restype);
3909 debug_generic_stmt (TREE_TYPE (op));
3910 return true;
3911 }
3912
3913 return false;
3914 }
3915
3916
3917 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3918 is a problem, otherwise false. */
3919
3920 static bool
3921 verify_gimple_goto (gimple stmt)
3922 {
3923 tree dest = gimple_goto_dest (stmt);
3924
3925 /* ??? We have two canonical forms of direct goto destinations, a
3926 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3927 if (TREE_CODE (dest) != LABEL_DECL
3928 && (!is_gimple_val (dest)
3929 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3930 {
3931 error ("goto destination is neither a label nor a pointer");
3932 return true;
3933 }
3934
3935 return false;
3936 }
3937
3938 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3939 is a problem, otherwise false. */
3940
3941 static bool
3942 verify_gimple_switch (gimple stmt)
3943 {
3944 if (!is_gimple_val (gimple_switch_index (stmt)))
3945 {
3946 error ("invalid operand to switch statement");
3947 debug_generic_stmt (gimple_switch_index (stmt));
3948 return true;
3949 }
3950
3951 return false;
3952 }
3953
3954
3955 /* Verify a gimple debug statement STMT.
3956 Returns true if anything is wrong. */
3957
3958 static bool
3959 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3960 {
3961 /* There isn't much that could be wrong in a gimple debug stmt. A
3962 gimple debug bind stmt, for example, maps a tree, that's usually
3963 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3964 component or member of an aggregate type, to another tree, that
3965 can be an arbitrary expression. These stmts expand into debug
3966 insns, and are converted to debug notes by var-tracking.c. */
3967 return false;
3968 }
3969
3970 /* Verify a gimple label statement STMT.
3971 Returns true if anything is wrong. */
3972
3973 static bool
3974 verify_gimple_label (gimple stmt)
3975 {
3976 tree decl = gimple_label_label (stmt);
3977 int uid;
3978 bool err = false;
3979
3980 if (TREE_CODE (decl) != LABEL_DECL)
3981 return true;
3982
3983 uid = LABEL_DECL_UID (decl);
3984 if (cfun->cfg
3985 && (uid == -1
3986 || VEC_index (basic_block,
3987 label_to_block_map, uid) != gimple_bb (stmt)))
3988 {
3989 error ("incorrect entry in label_to_block_map");
3990 err |= true;
3991 }
3992
3993 uid = EH_LANDING_PAD_NR (decl);
3994 if (uid)
3995 {
3996 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
3997 if (decl != lp->post_landing_pad)
3998 {
3999 error ("incorrect setting of landing pad number");
4000 err |= true;
4001 }
4002 }
4003
4004 return err;
4005 }
4006
4007 /* Verify the GIMPLE statement STMT. Returns true if there is an
4008 error, otherwise false. */
4009
4010 static bool
4011 verify_gimple_stmt (gimple stmt)
4012 {
4013 switch (gimple_code (stmt))
4014 {
4015 case GIMPLE_ASSIGN:
4016 return verify_gimple_assign (stmt);
4017
4018 case GIMPLE_LABEL:
4019 return verify_gimple_label (stmt);
4020
4021 case GIMPLE_CALL:
4022 return verify_gimple_call (stmt);
4023
4024 case GIMPLE_COND:
4025 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4026 {
4027 error ("invalid comparison code in gimple cond");
4028 return true;
4029 }
4030 if (!(!gimple_cond_true_label (stmt)
4031 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4032 || !(!gimple_cond_false_label (stmt)
4033 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4034 {
4035 error ("invalid labels in gimple cond");
4036 return true;
4037 }
4038
4039 return verify_gimple_comparison (boolean_type_node,
4040 gimple_cond_lhs (stmt),
4041 gimple_cond_rhs (stmt));
4042
4043 case GIMPLE_GOTO:
4044 return verify_gimple_goto (stmt);
4045
4046 case GIMPLE_SWITCH:
4047 return verify_gimple_switch (stmt);
4048
4049 case GIMPLE_RETURN:
4050 return verify_gimple_return (stmt);
4051
4052 case GIMPLE_ASM:
4053 return false;
4054
4055 /* Tuples that do not have tree operands. */
4056 case GIMPLE_NOP:
4057 case GIMPLE_PREDICT:
4058 case GIMPLE_RESX:
4059 case GIMPLE_EH_DISPATCH:
4060 case GIMPLE_EH_MUST_NOT_THROW:
4061 return false;
4062
4063 CASE_GIMPLE_OMP:
4064 /* OpenMP directives are validated by the FE and never operated
4065 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4066 non-gimple expressions when the main index variable has had
4067 its address taken. This does not affect the loop itself
4068 because the header of an GIMPLE_OMP_FOR is merely used to determine
4069 how to setup the parallel iteration. */
4070 return false;
4071
4072 case GIMPLE_DEBUG:
4073 return verify_gimple_debug (stmt);
4074
4075 default:
4076 gcc_unreachable ();
4077 }
4078 }
4079
4080 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4081 and false otherwise. */
4082
4083 static bool
4084 verify_gimple_phi (gimple phi)
4085 {
4086 bool err = false;
4087 unsigned i;
4088 tree phi_result = gimple_phi_result (phi);
4089 bool virtual_p;
4090
4091 if (!phi_result)
4092 {
4093 error ("invalid PHI result");
4094 return true;
4095 }
4096
4097 virtual_p = !is_gimple_reg (phi_result);
4098 if (TREE_CODE (phi_result) != SSA_NAME
4099 || (virtual_p
4100 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4101 {
4102 error ("invalid PHI result");
4103 err = true;
4104 }
4105
4106 for (i = 0; i < gimple_phi_num_args (phi); i++)
4107 {
4108 tree t = gimple_phi_arg_def (phi, i);
4109
4110 if (!t)
4111 {
4112 error ("missing PHI def");
4113 err |= true;
4114 continue;
4115 }
4116 /* Addressable variables do have SSA_NAMEs but they
4117 are not considered gimple values. */
4118 else if ((TREE_CODE (t) == SSA_NAME
4119 && virtual_p != !is_gimple_reg (t))
4120 || (virtual_p
4121 && (TREE_CODE (t) != SSA_NAME
4122 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4123 || (!virtual_p
4124 && !is_gimple_val (t)))
4125 {
4126 error ("invalid PHI argument");
4127 debug_generic_expr (t);
4128 err |= true;
4129 }
4130 #ifdef ENABLE_TYPES_CHECKING
4131 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4132 {
4133 error ("incompatible types in PHI argument %u", i);
4134 debug_generic_stmt (TREE_TYPE (phi_result));
4135 debug_generic_stmt (TREE_TYPE (t));
4136 err |= true;
4137 }
4138 #endif
4139 }
4140
4141 return err;
4142 }
4143
4144 /* Verify the GIMPLE statements inside the sequence STMTS. */
4145
4146 static bool
4147 verify_gimple_in_seq_2 (gimple_seq stmts)
4148 {
4149 gimple_stmt_iterator ittr;
4150 bool err = false;
4151
4152 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4153 {
4154 gimple stmt = gsi_stmt (ittr);
4155
4156 switch (gimple_code (stmt))
4157 {
4158 case GIMPLE_BIND:
4159 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4160 break;
4161
4162 case GIMPLE_TRY:
4163 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4164 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4165 break;
4166
4167 case GIMPLE_EH_FILTER:
4168 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4169 break;
4170
4171 case GIMPLE_CATCH:
4172 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4173 break;
4174
4175 default:
4176 {
4177 bool err2 = verify_gimple_stmt (stmt);
4178 if (err2)
4179 debug_gimple_stmt (stmt);
4180 err |= err2;
4181 }
4182 }
4183 }
4184
4185 return err;
4186 }
4187
4188
4189 /* Verify the GIMPLE statements inside the statement list STMTS. */
4190
4191 DEBUG_FUNCTION void
4192 verify_gimple_in_seq (gimple_seq stmts)
4193 {
4194 timevar_push (TV_TREE_STMT_VERIFY);
4195 if (verify_gimple_in_seq_2 (stmts))
4196 internal_error ("verify_gimple failed");
4197 timevar_pop (TV_TREE_STMT_VERIFY);
4198 }
4199
4200 /* Return true when the T can be shared. */
4201
4202 bool
4203 tree_node_can_be_shared (tree t)
4204 {
4205 if (IS_TYPE_OR_DECL_P (t)
4206 || is_gimple_min_invariant (t)
4207 || TREE_CODE (t) == SSA_NAME
4208 || t == error_mark_node
4209 || TREE_CODE (t) == IDENTIFIER_NODE)
4210 return true;
4211
4212 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4213 return true;
4214
4215 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4216 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4217 || TREE_CODE (t) == COMPONENT_REF
4218 || TREE_CODE (t) == REALPART_EXPR
4219 || TREE_CODE (t) == IMAGPART_EXPR)
4220 t = TREE_OPERAND (t, 0);
4221
4222 if (DECL_P (t))
4223 return true;
4224
4225 return false;
4226 }
4227
4228 /* Called via walk_gimple_stmt. Verify tree sharing. */
4229
4230 static tree
4231 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4232 {
4233 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4234 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4235
4236 if (tree_node_can_be_shared (*tp))
4237 {
4238 *walk_subtrees = false;
4239 return NULL;
4240 }
4241
4242 if (pointer_set_insert (visited, *tp))
4243 return *tp;
4244
4245 return NULL;
4246 }
4247
4248 static bool eh_error_found;
4249 static int
4250 verify_eh_throw_stmt_node (void **slot, void *data)
4251 {
4252 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4253 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4254
4255 if (!pointer_set_contains (visited, node->stmt))
4256 {
4257 error ("dead STMT in EH table");
4258 debug_gimple_stmt (node->stmt);
4259 eh_error_found = true;
4260 }
4261 return 1;
4262 }
4263
4264 /* Verify the GIMPLE statements in the CFG of FN. */
4265
4266 DEBUG_FUNCTION void
4267 verify_gimple_in_cfg (struct function *fn)
4268 {
4269 basic_block bb;
4270 bool err = false;
4271 struct pointer_set_t *visited, *visited_stmts;
4272
4273 timevar_push (TV_TREE_STMT_VERIFY);
4274 visited = pointer_set_create ();
4275 visited_stmts = pointer_set_create ();
4276
4277 FOR_EACH_BB_FN (bb, fn)
4278 {
4279 gimple_stmt_iterator gsi;
4280
4281 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4282 {
4283 gimple phi = gsi_stmt (gsi);
4284 bool err2 = false;
4285 unsigned i;
4286
4287 pointer_set_insert (visited_stmts, phi);
4288
4289 if (gimple_bb (phi) != bb)
4290 {
4291 error ("gimple_bb (phi) is set to a wrong basic block");
4292 err2 = true;
4293 }
4294
4295 err2 |= verify_gimple_phi (phi);
4296
4297 for (i = 0; i < gimple_phi_num_args (phi); i++)
4298 {
4299 tree arg = gimple_phi_arg_def (phi, i);
4300 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4301 if (addr)
4302 {
4303 error ("incorrect sharing of tree nodes");
4304 debug_generic_expr (addr);
4305 err2 |= true;
4306 }
4307 }
4308
4309 if (err2)
4310 debug_gimple_stmt (phi);
4311 err |= err2;
4312 }
4313
4314 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4315 {
4316 gimple stmt = gsi_stmt (gsi);
4317 bool err2 = false;
4318 struct walk_stmt_info wi;
4319 tree addr;
4320 int lp_nr;
4321
4322 pointer_set_insert (visited_stmts, stmt);
4323
4324 if (gimple_bb (stmt) != bb)
4325 {
4326 error ("gimple_bb (stmt) is set to a wrong basic block");
4327 err2 = true;
4328 }
4329
4330 err2 |= verify_gimple_stmt (stmt);
4331
4332 memset (&wi, 0, sizeof (wi));
4333 wi.info = (void *) visited;
4334 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4335 if (addr)
4336 {
4337 error ("incorrect sharing of tree nodes");
4338 debug_generic_expr (addr);
4339 err2 |= true;
4340 }
4341
4342 /* ??? Instead of not checking these stmts at all the walker
4343 should know its context via wi. */
4344 if (!is_gimple_debug (stmt)
4345 && !is_gimple_omp (stmt))
4346 {
4347 memset (&wi, 0, sizeof (wi));
4348 addr = walk_gimple_op (stmt, verify_expr, &wi);
4349 if (addr)
4350 {
4351 debug_generic_expr (addr);
4352 inform (gimple_location (stmt), "in statement");
4353 err2 |= true;
4354 }
4355 }
4356
4357 /* If the statement is marked as part of an EH region, then it is
4358 expected that the statement could throw. Verify that when we
4359 have optimizations that simplify statements such that we prove
4360 that they cannot throw, that we update other data structures
4361 to match. */
4362 lp_nr = lookup_stmt_eh_lp (stmt);
4363 if (lp_nr != 0)
4364 {
4365 if (!stmt_could_throw_p (stmt))
4366 {
4367 error ("statement marked for throw, but doesn%'t");
4368 err2 |= true;
4369 }
4370 else if (lp_nr > 0
4371 && !gsi_one_before_end_p (gsi)
4372 && stmt_can_throw_internal (stmt))
4373 {
4374 error ("statement marked for throw in middle of block");
4375 err2 |= true;
4376 }
4377 }
4378
4379 if (err2)
4380 debug_gimple_stmt (stmt);
4381 err |= err2;
4382 }
4383 }
4384
4385 eh_error_found = false;
4386 if (get_eh_throw_stmt_table (cfun))
4387 htab_traverse (get_eh_throw_stmt_table (cfun),
4388 verify_eh_throw_stmt_node,
4389 visited_stmts);
4390
4391 if (err || eh_error_found)
4392 internal_error ("verify_gimple failed");
4393
4394 pointer_set_destroy (visited);
4395 pointer_set_destroy (visited_stmts);
4396 verify_histograms ();
4397 timevar_pop (TV_TREE_STMT_VERIFY);
4398 }
4399
4400
4401 /* Verifies that the flow information is OK. */
4402
4403 static int
4404 gimple_verify_flow_info (void)
4405 {
4406 int err = 0;
4407 basic_block bb;
4408 gimple_stmt_iterator gsi;
4409 gimple stmt;
4410 edge e;
4411 edge_iterator ei;
4412
4413 if (ENTRY_BLOCK_PTR->il.gimple)
4414 {
4415 error ("ENTRY_BLOCK has IL associated with it");
4416 err = 1;
4417 }
4418
4419 if (EXIT_BLOCK_PTR->il.gimple)
4420 {
4421 error ("EXIT_BLOCK has IL associated with it");
4422 err = 1;
4423 }
4424
4425 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4426 if (e->flags & EDGE_FALLTHRU)
4427 {
4428 error ("fallthru to exit from bb %d", e->src->index);
4429 err = 1;
4430 }
4431
4432 FOR_EACH_BB (bb)
4433 {
4434 bool found_ctrl_stmt = false;
4435
4436 stmt = NULL;
4437
4438 /* Skip labels on the start of basic block. */
4439 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4440 {
4441 tree label;
4442 gimple prev_stmt = stmt;
4443
4444 stmt = gsi_stmt (gsi);
4445
4446 if (gimple_code (stmt) != GIMPLE_LABEL)
4447 break;
4448
4449 label = gimple_label_label (stmt);
4450 if (prev_stmt && DECL_NONLOCAL (label))
4451 {
4452 error ("nonlocal label ");
4453 print_generic_expr (stderr, label, 0);
4454 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4455 bb->index);
4456 err = 1;
4457 }
4458
4459 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4460 {
4461 error ("EH landing pad label ");
4462 print_generic_expr (stderr, label, 0);
4463 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4464 bb->index);
4465 err = 1;
4466 }
4467
4468 if (label_to_block (label) != bb)
4469 {
4470 error ("label ");
4471 print_generic_expr (stderr, label, 0);
4472 fprintf (stderr, " to block does not match in bb %d",
4473 bb->index);
4474 err = 1;
4475 }
4476
4477 if (decl_function_context (label) != current_function_decl)
4478 {
4479 error ("label ");
4480 print_generic_expr (stderr, label, 0);
4481 fprintf (stderr, " has incorrect context in bb %d",
4482 bb->index);
4483 err = 1;
4484 }
4485 }
4486
4487 /* Verify that body of basic block BB is free of control flow. */
4488 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4489 {
4490 gimple stmt = gsi_stmt (gsi);
4491
4492 if (found_ctrl_stmt)
4493 {
4494 error ("control flow in the middle of basic block %d",
4495 bb->index);
4496 err = 1;
4497 }
4498
4499 if (stmt_ends_bb_p (stmt))
4500 found_ctrl_stmt = true;
4501
4502 if (gimple_code (stmt) == GIMPLE_LABEL)
4503 {
4504 error ("label ");
4505 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4506 fprintf (stderr, " in the middle of basic block %d", bb->index);
4507 err = 1;
4508 }
4509 }
4510
4511 gsi = gsi_last_bb (bb);
4512 if (gsi_end_p (gsi))
4513 continue;
4514
4515 stmt = gsi_stmt (gsi);
4516
4517 if (gimple_code (stmt) == GIMPLE_LABEL)
4518 continue;
4519
4520 err |= verify_eh_edges (stmt);
4521
4522 if (is_ctrl_stmt (stmt))
4523 {
4524 FOR_EACH_EDGE (e, ei, bb->succs)
4525 if (e->flags & EDGE_FALLTHRU)
4526 {
4527 error ("fallthru edge after a control statement in bb %d",
4528 bb->index);
4529 err = 1;
4530 }
4531 }
4532
4533 if (gimple_code (stmt) != GIMPLE_COND)
4534 {
4535 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4536 after anything else but if statement. */
4537 FOR_EACH_EDGE (e, ei, bb->succs)
4538 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4539 {
4540 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4541 bb->index);
4542 err = 1;
4543 }
4544 }
4545
4546 switch (gimple_code (stmt))
4547 {
4548 case GIMPLE_COND:
4549 {
4550 edge true_edge;
4551 edge false_edge;
4552
4553 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4554
4555 if (!true_edge
4556 || !false_edge
4557 || !(true_edge->flags & EDGE_TRUE_VALUE)
4558 || !(false_edge->flags & EDGE_FALSE_VALUE)
4559 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4560 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4561 || EDGE_COUNT (bb->succs) >= 3)
4562 {
4563 error ("wrong outgoing edge flags at end of bb %d",
4564 bb->index);
4565 err = 1;
4566 }
4567 }
4568 break;
4569
4570 case GIMPLE_GOTO:
4571 if (simple_goto_p (stmt))
4572 {
4573 error ("explicit goto at end of bb %d", bb->index);
4574 err = 1;
4575 }
4576 else
4577 {
4578 /* FIXME. We should double check that the labels in the
4579 destination blocks have their address taken. */
4580 FOR_EACH_EDGE (e, ei, bb->succs)
4581 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4582 | EDGE_FALSE_VALUE))
4583 || !(e->flags & EDGE_ABNORMAL))
4584 {
4585 error ("wrong outgoing edge flags at end of bb %d",
4586 bb->index);
4587 err = 1;
4588 }
4589 }
4590 break;
4591
4592 case GIMPLE_CALL:
4593 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4594 break;
4595 /* ... fallthru ... */
4596 case GIMPLE_RETURN:
4597 if (!single_succ_p (bb)
4598 || (single_succ_edge (bb)->flags
4599 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4600 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4601 {
4602 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4603 err = 1;
4604 }
4605 if (single_succ (bb) != EXIT_BLOCK_PTR)
4606 {
4607 error ("return edge does not point to exit in bb %d",
4608 bb->index);
4609 err = 1;
4610 }
4611 break;
4612
4613 case GIMPLE_SWITCH:
4614 {
4615 tree prev;
4616 edge e;
4617 size_t i, n;
4618
4619 n = gimple_switch_num_labels (stmt);
4620
4621 /* Mark all the destination basic blocks. */
4622 for (i = 0; i < n; ++i)
4623 {
4624 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4625 basic_block label_bb = label_to_block (lab);
4626 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4627 label_bb->aux = (void *)1;
4628 }
4629
4630 /* Verify that the case labels are sorted. */
4631 prev = gimple_switch_label (stmt, 0);
4632 for (i = 1; i < n; ++i)
4633 {
4634 tree c = gimple_switch_label (stmt, i);
4635 if (!CASE_LOW (c))
4636 {
4637 error ("found default case not at the start of "
4638 "case vector");
4639 err = 1;
4640 continue;
4641 }
4642 if (CASE_LOW (prev)
4643 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4644 {
4645 error ("case labels not sorted: ");
4646 print_generic_expr (stderr, prev, 0);
4647 fprintf (stderr," is greater than ");
4648 print_generic_expr (stderr, c, 0);
4649 fprintf (stderr," but comes before it.\n");
4650 err = 1;
4651 }
4652 prev = c;
4653 }
4654 /* VRP will remove the default case if it can prove it will
4655 never be executed. So do not verify there always exists
4656 a default case here. */
4657
4658 FOR_EACH_EDGE (e, ei, bb->succs)
4659 {
4660 if (!e->dest->aux)
4661 {
4662 error ("extra outgoing edge %d->%d",
4663 bb->index, e->dest->index);
4664 err = 1;
4665 }
4666
4667 e->dest->aux = (void *)2;
4668 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4669 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4670 {
4671 error ("wrong outgoing edge flags at end of bb %d",
4672 bb->index);
4673 err = 1;
4674 }
4675 }
4676
4677 /* Check that we have all of them. */
4678 for (i = 0; i < n; ++i)
4679 {
4680 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4681 basic_block label_bb = label_to_block (lab);
4682
4683 if (label_bb->aux != (void *)2)
4684 {
4685 error ("missing edge %i->%i", bb->index, label_bb->index);
4686 err = 1;
4687 }
4688 }
4689
4690 FOR_EACH_EDGE (e, ei, bb->succs)
4691 e->dest->aux = (void *)0;
4692 }
4693 break;
4694
4695 case GIMPLE_EH_DISPATCH:
4696 err |= verify_eh_dispatch_edge (stmt);
4697 break;
4698
4699 default:
4700 break;
4701 }
4702 }
4703
4704 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4705 verify_dominators (CDI_DOMINATORS);
4706
4707 return err;
4708 }
4709
4710
4711 /* Updates phi nodes after creating a forwarder block joined
4712 by edge FALLTHRU. */
4713
4714 static void
4715 gimple_make_forwarder_block (edge fallthru)
4716 {
4717 edge e;
4718 edge_iterator ei;
4719 basic_block dummy, bb;
4720 tree var;
4721 gimple_stmt_iterator gsi;
4722
4723 dummy = fallthru->src;
4724 bb = fallthru->dest;
4725
4726 if (single_pred_p (bb))
4727 return;
4728
4729 /* If we redirected a branch we must create new PHI nodes at the
4730 start of BB. */
4731 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4732 {
4733 gimple phi, new_phi;
4734
4735 phi = gsi_stmt (gsi);
4736 var = gimple_phi_result (phi);
4737 new_phi = create_phi_node (var, bb);
4738 SSA_NAME_DEF_STMT (var) = new_phi;
4739 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4740 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4741 UNKNOWN_LOCATION);
4742 }
4743
4744 /* Add the arguments we have stored on edges. */
4745 FOR_EACH_EDGE (e, ei, bb->preds)
4746 {
4747 if (e == fallthru)
4748 continue;
4749
4750 flush_pending_stmts (e);
4751 }
4752 }
4753
4754
4755 /* Return a non-special label in the head of basic block BLOCK.
4756 Create one if it doesn't exist. */
4757
4758 tree
4759 gimple_block_label (basic_block bb)
4760 {
4761 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4762 bool first = true;
4763 tree label;
4764 gimple stmt;
4765
4766 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4767 {
4768 stmt = gsi_stmt (i);
4769 if (gimple_code (stmt) != GIMPLE_LABEL)
4770 break;
4771 label = gimple_label_label (stmt);
4772 if (!DECL_NONLOCAL (label))
4773 {
4774 if (!first)
4775 gsi_move_before (&i, &s);
4776 return label;
4777 }
4778 }
4779
4780 label = create_artificial_label (UNKNOWN_LOCATION);
4781 stmt = gimple_build_label (label);
4782 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4783 return label;
4784 }
4785
4786
4787 /* Attempt to perform edge redirection by replacing a possibly complex
4788 jump instruction by a goto or by removing the jump completely.
4789 This can apply only if all edges now point to the same block. The
4790 parameters and return values are equivalent to
4791 redirect_edge_and_branch. */
4792
4793 static edge
4794 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4795 {
4796 basic_block src = e->src;
4797 gimple_stmt_iterator i;
4798 gimple stmt;
4799
4800 /* We can replace or remove a complex jump only when we have exactly
4801 two edges. */
4802 if (EDGE_COUNT (src->succs) != 2
4803 /* Verify that all targets will be TARGET. Specifically, the
4804 edge that is not E must also go to TARGET. */
4805 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4806 return NULL;
4807
4808 i = gsi_last_bb (src);
4809 if (gsi_end_p (i))
4810 return NULL;
4811
4812 stmt = gsi_stmt (i);
4813
4814 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4815 {
4816 gsi_remove (&i, true);
4817 e = ssa_redirect_edge (e, target);
4818 e->flags = EDGE_FALLTHRU;
4819 return e;
4820 }
4821
4822 return NULL;
4823 }
4824
4825
4826 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4827 edge representing the redirected branch. */
4828
4829 static edge
4830 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4831 {
4832 basic_block bb = e->src;
4833 gimple_stmt_iterator gsi;
4834 edge ret;
4835 gimple stmt;
4836
4837 if (e->flags & EDGE_ABNORMAL)
4838 return NULL;
4839
4840 if (e->dest == dest)
4841 return NULL;
4842
4843 if (e->flags & EDGE_EH)
4844 return redirect_eh_edge (e, dest);
4845
4846 if (e->src != ENTRY_BLOCK_PTR)
4847 {
4848 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4849 if (ret)
4850 return ret;
4851 }
4852
4853 gsi = gsi_last_bb (bb);
4854 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4855
4856 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4857 {
4858 case GIMPLE_COND:
4859 /* For COND_EXPR, we only need to redirect the edge. */
4860 break;
4861
4862 case GIMPLE_GOTO:
4863 /* No non-abnormal edges should lead from a non-simple goto, and
4864 simple ones should be represented implicitly. */
4865 gcc_unreachable ();
4866
4867 case GIMPLE_SWITCH:
4868 {
4869 tree label = gimple_block_label (dest);
4870 tree cases = get_cases_for_edge (e, stmt);
4871
4872 /* If we have a list of cases associated with E, then use it
4873 as it's a lot faster than walking the entire case vector. */
4874 if (cases)
4875 {
4876 edge e2 = find_edge (e->src, dest);
4877 tree last, first;
4878
4879 first = cases;
4880 while (cases)
4881 {
4882 last = cases;
4883 CASE_LABEL (cases) = label;
4884 cases = CASE_CHAIN (cases);
4885 }
4886
4887 /* If there was already an edge in the CFG, then we need
4888 to move all the cases associated with E to E2. */
4889 if (e2)
4890 {
4891 tree cases2 = get_cases_for_edge (e2, stmt);
4892
4893 CASE_CHAIN (last) = CASE_CHAIN (cases2);
4894 CASE_CHAIN (cases2) = first;
4895 }
4896 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4897 }
4898 else
4899 {
4900 size_t i, n = gimple_switch_num_labels (stmt);
4901
4902 for (i = 0; i < n; i++)
4903 {
4904 tree elt = gimple_switch_label (stmt, i);
4905 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4906 CASE_LABEL (elt) = label;
4907 }
4908 }
4909 }
4910 break;
4911
4912 case GIMPLE_ASM:
4913 {
4914 int i, n = gimple_asm_nlabels (stmt);
4915 tree label = NULL;
4916
4917 for (i = 0; i < n; ++i)
4918 {
4919 tree cons = gimple_asm_label_op (stmt, i);
4920 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4921 {
4922 if (!label)
4923 label = gimple_block_label (dest);
4924 TREE_VALUE (cons) = label;
4925 }
4926 }
4927
4928 /* If we didn't find any label matching the former edge in the
4929 asm labels, we must be redirecting the fallthrough
4930 edge. */
4931 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4932 }
4933 break;
4934
4935 case GIMPLE_RETURN:
4936 gsi_remove (&gsi, true);
4937 e->flags |= EDGE_FALLTHRU;
4938 break;
4939
4940 case GIMPLE_OMP_RETURN:
4941 case GIMPLE_OMP_CONTINUE:
4942 case GIMPLE_OMP_SECTIONS_SWITCH:
4943 case GIMPLE_OMP_FOR:
4944 /* The edges from OMP constructs can be simply redirected. */
4945 break;
4946
4947 case GIMPLE_EH_DISPATCH:
4948 if (!(e->flags & EDGE_FALLTHRU))
4949 redirect_eh_dispatch_edge (stmt, e, dest);
4950 break;
4951
4952 default:
4953 /* Otherwise it must be a fallthru edge, and we don't need to
4954 do anything besides redirecting it. */
4955 gcc_assert (e->flags & EDGE_FALLTHRU);
4956 break;
4957 }
4958
4959 /* Update/insert PHI nodes as necessary. */
4960
4961 /* Now update the edges in the CFG. */
4962 e = ssa_redirect_edge (e, dest);
4963
4964 return e;
4965 }
4966
4967 /* Returns true if it is possible to remove edge E by redirecting
4968 it to the destination of the other edge from E->src. */
4969
4970 static bool
4971 gimple_can_remove_branch_p (const_edge e)
4972 {
4973 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4974 return false;
4975
4976 return true;
4977 }
4978
4979 /* Simple wrapper, as we can always redirect fallthru edges. */
4980
4981 static basic_block
4982 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4983 {
4984 e = gimple_redirect_edge_and_branch (e, dest);
4985 gcc_assert (e);
4986
4987 return NULL;
4988 }
4989
4990
4991 /* Splits basic block BB after statement STMT (but at least after the
4992 labels). If STMT is NULL, BB is split just after the labels. */
4993
4994 static basic_block
4995 gimple_split_block (basic_block bb, void *stmt)
4996 {
4997 gimple_stmt_iterator gsi;
4998 gimple_stmt_iterator gsi_tgt;
4999 gimple act;
5000 gimple_seq list;
5001 basic_block new_bb;
5002 edge e;
5003 edge_iterator ei;
5004
5005 new_bb = create_empty_bb (bb);
5006
5007 /* Redirect the outgoing edges. */
5008 new_bb->succs = bb->succs;
5009 bb->succs = NULL;
5010 FOR_EACH_EDGE (e, ei, new_bb->succs)
5011 e->src = new_bb;
5012
5013 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5014 stmt = NULL;
5015
5016 /* Move everything from GSI to the new basic block. */
5017 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5018 {
5019 act = gsi_stmt (gsi);
5020 if (gimple_code (act) == GIMPLE_LABEL)
5021 continue;
5022
5023 if (!stmt)
5024 break;
5025
5026 if (stmt == act)
5027 {
5028 gsi_next (&gsi);
5029 break;
5030 }
5031 }
5032
5033 if (gsi_end_p (gsi))
5034 return new_bb;
5035
5036 /* Split the statement list - avoid re-creating new containers as this
5037 brings ugly quadratic memory consumption in the inliner.
5038 (We are still quadratic since we need to update stmt BB pointers,
5039 sadly.) */
5040 list = gsi_split_seq_before (&gsi);
5041 set_bb_seq (new_bb, list);
5042 for (gsi_tgt = gsi_start (list);
5043 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5044 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5045
5046 return new_bb;
5047 }
5048
5049
5050 /* Moves basic block BB after block AFTER. */
5051
5052 static bool
5053 gimple_move_block_after (basic_block bb, basic_block after)
5054 {
5055 if (bb->prev_bb == after)
5056 return true;
5057
5058 unlink_block (bb);
5059 link_block (bb, after);
5060
5061 return true;
5062 }
5063
5064
5065 /* Return true if basic_block can be duplicated. */
5066
5067 static bool
5068 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5069 {
5070 return true;
5071 }
5072
5073 /* Create a duplicate of the basic block BB. NOTE: This does not
5074 preserve SSA form. */
5075
5076 static basic_block
5077 gimple_duplicate_bb (basic_block bb)
5078 {
5079 basic_block new_bb;
5080 gimple_stmt_iterator gsi, gsi_tgt;
5081 gimple_seq phis = phi_nodes (bb);
5082 gimple phi, stmt, copy;
5083
5084 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5085
5086 /* Copy the PHI nodes. We ignore PHI node arguments here because
5087 the incoming edges have not been setup yet. */
5088 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5089 {
5090 phi = gsi_stmt (gsi);
5091 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5092 create_new_def_for (gimple_phi_result (copy), copy,
5093 gimple_phi_result_ptr (copy));
5094 }
5095
5096 gsi_tgt = gsi_start_bb (new_bb);
5097 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5098 {
5099 def_operand_p def_p;
5100 ssa_op_iter op_iter;
5101
5102 stmt = gsi_stmt (gsi);
5103 if (gimple_code (stmt) == GIMPLE_LABEL)
5104 continue;
5105
5106 /* Create a new copy of STMT and duplicate STMT's virtual
5107 operands. */
5108 copy = gimple_copy (stmt);
5109 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5110
5111 maybe_duplicate_eh_stmt (copy, stmt);
5112 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5113
5114 /* Create new names for all the definitions created by COPY and
5115 add replacement mappings for each new name. */
5116 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5117 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5118 }
5119
5120 return new_bb;
5121 }
5122
5123 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5124
5125 static void
5126 add_phi_args_after_copy_edge (edge e_copy)
5127 {
5128 basic_block bb, bb_copy = e_copy->src, dest;
5129 edge e;
5130 edge_iterator ei;
5131 gimple phi, phi_copy;
5132 tree def;
5133 gimple_stmt_iterator psi, psi_copy;
5134
5135 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5136 return;
5137
5138 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5139
5140 if (e_copy->dest->flags & BB_DUPLICATED)
5141 dest = get_bb_original (e_copy->dest);
5142 else
5143 dest = e_copy->dest;
5144
5145 e = find_edge (bb, dest);
5146 if (!e)
5147 {
5148 /* During loop unrolling the target of the latch edge is copied.
5149 In this case we are not looking for edge to dest, but to
5150 duplicated block whose original was dest. */
5151 FOR_EACH_EDGE (e, ei, bb->succs)
5152 {
5153 if ((e->dest->flags & BB_DUPLICATED)
5154 && get_bb_original (e->dest) == dest)
5155 break;
5156 }
5157
5158 gcc_assert (e != NULL);
5159 }
5160
5161 for (psi = gsi_start_phis (e->dest),
5162 psi_copy = gsi_start_phis (e_copy->dest);
5163 !gsi_end_p (psi);
5164 gsi_next (&psi), gsi_next (&psi_copy))
5165 {
5166 phi = gsi_stmt (psi);
5167 phi_copy = gsi_stmt (psi_copy);
5168 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5169 add_phi_arg (phi_copy, def, e_copy,
5170 gimple_phi_arg_location_from_edge (phi, e));
5171 }
5172 }
5173
5174
5175 /* Basic block BB_COPY was created by code duplication. Add phi node
5176 arguments for edges going out of BB_COPY. The blocks that were
5177 duplicated have BB_DUPLICATED set. */
5178
5179 void
5180 add_phi_args_after_copy_bb (basic_block bb_copy)
5181 {
5182 edge e_copy;
5183 edge_iterator ei;
5184
5185 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5186 {
5187 add_phi_args_after_copy_edge (e_copy);
5188 }
5189 }
5190
5191 /* Blocks in REGION_COPY array of length N_REGION were created by
5192 duplication of basic blocks. Add phi node arguments for edges
5193 going from these blocks. If E_COPY is not NULL, also add
5194 phi node arguments for its destination.*/
5195
5196 void
5197 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5198 edge e_copy)
5199 {
5200 unsigned i;
5201
5202 for (i = 0; i < n_region; i++)
5203 region_copy[i]->flags |= BB_DUPLICATED;
5204
5205 for (i = 0; i < n_region; i++)
5206 add_phi_args_after_copy_bb (region_copy[i]);
5207 if (e_copy)
5208 add_phi_args_after_copy_edge (e_copy);
5209
5210 for (i = 0; i < n_region; i++)
5211 region_copy[i]->flags &= ~BB_DUPLICATED;
5212 }
5213
5214 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5215 important exit edge EXIT. By important we mean that no SSA name defined
5216 inside region is live over the other exit edges of the region. All entry
5217 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5218 to the duplicate of the region. SSA form, dominance and loop information
5219 is updated. The new basic blocks are stored to REGION_COPY in the same
5220 order as they had in REGION, provided that REGION_COPY is not NULL.
5221 The function returns false if it is unable to copy the region,
5222 true otherwise. */
5223
5224 bool
5225 gimple_duplicate_sese_region (edge entry, edge exit,
5226 basic_block *region, unsigned n_region,
5227 basic_block *region_copy)
5228 {
5229 unsigned i;
5230 bool free_region_copy = false, copying_header = false;
5231 struct loop *loop = entry->dest->loop_father;
5232 edge exit_copy;
5233 VEC (basic_block, heap) *doms;
5234 edge redirected;
5235 int total_freq = 0, entry_freq = 0;
5236 gcov_type total_count = 0, entry_count = 0;
5237
5238 if (!can_copy_bbs_p (region, n_region))
5239 return false;
5240
5241 /* Some sanity checking. Note that we do not check for all possible
5242 missuses of the functions. I.e. if you ask to copy something weird,
5243 it will work, but the state of structures probably will not be
5244 correct. */
5245 for (i = 0; i < n_region; i++)
5246 {
5247 /* We do not handle subloops, i.e. all the blocks must belong to the
5248 same loop. */
5249 if (region[i]->loop_father != loop)
5250 return false;
5251
5252 if (region[i] != entry->dest
5253 && region[i] == loop->header)
5254 return false;
5255 }
5256
5257 set_loop_copy (loop, loop);
5258
5259 /* In case the function is used for loop header copying (which is the primary
5260 use), ensure that EXIT and its copy will be new latch and entry edges. */
5261 if (loop->header == entry->dest)
5262 {
5263 copying_header = true;
5264 set_loop_copy (loop, loop_outer (loop));
5265
5266 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5267 return false;
5268
5269 for (i = 0; i < n_region; i++)
5270 if (region[i] != exit->src
5271 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5272 return false;
5273 }
5274
5275 if (!region_copy)
5276 {
5277 region_copy = XNEWVEC (basic_block, n_region);
5278 free_region_copy = true;
5279 }
5280
5281 gcc_assert (!need_ssa_update_p (cfun));
5282
5283 /* Record blocks outside the region that are dominated by something
5284 inside. */
5285 doms = NULL;
5286 initialize_original_copy_tables ();
5287
5288 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5289
5290 if (entry->dest->count)
5291 {
5292 total_count = entry->dest->count;
5293 entry_count = entry->count;
5294 /* Fix up corner cases, to avoid division by zero or creation of negative
5295 frequencies. */
5296 if (entry_count > total_count)
5297 entry_count = total_count;
5298 }
5299 else
5300 {
5301 total_freq = entry->dest->frequency;
5302 entry_freq = EDGE_FREQUENCY (entry);
5303 /* Fix up corner cases, to avoid division by zero or creation of negative
5304 frequencies. */
5305 if (total_freq == 0)
5306 total_freq = 1;
5307 else if (entry_freq > total_freq)
5308 entry_freq = total_freq;
5309 }
5310
5311 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5312 split_edge_bb_loc (entry));
5313 if (total_count)
5314 {
5315 scale_bbs_frequencies_gcov_type (region, n_region,
5316 total_count - entry_count,
5317 total_count);
5318 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5319 total_count);
5320 }
5321 else
5322 {
5323 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5324 total_freq);
5325 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5326 }
5327
5328 if (copying_header)
5329 {
5330 loop->header = exit->dest;
5331 loop->latch = exit->src;
5332 }
5333
5334 /* Redirect the entry and add the phi node arguments. */
5335 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5336 gcc_assert (redirected != NULL);
5337 flush_pending_stmts (entry);
5338
5339 /* Concerning updating of dominators: We must recount dominators
5340 for entry block and its copy. Anything that is outside of the
5341 region, but was dominated by something inside needs recounting as
5342 well. */
5343 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5344 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5345 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5346 VEC_free (basic_block, heap, doms);
5347
5348 /* Add the other PHI node arguments. */
5349 add_phi_args_after_copy (region_copy, n_region, NULL);
5350
5351 /* Update the SSA web. */
5352 update_ssa (TODO_update_ssa);
5353
5354 if (free_region_copy)
5355 free (region_copy);
5356
5357 free_original_copy_tables ();
5358 return true;
5359 }
5360
5361 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5362 are stored to REGION_COPY in the same order in that they appear
5363 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5364 the region, EXIT an exit from it. The condition guarding EXIT
5365 is moved to ENTRY. Returns true if duplication succeeds, false
5366 otherwise.
5367
5368 For example,
5369
5370 some_code;
5371 if (cond)
5372 A;
5373 else
5374 B;
5375
5376 is transformed to
5377
5378 if (cond)
5379 {
5380 some_code;
5381 A;
5382 }
5383 else
5384 {
5385 some_code;
5386 B;
5387 }
5388 */
5389
5390 bool
5391 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5392 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5393 basic_block *region_copy ATTRIBUTE_UNUSED)
5394 {
5395 unsigned i;
5396 bool free_region_copy = false;
5397 struct loop *loop = exit->dest->loop_father;
5398 struct loop *orig_loop = entry->dest->loop_father;
5399 basic_block switch_bb, entry_bb, nentry_bb;
5400 VEC (basic_block, heap) *doms;
5401 int total_freq = 0, exit_freq = 0;
5402 gcov_type total_count = 0, exit_count = 0;
5403 edge exits[2], nexits[2], e;
5404 gimple_stmt_iterator gsi,gsi1;
5405 gimple cond_stmt;
5406 edge sorig, snew;
5407 basic_block exit_bb;
5408 basic_block iters_bb;
5409 tree new_rhs;
5410 gimple_stmt_iterator psi;
5411 gimple phi;
5412 tree def;
5413
5414 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5415 exits[0] = exit;
5416 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5417
5418 if (!can_copy_bbs_p (region, n_region))
5419 return false;
5420
5421 initialize_original_copy_tables ();
5422 set_loop_copy (orig_loop, loop);
5423 duplicate_subloops (orig_loop, loop);
5424
5425 if (!region_copy)
5426 {
5427 region_copy = XNEWVEC (basic_block, n_region);
5428 free_region_copy = true;
5429 }
5430
5431 gcc_assert (!need_ssa_update_p (cfun));
5432
5433 /* Record blocks outside the region that are dominated by something
5434 inside. */
5435 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5436
5437 if (exit->src->count)
5438 {
5439 total_count = exit->src->count;
5440 exit_count = exit->count;
5441 /* Fix up corner cases, to avoid division by zero or creation of negative
5442 frequencies. */
5443 if (exit_count > total_count)
5444 exit_count = total_count;
5445 }
5446 else
5447 {
5448 total_freq = exit->src->frequency;
5449 exit_freq = EDGE_FREQUENCY (exit);
5450 /* Fix up corner cases, to avoid division by zero or creation of negative
5451 frequencies. */
5452 if (total_freq == 0)
5453 total_freq = 1;
5454 if (exit_freq > total_freq)
5455 exit_freq = total_freq;
5456 }
5457
5458 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5459 split_edge_bb_loc (exit));
5460 if (total_count)
5461 {
5462 scale_bbs_frequencies_gcov_type (region, n_region,
5463 total_count - exit_count,
5464 total_count);
5465 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5466 total_count);
5467 }
5468 else
5469 {
5470 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5471 total_freq);
5472 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5473 }
5474
5475 /* Create the switch block, and put the exit condition to it. */
5476 entry_bb = entry->dest;
5477 nentry_bb = get_bb_copy (entry_bb);
5478 if (!last_stmt (entry->src)
5479 || !stmt_ends_bb_p (last_stmt (entry->src)))
5480 switch_bb = entry->src;
5481 else
5482 switch_bb = split_edge (entry);
5483 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5484
5485 gsi = gsi_last_bb (switch_bb);
5486 cond_stmt = last_stmt (exit->src);
5487 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5488 cond_stmt = gimple_copy (cond_stmt);
5489
5490 /* If the block consisting of the exit condition has the latch as
5491 successor, then the body of the loop is executed before
5492 the exit condition is tested. In such case, moving the
5493 condition to the entry, causes that the loop will iterate
5494 one less iteration (which is the wanted outcome, since we
5495 peel out the last iteration). If the body is executed after
5496 the condition, moving the condition to the entry requires
5497 decrementing one iteration. */
5498 if (exits[1]->dest == orig_loop->latch)
5499 new_rhs = gimple_cond_rhs (cond_stmt);
5500 else
5501 {
5502 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5503 gimple_cond_rhs (cond_stmt),
5504 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5505
5506 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5507 {
5508 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5509 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5510 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5511 break;
5512
5513 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5514 NULL_TREE,false,GSI_CONTINUE_LINKING);
5515 }
5516 }
5517 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5518 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5519 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5520
5521 sorig = single_succ_edge (switch_bb);
5522 sorig->flags = exits[1]->flags;
5523 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5524
5525 /* Register the new edge from SWITCH_BB in loop exit lists. */
5526 rescan_loop_exit (snew, true, false);
5527
5528 /* Add the PHI node arguments. */
5529 add_phi_args_after_copy (region_copy, n_region, snew);
5530
5531 /* Get rid of now superfluous conditions and associated edges (and phi node
5532 arguments). */
5533 exit_bb = exit->dest;
5534
5535 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5536 PENDING_STMT (e) = NULL;
5537
5538 /* The latch of ORIG_LOOP was copied, and so was the backedge
5539 to the original header. We redirect this backedge to EXIT_BB. */
5540 for (i = 0; i < n_region; i++)
5541 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5542 {
5543 gcc_assert (single_succ_edge (region_copy[i]));
5544 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5545 PENDING_STMT (e) = NULL;
5546 for (psi = gsi_start_phis (exit_bb);
5547 !gsi_end_p (psi);
5548 gsi_next (&psi))
5549 {
5550 phi = gsi_stmt (psi);
5551 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5552 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5553 }
5554 }
5555 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5556 PENDING_STMT (e) = NULL;
5557
5558 /* Anything that is outside of the region, but was dominated by something
5559 inside needs to update dominance info. */
5560 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5561 VEC_free (basic_block, heap, doms);
5562 /* Update the SSA web. */
5563 update_ssa (TODO_update_ssa);
5564
5565 if (free_region_copy)
5566 free (region_copy);
5567
5568 free_original_copy_tables ();
5569 return true;
5570 }
5571
5572 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5573 adding blocks when the dominator traversal reaches EXIT. This
5574 function silently assumes that ENTRY strictly dominates EXIT. */
5575
5576 void
5577 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5578 VEC(basic_block,heap) **bbs_p)
5579 {
5580 basic_block son;
5581
5582 for (son = first_dom_son (CDI_DOMINATORS, entry);
5583 son;
5584 son = next_dom_son (CDI_DOMINATORS, son))
5585 {
5586 VEC_safe_push (basic_block, heap, *bbs_p, son);
5587 if (son != exit)
5588 gather_blocks_in_sese_region (son, exit, bbs_p);
5589 }
5590 }
5591
5592 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5593 The duplicates are recorded in VARS_MAP. */
5594
5595 static void
5596 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5597 tree to_context)
5598 {
5599 tree t = *tp, new_t;
5600 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5601 void **loc;
5602
5603 if (DECL_CONTEXT (t) == to_context)
5604 return;
5605
5606 loc = pointer_map_contains (vars_map, t);
5607
5608 if (!loc)
5609 {
5610 loc = pointer_map_insert (vars_map, t);
5611
5612 if (SSA_VAR_P (t))
5613 {
5614 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5615 add_local_decl (f, new_t);
5616 }
5617 else
5618 {
5619 gcc_assert (TREE_CODE (t) == CONST_DECL);
5620 new_t = copy_node (t);
5621 }
5622 DECL_CONTEXT (new_t) = to_context;
5623
5624 *loc = new_t;
5625 }
5626 else
5627 new_t = (tree) *loc;
5628
5629 *tp = new_t;
5630 }
5631
5632
5633 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5634 VARS_MAP maps old ssa names and var_decls to the new ones. */
5635
5636 static tree
5637 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5638 tree to_context)
5639 {
5640 void **loc;
5641 tree new_name, decl = SSA_NAME_VAR (name);
5642
5643 gcc_assert (is_gimple_reg (name));
5644
5645 loc = pointer_map_contains (vars_map, name);
5646
5647 if (!loc)
5648 {
5649 replace_by_duplicate_decl (&decl, vars_map, to_context);
5650
5651 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5652 if (gimple_in_ssa_p (cfun))
5653 add_referenced_var (decl);
5654
5655 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5656 if (SSA_NAME_IS_DEFAULT_DEF (name))
5657 set_default_def (decl, new_name);
5658 pop_cfun ();
5659
5660 loc = pointer_map_insert (vars_map, name);
5661 *loc = new_name;
5662 }
5663 else
5664 new_name = (tree) *loc;
5665
5666 return new_name;
5667 }
5668
5669 struct move_stmt_d
5670 {
5671 tree orig_block;
5672 tree new_block;
5673 tree from_context;
5674 tree to_context;
5675 struct pointer_map_t *vars_map;
5676 htab_t new_label_map;
5677 struct pointer_map_t *eh_map;
5678 bool remap_decls_p;
5679 };
5680
5681 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5682 contained in *TP if it has been ORIG_BLOCK previously and change the
5683 DECL_CONTEXT of every local variable referenced in *TP. */
5684
5685 static tree
5686 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5687 {
5688 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5689 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5690 tree t = *tp;
5691
5692 if (EXPR_P (t))
5693 /* We should never have TREE_BLOCK set on non-statements. */
5694 gcc_assert (!TREE_BLOCK (t));
5695
5696 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5697 {
5698 if (TREE_CODE (t) == SSA_NAME)
5699 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5700 else if (TREE_CODE (t) == LABEL_DECL)
5701 {
5702 if (p->new_label_map)
5703 {
5704 struct tree_map in, *out;
5705 in.base.from = t;
5706 out = (struct tree_map *)
5707 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5708 if (out)
5709 *tp = t = out->to;
5710 }
5711
5712 DECL_CONTEXT (t) = p->to_context;
5713 }
5714 else if (p->remap_decls_p)
5715 {
5716 /* Replace T with its duplicate. T should no longer appear in the
5717 parent function, so this looks wasteful; however, it may appear
5718 in referenced_vars, and more importantly, as virtual operands of
5719 statements, and in alias lists of other variables. It would be
5720 quite difficult to expunge it from all those places. ??? It might
5721 suffice to do this for addressable variables. */
5722 if ((TREE_CODE (t) == VAR_DECL
5723 && !is_global_var (t))
5724 || TREE_CODE (t) == CONST_DECL)
5725 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5726
5727 if (SSA_VAR_P (t)
5728 && gimple_in_ssa_p (cfun))
5729 {
5730 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5731 add_referenced_var (*tp);
5732 pop_cfun ();
5733 }
5734 }
5735 *walk_subtrees = 0;
5736 }
5737 else if (TYPE_P (t))
5738 *walk_subtrees = 0;
5739
5740 return NULL_TREE;
5741 }
5742
5743 /* Helper for move_stmt_r. Given an EH region number for the source
5744 function, map that to the duplicate EH regio number in the dest. */
5745
5746 static int
5747 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5748 {
5749 eh_region old_r, new_r;
5750 void **slot;
5751
5752 old_r = get_eh_region_from_number (old_nr);
5753 slot = pointer_map_contains (p->eh_map, old_r);
5754 new_r = (eh_region) *slot;
5755
5756 return new_r->index;
5757 }
5758
5759 /* Similar, but operate on INTEGER_CSTs. */
5760
5761 static tree
5762 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5763 {
5764 int old_nr, new_nr;
5765
5766 old_nr = tree_low_cst (old_t_nr, 0);
5767 new_nr = move_stmt_eh_region_nr (old_nr, p);
5768
5769 return build_int_cst (integer_type_node, new_nr);
5770 }
5771
5772 /* Like move_stmt_op, but for gimple statements.
5773
5774 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5775 contained in the current statement in *GSI_P and change the
5776 DECL_CONTEXT of every local variable referenced in the current
5777 statement. */
5778
5779 static tree
5780 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5781 struct walk_stmt_info *wi)
5782 {
5783 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5784 gimple stmt = gsi_stmt (*gsi_p);
5785 tree block = gimple_block (stmt);
5786
5787 if (p->orig_block == NULL_TREE
5788 || block == p->orig_block
5789 || block == NULL_TREE)
5790 gimple_set_block (stmt, p->new_block);
5791 #ifdef ENABLE_CHECKING
5792 else if (block != p->new_block)
5793 {
5794 while (block && block != p->orig_block)
5795 block = BLOCK_SUPERCONTEXT (block);
5796 gcc_assert (block);
5797 }
5798 #endif
5799
5800 switch (gimple_code (stmt))
5801 {
5802 case GIMPLE_CALL:
5803 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5804 {
5805 tree r, fndecl = gimple_call_fndecl (stmt);
5806 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5807 switch (DECL_FUNCTION_CODE (fndecl))
5808 {
5809 case BUILT_IN_EH_COPY_VALUES:
5810 r = gimple_call_arg (stmt, 1);
5811 r = move_stmt_eh_region_tree_nr (r, p);
5812 gimple_call_set_arg (stmt, 1, r);
5813 /* FALLTHRU */
5814
5815 case BUILT_IN_EH_POINTER:
5816 case BUILT_IN_EH_FILTER:
5817 r = gimple_call_arg (stmt, 0);
5818 r = move_stmt_eh_region_tree_nr (r, p);
5819 gimple_call_set_arg (stmt, 0, r);
5820 break;
5821
5822 default:
5823 break;
5824 }
5825 }
5826 break;
5827
5828 case GIMPLE_RESX:
5829 {
5830 int r = gimple_resx_region (stmt);
5831 r = move_stmt_eh_region_nr (r, p);
5832 gimple_resx_set_region (stmt, r);
5833 }
5834 break;
5835
5836 case GIMPLE_EH_DISPATCH:
5837 {
5838 int r = gimple_eh_dispatch_region (stmt);
5839 r = move_stmt_eh_region_nr (r, p);
5840 gimple_eh_dispatch_set_region (stmt, r);
5841 }
5842 break;
5843
5844 case GIMPLE_OMP_RETURN:
5845 case GIMPLE_OMP_CONTINUE:
5846 break;
5847 default:
5848 if (is_gimple_omp (stmt))
5849 {
5850 /* Do not remap variables inside OMP directives. Variables
5851 referenced in clauses and directive header belong to the
5852 parent function and should not be moved into the child
5853 function. */
5854 bool save_remap_decls_p = p->remap_decls_p;
5855 p->remap_decls_p = false;
5856 *handled_ops_p = true;
5857
5858 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5859 move_stmt_op, wi);
5860
5861 p->remap_decls_p = save_remap_decls_p;
5862 }
5863 break;
5864 }
5865
5866 return NULL_TREE;
5867 }
5868
5869 /* Move basic block BB from function CFUN to function DEST_FN. The
5870 block is moved out of the original linked list and placed after
5871 block AFTER in the new list. Also, the block is removed from the
5872 original array of blocks and placed in DEST_FN's array of blocks.
5873 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5874 updated to reflect the moved edges.
5875
5876 The local variables are remapped to new instances, VARS_MAP is used
5877 to record the mapping. */
5878
5879 static void
5880 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5881 basic_block after, bool update_edge_count_p,
5882 struct move_stmt_d *d)
5883 {
5884 struct control_flow_graph *cfg;
5885 edge_iterator ei;
5886 edge e;
5887 gimple_stmt_iterator si;
5888 unsigned old_len, new_len;
5889
5890 /* Remove BB from dominance structures. */
5891 delete_from_dominance_info (CDI_DOMINATORS, bb);
5892 if (current_loops)
5893 remove_bb_from_loops (bb);
5894
5895 /* Link BB to the new linked list. */
5896 move_block_after (bb, after);
5897
5898 /* Update the edge count in the corresponding flowgraphs. */
5899 if (update_edge_count_p)
5900 FOR_EACH_EDGE (e, ei, bb->succs)
5901 {
5902 cfun->cfg->x_n_edges--;
5903 dest_cfun->cfg->x_n_edges++;
5904 }
5905
5906 /* Remove BB from the original basic block array. */
5907 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5908 cfun->cfg->x_n_basic_blocks--;
5909
5910 /* Grow DEST_CFUN's basic block array if needed. */
5911 cfg = dest_cfun->cfg;
5912 cfg->x_n_basic_blocks++;
5913 if (bb->index >= cfg->x_last_basic_block)
5914 cfg->x_last_basic_block = bb->index + 1;
5915
5916 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5917 if ((unsigned) cfg->x_last_basic_block >= old_len)
5918 {
5919 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5920 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5921 new_len);
5922 }
5923
5924 VEC_replace (basic_block, cfg->x_basic_block_info,
5925 bb->index, bb);
5926
5927 /* Remap the variables in phi nodes. */
5928 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5929 {
5930 gimple phi = gsi_stmt (si);
5931 use_operand_p use;
5932 tree op = PHI_RESULT (phi);
5933 ssa_op_iter oi;
5934
5935 if (!is_gimple_reg (op))
5936 {
5937 /* Remove the phi nodes for virtual operands (alias analysis will be
5938 run for the new function, anyway). */
5939 remove_phi_node (&si, true);
5940 continue;
5941 }
5942
5943 SET_PHI_RESULT (phi,
5944 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5945 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5946 {
5947 op = USE_FROM_PTR (use);
5948 if (TREE_CODE (op) == SSA_NAME)
5949 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5950 }
5951
5952 gsi_next (&si);
5953 }
5954
5955 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5956 {
5957 gimple stmt = gsi_stmt (si);
5958 struct walk_stmt_info wi;
5959
5960 memset (&wi, 0, sizeof (wi));
5961 wi.info = d;
5962 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5963
5964 if (gimple_code (stmt) == GIMPLE_LABEL)
5965 {
5966 tree label = gimple_label_label (stmt);
5967 int uid = LABEL_DECL_UID (label);
5968
5969 gcc_assert (uid > -1);
5970
5971 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5972 if (old_len <= (unsigned) uid)
5973 {
5974 new_len = 3 * uid / 2 + 1;
5975 VEC_safe_grow_cleared (basic_block, gc,
5976 cfg->x_label_to_block_map, new_len);
5977 }
5978
5979 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5980 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5981
5982 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5983
5984 if (uid >= dest_cfun->cfg->last_label_uid)
5985 dest_cfun->cfg->last_label_uid = uid + 1;
5986 }
5987
5988 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5989 remove_stmt_from_eh_lp_fn (cfun, stmt);
5990
5991 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5992 gimple_remove_stmt_histograms (cfun, stmt);
5993
5994 /* We cannot leave any operands allocated from the operand caches of
5995 the current function. */
5996 free_stmt_operands (stmt);
5997 push_cfun (dest_cfun);
5998 update_stmt (stmt);
5999 pop_cfun ();
6000 }
6001
6002 FOR_EACH_EDGE (e, ei, bb->succs)
6003 if (e->goto_locus)
6004 {
6005 tree block = e->goto_block;
6006 if (d->orig_block == NULL_TREE
6007 || block == d->orig_block)
6008 e->goto_block = d->new_block;
6009 #ifdef ENABLE_CHECKING
6010 else if (block != d->new_block)
6011 {
6012 while (block && block != d->orig_block)
6013 block = BLOCK_SUPERCONTEXT (block);
6014 gcc_assert (block);
6015 }
6016 #endif
6017 }
6018 }
6019
6020 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6021 the outermost EH region. Use REGION as the incoming base EH region. */
6022
6023 static eh_region
6024 find_outermost_region_in_block (struct function *src_cfun,
6025 basic_block bb, eh_region region)
6026 {
6027 gimple_stmt_iterator si;
6028
6029 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6030 {
6031 gimple stmt = gsi_stmt (si);
6032 eh_region stmt_region;
6033 int lp_nr;
6034
6035 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6036 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6037 if (stmt_region)
6038 {
6039 if (region == NULL)
6040 region = stmt_region;
6041 else if (stmt_region != region)
6042 {
6043 region = eh_region_outermost (src_cfun, stmt_region, region);
6044 gcc_assert (region != NULL);
6045 }
6046 }
6047 }
6048
6049 return region;
6050 }
6051
6052 static tree
6053 new_label_mapper (tree decl, void *data)
6054 {
6055 htab_t hash = (htab_t) data;
6056 struct tree_map *m;
6057 void **slot;
6058
6059 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6060
6061 m = XNEW (struct tree_map);
6062 m->hash = DECL_UID (decl);
6063 m->base.from = decl;
6064 m->to = create_artificial_label (UNKNOWN_LOCATION);
6065 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6066 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6067 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6068
6069 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6070 gcc_assert (*slot == NULL);
6071
6072 *slot = m;
6073
6074 return m->to;
6075 }
6076
6077 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6078 subblocks. */
6079
6080 static void
6081 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6082 tree to_context)
6083 {
6084 tree *tp, t;
6085
6086 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6087 {
6088 t = *tp;
6089 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6090 continue;
6091 replace_by_duplicate_decl (&t, vars_map, to_context);
6092 if (t != *tp)
6093 {
6094 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6095 {
6096 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6097 DECL_HAS_VALUE_EXPR_P (t) = 1;
6098 }
6099 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6100 *tp = t;
6101 }
6102 }
6103
6104 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6105 replace_block_vars_by_duplicates (block, vars_map, to_context);
6106 }
6107
6108 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6109 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6110 single basic block in the original CFG and the new basic block is
6111 returned. DEST_CFUN must not have a CFG yet.
6112
6113 Note that the region need not be a pure SESE region. Blocks inside
6114 the region may contain calls to abort/exit. The only restriction
6115 is that ENTRY_BB should be the only entry point and it must
6116 dominate EXIT_BB.
6117
6118 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6119 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6120 to the new function.
6121
6122 All local variables referenced in the region are assumed to be in
6123 the corresponding BLOCK_VARS and unexpanded variable lists
6124 associated with DEST_CFUN. */
6125
6126 basic_block
6127 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6128 basic_block exit_bb, tree orig_block)
6129 {
6130 VEC(basic_block,heap) *bbs, *dom_bbs;
6131 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6132 basic_block after, bb, *entry_pred, *exit_succ, abb;
6133 struct function *saved_cfun = cfun;
6134 int *entry_flag, *exit_flag;
6135 unsigned *entry_prob, *exit_prob;
6136 unsigned i, num_entry_edges, num_exit_edges;
6137 edge e;
6138 edge_iterator ei;
6139 htab_t new_label_map;
6140 struct pointer_map_t *vars_map, *eh_map;
6141 struct loop *loop = entry_bb->loop_father;
6142 struct move_stmt_d d;
6143
6144 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6145 region. */
6146 gcc_assert (entry_bb != exit_bb
6147 && (!exit_bb
6148 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6149
6150 /* Collect all the blocks in the region. Manually add ENTRY_BB
6151 because it won't be added by dfs_enumerate_from. */
6152 bbs = NULL;
6153 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6154 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6155
6156 /* The blocks that used to be dominated by something in BBS will now be
6157 dominated by the new block. */
6158 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6159 VEC_address (basic_block, bbs),
6160 VEC_length (basic_block, bbs));
6161
6162 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6163 the predecessor edges to ENTRY_BB and the successor edges to
6164 EXIT_BB so that we can re-attach them to the new basic block that
6165 will replace the region. */
6166 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6167 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6168 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6169 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6170 i = 0;
6171 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6172 {
6173 entry_prob[i] = e->probability;
6174 entry_flag[i] = e->flags;
6175 entry_pred[i++] = e->src;
6176 remove_edge (e);
6177 }
6178
6179 if (exit_bb)
6180 {
6181 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6182 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6183 sizeof (basic_block));
6184 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6185 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6186 i = 0;
6187 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6188 {
6189 exit_prob[i] = e->probability;
6190 exit_flag[i] = e->flags;
6191 exit_succ[i++] = e->dest;
6192 remove_edge (e);
6193 }
6194 }
6195 else
6196 {
6197 num_exit_edges = 0;
6198 exit_succ = NULL;
6199 exit_flag = NULL;
6200 exit_prob = NULL;
6201 }
6202
6203 /* Switch context to the child function to initialize DEST_FN's CFG. */
6204 gcc_assert (dest_cfun->cfg == NULL);
6205 push_cfun (dest_cfun);
6206
6207 init_empty_tree_cfg ();
6208
6209 /* Initialize EH information for the new function. */
6210 eh_map = NULL;
6211 new_label_map = NULL;
6212 if (saved_cfun->eh)
6213 {
6214 eh_region region = NULL;
6215
6216 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6217 region = find_outermost_region_in_block (saved_cfun, bb, region);
6218
6219 init_eh_for_function ();
6220 if (region != NULL)
6221 {
6222 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6223 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6224 new_label_mapper, new_label_map);
6225 }
6226 }
6227
6228 pop_cfun ();
6229
6230 /* Move blocks from BBS into DEST_CFUN. */
6231 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6232 after = dest_cfun->cfg->x_entry_block_ptr;
6233 vars_map = pointer_map_create ();
6234
6235 memset (&d, 0, sizeof (d));
6236 d.orig_block = orig_block;
6237 d.new_block = DECL_INITIAL (dest_cfun->decl);
6238 d.from_context = cfun->decl;
6239 d.to_context = dest_cfun->decl;
6240 d.vars_map = vars_map;
6241 d.new_label_map = new_label_map;
6242 d.eh_map = eh_map;
6243 d.remap_decls_p = true;
6244
6245 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6246 {
6247 /* No need to update edge counts on the last block. It has
6248 already been updated earlier when we detached the region from
6249 the original CFG. */
6250 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6251 after = bb;
6252 }
6253
6254 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6255 if (orig_block)
6256 {
6257 tree block;
6258 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6259 == NULL_TREE);
6260 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6261 = BLOCK_SUBBLOCKS (orig_block);
6262 for (block = BLOCK_SUBBLOCKS (orig_block);
6263 block; block = BLOCK_CHAIN (block))
6264 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6265 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6266 }
6267
6268 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6269 vars_map, dest_cfun->decl);
6270
6271 if (new_label_map)
6272 htab_delete (new_label_map);
6273 if (eh_map)
6274 pointer_map_destroy (eh_map);
6275 pointer_map_destroy (vars_map);
6276
6277 /* Rewire the entry and exit blocks. The successor to the entry
6278 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6279 the child function. Similarly, the predecessor of DEST_FN's
6280 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6281 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6282 various CFG manipulation function get to the right CFG.
6283
6284 FIXME, this is silly. The CFG ought to become a parameter to
6285 these helpers. */
6286 push_cfun (dest_cfun);
6287 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6288 if (exit_bb)
6289 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6290 pop_cfun ();
6291
6292 /* Back in the original function, the SESE region has disappeared,
6293 create a new basic block in its place. */
6294 bb = create_empty_bb (entry_pred[0]);
6295 if (current_loops)
6296 add_bb_to_loop (bb, loop);
6297 for (i = 0; i < num_entry_edges; i++)
6298 {
6299 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6300 e->probability = entry_prob[i];
6301 }
6302
6303 for (i = 0; i < num_exit_edges; i++)
6304 {
6305 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6306 e->probability = exit_prob[i];
6307 }
6308
6309 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6310 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6311 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6312 VEC_free (basic_block, heap, dom_bbs);
6313
6314 if (exit_bb)
6315 {
6316 free (exit_prob);
6317 free (exit_flag);
6318 free (exit_succ);
6319 }
6320 free (entry_prob);
6321 free (entry_flag);
6322 free (entry_pred);
6323 VEC_free (basic_block, heap, bbs);
6324
6325 return bb;
6326 }
6327
6328
6329 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6330 */
6331
6332 void
6333 dump_function_to_file (tree fn, FILE *file, int flags)
6334 {
6335 tree arg, var;
6336 struct function *dsf;
6337 bool ignore_topmost_bind = false, any_var = false;
6338 basic_block bb;
6339 tree chain;
6340
6341 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6342
6343 arg = DECL_ARGUMENTS (fn);
6344 while (arg)
6345 {
6346 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6347 fprintf (file, " ");
6348 print_generic_expr (file, arg, dump_flags);
6349 if (flags & TDF_VERBOSE)
6350 print_node (file, "", arg, 4);
6351 if (DECL_CHAIN (arg))
6352 fprintf (file, ", ");
6353 arg = DECL_CHAIN (arg);
6354 }
6355 fprintf (file, ")\n");
6356
6357 if (flags & TDF_VERBOSE)
6358 print_node (file, "", fn, 2);
6359
6360 dsf = DECL_STRUCT_FUNCTION (fn);
6361 if (dsf && (flags & TDF_EH))
6362 dump_eh_tree (file, dsf);
6363
6364 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6365 {
6366 dump_node (fn, TDF_SLIM | flags, file);
6367 return;
6368 }
6369
6370 /* Switch CFUN to point to FN. */
6371 push_cfun (DECL_STRUCT_FUNCTION (fn));
6372
6373 /* When GIMPLE is lowered, the variables are no longer available in
6374 BIND_EXPRs, so display them separately. */
6375 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6376 {
6377 unsigned ix;
6378 ignore_topmost_bind = true;
6379
6380 fprintf (file, "{\n");
6381 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6382 {
6383 print_generic_decl (file, var, flags);
6384 if (flags & TDF_VERBOSE)
6385 print_node (file, "", var, 4);
6386 fprintf (file, "\n");
6387
6388 any_var = true;
6389 }
6390 }
6391
6392 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6393 {
6394 /* If the CFG has been built, emit a CFG-based dump. */
6395 check_bb_profile (ENTRY_BLOCK_PTR, file);
6396 if (!ignore_topmost_bind)
6397 fprintf (file, "{\n");
6398
6399 if (any_var && n_basic_blocks)
6400 fprintf (file, "\n");
6401
6402 FOR_EACH_BB (bb)
6403 gimple_dump_bb (bb, file, 2, flags);
6404
6405 fprintf (file, "}\n");
6406 check_bb_profile (EXIT_BLOCK_PTR, file);
6407 }
6408 else if (DECL_SAVED_TREE (fn) == NULL)
6409 {
6410 /* The function is now in GIMPLE form but the CFG has not been
6411 built yet. Emit the single sequence of GIMPLE statements
6412 that make up its body. */
6413 gimple_seq body = gimple_body (fn);
6414
6415 if (gimple_seq_first_stmt (body)
6416 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6417 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6418 print_gimple_seq (file, body, 0, flags);
6419 else
6420 {
6421 if (!ignore_topmost_bind)
6422 fprintf (file, "{\n");
6423
6424 if (any_var)
6425 fprintf (file, "\n");
6426
6427 print_gimple_seq (file, body, 2, flags);
6428 fprintf (file, "}\n");
6429 }
6430 }
6431 else
6432 {
6433 int indent;
6434
6435 /* Make a tree based dump. */
6436 chain = DECL_SAVED_TREE (fn);
6437
6438 if (chain && TREE_CODE (chain) == BIND_EXPR)
6439 {
6440 if (ignore_topmost_bind)
6441 {
6442 chain = BIND_EXPR_BODY (chain);
6443 indent = 2;
6444 }
6445 else
6446 indent = 0;
6447 }
6448 else
6449 {
6450 if (!ignore_topmost_bind)
6451 fprintf (file, "{\n");
6452 indent = 2;
6453 }
6454
6455 if (any_var)
6456 fprintf (file, "\n");
6457
6458 print_generic_stmt_indented (file, chain, flags, indent);
6459 if (ignore_topmost_bind)
6460 fprintf (file, "}\n");
6461 }
6462
6463 if (flags & TDF_ENUMERATE_LOCALS)
6464 dump_enumerated_decls (file, flags);
6465 fprintf (file, "\n\n");
6466
6467 /* Restore CFUN. */
6468 pop_cfun ();
6469 }
6470
6471
6472 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6473
6474 DEBUG_FUNCTION void
6475 debug_function (tree fn, int flags)
6476 {
6477 dump_function_to_file (fn, stderr, flags);
6478 }
6479
6480
6481 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6482
6483 static void
6484 print_pred_bbs (FILE *file, basic_block bb)
6485 {
6486 edge e;
6487 edge_iterator ei;
6488
6489 FOR_EACH_EDGE (e, ei, bb->preds)
6490 fprintf (file, "bb_%d ", e->src->index);
6491 }
6492
6493
6494 /* Print on FILE the indexes for the successors of basic_block BB. */
6495
6496 static void
6497 print_succ_bbs (FILE *file, basic_block bb)
6498 {
6499 edge e;
6500 edge_iterator ei;
6501
6502 FOR_EACH_EDGE (e, ei, bb->succs)
6503 fprintf (file, "bb_%d ", e->dest->index);
6504 }
6505
6506 /* Print to FILE the basic block BB following the VERBOSITY level. */
6507
6508 void
6509 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6510 {
6511 char *s_indent = (char *) alloca ((size_t) indent + 1);
6512 memset ((void *) s_indent, ' ', (size_t) indent);
6513 s_indent[indent] = '\0';
6514
6515 /* Print basic_block's header. */
6516 if (verbosity >= 2)
6517 {
6518 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6519 print_pred_bbs (file, bb);
6520 fprintf (file, "}, succs = {");
6521 print_succ_bbs (file, bb);
6522 fprintf (file, "})\n");
6523 }
6524
6525 /* Print basic_block's body. */
6526 if (verbosity >= 3)
6527 {
6528 fprintf (file, "%s {\n", s_indent);
6529 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6530 fprintf (file, "%s }\n", s_indent);
6531 }
6532 }
6533
6534 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6535
6536 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6537 VERBOSITY level this outputs the contents of the loop, or just its
6538 structure. */
6539
6540 static void
6541 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6542 {
6543 char *s_indent;
6544 basic_block bb;
6545
6546 if (loop == NULL)
6547 return;
6548
6549 s_indent = (char *) alloca ((size_t) indent + 1);
6550 memset ((void *) s_indent, ' ', (size_t) indent);
6551 s_indent[indent] = '\0';
6552
6553 /* Print loop's header. */
6554 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6555 loop->num, loop->header->index, loop->latch->index);
6556 fprintf (file, ", niter = ");
6557 print_generic_expr (file, loop->nb_iterations, 0);
6558
6559 if (loop->any_upper_bound)
6560 {
6561 fprintf (file, ", upper_bound = ");
6562 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6563 }
6564
6565 if (loop->any_estimate)
6566 {
6567 fprintf (file, ", estimate = ");
6568 dump_double_int (file, loop->nb_iterations_estimate, true);
6569 }
6570 fprintf (file, ")\n");
6571
6572 /* Print loop's body. */
6573 if (verbosity >= 1)
6574 {
6575 fprintf (file, "%s{\n", s_indent);
6576 FOR_EACH_BB (bb)
6577 if (bb->loop_father == loop)
6578 print_loops_bb (file, bb, indent, verbosity);
6579
6580 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6581 fprintf (file, "%s}\n", s_indent);
6582 }
6583 }
6584
6585 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6586 spaces. Following VERBOSITY level this outputs the contents of the
6587 loop, or just its structure. */
6588
6589 static void
6590 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6591 {
6592 if (loop == NULL)
6593 return;
6594
6595 print_loop (file, loop, indent, verbosity);
6596 print_loop_and_siblings (file, loop->next, indent, verbosity);
6597 }
6598
6599 /* Follow a CFG edge from the entry point of the program, and on entry
6600 of a loop, pretty print the loop structure on FILE. */
6601
6602 void
6603 print_loops (FILE *file, int verbosity)
6604 {
6605 basic_block bb;
6606
6607 bb = ENTRY_BLOCK_PTR;
6608 if (bb && bb->loop_father)
6609 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6610 }
6611
6612
6613 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6614
6615 DEBUG_FUNCTION void
6616 debug_loops (int verbosity)
6617 {
6618 print_loops (stderr, verbosity);
6619 }
6620
6621 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6622
6623 DEBUG_FUNCTION void
6624 debug_loop (struct loop *loop, int verbosity)
6625 {
6626 print_loop (stderr, loop, 0, verbosity);
6627 }
6628
6629 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6630 level. */
6631
6632 DEBUG_FUNCTION void
6633 debug_loop_num (unsigned num, int verbosity)
6634 {
6635 debug_loop (get_loop (num), verbosity);
6636 }
6637
6638 /* Return true if BB ends with a call, possibly followed by some
6639 instructions that must stay with the call. Return false,
6640 otherwise. */
6641
6642 static bool
6643 gimple_block_ends_with_call_p (basic_block bb)
6644 {
6645 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6646 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6647 }
6648
6649
6650 /* Return true if BB ends with a conditional branch. Return false,
6651 otherwise. */
6652
6653 static bool
6654 gimple_block_ends_with_condjump_p (const_basic_block bb)
6655 {
6656 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6657 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6658 }
6659
6660
6661 /* Return true if we need to add fake edge to exit at statement T.
6662 Helper function for gimple_flow_call_edges_add. */
6663
6664 static bool
6665 need_fake_edge_p (gimple t)
6666 {
6667 tree fndecl = NULL_TREE;
6668 int call_flags = 0;
6669
6670 /* NORETURN and LONGJMP calls already have an edge to exit.
6671 CONST and PURE calls do not need one.
6672 We don't currently check for CONST and PURE here, although
6673 it would be a good idea, because those attributes are
6674 figured out from the RTL in mark_constant_function, and
6675 the counter incrementation code from -fprofile-arcs
6676 leads to different results from -fbranch-probabilities. */
6677 if (is_gimple_call (t))
6678 {
6679 fndecl = gimple_call_fndecl (t);
6680 call_flags = gimple_call_flags (t);
6681 }
6682
6683 if (is_gimple_call (t)
6684 && fndecl
6685 && DECL_BUILT_IN (fndecl)
6686 && (call_flags & ECF_NOTHROW)
6687 && !(call_flags & ECF_RETURNS_TWICE)
6688 /* fork() doesn't really return twice, but the effect of
6689 wrapping it in __gcov_fork() which calls __gcov_flush()
6690 and clears the counters before forking has the same
6691 effect as returning twice. Force a fake edge. */
6692 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6693 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6694 return false;
6695
6696 if (is_gimple_call (t)
6697 && !(call_flags & ECF_NORETURN))
6698 return true;
6699
6700 if (gimple_code (t) == GIMPLE_ASM
6701 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6702 return true;
6703
6704 return false;
6705 }
6706
6707
6708 /* Add fake edges to the function exit for any non constant and non
6709 noreturn calls, volatile inline assembly in the bitmap of blocks
6710 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6711 the number of blocks that were split.
6712
6713 The goal is to expose cases in which entering a basic block does
6714 not imply that all subsequent instructions must be executed. */
6715
6716 static int
6717 gimple_flow_call_edges_add (sbitmap blocks)
6718 {
6719 int i;
6720 int blocks_split = 0;
6721 int last_bb = last_basic_block;
6722 bool check_last_block = false;
6723
6724 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6725 return 0;
6726
6727 if (! blocks)
6728 check_last_block = true;
6729 else
6730 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6731
6732 /* In the last basic block, before epilogue generation, there will be
6733 a fallthru edge to EXIT. Special care is required if the last insn
6734 of the last basic block is a call because make_edge folds duplicate
6735 edges, which would result in the fallthru edge also being marked
6736 fake, which would result in the fallthru edge being removed by
6737 remove_fake_edges, which would result in an invalid CFG.
6738
6739 Moreover, we can't elide the outgoing fake edge, since the block
6740 profiler needs to take this into account in order to solve the minimal
6741 spanning tree in the case that the call doesn't return.
6742
6743 Handle this by adding a dummy instruction in a new last basic block. */
6744 if (check_last_block)
6745 {
6746 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6747 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6748 gimple t = NULL;
6749
6750 if (!gsi_end_p (gsi))
6751 t = gsi_stmt (gsi);
6752
6753 if (t && need_fake_edge_p (t))
6754 {
6755 edge e;
6756
6757 e = find_edge (bb, EXIT_BLOCK_PTR);
6758 if (e)
6759 {
6760 gsi_insert_on_edge (e, gimple_build_nop ());
6761 gsi_commit_edge_inserts ();
6762 }
6763 }
6764 }
6765
6766 /* Now add fake edges to the function exit for any non constant
6767 calls since there is no way that we can determine if they will
6768 return or not... */
6769 for (i = 0; i < last_bb; i++)
6770 {
6771 basic_block bb = BASIC_BLOCK (i);
6772 gimple_stmt_iterator gsi;
6773 gimple stmt, last_stmt;
6774
6775 if (!bb)
6776 continue;
6777
6778 if (blocks && !TEST_BIT (blocks, i))
6779 continue;
6780
6781 gsi = gsi_last_nondebug_bb (bb);
6782 if (!gsi_end_p (gsi))
6783 {
6784 last_stmt = gsi_stmt (gsi);
6785 do
6786 {
6787 stmt = gsi_stmt (gsi);
6788 if (need_fake_edge_p (stmt))
6789 {
6790 edge e;
6791
6792 /* The handling above of the final block before the
6793 epilogue should be enough to verify that there is
6794 no edge to the exit block in CFG already.
6795 Calling make_edge in such case would cause us to
6796 mark that edge as fake and remove it later. */
6797 #ifdef ENABLE_CHECKING
6798 if (stmt == last_stmt)
6799 {
6800 e = find_edge (bb, EXIT_BLOCK_PTR);
6801 gcc_assert (e == NULL);
6802 }
6803 #endif
6804
6805 /* Note that the following may create a new basic block
6806 and renumber the existing basic blocks. */
6807 if (stmt != last_stmt)
6808 {
6809 e = split_block (bb, stmt);
6810 if (e)
6811 blocks_split++;
6812 }
6813 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6814 }
6815 gsi_prev (&gsi);
6816 }
6817 while (!gsi_end_p (gsi));
6818 }
6819 }
6820
6821 if (blocks_split)
6822 verify_flow_info ();
6823
6824 return blocks_split;
6825 }
6826
6827 /* Removes edge E and all the blocks dominated by it, and updates dominance
6828 information. The IL in E->src needs to be updated separately.
6829 If dominance info is not available, only the edge E is removed.*/
6830
6831 void
6832 remove_edge_and_dominated_blocks (edge e)
6833 {
6834 VEC (basic_block, heap) *bbs_to_remove = NULL;
6835 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6836 bitmap df, df_idom;
6837 edge f;
6838 edge_iterator ei;
6839 bool none_removed = false;
6840 unsigned i;
6841 basic_block bb, dbb;
6842 bitmap_iterator bi;
6843
6844 if (!dom_info_available_p (CDI_DOMINATORS))
6845 {
6846 remove_edge (e);
6847 return;
6848 }
6849
6850 /* No updating is needed for edges to exit. */
6851 if (e->dest == EXIT_BLOCK_PTR)
6852 {
6853 if (cfgcleanup_altered_bbs)
6854 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6855 remove_edge (e);
6856 return;
6857 }
6858
6859 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6860 that is not dominated by E->dest, then this set is empty. Otherwise,
6861 all the basic blocks dominated by E->dest are removed.
6862
6863 Also, to DF_IDOM we store the immediate dominators of the blocks in
6864 the dominance frontier of E (i.e., of the successors of the
6865 removed blocks, if there are any, and of E->dest otherwise). */
6866 FOR_EACH_EDGE (f, ei, e->dest->preds)
6867 {
6868 if (f == e)
6869 continue;
6870
6871 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6872 {
6873 none_removed = true;
6874 break;
6875 }
6876 }
6877
6878 df = BITMAP_ALLOC (NULL);
6879 df_idom = BITMAP_ALLOC (NULL);
6880
6881 if (none_removed)
6882 bitmap_set_bit (df_idom,
6883 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6884 else
6885 {
6886 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6887 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6888 {
6889 FOR_EACH_EDGE (f, ei, bb->succs)
6890 {
6891 if (f->dest != EXIT_BLOCK_PTR)
6892 bitmap_set_bit (df, f->dest->index);
6893 }
6894 }
6895 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6896 bitmap_clear_bit (df, bb->index);
6897
6898 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6899 {
6900 bb = BASIC_BLOCK (i);
6901 bitmap_set_bit (df_idom,
6902 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6903 }
6904 }
6905
6906 if (cfgcleanup_altered_bbs)
6907 {
6908 /* Record the set of the altered basic blocks. */
6909 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6910 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6911 }
6912
6913 /* Remove E and the cancelled blocks. */
6914 if (none_removed)
6915 remove_edge (e);
6916 else
6917 {
6918 /* Walk backwards so as to get a chance to substitute all
6919 released DEFs into debug stmts. See
6920 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6921 details. */
6922 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6923 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6924 }
6925
6926 /* Update the dominance information. The immediate dominator may change only
6927 for blocks whose immediate dominator belongs to DF_IDOM:
6928
6929 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6930 removal. Let Z the arbitrary block such that idom(Z) = Y and
6931 Z dominates X after the removal. Before removal, there exists a path P
6932 from Y to X that avoids Z. Let F be the last edge on P that is
6933 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6934 dominates W, and because of P, Z does not dominate W), and W belongs to
6935 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6936 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6937 {
6938 bb = BASIC_BLOCK (i);
6939 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6940 dbb;
6941 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6942 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6943 }
6944
6945 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6946
6947 BITMAP_FREE (df);
6948 BITMAP_FREE (df_idom);
6949 VEC_free (basic_block, heap, bbs_to_remove);
6950 VEC_free (basic_block, heap, bbs_to_fix_dom);
6951 }
6952
6953 /* Purge dead EH edges from basic block BB. */
6954
6955 bool
6956 gimple_purge_dead_eh_edges (basic_block bb)
6957 {
6958 bool changed = false;
6959 edge e;
6960 edge_iterator ei;
6961 gimple stmt = last_stmt (bb);
6962
6963 if (stmt && stmt_can_throw_internal (stmt))
6964 return false;
6965
6966 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6967 {
6968 if (e->flags & EDGE_EH)
6969 {
6970 remove_edge_and_dominated_blocks (e);
6971 changed = true;
6972 }
6973 else
6974 ei_next (&ei);
6975 }
6976
6977 return changed;
6978 }
6979
6980 /* Purge dead EH edges from basic block listed in BLOCKS. */
6981
6982 bool
6983 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6984 {
6985 bool changed = false;
6986 unsigned i;
6987 bitmap_iterator bi;
6988
6989 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6990 {
6991 basic_block bb = BASIC_BLOCK (i);
6992
6993 /* Earlier gimple_purge_dead_eh_edges could have removed
6994 this basic block already. */
6995 gcc_assert (bb || changed);
6996 if (bb != NULL)
6997 changed |= gimple_purge_dead_eh_edges (bb);
6998 }
6999
7000 return changed;
7001 }
7002
7003 /* Purge dead abnormal call edges from basic block BB. */
7004
7005 bool
7006 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7007 {
7008 bool changed = false;
7009 edge e;
7010 edge_iterator ei;
7011 gimple stmt = last_stmt (bb);
7012
7013 if (!cfun->has_nonlocal_label)
7014 return false;
7015
7016 if (stmt && stmt_can_make_abnormal_goto (stmt))
7017 return false;
7018
7019 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7020 {
7021 if (e->flags & EDGE_ABNORMAL)
7022 {
7023 remove_edge_and_dominated_blocks (e);
7024 changed = true;
7025 }
7026 else
7027 ei_next (&ei);
7028 }
7029
7030 return changed;
7031 }
7032
7033 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7034
7035 bool
7036 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7037 {
7038 bool changed = false;
7039 unsigned i;
7040 bitmap_iterator bi;
7041
7042 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7043 {
7044 basic_block bb = BASIC_BLOCK (i);
7045
7046 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7047 this basic block already. */
7048 gcc_assert (bb || changed);
7049 if (bb != NULL)
7050 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7051 }
7052
7053 return changed;
7054 }
7055
7056 /* This function is called whenever a new edge is created or
7057 redirected. */
7058
7059 static void
7060 gimple_execute_on_growing_pred (edge e)
7061 {
7062 basic_block bb = e->dest;
7063
7064 if (!gimple_seq_empty_p (phi_nodes (bb)))
7065 reserve_phi_args_for_new_edge (bb);
7066 }
7067
7068 /* This function is called immediately before edge E is removed from
7069 the edge vector E->dest->preds. */
7070
7071 static void
7072 gimple_execute_on_shrinking_pred (edge e)
7073 {
7074 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7075 remove_phi_args (e);
7076 }
7077
7078 /*---------------------------------------------------------------------------
7079 Helper functions for Loop versioning
7080 ---------------------------------------------------------------------------*/
7081
7082 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7083 of 'first'. Both of them are dominated by 'new_head' basic block. When
7084 'new_head' was created by 'second's incoming edge it received phi arguments
7085 on the edge by split_edge(). Later, additional edge 'e' was created to
7086 connect 'new_head' and 'first'. Now this routine adds phi args on this
7087 additional edge 'e' that new_head to second edge received as part of edge
7088 splitting. */
7089
7090 static void
7091 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7092 basic_block new_head, edge e)
7093 {
7094 gimple phi1, phi2;
7095 gimple_stmt_iterator psi1, psi2;
7096 tree def;
7097 edge e2 = find_edge (new_head, second);
7098
7099 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7100 edge, we should always have an edge from NEW_HEAD to SECOND. */
7101 gcc_assert (e2 != NULL);
7102
7103 /* Browse all 'second' basic block phi nodes and add phi args to
7104 edge 'e' for 'first' head. PHI args are always in correct order. */
7105
7106 for (psi2 = gsi_start_phis (second),
7107 psi1 = gsi_start_phis (first);
7108 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7109 gsi_next (&psi2), gsi_next (&psi1))
7110 {
7111 phi1 = gsi_stmt (psi1);
7112 phi2 = gsi_stmt (psi2);
7113 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7114 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7115 }
7116 }
7117
7118
7119 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7120 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7121 the destination of the ELSE part. */
7122
7123 static void
7124 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7125 basic_block second_head ATTRIBUTE_UNUSED,
7126 basic_block cond_bb, void *cond_e)
7127 {
7128 gimple_stmt_iterator gsi;
7129 gimple new_cond_expr;
7130 tree cond_expr = (tree) cond_e;
7131 edge e0;
7132
7133 /* Build new conditional expr */
7134 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7135 NULL_TREE, NULL_TREE);
7136
7137 /* Add new cond in cond_bb. */
7138 gsi = gsi_last_bb (cond_bb);
7139 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7140
7141 /* Adjust edges appropriately to connect new head with first head
7142 as well as second head. */
7143 e0 = single_succ_edge (cond_bb);
7144 e0->flags &= ~EDGE_FALLTHRU;
7145 e0->flags |= EDGE_FALSE_VALUE;
7146 }
7147
7148 struct cfg_hooks gimple_cfg_hooks = {
7149 "gimple",
7150 gimple_verify_flow_info,
7151 gimple_dump_bb, /* dump_bb */
7152 create_bb, /* create_basic_block */
7153 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7154 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7155 gimple_can_remove_branch_p, /* can_remove_branch_p */
7156 remove_bb, /* delete_basic_block */
7157 gimple_split_block, /* split_block */
7158 gimple_move_block_after, /* move_block_after */
7159 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7160 gimple_merge_blocks, /* merge_blocks */
7161 gimple_predict_edge, /* predict_edge */
7162 gimple_predicted_by_p, /* predicted_by_p */
7163 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7164 gimple_duplicate_bb, /* duplicate_block */
7165 gimple_split_edge, /* split_edge */
7166 gimple_make_forwarder_block, /* make_forward_block */
7167 NULL, /* tidy_fallthru_edge */
7168 NULL, /* force_nonfallthru */
7169 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7170 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7171 gimple_flow_call_edges_add, /* flow_call_edges_add */
7172 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7173 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7174 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7175 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7176 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7177 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7178 flush_pending_stmts /* flush_pending_stmts */
7179 };
7180
7181
7182 /* Split all critical edges. */
7183
7184 static unsigned int
7185 split_critical_edges (void)
7186 {
7187 basic_block bb;
7188 edge e;
7189 edge_iterator ei;
7190
7191 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7192 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7193 mappings around the calls to split_edge. */
7194 start_recording_case_labels ();
7195 FOR_ALL_BB (bb)
7196 {
7197 FOR_EACH_EDGE (e, ei, bb->succs)
7198 {
7199 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7200 split_edge (e);
7201 /* PRE inserts statements to edges and expects that
7202 since split_critical_edges was done beforehand, committing edge
7203 insertions will not split more edges. In addition to critical
7204 edges we must split edges that have multiple successors and
7205 end by control flow statements, such as RESX.
7206 Go ahead and split them too. This matches the logic in
7207 gimple_find_edge_insert_loc. */
7208 else if ((!single_pred_p (e->dest)
7209 || !gimple_seq_empty_p (phi_nodes (e->dest))
7210 || e->dest == EXIT_BLOCK_PTR)
7211 && e->src != ENTRY_BLOCK_PTR
7212 && !(e->flags & EDGE_ABNORMAL))
7213 {
7214 gimple_stmt_iterator gsi;
7215
7216 gsi = gsi_last_bb (e->src);
7217 if (!gsi_end_p (gsi)
7218 && stmt_ends_bb_p (gsi_stmt (gsi))
7219 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7220 && !gimple_call_builtin_p (gsi_stmt (gsi),
7221 BUILT_IN_RETURN)))
7222 split_edge (e);
7223 }
7224 }
7225 }
7226 end_recording_case_labels ();
7227 return 0;
7228 }
7229
7230 struct gimple_opt_pass pass_split_crit_edges =
7231 {
7232 {
7233 GIMPLE_PASS,
7234 "crited", /* name */
7235 NULL, /* gate */
7236 split_critical_edges, /* execute */
7237 NULL, /* sub */
7238 NULL, /* next */
7239 0, /* static_pass_number */
7240 TV_TREE_SPLIT_EDGES, /* tv_id */
7241 PROP_cfg, /* properties required */
7242 PROP_no_crit_edges, /* properties_provided */
7243 0, /* properties_destroyed */
7244 0, /* todo_flags_start */
7245 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7246 }
7247 };
7248
7249
7250 /* Build a ternary operation and gimplify it. Emit code before GSI.
7251 Return the gimple_val holding the result. */
7252
7253 tree
7254 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7255 tree type, tree a, tree b, tree c)
7256 {
7257 tree ret;
7258 location_t loc = gimple_location (gsi_stmt (*gsi));
7259
7260 ret = fold_build3_loc (loc, code, type, a, b, c);
7261 STRIP_NOPS (ret);
7262
7263 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7264 GSI_SAME_STMT);
7265 }
7266
7267 /* Build a binary operation and gimplify it. Emit code before GSI.
7268 Return the gimple_val holding the result. */
7269
7270 tree
7271 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7272 tree type, tree a, tree b)
7273 {
7274 tree ret;
7275
7276 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7277 STRIP_NOPS (ret);
7278
7279 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7280 GSI_SAME_STMT);
7281 }
7282
7283 /* Build a unary operation and gimplify it. Emit code before GSI.
7284 Return the gimple_val holding the result. */
7285
7286 tree
7287 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7288 tree a)
7289 {
7290 tree ret;
7291
7292 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7293 STRIP_NOPS (ret);
7294
7295 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7296 GSI_SAME_STMT);
7297 }
7298
7299
7300 \f
7301 /* Emit return warnings. */
7302
7303 static unsigned int
7304 execute_warn_function_return (void)
7305 {
7306 source_location location;
7307 gimple last;
7308 edge e;
7309 edge_iterator ei;
7310
7311 /* If we have a path to EXIT, then we do return. */
7312 if (TREE_THIS_VOLATILE (cfun->decl)
7313 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7314 {
7315 location = UNKNOWN_LOCATION;
7316 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7317 {
7318 last = last_stmt (e->src);
7319 if ((gimple_code (last) == GIMPLE_RETURN
7320 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7321 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7322 break;
7323 }
7324 if (location == UNKNOWN_LOCATION)
7325 location = cfun->function_end_locus;
7326 warning_at (location, 0, "%<noreturn%> function does return");
7327 }
7328
7329 /* If we see "return;" in some basic block, then we do reach the end
7330 without returning a value. */
7331 else if (warn_return_type
7332 && !TREE_NO_WARNING (cfun->decl)
7333 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7334 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7335 {
7336 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7337 {
7338 gimple last = last_stmt (e->src);
7339 if (gimple_code (last) == GIMPLE_RETURN
7340 && gimple_return_retval (last) == NULL
7341 && !gimple_no_warning_p (last))
7342 {
7343 location = gimple_location (last);
7344 if (location == UNKNOWN_LOCATION)
7345 location = cfun->function_end_locus;
7346 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7347 TREE_NO_WARNING (cfun->decl) = 1;
7348 break;
7349 }
7350 }
7351 }
7352 return 0;
7353 }
7354
7355
7356 /* Given a basic block B which ends with a conditional and has
7357 precisely two successors, determine which of the edges is taken if
7358 the conditional is true and which is taken if the conditional is
7359 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7360
7361 void
7362 extract_true_false_edges_from_block (basic_block b,
7363 edge *true_edge,
7364 edge *false_edge)
7365 {
7366 edge e = EDGE_SUCC (b, 0);
7367
7368 if (e->flags & EDGE_TRUE_VALUE)
7369 {
7370 *true_edge = e;
7371 *false_edge = EDGE_SUCC (b, 1);
7372 }
7373 else
7374 {
7375 *false_edge = e;
7376 *true_edge = EDGE_SUCC (b, 1);
7377 }
7378 }
7379
7380 struct gimple_opt_pass pass_warn_function_return =
7381 {
7382 {
7383 GIMPLE_PASS,
7384 "*warn_function_return", /* name */
7385 NULL, /* gate */
7386 execute_warn_function_return, /* execute */
7387 NULL, /* sub */
7388 NULL, /* next */
7389 0, /* static_pass_number */
7390 TV_NONE, /* tv_id */
7391 PROP_cfg, /* properties_required */
7392 0, /* properties_provided */
7393 0, /* properties_destroyed */
7394 0, /* todo_flags_start */
7395 0 /* todo_flags_finish */
7396 }
7397 };
7398
7399 /* Emit noreturn warnings. */
7400
7401 static unsigned int
7402 execute_warn_function_noreturn (void)
7403 {
7404 if (!TREE_THIS_VOLATILE (current_function_decl)
7405 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7406 warn_function_noreturn (current_function_decl);
7407 return 0;
7408 }
7409
7410 static bool
7411 gate_warn_function_noreturn (void)
7412 {
7413 return warn_suggest_attribute_noreturn;
7414 }
7415
7416 struct gimple_opt_pass pass_warn_function_noreturn =
7417 {
7418 {
7419 GIMPLE_PASS,
7420 "*warn_function_noreturn", /* name */
7421 gate_warn_function_noreturn, /* gate */
7422 execute_warn_function_noreturn, /* execute */
7423 NULL, /* sub */
7424 NULL, /* next */
7425 0, /* static_pass_number */
7426 TV_NONE, /* tv_id */
7427 PROP_cfg, /* properties_required */
7428 0, /* properties_provided */
7429 0, /* properties_destroyed */
7430 0, /* todo_flags_start */
7431 0 /* todo_flags_finish */
7432 }
7433 };
7434
7435
7436 /* Walk a gimplified function and warn for functions whose return value is
7437 ignored and attribute((warn_unused_result)) is set. This is done before
7438 inlining, so we don't have to worry about that. */
7439
7440 static void
7441 do_warn_unused_result (gimple_seq seq)
7442 {
7443 tree fdecl, ftype;
7444 gimple_stmt_iterator i;
7445
7446 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7447 {
7448 gimple g = gsi_stmt (i);
7449
7450 switch (gimple_code (g))
7451 {
7452 case GIMPLE_BIND:
7453 do_warn_unused_result (gimple_bind_body (g));
7454 break;
7455 case GIMPLE_TRY:
7456 do_warn_unused_result (gimple_try_eval (g));
7457 do_warn_unused_result (gimple_try_cleanup (g));
7458 break;
7459 case GIMPLE_CATCH:
7460 do_warn_unused_result (gimple_catch_handler (g));
7461 break;
7462 case GIMPLE_EH_FILTER:
7463 do_warn_unused_result (gimple_eh_filter_failure (g));
7464 break;
7465
7466 case GIMPLE_CALL:
7467 if (gimple_call_lhs (g))
7468 break;
7469 if (gimple_call_internal_p (g))
7470 break;
7471
7472 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7473 LHS. All calls whose value is ignored should be
7474 represented like this. Look for the attribute. */
7475 fdecl = gimple_call_fndecl (g);
7476 ftype = gimple_call_fntype (g);
7477
7478 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7479 {
7480 location_t loc = gimple_location (g);
7481
7482 if (fdecl)
7483 warning_at (loc, OPT_Wunused_result,
7484 "ignoring return value of %qD, "
7485 "declared with attribute warn_unused_result",
7486 fdecl);
7487 else
7488 warning_at (loc, OPT_Wunused_result,
7489 "ignoring return value of function "
7490 "declared with attribute warn_unused_result");
7491 }
7492 break;
7493
7494 default:
7495 /* Not a container, not a call, or a call whose value is used. */
7496 break;
7497 }
7498 }
7499 }
7500
7501 static unsigned int
7502 run_warn_unused_result (void)
7503 {
7504 do_warn_unused_result (gimple_body (current_function_decl));
7505 return 0;
7506 }
7507
7508 static bool
7509 gate_warn_unused_result (void)
7510 {
7511 return flag_warn_unused_result;
7512 }
7513
7514 struct gimple_opt_pass pass_warn_unused_result =
7515 {
7516 {
7517 GIMPLE_PASS,
7518 "*warn_unused_result", /* name */
7519 gate_warn_unused_result, /* gate */
7520 run_warn_unused_result, /* execute */
7521 NULL, /* sub */
7522 NULL, /* next */
7523 0, /* static_pass_number */
7524 TV_NONE, /* tv_id */
7525 PROP_gimple_any, /* properties_required */
7526 0, /* properties_provided */
7527 0, /* properties_destroyed */
7528 0, /* todo_flags_start */
7529 0, /* todo_flags_finish */
7530 }
7531 };
7532