expr.c (expand_expr_real_2): Move COND_EXPR and VEC_COND_EXPR handling here, from ...
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
130
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
133 {
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
144
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
151
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
156
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
161 }
162
163 void
164 init_empty_tree_cfg (void)
165 {
166 init_empty_tree_cfg_for_function (cfun);
167 }
168
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
172
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
175
176 static void
177 build_gimple_cfg (gimple_seq seq)
178 {
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
181
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
183
184 init_empty_tree_cfg ();
185
186 found_computed_goto = 0;
187 make_blocks (seq);
188
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
196
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
200
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
204
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
207
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
212
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
219
220 /* Debugging dumps. */
221
222 /* Write the flowgraph to a VCG file. */
223 {
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
227 {
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
230 }
231 }
232 }
233
234 static unsigned int
235 execute_build_cfg (void)
236 {
237 gimple_seq body = gimple_body (current_function_decl);
238
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
242 {
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
245 }
246 return 0;
247 }
248
249 struct gimple_opt_pass pass_build_cfg =
250 {
251 {
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
265 }
266 };
267
268
269 /* Return true if T is a computed goto. */
270
271 static bool
272 computed_goto_p (gimple t)
273 {
274 return (gimple_code (t) == GIMPLE_GOTO
275 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
276 }
277
278
279 /* Search the CFG for any computed gotos. If found, factor them to a
280 common computed goto site. Also record the location of that site so
281 that we can un-factor the gotos after we have converted back to
282 normal form. */
283
284 static void
285 factor_computed_gotos (void)
286 {
287 basic_block bb;
288 tree factored_label_decl = NULL;
289 tree var = NULL;
290 gimple factored_computed_goto_label = NULL;
291 gimple factored_computed_goto = NULL;
292
293 /* We know there are one or more computed gotos in this function.
294 Examine the last statement in each basic block to see if the block
295 ends with a computed goto. */
296
297 FOR_EACH_BB (bb)
298 {
299 gimple_stmt_iterator gsi = gsi_last_bb (bb);
300 gimple last;
301
302 if (gsi_end_p (gsi))
303 continue;
304
305 last = gsi_stmt (gsi);
306
307 /* Ignore the computed goto we create when we factor the original
308 computed gotos. */
309 if (last == factored_computed_goto)
310 continue;
311
312 /* If the last statement is a computed goto, factor it. */
313 if (computed_goto_p (last))
314 {
315 gimple assignment;
316
317 /* The first time we find a computed goto we need to create
318 the factored goto block and the variable each original
319 computed goto will use for their goto destination. */
320 if (!factored_computed_goto)
321 {
322 basic_block new_bb = create_empty_bb (bb);
323 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
324
325 /* Create the destination of the factored goto. Each original
326 computed goto will put its desired destination into this
327 variable and jump to the label we create immediately
328 below. */
329 var = create_tmp_var (ptr_type_node, "gotovar");
330
331 /* Build a label for the new block which will contain the
332 factored computed goto. */
333 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
334 factored_computed_goto_label
335 = gimple_build_label (factored_label_decl);
336 gsi_insert_after (&new_gsi, factored_computed_goto_label,
337 GSI_NEW_STMT);
338
339 /* Build our new computed goto. */
340 factored_computed_goto = gimple_build_goto (var);
341 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
342 }
343
344 /* Copy the original computed goto's destination into VAR. */
345 assignment = gimple_build_assign (var, gimple_goto_dest (last));
346 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
347
348 /* And re-vector the computed goto to the new destination. */
349 gimple_goto_set_dest (last, factored_label_decl);
350 }
351 }
352 }
353
354
355 /* Build a flowgraph for the sequence of stmts SEQ. */
356
357 static void
358 make_blocks (gimple_seq seq)
359 {
360 gimple_stmt_iterator i = gsi_start (seq);
361 gimple stmt = NULL;
362 bool start_new_block = true;
363 bool first_stmt_of_seq = true;
364 basic_block bb = ENTRY_BLOCK_PTR;
365
366 while (!gsi_end_p (i))
367 {
368 gimple prev_stmt;
369
370 prev_stmt = stmt;
371 stmt = gsi_stmt (i);
372
373 /* If the statement starts a new basic block or if we have determined
374 in a previous pass that we need to create a new block for STMT, do
375 so now. */
376 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
377 {
378 if (!first_stmt_of_seq)
379 seq = gsi_split_seq_before (&i);
380 bb = create_basic_block (seq, NULL, bb);
381 start_new_block = false;
382 }
383
384 /* Now add STMT to BB and create the subgraphs for special statement
385 codes. */
386 gimple_set_bb (stmt, bb);
387
388 if (computed_goto_p (stmt))
389 found_computed_goto = true;
390
391 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
392 next iteration. */
393 if (stmt_ends_bb_p (stmt))
394 {
395 /* If the stmt can make abnormal goto use a new temporary
396 for the assignment to the LHS. This makes sure the old value
397 of the LHS is available on the abnormal edge. Otherwise
398 we will end up with overlapping life-ranges for abnormal
399 SSA names. */
400 if (gimple_has_lhs (stmt)
401 && stmt_can_make_abnormal_goto (stmt)
402 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
403 {
404 tree lhs = gimple_get_lhs (stmt);
405 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
406 gimple s = gimple_build_assign (lhs, tmp);
407 gimple_set_location (s, gimple_location (stmt));
408 gimple_set_block (s, gimple_block (stmt));
409 gimple_set_lhs (stmt, tmp);
410 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
411 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
412 DECL_GIMPLE_REG_P (tmp) = 1;
413 gsi_insert_after (&i, s, GSI_SAME_STMT);
414 }
415 start_new_block = true;
416 }
417
418 gsi_next (&i);
419 first_stmt_of_seq = false;
420 }
421 }
422
423
424 /* Create and return a new empty basic block after bb AFTER. */
425
426 static basic_block
427 create_bb (void *h, void *e, basic_block after)
428 {
429 basic_block bb;
430
431 gcc_assert (!e);
432
433 /* Create and initialize a new basic block. Since alloc_block uses
434 GC allocation that clears memory to allocate a basic block, we do
435 not have to clear the newly allocated basic block here. */
436 bb = alloc_block ();
437
438 bb->index = last_basic_block;
439 bb->flags = BB_NEW;
440 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
441 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
442
443 /* Add the new block to the linked list of blocks. */
444 link_block (bb, after);
445
446 /* Grow the basic block array if needed. */
447 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
448 {
449 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
450 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
451 }
452
453 /* Add the newly created block to the array. */
454 SET_BASIC_BLOCK (last_basic_block, bb);
455
456 n_basic_blocks++;
457 last_basic_block++;
458
459 return bb;
460 }
461
462
463 /*---------------------------------------------------------------------------
464 Edge creation
465 ---------------------------------------------------------------------------*/
466
467 /* Fold COND_EXPR_COND of each COND_EXPR. */
468
469 void
470 fold_cond_expr_cond (void)
471 {
472 basic_block bb;
473
474 FOR_EACH_BB (bb)
475 {
476 gimple stmt = last_stmt (bb);
477
478 if (stmt && gimple_code (stmt) == GIMPLE_COND)
479 {
480 location_t loc = gimple_location (stmt);
481 tree cond;
482 bool zerop, onep;
483
484 fold_defer_overflow_warnings ();
485 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
486 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
487 if (cond)
488 {
489 zerop = integer_zerop (cond);
490 onep = integer_onep (cond);
491 }
492 else
493 zerop = onep = false;
494
495 fold_undefer_overflow_warnings (zerop || onep,
496 stmt,
497 WARN_STRICT_OVERFLOW_CONDITIONAL);
498 if (zerop)
499 gimple_cond_make_false (stmt);
500 else if (onep)
501 gimple_cond_make_true (stmt);
502 }
503 }
504 }
505
506 /* Join all the blocks in the flowgraph. */
507
508 static void
509 make_edges (void)
510 {
511 basic_block bb;
512 struct omp_region *cur_region = NULL;
513
514 /* Create an edge from entry to the first block with executable
515 statements in it. */
516 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
517
518 /* Traverse the basic block array placing edges. */
519 FOR_EACH_BB (bb)
520 {
521 gimple last = last_stmt (bb);
522 bool fallthru;
523
524 if (last)
525 {
526 enum gimple_code code = gimple_code (last);
527 switch (code)
528 {
529 case GIMPLE_GOTO:
530 make_goto_expr_edges (bb);
531 fallthru = false;
532 break;
533 case GIMPLE_RETURN:
534 make_edge (bb, EXIT_BLOCK_PTR, 0);
535 fallthru = false;
536 break;
537 case GIMPLE_COND:
538 make_cond_expr_edges (bb);
539 fallthru = false;
540 break;
541 case GIMPLE_SWITCH:
542 make_gimple_switch_edges (bb);
543 fallthru = false;
544 break;
545 case GIMPLE_RESX:
546 make_eh_edges (last);
547 fallthru = false;
548 break;
549 case GIMPLE_EH_DISPATCH:
550 fallthru = make_eh_dispatch_edges (last);
551 break;
552
553 case GIMPLE_CALL:
554 /* If this function receives a nonlocal goto, then we need to
555 make edges from this call site to all the nonlocal goto
556 handlers. */
557 if (stmt_can_make_abnormal_goto (last))
558 make_abnormal_goto_edges (bb, true);
559
560 /* If this statement has reachable exception handlers, then
561 create abnormal edges to them. */
562 make_eh_edges (last);
563
564 /* BUILTIN_RETURN is really a return statement. */
565 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
566 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
567 /* Some calls are known not to return. */
568 else
569 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
570 break;
571
572 case GIMPLE_ASSIGN:
573 /* A GIMPLE_ASSIGN may throw internally and thus be considered
574 control-altering. */
575 if (is_ctrl_altering_stmt (last))
576 make_eh_edges (last);
577 fallthru = true;
578 break;
579
580 case GIMPLE_ASM:
581 make_gimple_asm_edges (bb);
582 fallthru = true;
583 break;
584
585 case GIMPLE_OMP_PARALLEL:
586 case GIMPLE_OMP_TASK:
587 case GIMPLE_OMP_FOR:
588 case GIMPLE_OMP_SINGLE:
589 case GIMPLE_OMP_MASTER:
590 case GIMPLE_OMP_ORDERED:
591 case GIMPLE_OMP_CRITICAL:
592 case GIMPLE_OMP_SECTION:
593 cur_region = new_omp_region (bb, code, cur_region);
594 fallthru = true;
595 break;
596
597 case GIMPLE_OMP_SECTIONS:
598 cur_region = new_omp_region (bb, code, cur_region);
599 fallthru = true;
600 break;
601
602 case GIMPLE_OMP_SECTIONS_SWITCH:
603 fallthru = false;
604 break;
605
606 case GIMPLE_OMP_ATOMIC_LOAD:
607 case GIMPLE_OMP_ATOMIC_STORE:
608 fallthru = true;
609 break;
610
611 case GIMPLE_OMP_RETURN:
612 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
613 somewhere other than the next block. This will be
614 created later. */
615 cur_region->exit = bb;
616 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
617 cur_region = cur_region->outer;
618 break;
619
620 case GIMPLE_OMP_CONTINUE:
621 cur_region->cont = bb;
622 switch (cur_region->type)
623 {
624 case GIMPLE_OMP_FOR:
625 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
626 succs edges as abnormal to prevent splitting
627 them. */
628 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
629 /* Make the loopback edge. */
630 make_edge (bb, single_succ (cur_region->entry),
631 EDGE_ABNORMAL);
632
633 /* Create an edge from GIMPLE_OMP_FOR to exit, which
634 corresponds to the case that the body of the loop
635 is not executed at all. */
636 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
637 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
638 fallthru = false;
639 break;
640
641 case GIMPLE_OMP_SECTIONS:
642 /* Wire up the edges into and out of the nested sections. */
643 {
644 basic_block switch_bb = single_succ (cur_region->entry);
645
646 struct omp_region *i;
647 for (i = cur_region->inner; i ; i = i->next)
648 {
649 gcc_assert (i->type == GIMPLE_OMP_SECTION);
650 make_edge (switch_bb, i->entry, 0);
651 make_edge (i->exit, bb, EDGE_FALLTHRU);
652 }
653
654 /* Make the loopback edge to the block with
655 GIMPLE_OMP_SECTIONS_SWITCH. */
656 make_edge (bb, switch_bb, 0);
657
658 /* Make the edge from the switch to exit. */
659 make_edge (switch_bb, bb->next_bb, 0);
660 fallthru = false;
661 }
662 break;
663
664 default:
665 gcc_unreachable ();
666 }
667 break;
668
669 default:
670 gcc_assert (!stmt_ends_bb_p (last));
671 fallthru = true;
672 }
673 }
674 else
675 fallthru = true;
676
677 if (fallthru)
678 {
679 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
680 if (last)
681 assign_discriminator (gimple_location (last), bb->next_bb);
682 }
683 }
684
685 if (root_omp_region)
686 free_omp_regions ();
687
688 /* Fold COND_EXPR_COND of each COND_EXPR. */
689 fold_cond_expr_cond ();
690 }
691
692 /* Trivial hash function for a location_t. ITEM is a pointer to
693 a hash table entry that maps a location_t to a discriminator. */
694
695 static unsigned int
696 locus_map_hash (const void *item)
697 {
698 return ((const struct locus_discrim_map *) item)->locus;
699 }
700
701 /* Equality function for the locus-to-discriminator map. VA and VB
702 point to the two hash table entries to compare. */
703
704 static int
705 locus_map_eq (const void *va, const void *vb)
706 {
707 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
708 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
709 return a->locus == b->locus;
710 }
711
712 /* Find the next available discriminator value for LOCUS. The
713 discriminator distinguishes among several basic blocks that
714 share a common locus, allowing for more accurate sample-based
715 profiling. */
716
717 static int
718 next_discriminator_for_locus (location_t locus)
719 {
720 struct locus_discrim_map item;
721 struct locus_discrim_map **slot;
722
723 item.locus = locus;
724 item.discriminator = 0;
725 slot = (struct locus_discrim_map **)
726 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
727 (hashval_t) locus, INSERT);
728 gcc_assert (slot);
729 if (*slot == HTAB_EMPTY_ENTRY)
730 {
731 *slot = XNEW (struct locus_discrim_map);
732 gcc_assert (*slot);
733 (*slot)->locus = locus;
734 (*slot)->discriminator = 0;
735 }
736 (*slot)->discriminator++;
737 return (*slot)->discriminator;
738 }
739
740 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
741
742 static bool
743 same_line_p (location_t locus1, location_t locus2)
744 {
745 expanded_location from, to;
746
747 if (locus1 == locus2)
748 return true;
749
750 from = expand_location (locus1);
751 to = expand_location (locus2);
752
753 if (from.line != to.line)
754 return false;
755 if (from.file == to.file)
756 return true;
757 return (from.file != NULL
758 && to.file != NULL
759 && filename_cmp (from.file, to.file) == 0);
760 }
761
762 /* Assign a unique discriminator value to block BB if it begins at the same
763 LOCUS as its predecessor block. */
764
765 static void
766 assign_discriminator (location_t locus, basic_block bb)
767 {
768 gimple first_in_to_bb, last_in_to_bb;
769
770 if (locus == 0 || bb->discriminator != 0)
771 return;
772
773 first_in_to_bb = first_non_label_stmt (bb);
774 last_in_to_bb = last_stmt (bb);
775 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
776 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
777 bb->discriminator = next_discriminator_for_locus (locus);
778 }
779
780 /* Create the edges for a GIMPLE_COND starting at block BB. */
781
782 static void
783 make_cond_expr_edges (basic_block bb)
784 {
785 gimple entry = last_stmt (bb);
786 gimple then_stmt, else_stmt;
787 basic_block then_bb, else_bb;
788 tree then_label, else_label;
789 edge e;
790 location_t entry_locus;
791
792 gcc_assert (entry);
793 gcc_assert (gimple_code (entry) == GIMPLE_COND);
794
795 entry_locus = gimple_location (entry);
796
797 /* Entry basic blocks for each component. */
798 then_label = gimple_cond_true_label (entry);
799 else_label = gimple_cond_false_label (entry);
800 then_bb = label_to_block (then_label);
801 else_bb = label_to_block (else_label);
802 then_stmt = first_stmt (then_bb);
803 else_stmt = first_stmt (else_bb);
804
805 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
806 assign_discriminator (entry_locus, then_bb);
807 e->goto_locus = gimple_location (then_stmt);
808 if (e->goto_locus)
809 e->goto_block = gimple_block (then_stmt);
810 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
811 if (e)
812 {
813 assign_discriminator (entry_locus, else_bb);
814 e->goto_locus = gimple_location (else_stmt);
815 if (e->goto_locus)
816 e->goto_block = gimple_block (else_stmt);
817 }
818
819 /* We do not need the labels anymore. */
820 gimple_cond_set_true_label (entry, NULL_TREE);
821 gimple_cond_set_false_label (entry, NULL_TREE);
822 }
823
824
825 /* Called for each element in the hash table (P) as we delete the
826 edge to cases hash table.
827
828 Clear all the TREE_CHAINs to prevent problems with copying of
829 SWITCH_EXPRs and structure sharing rules, then free the hash table
830 element. */
831
832 static bool
833 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
834 void *data ATTRIBUTE_UNUSED)
835 {
836 tree t, next;
837
838 for (t = (tree) *value; t; t = next)
839 {
840 next = CASE_CHAIN (t);
841 CASE_CHAIN (t) = NULL;
842 }
843
844 *value = NULL;
845 return true;
846 }
847
848 /* Start recording information mapping edges to case labels. */
849
850 void
851 start_recording_case_labels (void)
852 {
853 gcc_assert (edge_to_cases == NULL);
854 edge_to_cases = pointer_map_create ();
855 touched_switch_bbs = BITMAP_ALLOC (NULL);
856 }
857
858 /* Return nonzero if we are recording information for case labels. */
859
860 static bool
861 recording_case_labels_p (void)
862 {
863 return (edge_to_cases != NULL);
864 }
865
866 /* Stop recording information mapping edges to case labels and
867 remove any information we have recorded. */
868 void
869 end_recording_case_labels (void)
870 {
871 bitmap_iterator bi;
872 unsigned i;
873 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
874 pointer_map_destroy (edge_to_cases);
875 edge_to_cases = NULL;
876 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
877 {
878 basic_block bb = BASIC_BLOCK (i);
879 if (bb)
880 {
881 gimple stmt = last_stmt (bb);
882 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
883 group_case_labels_stmt (stmt);
884 }
885 }
886 BITMAP_FREE (touched_switch_bbs);
887 }
888
889 /* If we are inside a {start,end}_recording_cases block, then return
890 a chain of CASE_LABEL_EXPRs from T which reference E.
891
892 Otherwise return NULL. */
893
894 static tree
895 get_cases_for_edge (edge e, gimple t)
896 {
897 void **slot;
898 size_t i, n;
899
900 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
901 chains available. Return NULL so the caller can detect this case. */
902 if (!recording_case_labels_p ())
903 return NULL;
904
905 slot = pointer_map_contains (edge_to_cases, e);
906 if (slot)
907 return (tree) *slot;
908
909 /* If we did not find E in the hash table, then this must be the first
910 time we have been queried for information about E & T. Add all the
911 elements from T to the hash table then perform the query again. */
912
913 n = gimple_switch_num_labels (t);
914 for (i = 0; i < n; i++)
915 {
916 tree elt = gimple_switch_label (t, i);
917 tree lab = CASE_LABEL (elt);
918 basic_block label_bb = label_to_block (lab);
919 edge this_edge = find_edge (e->src, label_bb);
920
921 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
922 a new chain. */
923 slot = pointer_map_insert (edge_to_cases, this_edge);
924 CASE_CHAIN (elt) = (tree) *slot;
925 *slot = elt;
926 }
927
928 return (tree) *pointer_map_contains (edge_to_cases, e);
929 }
930
931 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
932
933 static void
934 make_gimple_switch_edges (basic_block bb)
935 {
936 gimple entry = last_stmt (bb);
937 location_t entry_locus;
938 size_t i, n;
939
940 entry_locus = gimple_location (entry);
941
942 n = gimple_switch_num_labels (entry);
943
944 for (i = 0; i < n; ++i)
945 {
946 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
947 basic_block label_bb = label_to_block (lab);
948 make_edge (bb, label_bb, 0);
949 assign_discriminator (entry_locus, label_bb);
950 }
951 }
952
953
954 /* Return the basic block holding label DEST. */
955
956 basic_block
957 label_to_block_fn (struct function *ifun, tree dest)
958 {
959 int uid = LABEL_DECL_UID (dest);
960
961 /* We would die hard when faced by an undefined label. Emit a label to
962 the very first basic block. This will hopefully make even the dataflow
963 and undefined variable warnings quite right. */
964 if (seen_error () && uid < 0)
965 {
966 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
967 gimple stmt;
968
969 stmt = gimple_build_label (dest);
970 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
971 uid = LABEL_DECL_UID (dest);
972 }
973 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
974 <= (unsigned int) uid)
975 return NULL;
976 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
977 }
978
979 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
980 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
981
982 void
983 make_abnormal_goto_edges (basic_block bb, bool for_call)
984 {
985 basic_block target_bb;
986 gimple_stmt_iterator gsi;
987
988 FOR_EACH_BB (target_bb)
989 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
990 {
991 gimple label_stmt = gsi_stmt (gsi);
992 tree target;
993
994 if (gimple_code (label_stmt) != GIMPLE_LABEL)
995 break;
996
997 target = gimple_label_label (label_stmt);
998
999 /* Make an edge to every label block that has been marked as a
1000 potential target for a computed goto or a non-local goto. */
1001 if ((FORCED_LABEL (target) && !for_call)
1002 || (DECL_NONLOCAL (target) && for_call))
1003 {
1004 make_edge (bb, target_bb, EDGE_ABNORMAL);
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Create edges for a goto statement at block BB. */
1011
1012 static void
1013 make_goto_expr_edges (basic_block bb)
1014 {
1015 gimple_stmt_iterator last = gsi_last_bb (bb);
1016 gimple goto_t = gsi_stmt (last);
1017
1018 /* A simple GOTO creates normal edges. */
1019 if (simple_goto_p (goto_t))
1020 {
1021 tree dest = gimple_goto_dest (goto_t);
1022 basic_block label_bb = label_to_block (dest);
1023 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1024 e->goto_locus = gimple_location (goto_t);
1025 assign_discriminator (e->goto_locus, label_bb);
1026 if (e->goto_locus)
1027 e->goto_block = gimple_block (goto_t);
1028 gsi_remove (&last, true);
1029 return;
1030 }
1031
1032 /* A computed GOTO creates abnormal edges. */
1033 make_abnormal_goto_edges (bb, false);
1034 }
1035
1036 /* Create edges for an asm statement with labels at block BB. */
1037
1038 static void
1039 make_gimple_asm_edges (basic_block bb)
1040 {
1041 gimple stmt = last_stmt (bb);
1042 location_t stmt_loc = gimple_location (stmt);
1043 int i, n = gimple_asm_nlabels (stmt);
1044
1045 for (i = 0; i < n; ++i)
1046 {
1047 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1048 basic_block label_bb = label_to_block (label);
1049 make_edge (bb, label_bb, 0);
1050 assign_discriminator (stmt_loc, label_bb);
1051 }
1052 }
1053
1054 /*---------------------------------------------------------------------------
1055 Flowgraph analysis
1056 ---------------------------------------------------------------------------*/
1057
1058 /* Cleanup useless labels in basic blocks. This is something we wish
1059 to do early because it allows us to group case labels before creating
1060 the edges for the CFG, and it speeds up block statement iterators in
1061 all passes later on.
1062 We rerun this pass after CFG is created, to get rid of the labels that
1063 are no longer referenced. After then we do not run it any more, since
1064 (almost) no new labels should be created. */
1065
1066 /* A map from basic block index to the leading label of that block. */
1067 static struct label_record
1068 {
1069 /* The label. */
1070 tree label;
1071
1072 /* True if the label is referenced from somewhere. */
1073 bool used;
1074 } *label_for_bb;
1075
1076 /* Given LABEL return the first label in the same basic block. */
1077
1078 static tree
1079 main_block_label (tree label)
1080 {
1081 basic_block bb = label_to_block (label);
1082 tree main_label = label_for_bb[bb->index].label;
1083
1084 /* label_to_block possibly inserted undefined label into the chain. */
1085 if (!main_label)
1086 {
1087 label_for_bb[bb->index].label = label;
1088 main_label = label;
1089 }
1090
1091 label_for_bb[bb->index].used = true;
1092 return main_label;
1093 }
1094
1095 /* Clean up redundant labels within the exception tree. */
1096
1097 static void
1098 cleanup_dead_labels_eh (void)
1099 {
1100 eh_landing_pad lp;
1101 eh_region r;
1102 tree lab;
1103 int i;
1104
1105 if (cfun->eh == NULL)
1106 return;
1107
1108 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1109 if (lp && lp->post_landing_pad)
1110 {
1111 lab = main_block_label (lp->post_landing_pad);
1112 if (lab != lp->post_landing_pad)
1113 {
1114 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1115 EH_LANDING_PAD_NR (lab) = lp->index;
1116 }
1117 }
1118
1119 FOR_ALL_EH_REGION (r)
1120 switch (r->type)
1121 {
1122 case ERT_CLEANUP:
1123 case ERT_MUST_NOT_THROW:
1124 break;
1125
1126 case ERT_TRY:
1127 {
1128 eh_catch c;
1129 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1130 {
1131 lab = c->label;
1132 if (lab)
1133 c->label = main_block_label (lab);
1134 }
1135 }
1136 break;
1137
1138 case ERT_ALLOWED_EXCEPTIONS:
1139 lab = r->u.allowed.label;
1140 if (lab)
1141 r->u.allowed.label = main_block_label (lab);
1142 break;
1143 }
1144 }
1145
1146
1147 /* Cleanup redundant labels. This is a three-step process:
1148 1) Find the leading label for each block.
1149 2) Redirect all references to labels to the leading labels.
1150 3) Cleanup all useless labels. */
1151
1152 void
1153 cleanup_dead_labels (void)
1154 {
1155 basic_block bb;
1156 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1157
1158 /* Find a suitable label for each block. We use the first user-defined
1159 label if there is one, or otherwise just the first label we see. */
1160 FOR_EACH_BB (bb)
1161 {
1162 gimple_stmt_iterator i;
1163
1164 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1165 {
1166 tree label;
1167 gimple stmt = gsi_stmt (i);
1168
1169 if (gimple_code (stmt) != GIMPLE_LABEL)
1170 break;
1171
1172 label = gimple_label_label (stmt);
1173
1174 /* If we have not yet seen a label for the current block,
1175 remember this one and see if there are more labels. */
1176 if (!label_for_bb[bb->index].label)
1177 {
1178 label_for_bb[bb->index].label = label;
1179 continue;
1180 }
1181
1182 /* If we did see a label for the current block already, but it
1183 is an artificially created label, replace it if the current
1184 label is a user defined label. */
1185 if (!DECL_ARTIFICIAL (label)
1186 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1187 {
1188 label_for_bb[bb->index].label = label;
1189 break;
1190 }
1191 }
1192 }
1193
1194 /* Now redirect all jumps/branches to the selected label.
1195 First do so for each block ending in a control statement. */
1196 FOR_EACH_BB (bb)
1197 {
1198 gimple stmt = last_stmt (bb);
1199 if (!stmt)
1200 continue;
1201
1202 switch (gimple_code (stmt))
1203 {
1204 case GIMPLE_COND:
1205 {
1206 tree true_label = gimple_cond_true_label (stmt);
1207 tree false_label = gimple_cond_false_label (stmt);
1208
1209 if (true_label)
1210 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1211 if (false_label)
1212 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1213 break;
1214 }
1215
1216 case GIMPLE_SWITCH:
1217 {
1218 size_t i, n = gimple_switch_num_labels (stmt);
1219
1220 /* Replace all destination labels. */
1221 for (i = 0; i < n; ++i)
1222 {
1223 tree case_label = gimple_switch_label (stmt, i);
1224 tree label = main_block_label (CASE_LABEL (case_label));
1225 CASE_LABEL (case_label) = label;
1226 }
1227 break;
1228 }
1229
1230 case GIMPLE_ASM:
1231 {
1232 int i, n = gimple_asm_nlabels (stmt);
1233
1234 for (i = 0; i < n; ++i)
1235 {
1236 tree cons = gimple_asm_label_op (stmt, i);
1237 tree label = main_block_label (TREE_VALUE (cons));
1238 TREE_VALUE (cons) = label;
1239 }
1240 break;
1241 }
1242
1243 /* We have to handle gotos until they're removed, and we don't
1244 remove them until after we've created the CFG edges. */
1245 case GIMPLE_GOTO:
1246 if (!computed_goto_p (stmt))
1247 {
1248 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1249 gimple_goto_set_dest (stmt, new_dest);
1250 }
1251 break;
1252
1253 default:
1254 break;
1255 }
1256 }
1257
1258 /* Do the same for the exception region tree labels. */
1259 cleanup_dead_labels_eh ();
1260
1261 /* Finally, purge dead labels. All user-defined labels and labels that
1262 can be the target of non-local gotos and labels which have their
1263 address taken are preserved. */
1264 FOR_EACH_BB (bb)
1265 {
1266 gimple_stmt_iterator i;
1267 tree label_for_this_bb = label_for_bb[bb->index].label;
1268
1269 if (!label_for_this_bb)
1270 continue;
1271
1272 /* If the main label of the block is unused, we may still remove it. */
1273 if (!label_for_bb[bb->index].used)
1274 label_for_this_bb = NULL;
1275
1276 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1277 {
1278 tree label;
1279 gimple stmt = gsi_stmt (i);
1280
1281 if (gimple_code (stmt) != GIMPLE_LABEL)
1282 break;
1283
1284 label = gimple_label_label (stmt);
1285
1286 if (label == label_for_this_bb
1287 || !DECL_ARTIFICIAL (label)
1288 || DECL_NONLOCAL (label)
1289 || FORCED_LABEL (label))
1290 gsi_next (&i);
1291 else
1292 gsi_remove (&i, true);
1293 }
1294 }
1295
1296 free (label_for_bb);
1297 }
1298
1299 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1300 the ones jumping to the same label.
1301 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1302
1303 static void
1304 group_case_labels_stmt (gimple stmt)
1305 {
1306 int old_size = gimple_switch_num_labels (stmt);
1307 int i, j, new_size = old_size;
1308 tree default_case = NULL_TREE;
1309 tree default_label = NULL_TREE;
1310 bool has_default;
1311
1312 /* The default label is always the first case in a switch
1313 statement after gimplification if it was not optimized
1314 away */
1315 if (!CASE_LOW (gimple_switch_default_label (stmt))
1316 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1317 {
1318 default_case = gimple_switch_default_label (stmt);
1319 default_label = CASE_LABEL (default_case);
1320 has_default = true;
1321 }
1322 else
1323 has_default = false;
1324
1325 /* Look for possible opportunities to merge cases. */
1326 if (has_default)
1327 i = 1;
1328 else
1329 i = 0;
1330 while (i < old_size)
1331 {
1332 tree base_case, base_label, base_high;
1333 base_case = gimple_switch_label (stmt, i);
1334
1335 gcc_assert (base_case);
1336 base_label = CASE_LABEL (base_case);
1337
1338 /* Discard cases that have the same destination as the
1339 default case. */
1340 if (base_label == default_label)
1341 {
1342 gimple_switch_set_label (stmt, i, NULL_TREE);
1343 i++;
1344 new_size--;
1345 continue;
1346 }
1347
1348 base_high = CASE_HIGH (base_case)
1349 ? CASE_HIGH (base_case)
1350 : CASE_LOW (base_case);
1351 i++;
1352
1353 /* Try to merge case labels. Break out when we reach the end
1354 of the label vector or when we cannot merge the next case
1355 label with the current one. */
1356 while (i < old_size)
1357 {
1358 tree merge_case = gimple_switch_label (stmt, i);
1359 tree merge_label = CASE_LABEL (merge_case);
1360 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1361 double_int_one);
1362
1363 /* Merge the cases if they jump to the same place,
1364 and their ranges are consecutive. */
1365 if (merge_label == base_label
1366 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1367 bhp1))
1368 {
1369 base_high = CASE_HIGH (merge_case) ?
1370 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1371 CASE_HIGH (base_case) = base_high;
1372 gimple_switch_set_label (stmt, i, NULL_TREE);
1373 new_size--;
1374 i++;
1375 }
1376 else
1377 break;
1378 }
1379 }
1380
1381 /* Compress the case labels in the label vector, and adjust the
1382 length of the vector. */
1383 for (i = 0, j = 0; i < new_size; i++)
1384 {
1385 while (! gimple_switch_label (stmt, j))
1386 j++;
1387 gimple_switch_set_label (stmt, i,
1388 gimple_switch_label (stmt, j++));
1389 }
1390
1391 gcc_assert (new_size <= old_size);
1392 gimple_switch_set_num_labels (stmt, new_size);
1393 }
1394
1395 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1396 and scan the sorted vector of cases. Combine the ones jumping to the
1397 same label. */
1398
1399 void
1400 group_case_labels (void)
1401 {
1402 basic_block bb;
1403
1404 FOR_EACH_BB (bb)
1405 {
1406 gimple stmt = last_stmt (bb);
1407 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1408 group_case_labels_stmt (stmt);
1409 }
1410 }
1411
1412 /* Checks whether we can merge block B into block A. */
1413
1414 static bool
1415 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1416 {
1417 gimple stmt;
1418 gimple_stmt_iterator gsi;
1419 gimple_seq phis;
1420
1421 if (!single_succ_p (a))
1422 return false;
1423
1424 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
1425 return false;
1426
1427 if (single_succ (a) != b)
1428 return false;
1429
1430 if (!single_pred_p (b))
1431 return false;
1432
1433 if (b == EXIT_BLOCK_PTR)
1434 return false;
1435
1436 /* If A ends by a statement causing exceptions or something similar, we
1437 cannot merge the blocks. */
1438 stmt = last_stmt (a);
1439 if (stmt && stmt_ends_bb_p (stmt))
1440 return false;
1441
1442 /* Do not allow a block with only a non-local label to be merged. */
1443 if (stmt
1444 && gimple_code (stmt) == GIMPLE_LABEL
1445 && DECL_NONLOCAL (gimple_label_label (stmt)))
1446 return false;
1447
1448 /* Examine the labels at the beginning of B. */
1449 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1450 {
1451 tree lab;
1452 stmt = gsi_stmt (gsi);
1453 if (gimple_code (stmt) != GIMPLE_LABEL)
1454 break;
1455 lab = gimple_label_label (stmt);
1456
1457 /* Do not remove user labels. */
1458 if (!DECL_ARTIFICIAL (lab))
1459 return false;
1460 }
1461
1462 /* Protect the loop latches. */
1463 if (current_loops && b->loop_father->latch == b)
1464 return false;
1465
1466 /* It must be possible to eliminate all phi nodes in B. If ssa form
1467 is not up-to-date and a name-mapping is registered, we cannot eliminate
1468 any phis. Symbols marked for renaming are never a problem though. */
1469 phis = phi_nodes (b);
1470 if (!gimple_seq_empty_p (phis)
1471 && name_mappings_registered_p ())
1472 return false;
1473
1474 /* When not optimizing, don't merge if we'd lose goto_locus. */
1475 if (!optimize
1476 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1477 {
1478 location_t goto_locus = single_succ_edge (a)->goto_locus;
1479 gimple_stmt_iterator prev, next;
1480 prev = gsi_last_nondebug_bb (a);
1481 next = gsi_after_labels (b);
1482 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1483 gsi_next_nondebug (&next);
1484 if ((gsi_end_p (prev)
1485 || gimple_location (gsi_stmt (prev)) != goto_locus)
1486 && (gsi_end_p (next)
1487 || gimple_location (gsi_stmt (next)) != goto_locus))
1488 return false;
1489 }
1490
1491 return true;
1492 }
1493
1494 /* Return true if the var whose chain of uses starts at PTR has no
1495 nondebug uses. */
1496 bool
1497 has_zero_uses_1 (const ssa_use_operand_t *head)
1498 {
1499 const ssa_use_operand_t *ptr;
1500
1501 for (ptr = head->next; ptr != head; ptr = ptr->next)
1502 if (!is_gimple_debug (USE_STMT (ptr)))
1503 return false;
1504
1505 return true;
1506 }
1507
1508 /* Return true if the var whose chain of uses starts at PTR has a
1509 single nondebug use. Set USE_P and STMT to that single nondebug
1510 use, if so, or to NULL otherwise. */
1511 bool
1512 single_imm_use_1 (const ssa_use_operand_t *head,
1513 use_operand_p *use_p, gimple *stmt)
1514 {
1515 ssa_use_operand_t *ptr, *single_use = 0;
1516
1517 for (ptr = head->next; ptr != head; ptr = ptr->next)
1518 if (!is_gimple_debug (USE_STMT (ptr)))
1519 {
1520 if (single_use)
1521 {
1522 single_use = NULL;
1523 break;
1524 }
1525 single_use = ptr;
1526 }
1527
1528 if (use_p)
1529 *use_p = single_use;
1530
1531 if (stmt)
1532 *stmt = single_use ? single_use->loc.stmt : NULL;
1533
1534 return !!single_use;
1535 }
1536
1537 /* Replaces all uses of NAME by VAL. */
1538
1539 void
1540 replace_uses_by (tree name, tree val)
1541 {
1542 imm_use_iterator imm_iter;
1543 use_operand_p use;
1544 gimple stmt;
1545 edge e;
1546
1547 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1548 {
1549 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1550 {
1551 replace_exp (use, val);
1552
1553 if (gimple_code (stmt) == GIMPLE_PHI)
1554 {
1555 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1556 if (e->flags & EDGE_ABNORMAL)
1557 {
1558 /* This can only occur for virtual operands, since
1559 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1560 would prevent replacement. */
1561 gcc_assert (!is_gimple_reg (name));
1562 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1563 }
1564 }
1565 }
1566
1567 if (gimple_code (stmt) != GIMPLE_PHI)
1568 {
1569 size_t i;
1570
1571 fold_stmt_inplace (stmt);
1572 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1573 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1574
1575 /* FIXME. This should go in update_stmt. */
1576 for (i = 0; i < gimple_num_ops (stmt); i++)
1577 {
1578 tree op = gimple_op (stmt, i);
1579 /* Operands may be empty here. For example, the labels
1580 of a GIMPLE_COND are nulled out following the creation
1581 of the corresponding CFG edges. */
1582 if (op && TREE_CODE (op) == ADDR_EXPR)
1583 recompute_tree_invariant_for_addr_expr (op);
1584 }
1585
1586 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1587 update_stmt (stmt);
1588 }
1589 }
1590
1591 gcc_assert (has_zero_uses (name));
1592
1593 /* Also update the trees stored in loop structures. */
1594 if (current_loops)
1595 {
1596 struct loop *loop;
1597 loop_iterator li;
1598
1599 FOR_EACH_LOOP (li, loop, 0)
1600 {
1601 substitute_in_loop_info (loop, name, val);
1602 }
1603 }
1604 }
1605
1606 /* Merge block B into block A. */
1607
1608 static void
1609 gimple_merge_blocks (basic_block a, basic_block b)
1610 {
1611 gimple_stmt_iterator last, gsi, psi;
1612 gimple_seq phis = phi_nodes (b);
1613
1614 if (dump_file)
1615 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1616
1617 /* Remove all single-valued PHI nodes from block B of the form
1618 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1619 gsi = gsi_last_bb (a);
1620 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1621 {
1622 gimple phi = gsi_stmt (psi);
1623 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1624 gimple copy;
1625 bool may_replace_uses = !is_gimple_reg (def)
1626 || may_propagate_copy (def, use);
1627
1628 /* In case we maintain loop closed ssa form, do not propagate arguments
1629 of loop exit phi nodes. */
1630 if (current_loops
1631 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1632 && is_gimple_reg (def)
1633 && TREE_CODE (use) == SSA_NAME
1634 && a->loop_father != b->loop_father)
1635 may_replace_uses = false;
1636
1637 if (!may_replace_uses)
1638 {
1639 gcc_assert (is_gimple_reg (def));
1640
1641 /* Note that just emitting the copies is fine -- there is no problem
1642 with ordering of phi nodes. This is because A is the single
1643 predecessor of B, therefore results of the phi nodes cannot
1644 appear as arguments of the phi nodes. */
1645 copy = gimple_build_assign (def, use);
1646 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1647 remove_phi_node (&psi, false);
1648 }
1649 else
1650 {
1651 /* If we deal with a PHI for virtual operands, we can simply
1652 propagate these without fussing with folding or updating
1653 the stmt. */
1654 if (!is_gimple_reg (def))
1655 {
1656 imm_use_iterator iter;
1657 use_operand_p use_p;
1658 gimple stmt;
1659
1660 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1661 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1662 SET_USE (use_p, use);
1663
1664 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1665 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1666 }
1667 else
1668 replace_uses_by (def, use);
1669
1670 remove_phi_node (&psi, true);
1671 }
1672 }
1673
1674 /* Ensure that B follows A. */
1675 move_block_after (b, a);
1676
1677 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1678 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1679
1680 /* Remove labels from B and set gimple_bb to A for other statements. */
1681 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1682 {
1683 gimple stmt = gsi_stmt (gsi);
1684 if (gimple_code (stmt) == GIMPLE_LABEL)
1685 {
1686 tree label = gimple_label_label (stmt);
1687 int lp_nr;
1688
1689 gsi_remove (&gsi, false);
1690
1691 /* Now that we can thread computed gotos, we might have
1692 a situation where we have a forced label in block B
1693 However, the label at the start of block B might still be
1694 used in other ways (think about the runtime checking for
1695 Fortran assigned gotos). So we can not just delete the
1696 label. Instead we move the label to the start of block A. */
1697 if (FORCED_LABEL (label))
1698 {
1699 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1700 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1701 }
1702
1703 lp_nr = EH_LANDING_PAD_NR (label);
1704 if (lp_nr)
1705 {
1706 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1707 lp->post_landing_pad = NULL;
1708 }
1709 }
1710 else
1711 {
1712 gimple_set_bb (stmt, a);
1713 gsi_next (&gsi);
1714 }
1715 }
1716
1717 /* Merge the sequences. */
1718 last = gsi_last_bb (a);
1719 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1720 set_bb_seq (b, NULL);
1721
1722 if (cfgcleanup_altered_bbs)
1723 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1724 }
1725
1726
1727 /* Return the one of two successors of BB that is not reachable by a
1728 complex edge, if there is one. Else, return BB. We use
1729 this in optimizations that use post-dominators for their heuristics,
1730 to catch the cases in C++ where function calls are involved. */
1731
1732 basic_block
1733 single_noncomplex_succ (basic_block bb)
1734 {
1735 edge e0, e1;
1736 if (EDGE_COUNT (bb->succs) != 2)
1737 return bb;
1738
1739 e0 = EDGE_SUCC (bb, 0);
1740 e1 = EDGE_SUCC (bb, 1);
1741 if (e0->flags & EDGE_COMPLEX)
1742 return e1->dest;
1743 if (e1->flags & EDGE_COMPLEX)
1744 return e0->dest;
1745
1746 return bb;
1747 }
1748
1749 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1750
1751 void
1752 notice_special_calls (gimple call)
1753 {
1754 int flags = gimple_call_flags (call);
1755
1756 if (flags & ECF_MAY_BE_ALLOCA)
1757 cfun->calls_alloca = true;
1758 if (flags & ECF_RETURNS_TWICE)
1759 cfun->calls_setjmp = true;
1760 }
1761
1762
1763 /* Clear flags set by notice_special_calls. Used by dead code removal
1764 to update the flags. */
1765
1766 void
1767 clear_special_calls (void)
1768 {
1769 cfun->calls_alloca = false;
1770 cfun->calls_setjmp = false;
1771 }
1772
1773 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1774
1775 static void
1776 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1777 {
1778 /* Since this block is no longer reachable, we can just delete all
1779 of its PHI nodes. */
1780 remove_phi_nodes (bb);
1781
1782 /* Remove edges to BB's successors. */
1783 while (EDGE_COUNT (bb->succs) > 0)
1784 remove_edge (EDGE_SUCC (bb, 0));
1785 }
1786
1787
1788 /* Remove statements of basic block BB. */
1789
1790 static void
1791 remove_bb (basic_block bb)
1792 {
1793 gimple_stmt_iterator i;
1794
1795 if (dump_file)
1796 {
1797 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1798 if (dump_flags & TDF_DETAILS)
1799 {
1800 dump_bb (bb, dump_file, 0);
1801 fprintf (dump_file, "\n");
1802 }
1803 }
1804
1805 if (current_loops)
1806 {
1807 struct loop *loop = bb->loop_father;
1808
1809 /* If a loop gets removed, clean up the information associated
1810 with it. */
1811 if (loop->latch == bb
1812 || loop->header == bb)
1813 free_numbers_of_iterations_estimates_loop (loop);
1814 }
1815
1816 /* Remove all the instructions in the block. */
1817 if (bb_seq (bb) != NULL)
1818 {
1819 /* Walk backwards so as to get a chance to substitute all
1820 released DEFs into debug stmts. See
1821 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1822 details. */
1823 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1824 {
1825 gimple stmt = gsi_stmt (i);
1826 if (gimple_code (stmt) == GIMPLE_LABEL
1827 && (FORCED_LABEL (gimple_label_label (stmt))
1828 || DECL_NONLOCAL (gimple_label_label (stmt))))
1829 {
1830 basic_block new_bb;
1831 gimple_stmt_iterator new_gsi;
1832
1833 /* A non-reachable non-local label may still be referenced.
1834 But it no longer needs to carry the extra semantics of
1835 non-locality. */
1836 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1837 {
1838 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1839 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1840 }
1841
1842 new_bb = bb->prev_bb;
1843 new_gsi = gsi_start_bb (new_bb);
1844 gsi_remove (&i, false);
1845 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1846 }
1847 else
1848 {
1849 /* Release SSA definitions if we are in SSA. Note that we
1850 may be called when not in SSA. For example,
1851 final_cleanup calls this function via
1852 cleanup_tree_cfg. */
1853 if (gimple_in_ssa_p (cfun))
1854 release_defs (stmt);
1855
1856 gsi_remove (&i, true);
1857 }
1858
1859 if (gsi_end_p (i))
1860 i = gsi_last_bb (bb);
1861 else
1862 gsi_prev (&i);
1863 }
1864 }
1865
1866 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1867 bb->il.gimple = NULL;
1868 }
1869
1870
1871 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1872 predicate VAL, return the edge that will be taken out of the block.
1873 If VAL does not match a unique edge, NULL is returned. */
1874
1875 edge
1876 find_taken_edge (basic_block bb, tree val)
1877 {
1878 gimple stmt;
1879
1880 stmt = last_stmt (bb);
1881
1882 gcc_assert (stmt);
1883 gcc_assert (is_ctrl_stmt (stmt));
1884
1885 if (val == NULL)
1886 return NULL;
1887
1888 if (!is_gimple_min_invariant (val))
1889 return NULL;
1890
1891 if (gimple_code (stmt) == GIMPLE_COND)
1892 return find_taken_edge_cond_expr (bb, val);
1893
1894 if (gimple_code (stmt) == GIMPLE_SWITCH)
1895 return find_taken_edge_switch_expr (bb, val);
1896
1897 if (computed_goto_p (stmt))
1898 {
1899 /* Only optimize if the argument is a label, if the argument is
1900 not a label then we can not construct a proper CFG.
1901
1902 It may be the case that we only need to allow the LABEL_REF to
1903 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1904 appear inside a LABEL_EXPR just to be safe. */
1905 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1906 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1907 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1908 return NULL;
1909 }
1910
1911 gcc_unreachable ();
1912 }
1913
1914 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1915 statement, determine which of the outgoing edges will be taken out of the
1916 block. Return NULL if either edge may be taken. */
1917
1918 static edge
1919 find_taken_edge_computed_goto (basic_block bb, tree val)
1920 {
1921 basic_block dest;
1922 edge e = NULL;
1923
1924 dest = label_to_block (val);
1925 if (dest)
1926 {
1927 e = find_edge (bb, dest);
1928 gcc_assert (e != NULL);
1929 }
1930
1931 return e;
1932 }
1933
1934 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1935 statement, determine which of the two edges will be taken out of the
1936 block. Return NULL if either edge may be taken. */
1937
1938 static edge
1939 find_taken_edge_cond_expr (basic_block bb, tree val)
1940 {
1941 edge true_edge, false_edge;
1942
1943 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1944
1945 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1946 return (integer_zerop (val) ? false_edge : true_edge);
1947 }
1948
1949 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1950 statement, determine which edge will be taken out of the block. Return
1951 NULL if any edge may be taken. */
1952
1953 static edge
1954 find_taken_edge_switch_expr (basic_block bb, tree val)
1955 {
1956 basic_block dest_bb;
1957 edge e;
1958 gimple switch_stmt;
1959 tree taken_case;
1960
1961 switch_stmt = last_stmt (bb);
1962 taken_case = find_case_label_for_value (switch_stmt, val);
1963 dest_bb = label_to_block (CASE_LABEL (taken_case));
1964
1965 e = find_edge (bb, dest_bb);
1966 gcc_assert (e);
1967 return e;
1968 }
1969
1970
1971 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1972 We can make optimal use here of the fact that the case labels are
1973 sorted: We can do a binary search for a case matching VAL. */
1974
1975 static tree
1976 find_case_label_for_value (gimple switch_stmt, tree val)
1977 {
1978 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1979 tree default_case = gimple_switch_default_label (switch_stmt);
1980
1981 for (low = 0, high = n; high - low > 1; )
1982 {
1983 size_t i = (high + low) / 2;
1984 tree t = gimple_switch_label (switch_stmt, i);
1985 int cmp;
1986
1987 /* Cache the result of comparing CASE_LOW and val. */
1988 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1989
1990 if (cmp > 0)
1991 high = i;
1992 else
1993 low = i;
1994
1995 if (CASE_HIGH (t) == NULL)
1996 {
1997 /* A singe-valued case label. */
1998 if (cmp == 0)
1999 return t;
2000 }
2001 else
2002 {
2003 /* A case range. We can only handle integer ranges. */
2004 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2005 return t;
2006 }
2007 }
2008
2009 return default_case;
2010 }
2011
2012
2013 /* Dump a basic block on stderr. */
2014
2015 void
2016 gimple_debug_bb (basic_block bb)
2017 {
2018 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2019 }
2020
2021
2022 /* Dump basic block with index N on stderr. */
2023
2024 basic_block
2025 gimple_debug_bb_n (int n)
2026 {
2027 gimple_debug_bb (BASIC_BLOCK (n));
2028 return BASIC_BLOCK (n);
2029 }
2030
2031
2032 /* Dump the CFG on stderr.
2033
2034 FLAGS are the same used by the tree dumping functions
2035 (see TDF_* in tree-pass.h). */
2036
2037 void
2038 gimple_debug_cfg (int flags)
2039 {
2040 gimple_dump_cfg (stderr, flags);
2041 }
2042
2043
2044 /* Dump the program showing basic block boundaries on the given FILE.
2045
2046 FLAGS are the same used by the tree dumping functions (see TDF_* in
2047 tree.h). */
2048
2049 void
2050 gimple_dump_cfg (FILE *file, int flags)
2051 {
2052 if (flags & TDF_DETAILS)
2053 {
2054 dump_function_header (file, current_function_decl, flags);
2055 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2056 n_basic_blocks, n_edges, last_basic_block);
2057
2058 brief_dump_cfg (file);
2059 fprintf (file, "\n");
2060 }
2061
2062 if (flags & TDF_STATS)
2063 dump_cfg_stats (file);
2064
2065 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2066 }
2067
2068
2069 /* Dump CFG statistics on FILE. */
2070
2071 void
2072 dump_cfg_stats (FILE *file)
2073 {
2074 static long max_num_merged_labels = 0;
2075 unsigned long size, total = 0;
2076 long num_edges;
2077 basic_block bb;
2078 const char * const fmt_str = "%-30s%-13s%12s\n";
2079 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2080 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2081 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2082 const char *funcname
2083 = lang_hooks.decl_printable_name (current_function_decl, 2);
2084
2085
2086 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2087
2088 fprintf (file, "---------------------------------------------------------\n");
2089 fprintf (file, fmt_str, "", " Number of ", "Memory");
2090 fprintf (file, fmt_str, "", " instances ", "used ");
2091 fprintf (file, "---------------------------------------------------------\n");
2092
2093 size = n_basic_blocks * sizeof (struct basic_block_def);
2094 total += size;
2095 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2096 SCALE (size), LABEL (size));
2097
2098 num_edges = 0;
2099 FOR_EACH_BB (bb)
2100 num_edges += EDGE_COUNT (bb->succs);
2101 size = num_edges * sizeof (struct edge_def);
2102 total += size;
2103 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2104
2105 fprintf (file, "---------------------------------------------------------\n");
2106 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2107 LABEL (total));
2108 fprintf (file, "---------------------------------------------------------\n");
2109 fprintf (file, "\n");
2110
2111 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2112 max_num_merged_labels = cfg_stats.num_merged_labels;
2113
2114 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2115 cfg_stats.num_merged_labels, max_num_merged_labels);
2116
2117 fprintf (file, "\n");
2118 }
2119
2120
2121 /* Dump CFG statistics on stderr. Keep extern so that it's always
2122 linked in the final executable. */
2123
2124 DEBUG_FUNCTION void
2125 debug_cfg_stats (void)
2126 {
2127 dump_cfg_stats (stderr);
2128 }
2129
2130
2131 /* Dump the flowgraph to a .vcg FILE. */
2132
2133 static void
2134 gimple_cfg2vcg (FILE *file)
2135 {
2136 edge e;
2137 edge_iterator ei;
2138 basic_block bb;
2139 const char *funcname
2140 = lang_hooks.decl_printable_name (current_function_decl, 2);
2141
2142 /* Write the file header. */
2143 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2144 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2145 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2146
2147 /* Write blocks and edges. */
2148 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2149 {
2150 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2151 e->dest->index);
2152
2153 if (e->flags & EDGE_FAKE)
2154 fprintf (file, " linestyle: dotted priority: 10");
2155 else
2156 fprintf (file, " linestyle: solid priority: 100");
2157
2158 fprintf (file, " }\n");
2159 }
2160 fputc ('\n', file);
2161
2162 FOR_EACH_BB (bb)
2163 {
2164 enum gimple_code head_code, end_code;
2165 const char *head_name, *end_name;
2166 int head_line = 0;
2167 int end_line = 0;
2168 gimple first = first_stmt (bb);
2169 gimple last = last_stmt (bb);
2170
2171 if (first)
2172 {
2173 head_code = gimple_code (first);
2174 head_name = gimple_code_name[head_code];
2175 head_line = get_lineno (first);
2176 }
2177 else
2178 head_name = "no-statement";
2179
2180 if (last)
2181 {
2182 end_code = gimple_code (last);
2183 end_name = gimple_code_name[end_code];
2184 end_line = get_lineno (last);
2185 }
2186 else
2187 end_name = "no-statement";
2188
2189 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2190 bb->index, bb->index, head_name, head_line, end_name,
2191 end_line);
2192
2193 FOR_EACH_EDGE (e, ei, bb->succs)
2194 {
2195 if (e->dest == EXIT_BLOCK_PTR)
2196 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2197 else
2198 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2199
2200 if (e->flags & EDGE_FAKE)
2201 fprintf (file, " priority: 10 linestyle: dotted");
2202 else
2203 fprintf (file, " priority: 100 linestyle: solid");
2204
2205 fprintf (file, " }\n");
2206 }
2207
2208 if (bb->next_bb != EXIT_BLOCK_PTR)
2209 fputc ('\n', file);
2210 }
2211
2212 fputs ("}\n\n", file);
2213 }
2214
2215
2216
2217 /*---------------------------------------------------------------------------
2218 Miscellaneous helpers
2219 ---------------------------------------------------------------------------*/
2220
2221 /* Return true if T represents a stmt that always transfers control. */
2222
2223 bool
2224 is_ctrl_stmt (gimple t)
2225 {
2226 switch (gimple_code (t))
2227 {
2228 case GIMPLE_COND:
2229 case GIMPLE_SWITCH:
2230 case GIMPLE_GOTO:
2231 case GIMPLE_RETURN:
2232 case GIMPLE_RESX:
2233 return true;
2234 default:
2235 return false;
2236 }
2237 }
2238
2239
2240 /* Return true if T is a statement that may alter the flow of control
2241 (e.g., a call to a non-returning function). */
2242
2243 bool
2244 is_ctrl_altering_stmt (gimple t)
2245 {
2246 gcc_assert (t);
2247
2248 switch (gimple_code (t))
2249 {
2250 case GIMPLE_CALL:
2251 {
2252 int flags = gimple_call_flags (t);
2253
2254 /* A non-pure/const call alters flow control if the current
2255 function has nonlocal labels. */
2256 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2257 && cfun->has_nonlocal_label)
2258 return true;
2259
2260 /* A call also alters control flow if it does not return. */
2261 if (flags & ECF_NORETURN)
2262 return true;
2263
2264 /* BUILT_IN_RETURN call is same as return statement. */
2265 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2266 return true;
2267 }
2268 break;
2269
2270 case GIMPLE_EH_DISPATCH:
2271 /* EH_DISPATCH branches to the individual catch handlers at
2272 this level of a try or allowed-exceptions region. It can
2273 fallthru to the next statement as well. */
2274 return true;
2275
2276 case GIMPLE_ASM:
2277 if (gimple_asm_nlabels (t) > 0)
2278 return true;
2279 break;
2280
2281 CASE_GIMPLE_OMP:
2282 /* OpenMP directives alter control flow. */
2283 return true;
2284
2285 default:
2286 break;
2287 }
2288
2289 /* If a statement can throw, it alters control flow. */
2290 return stmt_can_throw_internal (t);
2291 }
2292
2293
2294 /* Return true if T is a simple local goto. */
2295
2296 bool
2297 simple_goto_p (gimple t)
2298 {
2299 return (gimple_code (t) == GIMPLE_GOTO
2300 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2301 }
2302
2303
2304 /* Return true if T can make an abnormal transfer of control flow.
2305 Transfers of control flow associated with EH are excluded. */
2306
2307 bool
2308 stmt_can_make_abnormal_goto (gimple t)
2309 {
2310 if (computed_goto_p (t))
2311 return true;
2312 if (is_gimple_call (t))
2313 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2314 && !(gimple_call_flags (t) & ECF_LEAF));
2315 return false;
2316 }
2317
2318
2319 /* Return true if STMT should start a new basic block. PREV_STMT is
2320 the statement preceding STMT. It is used when STMT is a label or a
2321 case label. Labels should only start a new basic block if their
2322 previous statement wasn't a label. Otherwise, sequence of labels
2323 would generate unnecessary basic blocks that only contain a single
2324 label. */
2325
2326 static inline bool
2327 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2328 {
2329 if (stmt == NULL)
2330 return false;
2331
2332 /* Labels start a new basic block only if the preceding statement
2333 wasn't a label of the same type. This prevents the creation of
2334 consecutive blocks that have nothing but a single label. */
2335 if (gimple_code (stmt) == GIMPLE_LABEL)
2336 {
2337 /* Nonlocal and computed GOTO targets always start a new block. */
2338 if (DECL_NONLOCAL (gimple_label_label (stmt))
2339 || FORCED_LABEL (gimple_label_label (stmt)))
2340 return true;
2341
2342 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2343 {
2344 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2345 return true;
2346
2347 cfg_stats.num_merged_labels++;
2348 return false;
2349 }
2350 else
2351 return true;
2352 }
2353
2354 return false;
2355 }
2356
2357
2358 /* Return true if T should end a basic block. */
2359
2360 bool
2361 stmt_ends_bb_p (gimple t)
2362 {
2363 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2364 }
2365
2366 /* Remove block annotations and other data structures. */
2367
2368 void
2369 delete_tree_cfg_annotations (void)
2370 {
2371 label_to_block_map = NULL;
2372 }
2373
2374
2375 /* Return the first statement in basic block BB. */
2376
2377 gimple
2378 first_stmt (basic_block bb)
2379 {
2380 gimple_stmt_iterator i = gsi_start_bb (bb);
2381 gimple stmt = NULL;
2382
2383 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2384 {
2385 gsi_next (&i);
2386 stmt = NULL;
2387 }
2388 return stmt;
2389 }
2390
2391 /* Return the first non-label statement in basic block BB. */
2392
2393 static gimple
2394 first_non_label_stmt (basic_block bb)
2395 {
2396 gimple_stmt_iterator i = gsi_start_bb (bb);
2397 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2398 gsi_next (&i);
2399 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2400 }
2401
2402 /* Return the last statement in basic block BB. */
2403
2404 gimple
2405 last_stmt (basic_block bb)
2406 {
2407 gimple_stmt_iterator i = gsi_last_bb (bb);
2408 gimple stmt = NULL;
2409
2410 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2411 {
2412 gsi_prev (&i);
2413 stmt = NULL;
2414 }
2415 return stmt;
2416 }
2417
2418 /* Return the last statement of an otherwise empty block. Return NULL
2419 if the block is totally empty, or if it contains more than one
2420 statement. */
2421
2422 gimple
2423 last_and_only_stmt (basic_block bb)
2424 {
2425 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2426 gimple last, prev;
2427
2428 if (gsi_end_p (i))
2429 return NULL;
2430
2431 last = gsi_stmt (i);
2432 gsi_prev_nondebug (&i);
2433 if (gsi_end_p (i))
2434 return last;
2435
2436 /* Empty statements should no longer appear in the instruction stream.
2437 Everything that might have appeared before should be deleted by
2438 remove_useless_stmts, and the optimizers should just gsi_remove
2439 instead of smashing with build_empty_stmt.
2440
2441 Thus the only thing that should appear here in a block containing
2442 one executable statement is a label. */
2443 prev = gsi_stmt (i);
2444 if (gimple_code (prev) == GIMPLE_LABEL)
2445 return last;
2446 else
2447 return NULL;
2448 }
2449
2450 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2451
2452 static void
2453 reinstall_phi_args (edge new_edge, edge old_edge)
2454 {
2455 edge_var_map_vector v;
2456 edge_var_map *vm;
2457 int i;
2458 gimple_stmt_iterator phis;
2459
2460 v = redirect_edge_var_map_vector (old_edge);
2461 if (!v)
2462 return;
2463
2464 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2465 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2466 i++, gsi_next (&phis))
2467 {
2468 gimple phi = gsi_stmt (phis);
2469 tree result = redirect_edge_var_map_result (vm);
2470 tree arg = redirect_edge_var_map_def (vm);
2471
2472 gcc_assert (result == gimple_phi_result (phi));
2473
2474 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2475 }
2476
2477 redirect_edge_var_map_clear (old_edge);
2478 }
2479
2480 /* Returns the basic block after which the new basic block created
2481 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2482 near its "logical" location. This is of most help to humans looking
2483 at debugging dumps. */
2484
2485 static basic_block
2486 split_edge_bb_loc (edge edge_in)
2487 {
2488 basic_block dest = edge_in->dest;
2489 basic_block dest_prev = dest->prev_bb;
2490
2491 if (dest_prev)
2492 {
2493 edge e = find_edge (dest_prev, dest);
2494 if (e && !(e->flags & EDGE_COMPLEX))
2495 return edge_in->src;
2496 }
2497 return dest_prev;
2498 }
2499
2500 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2501 Abort on abnormal edges. */
2502
2503 static basic_block
2504 gimple_split_edge (edge edge_in)
2505 {
2506 basic_block new_bb, after_bb, dest;
2507 edge new_edge, e;
2508
2509 /* Abnormal edges cannot be split. */
2510 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2511
2512 dest = edge_in->dest;
2513
2514 after_bb = split_edge_bb_loc (edge_in);
2515
2516 new_bb = create_empty_bb (after_bb);
2517 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2518 new_bb->count = edge_in->count;
2519 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2520 new_edge->probability = REG_BR_PROB_BASE;
2521 new_edge->count = edge_in->count;
2522
2523 e = redirect_edge_and_branch (edge_in, new_bb);
2524 gcc_assert (e == edge_in);
2525 reinstall_phi_args (new_edge, e);
2526
2527 return new_bb;
2528 }
2529
2530
2531 /* Verify properties of the address expression T with base object BASE. */
2532
2533 static tree
2534 verify_address (tree t, tree base)
2535 {
2536 bool old_constant;
2537 bool old_side_effects;
2538 bool new_constant;
2539 bool new_side_effects;
2540
2541 old_constant = TREE_CONSTANT (t);
2542 old_side_effects = TREE_SIDE_EFFECTS (t);
2543
2544 recompute_tree_invariant_for_addr_expr (t);
2545 new_side_effects = TREE_SIDE_EFFECTS (t);
2546 new_constant = TREE_CONSTANT (t);
2547
2548 if (old_constant != new_constant)
2549 {
2550 error ("constant not recomputed when ADDR_EXPR changed");
2551 return t;
2552 }
2553 if (old_side_effects != new_side_effects)
2554 {
2555 error ("side effects not recomputed when ADDR_EXPR changed");
2556 return t;
2557 }
2558
2559 if (!(TREE_CODE (base) == VAR_DECL
2560 || TREE_CODE (base) == PARM_DECL
2561 || TREE_CODE (base) == RESULT_DECL))
2562 return NULL_TREE;
2563
2564 if (DECL_GIMPLE_REG_P (base))
2565 {
2566 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2567 return base;
2568 }
2569
2570 return NULL_TREE;
2571 }
2572
2573 /* Callback for walk_tree, check that all elements with address taken are
2574 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2575 inside a PHI node. */
2576
2577 static tree
2578 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2579 {
2580 tree t = *tp, x;
2581
2582 if (TYPE_P (t))
2583 *walk_subtrees = 0;
2584
2585 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2586 #define CHECK_OP(N, MSG) \
2587 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2588 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2589
2590 switch (TREE_CODE (t))
2591 {
2592 case SSA_NAME:
2593 if (SSA_NAME_IN_FREE_LIST (t))
2594 {
2595 error ("SSA name in freelist but still referenced");
2596 return *tp;
2597 }
2598 break;
2599
2600 case INDIRECT_REF:
2601 error ("INDIRECT_REF in gimple IL");
2602 return t;
2603
2604 case MEM_REF:
2605 x = TREE_OPERAND (t, 0);
2606 if (!POINTER_TYPE_P (TREE_TYPE (x))
2607 || !is_gimple_mem_ref_addr (x))
2608 {
2609 error ("invalid first operand of MEM_REF");
2610 return x;
2611 }
2612 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2613 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2614 {
2615 error ("invalid offset operand of MEM_REF");
2616 return TREE_OPERAND (t, 1);
2617 }
2618 if (TREE_CODE (x) == ADDR_EXPR
2619 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2620 return x;
2621 *walk_subtrees = 0;
2622 break;
2623
2624 case ASSERT_EXPR:
2625 x = fold (ASSERT_EXPR_COND (t));
2626 if (x == boolean_false_node)
2627 {
2628 error ("ASSERT_EXPR with an always-false condition");
2629 return *tp;
2630 }
2631 break;
2632
2633 case MODIFY_EXPR:
2634 error ("MODIFY_EXPR not expected while having tuples");
2635 return *tp;
2636
2637 case ADDR_EXPR:
2638 {
2639 tree tem;
2640
2641 gcc_assert (is_gimple_address (t));
2642
2643 /* Skip any references (they will be checked when we recurse down the
2644 tree) and ensure that any variable used as a prefix is marked
2645 addressable. */
2646 for (x = TREE_OPERAND (t, 0);
2647 handled_component_p (x);
2648 x = TREE_OPERAND (x, 0))
2649 ;
2650
2651 if ((tem = verify_address (t, x)))
2652 return tem;
2653
2654 if (!(TREE_CODE (x) == VAR_DECL
2655 || TREE_CODE (x) == PARM_DECL
2656 || TREE_CODE (x) == RESULT_DECL))
2657 return NULL;
2658
2659 if (!TREE_ADDRESSABLE (x))
2660 {
2661 error ("address taken, but ADDRESSABLE bit not set");
2662 return x;
2663 }
2664
2665 break;
2666 }
2667
2668 case COND_EXPR:
2669 x = COND_EXPR_COND (t);
2670 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2671 {
2672 error ("non-integral used in condition");
2673 return x;
2674 }
2675 if (!is_gimple_condexpr (x))
2676 {
2677 error ("invalid conditional operand");
2678 return x;
2679 }
2680 break;
2681
2682 case NON_LVALUE_EXPR:
2683 case TRUTH_NOT_EXPR:
2684 gcc_unreachable ();
2685
2686 CASE_CONVERT:
2687 case FIX_TRUNC_EXPR:
2688 case FLOAT_EXPR:
2689 case NEGATE_EXPR:
2690 case ABS_EXPR:
2691 case BIT_NOT_EXPR:
2692 CHECK_OP (0, "invalid operand to unary operator");
2693 break;
2694
2695 case REALPART_EXPR:
2696 case IMAGPART_EXPR:
2697 case COMPONENT_REF:
2698 case ARRAY_REF:
2699 case ARRAY_RANGE_REF:
2700 case BIT_FIELD_REF:
2701 case VIEW_CONVERT_EXPR:
2702 /* We have a nest of references. Verify that each of the operands
2703 that determine where to reference is either a constant or a variable,
2704 verify that the base is valid, and then show we've already checked
2705 the subtrees. */
2706 while (handled_component_p (t))
2707 {
2708 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2709 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2710 else if (TREE_CODE (t) == ARRAY_REF
2711 || TREE_CODE (t) == ARRAY_RANGE_REF)
2712 {
2713 CHECK_OP (1, "invalid array index");
2714 if (TREE_OPERAND (t, 2))
2715 CHECK_OP (2, "invalid array lower bound");
2716 if (TREE_OPERAND (t, 3))
2717 CHECK_OP (3, "invalid array stride");
2718 }
2719 else if (TREE_CODE (t) == BIT_FIELD_REF)
2720 {
2721 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2722 || !host_integerp (TREE_OPERAND (t, 2), 1))
2723 {
2724 error ("invalid position or size operand to BIT_FIELD_REF");
2725 return t;
2726 }
2727 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2728 && (TYPE_PRECISION (TREE_TYPE (t))
2729 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2730 {
2731 error ("integral result type precision does not match "
2732 "field size of BIT_FIELD_REF");
2733 return t;
2734 }
2735 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2736 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2737 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2738 {
2739 error ("mode precision of non-integral result does not "
2740 "match field size of BIT_FIELD_REF");
2741 return t;
2742 }
2743 }
2744
2745 t = TREE_OPERAND (t, 0);
2746 }
2747
2748 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2749 {
2750 error ("invalid reference prefix");
2751 return t;
2752 }
2753 *walk_subtrees = 0;
2754 break;
2755 case PLUS_EXPR:
2756 case MINUS_EXPR:
2757 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2758 POINTER_PLUS_EXPR. */
2759 if (POINTER_TYPE_P (TREE_TYPE (t)))
2760 {
2761 error ("invalid operand to plus/minus, type is a pointer");
2762 return t;
2763 }
2764 CHECK_OP (0, "invalid operand to binary operator");
2765 CHECK_OP (1, "invalid operand to binary operator");
2766 break;
2767
2768 case POINTER_PLUS_EXPR:
2769 /* Check to make sure the first operand is a pointer or reference type. */
2770 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2771 {
2772 error ("invalid operand to pointer plus, first operand is not a pointer");
2773 return t;
2774 }
2775 /* Check to make sure the second operand is a ptrofftype. */
2776 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2777 {
2778 error ("invalid operand to pointer plus, second operand is not an "
2779 "integer type of appropriate width");
2780 return t;
2781 }
2782 /* FALLTHROUGH */
2783 case LT_EXPR:
2784 case LE_EXPR:
2785 case GT_EXPR:
2786 case GE_EXPR:
2787 case EQ_EXPR:
2788 case NE_EXPR:
2789 case UNORDERED_EXPR:
2790 case ORDERED_EXPR:
2791 case UNLT_EXPR:
2792 case UNLE_EXPR:
2793 case UNGT_EXPR:
2794 case UNGE_EXPR:
2795 case UNEQ_EXPR:
2796 case LTGT_EXPR:
2797 case MULT_EXPR:
2798 case TRUNC_DIV_EXPR:
2799 case CEIL_DIV_EXPR:
2800 case FLOOR_DIV_EXPR:
2801 case ROUND_DIV_EXPR:
2802 case TRUNC_MOD_EXPR:
2803 case CEIL_MOD_EXPR:
2804 case FLOOR_MOD_EXPR:
2805 case ROUND_MOD_EXPR:
2806 case RDIV_EXPR:
2807 case EXACT_DIV_EXPR:
2808 case MIN_EXPR:
2809 case MAX_EXPR:
2810 case LSHIFT_EXPR:
2811 case RSHIFT_EXPR:
2812 case LROTATE_EXPR:
2813 case RROTATE_EXPR:
2814 case BIT_IOR_EXPR:
2815 case BIT_XOR_EXPR:
2816 case BIT_AND_EXPR:
2817 CHECK_OP (0, "invalid operand to binary operator");
2818 CHECK_OP (1, "invalid operand to binary operator");
2819 break;
2820
2821 case CONSTRUCTOR:
2822 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2823 *walk_subtrees = 0;
2824 break;
2825
2826 case CASE_LABEL_EXPR:
2827 if (CASE_CHAIN (t))
2828 {
2829 error ("invalid CASE_CHAIN");
2830 return t;
2831 }
2832 break;
2833
2834 default:
2835 break;
2836 }
2837 return NULL;
2838
2839 #undef CHECK_OP
2840 }
2841
2842
2843 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2844 Returns true if there is an error, otherwise false. */
2845
2846 static bool
2847 verify_types_in_gimple_min_lval (tree expr)
2848 {
2849 tree op;
2850
2851 if (is_gimple_id (expr))
2852 return false;
2853
2854 if (TREE_CODE (expr) != TARGET_MEM_REF
2855 && TREE_CODE (expr) != MEM_REF)
2856 {
2857 error ("invalid expression for min lvalue");
2858 return true;
2859 }
2860
2861 /* TARGET_MEM_REFs are strange beasts. */
2862 if (TREE_CODE (expr) == TARGET_MEM_REF)
2863 return false;
2864
2865 op = TREE_OPERAND (expr, 0);
2866 if (!is_gimple_val (op))
2867 {
2868 error ("invalid operand in indirect reference");
2869 debug_generic_stmt (op);
2870 return true;
2871 }
2872 /* Memory references now generally can involve a value conversion. */
2873
2874 return false;
2875 }
2876
2877 /* Verify if EXPR is a valid GIMPLE reference expression. If
2878 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2879 if there is an error, otherwise false. */
2880
2881 static bool
2882 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2883 {
2884 while (handled_component_p (expr))
2885 {
2886 tree op = TREE_OPERAND (expr, 0);
2887
2888 if (TREE_CODE (expr) == ARRAY_REF
2889 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2890 {
2891 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2892 || (TREE_OPERAND (expr, 2)
2893 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2894 || (TREE_OPERAND (expr, 3)
2895 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2896 {
2897 error ("invalid operands to array reference");
2898 debug_generic_stmt (expr);
2899 return true;
2900 }
2901 }
2902
2903 /* Verify if the reference array element types are compatible. */
2904 if (TREE_CODE (expr) == ARRAY_REF
2905 && !useless_type_conversion_p (TREE_TYPE (expr),
2906 TREE_TYPE (TREE_TYPE (op))))
2907 {
2908 error ("type mismatch in array reference");
2909 debug_generic_stmt (TREE_TYPE (expr));
2910 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2911 return true;
2912 }
2913 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2914 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2915 TREE_TYPE (TREE_TYPE (op))))
2916 {
2917 error ("type mismatch in array range reference");
2918 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2919 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2920 return true;
2921 }
2922
2923 if ((TREE_CODE (expr) == REALPART_EXPR
2924 || TREE_CODE (expr) == IMAGPART_EXPR)
2925 && !useless_type_conversion_p (TREE_TYPE (expr),
2926 TREE_TYPE (TREE_TYPE (op))))
2927 {
2928 error ("type mismatch in real/imagpart reference");
2929 debug_generic_stmt (TREE_TYPE (expr));
2930 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2931 return true;
2932 }
2933
2934 if (TREE_CODE (expr) == COMPONENT_REF
2935 && !useless_type_conversion_p (TREE_TYPE (expr),
2936 TREE_TYPE (TREE_OPERAND (expr, 1))))
2937 {
2938 error ("type mismatch in component reference");
2939 debug_generic_stmt (TREE_TYPE (expr));
2940 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2941 return true;
2942 }
2943
2944 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2945 {
2946 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2947 that their operand is not an SSA name or an invariant when
2948 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2949 bug). Otherwise there is nothing to verify, gross mismatches at
2950 most invoke undefined behavior. */
2951 if (require_lvalue
2952 && (TREE_CODE (op) == SSA_NAME
2953 || is_gimple_min_invariant (op)))
2954 {
2955 error ("conversion of an SSA_NAME on the left hand side");
2956 debug_generic_stmt (expr);
2957 return true;
2958 }
2959 else if (TREE_CODE (op) == SSA_NAME
2960 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2961 {
2962 error ("conversion of register to a different size");
2963 debug_generic_stmt (expr);
2964 return true;
2965 }
2966 else if (!handled_component_p (op))
2967 return false;
2968 }
2969
2970 expr = op;
2971 }
2972
2973 if (TREE_CODE (expr) == MEM_REF)
2974 {
2975 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2976 {
2977 error ("invalid address operand in MEM_REF");
2978 debug_generic_stmt (expr);
2979 return true;
2980 }
2981 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2982 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2983 {
2984 error ("invalid offset operand in MEM_REF");
2985 debug_generic_stmt (expr);
2986 return true;
2987 }
2988 }
2989 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2990 {
2991 if (!TMR_BASE (expr)
2992 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2993 {
2994 error ("invalid address operand in TARGET_MEM_REF");
2995 return true;
2996 }
2997 if (!TMR_OFFSET (expr)
2998 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2999 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3000 {
3001 error ("invalid offset operand in TARGET_MEM_REF");
3002 debug_generic_stmt (expr);
3003 return true;
3004 }
3005 }
3006
3007 return ((require_lvalue || !is_gimple_min_invariant (expr))
3008 && verify_types_in_gimple_min_lval (expr));
3009 }
3010
3011 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3012 list of pointer-to types that is trivially convertible to DEST. */
3013
3014 static bool
3015 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3016 {
3017 tree src;
3018
3019 if (!TYPE_POINTER_TO (src_obj))
3020 return true;
3021
3022 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3023 if (useless_type_conversion_p (dest, src))
3024 return true;
3025
3026 return false;
3027 }
3028
3029 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3030 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3031
3032 static bool
3033 valid_fixed_convert_types_p (tree type1, tree type2)
3034 {
3035 return (FIXED_POINT_TYPE_P (type1)
3036 && (INTEGRAL_TYPE_P (type2)
3037 || SCALAR_FLOAT_TYPE_P (type2)
3038 || FIXED_POINT_TYPE_P (type2)));
3039 }
3040
3041 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3042 is a problem, otherwise false. */
3043
3044 static bool
3045 verify_gimple_call (gimple stmt)
3046 {
3047 tree fn = gimple_call_fn (stmt);
3048 tree fntype, fndecl;
3049 unsigned i;
3050
3051 if (gimple_call_internal_p (stmt))
3052 {
3053 if (fn)
3054 {
3055 error ("gimple call has two targets");
3056 debug_generic_stmt (fn);
3057 return true;
3058 }
3059 }
3060 else
3061 {
3062 if (!fn)
3063 {
3064 error ("gimple call has no target");
3065 return true;
3066 }
3067 }
3068
3069 if (fn && !is_gimple_call_addr (fn))
3070 {
3071 error ("invalid function in gimple call");
3072 debug_generic_stmt (fn);
3073 return true;
3074 }
3075
3076 if (fn
3077 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3078 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3079 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3080 {
3081 error ("non-function in gimple call");
3082 return true;
3083 }
3084
3085 fndecl = gimple_call_fndecl (stmt);
3086 if (fndecl
3087 && TREE_CODE (fndecl) == FUNCTION_DECL
3088 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3089 && !DECL_PURE_P (fndecl)
3090 && !TREE_READONLY (fndecl))
3091 {
3092 error ("invalid pure const state for function");
3093 return true;
3094 }
3095
3096 if (gimple_call_lhs (stmt)
3097 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3098 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3099 {
3100 error ("invalid LHS in gimple call");
3101 return true;
3102 }
3103
3104 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3105 {
3106 error ("LHS in noreturn call");
3107 return true;
3108 }
3109
3110 fntype = gimple_call_fntype (stmt);
3111 if (fntype
3112 && gimple_call_lhs (stmt)
3113 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3114 TREE_TYPE (fntype))
3115 /* ??? At least C++ misses conversions at assignments from
3116 void * call results.
3117 ??? Java is completely off. Especially with functions
3118 returning java.lang.Object.
3119 For now simply allow arbitrary pointer type conversions. */
3120 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3121 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3122 {
3123 error ("invalid conversion in gimple call");
3124 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3125 debug_generic_stmt (TREE_TYPE (fntype));
3126 return true;
3127 }
3128
3129 if (gimple_call_chain (stmt)
3130 && !is_gimple_val (gimple_call_chain (stmt)))
3131 {
3132 error ("invalid static chain in gimple call");
3133 debug_generic_stmt (gimple_call_chain (stmt));
3134 return true;
3135 }
3136
3137 /* If there is a static chain argument, this should not be an indirect
3138 call, and the decl should have DECL_STATIC_CHAIN set. */
3139 if (gimple_call_chain (stmt))
3140 {
3141 if (!gimple_call_fndecl (stmt))
3142 {
3143 error ("static chain in indirect gimple call");
3144 return true;
3145 }
3146 fn = TREE_OPERAND (fn, 0);
3147
3148 if (!DECL_STATIC_CHAIN (fn))
3149 {
3150 error ("static chain with function that doesn%'t use one");
3151 return true;
3152 }
3153 }
3154
3155 /* ??? The C frontend passes unpromoted arguments in case it
3156 didn't see a function declaration before the call. So for now
3157 leave the call arguments mostly unverified. Once we gimplify
3158 unit-at-a-time we have a chance to fix this. */
3159
3160 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3161 {
3162 tree arg = gimple_call_arg (stmt, i);
3163 if ((is_gimple_reg_type (TREE_TYPE (arg))
3164 && !is_gimple_val (arg))
3165 || (!is_gimple_reg_type (TREE_TYPE (arg))
3166 && !is_gimple_lvalue (arg)))
3167 {
3168 error ("invalid argument to gimple call");
3169 debug_generic_expr (arg);
3170 return true;
3171 }
3172 }
3173
3174 return false;
3175 }
3176
3177 /* Verifies the gimple comparison with the result type TYPE and
3178 the operands OP0 and OP1. */
3179
3180 static bool
3181 verify_gimple_comparison (tree type, tree op0, tree op1)
3182 {
3183 tree op0_type = TREE_TYPE (op0);
3184 tree op1_type = TREE_TYPE (op1);
3185
3186 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3187 {
3188 error ("invalid operands in gimple comparison");
3189 return true;
3190 }
3191
3192 /* For comparisons we do not have the operations type as the
3193 effective type the comparison is carried out in. Instead
3194 we require that either the first operand is trivially
3195 convertible into the second, or the other way around.
3196 Because we special-case pointers to void we allow
3197 comparisons of pointers with the same mode as well. */
3198 if (!useless_type_conversion_p (op0_type, op1_type)
3199 && !useless_type_conversion_p (op1_type, op0_type)
3200 && (!POINTER_TYPE_P (op0_type)
3201 || !POINTER_TYPE_P (op1_type)
3202 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3203 {
3204 error ("mismatching comparison operand types");
3205 debug_generic_expr (op0_type);
3206 debug_generic_expr (op1_type);
3207 return true;
3208 }
3209
3210 /* The resulting type of a comparison may be an effective boolean type. */
3211 if (INTEGRAL_TYPE_P (type)
3212 && (TREE_CODE (type) == BOOLEAN_TYPE
3213 || TYPE_PRECISION (type) == 1))
3214 ;
3215 /* Or an integer vector type with the same size and element count
3216 as the comparison operand types. */
3217 else if (TREE_CODE (type) == VECTOR_TYPE
3218 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3219 {
3220 if (TREE_CODE (op0_type) != VECTOR_TYPE
3221 || TREE_CODE (op1_type) != VECTOR_TYPE)
3222 {
3223 error ("non-vector operands in vector comparison");
3224 debug_generic_expr (op0_type);
3225 debug_generic_expr (op1_type);
3226 return true;
3227 }
3228
3229 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3230 || (GET_MODE_SIZE (TYPE_MODE (type))
3231 != GET_MODE_SIZE (TYPE_MODE (op0_type))))
3232 {
3233 error ("invalid vector comparison resulting type");
3234 debug_generic_expr (type);
3235 return true;
3236 }
3237 }
3238 else
3239 {
3240 error ("bogus comparison result type");
3241 debug_generic_expr (type);
3242 return true;
3243 }
3244
3245 return false;
3246 }
3247
3248 /* Verify a gimple assignment statement STMT with an unary rhs.
3249 Returns true if anything is wrong. */
3250
3251 static bool
3252 verify_gimple_assign_unary (gimple stmt)
3253 {
3254 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3255 tree lhs = gimple_assign_lhs (stmt);
3256 tree lhs_type = TREE_TYPE (lhs);
3257 tree rhs1 = gimple_assign_rhs1 (stmt);
3258 tree rhs1_type = TREE_TYPE (rhs1);
3259
3260 if (!is_gimple_reg (lhs))
3261 {
3262 error ("non-register as LHS of unary operation");
3263 return true;
3264 }
3265
3266 if (!is_gimple_val (rhs1))
3267 {
3268 error ("invalid operand in unary operation");
3269 return true;
3270 }
3271
3272 /* First handle conversions. */
3273 switch (rhs_code)
3274 {
3275 CASE_CONVERT:
3276 {
3277 /* Allow conversions between integral types and pointers only if
3278 there is no sign or zero extension involved.
3279 For targets were the precision of ptrofftype doesn't match that
3280 of pointers we need to allow arbitrary conversions from and
3281 to ptrofftype. */
3282 if ((POINTER_TYPE_P (lhs_type)
3283 && INTEGRAL_TYPE_P (rhs1_type)
3284 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3285 || ptrofftype_p (rhs1_type)))
3286 || (POINTER_TYPE_P (rhs1_type)
3287 && INTEGRAL_TYPE_P (lhs_type)
3288 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3289 || ptrofftype_p (sizetype))))
3290 return false;
3291
3292 /* Allow conversion from integer to offset type and vice versa. */
3293 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3294 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3295 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3296 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3297 return false;
3298
3299 /* Otherwise assert we are converting between types of the
3300 same kind. */
3301 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3302 {
3303 error ("invalid types in nop conversion");
3304 debug_generic_expr (lhs_type);
3305 debug_generic_expr (rhs1_type);
3306 return true;
3307 }
3308
3309 return false;
3310 }
3311
3312 case ADDR_SPACE_CONVERT_EXPR:
3313 {
3314 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3315 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3316 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3317 {
3318 error ("invalid types in address space conversion");
3319 debug_generic_expr (lhs_type);
3320 debug_generic_expr (rhs1_type);
3321 return true;
3322 }
3323
3324 return false;
3325 }
3326
3327 case FIXED_CONVERT_EXPR:
3328 {
3329 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3330 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3331 {
3332 error ("invalid types in fixed-point conversion");
3333 debug_generic_expr (lhs_type);
3334 debug_generic_expr (rhs1_type);
3335 return true;
3336 }
3337
3338 return false;
3339 }
3340
3341 case FLOAT_EXPR:
3342 {
3343 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3344 {
3345 error ("invalid types in conversion to floating point");
3346 debug_generic_expr (lhs_type);
3347 debug_generic_expr (rhs1_type);
3348 return true;
3349 }
3350
3351 return false;
3352 }
3353
3354 case FIX_TRUNC_EXPR:
3355 {
3356 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3357 {
3358 error ("invalid types in conversion to integer");
3359 debug_generic_expr (lhs_type);
3360 debug_generic_expr (rhs1_type);
3361 return true;
3362 }
3363
3364 return false;
3365 }
3366
3367 case VEC_UNPACK_HI_EXPR:
3368 case VEC_UNPACK_LO_EXPR:
3369 case REDUC_MAX_EXPR:
3370 case REDUC_MIN_EXPR:
3371 case REDUC_PLUS_EXPR:
3372 case VEC_UNPACK_FLOAT_HI_EXPR:
3373 case VEC_UNPACK_FLOAT_LO_EXPR:
3374 /* FIXME. */
3375 return false;
3376
3377 case NEGATE_EXPR:
3378 case ABS_EXPR:
3379 case BIT_NOT_EXPR:
3380 case PAREN_EXPR:
3381 case NON_LVALUE_EXPR:
3382 case CONJ_EXPR:
3383 break;
3384
3385 default:
3386 gcc_unreachable ();
3387 }
3388
3389 /* For the remaining codes assert there is no conversion involved. */
3390 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3391 {
3392 error ("non-trivial conversion in unary operation");
3393 debug_generic_expr (lhs_type);
3394 debug_generic_expr (rhs1_type);
3395 return true;
3396 }
3397
3398 return false;
3399 }
3400
3401 /* Verify a gimple assignment statement STMT with a binary rhs.
3402 Returns true if anything is wrong. */
3403
3404 static bool
3405 verify_gimple_assign_binary (gimple stmt)
3406 {
3407 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3408 tree lhs = gimple_assign_lhs (stmt);
3409 tree lhs_type = TREE_TYPE (lhs);
3410 tree rhs1 = gimple_assign_rhs1 (stmt);
3411 tree rhs1_type = TREE_TYPE (rhs1);
3412 tree rhs2 = gimple_assign_rhs2 (stmt);
3413 tree rhs2_type = TREE_TYPE (rhs2);
3414
3415 if (!is_gimple_reg (lhs))
3416 {
3417 error ("non-register as LHS of binary operation");
3418 return true;
3419 }
3420
3421 if (!is_gimple_val (rhs1)
3422 || !is_gimple_val (rhs2))
3423 {
3424 error ("invalid operands in binary operation");
3425 return true;
3426 }
3427
3428 /* First handle operations that involve different types. */
3429 switch (rhs_code)
3430 {
3431 case COMPLEX_EXPR:
3432 {
3433 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3434 || !(INTEGRAL_TYPE_P (rhs1_type)
3435 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3436 || !(INTEGRAL_TYPE_P (rhs2_type)
3437 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3438 {
3439 error ("type mismatch in complex expression");
3440 debug_generic_expr (lhs_type);
3441 debug_generic_expr (rhs1_type);
3442 debug_generic_expr (rhs2_type);
3443 return true;
3444 }
3445
3446 return false;
3447 }
3448
3449 case LSHIFT_EXPR:
3450 case RSHIFT_EXPR:
3451 case LROTATE_EXPR:
3452 case RROTATE_EXPR:
3453 {
3454 /* Shifts and rotates are ok on integral types, fixed point
3455 types and integer vector types. */
3456 if ((!INTEGRAL_TYPE_P (rhs1_type)
3457 && !FIXED_POINT_TYPE_P (rhs1_type)
3458 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3459 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3460 || (!INTEGRAL_TYPE_P (rhs2_type)
3461 /* Vector shifts of vectors are also ok. */
3462 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3463 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3464 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3465 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3466 || !useless_type_conversion_p (lhs_type, rhs1_type))
3467 {
3468 error ("type mismatch in shift expression");
3469 debug_generic_expr (lhs_type);
3470 debug_generic_expr (rhs1_type);
3471 debug_generic_expr (rhs2_type);
3472 return true;
3473 }
3474
3475 return false;
3476 }
3477
3478 case VEC_LSHIFT_EXPR:
3479 case VEC_RSHIFT_EXPR:
3480 {
3481 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3482 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3483 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3484 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3485 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3486 || (!INTEGRAL_TYPE_P (rhs2_type)
3487 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3488 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3489 || !useless_type_conversion_p (lhs_type, rhs1_type))
3490 {
3491 error ("type mismatch in vector shift expression");
3492 debug_generic_expr (lhs_type);
3493 debug_generic_expr (rhs1_type);
3494 debug_generic_expr (rhs2_type);
3495 return true;
3496 }
3497 /* For shifting a vector of non-integral components we
3498 only allow shifting by a constant multiple of the element size. */
3499 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3500 && (TREE_CODE (rhs2) != INTEGER_CST
3501 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3502 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3503 {
3504 error ("non-element sized vector shift of floating point vector");
3505 return true;
3506 }
3507
3508 return false;
3509 }
3510
3511 case PLUS_EXPR:
3512 case MINUS_EXPR:
3513 {
3514 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3515 ??? This just makes the checker happy and may not be what is
3516 intended. */
3517 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3518 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3519 {
3520 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3521 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3522 {
3523 error ("invalid non-vector operands to vector valued plus");
3524 return true;
3525 }
3526 lhs_type = TREE_TYPE (lhs_type);
3527 rhs1_type = TREE_TYPE (rhs1_type);
3528 rhs2_type = TREE_TYPE (rhs2_type);
3529 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3530 the pointer to 2nd place. */
3531 if (POINTER_TYPE_P (rhs2_type))
3532 {
3533 tree tem = rhs1_type;
3534 rhs1_type = rhs2_type;
3535 rhs2_type = tem;
3536 }
3537 goto do_pointer_plus_expr_check;
3538 }
3539 if (POINTER_TYPE_P (lhs_type)
3540 || POINTER_TYPE_P (rhs1_type)
3541 || POINTER_TYPE_P (rhs2_type))
3542 {
3543 error ("invalid (pointer) operands to plus/minus");
3544 return true;
3545 }
3546
3547 /* Continue with generic binary expression handling. */
3548 break;
3549 }
3550
3551 case POINTER_PLUS_EXPR:
3552 {
3553 do_pointer_plus_expr_check:
3554 if (!POINTER_TYPE_P (rhs1_type)
3555 || !useless_type_conversion_p (lhs_type, rhs1_type)
3556 || !ptrofftype_p (rhs2_type))
3557 {
3558 error ("type mismatch in pointer plus expression");
3559 debug_generic_stmt (lhs_type);
3560 debug_generic_stmt (rhs1_type);
3561 debug_generic_stmt (rhs2_type);
3562 return true;
3563 }
3564
3565 return false;
3566 }
3567
3568 case TRUTH_ANDIF_EXPR:
3569 case TRUTH_ORIF_EXPR:
3570 case TRUTH_AND_EXPR:
3571 case TRUTH_OR_EXPR:
3572 case TRUTH_XOR_EXPR:
3573
3574 gcc_unreachable ();
3575
3576 case LT_EXPR:
3577 case LE_EXPR:
3578 case GT_EXPR:
3579 case GE_EXPR:
3580 case EQ_EXPR:
3581 case NE_EXPR:
3582 case UNORDERED_EXPR:
3583 case ORDERED_EXPR:
3584 case UNLT_EXPR:
3585 case UNLE_EXPR:
3586 case UNGT_EXPR:
3587 case UNGE_EXPR:
3588 case UNEQ_EXPR:
3589 case LTGT_EXPR:
3590 /* Comparisons are also binary, but the result type is not
3591 connected to the operand types. */
3592 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3593
3594 case WIDEN_MULT_EXPR:
3595 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3596 return true;
3597 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3598 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3599
3600 case WIDEN_SUM_EXPR:
3601 case VEC_WIDEN_MULT_HI_EXPR:
3602 case VEC_WIDEN_MULT_LO_EXPR:
3603 case VEC_PACK_TRUNC_EXPR:
3604 case VEC_PACK_SAT_EXPR:
3605 case VEC_PACK_FIX_TRUNC_EXPR:
3606 case VEC_EXTRACT_EVEN_EXPR:
3607 case VEC_EXTRACT_ODD_EXPR:
3608 case VEC_INTERLEAVE_HIGH_EXPR:
3609 case VEC_INTERLEAVE_LOW_EXPR:
3610 /* FIXME. */
3611 return false;
3612
3613 case MULT_EXPR:
3614 case TRUNC_DIV_EXPR:
3615 case CEIL_DIV_EXPR:
3616 case FLOOR_DIV_EXPR:
3617 case ROUND_DIV_EXPR:
3618 case TRUNC_MOD_EXPR:
3619 case CEIL_MOD_EXPR:
3620 case FLOOR_MOD_EXPR:
3621 case ROUND_MOD_EXPR:
3622 case RDIV_EXPR:
3623 case EXACT_DIV_EXPR:
3624 case MIN_EXPR:
3625 case MAX_EXPR:
3626 case BIT_IOR_EXPR:
3627 case BIT_XOR_EXPR:
3628 case BIT_AND_EXPR:
3629 /* Continue with generic binary expression handling. */
3630 break;
3631
3632 default:
3633 gcc_unreachable ();
3634 }
3635
3636 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3637 || !useless_type_conversion_p (lhs_type, rhs2_type))
3638 {
3639 error ("type mismatch in binary expression");
3640 debug_generic_stmt (lhs_type);
3641 debug_generic_stmt (rhs1_type);
3642 debug_generic_stmt (rhs2_type);
3643 return true;
3644 }
3645
3646 return false;
3647 }
3648
3649 /* Verify a gimple assignment statement STMT with a ternary rhs.
3650 Returns true if anything is wrong. */
3651
3652 static bool
3653 verify_gimple_assign_ternary (gimple stmt)
3654 {
3655 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3656 tree lhs = gimple_assign_lhs (stmt);
3657 tree lhs_type = TREE_TYPE (lhs);
3658 tree rhs1 = gimple_assign_rhs1 (stmt);
3659 tree rhs1_type = TREE_TYPE (rhs1);
3660 tree rhs2 = gimple_assign_rhs2 (stmt);
3661 tree rhs2_type = TREE_TYPE (rhs2);
3662 tree rhs3 = gimple_assign_rhs3 (stmt);
3663 tree rhs3_type = TREE_TYPE (rhs3);
3664
3665 if (!is_gimple_reg (lhs))
3666 {
3667 error ("non-register as LHS of ternary operation");
3668 return true;
3669 }
3670
3671 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3672 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3673 || !is_gimple_val (rhs2)
3674 || !is_gimple_val (rhs3))
3675 {
3676 error ("invalid operands in ternary operation");
3677 return true;
3678 }
3679
3680 /* First handle operations that involve different types. */
3681 switch (rhs_code)
3682 {
3683 case WIDEN_MULT_PLUS_EXPR:
3684 case WIDEN_MULT_MINUS_EXPR:
3685 if ((!INTEGRAL_TYPE_P (rhs1_type)
3686 && !FIXED_POINT_TYPE_P (rhs1_type))
3687 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3688 || !useless_type_conversion_p (lhs_type, rhs3_type)
3689 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3690 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3691 {
3692 error ("type mismatch in widening multiply-accumulate expression");
3693 debug_generic_expr (lhs_type);
3694 debug_generic_expr (rhs1_type);
3695 debug_generic_expr (rhs2_type);
3696 debug_generic_expr (rhs3_type);
3697 return true;
3698 }
3699 break;
3700
3701 case FMA_EXPR:
3702 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3703 || !useless_type_conversion_p (lhs_type, rhs2_type)
3704 || !useless_type_conversion_p (lhs_type, rhs3_type))
3705 {
3706 error ("type mismatch in fused multiply-add expression");
3707 debug_generic_expr (lhs_type);
3708 debug_generic_expr (rhs1_type);
3709 debug_generic_expr (rhs2_type);
3710 debug_generic_expr (rhs3_type);
3711 return true;
3712 }
3713 break;
3714
3715 case COND_EXPR:
3716 case VEC_COND_EXPR:
3717 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3718 || !useless_type_conversion_p (lhs_type, rhs3_type))
3719 {
3720 error ("type mismatch in conditional expression");
3721 debug_generic_expr (lhs_type);
3722 debug_generic_expr (rhs2_type);
3723 debug_generic_expr (rhs3_type);
3724 return true;
3725 }
3726 break;
3727
3728 case DOT_PROD_EXPR:
3729 case REALIGN_LOAD_EXPR:
3730 /* FIXME. */
3731 return false;
3732
3733 default:
3734 gcc_unreachable ();
3735 }
3736 return false;
3737 }
3738
3739 /* Verify a gimple assignment statement STMT with a single rhs.
3740 Returns true if anything is wrong. */
3741
3742 static bool
3743 verify_gimple_assign_single (gimple stmt)
3744 {
3745 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3746 tree lhs = gimple_assign_lhs (stmt);
3747 tree lhs_type = TREE_TYPE (lhs);
3748 tree rhs1 = gimple_assign_rhs1 (stmt);
3749 tree rhs1_type = TREE_TYPE (rhs1);
3750 bool res = false;
3751
3752 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3753 {
3754 error ("non-trivial conversion at assignment");
3755 debug_generic_expr (lhs_type);
3756 debug_generic_expr (rhs1_type);
3757 return true;
3758 }
3759
3760 if (handled_component_p (lhs))
3761 res |= verify_types_in_gimple_reference (lhs, true);
3762
3763 /* Special codes we cannot handle via their class. */
3764 switch (rhs_code)
3765 {
3766 case ADDR_EXPR:
3767 {
3768 tree op = TREE_OPERAND (rhs1, 0);
3769 if (!is_gimple_addressable (op))
3770 {
3771 error ("invalid operand in unary expression");
3772 return true;
3773 }
3774
3775 /* Technically there is no longer a need for matching types, but
3776 gimple hygiene asks for this check. In LTO we can end up
3777 combining incompatible units and thus end up with addresses
3778 of globals that change their type to a common one. */
3779 if (!in_lto_p
3780 && !types_compatible_p (TREE_TYPE (op),
3781 TREE_TYPE (TREE_TYPE (rhs1)))
3782 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3783 TREE_TYPE (op)))
3784 {
3785 error ("type mismatch in address expression");
3786 debug_generic_stmt (TREE_TYPE (rhs1));
3787 debug_generic_stmt (TREE_TYPE (op));
3788 return true;
3789 }
3790
3791 return verify_types_in_gimple_reference (op, true);
3792 }
3793
3794 /* tcc_reference */
3795 case INDIRECT_REF:
3796 error ("INDIRECT_REF in gimple IL");
3797 return true;
3798
3799 case COMPONENT_REF:
3800 case BIT_FIELD_REF:
3801 case ARRAY_REF:
3802 case ARRAY_RANGE_REF:
3803 case VIEW_CONVERT_EXPR:
3804 case REALPART_EXPR:
3805 case IMAGPART_EXPR:
3806 case TARGET_MEM_REF:
3807 case MEM_REF:
3808 if (!is_gimple_reg (lhs)
3809 && is_gimple_reg_type (TREE_TYPE (lhs)))
3810 {
3811 error ("invalid rhs for gimple memory store");
3812 debug_generic_stmt (lhs);
3813 debug_generic_stmt (rhs1);
3814 return true;
3815 }
3816 return res || verify_types_in_gimple_reference (rhs1, false);
3817
3818 /* tcc_constant */
3819 case SSA_NAME:
3820 case INTEGER_CST:
3821 case REAL_CST:
3822 case FIXED_CST:
3823 case COMPLEX_CST:
3824 case VECTOR_CST:
3825 case STRING_CST:
3826 return res;
3827
3828 /* tcc_declaration */
3829 case CONST_DECL:
3830 return res;
3831 case VAR_DECL:
3832 case PARM_DECL:
3833 if (!is_gimple_reg (lhs)
3834 && !is_gimple_reg (rhs1)
3835 && is_gimple_reg_type (TREE_TYPE (lhs)))
3836 {
3837 error ("invalid rhs for gimple memory store");
3838 debug_generic_stmt (lhs);
3839 debug_generic_stmt (rhs1);
3840 return true;
3841 }
3842 return res;
3843
3844 case CONSTRUCTOR:
3845 case OBJ_TYPE_REF:
3846 case ASSERT_EXPR:
3847 case WITH_SIZE_EXPR:
3848 /* FIXME. */
3849 return res;
3850
3851 default:;
3852 }
3853
3854 return res;
3855 }
3856
3857 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3858 is a problem, otherwise false. */
3859
3860 static bool
3861 verify_gimple_assign (gimple stmt)
3862 {
3863 switch (gimple_assign_rhs_class (stmt))
3864 {
3865 case GIMPLE_SINGLE_RHS:
3866 return verify_gimple_assign_single (stmt);
3867
3868 case GIMPLE_UNARY_RHS:
3869 return verify_gimple_assign_unary (stmt);
3870
3871 case GIMPLE_BINARY_RHS:
3872 return verify_gimple_assign_binary (stmt);
3873
3874 case GIMPLE_TERNARY_RHS:
3875 return verify_gimple_assign_ternary (stmt);
3876
3877 default:
3878 gcc_unreachable ();
3879 }
3880 }
3881
3882 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3883 is a problem, otherwise false. */
3884
3885 static bool
3886 verify_gimple_return (gimple stmt)
3887 {
3888 tree op = gimple_return_retval (stmt);
3889 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3890
3891 /* We cannot test for present return values as we do not fix up missing
3892 return values from the original source. */
3893 if (op == NULL)
3894 return false;
3895
3896 if (!is_gimple_val (op)
3897 && TREE_CODE (op) != RESULT_DECL)
3898 {
3899 error ("invalid operand in return statement");
3900 debug_generic_stmt (op);
3901 return true;
3902 }
3903
3904 if ((TREE_CODE (op) == RESULT_DECL
3905 && DECL_BY_REFERENCE (op))
3906 || (TREE_CODE (op) == SSA_NAME
3907 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3908 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3909 op = TREE_TYPE (op);
3910
3911 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3912 {
3913 error ("invalid conversion in return statement");
3914 debug_generic_stmt (restype);
3915 debug_generic_stmt (TREE_TYPE (op));
3916 return true;
3917 }
3918
3919 return false;
3920 }
3921
3922
3923 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3924 is a problem, otherwise false. */
3925
3926 static bool
3927 verify_gimple_goto (gimple stmt)
3928 {
3929 tree dest = gimple_goto_dest (stmt);
3930
3931 /* ??? We have two canonical forms of direct goto destinations, a
3932 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3933 if (TREE_CODE (dest) != LABEL_DECL
3934 && (!is_gimple_val (dest)
3935 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3936 {
3937 error ("goto destination is neither a label nor a pointer");
3938 return true;
3939 }
3940
3941 return false;
3942 }
3943
3944 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3945 is a problem, otherwise false. */
3946
3947 static bool
3948 verify_gimple_switch (gimple stmt)
3949 {
3950 if (!is_gimple_val (gimple_switch_index (stmt)))
3951 {
3952 error ("invalid operand to switch statement");
3953 debug_generic_stmt (gimple_switch_index (stmt));
3954 return true;
3955 }
3956
3957 return false;
3958 }
3959
3960
3961 /* Verify a gimple debug statement STMT.
3962 Returns true if anything is wrong. */
3963
3964 static bool
3965 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3966 {
3967 /* There isn't much that could be wrong in a gimple debug stmt. A
3968 gimple debug bind stmt, for example, maps a tree, that's usually
3969 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3970 component or member of an aggregate type, to another tree, that
3971 can be an arbitrary expression. These stmts expand into debug
3972 insns, and are converted to debug notes by var-tracking.c. */
3973 return false;
3974 }
3975
3976 /* Verify a gimple label statement STMT.
3977 Returns true if anything is wrong. */
3978
3979 static bool
3980 verify_gimple_label (gimple stmt)
3981 {
3982 tree decl = gimple_label_label (stmt);
3983 int uid;
3984 bool err = false;
3985
3986 if (TREE_CODE (decl) != LABEL_DECL)
3987 return true;
3988
3989 uid = LABEL_DECL_UID (decl);
3990 if (cfun->cfg
3991 && (uid == -1
3992 || VEC_index (basic_block,
3993 label_to_block_map, uid) != gimple_bb (stmt)))
3994 {
3995 error ("incorrect entry in label_to_block_map");
3996 err |= true;
3997 }
3998
3999 uid = EH_LANDING_PAD_NR (decl);
4000 if (uid)
4001 {
4002 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4003 if (decl != lp->post_landing_pad)
4004 {
4005 error ("incorrect setting of landing pad number");
4006 err |= true;
4007 }
4008 }
4009
4010 return err;
4011 }
4012
4013 /* Verify the GIMPLE statement STMT. Returns true if there is an
4014 error, otherwise false. */
4015
4016 static bool
4017 verify_gimple_stmt (gimple stmt)
4018 {
4019 switch (gimple_code (stmt))
4020 {
4021 case GIMPLE_ASSIGN:
4022 return verify_gimple_assign (stmt);
4023
4024 case GIMPLE_LABEL:
4025 return verify_gimple_label (stmt);
4026
4027 case GIMPLE_CALL:
4028 return verify_gimple_call (stmt);
4029
4030 case GIMPLE_COND:
4031 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4032 {
4033 error ("invalid comparison code in gimple cond");
4034 return true;
4035 }
4036 if (!(!gimple_cond_true_label (stmt)
4037 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4038 || !(!gimple_cond_false_label (stmt)
4039 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4040 {
4041 error ("invalid labels in gimple cond");
4042 return true;
4043 }
4044
4045 return verify_gimple_comparison (boolean_type_node,
4046 gimple_cond_lhs (stmt),
4047 gimple_cond_rhs (stmt));
4048
4049 case GIMPLE_GOTO:
4050 return verify_gimple_goto (stmt);
4051
4052 case GIMPLE_SWITCH:
4053 return verify_gimple_switch (stmt);
4054
4055 case GIMPLE_RETURN:
4056 return verify_gimple_return (stmt);
4057
4058 case GIMPLE_ASM:
4059 return false;
4060
4061 /* Tuples that do not have tree operands. */
4062 case GIMPLE_NOP:
4063 case GIMPLE_PREDICT:
4064 case GIMPLE_RESX:
4065 case GIMPLE_EH_DISPATCH:
4066 case GIMPLE_EH_MUST_NOT_THROW:
4067 return false;
4068
4069 CASE_GIMPLE_OMP:
4070 /* OpenMP directives are validated by the FE and never operated
4071 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4072 non-gimple expressions when the main index variable has had
4073 its address taken. This does not affect the loop itself
4074 because the header of an GIMPLE_OMP_FOR is merely used to determine
4075 how to setup the parallel iteration. */
4076 return false;
4077
4078 case GIMPLE_DEBUG:
4079 return verify_gimple_debug (stmt);
4080
4081 default:
4082 gcc_unreachable ();
4083 }
4084 }
4085
4086 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4087 and false otherwise. */
4088
4089 static bool
4090 verify_gimple_phi (gimple phi)
4091 {
4092 bool err = false;
4093 unsigned i;
4094 tree phi_result = gimple_phi_result (phi);
4095 bool virtual_p;
4096
4097 if (!phi_result)
4098 {
4099 error ("invalid PHI result");
4100 return true;
4101 }
4102
4103 virtual_p = !is_gimple_reg (phi_result);
4104 if (TREE_CODE (phi_result) != SSA_NAME
4105 || (virtual_p
4106 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4107 {
4108 error ("invalid PHI result");
4109 err = true;
4110 }
4111
4112 for (i = 0; i < gimple_phi_num_args (phi); i++)
4113 {
4114 tree t = gimple_phi_arg_def (phi, i);
4115
4116 if (!t)
4117 {
4118 error ("missing PHI def");
4119 err |= true;
4120 continue;
4121 }
4122 /* Addressable variables do have SSA_NAMEs but they
4123 are not considered gimple values. */
4124 else if ((TREE_CODE (t) == SSA_NAME
4125 && virtual_p != !is_gimple_reg (t))
4126 || (virtual_p
4127 && (TREE_CODE (t) != SSA_NAME
4128 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4129 || (!virtual_p
4130 && !is_gimple_val (t)))
4131 {
4132 error ("invalid PHI argument");
4133 debug_generic_expr (t);
4134 err |= true;
4135 }
4136 #ifdef ENABLE_TYPES_CHECKING
4137 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4138 {
4139 error ("incompatible types in PHI argument %u", i);
4140 debug_generic_stmt (TREE_TYPE (phi_result));
4141 debug_generic_stmt (TREE_TYPE (t));
4142 err |= true;
4143 }
4144 #endif
4145 }
4146
4147 return err;
4148 }
4149
4150 /* Verify the GIMPLE statements inside the sequence STMTS. */
4151
4152 static bool
4153 verify_gimple_in_seq_2 (gimple_seq stmts)
4154 {
4155 gimple_stmt_iterator ittr;
4156 bool err = false;
4157
4158 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4159 {
4160 gimple stmt = gsi_stmt (ittr);
4161
4162 switch (gimple_code (stmt))
4163 {
4164 case GIMPLE_BIND:
4165 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4166 break;
4167
4168 case GIMPLE_TRY:
4169 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4170 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4171 break;
4172
4173 case GIMPLE_EH_FILTER:
4174 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4175 break;
4176
4177 case GIMPLE_CATCH:
4178 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4179 break;
4180
4181 default:
4182 {
4183 bool err2 = verify_gimple_stmt (stmt);
4184 if (err2)
4185 debug_gimple_stmt (stmt);
4186 err |= err2;
4187 }
4188 }
4189 }
4190
4191 return err;
4192 }
4193
4194
4195 /* Verify the GIMPLE statements inside the statement list STMTS. */
4196
4197 DEBUG_FUNCTION void
4198 verify_gimple_in_seq (gimple_seq stmts)
4199 {
4200 timevar_push (TV_TREE_STMT_VERIFY);
4201 if (verify_gimple_in_seq_2 (stmts))
4202 internal_error ("verify_gimple failed");
4203 timevar_pop (TV_TREE_STMT_VERIFY);
4204 }
4205
4206 /* Return true when the T can be shared. */
4207
4208 bool
4209 tree_node_can_be_shared (tree t)
4210 {
4211 if (IS_TYPE_OR_DECL_P (t)
4212 || is_gimple_min_invariant (t)
4213 || TREE_CODE (t) == SSA_NAME
4214 || t == error_mark_node
4215 || TREE_CODE (t) == IDENTIFIER_NODE)
4216 return true;
4217
4218 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4219 return true;
4220
4221 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4222 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4223 || TREE_CODE (t) == COMPONENT_REF
4224 || TREE_CODE (t) == REALPART_EXPR
4225 || TREE_CODE (t) == IMAGPART_EXPR)
4226 t = TREE_OPERAND (t, 0);
4227
4228 if (DECL_P (t))
4229 return true;
4230
4231 return false;
4232 }
4233
4234 /* Called via walk_gimple_stmt. Verify tree sharing. */
4235
4236 static tree
4237 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4238 {
4239 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4240 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4241
4242 if (tree_node_can_be_shared (*tp))
4243 {
4244 *walk_subtrees = false;
4245 return NULL;
4246 }
4247
4248 if (pointer_set_insert (visited, *tp))
4249 return *tp;
4250
4251 return NULL;
4252 }
4253
4254 static bool eh_error_found;
4255 static int
4256 verify_eh_throw_stmt_node (void **slot, void *data)
4257 {
4258 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4259 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4260
4261 if (!pointer_set_contains (visited, node->stmt))
4262 {
4263 error ("dead STMT in EH table");
4264 debug_gimple_stmt (node->stmt);
4265 eh_error_found = true;
4266 }
4267 return 1;
4268 }
4269
4270 /* Verify the GIMPLE statements in the CFG of FN. */
4271
4272 DEBUG_FUNCTION void
4273 verify_gimple_in_cfg (struct function *fn)
4274 {
4275 basic_block bb;
4276 bool err = false;
4277 struct pointer_set_t *visited, *visited_stmts;
4278
4279 timevar_push (TV_TREE_STMT_VERIFY);
4280 visited = pointer_set_create ();
4281 visited_stmts = pointer_set_create ();
4282
4283 FOR_EACH_BB_FN (bb, fn)
4284 {
4285 gimple_stmt_iterator gsi;
4286
4287 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4288 {
4289 gimple phi = gsi_stmt (gsi);
4290 bool err2 = false;
4291 unsigned i;
4292
4293 pointer_set_insert (visited_stmts, phi);
4294
4295 if (gimple_bb (phi) != bb)
4296 {
4297 error ("gimple_bb (phi) is set to a wrong basic block");
4298 err2 = true;
4299 }
4300
4301 err2 |= verify_gimple_phi (phi);
4302
4303 for (i = 0; i < gimple_phi_num_args (phi); i++)
4304 {
4305 tree arg = gimple_phi_arg_def (phi, i);
4306 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4307 if (addr)
4308 {
4309 error ("incorrect sharing of tree nodes");
4310 debug_generic_expr (addr);
4311 err2 |= true;
4312 }
4313 }
4314
4315 if (err2)
4316 debug_gimple_stmt (phi);
4317 err |= err2;
4318 }
4319
4320 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4321 {
4322 gimple stmt = gsi_stmt (gsi);
4323 bool err2 = false;
4324 struct walk_stmt_info wi;
4325 tree addr;
4326 int lp_nr;
4327
4328 pointer_set_insert (visited_stmts, stmt);
4329
4330 if (gimple_bb (stmt) != bb)
4331 {
4332 error ("gimple_bb (stmt) is set to a wrong basic block");
4333 err2 = true;
4334 }
4335
4336 err2 |= verify_gimple_stmt (stmt);
4337
4338 memset (&wi, 0, sizeof (wi));
4339 wi.info = (void *) visited;
4340 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4341 if (addr)
4342 {
4343 error ("incorrect sharing of tree nodes");
4344 debug_generic_expr (addr);
4345 err2 |= true;
4346 }
4347
4348 /* ??? Instead of not checking these stmts at all the walker
4349 should know its context via wi. */
4350 if (!is_gimple_debug (stmt)
4351 && !is_gimple_omp (stmt))
4352 {
4353 memset (&wi, 0, sizeof (wi));
4354 addr = walk_gimple_op (stmt, verify_expr, &wi);
4355 if (addr)
4356 {
4357 debug_generic_expr (addr);
4358 inform (gimple_location (stmt), "in statement");
4359 err2 |= true;
4360 }
4361 }
4362
4363 /* If the statement is marked as part of an EH region, then it is
4364 expected that the statement could throw. Verify that when we
4365 have optimizations that simplify statements such that we prove
4366 that they cannot throw, that we update other data structures
4367 to match. */
4368 lp_nr = lookup_stmt_eh_lp (stmt);
4369 if (lp_nr != 0)
4370 {
4371 if (!stmt_could_throw_p (stmt))
4372 {
4373 error ("statement marked for throw, but doesn%'t");
4374 err2 |= true;
4375 }
4376 else if (lp_nr > 0
4377 && !gsi_one_before_end_p (gsi)
4378 && stmt_can_throw_internal (stmt))
4379 {
4380 error ("statement marked for throw in middle of block");
4381 err2 |= true;
4382 }
4383 }
4384
4385 if (err2)
4386 debug_gimple_stmt (stmt);
4387 err |= err2;
4388 }
4389 }
4390
4391 eh_error_found = false;
4392 if (get_eh_throw_stmt_table (cfun))
4393 htab_traverse (get_eh_throw_stmt_table (cfun),
4394 verify_eh_throw_stmt_node,
4395 visited_stmts);
4396
4397 if (err || eh_error_found)
4398 internal_error ("verify_gimple failed");
4399
4400 pointer_set_destroy (visited);
4401 pointer_set_destroy (visited_stmts);
4402 verify_histograms ();
4403 timevar_pop (TV_TREE_STMT_VERIFY);
4404 }
4405
4406
4407 /* Verifies that the flow information is OK. */
4408
4409 static int
4410 gimple_verify_flow_info (void)
4411 {
4412 int err = 0;
4413 basic_block bb;
4414 gimple_stmt_iterator gsi;
4415 gimple stmt;
4416 edge e;
4417 edge_iterator ei;
4418
4419 if (ENTRY_BLOCK_PTR->il.gimple)
4420 {
4421 error ("ENTRY_BLOCK has IL associated with it");
4422 err = 1;
4423 }
4424
4425 if (EXIT_BLOCK_PTR->il.gimple)
4426 {
4427 error ("EXIT_BLOCK has IL associated with it");
4428 err = 1;
4429 }
4430
4431 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4432 if (e->flags & EDGE_FALLTHRU)
4433 {
4434 error ("fallthru to exit from bb %d", e->src->index);
4435 err = 1;
4436 }
4437
4438 FOR_EACH_BB (bb)
4439 {
4440 bool found_ctrl_stmt = false;
4441
4442 stmt = NULL;
4443
4444 /* Skip labels on the start of basic block. */
4445 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4446 {
4447 tree label;
4448 gimple prev_stmt = stmt;
4449
4450 stmt = gsi_stmt (gsi);
4451
4452 if (gimple_code (stmt) != GIMPLE_LABEL)
4453 break;
4454
4455 label = gimple_label_label (stmt);
4456 if (prev_stmt && DECL_NONLOCAL (label))
4457 {
4458 error ("nonlocal label ");
4459 print_generic_expr (stderr, label, 0);
4460 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4461 bb->index);
4462 err = 1;
4463 }
4464
4465 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4466 {
4467 error ("EH landing pad label ");
4468 print_generic_expr (stderr, label, 0);
4469 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4470 bb->index);
4471 err = 1;
4472 }
4473
4474 if (label_to_block (label) != bb)
4475 {
4476 error ("label ");
4477 print_generic_expr (stderr, label, 0);
4478 fprintf (stderr, " to block does not match in bb %d",
4479 bb->index);
4480 err = 1;
4481 }
4482
4483 if (decl_function_context (label) != current_function_decl)
4484 {
4485 error ("label ");
4486 print_generic_expr (stderr, label, 0);
4487 fprintf (stderr, " has incorrect context in bb %d",
4488 bb->index);
4489 err = 1;
4490 }
4491 }
4492
4493 /* Verify that body of basic block BB is free of control flow. */
4494 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4495 {
4496 gimple stmt = gsi_stmt (gsi);
4497
4498 if (found_ctrl_stmt)
4499 {
4500 error ("control flow in the middle of basic block %d",
4501 bb->index);
4502 err = 1;
4503 }
4504
4505 if (stmt_ends_bb_p (stmt))
4506 found_ctrl_stmt = true;
4507
4508 if (gimple_code (stmt) == GIMPLE_LABEL)
4509 {
4510 error ("label ");
4511 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4512 fprintf (stderr, " in the middle of basic block %d", bb->index);
4513 err = 1;
4514 }
4515 }
4516
4517 gsi = gsi_last_bb (bb);
4518 if (gsi_end_p (gsi))
4519 continue;
4520
4521 stmt = gsi_stmt (gsi);
4522
4523 if (gimple_code (stmt) == GIMPLE_LABEL)
4524 continue;
4525
4526 err |= verify_eh_edges (stmt);
4527
4528 if (is_ctrl_stmt (stmt))
4529 {
4530 FOR_EACH_EDGE (e, ei, bb->succs)
4531 if (e->flags & EDGE_FALLTHRU)
4532 {
4533 error ("fallthru edge after a control statement in bb %d",
4534 bb->index);
4535 err = 1;
4536 }
4537 }
4538
4539 if (gimple_code (stmt) != GIMPLE_COND)
4540 {
4541 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4542 after anything else but if statement. */
4543 FOR_EACH_EDGE (e, ei, bb->succs)
4544 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4545 {
4546 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4547 bb->index);
4548 err = 1;
4549 }
4550 }
4551
4552 switch (gimple_code (stmt))
4553 {
4554 case GIMPLE_COND:
4555 {
4556 edge true_edge;
4557 edge false_edge;
4558
4559 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4560
4561 if (!true_edge
4562 || !false_edge
4563 || !(true_edge->flags & EDGE_TRUE_VALUE)
4564 || !(false_edge->flags & EDGE_FALSE_VALUE)
4565 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4566 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4567 || EDGE_COUNT (bb->succs) >= 3)
4568 {
4569 error ("wrong outgoing edge flags at end of bb %d",
4570 bb->index);
4571 err = 1;
4572 }
4573 }
4574 break;
4575
4576 case GIMPLE_GOTO:
4577 if (simple_goto_p (stmt))
4578 {
4579 error ("explicit goto at end of bb %d", bb->index);
4580 err = 1;
4581 }
4582 else
4583 {
4584 /* FIXME. We should double check that the labels in the
4585 destination blocks have their address taken. */
4586 FOR_EACH_EDGE (e, ei, bb->succs)
4587 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4588 | EDGE_FALSE_VALUE))
4589 || !(e->flags & EDGE_ABNORMAL))
4590 {
4591 error ("wrong outgoing edge flags at end of bb %d",
4592 bb->index);
4593 err = 1;
4594 }
4595 }
4596 break;
4597
4598 case GIMPLE_CALL:
4599 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4600 break;
4601 /* ... fallthru ... */
4602 case GIMPLE_RETURN:
4603 if (!single_succ_p (bb)
4604 || (single_succ_edge (bb)->flags
4605 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4606 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4607 {
4608 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4609 err = 1;
4610 }
4611 if (single_succ (bb) != EXIT_BLOCK_PTR)
4612 {
4613 error ("return edge does not point to exit in bb %d",
4614 bb->index);
4615 err = 1;
4616 }
4617 break;
4618
4619 case GIMPLE_SWITCH:
4620 {
4621 tree prev;
4622 edge e;
4623 size_t i, n;
4624
4625 n = gimple_switch_num_labels (stmt);
4626
4627 /* Mark all the destination basic blocks. */
4628 for (i = 0; i < n; ++i)
4629 {
4630 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4631 basic_block label_bb = label_to_block (lab);
4632 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4633 label_bb->aux = (void *)1;
4634 }
4635
4636 /* Verify that the case labels are sorted. */
4637 prev = gimple_switch_label (stmt, 0);
4638 for (i = 1; i < n; ++i)
4639 {
4640 tree c = gimple_switch_label (stmt, i);
4641 if (!CASE_LOW (c))
4642 {
4643 error ("found default case not at the start of "
4644 "case vector");
4645 err = 1;
4646 continue;
4647 }
4648 if (CASE_LOW (prev)
4649 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4650 {
4651 error ("case labels not sorted: ");
4652 print_generic_expr (stderr, prev, 0);
4653 fprintf (stderr," is greater than ");
4654 print_generic_expr (stderr, c, 0);
4655 fprintf (stderr," but comes before it.\n");
4656 err = 1;
4657 }
4658 prev = c;
4659 }
4660 /* VRP will remove the default case if it can prove it will
4661 never be executed. So do not verify there always exists
4662 a default case here. */
4663
4664 FOR_EACH_EDGE (e, ei, bb->succs)
4665 {
4666 if (!e->dest->aux)
4667 {
4668 error ("extra outgoing edge %d->%d",
4669 bb->index, e->dest->index);
4670 err = 1;
4671 }
4672
4673 e->dest->aux = (void *)2;
4674 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4675 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4676 {
4677 error ("wrong outgoing edge flags at end of bb %d",
4678 bb->index);
4679 err = 1;
4680 }
4681 }
4682
4683 /* Check that we have all of them. */
4684 for (i = 0; i < n; ++i)
4685 {
4686 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4687 basic_block label_bb = label_to_block (lab);
4688
4689 if (label_bb->aux != (void *)2)
4690 {
4691 error ("missing edge %i->%i", bb->index, label_bb->index);
4692 err = 1;
4693 }
4694 }
4695
4696 FOR_EACH_EDGE (e, ei, bb->succs)
4697 e->dest->aux = (void *)0;
4698 }
4699 break;
4700
4701 case GIMPLE_EH_DISPATCH:
4702 err |= verify_eh_dispatch_edge (stmt);
4703 break;
4704
4705 default:
4706 break;
4707 }
4708 }
4709
4710 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4711 verify_dominators (CDI_DOMINATORS);
4712
4713 return err;
4714 }
4715
4716
4717 /* Updates phi nodes after creating a forwarder block joined
4718 by edge FALLTHRU. */
4719
4720 static void
4721 gimple_make_forwarder_block (edge fallthru)
4722 {
4723 edge e;
4724 edge_iterator ei;
4725 basic_block dummy, bb;
4726 tree var;
4727 gimple_stmt_iterator gsi;
4728
4729 dummy = fallthru->src;
4730 bb = fallthru->dest;
4731
4732 if (single_pred_p (bb))
4733 return;
4734
4735 /* If we redirected a branch we must create new PHI nodes at the
4736 start of BB. */
4737 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4738 {
4739 gimple phi, new_phi;
4740
4741 phi = gsi_stmt (gsi);
4742 var = gimple_phi_result (phi);
4743 new_phi = create_phi_node (var, bb);
4744 SSA_NAME_DEF_STMT (var) = new_phi;
4745 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4746 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4747 UNKNOWN_LOCATION);
4748 }
4749
4750 /* Add the arguments we have stored on edges. */
4751 FOR_EACH_EDGE (e, ei, bb->preds)
4752 {
4753 if (e == fallthru)
4754 continue;
4755
4756 flush_pending_stmts (e);
4757 }
4758 }
4759
4760
4761 /* Return a non-special label in the head of basic block BLOCK.
4762 Create one if it doesn't exist. */
4763
4764 tree
4765 gimple_block_label (basic_block bb)
4766 {
4767 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4768 bool first = true;
4769 tree label;
4770 gimple stmt;
4771
4772 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4773 {
4774 stmt = gsi_stmt (i);
4775 if (gimple_code (stmt) != GIMPLE_LABEL)
4776 break;
4777 label = gimple_label_label (stmt);
4778 if (!DECL_NONLOCAL (label))
4779 {
4780 if (!first)
4781 gsi_move_before (&i, &s);
4782 return label;
4783 }
4784 }
4785
4786 label = create_artificial_label (UNKNOWN_LOCATION);
4787 stmt = gimple_build_label (label);
4788 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4789 return label;
4790 }
4791
4792
4793 /* Attempt to perform edge redirection by replacing a possibly complex
4794 jump instruction by a goto or by removing the jump completely.
4795 This can apply only if all edges now point to the same block. The
4796 parameters and return values are equivalent to
4797 redirect_edge_and_branch. */
4798
4799 static edge
4800 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4801 {
4802 basic_block src = e->src;
4803 gimple_stmt_iterator i;
4804 gimple stmt;
4805
4806 /* We can replace or remove a complex jump only when we have exactly
4807 two edges. */
4808 if (EDGE_COUNT (src->succs) != 2
4809 /* Verify that all targets will be TARGET. Specifically, the
4810 edge that is not E must also go to TARGET. */
4811 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4812 return NULL;
4813
4814 i = gsi_last_bb (src);
4815 if (gsi_end_p (i))
4816 return NULL;
4817
4818 stmt = gsi_stmt (i);
4819
4820 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4821 {
4822 gsi_remove (&i, true);
4823 e = ssa_redirect_edge (e, target);
4824 e->flags = EDGE_FALLTHRU;
4825 return e;
4826 }
4827
4828 return NULL;
4829 }
4830
4831
4832 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4833 edge representing the redirected branch. */
4834
4835 static edge
4836 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4837 {
4838 basic_block bb = e->src;
4839 gimple_stmt_iterator gsi;
4840 edge ret;
4841 gimple stmt;
4842
4843 if (e->flags & EDGE_ABNORMAL)
4844 return NULL;
4845
4846 if (e->dest == dest)
4847 return NULL;
4848
4849 if (e->flags & EDGE_EH)
4850 return redirect_eh_edge (e, dest);
4851
4852 if (e->src != ENTRY_BLOCK_PTR)
4853 {
4854 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4855 if (ret)
4856 return ret;
4857 }
4858
4859 gsi = gsi_last_bb (bb);
4860 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4861
4862 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4863 {
4864 case GIMPLE_COND:
4865 /* For COND_EXPR, we only need to redirect the edge. */
4866 break;
4867
4868 case GIMPLE_GOTO:
4869 /* No non-abnormal edges should lead from a non-simple goto, and
4870 simple ones should be represented implicitly. */
4871 gcc_unreachable ();
4872
4873 case GIMPLE_SWITCH:
4874 {
4875 tree label = gimple_block_label (dest);
4876 tree cases = get_cases_for_edge (e, stmt);
4877
4878 /* If we have a list of cases associated with E, then use it
4879 as it's a lot faster than walking the entire case vector. */
4880 if (cases)
4881 {
4882 edge e2 = find_edge (e->src, dest);
4883 tree last, first;
4884
4885 first = cases;
4886 while (cases)
4887 {
4888 last = cases;
4889 CASE_LABEL (cases) = label;
4890 cases = CASE_CHAIN (cases);
4891 }
4892
4893 /* If there was already an edge in the CFG, then we need
4894 to move all the cases associated with E to E2. */
4895 if (e2)
4896 {
4897 tree cases2 = get_cases_for_edge (e2, stmt);
4898
4899 CASE_CHAIN (last) = CASE_CHAIN (cases2);
4900 CASE_CHAIN (cases2) = first;
4901 }
4902 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4903 }
4904 else
4905 {
4906 size_t i, n = gimple_switch_num_labels (stmt);
4907
4908 for (i = 0; i < n; i++)
4909 {
4910 tree elt = gimple_switch_label (stmt, i);
4911 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4912 CASE_LABEL (elt) = label;
4913 }
4914 }
4915 }
4916 break;
4917
4918 case GIMPLE_ASM:
4919 {
4920 int i, n = gimple_asm_nlabels (stmt);
4921 tree label = NULL;
4922
4923 for (i = 0; i < n; ++i)
4924 {
4925 tree cons = gimple_asm_label_op (stmt, i);
4926 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4927 {
4928 if (!label)
4929 label = gimple_block_label (dest);
4930 TREE_VALUE (cons) = label;
4931 }
4932 }
4933
4934 /* If we didn't find any label matching the former edge in the
4935 asm labels, we must be redirecting the fallthrough
4936 edge. */
4937 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4938 }
4939 break;
4940
4941 case GIMPLE_RETURN:
4942 gsi_remove (&gsi, true);
4943 e->flags |= EDGE_FALLTHRU;
4944 break;
4945
4946 case GIMPLE_OMP_RETURN:
4947 case GIMPLE_OMP_CONTINUE:
4948 case GIMPLE_OMP_SECTIONS_SWITCH:
4949 case GIMPLE_OMP_FOR:
4950 /* The edges from OMP constructs can be simply redirected. */
4951 break;
4952
4953 case GIMPLE_EH_DISPATCH:
4954 if (!(e->flags & EDGE_FALLTHRU))
4955 redirect_eh_dispatch_edge (stmt, e, dest);
4956 break;
4957
4958 default:
4959 /* Otherwise it must be a fallthru edge, and we don't need to
4960 do anything besides redirecting it. */
4961 gcc_assert (e->flags & EDGE_FALLTHRU);
4962 break;
4963 }
4964
4965 /* Update/insert PHI nodes as necessary. */
4966
4967 /* Now update the edges in the CFG. */
4968 e = ssa_redirect_edge (e, dest);
4969
4970 return e;
4971 }
4972
4973 /* Returns true if it is possible to remove edge E by redirecting
4974 it to the destination of the other edge from E->src. */
4975
4976 static bool
4977 gimple_can_remove_branch_p (const_edge e)
4978 {
4979 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4980 return false;
4981
4982 return true;
4983 }
4984
4985 /* Simple wrapper, as we can always redirect fallthru edges. */
4986
4987 static basic_block
4988 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4989 {
4990 e = gimple_redirect_edge_and_branch (e, dest);
4991 gcc_assert (e);
4992
4993 return NULL;
4994 }
4995
4996
4997 /* Splits basic block BB after statement STMT (but at least after the
4998 labels). If STMT is NULL, BB is split just after the labels. */
4999
5000 static basic_block
5001 gimple_split_block (basic_block bb, void *stmt)
5002 {
5003 gimple_stmt_iterator gsi;
5004 gimple_stmt_iterator gsi_tgt;
5005 gimple act;
5006 gimple_seq list;
5007 basic_block new_bb;
5008 edge e;
5009 edge_iterator ei;
5010
5011 new_bb = create_empty_bb (bb);
5012
5013 /* Redirect the outgoing edges. */
5014 new_bb->succs = bb->succs;
5015 bb->succs = NULL;
5016 FOR_EACH_EDGE (e, ei, new_bb->succs)
5017 e->src = new_bb;
5018
5019 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5020 stmt = NULL;
5021
5022 /* Move everything from GSI to the new basic block. */
5023 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5024 {
5025 act = gsi_stmt (gsi);
5026 if (gimple_code (act) == GIMPLE_LABEL)
5027 continue;
5028
5029 if (!stmt)
5030 break;
5031
5032 if (stmt == act)
5033 {
5034 gsi_next (&gsi);
5035 break;
5036 }
5037 }
5038
5039 if (gsi_end_p (gsi))
5040 return new_bb;
5041
5042 /* Split the statement list - avoid re-creating new containers as this
5043 brings ugly quadratic memory consumption in the inliner.
5044 (We are still quadratic since we need to update stmt BB pointers,
5045 sadly.) */
5046 list = gsi_split_seq_before (&gsi);
5047 set_bb_seq (new_bb, list);
5048 for (gsi_tgt = gsi_start (list);
5049 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5050 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5051
5052 return new_bb;
5053 }
5054
5055
5056 /* Moves basic block BB after block AFTER. */
5057
5058 static bool
5059 gimple_move_block_after (basic_block bb, basic_block after)
5060 {
5061 if (bb->prev_bb == after)
5062 return true;
5063
5064 unlink_block (bb);
5065 link_block (bb, after);
5066
5067 return true;
5068 }
5069
5070
5071 /* Return true if basic_block can be duplicated. */
5072
5073 static bool
5074 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5075 {
5076 return true;
5077 }
5078
5079 /* Create a duplicate of the basic block BB. NOTE: This does not
5080 preserve SSA form. */
5081
5082 static basic_block
5083 gimple_duplicate_bb (basic_block bb)
5084 {
5085 basic_block new_bb;
5086 gimple_stmt_iterator gsi, gsi_tgt;
5087 gimple_seq phis = phi_nodes (bb);
5088 gimple phi, stmt, copy;
5089
5090 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5091
5092 /* Copy the PHI nodes. We ignore PHI node arguments here because
5093 the incoming edges have not been setup yet. */
5094 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5095 {
5096 phi = gsi_stmt (gsi);
5097 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5098 create_new_def_for (gimple_phi_result (copy), copy,
5099 gimple_phi_result_ptr (copy));
5100 }
5101
5102 gsi_tgt = gsi_start_bb (new_bb);
5103 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5104 {
5105 def_operand_p def_p;
5106 ssa_op_iter op_iter;
5107 tree lhs;
5108
5109 stmt = gsi_stmt (gsi);
5110 if (gimple_code (stmt) == GIMPLE_LABEL)
5111 continue;
5112
5113 /* Create a new copy of STMT and duplicate STMT's virtual
5114 operands. */
5115 copy = gimple_copy (stmt);
5116 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5117
5118 maybe_duplicate_eh_stmt (copy, stmt);
5119 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5120
5121 /* When copying around a stmt writing into a local non-user
5122 aggregate, make sure it won't share stack slot with other
5123 vars. */
5124 lhs = gimple_get_lhs (stmt);
5125 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5126 {
5127 tree base = get_base_address (lhs);
5128 if (base
5129 && (TREE_CODE (base) == VAR_DECL
5130 || TREE_CODE (base) == RESULT_DECL)
5131 && DECL_IGNORED_P (base)
5132 && !TREE_STATIC (base)
5133 && !DECL_EXTERNAL (base)
5134 && (TREE_CODE (base) != VAR_DECL
5135 || !DECL_HAS_VALUE_EXPR_P (base)))
5136 DECL_NONSHAREABLE (base) = 1;
5137 }
5138
5139 /* Create new names for all the definitions created by COPY and
5140 add replacement mappings for each new name. */
5141 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5142 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5143 }
5144
5145 return new_bb;
5146 }
5147
5148 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5149
5150 static void
5151 add_phi_args_after_copy_edge (edge e_copy)
5152 {
5153 basic_block bb, bb_copy = e_copy->src, dest;
5154 edge e;
5155 edge_iterator ei;
5156 gimple phi, phi_copy;
5157 tree def;
5158 gimple_stmt_iterator psi, psi_copy;
5159
5160 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5161 return;
5162
5163 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5164
5165 if (e_copy->dest->flags & BB_DUPLICATED)
5166 dest = get_bb_original (e_copy->dest);
5167 else
5168 dest = e_copy->dest;
5169
5170 e = find_edge (bb, dest);
5171 if (!e)
5172 {
5173 /* During loop unrolling the target of the latch edge is copied.
5174 In this case we are not looking for edge to dest, but to
5175 duplicated block whose original was dest. */
5176 FOR_EACH_EDGE (e, ei, bb->succs)
5177 {
5178 if ((e->dest->flags & BB_DUPLICATED)
5179 && get_bb_original (e->dest) == dest)
5180 break;
5181 }
5182
5183 gcc_assert (e != NULL);
5184 }
5185
5186 for (psi = gsi_start_phis (e->dest),
5187 psi_copy = gsi_start_phis (e_copy->dest);
5188 !gsi_end_p (psi);
5189 gsi_next (&psi), gsi_next (&psi_copy))
5190 {
5191 phi = gsi_stmt (psi);
5192 phi_copy = gsi_stmt (psi_copy);
5193 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5194 add_phi_arg (phi_copy, def, e_copy,
5195 gimple_phi_arg_location_from_edge (phi, e));
5196 }
5197 }
5198
5199
5200 /* Basic block BB_COPY was created by code duplication. Add phi node
5201 arguments for edges going out of BB_COPY. The blocks that were
5202 duplicated have BB_DUPLICATED set. */
5203
5204 void
5205 add_phi_args_after_copy_bb (basic_block bb_copy)
5206 {
5207 edge e_copy;
5208 edge_iterator ei;
5209
5210 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5211 {
5212 add_phi_args_after_copy_edge (e_copy);
5213 }
5214 }
5215
5216 /* Blocks in REGION_COPY array of length N_REGION were created by
5217 duplication of basic blocks. Add phi node arguments for edges
5218 going from these blocks. If E_COPY is not NULL, also add
5219 phi node arguments for its destination.*/
5220
5221 void
5222 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5223 edge e_copy)
5224 {
5225 unsigned i;
5226
5227 for (i = 0; i < n_region; i++)
5228 region_copy[i]->flags |= BB_DUPLICATED;
5229
5230 for (i = 0; i < n_region; i++)
5231 add_phi_args_after_copy_bb (region_copy[i]);
5232 if (e_copy)
5233 add_phi_args_after_copy_edge (e_copy);
5234
5235 for (i = 0; i < n_region; i++)
5236 region_copy[i]->flags &= ~BB_DUPLICATED;
5237 }
5238
5239 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5240 important exit edge EXIT. By important we mean that no SSA name defined
5241 inside region is live over the other exit edges of the region. All entry
5242 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5243 to the duplicate of the region. SSA form, dominance and loop information
5244 is updated. The new basic blocks are stored to REGION_COPY in the same
5245 order as they had in REGION, provided that REGION_COPY is not NULL.
5246 The function returns false if it is unable to copy the region,
5247 true otherwise. */
5248
5249 bool
5250 gimple_duplicate_sese_region (edge entry, edge exit,
5251 basic_block *region, unsigned n_region,
5252 basic_block *region_copy)
5253 {
5254 unsigned i;
5255 bool free_region_copy = false, copying_header = false;
5256 struct loop *loop = entry->dest->loop_father;
5257 edge exit_copy;
5258 VEC (basic_block, heap) *doms;
5259 edge redirected;
5260 int total_freq = 0, entry_freq = 0;
5261 gcov_type total_count = 0, entry_count = 0;
5262
5263 if (!can_copy_bbs_p (region, n_region))
5264 return false;
5265
5266 /* Some sanity checking. Note that we do not check for all possible
5267 missuses of the functions. I.e. if you ask to copy something weird,
5268 it will work, but the state of structures probably will not be
5269 correct. */
5270 for (i = 0; i < n_region; i++)
5271 {
5272 /* We do not handle subloops, i.e. all the blocks must belong to the
5273 same loop. */
5274 if (region[i]->loop_father != loop)
5275 return false;
5276
5277 if (region[i] != entry->dest
5278 && region[i] == loop->header)
5279 return false;
5280 }
5281
5282 set_loop_copy (loop, loop);
5283
5284 /* In case the function is used for loop header copying (which is the primary
5285 use), ensure that EXIT and its copy will be new latch and entry edges. */
5286 if (loop->header == entry->dest)
5287 {
5288 copying_header = true;
5289 set_loop_copy (loop, loop_outer (loop));
5290
5291 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5292 return false;
5293
5294 for (i = 0; i < n_region; i++)
5295 if (region[i] != exit->src
5296 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5297 return false;
5298 }
5299
5300 if (!region_copy)
5301 {
5302 region_copy = XNEWVEC (basic_block, n_region);
5303 free_region_copy = true;
5304 }
5305
5306 gcc_assert (!need_ssa_update_p (cfun));
5307
5308 /* Record blocks outside the region that are dominated by something
5309 inside. */
5310 doms = NULL;
5311 initialize_original_copy_tables ();
5312
5313 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5314
5315 if (entry->dest->count)
5316 {
5317 total_count = entry->dest->count;
5318 entry_count = entry->count;
5319 /* Fix up corner cases, to avoid division by zero or creation of negative
5320 frequencies. */
5321 if (entry_count > total_count)
5322 entry_count = total_count;
5323 }
5324 else
5325 {
5326 total_freq = entry->dest->frequency;
5327 entry_freq = EDGE_FREQUENCY (entry);
5328 /* Fix up corner cases, to avoid division by zero or creation of negative
5329 frequencies. */
5330 if (total_freq == 0)
5331 total_freq = 1;
5332 else if (entry_freq > total_freq)
5333 entry_freq = total_freq;
5334 }
5335
5336 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5337 split_edge_bb_loc (entry));
5338 if (total_count)
5339 {
5340 scale_bbs_frequencies_gcov_type (region, n_region,
5341 total_count - entry_count,
5342 total_count);
5343 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5344 total_count);
5345 }
5346 else
5347 {
5348 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5349 total_freq);
5350 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5351 }
5352
5353 if (copying_header)
5354 {
5355 loop->header = exit->dest;
5356 loop->latch = exit->src;
5357 }
5358
5359 /* Redirect the entry and add the phi node arguments. */
5360 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5361 gcc_assert (redirected != NULL);
5362 flush_pending_stmts (entry);
5363
5364 /* Concerning updating of dominators: We must recount dominators
5365 for entry block and its copy. Anything that is outside of the
5366 region, but was dominated by something inside needs recounting as
5367 well. */
5368 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5369 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5370 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5371 VEC_free (basic_block, heap, doms);
5372
5373 /* Add the other PHI node arguments. */
5374 add_phi_args_after_copy (region_copy, n_region, NULL);
5375
5376 /* Update the SSA web. */
5377 update_ssa (TODO_update_ssa);
5378
5379 if (free_region_copy)
5380 free (region_copy);
5381
5382 free_original_copy_tables ();
5383 return true;
5384 }
5385
5386 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5387 are stored to REGION_COPY in the same order in that they appear
5388 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5389 the region, EXIT an exit from it. The condition guarding EXIT
5390 is moved to ENTRY. Returns true if duplication succeeds, false
5391 otherwise.
5392
5393 For example,
5394
5395 some_code;
5396 if (cond)
5397 A;
5398 else
5399 B;
5400
5401 is transformed to
5402
5403 if (cond)
5404 {
5405 some_code;
5406 A;
5407 }
5408 else
5409 {
5410 some_code;
5411 B;
5412 }
5413 */
5414
5415 bool
5416 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5417 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5418 basic_block *region_copy ATTRIBUTE_UNUSED)
5419 {
5420 unsigned i;
5421 bool free_region_copy = false;
5422 struct loop *loop = exit->dest->loop_father;
5423 struct loop *orig_loop = entry->dest->loop_father;
5424 basic_block switch_bb, entry_bb, nentry_bb;
5425 VEC (basic_block, heap) *doms;
5426 int total_freq = 0, exit_freq = 0;
5427 gcov_type total_count = 0, exit_count = 0;
5428 edge exits[2], nexits[2], e;
5429 gimple_stmt_iterator gsi;
5430 gimple cond_stmt;
5431 edge sorig, snew;
5432 basic_block exit_bb;
5433 gimple_stmt_iterator psi;
5434 gimple phi;
5435 tree def;
5436
5437 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5438 exits[0] = exit;
5439 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5440
5441 if (!can_copy_bbs_p (region, n_region))
5442 return false;
5443
5444 initialize_original_copy_tables ();
5445 set_loop_copy (orig_loop, loop);
5446 duplicate_subloops (orig_loop, loop);
5447
5448 if (!region_copy)
5449 {
5450 region_copy = XNEWVEC (basic_block, n_region);
5451 free_region_copy = true;
5452 }
5453
5454 gcc_assert (!need_ssa_update_p (cfun));
5455
5456 /* Record blocks outside the region that are dominated by something
5457 inside. */
5458 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5459
5460 if (exit->src->count)
5461 {
5462 total_count = exit->src->count;
5463 exit_count = exit->count;
5464 /* Fix up corner cases, to avoid division by zero or creation of negative
5465 frequencies. */
5466 if (exit_count > total_count)
5467 exit_count = total_count;
5468 }
5469 else
5470 {
5471 total_freq = exit->src->frequency;
5472 exit_freq = EDGE_FREQUENCY (exit);
5473 /* Fix up corner cases, to avoid division by zero or creation of negative
5474 frequencies. */
5475 if (total_freq == 0)
5476 total_freq = 1;
5477 if (exit_freq > total_freq)
5478 exit_freq = total_freq;
5479 }
5480
5481 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5482 split_edge_bb_loc (exit));
5483 if (total_count)
5484 {
5485 scale_bbs_frequencies_gcov_type (region, n_region,
5486 total_count - exit_count,
5487 total_count);
5488 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5489 total_count);
5490 }
5491 else
5492 {
5493 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5494 total_freq);
5495 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5496 }
5497
5498 /* Create the switch block, and put the exit condition to it. */
5499 entry_bb = entry->dest;
5500 nentry_bb = get_bb_copy (entry_bb);
5501 if (!last_stmt (entry->src)
5502 || !stmt_ends_bb_p (last_stmt (entry->src)))
5503 switch_bb = entry->src;
5504 else
5505 switch_bb = split_edge (entry);
5506 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5507
5508 gsi = gsi_last_bb (switch_bb);
5509 cond_stmt = last_stmt (exit->src);
5510 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5511 cond_stmt = gimple_copy (cond_stmt);
5512
5513 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5514
5515 sorig = single_succ_edge (switch_bb);
5516 sorig->flags = exits[1]->flags;
5517 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5518
5519 /* Register the new edge from SWITCH_BB in loop exit lists. */
5520 rescan_loop_exit (snew, true, false);
5521
5522 /* Add the PHI node arguments. */
5523 add_phi_args_after_copy (region_copy, n_region, snew);
5524
5525 /* Get rid of now superfluous conditions and associated edges (and phi node
5526 arguments). */
5527 exit_bb = exit->dest;
5528
5529 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5530 PENDING_STMT (e) = NULL;
5531
5532 /* The latch of ORIG_LOOP was copied, and so was the backedge
5533 to the original header. We redirect this backedge to EXIT_BB. */
5534 for (i = 0; i < n_region; i++)
5535 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5536 {
5537 gcc_assert (single_succ_edge (region_copy[i]));
5538 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5539 PENDING_STMT (e) = NULL;
5540 for (psi = gsi_start_phis (exit_bb);
5541 !gsi_end_p (psi);
5542 gsi_next (&psi))
5543 {
5544 phi = gsi_stmt (psi);
5545 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5546 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5547 }
5548 }
5549 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5550 PENDING_STMT (e) = NULL;
5551
5552 /* Anything that is outside of the region, but was dominated by something
5553 inside needs to update dominance info. */
5554 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5555 VEC_free (basic_block, heap, doms);
5556 /* Update the SSA web. */
5557 update_ssa (TODO_update_ssa);
5558
5559 if (free_region_copy)
5560 free (region_copy);
5561
5562 free_original_copy_tables ();
5563 return true;
5564 }
5565
5566 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5567 adding blocks when the dominator traversal reaches EXIT. This
5568 function silently assumes that ENTRY strictly dominates EXIT. */
5569
5570 void
5571 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5572 VEC(basic_block,heap) **bbs_p)
5573 {
5574 basic_block son;
5575
5576 for (son = first_dom_son (CDI_DOMINATORS, entry);
5577 son;
5578 son = next_dom_son (CDI_DOMINATORS, son))
5579 {
5580 VEC_safe_push (basic_block, heap, *bbs_p, son);
5581 if (son != exit)
5582 gather_blocks_in_sese_region (son, exit, bbs_p);
5583 }
5584 }
5585
5586 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5587 The duplicates are recorded in VARS_MAP. */
5588
5589 static void
5590 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5591 tree to_context)
5592 {
5593 tree t = *tp, new_t;
5594 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5595 void **loc;
5596
5597 if (DECL_CONTEXT (t) == to_context)
5598 return;
5599
5600 loc = pointer_map_contains (vars_map, t);
5601
5602 if (!loc)
5603 {
5604 loc = pointer_map_insert (vars_map, t);
5605
5606 if (SSA_VAR_P (t))
5607 {
5608 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5609 add_local_decl (f, new_t);
5610 }
5611 else
5612 {
5613 gcc_assert (TREE_CODE (t) == CONST_DECL);
5614 new_t = copy_node (t);
5615 }
5616 DECL_CONTEXT (new_t) = to_context;
5617
5618 *loc = new_t;
5619 }
5620 else
5621 new_t = (tree) *loc;
5622
5623 *tp = new_t;
5624 }
5625
5626
5627 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5628 VARS_MAP maps old ssa names and var_decls to the new ones. */
5629
5630 static tree
5631 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5632 tree to_context)
5633 {
5634 void **loc;
5635 tree new_name, decl = SSA_NAME_VAR (name);
5636
5637 gcc_assert (is_gimple_reg (name));
5638
5639 loc = pointer_map_contains (vars_map, name);
5640
5641 if (!loc)
5642 {
5643 replace_by_duplicate_decl (&decl, vars_map, to_context);
5644
5645 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5646 if (gimple_in_ssa_p (cfun))
5647 add_referenced_var (decl);
5648
5649 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5650 if (SSA_NAME_IS_DEFAULT_DEF (name))
5651 set_default_def (decl, new_name);
5652 pop_cfun ();
5653
5654 loc = pointer_map_insert (vars_map, name);
5655 *loc = new_name;
5656 }
5657 else
5658 new_name = (tree) *loc;
5659
5660 return new_name;
5661 }
5662
5663 struct move_stmt_d
5664 {
5665 tree orig_block;
5666 tree new_block;
5667 tree from_context;
5668 tree to_context;
5669 struct pointer_map_t *vars_map;
5670 htab_t new_label_map;
5671 struct pointer_map_t *eh_map;
5672 bool remap_decls_p;
5673 };
5674
5675 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5676 contained in *TP if it has been ORIG_BLOCK previously and change the
5677 DECL_CONTEXT of every local variable referenced in *TP. */
5678
5679 static tree
5680 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5681 {
5682 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5683 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5684 tree t = *tp;
5685
5686 if (EXPR_P (t))
5687 /* We should never have TREE_BLOCK set on non-statements. */
5688 gcc_assert (!TREE_BLOCK (t));
5689
5690 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5691 {
5692 if (TREE_CODE (t) == SSA_NAME)
5693 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5694 else if (TREE_CODE (t) == LABEL_DECL)
5695 {
5696 if (p->new_label_map)
5697 {
5698 struct tree_map in, *out;
5699 in.base.from = t;
5700 out = (struct tree_map *)
5701 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5702 if (out)
5703 *tp = t = out->to;
5704 }
5705
5706 DECL_CONTEXT (t) = p->to_context;
5707 }
5708 else if (p->remap_decls_p)
5709 {
5710 /* Replace T with its duplicate. T should no longer appear in the
5711 parent function, so this looks wasteful; however, it may appear
5712 in referenced_vars, and more importantly, as virtual operands of
5713 statements, and in alias lists of other variables. It would be
5714 quite difficult to expunge it from all those places. ??? It might
5715 suffice to do this for addressable variables. */
5716 if ((TREE_CODE (t) == VAR_DECL
5717 && !is_global_var (t))
5718 || TREE_CODE (t) == CONST_DECL)
5719 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5720
5721 if (SSA_VAR_P (t)
5722 && gimple_in_ssa_p (cfun))
5723 {
5724 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5725 add_referenced_var (*tp);
5726 pop_cfun ();
5727 }
5728 }
5729 *walk_subtrees = 0;
5730 }
5731 else if (TYPE_P (t))
5732 *walk_subtrees = 0;
5733
5734 return NULL_TREE;
5735 }
5736
5737 /* Helper for move_stmt_r. Given an EH region number for the source
5738 function, map that to the duplicate EH regio number in the dest. */
5739
5740 static int
5741 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5742 {
5743 eh_region old_r, new_r;
5744 void **slot;
5745
5746 old_r = get_eh_region_from_number (old_nr);
5747 slot = pointer_map_contains (p->eh_map, old_r);
5748 new_r = (eh_region) *slot;
5749
5750 return new_r->index;
5751 }
5752
5753 /* Similar, but operate on INTEGER_CSTs. */
5754
5755 static tree
5756 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5757 {
5758 int old_nr, new_nr;
5759
5760 old_nr = tree_low_cst (old_t_nr, 0);
5761 new_nr = move_stmt_eh_region_nr (old_nr, p);
5762
5763 return build_int_cst (integer_type_node, new_nr);
5764 }
5765
5766 /* Like move_stmt_op, but for gimple statements.
5767
5768 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5769 contained in the current statement in *GSI_P and change the
5770 DECL_CONTEXT of every local variable referenced in the current
5771 statement. */
5772
5773 static tree
5774 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5775 struct walk_stmt_info *wi)
5776 {
5777 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5778 gimple stmt = gsi_stmt (*gsi_p);
5779 tree block = gimple_block (stmt);
5780
5781 if (p->orig_block == NULL_TREE
5782 || block == p->orig_block
5783 || block == NULL_TREE)
5784 gimple_set_block (stmt, p->new_block);
5785 #ifdef ENABLE_CHECKING
5786 else if (block != p->new_block)
5787 {
5788 while (block && block != p->orig_block)
5789 block = BLOCK_SUPERCONTEXT (block);
5790 gcc_assert (block);
5791 }
5792 #endif
5793
5794 switch (gimple_code (stmt))
5795 {
5796 case GIMPLE_CALL:
5797 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5798 {
5799 tree r, fndecl = gimple_call_fndecl (stmt);
5800 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5801 switch (DECL_FUNCTION_CODE (fndecl))
5802 {
5803 case BUILT_IN_EH_COPY_VALUES:
5804 r = gimple_call_arg (stmt, 1);
5805 r = move_stmt_eh_region_tree_nr (r, p);
5806 gimple_call_set_arg (stmt, 1, r);
5807 /* FALLTHRU */
5808
5809 case BUILT_IN_EH_POINTER:
5810 case BUILT_IN_EH_FILTER:
5811 r = gimple_call_arg (stmt, 0);
5812 r = move_stmt_eh_region_tree_nr (r, p);
5813 gimple_call_set_arg (stmt, 0, r);
5814 break;
5815
5816 default:
5817 break;
5818 }
5819 }
5820 break;
5821
5822 case GIMPLE_RESX:
5823 {
5824 int r = gimple_resx_region (stmt);
5825 r = move_stmt_eh_region_nr (r, p);
5826 gimple_resx_set_region (stmt, r);
5827 }
5828 break;
5829
5830 case GIMPLE_EH_DISPATCH:
5831 {
5832 int r = gimple_eh_dispatch_region (stmt);
5833 r = move_stmt_eh_region_nr (r, p);
5834 gimple_eh_dispatch_set_region (stmt, r);
5835 }
5836 break;
5837
5838 case GIMPLE_OMP_RETURN:
5839 case GIMPLE_OMP_CONTINUE:
5840 break;
5841 default:
5842 if (is_gimple_omp (stmt))
5843 {
5844 /* Do not remap variables inside OMP directives. Variables
5845 referenced in clauses and directive header belong to the
5846 parent function and should not be moved into the child
5847 function. */
5848 bool save_remap_decls_p = p->remap_decls_p;
5849 p->remap_decls_p = false;
5850 *handled_ops_p = true;
5851
5852 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5853 move_stmt_op, wi);
5854
5855 p->remap_decls_p = save_remap_decls_p;
5856 }
5857 break;
5858 }
5859
5860 return NULL_TREE;
5861 }
5862
5863 /* Move basic block BB from function CFUN to function DEST_FN. The
5864 block is moved out of the original linked list and placed after
5865 block AFTER in the new list. Also, the block is removed from the
5866 original array of blocks and placed in DEST_FN's array of blocks.
5867 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5868 updated to reflect the moved edges.
5869
5870 The local variables are remapped to new instances, VARS_MAP is used
5871 to record the mapping. */
5872
5873 static void
5874 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5875 basic_block after, bool update_edge_count_p,
5876 struct move_stmt_d *d)
5877 {
5878 struct control_flow_graph *cfg;
5879 edge_iterator ei;
5880 edge e;
5881 gimple_stmt_iterator si;
5882 unsigned old_len, new_len;
5883
5884 /* Remove BB from dominance structures. */
5885 delete_from_dominance_info (CDI_DOMINATORS, bb);
5886 if (current_loops)
5887 remove_bb_from_loops (bb);
5888
5889 /* Link BB to the new linked list. */
5890 move_block_after (bb, after);
5891
5892 /* Update the edge count in the corresponding flowgraphs. */
5893 if (update_edge_count_p)
5894 FOR_EACH_EDGE (e, ei, bb->succs)
5895 {
5896 cfun->cfg->x_n_edges--;
5897 dest_cfun->cfg->x_n_edges++;
5898 }
5899
5900 /* Remove BB from the original basic block array. */
5901 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5902 cfun->cfg->x_n_basic_blocks--;
5903
5904 /* Grow DEST_CFUN's basic block array if needed. */
5905 cfg = dest_cfun->cfg;
5906 cfg->x_n_basic_blocks++;
5907 if (bb->index >= cfg->x_last_basic_block)
5908 cfg->x_last_basic_block = bb->index + 1;
5909
5910 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5911 if ((unsigned) cfg->x_last_basic_block >= old_len)
5912 {
5913 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5914 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5915 new_len);
5916 }
5917
5918 VEC_replace (basic_block, cfg->x_basic_block_info,
5919 bb->index, bb);
5920
5921 /* Remap the variables in phi nodes. */
5922 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5923 {
5924 gimple phi = gsi_stmt (si);
5925 use_operand_p use;
5926 tree op = PHI_RESULT (phi);
5927 ssa_op_iter oi;
5928
5929 if (!is_gimple_reg (op))
5930 {
5931 /* Remove the phi nodes for virtual operands (alias analysis will be
5932 run for the new function, anyway). */
5933 remove_phi_node (&si, true);
5934 continue;
5935 }
5936
5937 SET_PHI_RESULT (phi,
5938 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5939 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5940 {
5941 op = USE_FROM_PTR (use);
5942 if (TREE_CODE (op) == SSA_NAME)
5943 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5944 }
5945
5946 gsi_next (&si);
5947 }
5948
5949 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5950 {
5951 gimple stmt = gsi_stmt (si);
5952 struct walk_stmt_info wi;
5953
5954 memset (&wi, 0, sizeof (wi));
5955 wi.info = d;
5956 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5957
5958 if (gimple_code (stmt) == GIMPLE_LABEL)
5959 {
5960 tree label = gimple_label_label (stmt);
5961 int uid = LABEL_DECL_UID (label);
5962
5963 gcc_assert (uid > -1);
5964
5965 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5966 if (old_len <= (unsigned) uid)
5967 {
5968 new_len = 3 * uid / 2 + 1;
5969 VEC_safe_grow_cleared (basic_block, gc,
5970 cfg->x_label_to_block_map, new_len);
5971 }
5972
5973 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5974 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5975
5976 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5977
5978 if (uid >= dest_cfun->cfg->last_label_uid)
5979 dest_cfun->cfg->last_label_uid = uid + 1;
5980 }
5981
5982 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5983 remove_stmt_from_eh_lp_fn (cfun, stmt);
5984
5985 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5986 gimple_remove_stmt_histograms (cfun, stmt);
5987
5988 /* We cannot leave any operands allocated from the operand caches of
5989 the current function. */
5990 free_stmt_operands (stmt);
5991 push_cfun (dest_cfun);
5992 update_stmt (stmt);
5993 pop_cfun ();
5994 }
5995
5996 FOR_EACH_EDGE (e, ei, bb->succs)
5997 if (e->goto_locus)
5998 {
5999 tree block = e->goto_block;
6000 if (d->orig_block == NULL_TREE
6001 || block == d->orig_block)
6002 e->goto_block = d->new_block;
6003 #ifdef ENABLE_CHECKING
6004 else if (block != d->new_block)
6005 {
6006 while (block && block != d->orig_block)
6007 block = BLOCK_SUPERCONTEXT (block);
6008 gcc_assert (block);
6009 }
6010 #endif
6011 }
6012 }
6013
6014 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6015 the outermost EH region. Use REGION as the incoming base EH region. */
6016
6017 static eh_region
6018 find_outermost_region_in_block (struct function *src_cfun,
6019 basic_block bb, eh_region region)
6020 {
6021 gimple_stmt_iterator si;
6022
6023 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6024 {
6025 gimple stmt = gsi_stmt (si);
6026 eh_region stmt_region;
6027 int lp_nr;
6028
6029 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6030 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6031 if (stmt_region)
6032 {
6033 if (region == NULL)
6034 region = stmt_region;
6035 else if (stmt_region != region)
6036 {
6037 region = eh_region_outermost (src_cfun, stmt_region, region);
6038 gcc_assert (region != NULL);
6039 }
6040 }
6041 }
6042
6043 return region;
6044 }
6045
6046 static tree
6047 new_label_mapper (tree decl, void *data)
6048 {
6049 htab_t hash = (htab_t) data;
6050 struct tree_map *m;
6051 void **slot;
6052
6053 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6054
6055 m = XNEW (struct tree_map);
6056 m->hash = DECL_UID (decl);
6057 m->base.from = decl;
6058 m->to = create_artificial_label (UNKNOWN_LOCATION);
6059 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6060 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6061 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6062
6063 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6064 gcc_assert (*slot == NULL);
6065
6066 *slot = m;
6067
6068 return m->to;
6069 }
6070
6071 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6072 subblocks. */
6073
6074 static void
6075 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6076 tree to_context)
6077 {
6078 tree *tp, t;
6079
6080 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6081 {
6082 t = *tp;
6083 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6084 continue;
6085 replace_by_duplicate_decl (&t, vars_map, to_context);
6086 if (t != *tp)
6087 {
6088 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6089 {
6090 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6091 DECL_HAS_VALUE_EXPR_P (t) = 1;
6092 }
6093 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6094 *tp = t;
6095 }
6096 }
6097
6098 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6099 replace_block_vars_by_duplicates (block, vars_map, to_context);
6100 }
6101
6102 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6103 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6104 single basic block in the original CFG and the new basic block is
6105 returned. DEST_CFUN must not have a CFG yet.
6106
6107 Note that the region need not be a pure SESE region. Blocks inside
6108 the region may contain calls to abort/exit. The only restriction
6109 is that ENTRY_BB should be the only entry point and it must
6110 dominate EXIT_BB.
6111
6112 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6113 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6114 to the new function.
6115
6116 All local variables referenced in the region are assumed to be in
6117 the corresponding BLOCK_VARS and unexpanded variable lists
6118 associated with DEST_CFUN. */
6119
6120 basic_block
6121 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6122 basic_block exit_bb, tree orig_block)
6123 {
6124 VEC(basic_block,heap) *bbs, *dom_bbs;
6125 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6126 basic_block after, bb, *entry_pred, *exit_succ, abb;
6127 struct function *saved_cfun = cfun;
6128 int *entry_flag, *exit_flag;
6129 unsigned *entry_prob, *exit_prob;
6130 unsigned i, num_entry_edges, num_exit_edges;
6131 edge e;
6132 edge_iterator ei;
6133 htab_t new_label_map;
6134 struct pointer_map_t *vars_map, *eh_map;
6135 struct loop *loop = entry_bb->loop_father;
6136 struct move_stmt_d d;
6137
6138 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6139 region. */
6140 gcc_assert (entry_bb != exit_bb
6141 && (!exit_bb
6142 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6143
6144 /* Collect all the blocks in the region. Manually add ENTRY_BB
6145 because it won't be added by dfs_enumerate_from. */
6146 bbs = NULL;
6147 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6148 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6149
6150 /* The blocks that used to be dominated by something in BBS will now be
6151 dominated by the new block. */
6152 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6153 VEC_address (basic_block, bbs),
6154 VEC_length (basic_block, bbs));
6155
6156 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6157 the predecessor edges to ENTRY_BB and the successor edges to
6158 EXIT_BB so that we can re-attach them to the new basic block that
6159 will replace the region. */
6160 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6161 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6162 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6163 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6164 i = 0;
6165 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6166 {
6167 entry_prob[i] = e->probability;
6168 entry_flag[i] = e->flags;
6169 entry_pred[i++] = e->src;
6170 remove_edge (e);
6171 }
6172
6173 if (exit_bb)
6174 {
6175 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6176 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6177 sizeof (basic_block));
6178 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6179 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6180 i = 0;
6181 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6182 {
6183 exit_prob[i] = e->probability;
6184 exit_flag[i] = e->flags;
6185 exit_succ[i++] = e->dest;
6186 remove_edge (e);
6187 }
6188 }
6189 else
6190 {
6191 num_exit_edges = 0;
6192 exit_succ = NULL;
6193 exit_flag = NULL;
6194 exit_prob = NULL;
6195 }
6196
6197 /* Switch context to the child function to initialize DEST_FN's CFG. */
6198 gcc_assert (dest_cfun->cfg == NULL);
6199 push_cfun (dest_cfun);
6200
6201 init_empty_tree_cfg ();
6202
6203 /* Initialize EH information for the new function. */
6204 eh_map = NULL;
6205 new_label_map = NULL;
6206 if (saved_cfun->eh)
6207 {
6208 eh_region region = NULL;
6209
6210 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6211 region = find_outermost_region_in_block (saved_cfun, bb, region);
6212
6213 init_eh_for_function ();
6214 if (region != NULL)
6215 {
6216 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6217 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6218 new_label_mapper, new_label_map);
6219 }
6220 }
6221
6222 pop_cfun ();
6223
6224 /* Move blocks from BBS into DEST_CFUN. */
6225 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6226 after = dest_cfun->cfg->x_entry_block_ptr;
6227 vars_map = pointer_map_create ();
6228
6229 memset (&d, 0, sizeof (d));
6230 d.orig_block = orig_block;
6231 d.new_block = DECL_INITIAL (dest_cfun->decl);
6232 d.from_context = cfun->decl;
6233 d.to_context = dest_cfun->decl;
6234 d.vars_map = vars_map;
6235 d.new_label_map = new_label_map;
6236 d.eh_map = eh_map;
6237 d.remap_decls_p = true;
6238
6239 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6240 {
6241 /* No need to update edge counts on the last block. It has
6242 already been updated earlier when we detached the region from
6243 the original CFG. */
6244 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6245 after = bb;
6246 }
6247
6248 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6249 if (orig_block)
6250 {
6251 tree block;
6252 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6253 == NULL_TREE);
6254 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6255 = BLOCK_SUBBLOCKS (orig_block);
6256 for (block = BLOCK_SUBBLOCKS (orig_block);
6257 block; block = BLOCK_CHAIN (block))
6258 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6259 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6260 }
6261
6262 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6263 vars_map, dest_cfun->decl);
6264
6265 if (new_label_map)
6266 htab_delete (new_label_map);
6267 if (eh_map)
6268 pointer_map_destroy (eh_map);
6269 pointer_map_destroy (vars_map);
6270
6271 /* Rewire the entry and exit blocks. The successor to the entry
6272 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6273 the child function. Similarly, the predecessor of DEST_FN's
6274 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6275 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6276 various CFG manipulation function get to the right CFG.
6277
6278 FIXME, this is silly. The CFG ought to become a parameter to
6279 these helpers. */
6280 push_cfun (dest_cfun);
6281 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6282 if (exit_bb)
6283 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6284 pop_cfun ();
6285
6286 /* Back in the original function, the SESE region has disappeared,
6287 create a new basic block in its place. */
6288 bb = create_empty_bb (entry_pred[0]);
6289 if (current_loops)
6290 add_bb_to_loop (bb, loop);
6291 for (i = 0; i < num_entry_edges; i++)
6292 {
6293 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6294 e->probability = entry_prob[i];
6295 }
6296
6297 for (i = 0; i < num_exit_edges; i++)
6298 {
6299 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6300 e->probability = exit_prob[i];
6301 }
6302
6303 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6304 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6305 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6306 VEC_free (basic_block, heap, dom_bbs);
6307
6308 if (exit_bb)
6309 {
6310 free (exit_prob);
6311 free (exit_flag);
6312 free (exit_succ);
6313 }
6314 free (entry_prob);
6315 free (entry_flag);
6316 free (entry_pred);
6317 VEC_free (basic_block, heap, bbs);
6318
6319 return bb;
6320 }
6321
6322
6323 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6324 */
6325
6326 void
6327 dump_function_to_file (tree fn, FILE *file, int flags)
6328 {
6329 tree arg, var;
6330 struct function *dsf;
6331 bool ignore_topmost_bind = false, any_var = false;
6332 basic_block bb;
6333 tree chain;
6334
6335 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6336
6337 arg = DECL_ARGUMENTS (fn);
6338 while (arg)
6339 {
6340 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6341 fprintf (file, " ");
6342 print_generic_expr (file, arg, dump_flags);
6343 if (flags & TDF_VERBOSE)
6344 print_node (file, "", arg, 4);
6345 if (DECL_CHAIN (arg))
6346 fprintf (file, ", ");
6347 arg = DECL_CHAIN (arg);
6348 }
6349 fprintf (file, ")\n");
6350
6351 if (flags & TDF_VERBOSE)
6352 print_node (file, "", fn, 2);
6353
6354 dsf = DECL_STRUCT_FUNCTION (fn);
6355 if (dsf && (flags & TDF_EH))
6356 dump_eh_tree (file, dsf);
6357
6358 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6359 {
6360 dump_node (fn, TDF_SLIM | flags, file);
6361 return;
6362 }
6363
6364 /* Switch CFUN to point to FN. */
6365 push_cfun (DECL_STRUCT_FUNCTION (fn));
6366
6367 /* When GIMPLE is lowered, the variables are no longer available in
6368 BIND_EXPRs, so display them separately. */
6369 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6370 {
6371 unsigned ix;
6372 ignore_topmost_bind = true;
6373
6374 fprintf (file, "{\n");
6375 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6376 {
6377 print_generic_decl (file, var, flags);
6378 if (flags & TDF_VERBOSE)
6379 print_node (file, "", var, 4);
6380 fprintf (file, "\n");
6381
6382 any_var = true;
6383 }
6384 }
6385
6386 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6387 {
6388 /* If the CFG has been built, emit a CFG-based dump. */
6389 check_bb_profile (ENTRY_BLOCK_PTR, file);
6390 if (!ignore_topmost_bind)
6391 fprintf (file, "{\n");
6392
6393 if (any_var && n_basic_blocks)
6394 fprintf (file, "\n");
6395
6396 FOR_EACH_BB (bb)
6397 gimple_dump_bb (bb, file, 2, flags);
6398
6399 fprintf (file, "}\n");
6400 check_bb_profile (EXIT_BLOCK_PTR, file);
6401 }
6402 else if (DECL_SAVED_TREE (fn) == NULL)
6403 {
6404 /* The function is now in GIMPLE form but the CFG has not been
6405 built yet. Emit the single sequence of GIMPLE statements
6406 that make up its body. */
6407 gimple_seq body = gimple_body (fn);
6408
6409 if (gimple_seq_first_stmt (body)
6410 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6411 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6412 print_gimple_seq (file, body, 0, flags);
6413 else
6414 {
6415 if (!ignore_topmost_bind)
6416 fprintf (file, "{\n");
6417
6418 if (any_var)
6419 fprintf (file, "\n");
6420
6421 print_gimple_seq (file, body, 2, flags);
6422 fprintf (file, "}\n");
6423 }
6424 }
6425 else
6426 {
6427 int indent;
6428
6429 /* Make a tree based dump. */
6430 chain = DECL_SAVED_TREE (fn);
6431
6432 if (chain && TREE_CODE (chain) == BIND_EXPR)
6433 {
6434 if (ignore_topmost_bind)
6435 {
6436 chain = BIND_EXPR_BODY (chain);
6437 indent = 2;
6438 }
6439 else
6440 indent = 0;
6441 }
6442 else
6443 {
6444 if (!ignore_topmost_bind)
6445 fprintf (file, "{\n");
6446 indent = 2;
6447 }
6448
6449 if (any_var)
6450 fprintf (file, "\n");
6451
6452 print_generic_stmt_indented (file, chain, flags, indent);
6453 if (ignore_topmost_bind)
6454 fprintf (file, "}\n");
6455 }
6456
6457 if (flags & TDF_ENUMERATE_LOCALS)
6458 dump_enumerated_decls (file, flags);
6459 fprintf (file, "\n\n");
6460
6461 /* Restore CFUN. */
6462 pop_cfun ();
6463 }
6464
6465
6466 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6467
6468 DEBUG_FUNCTION void
6469 debug_function (tree fn, int flags)
6470 {
6471 dump_function_to_file (fn, stderr, flags);
6472 }
6473
6474
6475 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6476
6477 static void
6478 print_pred_bbs (FILE *file, basic_block bb)
6479 {
6480 edge e;
6481 edge_iterator ei;
6482
6483 FOR_EACH_EDGE (e, ei, bb->preds)
6484 fprintf (file, "bb_%d ", e->src->index);
6485 }
6486
6487
6488 /* Print on FILE the indexes for the successors of basic_block BB. */
6489
6490 static void
6491 print_succ_bbs (FILE *file, basic_block bb)
6492 {
6493 edge e;
6494 edge_iterator ei;
6495
6496 FOR_EACH_EDGE (e, ei, bb->succs)
6497 fprintf (file, "bb_%d ", e->dest->index);
6498 }
6499
6500 /* Print to FILE the basic block BB following the VERBOSITY level. */
6501
6502 void
6503 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6504 {
6505 char *s_indent = (char *) alloca ((size_t) indent + 1);
6506 memset ((void *) s_indent, ' ', (size_t) indent);
6507 s_indent[indent] = '\0';
6508
6509 /* Print basic_block's header. */
6510 if (verbosity >= 2)
6511 {
6512 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6513 print_pred_bbs (file, bb);
6514 fprintf (file, "}, succs = {");
6515 print_succ_bbs (file, bb);
6516 fprintf (file, "})\n");
6517 }
6518
6519 /* Print basic_block's body. */
6520 if (verbosity >= 3)
6521 {
6522 fprintf (file, "%s {\n", s_indent);
6523 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6524 fprintf (file, "%s }\n", s_indent);
6525 }
6526 }
6527
6528 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6529
6530 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6531 VERBOSITY level this outputs the contents of the loop, or just its
6532 structure. */
6533
6534 static void
6535 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6536 {
6537 char *s_indent;
6538 basic_block bb;
6539
6540 if (loop == NULL)
6541 return;
6542
6543 s_indent = (char *) alloca ((size_t) indent + 1);
6544 memset ((void *) s_indent, ' ', (size_t) indent);
6545 s_indent[indent] = '\0';
6546
6547 /* Print loop's header. */
6548 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6549 loop->num, loop->header->index, loop->latch->index);
6550 fprintf (file, ", niter = ");
6551 print_generic_expr (file, loop->nb_iterations, 0);
6552
6553 if (loop->any_upper_bound)
6554 {
6555 fprintf (file, ", upper_bound = ");
6556 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6557 }
6558
6559 if (loop->any_estimate)
6560 {
6561 fprintf (file, ", estimate = ");
6562 dump_double_int (file, loop->nb_iterations_estimate, true);
6563 }
6564 fprintf (file, ")\n");
6565
6566 /* Print loop's body. */
6567 if (verbosity >= 1)
6568 {
6569 fprintf (file, "%s{\n", s_indent);
6570 FOR_EACH_BB (bb)
6571 if (bb->loop_father == loop)
6572 print_loops_bb (file, bb, indent, verbosity);
6573
6574 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6575 fprintf (file, "%s}\n", s_indent);
6576 }
6577 }
6578
6579 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6580 spaces. Following VERBOSITY level this outputs the contents of the
6581 loop, or just its structure. */
6582
6583 static void
6584 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6585 {
6586 if (loop == NULL)
6587 return;
6588
6589 print_loop (file, loop, indent, verbosity);
6590 print_loop_and_siblings (file, loop->next, indent, verbosity);
6591 }
6592
6593 /* Follow a CFG edge from the entry point of the program, and on entry
6594 of a loop, pretty print the loop structure on FILE. */
6595
6596 void
6597 print_loops (FILE *file, int verbosity)
6598 {
6599 basic_block bb;
6600
6601 bb = ENTRY_BLOCK_PTR;
6602 if (bb && bb->loop_father)
6603 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6604 }
6605
6606
6607 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6608
6609 DEBUG_FUNCTION void
6610 debug_loops (int verbosity)
6611 {
6612 print_loops (stderr, verbosity);
6613 }
6614
6615 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6616
6617 DEBUG_FUNCTION void
6618 debug_loop (struct loop *loop, int verbosity)
6619 {
6620 print_loop (stderr, loop, 0, verbosity);
6621 }
6622
6623 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6624 level. */
6625
6626 DEBUG_FUNCTION void
6627 debug_loop_num (unsigned num, int verbosity)
6628 {
6629 debug_loop (get_loop (num), verbosity);
6630 }
6631
6632 /* Return true if BB ends with a call, possibly followed by some
6633 instructions that must stay with the call. Return false,
6634 otherwise. */
6635
6636 static bool
6637 gimple_block_ends_with_call_p (basic_block bb)
6638 {
6639 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6640 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6641 }
6642
6643
6644 /* Return true if BB ends with a conditional branch. Return false,
6645 otherwise. */
6646
6647 static bool
6648 gimple_block_ends_with_condjump_p (const_basic_block bb)
6649 {
6650 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6651 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6652 }
6653
6654
6655 /* Return true if we need to add fake edge to exit at statement T.
6656 Helper function for gimple_flow_call_edges_add. */
6657
6658 static bool
6659 need_fake_edge_p (gimple t)
6660 {
6661 tree fndecl = NULL_TREE;
6662 int call_flags = 0;
6663
6664 /* NORETURN and LONGJMP calls already have an edge to exit.
6665 CONST and PURE calls do not need one.
6666 We don't currently check for CONST and PURE here, although
6667 it would be a good idea, because those attributes are
6668 figured out from the RTL in mark_constant_function, and
6669 the counter incrementation code from -fprofile-arcs
6670 leads to different results from -fbranch-probabilities. */
6671 if (is_gimple_call (t))
6672 {
6673 fndecl = gimple_call_fndecl (t);
6674 call_flags = gimple_call_flags (t);
6675 }
6676
6677 if (is_gimple_call (t)
6678 && fndecl
6679 && DECL_BUILT_IN (fndecl)
6680 && (call_flags & ECF_NOTHROW)
6681 && !(call_flags & ECF_RETURNS_TWICE)
6682 /* fork() doesn't really return twice, but the effect of
6683 wrapping it in __gcov_fork() which calls __gcov_flush()
6684 and clears the counters before forking has the same
6685 effect as returning twice. Force a fake edge. */
6686 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6687 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6688 return false;
6689
6690 if (is_gimple_call (t)
6691 && !(call_flags & ECF_NORETURN))
6692 return true;
6693
6694 if (gimple_code (t) == GIMPLE_ASM
6695 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6696 return true;
6697
6698 return false;
6699 }
6700
6701
6702 /* Add fake edges to the function exit for any non constant and non
6703 noreturn calls, volatile inline assembly in the bitmap of blocks
6704 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6705 the number of blocks that were split.
6706
6707 The goal is to expose cases in which entering a basic block does
6708 not imply that all subsequent instructions must be executed. */
6709
6710 static int
6711 gimple_flow_call_edges_add (sbitmap blocks)
6712 {
6713 int i;
6714 int blocks_split = 0;
6715 int last_bb = last_basic_block;
6716 bool check_last_block = false;
6717
6718 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6719 return 0;
6720
6721 if (! blocks)
6722 check_last_block = true;
6723 else
6724 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6725
6726 /* In the last basic block, before epilogue generation, there will be
6727 a fallthru edge to EXIT. Special care is required if the last insn
6728 of the last basic block is a call because make_edge folds duplicate
6729 edges, which would result in the fallthru edge also being marked
6730 fake, which would result in the fallthru edge being removed by
6731 remove_fake_edges, which would result in an invalid CFG.
6732
6733 Moreover, we can't elide the outgoing fake edge, since the block
6734 profiler needs to take this into account in order to solve the minimal
6735 spanning tree in the case that the call doesn't return.
6736
6737 Handle this by adding a dummy instruction in a new last basic block. */
6738 if (check_last_block)
6739 {
6740 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6741 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6742 gimple t = NULL;
6743
6744 if (!gsi_end_p (gsi))
6745 t = gsi_stmt (gsi);
6746
6747 if (t && need_fake_edge_p (t))
6748 {
6749 edge e;
6750
6751 e = find_edge (bb, EXIT_BLOCK_PTR);
6752 if (e)
6753 {
6754 gsi_insert_on_edge (e, gimple_build_nop ());
6755 gsi_commit_edge_inserts ();
6756 }
6757 }
6758 }
6759
6760 /* Now add fake edges to the function exit for any non constant
6761 calls since there is no way that we can determine if they will
6762 return or not... */
6763 for (i = 0; i < last_bb; i++)
6764 {
6765 basic_block bb = BASIC_BLOCK (i);
6766 gimple_stmt_iterator gsi;
6767 gimple stmt, last_stmt;
6768
6769 if (!bb)
6770 continue;
6771
6772 if (blocks && !TEST_BIT (blocks, i))
6773 continue;
6774
6775 gsi = gsi_last_nondebug_bb (bb);
6776 if (!gsi_end_p (gsi))
6777 {
6778 last_stmt = gsi_stmt (gsi);
6779 do
6780 {
6781 stmt = gsi_stmt (gsi);
6782 if (need_fake_edge_p (stmt))
6783 {
6784 edge e;
6785
6786 /* The handling above of the final block before the
6787 epilogue should be enough to verify that there is
6788 no edge to the exit block in CFG already.
6789 Calling make_edge in such case would cause us to
6790 mark that edge as fake and remove it later. */
6791 #ifdef ENABLE_CHECKING
6792 if (stmt == last_stmt)
6793 {
6794 e = find_edge (bb, EXIT_BLOCK_PTR);
6795 gcc_assert (e == NULL);
6796 }
6797 #endif
6798
6799 /* Note that the following may create a new basic block
6800 and renumber the existing basic blocks. */
6801 if (stmt != last_stmt)
6802 {
6803 e = split_block (bb, stmt);
6804 if (e)
6805 blocks_split++;
6806 }
6807 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6808 }
6809 gsi_prev (&gsi);
6810 }
6811 while (!gsi_end_p (gsi));
6812 }
6813 }
6814
6815 if (blocks_split)
6816 verify_flow_info ();
6817
6818 return blocks_split;
6819 }
6820
6821 /* Removes edge E and all the blocks dominated by it, and updates dominance
6822 information. The IL in E->src needs to be updated separately.
6823 If dominance info is not available, only the edge E is removed.*/
6824
6825 void
6826 remove_edge_and_dominated_blocks (edge e)
6827 {
6828 VEC (basic_block, heap) *bbs_to_remove = NULL;
6829 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6830 bitmap df, df_idom;
6831 edge f;
6832 edge_iterator ei;
6833 bool none_removed = false;
6834 unsigned i;
6835 basic_block bb, dbb;
6836 bitmap_iterator bi;
6837
6838 if (!dom_info_available_p (CDI_DOMINATORS))
6839 {
6840 remove_edge (e);
6841 return;
6842 }
6843
6844 /* No updating is needed for edges to exit. */
6845 if (e->dest == EXIT_BLOCK_PTR)
6846 {
6847 if (cfgcleanup_altered_bbs)
6848 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6849 remove_edge (e);
6850 return;
6851 }
6852
6853 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6854 that is not dominated by E->dest, then this set is empty. Otherwise,
6855 all the basic blocks dominated by E->dest are removed.
6856
6857 Also, to DF_IDOM we store the immediate dominators of the blocks in
6858 the dominance frontier of E (i.e., of the successors of the
6859 removed blocks, if there are any, and of E->dest otherwise). */
6860 FOR_EACH_EDGE (f, ei, e->dest->preds)
6861 {
6862 if (f == e)
6863 continue;
6864
6865 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6866 {
6867 none_removed = true;
6868 break;
6869 }
6870 }
6871
6872 df = BITMAP_ALLOC (NULL);
6873 df_idom = BITMAP_ALLOC (NULL);
6874
6875 if (none_removed)
6876 bitmap_set_bit (df_idom,
6877 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6878 else
6879 {
6880 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6881 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6882 {
6883 FOR_EACH_EDGE (f, ei, bb->succs)
6884 {
6885 if (f->dest != EXIT_BLOCK_PTR)
6886 bitmap_set_bit (df, f->dest->index);
6887 }
6888 }
6889 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6890 bitmap_clear_bit (df, bb->index);
6891
6892 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6893 {
6894 bb = BASIC_BLOCK (i);
6895 bitmap_set_bit (df_idom,
6896 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6897 }
6898 }
6899
6900 if (cfgcleanup_altered_bbs)
6901 {
6902 /* Record the set of the altered basic blocks. */
6903 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6904 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6905 }
6906
6907 /* Remove E and the cancelled blocks. */
6908 if (none_removed)
6909 remove_edge (e);
6910 else
6911 {
6912 /* Walk backwards so as to get a chance to substitute all
6913 released DEFs into debug stmts. See
6914 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6915 details. */
6916 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6917 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6918 }
6919
6920 /* Update the dominance information. The immediate dominator may change only
6921 for blocks whose immediate dominator belongs to DF_IDOM:
6922
6923 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6924 removal. Let Z the arbitrary block such that idom(Z) = Y and
6925 Z dominates X after the removal. Before removal, there exists a path P
6926 from Y to X that avoids Z. Let F be the last edge on P that is
6927 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6928 dominates W, and because of P, Z does not dominate W), and W belongs to
6929 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6930 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6931 {
6932 bb = BASIC_BLOCK (i);
6933 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6934 dbb;
6935 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6936 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6937 }
6938
6939 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6940
6941 BITMAP_FREE (df);
6942 BITMAP_FREE (df_idom);
6943 VEC_free (basic_block, heap, bbs_to_remove);
6944 VEC_free (basic_block, heap, bbs_to_fix_dom);
6945 }
6946
6947 /* Purge dead EH edges from basic block BB. */
6948
6949 bool
6950 gimple_purge_dead_eh_edges (basic_block bb)
6951 {
6952 bool changed = false;
6953 edge e;
6954 edge_iterator ei;
6955 gimple stmt = last_stmt (bb);
6956
6957 if (stmt && stmt_can_throw_internal (stmt))
6958 return false;
6959
6960 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6961 {
6962 if (e->flags & EDGE_EH)
6963 {
6964 remove_edge_and_dominated_blocks (e);
6965 changed = true;
6966 }
6967 else
6968 ei_next (&ei);
6969 }
6970
6971 return changed;
6972 }
6973
6974 /* Purge dead EH edges from basic block listed in BLOCKS. */
6975
6976 bool
6977 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6978 {
6979 bool changed = false;
6980 unsigned i;
6981 bitmap_iterator bi;
6982
6983 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6984 {
6985 basic_block bb = BASIC_BLOCK (i);
6986
6987 /* Earlier gimple_purge_dead_eh_edges could have removed
6988 this basic block already. */
6989 gcc_assert (bb || changed);
6990 if (bb != NULL)
6991 changed |= gimple_purge_dead_eh_edges (bb);
6992 }
6993
6994 return changed;
6995 }
6996
6997 /* Purge dead abnormal call edges from basic block BB. */
6998
6999 bool
7000 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7001 {
7002 bool changed = false;
7003 edge e;
7004 edge_iterator ei;
7005 gimple stmt = last_stmt (bb);
7006
7007 if (!cfun->has_nonlocal_label)
7008 return false;
7009
7010 if (stmt && stmt_can_make_abnormal_goto (stmt))
7011 return false;
7012
7013 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7014 {
7015 if (e->flags & EDGE_ABNORMAL)
7016 {
7017 remove_edge_and_dominated_blocks (e);
7018 changed = true;
7019 }
7020 else
7021 ei_next (&ei);
7022 }
7023
7024 return changed;
7025 }
7026
7027 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7028
7029 bool
7030 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7031 {
7032 bool changed = false;
7033 unsigned i;
7034 bitmap_iterator bi;
7035
7036 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7037 {
7038 basic_block bb = BASIC_BLOCK (i);
7039
7040 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7041 this basic block already. */
7042 gcc_assert (bb || changed);
7043 if (bb != NULL)
7044 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7045 }
7046
7047 return changed;
7048 }
7049
7050 /* This function is called whenever a new edge is created or
7051 redirected. */
7052
7053 static void
7054 gimple_execute_on_growing_pred (edge e)
7055 {
7056 basic_block bb = e->dest;
7057
7058 if (!gimple_seq_empty_p (phi_nodes (bb)))
7059 reserve_phi_args_for_new_edge (bb);
7060 }
7061
7062 /* This function is called immediately before edge E is removed from
7063 the edge vector E->dest->preds. */
7064
7065 static void
7066 gimple_execute_on_shrinking_pred (edge e)
7067 {
7068 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7069 remove_phi_args (e);
7070 }
7071
7072 /*---------------------------------------------------------------------------
7073 Helper functions for Loop versioning
7074 ---------------------------------------------------------------------------*/
7075
7076 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7077 of 'first'. Both of them are dominated by 'new_head' basic block. When
7078 'new_head' was created by 'second's incoming edge it received phi arguments
7079 on the edge by split_edge(). Later, additional edge 'e' was created to
7080 connect 'new_head' and 'first'. Now this routine adds phi args on this
7081 additional edge 'e' that new_head to second edge received as part of edge
7082 splitting. */
7083
7084 static void
7085 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7086 basic_block new_head, edge e)
7087 {
7088 gimple phi1, phi2;
7089 gimple_stmt_iterator psi1, psi2;
7090 tree def;
7091 edge e2 = find_edge (new_head, second);
7092
7093 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7094 edge, we should always have an edge from NEW_HEAD to SECOND. */
7095 gcc_assert (e2 != NULL);
7096
7097 /* Browse all 'second' basic block phi nodes and add phi args to
7098 edge 'e' for 'first' head. PHI args are always in correct order. */
7099
7100 for (psi2 = gsi_start_phis (second),
7101 psi1 = gsi_start_phis (first);
7102 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7103 gsi_next (&psi2), gsi_next (&psi1))
7104 {
7105 phi1 = gsi_stmt (psi1);
7106 phi2 = gsi_stmt (psi2);
7107 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7108 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7109 }
7110 }
7111
7112
7113 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7114 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7115 the destination of the ELSE part. */
7116
7117 static void
7118 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7119 basic_block second_head ATTRIBUTE_UNUSED,
7120 basic_block cond_bb, void *cond_e)
7121 {
7122 gimple_stmt_iterator gsi;
7123 gimple new_cond_expr;
7124 tree cond_expr = (tree) cond_e;
7125 edge e0;
7126
7127 /* Build new conditional expr */
7128 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7129 NULL_TREE, NULL_TREE);
7130
7131 /* Add new cond in cond_bb. */
7132 gsi = gsi_last_bb (cond_bb);
7133 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7134
7135 /* Adjust edges appropriately to connect new head with first head
7136 as well as second head. */
7137 e0 = single_succ_edge (cond_bb);
7138 e0->flags &= ~EDGE_FALLTHRU;
7139 e0->flags |= EDGE_FALSE_VALUE;
7140 }
7141
7142 struct cfg_hooks gimple_cfg_hooks = {
7143 "gimple",
7144 gimple_verify_flow_info,
7145 gimple_dump_bb, /* dump_bb */
7146 create_bb, /* create_basic_block */
7147 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7148 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7149 gimple_can_remove_branch_p, /* can_remove_branch_p */
7150 remove_bb, /* delete_basic_block */
7151 gimple_split_block, /* split_block */
7152 gimple_move_block_after, /* move_block_after */
7153 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7154 gimple_merge_blocks, /* merge_blocks */
7155 gimple_predict_edge, /* predict_edge */
7156 gimple_predicted_by_p, /* predicted_by_p */
7157 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7158 gimple_duplicate_bb, /* duplicate_block */
7159 gimple_split_edge, /* split_edge */
7160 gimple_make_forwarder_block, /* make_forward_block */
7161 NULL, /* tidy_fallthru_edge */
7162 NULL, /* force_nonfallthru */
7163 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7164 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7165 gimple_flow_call_edges_add, /* flow_call_edges_add */
7166 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7167 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7168 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7169 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7170 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7171 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7172 flush_pending_stmts /* flush_pending_stmts */
7173 };
7174
7175
7176 /* Split all critical edges. */
7177
7178 static unsigned int
7179 split_critical_edges (void)
7180 {
7181 basic_block bb;
7182 edge e;
7183 edge_iterator ei;
7184
7185 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7186 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7187 mappings around the calls to split_edge. */
7188 start_recording_case_labels ();
7189 FOR_ALL_BB (bb)
7190 {
7191 FOR_EACH_EDGE (e, ei, bb->succs)
7192 {
7193 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7194 split_edge (e);
7195 /* PRE inserts statements to edges and expects that
7196 since split_critical_edges was done beforehand, committing edge
7197 insertions will not split more edges. In addition to critical
7198 edges we must split edges that have multiple successors and
7199 end by control flow statements, such as RESX.
7200 Go ahead and split them too. This matches the logic in
7201 gimple_find_edge_insert_loc. */
7202 else if ((!single_pred_p (e->dest)
7203 || !gimple_seq_empty_p (phi_nodes (e->dest))
7204 || e->dest == EXIT_BLOCK_PTR)
7205 && e->src != ENTRY_BLOCK_PTR
7206 && !(e->flags & EDGE_ABNORMAL))
7207 {
7208 gimple_stmt_iterator gsi;
7209
7210 gsi = gsi_last_bb (e->src);
7211 if (!gsi_end_p (gsi)
7212 && stmt_ends_bb_p (gsi_stmt (gsi))
7213 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7214 && !gimple_call_builtin_p (gsi_stmt (gsi),
7215 BUILT_IN_RETURN)))
7216 split_edge (e);
7217 }
7218 }
7219 }
7220 end_recording_case_labels ();
7221 return 0;
7222 }
7223
7224 struct gimple_opt_pass pass_split_crit_edges =
7225 {
7226 {
7227 GIMPLE_PASS,
7228 "crited", /* name */
7229 NULL, /* gate */
7230 split_critical_edges, /* execute */
7231 NULL, /* sub */
7232 NULL, /* next */
7233 0, /* static_pass_number */
7234 TV_TREE_SPLIT_EDGES, /* tv_id */
7235 PROP_cfg, /* properties required */
7236 PROP_no_crit_edges, /* properties_provided */
7237 0, /* properties_destroyed */
7238 0, /* todo_flags_start */
7239 TODO_verify_flow /* todo_flags_finish */
7240 }
7241 };
7242
7243
7244 /* Build a ternary operation and gimplify it. Emit code before GSI.
7245 Return the gimple_val holding the result. */
7246
7247 tree
7248 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7249 tree type, tree a, tree b, tree c)
7250 {
7251 tree ret;
7252 location_t loc = gimple_location (gsi_stmt (*gsi));
7253
7254 ret = fold_build3_loc (loc, code, type, a, b, c);
7255 STRIP_NOPS (ret);
7256
7257 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7258 GSI_SAME_STMT);
7259 }
7260
7261 /* Build a binary operation and gimplify it. Emit code before GSI.
7262 Return the gimple_val holding the result. */
7263
7264 tree
7265 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7266 tree type, tree a, tree b)
7267 {
7268 tree ret;
7269
7270 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7271 STRIP_NOPS (ret);
7272
7273 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7274 GSI_SAME_STMT);
7275 }
7276
7277 /* Build a unary operation and gimplify it. Emit code before GSI.
7278 Return the gimple_val holding the result. */
7279
7280 tree
7281 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7282 tree a)
7283 {
7284 tree ret;
7285
7286 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7287 STRIP_NOPS (ret);
7288
7289 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7290 GSI_SAME_STMT);
7291 }
7292
7293
7294 \f
7295 /* Emit return warnings. */
7296
7297 static unsigned int
7298 execute_warn_function_return (void)
7299 {
7300 source_location location;
7301 gimple last;
7302 edge e;
7303 edge_iterator ei;
7304
7305 /* If we have a path to EXIT, then we do return. */
7306 if (TREE_THIS_VOLATILE (cfun->decl)
7307 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7308 {
7309 location = UNKNOWN_LOCATION;
7310 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7311 {
7312 last = last_stmt (e->src);
7313 if ((gimple_code (last) == GIMPLE_RETURN
7314 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7315 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7316 break;
7317 }
7318 if (location == UNKNOWN_LOCATION)
7319 location = cfun->function_end_locus;
7320 warning_at (location, 0, "%<noreturn%> function does return");
7321 }
7322
7323 /* If we see "return;" in some basic block, then we do reach the end
7324 without returning a value. */
7325 else if (warn_return_type
7326 && !TREE_NO_WARNING (cfun->decl)
7327 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7328 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7329 {
7330 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7331 {
7332 gimple last = last_stmt (e->src);
7333 if (gimple_code (last) == GIMPLE_RETURN
7334 && gimple_return_retval (last) == NULL
7335 && !gimple_no_warning_p (last))
7336 {
7337 location = gimple_location (last);
7338 if (location == UNKNOWN_LOCATION)
7339 location = cfun->function_end_locus;
7340 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7341 TREE_NO_WARNING (cfun->decl) = 1;
7342 break;
7343 }
7344 }
7345 }
7346 return 0;
7347 }
7348
7349
7350 /* Given a basic block B which ends with a conditional and has
7351 precisely two successors, determine which of the edges is taken if
7352 the conditional is true and which is taken if the conditional is
7353 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7354
7355 void
7356 extract_true_false_edges_from_block (basic_block b,
7357 edge *true_edge,
7358 edge *false_edge)
7359 {
7360 edge e = EDGE_SUCC (b, 0);
7361
7362 if (e->flags & EDGE_TRUE_VALUE)
7363 {
7364 *true_edge = e;
7365 *false_edge = EDGE_SUCC (b, 1);
7366 }
7367 else
7368 {
7369 *false_edge = e;
7370 *true_edge = EDGE_SUCC (b, 1);
7371 }
7372 }
7373
7374 struct gimple_opt_pass pass_warn_function_return =
7375 {
7376 {
7377 GIMPLE_PASS,
7378 "*warn_function_return", /* name */
7379 NULL, /* gate */
7380 execute_warn_function_return, /* execute */
7381 NULL, /* sub */
7382 NULL, /* next */
7383 0, /* static_pass_number */
7384 TV_NONE, /* tv_id */
7385 PROP_cfg, /* properties_required */
7386 0, /* properties_provided */
7387 0, /* properties_destroyed */
7388 0, /* todo_flags_start */
7389 0 /* todo_flags_finish */
7390 }
7391 };
7392
7393 /* Emit noreturn warnings. */
7394
7395 static unsigned int
7396 execute_warn_function_noreturn (void)
7397 {
7398 if (!TREE_THIS_VOLATILE (current_function_decl)
7399 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7400 warn_function_noreturn (current_function_decl);
7401 return 0;
7402 }
7403
7404 static bool
7405 gate_warn_function_noreturn (void)
7406 {
7407 return warn_suggest_attribute_noreturn;
7408 }
7409
7410 struct gimple_opt_pass pass_warn_function_noreturn =
7411 {
7412 {
7413 GIMPLE_PASS,
7414 "*warn_function_noreturn", /* name */
7415 gate_warn_function_noreturn, /* gate */
7416 execute_warn_function_noreturn, /* execute */
7417 NULL, /* sub */
7418 NULL, /* next */
7419 0, /* static_pass_number */
7420 TV_NONE, /* tv_id */
7421 PROP_cfg, /* properties_required */
7422 0, /* properties_provided */
7423 0, /* properties_destroyed */
7424 0, /* todo_flags_start */
7425 0 /* todo_flags_finish */
7426 }
7427 };
7428
7429
7430 /* Walk a gimplified function and warn for functions whose return value is
7431 ignored and attribute((warn_unused_result)) is set. This is done before
7432 inlining, so we don't have to worry about that. */
7433
7434 static void
7435 do_warn_unused_result (gimple_seq seq)
7436 {
7437 tree fdecl, ftype;
7438 gimple_stmt_iterator i;
7439
7440 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7441 {
7442 gimple g = gsi_stmt (i);
7443
7444 switch (gimple_code (g))
7445 {
7446 case GIMPLE_BIND:
7447 do_warn_unused_result (gimple_bind_body (g));
7448 break;
7449 case GIMPLE_TRY:
7450 do_warn_unused_result (gimple_try_eval (g));
7451 do_warn_unused_result (gimple_try_cleanup (g));
7452 break;
7453 case GIMPLE_CATCH:
7454 do_warn_unused_result (gimple_catch_handler (g));
7455 break;
7456 case GIMPLE_EH_FILTER:
7457 do_warn_unused_result (gimple_eh_filter_failure (g));
7458 break;
7459
7460 case GIMPLE_CALL:
7461 if (gimple_call_lhs (g))
7462 break;
7463 if (gimple_call_internal_p (g))
7464 break;
7465
7466 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7467 LHS. All calls whose value is ignored should be
7468 represented like this. Look for the attribute. */
7469 fdecl = gimple_call_fndecl (g);
7470 ftype = gimple_call_fntype (g);
7471
7472 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7473 {
7474 location_t loc = gimple_location (g);
7475
7476 if (fdecl)
7477 warning_at (loc, OPT_Wunused_result,
7478 "ignoring return value of %qD, "
7479 "declared with attribute warn_unused_result",
7480 fdecl);
7481 else
7482 warning_at (loc, OPT_Wunused_result,
7483 "ignoring return value of function "
7484 "declared with attribute warn_unused_result");
7485 }
7486 break;
7487
7488 default:
7489 /* Not a container, not a call, or a call whose value is used. */
7490 break;
7491 }
7492 }
7493 }
7494
7495 static unsigned int
7496 run_warn_unused_result (void)
7497 {
7498 do_warn_unused_result (gimple_body (current_function_decl));
7499 return 0;
7500 }
7501
7502 static bool
7503 gate_warn_unused_result (void)
7504 {
7505 return flag_warn_unused_result;
7506 }
7507
7508 struct gimple_opt_pass pass_warn_unused_result =
7509 {
7510 {
7511 GIMPLE_PASS,
7512 "*warn_unused_result", /* name */
7513 gate_warn_unused_result, /* gate */
7514 run_warn_unused_result, /* execute */
7515 NULL, /* sub */
7516 NULL, /* next */
7517 0, /* static_pass_number */
7518 TV_NONE, /* tv_id */
7519 PROP_gimple_any, /* properties_required */
7520 0, /* properties_provided */
7521 0, /* properties_destroyed */
7522 0, /* todo_flags_start */
7523 0, /* todo_flags_finish */
7524 }
7525 };